WorldWideScience

Sample records for efficiency improvement opportunities

  1. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  2. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  3. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  4. Energy efficiency improving opportunities in a large Chinese shoe-making enterprise

    International Nuclear Information System (INIS)

    Ming Yang

    2010-01-01

    Energy consumption and energy intensity reduction opportunities are quite different from one enterprise to another. It is necessary to understand how much energy is used at individual enterprise, where the most energy is consumed and what the best opportunities are to invest in energy efficiency. Auditing energy efficiency was recently undertaken in one of the top 1000 largest Chinese enterprises. The objectives of this paper are to fill a gap in the literature of auditing energy efficiency for a Chinese manufacturing enterprise and to share the audited energy efficiency results. This paper concludes that if the enterprise invests USD 1.9 million to improve energy efficiency, the investment will be recovered in about 18 months. The net present value of the investment would be about USD 9.8 million at a discount rate of 12%. The investment will reduce a large amount of energy consumption at the enterprise based on its figures in 2008, including 15% of electricity, 40% of fuel oil, and 54% of diesel. Carbon reduction is also very cost-effective. Investment of one dollar in the enterprise will help cut carbon emission by 7.95 kg per year and generate $5.3 net revenue in the economic lifetime of the invested technology.

  5. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities

    Directory of Open Access Journals (Sweden)

    Beatrice Marchi

    2017-10-01

    Full Text Available Energy efficiency represents a key resource for economic and social development, providing substantial benefits to different stakeholders, ranging from the entities which develop energy efficient measures to everyone in society. In addition to cost savings, multiple benefits can be achieved by supporting a better alignment between energy issues and strategic business priorities: e.g., improved competitiveness, profitability, quality, etc. Thus, energy efficiency can be a strategic advantage, not just a marginal issue, for companies. However, most firms, especially small and medium enterprises (SMEs, face many problems and, in some cases, hostility when trying to effectively implement energy efficiency actions. The most dominant barriers are the access to capital and the lack of awareness (especially in terms of life cycle cost effects. The supply chain viewpoint represents one of the main opportunities for overcoming those barriers and improving energy performance even for weaker companies. Since the current literature on energy efficiency and practical approaches to ensure energy efficiency mainly focus on energy performance on a single-firm basis, this paper aims to provide a systematic review of papers on the integration of energy efficiency in supply chain design and management published in academic journal, thereby defining potential research streams to close the gaps in the literature. A number of literature reviews have been published focusing on specific aspects of sustainable or on green supply chain management; however, to the best of our knowledge, no review has focused on the energy efficiency issue. Firstly, the present paper shows how considering energy consumption in supply chain management can contribute to more energy-efficient processes from a systemic point of view. Then, the review methodology used is defined and the sampled papers are analyzed and categorized based on the different approaches they propose. From these

  6. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  7. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  8. Efficiency improvement opportunities in TVs: Implications for market transformation programs

    International Nuclear Information System (INIS)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2013-01-01

    Televisions (TVs) account for a significant portion of residential electricity consumption and global TV shipments are expected to continue to increase. We assess the market trends in the energy efficiency of TVs that are likely to occur without any additional policy intervention and estimate that TV efficiency will likely improve by over 60% by 2015 with savings potential of 45 terawatt-hours [TW h] per year in 2015, compared to today’s technology. We discuss various energy-efficiency improvement options and evaluate the cost effectiveness of three of them. At least one of these options improves efficiency by at least 20% cost effectively beyond ongoing market trends. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy savings potential from TVs which we estimate to be up to 23 TW h per year in 2015. - Highlights: • We analyze the impact of the recent TV market transition on TV energy consumption. • We review TV technology options that could be realized in the near future. • We assess the cost-effectiveness of selected energy-efficiency improvement options. • We estimate global electricity savings potential in selected scenarios. • We discuss possible directions of market transformation programs

  9. Electric motor systems in developing countries: Opportunities for efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1993-08-01

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  10. The Efficiency Opportunity Impact of Information Systems in an Organizational Economics Framework of Informatics

    OpenAIRE

    Kühn Pedersen, Mogens; Holm Larsen, Michael

    2004-01-01

    Information systems (IS) have a record of raising efficiency and effectiveness in business operations. In the modern economy, ongoing efficiency improvements through innovation play a decisive role. A new theory of distributed relations refocuses innovations comptence from core to distributed competence, raising new efficiency opportunities. The paper suggest an economic model of the efficiency op-portunities of information processing revealing the efficiency form of distributed relations, a ...

  11. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  12. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    buildings, and by issuing an annual “premier’s report card,” making public the progress on province-wide efficiency efforts. For a province that continues to enjoy growth in business and population, updated guidelines around new building codes have been proven to improve energy efficiency. And there remains a significant opportunity for Alberta to improve efficiency in its commercial and industrial sectors, the largest users of energy, by providing government incentives to replace ageing equipment with more efficient technology. Alberta is also well suited for a shift toward more combined heat and power generation plants, which can repurpose generated heat that is otherwise wasted, significantly reducing energy demand and costs. And in a province awash in natural gas, incentives to encourage travel using compressed or liquefied natural gas vehicles could serve to boost energy efficiency in the transportation sector as well. Alberta is fortunate in that it has abundant energy and prosperity, making improved energy efficiency a matter of choice, rather than — as in some jurisdictions — one of urgent necessity. It is, however, a choice that Alberta has enough reasons, and resources, to make. All it requires is the will.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  14. Efficiency improvement opportunities for personal computer monitors. Implications for market transformation programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-08-15

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that PC monitor efficiency will likely improve by over 40 % by 2015 with saving potential of 4.5 TWh per year in 2015, compared to today's technology. We discuss various energy-efficiency improvement options and evaluate the cost-effectiveness of three of them, at least one of which improves efficiency by at least 20 % cost effectively beyond the ongoing market trends. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus-powered liquid crystal display monitors and find that the current technology available and deployed in them has the potential to deeply and cost effectively reduce energy consumption by as much as 50 %. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy saving potential from PC monitors which we estimate to be 9.2 TWh per year in 2015.

  15. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  16. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  17. Efficiency Improvement Opportunities for Personal Computer Monitors. Implications for Market Transformation Programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-29

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that display efficiency will likely improve by over 40% by 2015 compared to today’s technology. We evaluate the cost effectiveness of a key technology which further improves efficiency beyond this level by at least 20% and find that its adoption is cost effective. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus (USB) powered liquid crystal display (LCD) monitors and find that the current technology available and deployed in USB powered monitors has the potential to deeply reduce energy consumption by as much as 50%. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to capture global energy saving potential from PC monitors which we estimate to be 9.2 terawatt-hours [TWh] per year in 2015.

  18. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  19. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  20. University of Michigan Comprehensive Cancer Center opportunities for improvement project.

    Science.gov (United States)

    Breslin, Tara M; Waldinger, Marcy; Silver, Samuel M

    2014-02-01

    The University of Michigan Comprehensive Cancer Center (UMCCC) Opportunities for Improvement project involved a detailed patient-level medical record review, feedback to medical providers and clinical leadership, and discussion of potential predictors of discordant or delayed care. The medical record review revealed that reasons for discordant or delayed care were well documented by clinical providers, and medical comorbidity was the most common predisposing factor. Another common theme was the difficulty in obtaining treatment records for patients who received a portion of their care outside UMCCC. The project provided a valuable opportunity to examine established processes of care and data collection and consider how the newly implemented electronic health record might support future efforts aimed at improving efficiency and communication among providers.

  1. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  2. Climate change mitigation through energy efficiency : opportunities in Atlantic Canada

    International Nuclear Information System (INIS)

    Cote, R.; Archibald, G.

    2008-01-01

    Canada's total energy use is expected to increase by 20 per cent between 2005 and 2020. Studies have suggested that successful energy efficiency initiatives could reduce growth in demand by up to 50 per cent, while reducing greenhouse gases (GHGs) by an estimated 40 per cent. Energy use comprises approximately 65.4 per cent of total expenditures for most businesses. Atlantic region industries contribute nearly 7 per cent of Canadian industrial energy consumption while contributing 5 per cent to the Canadian industrial gross domestic product (GDP). Energy efficiency practices adopted by industry operators in the Maritimes included modifications to boilers, process cooling equipment, motors, compressed air equipment, lighting and HVAC systems. Energy efficiency performance values in the Maritimes range from 11 to 100 per cent, with an average of 65 per cent. Opportunities for improving energy efficiency include inefficient lighting, leaking faucets, poor heat distribution, and inappropriate solid waste segregation. Cost savings for various energy efficiency measures were presented. Case studies of various eco-efficiency programs conducted at plants and businesses in the Maritimes were also included. tabs., figs.

  3. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  4. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  6. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  7. IDENTIFY: opportunities for improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cornland, Deborah Wilson; Lazarus, Michael; Heaps, Charles; Hippel, David von; Hill, David [Stockholm Environment Inst., Stockholm (Sweden); Williams, Robert [United Nations Industrial Development Organization (UNIDO), Vienna (Austria)

    1998-09-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. The study resulted in the development of the IDENTIFY software tool which can be useful for evaluating projects under consideration for investment through Activities Implemented Jointly (AIJ). IDENTIFY consists of an Analysis tool which enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology, and process options and a Technology Inventory which provides information describing energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors. (author)

  8. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  10. Anesthesiology leadership rounding: identifying opportunities for improvement.

    Science.gov (United States)

    Gravenstein, Dietrich; Ford, Susan; Enneking, F Kayser

    2012-01-01

    Rounding that includes participation of individuals with authority to implement changes has been advocated as important to the transformation of an institution into a high-quality and safe organization. We describe a Department of Anesthesiology's experience with leadership rounding. The Department Chair or other senior faculty designate, a quality coordinator, up to four residents, the ward charge nurse, and patient nurses participated in rounds at bedsides. During a 23-month period, 14 significant opportunities to improve care were identified. Nurses identified 5 of these opportunities, primary team physicians 2, the rounding team 4, and patients or their family members another 3. The anesthesiology service had sole or shared responsibility for 10 improvements. A variety of organizations track specific measures across all phases of the patient experience to gauge quality of care. Chart auditing tools for detecting threats to safety are often used. These measures and tools missed opportunities for improvement that were discovered only through rounding. We conclude that the introduction of leadership rounding by an anesthesiology service can identify opportunities for improving quality that are not captured by conventional efforts.

  11. Productivity improvement opportunities at Navy public works activities

    OpenAIRE

    Dieffenbach, Richard Jacob

    1992-01-01

    Approved for public release; distribution is unlimited This study identifies six principal opportunities for productivity improvement at Navy Public Works in-house maintenance activities: improving work assignment, increasing shop supervisor effectiveness, reducing long lunches and early quits (through understanding of work impediments as demotivational contributors), improving service order management, improving job quality and miscellaneous opportunities. Activity "productivity opportu...

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  13. Opportunities for public procurement procedures efficiency and optimization improvement

    OpenAIRE

    Junevičius, Algis; Ereminaitė, Simona

    2010-01-01

    Public procurement is one of the most actual problems of economics and a potential instrument of successful public policy, which can control money flows and manipulate the appearance of corruption opportunities. Procurement practices are relatively new in the public sector, but everyone knows the complicated regulation and coordination of this process. Despite the fact that society often discus about public procurement problems, the regulation of this process requires an in-depth evaluation b...

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  15. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  16. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  19. Targeting utility customers to improve energy savings from conservation and efficiency programs

    International Nuclear Information System (INIS)

    Taylor, Nicholas W.; Jones, Pierce H.; Kipp, M. Jennison

    2014-01-01

    Highlights: • Improving DSM program impacts by targeting high energy users. • DSM energy savings potential hinges on pre-participation performance. • Targeting can benefit different utilities and energy efficiency programs. • Overall performance can be improved by up to 250% via targeting strategies. - Abstract: Electric utilities, government agencies, and private interests in the US have committed and continue to invest substantial resources – including billions of dollars of financial capital – in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. While most of these programs are deemed to be cost effective, and therefore in the public interest, opportunities exist to improve cost effectiveness by targeting programs to those customers with the greatest potential for energy savings. This article details an analysis of three DSM programs offered by three Florida municipal electric utilities to explore such opportunities. First, we estimate programs’ energy savings impacts; second, we measure and compare energy savings across subgroups of program participants as determined by their pre-intervention energy performance, and third, we explore potential changes in program impacts that might be realized by targeting specific customers for participation in the DSM programs. All three programs resulted in statistically significant average (per-participant) energy savings, yet average savings varied widely, with the customers who performed best (i.e., most efficient) before the intervention saving the least energy and those who performed worst (i.e., least efficient) before the intervention saving the most. Assessment of alternative program participation scenarios with varying levels of customer targeting suggests that program impacts could be increased by as much as 80% for a professional energy audit program, just over 100% for a high-efficiency heat pump upgrade program, and nearly 250% for an attic insulation

  20. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  1. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  2. Barriers and opportunities for improving energy efficiency in the social housing sector: Case study of E4C's Division of Housing and Mental Health

    Science.gov (United States)

    Marchand-Smith, Patrick

    Energy efficiency improvements in the social housing sector have the potential to produce a range of environmental and social benefits. These improvements can be produced through retrofits that deliver energy savings or new construction built to a high standard of energetic efficiency. However, implementation of these approaches is hindered by economic and organizational constraints affecting the agencies that provide society with social housing and the governments that support the provision of these services. This thesis builds on the work of other researchers studying these constraints by supplying an in-depth case study from Alberta and a discussion based on its findings. The case study focuses on E4C, a social service agency with several housing projects. Overall, findings matched important themes identified in the academic literature. The in-depth nature of the case study added additional insight to many of these themes. Most barriers are economic in nature and related to a lack of sufficient funding or the up-front costs of energy-saving retrofits. The recommendations presented are based on consideration of the multiple barriers and opportunities faced. Most of these require a considerable investment of time on the part of agencies and would be followed up by capital investments to implement energy-saving changes. Therefore it is important to note that the most significant barrier is commitment, which is one of E4C's central values. This thesis showed that commitment cannot exceed capacity to act. Greater commitment on the part of governments, agencies or society at large could have significant impacts in improving the energy efficiency of buildings in the Albertan, and Canadian, social housing sector.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  4. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  5. Good Housekeeping Implementation for Improving Efficiency in Cassava Starch Industry (Case Study : Margoyoso District, Pati Regency)

    Science.gov (United States)

    Aji, Wijayanto Setyo; Purwanto; Suherman, S.

    2018-02-01

    Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.

  6. New raw materials improve packing sealing efficiency

    International Nuclear Information System (INIS)

    Igel, B.; McKeague, L.

    2012-01-01

    End-users and OEM's using or manufacturing on/off and control valves expect a permanent and effective increase in service life together with an increased sealing capability while at the same time minimizing maintenance concerns. Developing materials which provide consistency and repeatability are essential characteristics to optimizing valve performance. “New Generation” materials and yarn allow us to meet this growing demand while complying with the requirements related to chemical purity and an increased level of safety to both plant workers and equipment in the nuclear environment. Through R&D initiatives and developments in new and improved raw materials; a new mechanical packing generation which optimizes friction coefficients and extended life cycle has been introduced to the industry. Lower friction values drastically optimize actuator effort and size improving efficiency for stem operation with significant improvements in flow control of fluids. Combined with new and improved procedures (installation, torque levels and consolidation recommendations), this new packing generation has provided significant improvement in the mechanical behavior of packing materials (independent tests carried out in collaboration with AECL and CETIM) this has provided the opportunity to develop successful Valve Enhancement Programs which offer improved efficiency, valve operation and repeatability. These NEW generation yarns are available with or without wire reinforcement depending on specific operating parameters and conditions. The purpose of this presentation is to demonstrate that new generation material(s). Which are available to the industry for AOV, MOV and Manual valves? - To highlight the steps taken in R&D and manufacturing contributing to the much improved yarns and finished packing products. - Comply and are designed to meet the stringent requirements in the nuclear industry - Simplify valve maintenance without risk to safety or performance - Increase service

  7. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  8. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This publication is the first global analysis of energy consumption and energy efficiency potential of EMDS (electric motor- driven system). The electric motors and systems they drive are the largest single electricity end use, accounting for more than 40% of global electricity consumption. Huge energy efficiency potential was found untapped in EMDS - around 25% of EMDS electricity use could be saved cost-effectively, reducing total global electricity demand by about 10%. However, the energy efficiency of EMDS has been relatively neglected in comparison with other sustainable energy opportunities. It is crucial to scale up the operations and resources committed to realizing the vast savings potential of optimized EMDS. This paper proposes a comprehensive package of policy recommendations to help governments realize the potential for energy savings in EMDS.

  9. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  10. Guide to energy efficiency opportunities in Canadian foundries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In Canada, the foundry sector employs about 15000 people and most of the companies are members of the Canadian Foundry Association (CFA). The CFA is committed to reducing its greenhouse gas emissions and is therefore looking for energy savings which, in addition to reducing emissions, would help the industry save costs and improve its competitiveness. The aim of this document is to provide operators with a guide to improving energy efficiency in their foundries. The report provides guidance on carrying out energy audits, gathering energy saving ideas, prioritizing projects, and charting the course of improved energy performance. Many different energy saving ideas for many kinds of operation are presented in this guidebook as a help to operators in finding where they could improve their energy efficiency; references to energy saving methods from all over the world are provided. This guidebook is a useful tool for helping foundry operators improve energy efficiency in their operations.

  11. Scope for improved eco-efficiency varies among diverse cropping systems.

    Science.gov (United States)

    Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A

    2013-05-21

    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.

  12. Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges

    Science.gov (United States)

    Marquis, Fernand D. S.

    2012-03-01

    The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.

  13. Motivation in Construction Innovation: Commercial Opportunities, Problem-Solving and Passion for Improvement

    Directory of Open Access Journals (Sweden)

    Fang Chang Yean

    2016-01-01

    Full Text Available This article analyses motivations for innovation in construction using the service sector adaptation of the Sectoral System of Innovation (SSI framework. Interviews and site visits were conducted with four Malaysian firms. Innovation in construction is similar to the service sector. There is evidence of technology-push, capability-push and demand-pull; capability push is the most important. Construction firms innovate to gain commercial opportunities, to solve project-related problems and to improve processes. By simplifying construction work, process innovation saves time and costs, increasing efficiency and productivity, and providing increased competitiveness. Innovation is also motivated by committed and passionate actors within construction firm.

  14. Energy efficiency and climate change: an opportunity for the Swiss economy

    International Nuclear Information System (INIS)

    Ziegler, M.; Baettig, R.

    2010-01-01

    This article takes a look at the results of a study elaborated for the Swiss Federal Office of Energy. The study comes to the conclusion that the Swiss economy can profit from the implementation of energy-efficiency measures as well as from global growth in the area of products for increasing energy-efficiency. Swiss companies can therefore not only help lower emission rates for greenhouse gases and increase energy efficiency but also create new jobs. The long-term potential for the reduction of CO 2 emissions is quoted as being enormous. Winners and losers in the changing energy scene are noted and opportunities for Swiss exports are examined

  15. University management-improvements and dilemma in the of equal opportunities

    Directory of Open Access Journals (Sweden)

    Ph. d.PROFESSOR iORDACHE PLAT

    2011-12-01

    Full Text Available Equal opportunity is a relatively new concept which first of all must be understood, and then implemented as a premise and note as a result of current activities. Equal opportunity in organizations is a new way of achieving results and the modern management puts it as a necessary principle among old ones, such as benchmarking, corporate governance, customer relatioship marketing, experience curve, strategies alliances etc. This paper explains the equal opportunity in higher education institutions, their improvements and dilemma sin implementing equal opportunities.

  16. Trade-offs between Energy Efficiency improvements and additional Renewable Energy supply: A review of international experiences

    DEFF Research Database (Denmark)

    Baldini, Mattia; Klinge Jacobsen, Henrik

    improvements made in the energy saving field. Indeed, less attention has been paid to implement energy efficiency measures in energy systems modeling, which has resulted in scenarios where expedients for a wise use of energy (e.g. energy savings and renewables’ share) are unbalanced and cost......-savings opportunities are missed. The aim of this paper is to review and evaluate international experiences on finding the optimal trade-off between efficiency improvements and additional renewable energy supply. A critical review of each technique, focusing on purposes, methodology and outcomes, is provided along......-makers, informations useful for identify a suitable analysis for investigate on the optimal trade-off between renewables and energy efficiency measures in energy-systems under different objectives....

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  18. Adaptation to climate change in industry: improving resource efficiency through sustainable production applications.

    Science.gov (United States)

    Alkayal, Emrah; Bogurcu, Merve; Ulutas, Ferda; Demirer, Göksel Niyazi

    2015-01-01

    The objective of this study was to investigate the climate change adaptation opportunities of six companies from different sectors through resource efficiency and sustainable production. A total of 77 sustainable production options were developed for the companies based on the audits conducted. After screening these opportunities with each company's staff, 19 options were selected and implemented. Significant water savings (849,668 m3/year) were achieved as a result of the applications that targeted reduction of water use. In addition to water savings, the energy consumption was reduced by 3,607 MWh, which decreased the CO2 emissions by 904.1 tons/year. Moreover, the consumption of 278.4 tons/year of chemicals (e.g., NaCl, CdO, NaCN) was avoided, thus the corresponding pollution load to the wastewater treatment plant was reduced. Besides the tangible improvements, other gains were achieved, such as improved product quality, improved health and safety conditions, reduced maintenance requirements, and ensured compliance with national and EU regulations. To the best of the authors' knowledge, this study is the first ever activity in Turkey devoted to climate change adaptation in the private sector. This study may serve as a building block in Turkey for the integration of climate change adaptation and mitigation approach in the industry, since water efficiency (adaptation) and carbon reduction (mitigation) are achieved simultaneously.

  19. Unveiling information on opportunity costs in REDD

    DEFF Research Database (Denmark)

    Delacote, Philip; Palmer, Charles; Bakkegaard, Riyong Kim

    2014-01-01

    Improving information about individual opportunity costs of deforestation agents has the potential to increase the efficiency of REDD when it takes the form of a payment for environmental services scheme. However, objectives pursued in REDD projects may vary across policy makers. Within a theoret......Improving information about individual opportunity costs of deforestation agents has the potential to increase the efficiency of REDD when it takes the form of a payment for environmental services scheme. However, objectives pursued in REDD projects may vary across policy makers. Within...... objectives in REDD-affected communities, having full information makes no difference to overall welfare as rents remain with agents. The amount of deforestation avoided will at least be as high as under asymmetric information. These results are illustrated with data collected on opportunity costs in Amazonas...

  20. Walking the Torque: Proposed Work Plan for Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Electric motor-driven system is the largest single energy end use accounting for more than 40% of global electricity consumption. This paper sets out an ambitious but achievable target with the global work plan to improve the energy efficiency of electric motor-driven system by 10% to 15% based on the finding of working paper ''Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (Waide et al., 2011)''. If governments commit to the proposed work plan immediately and maintain resourcing levels, this could be achieved by 2030 and it would be equivalent to reducing total global electricity use by around 5%. The proposed work plan of this paper is to align regulatory settings within a globally applicable scheme. The IEA believes this target can only be achieved through global co-operation leading to aligned national policy settings that countries can unlock the economies of scale that will result from using more energy efficient EMDS.

  1. Preliminary study on the potential of improving pulp quality and energy efficiency in a South African TMP mills

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2010-03-01

    Full Text Available The main focus of this work was to evaluate an opportunity for product quality and refining energy efficiency improvement through assessing the current mill practices in South African TMP mills. The fractionation trials were conducted at a CSIR...

  2. Data visualization unlocks improvement opportunities

    International Nuclear Information System (INIS)

    Remple, G.A.; Galbraith, M.

    2010-01-01

    The modern uranium mill generates a vast amount of raw data from various sources including control systems, operator logsheets, assay results and environmental monitoring, which is frequently stored in separate databases. Implementation of software at the McClean Lake mill that includes an integrated, web-based view of these multiple and disparate data sources has provided better tools in the effort to manage this 'data load', and extract the information required to enhance process understanding and support the continuous improvement and decision making processes. This paper outlines the opportunities, challenges, and milestones of this software project. (author)

  3. Energy efficiency improvement of medical electric tools and devices

    Directory of Open Access Journals (Sweden)

    Meshkov Aleksandr S.

    2014-01-01

    Full Text Available With the ever-increasing volume of applications of various kinds of electric drives in all spheres of human activity, the issues in improving the efficiency of the electromechanical converters of electric energy, one of the most important components of the electric drive (ED, are becoming increasingly important. Such issues include reducing their weight and size, improving the functional characteristics of these devices to increase their operational life and reducing the cost of manufacture. Taking full advantage of these opportunities relates to the AC and DC single-phase commutator motor (SCM, which is widely used in regulated and high-speed motor drives in medical electric hand tools. The SCM is used in machinery where the load torque has a hyperbolic dependence on the rotational speed and the need to work with a large motor overload due to the “soft” mechanical characteristics of such motors.

  4. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  5. Barriers and opportunities for labels for highly energy-efficient houses

    International Nuclear Information System (INIS)

    Mlecnik, Erwin; Visscher, Henk; Van Hal, Anke

    2010-01-01

    Promoting energy efficiency in the building sector is essential if the agreements of the Kyoto Protocol are to be honoured. Different initiatives for energy labelling of highly energy-efficient residential buildings have emerged throughout Europe as an essential method to stimulate market demand, to control grants or to ensure the quality of demonstration projects with excellent energy performance. The paper identifies the barriers and opportunities for the further diffusion of labels for highly energy-efficient houses. A model based on the theory of the diffusion of innovation is developed to analyse perceived attributes of existing European labels. The paper investigates the innovation characteristics of existing labels in Europe, with a focus on advanced countries. The question of compatibility with the development of the European Energy Performance of Buildings Directive (EPBD) is examined in detail. We found that the diffusion of emerging and already existing voluntary European labels for highly energy-efficient houses is needed. Their complexity can be lowered and relative advantage, trialability, observability, and compatibility can be increased. EPBD calculation procedures should be able to receive highly energy-efficient houses. In the framework of the recast of the EPBD, official recognition of existing voluntary labels is recommended. (author)

  6. Opportunities for Improving the Energy Efficiency of Multi-Modal Intra-City Freight Movement

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, Kevin; Duran, Adam

    2017-07-06

    This poster focuses on the National Renewable Energy Laboratory's analysis of opportunities for freight movement energy savings via optimization and integration of existing/emerging intra-city goods delivery modes as well as an assessment of the efficacy and energy consumption impact of new technologies.

  7. Peri-urban dairy production systems in developing countries: Characteristics, potential and opportunities for improvement

    International Nuclear Information System (INIS)

    Devendra, C.

    2002-01-01

    Full text: Peri-urban dairy production systems in developing countries are discussed with reference to type of systems, their characteristics, potential, and opportunities for improvement. Three types of dairy systems are identified and described: smallholder systems, smallholder co-perative dairy production systems, and intensive dairy production systems. The first two systems are by far the most important, and are associated with increasing intensification. Buffaloes are especially important in South Asia, but elsewhere dairy production mainly involves Holstein-Friesian cross-bred cattle. Dairy goats are important in some countries, but are generally neglected in development programmes. The expansion and intensification of peri-urban dairy production is fuelled by increased demand for milk with associated problems of milk handling and distribution, hygiene and environmental pollution. The major constraints to production are inter alia, choice of species, breeds and availability of animals; feed resources and improved feeding systems; improved breeding, reproduction, and animal health care; management of animal manure, and organised marketing, and market outlets. These constraints provide major opportunities and challenges for research and development to increase dairy production, efficient management of natural resources, and improved livelihoods of poor farmers. Specific areas for research are identified, as also the need of a holistic focus involving interdisciplinary research and integrated natural resource management, in a shared partnership between farmers and scientists that can demonstrate increased productivity and sustainable production systems. Suggestions for performance indicators for such systems are indicated. (author)

  8. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  9. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  10. Efficiency improvements in pipeline transportation systems. Technical report, Task 3

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. H.

    1977-01-01

    This report identifies those potential energy-conservative pipeline innovations that are most energy- and cost-effective, and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight programs recommended for pursuit are: gas-fired combined-cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cycle pump station; internal coatings in pipelines; and drag-reducing additives in liquid pipelines.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  12. The Gains from Improved Market Efficiency

    DEFF Research Database (Denmark)

    Persson, Karl Gunnar; Ejrnæs, Mette

    faster, violations of the law of one price become smaller and hence less persistent. There were also significant gains from improved market efficiency but that improvement took place after the information ‘regime’ shifted from pre-telegraphic communication to a regime with swift transmission...... of information in an era which developed a sophisticated commercial press and telegraphic communication. Improved market efficiency probably stimulated trade more than falling transport costs......This paper looks at the gains from improved market efficiency in long-distance grain trade in the second half of the 19th century when violations of the law of one price were reduced due to improved information transmission. Two markets, a major export centre, Chicago, and a major importer...

  13. How to improve the efficient use of functional vision of people with visual impairment

    OpenAIRE

    Mohorko, Ana

    2013-01-01

    Barraga was the first researcher to study the effects of a special program for developing visual efficiency which showed improvements in visual acuity and visual functioning in blind children with remaining vision. Her breakthrough findings helped develop new theories of visual functioning. These theories represent a foundation from which a professional can understand the visual functioning of an individual with low vision. Providing opportunities for individuals to learn how to use their vis...

  14. Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.K.; Rietbergen, M.; Van der Gaast, W.

    2009-01-01

    In this paper we examine the implementation of a combined policy scheme that consists of a traditional instrument, the voluntary agreements (VAs), and an innovative one, the white certificates (WhC). The basic structure of this scheme is that energy suppliers who undertake an energy efficiency obligation under a white certificate scheme can make use of voluntary actions to enhance investments in innovative energy savings projects. Energy suppliers and other market parties can additionally or in parallel participate in voluntary agreements and set energy efficiency targets. For fulfilling their voluntary agreement target, these market parties can receive tax exemptions or receive white certificates that they can sell in the market. Transaction costs and baseline definition for demonstrating energy efficiency improvement deserve special attention. This policy can assist a country to enhance energy efficiency improvement while it stimulates innovation. Cost effectiveness can be higher than the case of stand-alone policy instruments, since more financing options are available for more expensive projects. Nevertheless, the added value of the scheme lies more in the implementation of innovative measures for enhanced energy efficiency. Furthermore, market parties can discover more business opportunities in energy efficiency and establish a green image; hence an integrated scheme should achieve higher political acceptability. (author)

  15. Competition, regulation, and energy efficiency options in the electricity sector: Opportunities and challenges in developing countries

    Science.gov (United States)

    Phadke, Amol Anant

    This dissertation explores issues related to competition in and regulation of electricity sectors in developing countries on the backdrop of fundamental reforms in their electricity sectors. In most cases, electricity sector reforms promoted privatization based on the rationale that it will lower prices and improve quality. In Chapter 2, I analyze this rationale by examining the stated capital cost of independent (private) power producer's (IPPs) power projects in eight developing countries and find that the stated capital cost of projects selected via competitive bidding is on an average about 40% to 60% lower than that of the projects selected via negotiations, which, I argue, represents the extent to which the costs of negotiated projects are overstated. My results indicate that the policy of promoting private sector without an adequate focus on improving competition or regulation has not worked in most cases in terms of getting competitively priced private sector projects. Given the importance of facilitating effective competition or regulation, In Chapter 3, I examine the challenges and opportunities of establishing a competitive wholesale electricity market in a developing country context. I model a potential wholesale electricity market in Maharashtra (MH) state, India and find that it would be robustly competitive even in a situation of up-to five percent of supply shortage, when opportunities for demand response are combined with policies such as divestiture and requiring long-term contracts. My results indicate that with appropriate policies, some developing countries could establish competitive wholesale electricity markets. In Chapter 4, I focus on the demand side and analyze the cost effectiveness of improving end-use efficiency in an electricity sector with subsidized tariffs and electricity shortages and show that they offer the least expensive way of reducing shortages in Maharashtra State, India. In Chapter 5, I examine the costs of reducing carbon

  16. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  17. Improving efficiency in stereology

    DEFF Research Database (Denmark)

    Keller, Kresten Krarup; Andersen, Ina Trolle; Andersen, Johnnie Bremholm

    2013-01-01

    of the study was to investigate the time efficiency of the proportionator and the autodisector on virtual slides compared with traditional methods in a practical application, namely the estimation of osteoclast numbers in paws from mice with experimental arthritis and control mice. Tissue slides were scanned......, a proportionator sampling and a systematic, uniform random sampling were simulated. We found that the proportionator was 50% to 90% more time efficient than systematic, uniform random sampling. The time efficiency of the autodisector on virtual slides was 60% to 100% better than the disector on tissue slides. We...... conclude that both the proportionator and the autodisector on virtual slides may improve efficiency of cell counting in stereology....

  18. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  19. Common challenge in resource efficiency improvement

    International Nuclear Information System (INIS)

    La Motta, Sergio; Peronaci, Marcello

    2015-01-01

    Energy efficiency and technology improvements on their own will not achieve the Low Carbon Societies (LCS) goals. Thus, resource efficiency and a circular economy are keys to a low carbon society. Resource efficiency improvement potential has been analysed from the industrial and territorial management perspectives. Exploring synergies between LCS and the larger area of sustainable development and green economy, highlighting co-benefits and trade-offs, is of utmost importance to pave the way to a more equitable and largely participated low carbon transition.

  20. Information Technology: Opportunities for Improving Acquisitions and Operations

    Science.gov (United States)

    2017-04-01

    1GAO, Federal Chief Information Officers : Opportunities Exist to Improve Role in Information Technology Management, GAO-11-634...approach and a collaborative relationship among agency executives (e.g., Chief Financial Officer and agency component leadership) had stopped 45...executives, including Chief Financial Officers and executives of major bureaus and component agencies for whom the technology is serving, to ensure that

  1. Producing Cochrane systematic reviews-a qualitative study of current approaches and opportunities for innovation and improvement.

    Science.gov (United States)

    Turner, Tari; Green, Sally; Tovey, David; McDonald, Steve; Soares-Weiser, Karla; Pestridge, Charlotte; Elliott, Julian

    2017-08-01

    Producing high-quality, relevant systematic reviews and keeping them up to date is challenging. Cochrane is a leading provider of systematic reviews in health. For Cochrane to continue to contribute to improvements in heath, Cochrane Reviews must be rigorous, reliable and up to date. We aimed to explore existing models of Cochrane Review production and emerging opportunities to improve the efficiency and sustainability of these processes. To inform discussions about how to best achieve this, we conducted 26 interviews and an online survey with 106 respondents. Respondents highlighted the importance and challenge of creating reliable, timely systematic reviews. They described the challenges and opportunities presented by current production models, and they shared what they are doing to improve review production. They particularly highlighted significant challenges with increasing complexity of review methods; difficulty keeping authors on board and on track; and the length of time required to complete the process. Strong themes emerged about the roles of authors and Review Groups, the central actors in the review production process. The results suggest that improvements to Cochrane's systematic review production models could come from improving clarity of roles and expectations, ensuring continuity and consistency of input, enabling active management of the review process, centralising some review production steps; breaking reviews into smaller "chunks", and improving approaches to building capacity of and sharing information between authors and Review Groups. Respondents noted the important role new technologies have to play in enabling these improvements. The findings of this study will inform the development of new Cochrane Review production models and may provide valuable data for other systematic review producers as they consider how best to produce rigorous, reliable, up-to-date reviews.

  2. Measuring Energy Efficiency in China’s Transport Sector

    Directory of Open Access Journals (Sweden)

    Han Hao

    2017-05-01

    Full Text Available Energy efficiency is one of the key factors affecting energy consumption and greenhouse gas (GHG emissions. By focusing on China’s transport sector, this study comprehensively reviews and compares the energy efficiency performance of passenger vehicles, light-duty commercial vehicles, commercial road transport, commercial water transport, aviation transport and railway transport, and identifies the opportunities for further energy efficiency improvements. It is found that railway transport exhibited the greatest improvement in energy efficiency during the past decade, which was mainly driven by progress in its electrification. Passenger vehicles have also experienced considerable energy efficiency improvements, which can be mainly attributed to the establishment of mandatory fuel consumption standards. In contrast, commercial road transport has shown the least improvement, due to insufficient policy implementations. Based on the analysis, it is recommended that, as China’s present policy framework to improve energy efficiency in the transport sector is generally effective, it should be consistently maintained and successively improved. Electrification represents a major opportunity for improvement of energy efficiency in the transport sector. Such potential should be fully tapped for all transport modes. Greater effort should be put into improving the energy efficiency of commercial road transport. The policy instruments utilized to improve the energy efficiency of heavy-duty vehicles should be as intensive and effective as the policy instruments for passenger vehicles.

  3. Nuclear power plant licensing: opportunities for improvement

    International Nuclear Information System (INIS)

    1977-06-01

    On April 20, 1977, the Commission directed that recently completed licensing actions be reviewed by the staff for the purpose of identifying ways to improve the effectiveness and efficiency of NRC nuclear power plant licensing activities. This report summarizes the results of a study undertaken by an internal ad hoc Study Group established in response to that directive. The Study Group limited its considerations to safety and environmental review activities. The background, scope, assumptions and objectives of the study are discussed. A prime assumption of this study was that improvements in the efficiency should not be permitted to reduce the current quality achieved in the licensing process. This consideration underlies the conclusions and recommendations of the study

  4. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  5. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  6. Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency: TiO2 Nanotube Arrays in Active Layer

    Directory of Open Access Journals (Sweden)

    Won-Yeop Rho

    2015-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have been widely studied due to several advantages, such as low cost-to-performance ratio, low cost of fabrication, functionality at wide angles and low intensities of incident light, mechanical robustness, and low weight. This paper summarizes the recent progress in DSSC technology for improving efficiency, focusing on the active layer in the photoanode, with a part of the DSSC consisting of dyes and a TiO2 film layer. In particular, this review highlights a huge pool of studies that report improvements in the efficiency of DSSCs using TiO2 nanotubes, which exhibit better electron transport. Finally, this paper suggests opportunities for future research.

  7. Standardized Patient Training Programs: an Efficient Solution to the Call for Quality Improvement in Oncologist Communication Skills.

    Science.gov (United States)

    Ju, Melody; Berman, Abigail T; Vapiwala, Neha

    2015-09-01

    Several key medical and oncologic professional societies have endorsed the importance of physician communication as a quality improvement metric. Despite this clear message, there remain substantial barriers to communication skills training (CST) in oncologic specialties. Herein, we describe the major barriers to communications training and propose standardized patient (SP) programs as efficient and strategic starting points and as expansion opportunities for new and existing CSTs.

  8. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  9. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  10. Improving efficiency and safety in external beam radiation therapy treatment delivery using a Kaizen approach.

    Science.gov (United States)

    Kapur, Ajay; Adair, Nilda; O'Brien, Mildred; Naparstek, Nikoleta; Cangelosi, Thomas; Zuvic, Petrina; Joseph, Sherin; Meier, Jason; Bloom, Beatrice; Potters, Louis

    Modern external beam radiation therapy treatment delivery processes potentially increase the number of tasks to be performed by therapists and thus opportunities for errors, yet the need to treat a large number of patients daily requires a balanced allocation of time per treatment slot. The goal of this work was to streamline the underlying workflow in such time-interval constrained processes to enhance both execution efficiency and active safety surveillance using a Kaizen approach. A Kaizen project was initiated by mapping the workflow within each treatment slot for 3 Varian TrueBeam linear accelerators. More than 90 steps were identified, and average execution times for each were measured. The time-consuming steps were stratified into a 2 × 2 matrix arranged by potential workflow improvement versus the level of corrective effort required. A work plan was created to launch initiatives with high potential for workflow improvement but modest effort to implement. Time spent on safety surveillance and average durations of treatment slots were used to assess corresponding workflow improvements. Three initiatives were implemented to mitigate unnecessary therapist motion, overprocessing of data, and wait time for data transfer defects, respectively. A fourth initiative was implemented to make the division of labor by treating therapists as well as peer review more explicit. The average duration of treatment slots reduced by 6.7% in the 9 months following implementation of the initiatives (P = .001). A reduction of 21% in duration of treatment slots was observed on 1 of the machines (P Kaizen approach has the potential to improve operational efficiency and safety with quick turnaround in radiation therapy practice by addressing non-value-adding steps characteristic of individual department workflows. Higher effort opportunities are identified to guide continual downstream quality improvements. Copyright © 2017 American Society for Radiation Oncology. Published by

  11. Developing leadership as a trainee- opportunities, barriers and potential improvements.

    Science.gov (United States)

    Doherty, Rachel; Lawson, Sara; Mc Laughlin, Laura; Donaghy, Grainne; Courtney, Julia; Gardiner, Keith

    2018-05-01

    The General Medical Council explicitly state that doctors completing training should demonstrate capabilities in leadership and teamwork. 1 However, most trainees receive little formal training in leadership. In March 2017, at the Faculty of Medical Leadership and Management (FMLM) Northern Ireland Regional Conference, a workshop on developing leadership skills as a trainee was hosted and the views of doctors in training regarding current opportunities, potential barriers and improvements were sought. In Northern Ireland presently there are a number of opportunities available for trainees to gain experience in leadership - both by learning through observation and learning through experience. These range from informal activities which do not require significant time commitment to focused, immersive leadership experiences such as ADEPT (Achieve Develop Explore Programme for Trainees) 2 , and the Royal College of Physicians' Chief Registrar scheme. 3 Several barriers to developing leadership have been identified, including limited understanding of what constitutes leadership, a lack of senior support and little formal recognition for trainees leading teams. Time pressures, frequently rotating jobs, limited resources and difficulty upscaling can also undermine the sustainability of improvement and other leadership projects. Incorporating awareness of and training in leadership skills, as well as greater engagement with senior leaders and managers, at an early stage in training could promote understanding and encourage trainees. Formalising leadership roles within training posts may improve experience. Deaneries and Trusts can also enable leadership opportunities by facilitating study leave, raising awareness amongst supervisors, and providing career enhancing incentives for interested trainees.

  12. Challenges in biobutanol production: How to improve the efficiency?

    International Nuclear Information System (INIS)

    Garcia, Veronica; Paekkilae, Johanna; Muurinen, Esa; Keiski, Riitta L.; Ojamo, Heikki

    2011-01-01

    There is an increasing interest in the production of chemicals and fuels from renewable resources due to the continuing price increase of fossil resources, the insecurity of the availability of fossil resources in the future, and additionally environmental concerns and legislations. Biobutanol may be produced by the acetone-butanol-ethanol (ABE) fermentation. This paper reviews the biobutanol production bringing up the problems and challenges to overcome. The aim of the paper is to help in finding opportunities to make the process feasible in the near future. The analysis stresses the idea of improving the efficiency of the fermentation stage by altering the up (pretreatment of the raw material) and downstream (product recovery and purification) processes. The paper also explores the biobutanol production from the biorefinery perspective. Finally the review brings up the important role of research in developing and implementing the production of biobutanol by the ABE fermentation. (author)

  13. Challenges in biobutanol production: How to improve the efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Veronica; Paekkilae, Johanna; Muurinen, Esa; Keiski, Riitta L. [Mass and Heat Transfer Process Laboratory, Department of Process and Environmental Engineering, POB 4300, FI-90014 University of Oulu, Oulu (Finland); Ojamo, Heikki [Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, POB 4300, FI-90014 University of Oulu, Oulu (Finland)

    2011-02-15

    There is an increasing interest in the production of chemicals and fuels from renewable resources due to the continuing price increase of fossil resources, the insecurity of the availability of fossil resources in the future, and additionally environmental concerns and legislations. Biobutanol may be produced by the acetone-butanol-ethanol (ABE) fermentation. This paper reviews the biobutanol production bringing up the problems and challenges to overcome. The aim of the paper is to help in finding opportunities to make the process feasible in the near future. The analysis stresses the idea of improving the efficiency of the fermentation stage by altering the up (pretreatment of the raw material) and downstream (product recovery and purification) processes. The paper also explores the biobutanol production from the biorefinery perspective. Finally the review brings up the important role of research in developing and implementing the production of biobutanol by the ABE fermentation. (author)

  14. Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update)

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Foley, Kevin [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Chung, Greg [Navigant Consulting, Burlington, MA (United States)

    2016-06-01

    The Department of Energy commissioned a technology characterization and assessment of appliances used in commercial buildings for cooking, cleaning, water heating, and other end-uses. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development, and demonstration opportunities to improve energy efficiency in each end-use. This report serves as an update to a 2009 report of the same name by incorporating updated data and sources where possible and updating the available technology options that provide opportunities for efficiency improvements.

  15. An Improved Supplier Driven Packaging Design and Development Method for Supply Chain Efficiency

    DEFF Research Database (Denmark)

    Sohrabpour, Vahid; Oghazi, Pejvak; Olsson, Annika

    2016-01-01

    and satisfaction in interaction with the product and packaging system. It also proposes a supply chain focused packaging design and development method to better satisfy supply chain needs placed on packaging. An extensive literature review was conducted, and a Tetra Pak derived case study was developed......Packaging and the role it plays in supply chain efficiency are overlooked in most design and development research. An opportunity exists to meet the needs of supply chains to increase efficiency. This research presents three propositions on how to reduce the gap between supply chain needs....... The propositions were formulated and became the basis for improving Tetra Pak's existing packaging design and development method by better integrating supply chain needs. This was accomplished by using an expanded operational life cycle perspective that includes the entire supply chain. The resulting supply chain...

  16. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  17. Frontier technologies to improve efficiency

    International Nuclear Information System (INIS)

    Kalhammer, F.R.

    1992-01-01

    The author discusses conservation technology to improve the efficiency of energy production. Although coal is seen as the largest source of fuel for producing electricity until the year 2040, the heating value of coal is expected to be increased by using Integrated Gasification Combined Cycle (IGCC) technology. Use of fuel cells to produce electricity will be a viable option only if costs can be reduced to make the technology competitive. By coupling IGCC with fuel cells it may be possible to increase total conversion efficiency of coal to electricity at 50%. Photovoltaics technology is more likely to be used in developing countries. Electric utilities target power electronics, lighting fixtures, heat pumps, plasma processing, freeze concentration and application of superconductivity as electricity end use technologies that have the most potential for efficiency improvement. The impact of these technologies in coping with the greenhouse effect was not addressed

  18. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  19. Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology

    DEFF Research Database (Denmark)

    Mutule, Anna; Obushevs, Artjoms; Lvov, Aleksandr

    2013-01-01

    The paper presents the main goals and achievements of the Smart Grids ERA-NET project named “Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology (SmartGen)” during the second stage of project implementation. A description of Smart Grid Technology (S......) models developed within the framework of the project is given. The performed study cases where the SGT-models were implemented to analyze the impact of the electrical grid are discussed....

  20. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  1. US energy conservation and efficiency policies: Challenges and opportunities

    International Nuclear Information System (INIS)

    Dixon, Robert K.; McGowan, Elizabeth; Onysko, Ganna; Scheer, Richard M.

    2010-01-01

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  2. US energy conservation and efficiency policies. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K.; Onysko, Ganna [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth; Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future. (author)

  3. US energy conservation and efficiency policies: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K. [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States); Onysko, Ganna, E-mail: gonysko@thegef.or [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  4. Federal roles to realize national energy-efficiency opportunities in the 1990s

    Science.gov (United States)

    Hirst, Eric

    1989-10-01

    Improving energy efficiency throughout the U.S. economy is a vital component of our nation's energy future, with many benefits. Improving efficiency can: save money consumers, increase economic productivity and international competitiveness, reduce oil and gas prices by reducing the demand for foreign oil, enhance national security by lowering oil imports, reduce the adverse environmental consequences of fuel cycles, especially acid rain and global warming, add diversity and flexibility to the nation's portfolio of energy resources, respond to public interest in, and support of, energy efficiency. The primary purpose of this report is to suggest expanded roles for the U.S. Department of Energy (DOE) in improving energy efficiency during the 1990s. In an ideal world, the normal workings of the market place would yield optimal energy-efficiency purchase and operating decisions. Unfortunately, distortions in fuel prices, limited access to capital, misplaced incentives, lack of information, and difficulty in processing information complicate energy-related decision making. Thus, consumers in all sectors of the economy underinvest in energy-efficient systems. These market barriers, coupled with growing concern about environmental quality, justify a larger Federal role.

  5. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Onar, Omer C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Emily [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Burkes, Klaehn [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mohammed, Olama [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weeks, George [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  6. Barriers and opportunities: A review of selected successful energy-efficiency programs

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn

    2001-01-01

    In industry, barriers may exist at various points in the decision making process, and in the implementation and management of measures to improve energy efficiency. Barriers may take many forms, and are determined by the business environment and include decision-making processes, energy prices, lack of information, a lack of confidence in the information, or high transaction costs for obtaining reliable information, as well as limited capital availability. Other barriers are the ''invisibility'' of energy efficiency measures and the difficulty of quantifying the impacts, and slow diffusion of innovative technology into markets while firms typically under-invest in R and D, despite the high pay-backs. Various programs try to reduce the barriers to improve the uptake of innovative technologies. A wide array of policies has been used and tested in the industrial sector in industrialized countries, with varying success rates. We review some new approaches to industrial energy efficiency improvement in industrialized countries, focusing on voluntary agreements

  7. Role of intermediate metallic sub-layers in improving the efficiency of kesterite solar cells: concept and optimization

    Science.gov (United States)

    Ferhati, H.; Djeffal, F.

    2018-03-01

    In this work, versatile CdS/Cu 2 ZnSnS 4 (CZTS) solar cell designs based on intermediate metallic sub-layers (Au, Ti, and Ag) engineering are proposed for enhancing light-scattering behavior and reducing recombination losses. The idea behind this work is to generate optical confinement regions in the CZTS absorber layer to achieve an improved absorption and appropriate antireflection effects. Moreover, the ultra-thin metal at the CZTS/Mo interface can be helpful for reducing the series resistance, where it behaves like a blocking layer for the Sulfur diffusion. We further combine the proposed designs with Particle Swarm Optimization (PSO)-based approach to achieve broadband absorption and boost the conversion efficiency. It is found that the optimized design with Ti sub-layer improves the CZTS solar cell properties, where it yields 31% improvement in short-circuit current and 60% in the power efficiency over the conventional one. Therefore, the optimized designs provide the opportunity for bridging the gap between improving the optical behavior and reducing the recombination losses.

  8. Towards a Diagnostic Instrument to Identify Improvement Opportunities for Quality Controlled Logistics in Agrifood Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Jack G.A.J. van der Vorst

    2011-10-01

    Full Text Available  Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (redesigning food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios.

  9. Case Study Analysing Potentials to Improve Material Efficiency in Manufacturing Supply Chains, Considering Circular Economy Aspects

    Directory of Open Access Journals (Sweden)

    Anja T. Braun

    2018-03-01

    Full Text Available In order to decouple economic growth from global material consumption it is necessary to implement material efficiency strategies at the level of single enterprises and their supply chains, and to implement circular economy aspects. Manufacturing firms face multiple implementation challenges like cost limitations, competition, innovation and stakeholder pressure, and supplier and customer relationships, among others. Taking as an example a case of a medium-sized manufacturing company, opportunities to realise material efficiency improvements within the company borders—on the supply chain and by using circular economy measures—are assessed. Deterministic calculations and simulations, performed for the supply chain of this company, show that measures to increase material efficiency in the supply chain are important. However, they need to be complemented by efforts to return waste and used products to the economic cycle, which requires rethinking the traditional linear economic system.

  10. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  11. Incentives to improve energy efficiency in EU Grids

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G.; Beestermoeller, C.; Gardiner, A.

    2013-04-15

    The Energy Efficiency Directive (2012/27/EU) includes provisions related to network tariffs and regulation. It is timely therefore to revisit the potential options for energy efficiency in grids, the treatment of energy efficiency in network tariffs and alternative policies for improving energy efficiency. This project builds on work done previously for the European Copper Institute in this area. In this paper, we concentrate on energy efficiency in electricity network design and operation. Other articles in the Directive relate to the role of the network tariffs and regulations in enabling or incentivising the provision of energy efficiency to end users. In section 2, we describe technical efficiency measures to reduce losses (improve energy efficiency) in the grid. Section 3 reviews grid tariffs in three countries to identify whether they provide incentives or disincentives for energy efficiency in the grid. Section 4 discusses and evaluates alternative regulations for energy efficiency in grids. Section 5 concludes and discusses the main components of the optimal policy framework.

  12. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites.

    Science.gov (United States)

    Ma, Sanyuan; Liu, Yue; Liu, Yuanyuan; Chang, Jiasong; Zhang, Tong; Wang, Xiaogang; Shi, Run; Lu, Wei; Xia, Xiaojuan; Zhao, Ping; Xia, Qingyou

    2017-04-01

    Genome editing enabled unprecedented new opportunities for targeted genomic engineering of a wide variety of organisms ranging from microbes, plants, animals and even human embryos. The serial establishing and rapid applications of genome editing tools significantly accelerated Bombyx mori (B. mori) research during the past years. However, the only CRISPR system in B. mori was the commonly used SpCas9, which only recognize target sites containing NGG PAM sequence. In the present study, we first improve the efficiency of our previous established SpCas9 system by 3.5 folds. The improved high efficiency was also observed at several loci in both BmNs cells and B. mori embryos. Then to expand the target sites, we showed that two newly discovered CRISPR system, SaCas9 and AsCpf1, could also induce highly efficient site-specific genome editing in BmNs cells, and constructed an integrated CRISPR system. Genome-wide analysis of targetable sites was further conducted and showed that the integrated system cover 69,144,399 sites in B. mori genome, and one site could be found in every 6.5 bp. The efficiency and resolution of this CRISPR platform will probably accelerate both fundamental researches and applicable studies in B. mori, and perhaps other insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John [Gas Technology Inst., Des Plaines, IL (United States); Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Gnatenko, Vitaliy [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [North Carolina State Univ., Raleigh, NC (United States); Jangale, Vilas [North Carolina State Univ., Raleigh, NC (United States); Li, Hailin [West Virginia Univ., Morgantown, WV (United States); Getz, Timothy [West Virginia Univ., Morgantown, WV (United States); Mather, Daniel [Digital Engines, New York, NY (United States)

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  14. Employment-based health benefits and public-sector coverage: opportunity for leadership.

    Science.gov (United States)

    Darling, Helen

    2006-01-01

    In this commentary, Helen Darling, speaking from the large-employer perspective, responds to James Robinson's paper on the mature health insurance industry, which faces declining opportunities with employer-based health benefits and growing but less appealing public-sector opportunities for management and other services. The similar needs of public and private employers and payers provide an opportunity for leadership, accelerating innovation and using value-added services to improve safety, quality, and efficiency of health care for all.

  15. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  16. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  17. Aging infrastructure creates opportunities for cost-efficient restoration of aquatic ecosystem connectivity.

    Science.gov (United States)

    Neeson, Thomas M; Moody, Allison T; O'Hanley, Jesse R; Diebel, Matthew; Doran, Patrick J; Ferris, Michael C; Colling, Timothy; McIntyre, Peter B

    2018-06-09

    A hallmark of industrialization is the construction of dams for water management and roads for transportation, leading to fragmentation of aquatic ecosystems. Many nations are striving to address both maintenance backlogs and mitigation of environmental impacts as their infrastructure ages. Here, we test whether accounting for road repair needs could offer opportunities to boost conservation efficiency by piggybacking connectivity restoration projects on infrastructure maintenance. Using optimization models to align fish passage restoration sites with likely road repair priorities, we find potential increases in conservation return-on-investment ranging from 17% to 25%. Importantly, these gains occur without compromising infrastructure or conservation priorities; simply communicating openly about objectives and candidate sites enables greater accomplishment at current funding levels. Society embraces both reliable roads and thriving fisheries, so overcoming this coordination challenge should be feasible. Given deferred maintenance crises for many types of infrastructure, there could be widespread opportunities to enhance the cost effectiveness of conservation investments by coordinating with infrastructure renewal efforts. © 2018 by the Ecological Society of America.

  18. Survival prediction algorithms miss significant opportunities for improvement if used for case selection in trauma quality improvement programs.

    Science.gov (United States)

    Heim, Catherine; Cole, Elaine; West, Anita; Tai, Nigel; Brohi, Karim

    2016-09-01

    Quality improvement (QI) programs have shown to reduce preventable mortality in trauma care. Detailed review of all trauma deaths is a time and resource consuming process and calculated probability of survival (Ps) has been proposed as audit filter. Review is limited on deaths that were 'expected to survive'. However no Ps-based algorithm has been validated and no study has examined elements of preventability associated with deaths classified as 'expected'. The objective of this study was to examine whether trauma performance review can be streamlined using existing mortality prediction tools without missing important areas for improvement. We conducted a retrospective study of all trauma deaths reviewed by our trauma QI program. Deaths were classified into non-preventable, possibly preventable, probably preventable or preventable. Opportunities for improvement (OPIs) involve failure in the process of care and were classified into clinical and system deviations from standards of care. TRISS and PS were used for calculation of probability of survival. Peer-review charts were reviewed by a single investigator. Over 8 years, 626 patients were included. One third showed elements of preventability and 4% were preventable. Preventability occurred across the entire range of the calculated Ps band. Limiting review to unexpected deaths would have missed over 50% of all preventability issues and a third of preventable deaths. 37% of patients showed opportunities for improvement (OPIs). Neither TRISS nor PS allowed for reliable identification of OPIs and limiting peer-review to patients with unexpected deaths would have missed close to 60% of all issues in care. TRISS and PS fail to identify a significant proportion of avoidable deaths and miss important opportunities for process and system improvement. Based on this, all trauma deaths should be subjected to expert panel review in order to aim at a maximal output of performance improvement programs. Copyright © 2016 Elsevier

  19. Energy efficiency in social housing: Opportunities and barriers from a case study in Brazil

    International Nuclear Information System (INIS)

    Bodach, Susanne; Hamhaber, J.

    2010-01-01

    This paper investigates the energy efficiency in a segment of the building sector in emerging countries by analyzing and evaluating the energy efficiency of a social housing project in Brazil. Energy efficiency measures and bioclimatic design strategies are developed in order to improve thermal comfort in this social housing project and to reduce the energy consumption and expenses of their residents. The institutional barriers and constraints toward higher efficiency are described. The results of this study show that there is a high potential to increase energy efficiency in social housing in emerging countries like Brazil. The implementation and consideration of the energy efficiency measures and policy recommendations would contribute substantially to the goal to dampen the fast growth of energy demand in these countries. Moreover the improvement of energy efficiency in the social housing sector could be a driver for market transformation towards more sustainability in the whole building sector. - Research highlights: →There is a high potential to increase energy efficiency in social housing in Brazil. →Energy-efficient social housing would contribute substantially to dampen the fast growth of energy consumption in emerging countries like Brazil. →Implementation of energy efficiency would improve the income situation of the poorest strata of the population.

  20. Prioritize Improvement Opportunities Identified In Self-Assessment Using Multi-Criteria Fuzzy Group Decision

    Directory of Open Access Journals (Sweden)

    Dr.Ghassem Faraj Pour

    2015-05-01

    Full Text Available ABSTRACT Efforts to improve the quality are one of the prerequisites for the success of individual companies and for the competitiveness of all whole companies. In the field of improvement and excellence business excellence models answer to the question that what the better organization is what goals and concepts they follow and according to what standards they behave. The EFQM excellence model can be transition from multiplicity to unity of different existing models. The most important approaches of these models are self-assessment and identifying improvement areas in an organization. On the other side organizations which are at lower level of total quality management will encounter so many areas to improve when using this model and implementing of self-improvement. Choosing the most important key problems are always the main challenges and because of resource constraints and strategic goals organizations have to prioritize identified improvement opportunities. This paper introduces a model for prioritizing and choosing the most significant improvement opportunities using the organization Business Excellence team members and because the analysis and decision making atmosphere for excellence team members is not generally complete with accurate information it seems using of fuzzy decision can be very helpful.

  1. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  2. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  3. Improving entrepreneurial opportunity recognition through web content analytics

    Science.gov (United States)

    Bakar, Muhamad Shahbani Abu; Azmi, Azwiyati

    2017-10-01

    The ability to recognize and develop an opportunity into a venture defines an entrepreneur. Research in opportunity recognition has been robust and focuses more on explaining the processes involved in opportunity recognition. Factors such as prior knowledge, cognitive and creative capabilities are shown to affect opportunity recognition in entrepreneurs. Prior knowledge in areas such as customer problems, ways to serve the market, and technology has been shows in various studies to be a factor that facilitates entrepreneurs to identify and recognize opportunities. Findings from research also shows that experienced entrepreneurs search and scan for information to discover opportunities. Searching and scanning for information has also been shown to help novice entrepreneurs who lack prior knowledge to narrow this gap and enable them to better identify and recognize opportunities. There is less focus in research on finding empirically proven techniques and methods to develop and enhance opportunity recognition in student entrepreneurs. This is important as the country pushes for more graduate entrepreneurs that can drive the economy. This paper aims to discuss Opportunity Recognition Support System (ORSS), an information support system to help especially student entrepreneurs in identifying and recognizing business opportunities. The ORSS aims to provide the necessary knowledge to student entrepreneurs to be able to better identify and recognize opportunities. Applying design research, theories in opportunity recognition are applied to identify the requirements for the support system and the requirements in turn dictate the design of the support system. The paper proposes the use of web content mining and analytics as two core components and techniques for the support system. Web content mining can mine the vast knowledge repositories available on the internet and analytics can provide entrepreneurs with further insights into the information needed to recognize

  4. Using Ecophysiology to Improve Farm Efficiency: Application in Temperate Dairy Grazing Systems

    Directory of Open Access Journals (Sweden)

    David F. Chapman

    2016-04-01

    Full Text Available Information on the physiological ecology of grass-dominant pastures has made a substantial contribution to the development of practices that optimise the amount of feed harvested by grazing animals in temperate livestock systems. However, the contribution of ecophysiology is often under-stated, and the need for further research in this field is sometimes questioned. The challenge for ecophysiolgists, therefore, is to demonstrate how ecophysiological knowledge can help solve significant problems looming for grassland farming in temperate regions while also removing constraints to improved productivity from grazed pastures. To do this, ecophysiological research needs to align more closely with related disciplines, particularly genetics/genomics, agronomy, and farming systems, including systems modelling. This review considers how ecophysiological information has contributed to the development of grazing management practices in the New Zealand dairy industry, an industry that is generally regarded as a world leader in the efficiency with which pasture is grown and utilised for animal production. Even so, there are clear opportunities for further gains in pasture utilisation through the refinement of grazing management practices and the harnessing of those practices to improved pasture plant cultivars with phenotypes that facilitate greater grazing efficiency. Meanwhile, sub-optimal persistence of new pastures continues to constrain productivity in some environments. The underlying plant and population processes associated with this have not been clearly defined. Ecophysiological information, placed in the context of trait identification, grounded in well-designed agronomic studies and linked to plant improvements programmes, is required to address this.

  5. Low Impedance Voice Coils for Improved Loudspeaker Efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In modern audio systems utilizing switch-mode amplifiers the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 4 to 8 Ohms is obtained, despite modern audio amplifiers, using switch-mode techno...... responses are estimated. For this woofer it is shown that the sensitivity can be improved approximately 1 dB, corresponding to a 30% efficiency improvement, just by increasing the fill factor using a low impedance voice coil with rectangular wire....

  6. Identification of barriers and research opportunities to improve the effective and efficient application of adjunct UVC surface disinfection in healthcare

    Science.gov (United States)

    Martinello, Richard A.; Miller, Shelly L.; Fabian, M. Patricia; Peccia, Jordan

    2018-02-01

    Healthcare associated infections (HAI) affect approximately 1 of every 25 hospitalized patients, lead to substantial morbidity and mortality, degrade patient experience and are costly. Risks for HAI are multifactorial and it is known that microbial contamination of the healthcare environment increases risk for HAI. Portable ultraviolet-C (UVC) surface disinfection as an adjunct to standard hospital disinfection has been shown to decrease both surface microbial contamination and HAI. However, there remain significant gaps in the understanding of the efficient and effective application of UVC in healthcare. Specific barriers identified are: 1) the variability in size, shape, and surface materials of hospital rooms as well as the presence of medical devices and furniture, which impacts the amount of UVC energy delivered to surfaces and its disinfection efficiency; 2) the significant resources needed to acquire and efficiently use UVC equipment and achieve the desired patient benefits- a particular challenge for complex healthcare facilities with limited operating margins; and 3) the lack of implementation guidance and industry standard methods for measuring the UVC output and antimicrobial effects from the multiple commercial UVC options available. An improved understanding of the efficient and effective use of UVC surface disinfection in healthcare and the implementation of standard device industry metrics may lead to increased use and decrease the burden of HAI.

  7. Improved Efficient Routing Strategy on Scale-Free Networks

    Science.gov (United States)

    Jiang, Zhong-Yuan; Liang, Man-Gui

    Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.

  8. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Marano, John [JM Energy Consulting, Inc.; Sathaye, Jayant [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Tengfang [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves and CO2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost

  9. The gain from improved market efficiency

    DEFF Research Database (Denmark)

    Ejrnæs, Mette; Persson, Karl Gunnar

    2010-01-01

    demand as well as excess supply, which triggered off the tâtonnement process. Over time, adjustments to equilibrium, as measured by the half-life of a shock, became faster and violations of the law of one price become smaller. There were significant gains from improved market efficiency, which took place......This article looks at the gains from improved market efficiency in long-distance grain trade in the second half of the nineteenth century, when violations of the law of one price were reduced due to improved information transmission. Two markets, a major export centre, Chicago, and a major importer......, Liverpool, are analysed. We show that the law of one price equilibrium was an ‘attractor equilibrium'. The implication is that prices converged to that equilibrium in a tâtonnement process. Because of asymmetrically timed information between markets separated by long distances there were periods of excess...

  10. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  11. Discontinuous interleaving of parallel inverters for efficiency improvement

    DEFF Research Database (Denmark)

    Rannestad, Bjørn; Munk-Nielsen, Stig; Gadgaard, Kristian

    2017-01-01

    Interleaved switching of parallel inverters has previously been proposed for efficiency/size improvements of grid connected three-phase inverters. This paper proposes a novel interleaving method which practically eliminates insulated gate bipolar transistor (IGBT) turn-on losses and drastically...... overall power module losses are reduced. The modulation strategy is suited for converters with doubly fed induction generators (DFIG) for wind turbines, but are not limited hereto. Improvement of switching performance are measured and operational efficiency improvements are calculated and verified...

  12. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  13. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Trucks, Daimler [Daimler Trucks North America Llc, Portland, OR (United States)

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  14. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  15. Opportunities of Optimization in Administrative Structures for Efficient Management

    Directory of Open Access Journals (Sweden)

    Venelin Terziev

    2017-12-01

    Full Text Available Current paper presents studies on the administrative structures in order to optimize the activities and the overall management through the example of the Bulgarian Commission for Protection against Discrimination. It aims at establishing duplicate functions in the organization under study. The main tasks in the analysis are related to the display of the basic findings and conclusions for the strongest sides and the fields for improvement regarding the relevance, the effectiveness and the efficiency of the administration of the Commission for Protection against Discrimination in Bulgaria. The following areas are thoroughly and critically analyzed: relevance of the functions and efficiency of the activity. As a result of the study a Strategy for Organizational Development and a Training Plan have been drafted.

  16. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  17. EFFICIENT USE OF BIOMASS IN IMPROVED COOKSTOVES

    Directory of Open Access Journals (Sweden)

    R. K. PAL

    2016-12-01

    Full Text Available Traditional biomass cookstoves have very low efficiency. The improved cookstoves have very high efficiency. These improved cookstoves with high efficiency saves biomass fuels. Biomass can be saved in case of rocket elbow cookstoves. The amount of biomass which can be saved in case of rocket elbow cookstoves is 65.88 MT. More biomass can be saved in case of gasifier fan cookstoves. The amount of biomass which can be saved is 155.71 MT. The pollutants like particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission is lesser in case of rocket elbow cookstoves. The pollutants are least in case of gasifier fan cookstoves. The reduction in particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission in gasifier fan cookstoves is 1.77 MT, 0.24 MT, 0.71 MT & 151.64 MT respectively in comparison to traditional cookstoves. Therefore indoor air pollution is greatly reduced in case of improved cookstoves especially in case of gasifier fan cookstoves as compared to traditional cookstoves.

  18. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  19. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  20. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  1. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  2. Iraqi Police Development Program: Opportunities for Improved Program Accountability and Budget Transparency

    Science.gov (United States)

    2011-10-24

    support, and aviation) raise red flags about the program’s fund requirements. This report identifies opportunities for improved program...tum now to the PSC audit coordination issue you raised. SIGlR unfailingly coordinates aJI of its State-related audits with State OIG prior to

  3. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  4. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  5. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Nakul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-31

    Ceiling fans contribute significantly to residential electricity consumption, both in an absolute sense and as a proportion of household consumption in many locations, especially in developing countries in warm climates. However, there has been little detailed assessment of the costs and benefits of efficiency improvement options for ceiling fans and the potential resulting electricity consumption and greenhouse gas (GHG) emissions reductions. We analyze the costs and benefits of several options to improve the efficiency of ceiling fans and assess the global potential for electricity savings and GHG emission reductions with more detailed assessments for India, China, and the U.S. We find that ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terrawatt hours per year (TWh/year) could be saved and 25 million metric tons of carbon dioxide (CO2) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize this savings potential.

  6. Quality and Efficiency Improvement Tools for Every Radiologist.

    Science.gov (United States)

    Kudla, Alexei U; Brook, Olga R

    2018-03-20

    In an era of value-based medicine, data-driven quality improvement is more important than ever to ensure safe and efficient imaging services. Familiarity with high-value tools enables all radiologists to successfully engage in quality and efficiency improvement. In this article, we review the model for improvement, strategies for measurement, and common practical tools with real-life examples that include Run chart, Control chart (Shewhart chart), Fishbone (Cause-and-Effect or Ishikawa) diagram, Pareto chart, 5 Whys, and Root Cause Analysis. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. The Web 2.0 as Marketing Tool: Opportunities for SMEs

    NARCIS (Netherlands)

    Constantinides, Efthymios

    2008-01-01

    The new generation of Internet applications widely known as Social Media or Web 2.0 offers corporations a whole range of opportunities for improving their marketing efficiency and internal operations. Web 2.0 applications have already become part of the daily life of an increasing number of

  8. Assessment of Energy Efficiency Project Financing Alternatives for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.; Hail, John C.; Sullivan, Gregory P.

    2000-02-14

    This document provides findings and recommendations that resulted from an assessment of the Brookhaven National Laboratory by a team from Pacific Northwest National Laboratory to assess the site's potential for various alternative financing options as a means to implement energy-efficiency improvements. The assessment looked for life-cycle cost-effective energy-efficiency improvement opportunities, and through a series of staff interviews, evaluated the various methods by which these opportunities may be financed, while considering availability of funds, staff, and available financing options. This report summarizes the findings of the visit and the resulting recommendations.

  9. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  10. Tariff-based incentives for improving coal-power-plant efficiencies in India

    International Nuclear Information System (INIS)

    Chikkatur, Ananth P.; Sagar, Ambuj D.; Abhyankar, Nikit; Sreekumar, N.

    2007-01-01

    Improving the efficiency of coal-based power plants plays an important role in improving the performance of India's power sector. It allows for increased consumer benefits through cost reduction, while enhancing energy security and helping reduce local and global pollution through more efficient coal use. A focus on supply-side efficiency also complements other ongoing efforts on end-use efficiency. The recent restructuring of the Indian electricity sector offers an important route to improving power plant efficiency, through regulatory mechanisms that allow for an independent tariff setting process for bulk purchases of electricity from generators. Current tariffs based on normative benchmarks for performance norms are hobbled by information asymmetry (where regulators do not have access to detailed performance data). Hence, we propose a new incentive scheme that gets around the asymmetry problem by setting performance benchmarks based on actual efficiency data, rather than on a normative basis. The scheme provides direct tariff-based incentives for efficiency improvements, while benefiting consumers by reducing electricity costs in the long run. This proposal might also be useful for regulators in other countries to incorporate similar incentives for efficiency improvement in power generation

  11. Studying and Incorporating Efficiency into Gastrointestinal Endoscopy Centers

    Directory of Open Access Journals (Sweden)

    Lukejohn W. Day

    2015-01-01

    Full Text Available Efficiency is defined as the use of resources in such a way as to maximize the production of goods and services. Improving efficiency has been the focus of management in many industries; however, it has not been until recently that incorporating efficiency models into healthcare has occurred. In particular, the study and development of improvement projects aimed at enhancing efficiency in GI have been growing rapidly in recent years. This focus on improving efficiency in GI has been spurred by the dramatic rise in the demand for endoscopic procedures as well as the rising number of insured patients requiring GI care coupled at the same time with limited resources in terms of staffing and space in endoscopy centers. This paper will critically review the history of efficiency in endoscopy centers, first by looking at other healthcare industries that have extensively studied and improved efficiency in their fields, examine a number of proposed efficiency metrics and benchmarks in endoscopy centers, and finally discuss opportunities where endoscopy centers could improve their efficiency.

  12. The Multiple Benefits of Measures to Improve Energy Efficiency

    DEFF Research Database (Denmark)

    Puig, Daniel; Farrell, Timothy Clifford

    Understanding the barriers to, and enablers for, energy efficiency requires targeted information and analysis. This report is a summary of four detailed studies providing new insights on how to promote efficiency in selected priority areas. It complements initiatives such as the so-called energy...... efficiency accelerators, which seek to increase the uptake of selected technologies, as well as the work of many other institutions committed to improving energy efficiency. The modelling estimates and the case studies presented in this report illustrate that, while significant progress has already been...... achieved, the case for accelerating energy efficiency action is strong. Key highlights include: • At the global level, energy efficiency improvements would account for between 2.6 and 3.3 Gt CO2e of the reductions in 2030, equivalent to between 23 and 26 percent of the overall reductions achieved...

  13. Potentials and policy implications of energy and material efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  14. Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

  15. Stochastic Dominance and Omega Ratio: Measures to Examine Market Efficiency, Arbitrage Opportunity, and Anomaly

    Directory of Open Access Journals (Sweden)

    Xu Guo

    2017-10-01

    Full Text Available Both stochastic dominance and Omegaratio can be used to examine whether the market is efficient, whether there is any arbitrage opportunity in the market and whether there is any anomaly in the market. In this paper, we first study the relationship between stochastic dominance and the Omega ratio. We find that second-order stochastic dominance (SD and/or second-order risk-seeking SD (RSD alone for any two prospects is not sufficient to imply Omega ratio dominance insofar that the Omega ratio of one asset is always greater than that of the other one. We extend the theory of risk measures by proving that the preference of second-order SD implies the preference of the corresponding Omega ratios only when the return threshold is less than the mean of the higher return asset. On the other hand, the preference of the second-order RSD implies the preference of the corresponding Omega ratios only when the return threshold is larger than the mean of the smaller return asset. Nonetheless, first-order SD does imply Omega ratio dominance. Thereafter, we apply the theory developed in this paper to examine the relationship between property size and property investment in the Hong Kong real estate market. We conclude that the Hong Kong real estate market is not efficient and there are expected arbitrage opportunities and anomalies in the Hong Kong real estate market. Our findings are useful for investors and policy makers in real estate.

  16. The improving efficiency frontier of religious not-for-profit hospitals.

    Science.gov (United States)

    Harrison, Jeffrey P; Sexton, Christopher

    2006-01-01

    By using data-envelopment analysis (DEA), this study evaluates the efficiency of religious not-for-profit hospitals. Hospital executives, healthcare policy makers, taxpayers, and other stakeholders benefit from studies that improve hospital efficiency. Results indicate that overall efficiency in religious hospitals improved from 72% in 1998 to 74% in 2001. What is more important is that the number of religious hospitals operating on the efficiency frontier increased from 40 in 1998 to 47 in 2001. This clearly documents that religious hospitals are becoming more efficient in the management of resources. From a policy perspective, this study highlights the economic importance of encouraging increased efficiency throughout the healthcare industry.

  17. Energy-Efficiency Options for Insurance Loss Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Knoepfel, I. [Swiss Reinsurance Co., Zurich (Switzerland)

    1997-06-09

    Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

  18. Improved efficiency in OLEDs with a thin Alq3 interlayer

    International Nuclear Information System (INIS)

    Lian Jiarong; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Zhou Yunfei; Zhou Xiang

    2007-01-01

    We demonstrate an improved efficiency in OLEDs with a thin Alq 3 interlayer, which is inserted into the hole-transport layer for adjusting the hole-injection and transport, and improving the hole-electron balance. The thin Alq 3 interlayer can effectively influence the electrical performance and electroluminescence (EL) efficiency of the devices. The devices with an optimum Alq 3 interlayer exhibit a maximum EL efficiency of around 3.3 cd/A, which is improved by a factor of two over the conventional devices (1.6 cd/A) without the interlayer

  19. Improving STEM Undergraduate Education with Efficient Learning Design

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    2018-01-01

    The project investigates the potential of Learning Design for efficiently improving STEM undergraduate education with technology. In order to investigate this potential, the project consists of two main studies at Aarhus University: a study of the perspectives of the main stakeholders on Learning...... Design uptake. The project concludes that it is possible to improve STEM undergraduate education with Learning Design for technology-enhanced learning efficiently and that Efficient Learning Design provides a useful concept for qualifying educational decisions....... provided by technology-enhanced learning based on Learning Design, and in particular students’ learning was of a high common interest. However, only the educators were directly interested in Learning Design and its support for design, reuse in their practice and to inform pedagogy. A holistic concept...

  20. Achieving Energy Efficiency Through Real-Time Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Nesse, Ronald J.

    2011-09-01

    Through the careful implementation of simple behavior change measures, opportunities exist to achieve strategic gains, including greater operational efficiencies, energy cost savings, greater tenant health and ensuing productivity and an improved brand value through sustainability messaging and achievement.

  1. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  2. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  3. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the

  4. Pollution prevention opportunity assessment for Sandia National Laboratories/California recycling programs.

    Energy Technology Data Exchange (ETDEWEB)

    Wrons, Ralph Jordan; Vetter, Douglas Walter

    2007-07-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/California (SNL/CA) Environmental Management Department between May 2006 and March 2007, to evaluate the current site-wide recycling program for potential opportunities to improve the efficiency of the program. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM Pollution Prevention (P2) staff worked with the SNL/CA P2 Staff to arrive at these options.

  5. Improving Reliability, Security, and Efficiency of Reconfigurable Hardware Systems (Habilitation)

    NARCIS (Netherlands)

    Ziener, Daniel

    2017-01-01

    In this treatise,  my research on methods to improve efficiency, reliability, and security of reconfigurable hardware systems, i.e., FPGAs, through partial dynamic reconfiguration is outlined. The efficiency of reconfigurable systems can be improved by loading optimized data paths on-the-fly on an

  6. Music venues and hearing loss: Opportunities for and barriers to improving environmental conditions

    NARCIS (Netherlands)

    Vogel, I.; Ploeg, C.P.B. van der; Brug, J.; Raat, H.

    2009-01-01

    This study explores the opportunities for and barriers to improving environmental conditions in order to reduce the risk for music-induced hearing loss in people who attend music venues. Individual semi-structured interviews were held with 20 representatives of music venues and of governmental

  7. Improving crop nutrient efficiency through root architecture modifications.

    Science.gov (United States)

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  8. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  9. Ovarian Cancer and BRCA1/2 Testing: Opportunities to improve clinical care and disease prevention

    Directory of Open Access Journals (Sweden)

    Katherine eKarakasis

    2016-05-01

    Full Text Available Without prevention or screening options available, ovarian cancer is the most lethal malignancy of the female reproductive tract. High grade serous ovarian cancer (HGSOC is the most common histologic subtype, and the role of germline BRCA1/2 mutation in predisposition and prognosis is established. Given the targeted treatment opportunities with PARP inhibitors, a predictive role for BRCA1/2 mutation has emerged. Despite recommendations to provide BRCA1/2 testing to all women with histologically confirmed HGSOC, uniform implementation remains challenging. The opportunity to review and revise genetic screening and testing practices will identify opportunities where universal adoption of BRCA1/2 mutation testing will impact and improve treatment of women with ovarian cancer. Improving education and awareness of genetic testing for women with cancer, as well as the broader general community, will help focus much needed attention on opportunities to advance prevention and screening programs in ovarian cancer. This is imperative not only for women with cancer, those at risk of developing cancer, but also for their first-degree relatives. In addition, BRCA1/2 testing may have direct implications for patients with other types of cancers, many which are now being found to have BRCA1/2 involvement.

  10. Costs and benefits of energy efficiency improvements in ceiling fans

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  11. Productive efficiency of tea industry: A stochastic frontier approach ...

    African Journals Online (AJOL)

    In an economy where recourses are scarce and opportunities for a new technology are lacking, studies will be able to show the possibility of raising productivity by improving the industry's efficiency. This study attempts to measure the status of technical efficiency of tea-producing industry for panel data in Bangladesh using ...

  12. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  13. Efficiency improvements in transport

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Christensen, Linda; Jensen, Thomas C. [Technical Univ. of Denmark. DTU Transport, Kgs. Lyngby (Denmark)

    2012-11-15

    Transport of people, personal belongings and goods in private cars is fundamental to our modern welfare society and economic growth, and has grown steadily over many decades. Motor fuels have been based almost entirely on crude oil for the last century. During the last couple of decades engines built for traditional fuels have become more advanced and efficient; this has reduced fuel consumption by around 40% and emissions by more than 90%. Only in the same time span have we begun to look at alternatives to fossil fuels. Biofuels such as biodiesel, bioethanol, biomethanol and biogas can replace petrol and diesel, and in recent years algae have shown a new potential for diesel fuel. Natural gas is also becoming an interesting fuel due to its large resources worldwide. GTL, CTL and BTL are liquid fuels produced from solid or gaseous sources. GTL and CTL are expensive to produce and not very CO{sub 2}-friendly, but they are easily introduced and need little investment in infrastructure and vehicles. DME is an excellent fuel for diesel engines. Methanol and DME produced from biomass are among the most CO{sub 2}-reducing fuels and at the same time the most energy-efficient renewable fuels. Fuel cell vehicles (FCVs) are currently fuelled by hydrogen, but other fuels are also possible. There are, however, several barriers to the implementation of fuel cell vehicles. In particular, a hydrogen infrastructure needs to be developed. Electric vehicles (EVs) have the advantage that energy conversion is centralised at the power plant where it can be done at optimum efficiency and emissions. EVs have to be charged at home, and also away from home when travelling longer distances. With an acceptable fast charging infrastructure at least 85% of the one-car families in Denmark could be potential EV customers. Range improvements resulting from better batteries are expected to create a large increase in the number of EVs in Denmark between 2020 and 2030. The hybrid electric vehicle

  14. Upgrading and efficiency improvement in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Improving the efficiencies of the large number of older coal-fired power plants operating around the world would give major savings in CO2 emissions together with significant other benefits. This report begins with a summary of the ways efficiency can become degraded and of the means available to combat the decrease in performance. These include improvements to operating and maintenance practices and more major techniques that are available, including boiler and turbine retrofits. There is also an update on fuel drying developments as a route to higher efficiency in plants firing high moisture lignites. The largest chapter of the report contains a number of descriptions of case study improvement projects, to illustrate measures that have been applied, benefits that have been achieved and identify best practices, which are summarised. Major national and international upgrading programmes are described.

  15. Improvement of the Dehulling Efficiency of Sorghum and Millet using ...

    African Journals Online (AJOL)

    Conditioning of grain with heat and moisture is known to loosen the adhesion of the seed coat from the endosperm and therefore improve the dehulling efficiency of some grains such as beans, cowpea and canola. This study investigated the effect of hydrothermal treatment on the improvement of dehulling efficiency of ...

  16. Data-driven modeling and real-time distributed control for energy efficient manufacturing systems

    International Nuclear Information System (INIS)

    Zou, Jing; Chang, Qing; Arinez, Jorge; Xiao, Guoxian

    2017-01-01

    As manufacturers face the challenges of increasing global competition and energy saving requirements, it is imperative to seek out opportunities to reduce energy waste and overall cost. In this paper, a novel data-driven stochastic manufacturing system modeling method is proposed to identify and predict energy saving opportunities and their impact on production. A real-time distributed feedback production control policy, which integrates the current and predicted system performance, is established to improve the overall profit and energy efficiency. A case study is presented to demonstrate the effectiveness of the proposed control policy. - Highlights: • A data-driven stochastic manufacturing system model is proposed. • Real-time system performance and energy saving opportunity identification method is developed. • Prediction method for future potential system performance and energy saving opportunity is developed. • A real-time distributed feedback control policy is established to improve energy efficiency and overall system profit.

  17. Improving Efficiency Using Time-Driven Activity-Based Costing Methodology.

    Science.gov (United States)

    Tibor, Laura C; Schultz, Stacy R; Menaker, Ronald; Weber, Bradley D; Ness, Jay; Smith, Paula; Young, Phillip M

    2017-03-01

    The aim of this study was to increase efficiency in MR enterography using a time-driven activity-based costing methodology. In February 2015, a multidisciplinary team was formed to identify the personnel, equipment, space, and supply costs of providing outpatient MR enterography. The team mapped the current state, completed observations, performed timings, and calculated costs associated with each element of the process. The team used Pareto charts to understand the highest cost and most time-consuming activities, brainstormed opportunities, and assessed impact. Plan-do-study-act cycles were developed to test the changes, and run charts were used to monitor progress. The process changes consisted of revising the workflow associated with the preparation and administration of glucagon, with completed implementation in November 2015. The time-driven activity-based costing methodology allowed the radiology department to develop a process to more accurately identify the costs of providing MR enterography. The primary process modification was reassigning responsibility for the administration of glucagon from nurses to technologists. After implementation, the improvements demonstrated success by reducing non-value-added steps and cost by 13%, staff time by 16%, and patient process time by 17%. The saved process time was used to augment existing examination time slots to more accurately accommodate the entire enterographic examination. Anecdotal comments were captured to validate improved staff satisfaction within the multidisciplinary team. This process provided a successful outcome to address daily workflow frustrations that could not previously be improved. A multidisciplinary team was necessary to achieve success, in addition to the use of a structured problem-solving approach. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  18. Quality improvement initiatives: the missed opportunity for health plans.

    Science.gov (United States)

    Fernandez-Lopez, Sara; Lennert, Barbara

    2009-11-01

    The increase in healthcare cost without direct improvements in health outcomes, coupled with a desire to expand access to the large uninsured population, has underscored the importance of quality initiatives and organizations that provide more affordable healthcare by maximizing value. To determine the knowledge of managed care organizations about quality organizations and initiatives and to identify potential opportunities in which pharmaceutical companies could collaborate with health plans in the development and implementation of quality initiatives. We conducted a survey of 36 pharmacy directors and 15 medical directors of different plans during a Managed Care Network meeting in 2008. The represented plans cover almost 74 million lives in commercial, Medicare, and Medicaid programs, or a combination of them. The responses show limited knowledge among pharmacy and medical directors about current quality organizations and initiatives, except for quality organizations that provide health plan quality accreditation. The results also reveal an opportunity for pharmaceutical companies to collaborate with private health plans in the development of quality initiatives, especially those related to drug utilization, such as patient adherence and education and correct drug utilization. Our survey shows clearly that today's focus for managed care organizations is mostly limited to the organizations that provide health plan quality accreditation, with less focus on other organizations.

  19. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  20. Does automation improve stock market efficiency in Ghana ...

    African Journals Online (AJOL)

    The automation of the Ghana Stock Exchange (GSE) in 2008, among other reforms, was expected to improve the efficiency of the market. The extent of this truism has, however, not been empirically established for the GSE. In this study, we attempt to assess the impact of the automation on the efficiency of the GSE within the ...

  1. Integrated hospital emergency care improves efficiency.

    Science.gov (United States)

    Boyle, A A; Robinson, S M; Whitwell, D; Myers, S; Bennett, T J H; Hall, N; Haydock, S; Fritz, Z; Atkinson, P

    2008-02-01

    There is uncertainty about the most efficient model of emergency care. An attempt has been made to improve the process of emergency care in one hospital by developing an integrated model. The medical admissions unit was relocated into the existing emergency department and came under the 4-hour target. Medical case records were redesigned to provide a common assessment document for all patients presenting as an emergency. Medical, surgical and paediatric short-stay wards were opened next to the emergency department. A clinical decision unit replaced the more traditional observation unit. The process of patient assessment was streamlined so that a patient requiring admission was fully clerked by the first attending doctor to a level suitable for registrar or consultant review. Patients were allocated directly to specialty on arrival. The effectiveness of this approach was measured with routine data over the same 3-month periods in 2005 and 2006. There was a 16.3% decrease in emergency medical admissions and a 3.9% decrease in emergency surgical admissions. The median length of stay for emergency medical patients was reduced from 7 to 5 days. The efficiency of the elective surgical services was also improved. Performance against the 4-hour target declined but was still acceptable. The number of bed days for admitted surgical and medical cases rose slightly. There was an increase in the number of medical outliers on surgical wards, a reduction in the number of incident forms and formal complaints and a reduction in income for the hospital. Integrated emergency care has the ability to use spare capacity within emergency care. It offers significant advantages beyond the emergency department. However, improved efficiency in processing emergency patients placed the hospital at a financial disadvantage.

  2. FORAGES AND PASTURES SYMPOSIUM: Improving efficiency of production in pasture- and range-based beef and dairy systems.

    Science.gov (United States)

    Mulliniks, J T; Rius, A G; Edwards, M A; Edwards, S R; Hobbs, J D; Nave, R L G

    2015-06-01

    Despite overall increased production in the last century, it is critical that grazing production systems focus on improving beef and dairy efficiency to meet current and future global food demands. For livestock producers, production efficiency is essential to maintain long-term profitability and sustainability. This continued viability of production systems using pasture- and range-based grazing systems requires more rapid adoption of innovative management practices and selection tools that increase profitability by optimizing grazing management and increasing reproductive performance. Understanding the genetic variation in cow herds will provide the ability to select cows that require less energy for maintenance, which can potentially reduce total energy utilization or energy required for production, consequently improving production efficiency and profitability. In the United States, pasture- and range-based grazing systems vary tremendously across various unique environments that differ in climate, topography, and forage production. This variation in environmental conditions contributes to the challenges of developing or targeting specific genetic components and grazing systems that lead to increased production efficiency. However, across these various environments and grazing management systems, grazable forage remains the least expensive nutrient source to maintain productivity of the cow herd. Beef and dairy cattle can capitalize on their ability to utilize these feed resources that are not usable for other production industries. Therefore, lower-cost alternatives to feeding harvested and stored feedstuffs have the opportunity to provide to livestock producers a sustainable and efficient forage production system. However, increasing production efficiency within a given production environment would vary according to genetic potential (i.e., growth and milk potential), how that genetic potential fits the respective production environment, and how the grazing

  3. Army Roof Management and Improvement Opportunities

    National Research Council Canada - National Science Library

    Bailey, David

    1999-01-01

    ... - about $200 million annually. Systemic, integrated solutions offer the Army a great opportunity to save millions of dollars annually in repair and replacement costs, and to avoid incidental costs incurred due to interrupted...

  4. Opportunities of energy saving in lighting systems for public buildings

    Directory of Open Access Journals (Sweden)

    Ayman Abd El-khalek

    2017-03-01

    Full Text Available The lighting system provides many options for cost-effective energy saving with low or no inconvenience. Lighting improvements are excellent investments in most public buildings, it is usually cost-effective to address because lighting improvements are often easier to make than many process upgrades.For public buildings, the easy no and low cost options to help save money and improve the energy performance are:Understand energy use.Identify optionsPrioritize actionsMake the changes and measure the savings.Continue managing energy efficiency.The challenge is to retrofit traditional lamps with LED lamps of good quality. The benefits of LED light bulbs are long-lasting, durable, cool, mercury free, more efficient, and cost effective.The light Emitting Diode (LED bulb uses a semiconductor as its light source, and is currently one of the most energy efficient and quickly developing types of bulbs for lighting. LEDs increasingly are being purchased to replace traditional bulbs. LEDs are relatively more expensive than other types of bulbs, but are very cost-effective because they use only a fraction of electricity of traditional lighting methods nd can last for longer.Benchmarking guides decision makers to policies aimed at the energy sector through better understanding of energy consumption trends nationwide, e.g.: energy price, moderating, peak demand, and encouraging sectors, low energy expansions.The “Improving Energy Efficiency Project of Lighting and Appliances” carried out energy audits and implemented opportunities of energy saving in lighting for different type of public buildings.To rationalize the use of energy by giving guidelines to consumers, the IEEL&A project prepared some brochures.This paper leads with the results of case studies as energy audits, opportunities in lighting systems, energy saving and CO2 reduction.

  5. Improving children’s mobility and access to socio-economic opportunities: A synthesis of literature

    CSIR Research Space (South Africa)

    Mashiri, M

    2005-07-01

    Full Text Available the population of many such countries consists of children and young persons. Improving mobility and access to socio-economic opportunities for this group is crucial if the Millennium Development Goals of Universal Primary Education, Promotion of Gender Equity...

  6. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  7. Pregnancy-related mortality in California: causes, characteristics, and improvement opportunities.

    Science.gov (United States)

    Main, Elliott K; McCain, Christy L; Morton, Christine H; Holtby, Susan; Lawton, Elizabeth S

    2015-04-01

    To compare specific maternal and clinical characteristics and contributing factors among the five leading causes of pregnancy-related mortality to develop focused clinical and public health prevention programs. California pregnancy-related deaths from 2002-2005 were identified with enhanced surveillance using linked birth and death certificates. A multidisciplinary committee reviewed medical records, autopsy reports, and coroner reports to determine cause of death, clinical and demographic characteristics, chance to alter outcome, contributing factors (at health care provider, facility, and patient levels), and quality improvement opportunities. The five leading causes of death were compared with each other and with the overall California birth population. Among the 207 pregnancy-related deaths, the five leading causes were cardiovascular disease, preeclampsia or eclampsia, hemorrhage, venous thromboembolism, and amniotic fluid embolism. Among the leading causes of death, we identified differing patterns for race, maternal age, body mass index, timing of death, and method of delivery. Overall, there was a good-to-strong chance to alter the outcome in 41% of deaths, with the highest rates of preventability among hemorrhage (70%) and preeclampsia (60%) deaths. Health care provider, facility, and patient contributing factors also varied by cause of death. Pregnancy-related mortality should not be considered a single clinical entity. Reducing mortality requires in-depth examination of individual causes of death. The five leading causes exhibit different characteristics, degrees of preventability, and contributing factors, with the greatest improvement opportunities identified for hemorrhage and preeclampsia. These findings provide additional support for hospital, state, and national maternal safety programs.

  8. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  9. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar; [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  10. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials

    Science.gov (United States)

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T. J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Timothy E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman; Purdy, James

    2012-01-01

    Background In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute (NCI) sponsored a two day workshop to examine the challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. Lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities like proton beam therapy, and the international harmonization of clinical trial QA. Results Four recommendations were made: 1) Develop a tiered (and more efficient) system for radiotherapy QA and tailor intensity of QA to clinical trial objectives. Tiers include (i) general credentialing, (ii) trial specific credentialing, and (iii) individual case review; 2) Establish a case QA repository; 3) Develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and 4) Explore the feasibility of consolidating clinical trial QA in the United States. Conclusion Radiotherapy QA may impact clinical trial accrual, cost, outcomes and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based. PMID:22425219

  11. Opportunity of characteristic's improvement for accelerator driven systems

    CERN Document Server

    Kiselev, G V

    2001-01-01

    Review of sentences on the investigation into different variations of electronuclear plants be directed to the improvement in characteristics of the plants in an effort to the efficient disposal of long-lived components of radioactive wastes is presented. Attention is drown to the fact that subcritical reactor with complicated neutron valve can be used. This permits for drop in demand to current of proton accelerator. Briefly description of the process scheme with the indication of problems is given

  12. Improving Eco-Efficiency through Waste Reduction beyond the Boundaries of a Firm: Evidence from a Multiplant Case in the Ceramic Industry

    Directory of Open Access Journals (Sweden)

    Guido J. L. Micheli

    2018-01-01

    Full Text Available To pursue eco-efficiency, one of the most important principles is the sustainable use of resources. The challenge in resource use improvement lies in a clear assessment of resource utilization. However, this evaluation is currently performed within the scope of a company and such an approach is not sustainable anymore in a world with increasingly complex production systems. This paper provides a decision support system (DSS to disclose where wastes absorb resource capacity of a whole production system beyond the boundaries of a firm. In this way, an intervention priority plan can be established to effectively improve the eco-efficiency of production systems by considering interactions among players of a multiplant or supply chain context. An implementation of the DSS is proposed for the ceramic industry to test it and explore the potential benefits. Results confirm that the DSS can effectively enable different actors to understand how significant inter-firm saving opportunities can be identified.

  13. Improving biological efficiency of Oyster mushroom, Pleurotus ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences ... Yield improvement were observed in both pigeon pea and sunflower seed cake supplemented treatments with the highest mycelium vigor (91.65%) and biological ... Keywords: biological efficiency, compost, mycelium vigor, pigeon pea, sunflower seed cake

  14. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities.

    Science.gov (United States)

    Liu, Yaoze; Engel, Bernard A; Flanagan, Dennis C; Gitau, Margaret W; McMillan, Sara K; Chaubey, Indrajeet

    2017-12-01

    Best management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effectiveness through time. In this paper, we review the current knowledge about BMP efficiencies, which indicates that most empirical studies have focused on short-term efficiencies, while few have explored long-term efficiencies. Most simulation efforts that consider BMPs assume constant performance irrespective of ages of the practices, generally based on anticipated maintenance activities or the expected performance over the life of the BMP(s). However, efficiencies of BMPs likely change over time irrespective of maintenance due to factors such as degradation of structures and accumulation of pollutants. Generally, the impacts of BMPs implemented in water quality protection programs at watershed levels have not been as rapid or large as expected, possibly due to overly high expectations for practice long-term efficiency, with BMPs even being sources of pollutants under some conditions and during some time periods. The review of available datasets reveals that current data are limited regarding both short-term and long-term BMP efficiency. Based on this review, this paper provides suggestions regarding needs and opportunities. Existing practice efficiency data need to be compiled. New data on BMP efficiencies that consider important factors, such as maintenance activities, also need to be collected. Then, the existing and new data need to be analyzed. Further research is needed to create a framework, as well as modeling approaches built on the framework, to simulate changes in BMP efficiencies with time. The research community needs to work together in addressing these needs and opportunities, which will assist decision makers in formulating better decisions regarding BMP

  15. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  16. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  17. Improving the Efficiency of Solid State Light Sources

    International Nuclear Information System (INIS)

    Joanna McKittrick

    2003-01-01

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths (λ=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range (λ=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution

  18. Method for calculating annual energy efficiency improvement of TV sets

    International Nuclear Information System (INIS)

    Varman, M.; Mahlia, T.M.I.; Masjuki, H.H.

    2006-01-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification

  19. Method for calculating annual energy efficiency improvement of TV sets

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail: indra@um.edu.my; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2006-10-15

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.

  20. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China

    International Nuclear Information System (INIS)

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2013-01-01

    China's annual cement production (i.e., 1868 Mt) in 2010 accounted for nearly half of the world's annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in China's cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using bottom–up CSC models, the cumulative cost-effective and technical electricity and fuel savings, as well as the CO 2 emission reduction potentials for the Chinese cement industry for 2010–2030 are estimated. By comparison, the total final energy saving achieved by the implementation of these 23 efficiency measures in the Chinese cement industry over 20 years (2010–2030) is equal to 30% of the total primary energy supply of Latin America or Middle East or around 71% of primary energy supply of Brazil in 2007. In addition, a sensitivity analysis with respect to the discount rate is conducted to assess its effect on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost. - Highlights: ► Estimation of energy saving potential in the entire Chinese cement industry. ► Development of the bottom–up technology-rich Conservation Supply Curve models. ► Discussion of different approaches for developing conservation supply curves. ► Primary energy saving over 20 years equal to 33% of primary energy of Latin America

  1. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  2. Achieving Efficient Spectrum Usage in Passive and Active Sensing

    Science.gov (United States)

    Wang, Huaiyi

    Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.

  3. Scaling production and improving efficiency in DEA: an interactive approach

    Science.gov (United States)

    Rödder, Wilhelm; Kleine, Andreas; Dellnitz, Andreas

    2017-10-01

    DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.

  4. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431

    Energy Technology Data Exchange (ETDEWEB)

    Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency; Brown, Richard E; Brown, Richard; Masanet, Eric; Nordman, Bruce; Tschudi, Bill; Shehabi, Arman; Stanley, John; Koomey, Jonathan; Sartor, Dale; Chan, Peter; Loper, Joe; Capana, Steve; Hedman, Bruce; Duff, Rebecca; Haines, Evan; Sass, Danielle; Fanara, Andrew

    2007-08-02

    This report was prepared in response to the request from Congress stated in Public Law 109-431 (H.R. 5646),"An Act to Study and Promote the Use of Energy Efficient Computer Servers in the United States." This report assesses current trends in energy use and energy costs of data centers and servers in the U.S. (especially Federal government facilities) and outlines existing and emerging opportunities for improved energy efficiency. It also makes recommendations for pursuing these energy-efficiency opportunities broadly across the country through the use of information and incentive-based programs.

  5. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    Science.gov (United States)

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.

  6. [Improving inpatient pharmacoterapeutic process by Lean Six Sigma methodology].

    Science.gov (United States)

    Font Noguera, I; Fernández Megía, M J; Ferrer Riquelme, A J; Balasch I Parisi, S; Edo Solsona, M D; Poveda Andres, J L

    2013-01-01

    Lean Six Sigma methodology has been used to improve care processes, eliminate waste, reduce costs, and increase patient satisfaction. To analyse the results obtained with Lean Six Sigma methodology in the diagnosis and improvement of the inpatient pharmacotherapy process during structural and organisational changes in a tertiary hospital. 1.000 beds tertiary hospital. prospective observational study. The define, measure, analyse, improve and control (DMAIC), were deployed from March to September 2011. An Initial Project Charter was updated as results were obtained. 131 patients with treatments prescribed within 24h after admission and with 4 drugs. safety indicators (medication errors), and efficiency indicators (complaints and time delays). Proportion of patients with a medication error was reduced from 61.0% (25/41 patients) to 55.7% (39/70 patients) in four months. Percentage of errors (regarding the opportunities for error) decreased in the different phases of the process: Prescription: from 5.1% (19/372 opportunities) to 3.3% (19/572 opportunities); Preparation: from 2.7% (14/525 opportunities) to 1.3% (11/847 opportunities); and administration: from 4.9% (16/329 opportunities) to 3.0% (13/433 opportunities). Nursing complaints decreased from 10.0% (2119/21038 patients) to 5.7% (1779/31097 patients). The estimated economic impact was 76,800 euros saved. An improvement in the pharmacotherapeutic process and a positive economic impact was observed, as well as enhancing patient safety and efficiency of the organization. Standardisation and professional training are future Lean Six Sigma candidate projects. Copyright © 2012 SECA. Published by Elsevier Espana. All rights reserved.

  7. Efficiency Improvement and Quality Initiatives Application in Financial Institutions

    Directory of Open Access Journals (Sweden)

    MSc. Ajtene Avdullahi

    2015-06-01

    Full Text Available Financial institutions in today’s economy have no longer the luxury to improve profit simply by increasing revenue. These firms, due to the significant measuring reductions in the financial services industry needed to improve operational efficiencies and merely support existing processes with fewer resources. This paper explains the benefits of Lean, Six Sigma, Total Quality Management and Lean Six Sigma that have improved organization's performance, by cutting costs and waste, improving their products or services, increasing profitability as well as enhancing customer satisfaction. The applicability of quality management practices in financial institutions in Kosovo is presented and also their efficiency and effectiveness. By analyzing data from Raiffeisen Bank Kosovo, this paper highlights the benefits of Individual and Micro companies customer segment as the result of organizational change and successful application of quality initiatives from financial institutions in Kosovo.

  8. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waide, Paul [Navigant Consulting Inc., Chicago, IL (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    This report presents the results of an analysis, commissioned by the U.S. Department of Energy, of Air Conditioner (AC) efficiency in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative.1 The International Energy Studies group at Lawrence Berkeley National Laboratory in collaboration with Navigant Consulting Inc. performed the analysis. SEAD aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD partners work together in voluntary activities to: (1) “raise the efficiency ceiling” by pulling superefficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) “raise the efficiency floor” by working together to bolster national or regional policies like minimum efficiency standards; and (3) “strengthen the efficiency foundations” of programs by coordinating technical work to support these activities.2 The objective of this analysis is to provide the background technical information necessary to improve the efficiency of ACs and to provide a foundation for the activities of SEAD participating countries. We find that even the best currently available technology offers large efficiency improvement opportunities (35% to 50% reduction in energy consumption from the market average) in most SEAD countries. The cost effective efficiency improvements range from 20% to 30% reduction in energy consumption based on a consumer perspective.

  9. Understanding patient willingness to recommend and return: a strategy for prioritizing improvement opportunities.

    Science.gov (United States)

    Burroughs, T E; Davies, A R; Cira, J C; Dunagan, W C

    1999-06-01

    Beginning in April 1995, an ongoing, comprehensive measurement system has been developed and refined at BJC Health System, a regional integrated delivery and financing system serving the St Louis metropolitan area, mid-Missouri, and Southern Illinois, to assess patient satisfaction with inpatient treatment, outpatient treatment, outpatient surgery, and emergency care. This system has provided the mechanism for identifying opportunities, setting priorities, and monitoring the impact of improvement initiatives. Satisfaction with key components of the care process among 23,361 patients (7,083 inpatients, 8,885 patients undergoing outpatient tests/procedures, 5,356 patients undergoing outpatient surgery, and 2,037 patients receiving emergency care) at 15 BJC Health System facilities was assessed through weekly surveys administered in April 1995 through December 1996. Structural equation models were developed to identify the key predictors of patient advocation-willingness to return for or recommend care. Across all venues of care the compassion provided to patients had the strongest relationship to patient advocation. Within each venue of care, however, a slightly different set of secondary factors emerged. The resulting models provided important information to help prioritize competing improvement opportunities in BJC Health System. In one hospital, a general medicine unit working for several years with little success to improve its patient satisfaction decided to focus on two primary factors predicting patient advocation: nursing care delivery and compassionate care. Root cause analysis was used to determine why two items-staff willingness to help with questions/concerns and clear explanation about tests and procedures-were rated low. On the basis of feedback from phone interviews with discharged patients, the care delivery process was changed to encourage patients to ask questions. Across the next two quarters, this unit experienced significant improvements in both

  10. Utilization of information and communications technology (ICT) to improve workface efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Haines, A.; Rasmussen, J. [Industrial Audit Corp., Toronto, Ontario (Canada)

    2010-07-01

    Improving the efficiency of personnel at the workface is a key objective for executing construction, maintenance, quality, engineering and human performance activities. Schedule and cost overruns have a significant impact on the bottom line and on future business efficiency in execution of tasks is paramount to success. Leveraging information and communications technology (ICT) in construction, maintenance and operation environments can create a mobile workforce where personnel efficiency is improved, significant gains are made on schedule and cost, and the overall quality of work is raised. This paper will discuss the impact of mobile technology specifically on workface efficiency and productivity. (author)

  11. Utilization of information and communications technology (ICT) to improve workface efficiency

    International Nuclear Information System (INIS)

    Haines, A.; Rasmussen, J.

    2010-01-01

    Improving the efficiency of personnel at the workface is a key objective for executing construction, maintenance, quality, engineering and human performance activities. Schedule and cost overruns have a significant impact on the bottom line and on future business efficiency in execution of tasks is paramount to success. Leveraging information and communications technology (ICT) in construction, maintenance and operation environments can create a mobile workforce where personnel efficiency is improved, significant gains are made on schedule and cost, and the overall quality of work is raised. This paper will discuss the impact of mobile technology specifically on workface efficiency and productivity. (author)

  12. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    The effect of various microlens parameters such as diameter and area fraction on light-extraction efficiency was systematically studied. Improvement of 4% in extraction efficiency was obtained by employing it on white light emitting diode. The area fraction of microlenses was increased up to 0.34 by reducing the spin speed.

  13. Opportunities to Improve Skills and to Teach and Train Others: Employee Outcomes in the United States and Japan

    Science.gov (United States)

    Lee, HaeNim; McNamara, Tay K.; Pitt-Catsouphes, Marcie; Lee, Jungui

    2014-01-01

    Opportunities to improve skills and opportunities to teach or train others may be associated with job satisfaction, work engagement and organizational commitment. The analysis reported in this paper used a subsample of 823 employees within two Japanese and three American worksites. We tested not only the direct relationships of each type of…

  14. Quantifying and improving the efficiency of Gamma Knife treatment plans for brain metastases: results of a 1-year audit.

    Science.gov (United States)

    Wright, Gavin; Hatfield, Paul; Loughrey, Carmel; Reiner, Beatrice; Bownes, Peter

    2014-12-01

    A method for quantifying the efficiency of Gamma Knife treatment plans for metastases was previously implemented by the authors to retrospectively identify the least efficient plans and has provided insights into improved planning strategies. The aim of the current work was to ascertain whether those insights led to improved treatment plans. Following completion of the initial study, a 1-year audit of metastasis plans created at St. James's Institute of Oncology was carried out. Audited recent plans were compared with the earlier plans of the initial study, in terms of their efficiency and dosimetric quality. The statistical significance of any differences between relevant plan parameters was quantified by Mann-Whitney U-tests. Comparisons were made between all plans and repeated for a reduced set of plans from which the smallest lesions treated with a single 4-mm shot were excluded. The plan parameters compared were a plan efficiency index (PEI), the number of shots, Paddick conformity index (PCI), gradient index (GI), and percent coverage (of the lesion by the prescription isodose). A total of 157 metastatic lesions were included in the audit and were compared with 241 in the initial study. In a comparison of all cases, the audited plans achieved a higher median PEI score than did the earlier plans from the initial study (1.08 vs 1.02), indicating improved efficiency of the audited plans. When the smallest lesions (for which there was little scope for varying plan strategy) were discounted, the improvement in median PEI score was greater (1.23 vs 1.03, p planning strategy yielding these efficiency improvements did not rely on the use of significantly fewer shots (median 11 vs 11 shots, p = 0.924), nor did it result in significant detriment to dosimetric quality (median coverage 99% vs 99%, median PCI 0.84 vs 0.83, p = 0.449, and median GI 2.72 vs 2.67, p = 0.701, audited plans vs initial plans, respectively). Choice of planning strategy can substantially affect

  15. Overcoming the energy efficiency gap in India's household sector

    International Nuclear Information System (INIS)

    Reddy, B.S.

    2003-01-01

    Energy efficiency generates substantial financial savings while simultaneously improving environmental quality. Despite these benefits, developing countries like India are missing out on energy efficiency opportunities and instead concentrating on increased energy production. This paper identifies the efficient technologies in the household sector in India, and details their benefits to the consumer as well as to the society. It identifies the barriers that prevent the government from achieving its energy efficiency goals, analyses programs that addresses these barriers, and explores the creation of an institutional mechanism

  16. Retrofitting the 5045 Klystron for Higher Efficiency

    International Nuclear Information System (INIS)

    Jensen, Aaron; Fazio, Michael; Haase, Andy; Jongewaard, Erik; Kemp, Mark; Neilson, Jeff

    2015-01-01

    The 5045 klystron has been in production and accelerating particles at SLAC National Accelerator Laboratory for over 25 years. Although the design has undergone some changes there are still significant opportunities for improvement in performance. Retrofitting the 5045 for higher efficiencies and a more mono-energetic spent beam profile is presented.

  17. Barriers to efficiency improvement and fuel switching in Karnataka, India

    International Nuclear Information System (INIS)

    Reddy, A.

    1991-01-01

    Implementing energy efficiency changes requires a wide range measures. Improvements, therefore, require actions at the lowest level of the consumer, through the highest level of the global agencies. Due to the multiplicity of participants, however, barriers to achieving these improvements can arise at every level. The major barriers to improving energy efficiency in developing countries are defined and paths to overcome these challenges are identified. Topics of discussion include: energy consumers; end-use equipment manufacturers; end-use equipment providers; energy carrier producers and distributors; actual/potential cogenerators; financial institutions; government; and international, multilateral and industrialized country funding/aid agencies

  18. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Liu, Huanbin [South China Univ. of Technology, Guangzhou (China). State Key Lab. of Pulp and Paper Engineering

    2013-01-31

    This study assesses the impact of 23 energy-efficiency measures that could be applied in China's pulp and paper industry. We analyze the fuel- and electricity-efficiency improvement potential of these technologies for the year 2010 using a bottom-up conservation supply curve (CSC) model. The fuel CSC model shows that the cost-effective fuel efficiency improvement potential for China's pulp and paper industry is 179.6 PJ, and the total technical fuel-savings potential is 254.3 PJ. These figures represent 26.8 percent and 38.0 percent, respectively, of total fuel used in China’s pulp and paper industry in 2010. The CO2 emissions reduction potential associated with ii the cost-effective fuel savings is 16.9 Mt CO2, and the total technical potential for CO2 emissions reduction is 24.2 Mt CO2. The electricity CSC model shows that the total technical electricity-efficiency potential to 2,316 gigawatt-hours (GWh) or 4.3 percent of total electricity use in the pulp and paper industry in 2010. All of the electricity-efficiency potential is cost effective. The CO2 emissions reduction potential associated with the total electricity savings is 1.8 Mt CO2. Sensitivity analyses for adoption rate, discount rate, electricity and fuel prices, investment costs, and the energy savings from each measure show that these parameters have significant influence on the results. Therefore, the results presented in this report should be interpreted with caution.

  19. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  20. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  1. Improving health and energy efficiency through community-based housing interventions.

    Science.gov (United States)

    Howden-Chapman, Philippa; Crane, Julian; Chapman, Ralph; Fougere, Geoff

    2011-12-01

    Houses designed for one climate and cultural group may not be appropriate for other places and people. Our aim is to find cost-effective ways to improve the characteristics of older homes, ill-fitted for New Zealand's climate, in order to improve the occupants' health. We have carried out two community randomised trials, in partnership with local communities, which have focused on retrofitted insulation and more effective heating and have two other studies under way, one which focuses on electricity vouchers and the other on housing hazard remediation. The Housing, Insulation and Health Study showed that insulating 1,350 houses, built before insulation was required, improved the occupants' health and well being as well as household energy efficiency. In the Housing, Heating and Health Study we investigated the impact of installing more effective heating in insulated houses for 409 households, where there was a child with doctor-diagnosed asthma. Again, the study showed significant results in the intervention group; indoor temperatures increased and levels of NO(2) were halved. Children reported less poor health, lower levels of asthma symptoms and sleep disturbances by wheeze and dry cough. Children also had fewer days off school. Improving the energy efficiency of older housing leads to health improvements and energy efficiency improvements. Multidisciplinary studies of housing interventions can create compelling evidence to support policies for sustainable housing developments which improve health.

  2. Improving the energy efficiency of mine fan assemblages

    International Nuclear Information System (INIS)

    De Souza, Euler

    2015-01-01

    Energy associated with ventilating an underground operation comprises a significant portion of a mine operation's base energy demand and is consequently responsible for a large percentage of the total operating costs. Ventilation systems may account from 25 to 40% of the total energy costs and 40–50% of the energy consumption of a mine operation. Fans are the most important mechanical devices used to ventilate underground mines and the total fan power installed in a single mine operation can easily exceed 10,000 kW. Investigations of a number of mine main fan installations have determined their assemblage to be, in general, very energy inefficient. The author has found that 40–80% of the energy consumed by a main fan is used to overcome the resistance of fan assemblage components. This paper presents how engineering design principles can be applied to improve the performance and efficiency of fan installations, resulting in substantial reductions in power consumption, operating cost and greenhouse gas emissions. A detailed case study is presented to demonstrate that, by designing fan assemblages using proper engineering concepts of fluid physics and industrial ventilation design, main fan systems will operate at efficiencies well above 80–90% (compared to common operating efficiencies of between 20 and 65%), resulting in a drastic reduction in a mine's overall costs and base electrical and energy loads. - Highlights: • Increases in fan assemblage efficiencies with minimum capital investment. • Improved designs for substantial fan power and operating cost savings. • General solutions and tactics for improving existing main fan installations. • Case study presented to demonstrate proper design of fan assemblages.

  3. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  4. Improving Motor and Drive System Performance – A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-01

    This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well as resources for additional information, tools, software, videos, and training opportunities.

  5. Residential carbon dioxide emissions in Canada. Impact of efficiency improvements and fuel substitution

    International Nuclear Information System (INIS)

    Ugursal, V.I.; FUng, A.S.

    1998-01-01

    The effect of improving house envelope, heating system and appliance efficiencies, and fuel substitution on the atmospheric emissions of carbon dioxide in the Canadian residential sector is studied based on simulation studies. The findings clearly indicate that improving appliance efficiency reduces the overall end-use energy consumption in the residential sector as well as the associated carbon dioxide emissions. However, the magnitude of the reduction in carbon dioxide emissions as a result of improving only appliance efficiencies is quite small. Significantly larger reductions can be obtained by improving house envelopes and heating/cooling systems in addition to improving appliance efficiencies. Fuel substitution for space and domestic hot water heating can also present a potential to reduce carbon dioxide emissions depending on the fuel substitution scenario adopted. (author)

  6. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  7. Does Automation Improve Stock Market Efficiency? Evidence from Ghana

    OpenAIRE

    Mensah, Justice T.; Pomaa-Berko, Maame; Adom, Philip Kofi

    2012-01-01

    As a burgeoning capital market in an emerging economy, automation of the stock market is regarded as a major step towards integrating the financial market as a conduit for economic growth. The automation of the Ghana Stock Exchange (GSE) in 2008 is expected among other things to improve the efficiency of the market. This paper therefore investigates the impact of the automation on the efficiency of the GSE within the framework of the weak-form Efficient Market Hypothesis (EMH) using daily mar...

  8. Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery

    International Nuclear Information System (INIS)

    Zhang, Shumei; Qiang, Jiaxi; Yang, Lin; Zhao, Xiaowei

    2016-01-01

    To improve battery uniformity as well as energy efficiency and time efficiency, a SOC (state of charge)-based equalization by AGA (adaptive genetic algorithm) is proposed on basis of two-stage DC/DC converters. The simulation results indicate that compared with FLC (fuzzy logic controller) equalization, the standard deviation of final SOC is improved by 78.7% while energy efficiency is improved by 6.01% and equalization time is decreased by 20% for AGA equalization of extreme dispersion. Additionally, AGA improves the battery uniformity by 30.77% with shortening equalization time by 16.29% and saving energy loss by 1.51% compared with FLC for equalization of regular dispersion. For further validation, the equalization optimization is verified by experiment based on the data-driven parameter identification method which is used to enhance the real-time capability of AGA. For AGA equalization of extreme dispersion, the standard deviation of final SOC is just 0.41% while equalization time prolongs only 14 min and energy efficiency is decreased by 0.81% compared with simulation results. Moreover, not only the standard deviation of final SOC is just 0.28% but also the energy efficiency is decreased by 0.69% and equalization time prolongs by 10.4 min compared with the simulation results for equalization of regular dispersion. - Highlights: • Issues of over equalization, time consumption and energy loss are addressed. • A SOC-based equalization is proposed based on adaptive genetic algorithm. • The equalization aims to improve battery uniformity, efficiency of energy and time. • Data-driven parameter identification is used to enhance the real-time capability.

  9. Improving the Efficiency of Organic Solar Cells upon Addition of Polyvinylpyridine

    Directory of Open Access Journals (Sweden)

    Rita Rodrigues

    2014-12-01

    Full Text Available We report on the efficiency improvement of organic solar cells (OPVs based on the low energy gap polyfluorene derivative, APFO-3, and the soluble C60 fullerene PCBM, upon addition of a residual amount of poly (4-vinylpyridine (PVP. We find that the addition of 1% by weight of PVP with respect to the APFO-3 content leads to an increase of efficiency from 2.4% to 2.9%. Modifications in the phase separation details of the active layer were investigated as a possible origin of the efficiency increase. At high concentrations of PVP, the blend morphology is radically altered as observed by Atomic Force Microscopy. Although the use of low molecular weight additives is a routine method to improve OPVs efficiency, this report shows that inert polymers, in terms of optical and charge transport properties, may also improve the performance of polymer-based solar cells.

  10. Eco-efficient Agriculture: Concepts, Challenges, and Opportunities

    NARCIS (Netherlands)

    Keating, B.A.; Carberry, P.S.; Bindraban, P.S.; Asseng, S.; Meinke, H.B.; Dixon, J.

    2010-01-01

    Eco-efficiency in the simplest of terms is about achieving more with less—more agricultural outputs, in terms of quantity and quality, for less input of land, water, nutrients, energy, labor, or capital. The concept of eco-efficiency encompasses both the ecological and economic dimensions of

  11. Basin-Scale Opportunity Assessment Initiative Background Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-10-01

    As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended

  12. Improving radiation use efficiency in greenhouse production systems

    OpenAIRE

    Li, Tao

    2015-01-01

    SUMMARY A large increase in agricultural production is needed to feed the increasing world population with their increasing demand per capita. However, growing competition for arable land, water, energy, and the degradation of the environment impose challenges to improve crop production. Hence agricultural production efficiency needs to increase. Greenhouses provide the possibility to create optimal growth conditions for crops, thereby improving production and product quality. Light is the dr...

  13. Developing a Continuous Improvement System

    Science.gov (United States)

    2016-09-16

    disagree that continuous improvement is critical to an organization’s suc-cess, since conducting business using a status quo philosophy will not work...for implementing one of these processes include: better operational efficiency, increased customer satisfaction, improved employee morale ...when a problem in reliability or maintenance may become the greatest opportunity. As described in the January-February 2011 issue of Defense AT&L

  14. Energy efficiency improvement and environment in China

    International Nuclear Information System (INIS)

    Rouhier, Stephane

    2010-01-01

    Massive reliance on polluting sources of energy (coal, traditional biomass and oil) has damaged the environment in China over years. Now, China is the world's first carbon dioxide emitter and air pollution represents between 2 and 7 percent of loss of Gross Domestic Product per year, depending on the studies chosen. In order to reduce the level of pollution, one can either enhance the technology in use or reduce the share of polluting fuels in the energy mix. Indeed, current Chinese technologies are far less efficient than those of developed countries and the energy mix is massively composed of polluting sources of energy. So, they both represent huge potential savings. This article enquires the link between diversification, efficiency in the power sector and the per capita emissions and shows that emissions are negatively correlated to a diversification of the energy mix as well as an improvement of power generating technologies. Hence, it justifies the diversification of the energy mix and technology improvement as viable strategies to tackle pollution

  15. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  16. Improvement of Engineering Work Efficiency through System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently.

  17. Developing improved opportunities for the recycling and reuse of materials in road, bridge, and construction projects.

    Science.gov (United States)

    2014-12-01

    The use of recycled and reused materials in transportation construction reduces consumption of non-renewable : resources. The objective of this research was to develop opportunities for improving the recycling and reuse of : materials in road and bri...

  18. Efficient Adoption and Assessment of Multiple Process Improvement Reference Models

    Directory of Open Access Journals (Sweden)

    Simona Jeners

    2013-06-01

    Full Text Available A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve their processes. These process improvement reference models (IRMs cover different domains such as IT development, IT Services or IT Governance but also share some similarities. As there are organizations that address multiple domains and need to coordinate their processes in their improvement we present MoSaIC, an approach to support organizations to efficiently adopt and conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common meta-models. The resulting IRM integration model enables organizations to efficiently implement and asses multiple IRMs and to benefit from synergy effects.

  19. Opportunities to Investigate the Steering System for Improvement of Truck Driving Properties under Critical Road Conditions

    Science.gov (United States)

    Gidlewski, Mirosław

    2011-09-01

    Application of an electric steering system in a truck gives new opportunities to obtain desirable and safe motion path under critical road conditions. Analysis of the opportunity to take advantage of the steering system for improvement of truck driving properties will be carried out on the basis of the results of model tests. The paper describes model of the vehicle applied in simulation tests and methodology as well as anticipated results. The scheduled tests will be carried out within the framework of an research project No. NN509 568439 headed by the author.

  20. Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency; Brown, Richard E; Brown, Richard; Masanet, Eric; Nordman, Bruce; Tschudi, Bill; Shehabi, Arman; Stanley, John; Koomey, Jonathan; Sartor, Dale; Chan, Peter; Loper, Joe; Capana, Steve; Hedman, Bruce; Duff, Rebecca; Haines, Evan; Sass, Danielle; Fanara, Andrew

    2007-08-02

    This report is the appendices to a companion report, prepared in response to the request from Congress stated in Public Law 109-431 (H.R. 5646),"An Act to Study and Promote the Use of Energy Efficient Computer Servers in the United States." This report assesses current trends in energy use and energy costs of data centers and servers in the U.S. (especially Federal government facilities) and outlines existing and emerging opportunities for improved energy efficiency. It also makes recommendations for pursuing these energy-efficiency opportunities broadly across the country through the use of information and incentive-based programs.

  1. Efficiency improvement for a sustainable agriculture : the integration of agronomic and farm economics approaches

    OpenAIRE

    Koeijer, de, T.J.

    2002-01-01

    Keywords: Sustainable farming systems, Agronomic efficiency, Economic efficiency, Environmental efficiency, Sustainability index, Interdisciplinary analysis.

    The objective of the research described in this thesis was to determine what role improved agronomic efficiency can play in the transition towards more sustainable production systems. Agronomic efficiency measures the technical performance. If it could be improved, environmental damage could be reduced while, at the sam...

  2. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  3. Fiscal 1999 survey report. Survey of effect of energy efficiency improvement on global environment; 1999 nendo energy shohi koritsuka chikyu kankyo eikyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Analyses are conducted into consideration given to global warming measures in the 3rd assessment report of the Intergovernmental Panel on Climate Change (IPCC) and into technology transfer from developed nations to developing nations in the Asia-Pacific region etc. to contribute to their energy efficiency improvement. The aim is to present data for deliberation as to how future energy efficiency improvement measures should be in the Asia-Pacific region. The chapters (Chapter 0 through Chapter 10) of the report to be worked out by Working Group III deeply involved in energy problems are 0) Introduction, 1) Scope of the report; 2) Socio-economic and emissions scenarios; 3) Technical and economic potential of GHG (greenhouse gas) emissions reduction; 4) Technical and economic potential of biological CO2 mitigation options; 5) Barriers, opportunities and market potential of technologies and practices; 6) Policies, measures and instruments; 7) Costing methodologies; 8) Global, regional and national costs and ancillary benefits of mitigation; 9) Sector costs and ancillary benefits of mitigation; and 10) Decision making frameworks. As the result of the survey, some actual technology transfer implementations are introduced covering branches closely related to energy efficiency improvement, which are branches of construction, traffic, industry, energy supply, and wastes. (NEDO)

  4. Complementary and Alternative Medicine on Wikipedia: Opportunities for Improvement

    Directory of Open Access Journals (Sweden)

    Malcolm Koo

    2014-01-01

    Full Text Available Wikipedia, a free and collaborative Internet encyclopedia, has become one of the most popular sources of free information on the Internet. However, there have been concerns over the quality of online health information, particularly that on complementary and alternative medicine (CAM. This exploratory study aimed to evaluate several page attributes of articles on CAM in the English Wikipedia. A total of 97 articles were analyzed and compared with eight articles of broad categories of therapies in conventional medicine using the Mann-Whitney U test. Based on the Wikipedia editorial assessment grading, 4% of the articles attained “good article” status, 34% required considerable editing, and 56% needed substantial improvements in their content. The median daily access of the articles over the previous 90 days was 372 (range: 7–4,214. The median word count was 1840 with a readability of grade 12.7 (range: 9.4–17.7. Medians of word count and citation density of the CAM articles were significantly lower than those in the articles of conventional medicine therapies. In conclusion, despite its limitations, the general public will continue to access health information on Wikipedia. There are opportunities for health professionals to contribute their knowledge and to improve the accuracy and completeness of the CAM articles on Wikipedia.

  5. Improving the efficiency of aerodynamic shape optimization

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1994-01-01

    The computational efficiency of an aerodynamic shape optimization procedure that is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid-point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit methodology to calculate the highly converged flow solutions that are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. Practically identical optimization results are obtained that are independent of the method used to represent the surface. A substantial factor of 8 decrease in computational time for the optimization process is achieved by implementing both of the design procedure improvements.

  6. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Grigg, Reid B.

    2002-01-01

    A three-year contract, DOE Contract No. DE-FG26-01BC15364 ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering January 1, 2002 through June 30, 2002 that covers the second and third fiscal quarters of the project's first year. Paper SPE 75178, ''Cost Reduction and Injectivity Improvements for CO 2 Foams for Mobility Control,'' has been presented and included in the proceedings of the SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, producer survey on injectivity, and surfactant adsorption on quarried and reservoir core

  7. Quantum entanglement helps in improving economic efficiency

    International Nuclear Information System (INIS)

    Du Jiangfeng; Ju Chenyong; Li Hui

    2005-01-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character

  8. Quantum entanglement helps in improving economic efficiency

    Science.gov (United States)

    Du, Jiangfeng; Ju, Chenyong; Li, Hui

    2005-02-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.

  9. Energy Efficiency Financing for Low- and Moderate-Income Households: Current State of the Market, Issues, and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Leventis, G; Kramer, C; Schwartz, LC

    2017-08-09

    Ensuring that low- and moderate-income (LMI) households have access to energy efficiency is equitable, provides energy savings as a resource to meet energy needs, and can support multiple policy goals, such as affordable energy, job creation, and improved public health. Although the need is great, many LMI households may not be able to afford efficiency improvements or may be inhibited from adopting efficiency for other reasons. Decision-makers across the country are currently exploring the challenges and potential solutions to ramping up adoption of efficiency in LMI households, including the use of financing. The report’s objective is to offer state and local policymakers, state utility regulators, program administrators, financial institutions, consumer advocates and other LMI stakeholders with an understanding of: -The relationship between LMI communities and financing for energy efficiency, including important considerations for its use such as consumer protections -The larger programmatic context of grant-based assistance and other related resources supporting LMI household energy efficiency -Lessons learned from existing energy efficiency financing programs serving LMI households -Financing products used by these programs and their relative advantages and disadvantages in addressing barriers to financing or to energy efficiency uptake for LMI households

  10. Improving primary health care facility performance in Ghana: efficiency analysis and fiscal space implications.

    Science.gov (United States)

    Novignon, Jacob; Nonvignon, Justice

    2017-06-12

    Health centers in Ghana play an important role in health care delivery especially in deprived communities. They usually serve as the first line of service and meet basic health care needs. Unfortunately, these facilities are faced with inadequate resources. While health policy makers seek to increase resources committed to primary healthcare, it is important to understand the nature of inefficiencies that exist in these facilities. Therefore, the objectives of this study are threefold; (i) estimate efficiency among primary health facilities (health centers), (ii) examine the potential fiscal space from improved efficiency and (iii) investigate the efficiency disparities in public and private facilities. Data was from the 2015 Access Bottlenecks, Cost and Equity (ABCE) project conducted by the Institute for Health Metrics and Evaluation. The Stochastic Frontier Analysis (SFA) was used to estimate efficiency of health facilities. Efficiency scores were then used to compute potential savings from improved efficiency. Outpatient visits was used as output while number of personnel, hospital beds, expenditure on other capital items and administration were used as inputs. Disparities in efficiency between public and private facilities was estimated using the Nopo matching decomposition procedure. Average efficiency score across all health centers included in the sample was estimated to be 0.51. Also, average efficiency was estimated to be about 0.65 and 0.50 for private and public facilities, respectively. Significant disparities in efficiency were identified across the various administrative regions. With regards to potential fiscal space, we found that, on average, facilities could save about GH₵11,450.70 (US$7633.80) if efficiency was improved. We also found that fiscal space from efficiency gains varies across rural/urban as well as private/public facilities, if best practices are followed. The matching decomposition showed an efficiency gap of 0.29 between private

  11. The Web 2.0 as Marketing Tool: Opportunities for SMEs

    OpenAIRE

    Constantinides, Efthymios

    2008-01-01

    The new generation of Internet applications widely known as Social Media or Web 2.0 offers corporations a whole range of opportunities for improving their marketing efficiency and internal operations. Web 2.0 applications have already become part of the daily life of an increasing number of consumers who regard them as prime channels of communication, information exchange, sharing of expertise, dissemination of individual creativity and entertainment. Web logs, podcasts, online forums and soc...

  12. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  13. IGCC based on proven technology developing towards 50% efficiency mark

    Energy Technology Data Exchange (ETDEWEB)

    Goudappel, E.; Berkhout, M. [Jacobs Consultancy, Leiden (Netherlands)

    2006-07-01

    In this paper the achievements made over the last 10 years in terms of reliability, load following and efficiency improvement potential at the Buggenum IGCC plant, are presented. Also the air side heat integration and its pros and cons are discussed. Additionally future business opportunities adjacent to the power production itself and the view on coal gasification in the near future are provided. The results are discussed and it is shown that with 'proven' gasifier and gas treatment technology, overall efficiency exceeding 47% (LHV basis) can be reached. It puts this technical potential in perspective and describes the view on interesting business opportunities around IGCC projects. 5 figs., 3 tabs.

  14. Challenges and opportunities for improving food quality and nutrition through plant biotechnology.

    Science.gov (United States)

    Francis, David; Finer, John J; Grotewold, Erich

    2017-04-01

    Plant biotechnology has been around since the advent of humankind, resulting in tremendous improvements in plant cultivation through crop domestication, breeding and selection. The emergence of transgenic approaches involving the introduction of defined DNA sequences into plants by humans has rapidly changed the surface of our planet by further expanding the gene pool used by plant breeders for plant improvement. Transgenic approaches in food plants have raised concerns on the merits, social implications, ecological risks and true benefits of plant biotechnology. The recently acquired ability to precisely edit plant genomes by modifying native genes without introducing new genetic material offers new opportunities to rapidly exploit natural variation, create new variation and incorporate changes with the goal to generate more productive and nutritious plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ding [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Wenying [Tsinghua Univ., Beijing (China)

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  16. Energy Efficiency Financing for Low- and Moderate-Income Households: Current State of the Market, Issues, and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    Although the need is great, many LMI households may not be able to afford efficiency improvements or may be inhibited from adopting efficiency for other reasons. Decision-makers across the country are currently exploring the challenges and potential solutions to ramping up adoption of efficiency in LMI households, including the use of financing.

  17. Efficient Work Team Scheduling: Using Psychological Models of Knowledge Retention to Improve Code Writing Efficiency

    Directory of Open Access Journals (Sweden)

    Michael J. Pelosi

    2014-12-01

    Full Text Available Development teams and programmers must retain critical information about their work during work intervals and gaps in order to improve future performance when work resumes. Despite time lapses, project managers want to maximize coding efficiency and effectiveness. By developing a mathematically justified, practically useful, and computationally tractable quantitative and cognitive model of learning and memory retention, this study establishes calculations designed to maximize scheduling payoff and optimize developer efficiency and effectiveness.

  18. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diddi, Saurabh [Bureau of Energy Efficiency, Government of India (India); Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-01

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant,and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one-star level) should be evaluated rigorously considering significant benefits to consumers, energy security, and environment

  19. Opportunities in biotechnology.

    Science.gov (United States)

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  20. Municipalities and energy efficiency in countries in transition

    International Nuclear Information System (INIS)

    Rezessy, Silvia; Dimitrov, Konstantin; Urge-Vorsatz, Diana; Baruch, Seth

    2006-01-01

    It is widely recognized that many cost-efficient opportunities to employ end-use energy efficiency measures exist in countries in transition (CITs) and that municipal authorities have an essential role to play in capturing these opportunities. The aim of this paper is to review the factors that determine the degree of involvement of local authorities in the market for energy services and energy efficient (EE) equipment in three CITs: Bulgaria, Hungary and the Former Yugoslav Republic of Macedonia (hereafter: Macedonia). We achieve this aim by examining the current status of local governments as the most powerful determinant of municipal market involvement. Two broad groups of factors are discussed: statutory obligations and powers of local governments, especially energy-related tasks, and finance. We explain how specific features within these two areas may influence the motivation of local authorities to improve energy efficiency and their capacity to do so. We argue that greater decentralization is the first step in augmenting the role of local authorities in the market for energy services and EE equipment. Based on the analysis we give recommendations on how to encourage municipal authorities to use market mechanisms more extensively to deliver energy efficiency

  1. Energy efficiency rating of districts, case Finland

    International Nuclear Information System (INIS)

    Hedman, Åsa; Sepponen, Mari; Virtanen, Mikko

    2014-01-01

    There is an increasing political pressure on the city planning to create more energy efficient city plans. Not only do the city plans have to enable and promote energy efficient solutions, but it also needs to be clearly assessed how energy efficient the plans are. City planners often have no or poor know how about energy efficiency and building technologies which makes it difficult for them to answer to this need without new guidelines and tools. An easy to use tool for the assessment of the energy efficiency of detailed city plans was developed. The aim of the tool is for city planners to easily be able to assess the energy efficiency of the proposed detailed city plan and to be able to compare the impacts of changes in the plan. The tool is designed to be used with no in-depth knowledge about energy or building technology. With a wide use of the tool many missed opportunities for improving energy efficiency can be avoided. It will provide better opportunities for sustainable solutions leading to less harmful environmental impact and reduced emissions. - Highlights: • We have created a tool for assessing energy efficiency of detailed city plans. • The energy source is the most important factor for efficiency of districts in Finland. • Five case districts in Finland were analyzed. • In this paper one residential district has in-depth sensitivity analyses done

  2. Institutional opportunities and constraints to biomass development

    International Nuclear Information System (INIS)

    Costello, R.; Finnell, J.

    1998-01-01

    This paper examines a number of institutional opportunities and constraints applicable to biomass as well as other renewable energy technologies. Technological progress that improves performance or increases system efficiencies can open doors to deployment; however, market success depends on overcoming the institutional challenges that these technologies will face. It can be far more difficult to put into place the necessary institutional mechanisms which will drive these commercialization efforts. The keys to the successful implementation of energy technologies and, in particular, biomass power technologies, are issues that can be categorized as: (1) regulatory; (2) financial; (3) infrastructural; and (4) perceptual. (author)

  3. SU-F-T-163: Improve Proton Therapy Efficiency: Report of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States); Flanz, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Mah, D [Procure Treatment Center, Somerset, NJ (United States); Pankuch, M; Kreydick, B [Northwestern Medicine Proton Center, Warrenville, IL (United States); Beltran, C [Mayo Clinic, Rochester, MN (United States); Robison, B; Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2016-06-15

    Purpose: The technology of proton therapy, especially the pencil beam scanning technique, is evolving very quickly. However, the efficiency of proton therapy seems to lag behind conventional photon therapy. The purpose of the abstract is to report on the findings of a workshop on improvement of QA, planning and treatment efficiency in proton therapy. Methods: A panel of physicists, clinicians, and vendor representatives from over 18 institutions in the United States and internationally were convened in Knoxville, Tennessee in November, 2015. The panel discussed several topics on how to improve proton therapy efficiency, including 1) lean principle and failure mode and effects analysis, 2) commissioning and machine QA, 3) treatment planning, optimization and evaluation, 4) patient positioning and IGRT, 5) vendor liaison and machine availability, and 6) staffing, education and training. Results: The relative time needed for machine QA, treatment planning & check in proton therapy was found to range from 1 to 2.5 times of that in photon therapy. Current status in proton QA, planning and treatment was assessed. Key areas for efficiency improvement, such as elimination of unnecessary QA items or steps and development of efficient software or hardware tools, were identified. A white paper to summarize our findings is being written. Conclusion: It is critical to improve efficiency by developing reliable proton beam lines, efficient software tools on treatment planning, optimization and evaluation, and dedicated proton QA device. Conscious efforts and collaborations from both industry leaders and proton therapy centers are needed to achieve this goal and further advance the technology of proton therapy.

  4. Opportunities for cost reduction and improved environmental impact in the lead and lead/acid battery industries

    Science.gov (United States)

    Lewis, N.

    The opportunities for cost reduction through improved environmental performance exist in many companies, but often are not realized. This paper describes the efforts of a typical firm — Calder Industrial Materials (CIM) — that is experiencing ever-tighter environmental controls and profit erosion through the effects of new environmental legislation. At the same time, however, CIM sees opportunities to reduce its environmental burden and cut costs. As the story unfolds, readers may well discover many parallels with their own companies. It may even spur some into action, for remember, every £1000 saved requires ten times the turnover to generate the same profit.

  5. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Diddi, Saurabh [Government of India, New Delhi (India). Bureau of Energy Efficiency; Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-30

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. We assess several efficiency levels, two of which are summarized below in the report. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one star level) should be evaluated rigorously considering significant benefits to consumers, energy security and environment.

  6. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  7. Using time-driven activity-based costing to identify value improvement opportunities in healthcare.

    Science.gov (United States)

    Kaplan, Robert S; Witkowski, Mary; Abbott, Megan; Guzman, Alexis Barboza; Higgins, Laurence D; Meara, John G; Padden, Erin; Shah, Apurva S; Waters, Peter; Weidemeier, Marco; Wertheimer, Sam; Feeley, Thomas W

    2014-01-01

    As healthcare providers cope with pricing pressures and increased accountability for performance, they should be rededicating themselves to improving the value they deliver to their patients: better outcomes and lower costs. Time-driven activity-based costing offers the potential for clinicians to redesign their care processes toward that end. This costing approach, however, is new to healthcare and has not yet been systematically implemented and evaluated. This article describes early time-driven activity-based costing work at several leading healthcare organizations in the United States and Europe. It identifies the opportunities they found to improve value for patients and demonstrates how this costing method can serve as the foundation for new bundled payment reimbursement approaches.

  8. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  9. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  10. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  11. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  12. Case study: improving efficiency in a large hospital laboratory.

    Science.gov (United States)

    Bartel, Marilynn

    2004-01-01

    Saint Francis Health System (SFHS) consists of three hospitals and one clinic: Saint Francis Hospital (SFH); Broken Arrow Medical Center; Laureate Psychiatric Hospital; and Warren Clinic. SFHS has 670 physicians on staff and serves medical (oncology, orthopedic, neurology, and renal), surgical, cardiac, women and infant, pediatric, transplant, and trauma patients in Tulsa County, Oklahoma, which has a population of 660,000. SFH incorporates 706 staffed beds, including 126 pediatric beds and 119 critical care beds. Each year, the health system averages 38,000 admissions, 70,000 emergency department visits, 25,000 surgeries, and 3,500 births. Saint Francis Laboratory is located within the main hospital facility (SFH) and functions as a core lab for the health system. The lab also coordinates lab services with Saint Francis Heart Hospital, a physician-system joint venture. The Optimal Equipment Configuration (OEC) Project was designed by the Clinical Laboratory Services division of Premier, a group purchasing organization, with the goal of determining whether laboratories could improve efficiency and decrease unit cost by using a single-source vendor. Participants included seven business partners (Abbott, Bayer, Beckman/Coulter, Dade/Behring, J&J/ Ortho, Olympus, and Roche) and 21 laboratory sites (a small, mid-sized, and large site for each vendor). SFH laboratory staff embraced Premier's concept and viewed the OEC project as an opportunity to "energize" laboratory operations. SFH partnered with Abbott, their primary equipment vendor, for the project. Using resources and tools made available through the project, the laboratory was re-engineered to simplify workflow, increase productivity, and decrease costs by adding automation and changing to centralized specimen processing. Abbott and SFH shared a common vision for the project and enhanced their partnership through increased communication and problem solving. Abbott's area representatives provided for third

  13. CFD Analysis of The Hydraulic Turbine Draft Tube to Improve System Efficiency

    Directory of Open Access Journals (Sweden)

    Chakrabarty Spandan

    2016-01-01

    Full Text Available Demand of the power is increasing day by day with the development of the science and technology. Development of the renewable energy sector has become essential issue at the present situation due to the limited source of the non-renewable energy. Hydro energy power generation sector is superior over the other renewable sector due to the high efficiency, ability to continuous generation and low generation cost. In India a great amount of the power generation is taken care by the hydro power system but still some more potential have unexplored. The efficiency improvement of the hydro turbine system can be done for the new installation or installed system by the improvement in component level. The system can be installed by the state of the art equipment, like modern inlet guide vane (IGV control system, improved design of the runner, IGV system, draft tube, penstock to reduce the loss, hence improve the efficiency. The energy recovery in the draft tube depends on the design of draft tube. In the present work the optimized design of the draft tube shape through computational fluid dynamics (CFD simulation has been carried out in ANSYS FLUENT platform. The design objective of the draft tube is to reduce the flow loss and improve the energy recovery, hence to improve the efficiency.

  14. Improving the global efficiency in small hydropower practice

    Science.gov (United States)

    Razurel, P.; Gorla, L.; Crouzy, B.; Perona, P.

    2015-12-01

    The global increase in energy production from renewable sources has seen river exploitation for small hydropower plants to also grow considerably in the last decade. River intakes used to divert water from the main course to the power plant are at the base of such practice. A key issue concern with finding innovative concepts to both design and manage such structures in order to improve classic operational rules. Among these, the Minimal Flow Release (MFR) concept has long been used in spite of its environmental inconsistency.In this work, we show that the economical and ecological efficiency of diverting water for energy production in small hydropower plants can be improved towards sustainability by engineering a novel class of flow-redistribution policies. We use the mathematical form of the Fermi-Dirac statistical distribution to define non-proportional dynamic flow-redistribution rules, which broadens the spectrum of dynamic flow releases based on proportional redistribution. The theoretical background as well as the economic interpretation is presented and applied to three case studies in order to systematically test the global performance of such policies. Out of numerical simulations, a Pareto frontier emerges in the economic vs environmental efficiency plot, which show that non-proportional distribution policies improve both efficiencies with respect to those obtained from some traditional MFR and proportional policies. This picture is shown also for long term climatic scenarios affecting water availability and the natural flow regime.In a time of intense and increasing exploitation close to resource saturation, preserving natural river reaches requires to abandon inappropriate static release policies in favor of non-proportional ones towards a sustainable use of the water resource.

  15. US Clean Energy Sector and the Opportunity for Modeling and Simulation

    Science.gov (United States)

    Inge, Carole Cameron

    2011-01-01

    The following paper sets forth the current understanding of the US clean energy demand and opportunity. As clean energy systems come online and technology is developed, modeling and simulation of these complex energy programs provides an untapped business opportunity. The US Department of Defense provides a great venue for developing new technology in the energy sector because it is demanding lower fuel costs, more energy efficiencies in its buildings and bases, and overall improvements in its carbon footprint. These issues coupled with the security issues faced by foreign dependence on oil will soon bring more clean energy innovations to the forefront (lighter batteries for soldiers, alternative fuel for jets, energy storage systems for ships, etc).

  16. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  17. Energy efficiency: The Italian situation and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, Alessandro; Beccarello, Massimo; Gallanti, Massimo

    2010-09-15

    The paper reports the results of a study led by Confindustria (Italian Federation of Industrial Associations) on the Italian situation with respect to energy efficiency policies and their effective implementations. The study is being continuously updated with the contributions of ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) and ERSE (previously CESI Ricerca) and highlights the obtainable savings through efficient technologies now already available for applications in the final uses of energy for both the industrial, commercial and domestic sectors.

  18. Improved entropy encoding for high efficient video coding standard

    Directory of Open Access Journals (Sweden)

    B.S. Sunil Kumar

    2018-03-01

    Full Text Available The High Efficiency Video Coding (HEVC has better coding efficiency, but the encoding performance has to be improved to meet the growing multimedia applications. This paper improves the standard entropy encoding by introducing the optimized weighing parameters, so that higher rate of compression can be accomplished over the standard entropy encoding. The optimization is performed using the recently introduced firefly algorithm. The experimentation is carried out using eight benchmark video sequences and the PSNR for varying rate of data transmission is investigated. Comparative analysis based on the performance statistics is made with the standard entropy encoding. From the obtained results, it is clear that the originality of the decoded video sequence is preserved far better than the proposed method, though the compression rate is increased. Keywords: Entropy, Encoding, HEVC, PSNR, Compression

  19. Towards a More Energy Efficient Future: Applying indicators to enhance energy policy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Improving energy efficiency is a shared policy goal of many governments around the world. The benefits of more efficient use of energy are well known. Not only does it reduce energy costs and investments in energy infrastructure, it also lowers fossil fuel dependency and CO2 emissions, while at the same time increasing competitiveness and improving consumer welfare. Yet many questions remain unanswered. What are the latest trends in global energy use and CO2 emissions? How do factors such as demography, economic structure, income, lifestyle and climate affect these trends? Where are the greatest potentials to further improve energy efficiency, and which data are required to support energy efficiency policy development? This publication answers these questions using the latest insights from the IEA energy indicators work. The goal is to show policy makers how in-depth indicators can be used to track the progress in efficiency and identify new opportunities for improvements.

  20. Improving the economic efficiency of PV plants through own consumption - risks and opportunities; Erhoehung der Wirtschaftlichkeit von PV-Anlagen durch Eigenverbrauch. Chancen und Risiken

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Luis; Corradini, Roger [FfE Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany); Roon, Serafin von [Forschungsgesellschaft fuer Energiewirtschaft mbH, Muenchen (Germany)

    2012-04-15

    The own-consumption regulation introduced in 2009 has led to an improved economic efficiency of PV plants. Even if the remuneration paid for own supply should be abolished, rising electricity prices will nevertheless strengthen the incentive for operators to increase their rate of own consumption. This scenario applies for the currently existing total of around 9 GW in installed PV capacity. A high rate of own consumption will continue to offer benefits for plants to be installed in future as well, and this will be further amplified if the scheduled cuts in feed-in compensation are moved forward in time. However, the promotion of own consumption of PV electricity can only provide relief to local electricity networks if these have a suitable load management in place. In spite of the compensation paid for own consumption it will further be necessary to find mechanisms that secure the economic effectiveness of efficiency technologies.

  1. Operational validation - current status and opportunities for improvement

    International Nuclear Information System (INIS)

    Davey, E.

    2002-01-01

    The design of nuclear plant systems and operational practices is based on the application of multiple defenses to minimize the risk of occurrence of safety and production challenges and upsets. With such an approach, the effectiveness of individual or combinations of design and operational features in preventing upset challenges should be known. A longstanding industry concern is the adverse impact errors in human performance can have on plant safety and production. To minimize the risk of error occurrence, designers and operations staff routinely employ multiple design and operational defenses. However, the effectiveness of individual or combinations of defensive features in minimizing error occurrence are generally only known in a qualitative sense. More importantly, the margins to error or upset occurrence provided by combinations of design or operational features are generally not characterized during design or operational validation. This paper provides some observations and comments on current validation practice as it relates to operational human performance concerns. The paper also discusses opportunities for future improvement in validation practice in terms of the resilience of validation results to operating changes and characterization of margins to safety or production challenge. (author)

  2. Guide to resource conservation and cost savings opportunities in the soap, detergents and related products sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The soaps, detergents and related products sector is an important component of the chemical industry within Ontario, as these products are used for cleaning purposes in industrial, institutional and domestic consumer applications. This guide was prepared to assist the sector with cost savings and resource conservation. The guide highlights opportunities for resource conservation through energy and water efficiency improvements, more efficient utilisation of raw materials, and reduction of environmental releases at source. 54 figs.

  3. Future energy efficiency improvements within the US department of defense: Incentives and barriers

    International Nuclear Information System (INIS)

    Umstattd, Ryan J.

    2009-01-01

    The present work describes the military impact of improved efficiency and then highlights existing technological, political, and financial barriers for improving overall energy efficiency. As the largest user of energy within the US government, the Department of Defense (DOD) is rightly concerned that any disruption to the nation's energy supply may have an extremely adverse impact on its military capabilities. The total solution to providing energy security will be multi-faceted with progress required on many fronts. Increasing the use of renewable energy sources and improving energy storage capabilities are gradually creating a positive impact, but investing in improving the overall efficiency of the military effort provides both immediate and long-lasting payback. One might suppose that a decrease in the energy used by the DOD should lead to a decrease in military capability, but historical data proves otherwise. It is shown that the military has additional impetus, compared to civilian consumers, to pursue energy-efficiency improvements. Many tools are available to help the DOD along this path, yet there remain obstacles which must first be identified and analyzed as discussed herein.

  4. Improving the Efficiency and Ease of Healthcare Analysis Through Use of Data Visualization Dashboards.

    Science.gov (United States)

    Stadler, Jennifer G; Donlon, Kipp; Siewert, Jordan D; Franken, Tessa; Lewis, Nathaniel E

    2016-06-01

    The digitization of a patient's health record has profoundly impacted medicine and healthcare. The compilation and accessibility of medical history has provided clinicians an unprecedented, holistic account of a patient's conditions, procedures, medications, family history, and social situation. In addition to the bedside benefits, this level of information has opened the door for population-level monitoring and research, the results of which can be used to guide initiatives that are aimed at improving quality of care. Cerner Corporation partners with health systems to help guide population management and quality improvement projects. With such an enormous and diverse client base-varying in geography, size, organizational structure, and analytic needs-discerning meaning in the data and how they fit with that particular hospital's goals is a slow, difficult task that requires clinical, statistical, and technical literacy. This article describes the development of dashboards for efficient data visualization at the healthcare facility level. Focusing on two areas with broad clinical importance, sepsis patient outcomes and 30-day hospital readmissions, dashboards were developed with the goal of aggregating data and providing meaningful summary statistics, highlighting critical performance metrics, and providing easily digestible visuals that can be understood by a wide range of personnel with varying levels of skill and areas of expertise. These internal-use dashboards have allowed associates in multiple roles to perform a quick and thorough assessment on a hospital of interest by providing the data to answer necessary questions and to identify important trends or opportunities. This automation of a previously manual process has greatly increased efficiency, saving hours of work time per hospital analyzed. Additionally, the dashboards have standardized the analysis process, ensuring use of the same metrics and processes so that overall themes can be compared across

  5. Linking consumer energy efficiency with security of supply

    International Nuclear Information System (INIS)

    Rutherford, J.P.; Scharpf, E.W.; Carrington, C.G.

    2007-01-01

    Most modern energy policies seek to achieve systematic ongoing incremental increases in consumer energy efficiency, since this contributes to improved security of supply, favourable environmental outcomes and increased economic efficiency. Yet realised levels of efficiency are typically well below the most cost-effective equilibrium due to variety of behavioural and organisational barriers, which are often linked to information constraints. In addition efficient users are normally unrewarded for collective benefits to system security and to the environment, thus reducing the incentives for energy consumers to invest in efficiency improvements. This paper examines the dichotomies and symmetries between supply- and demand-side solutions to energy security concerns and reviews opportunities to overcome barriers to improved consumer efficiency. A security market is identified as a mechanism to promote both demand- and supply-side investments that support electricity system security. Such a market would assist in setting the optimal quantity of reserves while achieving an efficient balance between supply- and demand-side initiatives. It would also help to smooth overall investment throughout the energy system by encouraging incremental approaches, such as distributed generation and demand-side alternatives where they provide competitive value. Although the discussion is applicable to energy systems in general, it focuses primarily on electricity in New Zealand

  6. Improving the efficiency of aerodynamic shape optimization procedures

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1992-01-01

    The computational efficiency of an aerodynamic shape optimization procedure which is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit (ADI) methodology to calculate the highly converged flow solutions which are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. A substantial factor of 8 decrease in computational time for the optimization process was achieved by implementing both of the design improvements.

  7. Improving energy efficiency of an Olefin plant – A new approach

    International Nuclear Information System (INIS)

    Tahouni, Nassim; Bagheri, Narges; Towfighi, Jafar; Hassan Panjeshahi, M.

    2013-01-01

    Highlights: • The retrofit of an Olefin plant is studied to improve the overall energy efficiency. • Three levels of retrofit and optimization of this process are suggested. • A simultaneous method is presented to optimize low-temperature separation processes. - Abstract: Low-temperature gas separation processes are the most important gas separation routes. There is a complex interaction between core process (separation columns), associated heat exchanger network and refrigeration cycles in sub ambient processes. The aim of this paper is performing a comprehensive retrofit study of an Olefin plant (as an industrial example) to improve the overall energy efficiency. In this regard, the effect of improving column operating parameters and refrigeration cycles are first evaluated separately. Then, column operating parameters and refrigeration cycles as well as heat exchanger network are optimized simultaneously using genetic algorithm or simulated annealing. Having compared all results, one can conclude that simultaneous optimization leads to higher efficiency of the overall system

  8. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  9. Opportunities and Challenges of Cloud Computing to Improve Health Care Services

    Science.gov (United States)

    2011-01-01

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed. PMID:21937354

  10. Opportunities and challenges of cloud computing to improve health care services.

    Science.gov (United States)

    Kuo, Alex Mu-Hsing

    2011-09-21

    Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed.

  11. To cool a sweltering earth: Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus, E-mail: adua.1@buckeyemail.osu.ed [Rural Sociology Graduate Program, School of Environment and Natural Resources, Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle.

  12. To cool a sweltering earth. Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus [Rural Sociology Graduate Program, School of Environment and Natural Resources, The Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle. (author)

  13. Exploiting Genomic Resources for Efficient Conservation and Use of Chickpea, Groundnut, and Pigeonpea Collections for Crop Improvement

    Directory of Open Access Journals (Sweden)

    C. L. Laxmipathi Gowda

    2013-11-01

    Full Text Available Both chickpea ( L. and pigeonpea [ (L. Millsp.] are important dietary source of protein while groundnut ( L. is one of the major oil crops. Globally, approximately 1.1 million grain legume accessions are conserved in genebanks, of which the ICRISAT genebank holds 49,485 accessions of cultivated species and wild relatives of chickpea, pigeonpea, and groundnut from 133 countries. These genetic resources are reservoirs of many useful genes for present and future crop improvement programs. Representative subsets in the form of core and mini core collections have been used to identify trait-specific genetically diverse germplasm for use in breeding and genomic studies in these crops. Chickpea, groundnut, and pigeonpea have moved from “orphan” to “genomic resources rich crops.” The chickpea and pigeonpea genomes have been decoded, and the sequences of groundnut genome will soon be available. With the availability of these genomic resources, the germplasm curators, breeders, and molecular biologists will have abundant opportunities to enhance the efficiency of genebank operations, mine allelic variations in germplasm collection, identify genetically diverse germplasm with beneficial traits, broaden the cultigen’s genepool, and accelerate the cultivar development to address new challenges to production, particularly with respect to climate change and variability. Marker-assisted breeding approaches have already been initiated for some traits in chickpea and groundnut, which should lead to enhanced efficiency and efficacy of crop improvement. Resistance to some pests and diseases has been successfully transferred from wild relatives to cultivated species.

  14. Characterisation: Challenges and Opportunities - A UK Perspective

    International Nuclear Information System (INIS)

    Emptage, Matthew; Loudon, David; Mcleod, Richard; Milburn, Helen

    2016-01-01

    Characterisation plays a very important role in the nuclear industry supporting: the development and implementation of decommissioning strategies/plans (and the optimisation of associated costs through reduction in technical risks); regulatory compliance demonstration; waste prevention/minimisation; evaluation and optimisation of worker radiation doses; and maintaining public confidence. Recognising these important drivers, the UK regulators are working with the UK Nuclear Decommissioning Authority (NDA) to undertake a review of characterisation practice in the UK nuclear (decommissioning) industry. The objective of the characterisation review is to understand the current characterisation challenges and to determine strategic and tactical opportunities (including sharing of standards and guidance, capabilities, learning from experience, good practice, research and development, training, quality assurance) to optimise characterisation practice. The work is being undertaken through review of nuclear operator's characterisation practice, with input from the NDA, the UK regulators, nuclear operators and representatives from the supply chain, and through consideration of good practice case studies. To support this, a catalogue of relevant national/international guidance documents is also be compiled. Finally a workshop with representatives from all parties has taken place to consider the findings and establish a common understanding of challenges and opportunities and to start to consider how they can be addressed. The review is establishing a collective (UK regulator's, NDA; nuclear operator's and supply chain) understanding of opportunities to improve characterisation practice in the UK. The characterisation review process is described and early results are presented and discussed. Subsequent work in 2016 will be required to prioritise the opportunities and to build a consensus to facilitate development and implementation of an improvement plan. The aim

  15. Invited review: Opportunities for genetic improvement of metabolic diseases.

    Science.gov (United States)

    Pryce, J E; Parker Gaddis, K L; Koeck, A; Bastin, C; Abdelsayed, M; Gengler, N; Miglior, F; Heringstad, B; Egger-Danner, C; Stock, K F; Bradley, A J; Cole, J B

    2016-09-01

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors, and status of genetic evaluations were examined for (1) ketosis, (2) displaced abomasum, (3) milk fever, and (4) tetany, as these are the most prevalent metabolic diseases where published genetic parameters are available. The reported incidences of clinical cases of metabolic disorders are generally low (less than 10% of cows are recorded as having a metabolic disease per herd per year or parity/lactation). Heritability estimates are also low and are typically less than 5%. Genetic correlations between metabolic traits are mainly positive, indicating that selection to improve one of these diseases is likely to have a positive effect on the others. Furthermore, there may also be opportunities to select for general disease resistance in terms of metabolic stability. Although there is inconsistency in published genetic correlation estimates between milk yield and metabolic traits, selection for milk yield may be expected to lead to a deterioration in metabolic disorders. Under-recording and difficulty in diagnosing subclinical cases are among the reasons why interest is growing in using easily measurable predictors of metabolic diseases, either recorded on-farm by using sensors and milk tests or off-farm using data collected from routine milk recording. Some countries have already initiated genetic evaluations of metabolic disease traits and currently most of these use clinical observations of disease. However, there are opportunities to use clinical diseases in addition to predictor traits and genomic information to strengthen genetic evaluations for metabolic health in the future. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Obstacles and opportunities in the commercialization of the solid-state-electronic fluorescent-lighting ballast

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.; Marcus, A.A.; Campbell, R.S.; Sommers, P.; Skumatz, L.; Berk, B.; Petty, P.; Eschbach, C.

    1981-10-01

    The Solid State Ballast (SSB) Program, aimed at improving the efficiency of fluorescent lights, is described. The first generation of solid state electronic ballasts has been developed and the technology has been transferred to the private sector. This report examines the opportunities for rapid dissemination of this technology into the marketplace. It includes a description of product characteristics and their influence on the commercialization of the SSB, a description of the technology delivery system presently used by the ballast industry, an analysis of the market for SSB, and identification of some high-leverage opportunities to accelerate the commercialization process. (MCW)

  17. Data Sharing: Convert Challenges into Opportunities.

    Science.gov (United States)

    Figueiredo, Ana Sofia

    2017-01-01

    Initiatives for sharing research data are opportunities to increase the pace of knowledge discovery and scientific progress. The reuse of research data has the potential to avoid the duplication of data sets and to bring new views from multiple analysis of the same data set. For example, the study of genomic variations associated with cancer profits from the universal collection of such data and helps in selecting the most appropriate therapy for a specific patient. However, data sharing poses challenges to the scientific community. These challenges are of ethical, cultural, legal, financial, or technical nature. This article reviews the impact that data sharing has in science and society and presents guidelines to improve the efficient sharing of research data.

  18. Improving thermoelectric energy harvesting efficiency by using graphene

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2016-05-01

    Full Text Available This study is aimed at enhancing the efficiency of a thermoelectric (TE energy harvesting system by using a thick graphene layer. This method is a simple yet effective way to increase the temperature gradient across a conventional TE module by accelerating heat dissipation on the cold side of the system. Aqueous dispersions of graphene were used to prepare a 112-μm thick graphene layer on the cold side of the TE system with aluminum as the substrate material. The maximum efficiency of the proposed system was improved by 25.45 %, as compared to the conventional TE system, which does not have a graphene layer. Additionally, the proposed system shows very little performance deterioration (2.87 % in the absence of enough air flow on the cold side of the system, compared to the case of the conventional system (10.59 %. Hence, the proposed system, when coupled with the latest research on high performance TE materials, presents a groundbreaking improvement in the practical application of the TE energy harvesting systems.

  19. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    Science.gov (United States)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  20. Improving Science and IT Literacy by Providing Urban-Based Environmental Science Research Opportunities

    Science.gov (United States)

    Cuff, K. E.; Corazza, L.; Liang, J.

    2007-12-01

    A U.C. Berkeley-based outreach program known as Environmental Science Information Technology Activities has been in operation over the past four years. The primary aim of the program is to provide opportunities for grades 9 and 10 students in diverse East San Francisco Bay Area communities to develop deeper understandings of the nature and conduct of science, which will increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future. Design of the program has been informed by recent research that indicates a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Accordingly, ESITA includes an important student-led environmental science research project component, which provides participants with opportunities to engage in research investigations that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews with participants and specific assessment/evaluation instruments indicates that ESITA program activities, including after-school meetings, summer and school year research projects, and conference preparations and presentations has provided students with high-quality inquiry science experiences that increased their knowledge of STEM and IT concepts, as well as their understanding of the nature of the scientific enterprise. In addition, the program has achieved a high degree of success in that it has: enhanced participants' intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. Overall

  1. Energy Efficient Alternatives to Chlorofluorocarbons (CFCs)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum-based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are presented. The potential benefits, research, general approach, and probability of success are addressed.

  2. Improving extraction efficiency of the third integer resonant extraction using higher order multipoles

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tomizawa, M. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2017-03-09

    The new accelerator complex at J-PARC will operate with both high energy and very high intensity proton beams. With a design slow extraction efficiency of greater than 99% this facility will still be depositing significant beam power onto accelerator components [2]. To achieve even higher efficiencies requires some new ideas. The design of the extraction system and the accelerator lattice structure leaves little room for improvement using conventional techniques. In this report we will present one method for improving the slow extraction efficiency at J-PARC by adding duodecapoles or octupoles to the slow extraction system. We will review the theory of resonant extraction, describe simulation methods, and present the results of detailed simulations. From our investigations we find that we can improve extraction efficiency and thereby reduce the level of residual activation in the accelerator components and surrounding shielding.

  3. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  4. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    Energy Technology Data Exchange (ETDEWEB)

    Lanzi, Elisa [Fondazione Eni Enrico Mattei (Italy); Verdolini, Elena, E-mail: elena.verdolini@feem.it [Fondazione Eni Enrico Mattei (Italy); Universita Cattolica, del Sacro Cuore di Milano (Italy); Hascic, Ivan [OECD Environment Directorate (France)

    2011-11-15

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: > We study innovation in efficiency-improving electricity generation technologies. > Relevant patents are identified and used as an indicator of innovation. > We show that there is significant technology transfer in this field. > Most patents are first filed in OECD countries and then in non-OECD countries. > Patents in non-OECD countries are mostly marketed domestically.

  5. Opportunistic maintenance considering non-homogenous opportunity arrivals and stochastic opportunity durations

    International Nuclear Information System (INIS)

    Truong Ba, H.; Cholette, M.E.; Borghesani, P.; Zhou, Y.; Ma, L.

    2017-01-01

    Many systems and manufacturing processes undergo intermittent operation due to external factors (e.g. weather, low market prices), offering opportunities to conduct maintenance with reduced production losses. Making use of appropriate opportunities can thus lead to significant reduction in the total cost of maintenance and improvement in productivity. In this paper, an opportunistic maintenance (OM) model is developed considering two critical properties of real world opportunities: (i) non-homogeneous opportunity arrivals and (ii) stochastic opportunity duration. The model enables exploiting downtime cost savings from “partial” opportunities (stops shorter than the required maintenance time) thus extending the potential benefit of OM. The criteria for accepting maintenance opportunities are found by minimizing the single-cycle total cost. A closed form expression of the single-cycle total cost is derived for a given PM/OM policy and then a Genetic Algorithm is used to solve the optimization problem. Numerical results are presented to assess the benefit of opportunistic maintenance and the marginal benefit of considering partial opportunities. Results indicate that significant savings can be achieved by considering OM. Moreover, it is shown that the novel consideration of partial opportunities significantly increase the benefit of OM. - Highlights: • Opportunistic and time-based preventive maintenance jointly optimized. • Non-homogeneous opportunity arrivals and stochastic durations considered. • “Partial” opportunities considered for the first time. • Opportunity duration thresholds used as a decision criterion. • Numerical study conducted to evaluate benefit of optimized policy.

  6. Efficiency improvements of offline metrology job creation

    Science.gov (United States)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  7. Aging in the United States: Opportunities and Challenges for Otolaryngology-Head and Neck Surgery.

    Science.gov (United States)

    Chiu, Brandon L; Pinto, Jayant M

    2018-05-17

    The number of Americans over the age of 65 has been growing much faster than the overall population's growth rate. These changes can be largely attributed to the improvement in life expectancy. This demographic shift yields a unique and exciting opportunity to provide both expedient and cost-efficient care to a growing patient population. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Role of local governments in promoting energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.

    1980-11-01

    An examination is made of the incentives which influence the decisions by local governments to adopt energy-efficiency programs, either unilaterally or in partnership with the Federal government. It is found that there is significant potential for improved energy efficiency in urban residential, commercial, and industrial buildings and that exploiting these opportunities is in the interest of both Federal and local governments. Unless there is a unique combination of strong local leadership, a tradition of resource management, and external energy shocks, communities are unlikely to realize this potential. Conflicting demands, traditional perceptions, and lack of funding pose a major barrier to a strong unilateral commitment by local governments. A Federal-local partnership built upon and complementary to existing efforts in areas such as housing, social welfare, and economic development offers an excellent opportunity to realize the inherent potential of local energy-efficiency programs. At the local level, energy is not perceived as an isolated issue, but one which is part of a number of problems arising from the continuing increase in energy prices.

  9. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  10. 75 FR 27341 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Science.gov (United States)

    2010-05-14

    ..., ramp rates, and network topology), flexible dispatch, settlement calculations, transmission switching... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference To Discuss Increasing Market and Planning Efficiency Through Improved Software May 7, 2010. Take notice that Commission...

  11. Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.

    1998-02-01

    This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

  12. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  13. Efficiency and hospital effectiveness in improving Hospital Consumer Assessment of Healthcare Providers and Systems ratings.

    Science.gov (United States)

    Al-Amin, Mona; Makarem, Suzanne C; Rosko, Michael

    2016-01-01

    Efficiency has emerged as a central goal to the operations of health care organizations. There are two competing perspectives on the relationship between efficiency and organizational performance. Some argue that organizational slack is a waste and that efficiency contributes to organizational performance, whereas others maintain that slack acts as a buffer, allowing organizations to adapt to environmental demands and contributing to organizational performance. As value-based purchasing becomes more prevalent, health care organizations are incented to become more efficient and, at the same time, improve their patients' experiences and outcomes. Unused slack resources might facilitate the timely implementation of these improvements. Building on previous research on organizational slack and inertia, we test whether efficiency and other organizational factors predict organizational effectiveness in improving Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings. We rely on data from the American Hospital Association and HCAHPS. We estimate hospital cost-efficiency by Stochastic Frontier Analysis and use regression analysis to determine whether efficiency, competition, hospital size, and other organizational factors are significant predictors of hospital effectiveness. Our findings indicate that efficiency and hospital size have a significant negative association with organizational ability to improve HCAHPS ratings. Although achieving organizational efficiency is necessary for health care organizations, given the changes that are currently occurring in the U.S. health care system, it is important for health care managers to maintain a certain level of slack to respond to environmental demands and have the resources needed to improve their performance.

  14. Tape write-efficiency improvements in CASTOR

    International Nuclear Information System (INIS)

    Murray, S; Bahyl, V; Cancio, G; Cano, E; Lo Presti, G; Lo Re, G; Ponce, S; Kotlyar, V

    2012-01-01

    The CERN Advanced STORage manager (CASTOR) is used to archive to tape the physics data of past and present physics experiments. For reasons of physical storage space, all of the tape resident data in CASTOR are repacked onto higher density tapes approximately every two years. Improving the performance of writing files smaller than 2GB to tape is essential in order to keep the time needed to repack all of the tape resident data within a period of no more than 1 year. This paper reports on the solution to writing efficiently to tape that is currently in its early deployment phases at CERN.

  15. Efficiency improvement for a sustainable agriculture : the integration of agronomic and farm economics approaches

    NARCIS (Netherlands)

    Koeijer, de T.J.

    2002-01-01

    Keywords: Sustainable farming systems, Agronomic efficiency, Economic efficiency, Environmental efficiency, Sustainability index, Interdisciplinary analysis.

    The objective of the research described in this thesis was to determine what role improved agronomic efficiency can play in

  16. Saturation mechanism and improvement of conversion efficiency of free electron laser

    International Nuclear Information System (INIS)

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  17. Modified paraffin wax for improvement of histological analysis efficiency.

    Science.gov (United States)

    Lim, Jin Ik; Lim, Kook-Jin; Choi, Jin-Young; Lee, Yong-Keun

    2010-08-01

    Paraffin wax is usually used as an embedding medium for histological analysis of natural tissue. However, it is not easy to obtain enough numbers of satisfactory sectioned slices because of the difference in mechanical properties between the paraffin and embedded tissue. We describe a modified paraffin wax that can improve the histological analysis efficiency of natural tissue, composed of paraffin and ethylene vinyl acetate (EVA) resin (0, 3, 5, and 10 wt %). Softening temperature of the paraffin/EVA media was similar to that of paraffin (50-60 degrees C). The paraffin/EVA media dissolved completely in xylene after 30 min at 50 degrees C. Physical properties such as the amount of load under the same compressive displacement, elastic recovery, and crystal intensity increased with increased EVA content. EVA medium (5 wt %) was regarded as an optimal composition, based on the sectioning efficiency measured by the numbers of unimpaired sectioned slices, amount of load under the same compressive displacement, and elastic recovery test. Based on the staining test of sectioned slices embedded in a 5 wt % EVA medium by hematoxylin and eosin (H&E), Masson trichrome (MT), and other staining tests, it was concluded that the modified paraffin wax can improve the histological analysis efficiency with various natural tissues. (c) 2010 Wiley-Liss, Inc.

  18. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  19. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  20. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  1. Enhanced policies for the improvement of electricity efficiencies

    International Nuclear Information System (INIS)

    Blok, Kornelis

    2005-01-01

    Energy-efficiency improvement is considered as an important option to limit greenhouse gas emissions. In this paper, the possibilities to implement new policies to improve the efficiency of electricity end-use are explored. The following policy actions are considered: - introduction of a '1 W standard' for standby power consumption of appliances;- incremental standards for large electric appliances;- design guidelines for small electric appliances;- a technology-forcing standard for lighting;- a motor-drive program;- a program directed at the reduction of electricity use during empty-office hours;- actual energy performance requirements for service-sector buildings. The implementation of these programs will contribute substantially to reaching greenhouse gas emission targets in the European Union (total estimated effect to be 200-350 Mton CO 2 emission reduction in the year 2020). However, to reach these targets a very substantial effort is required, both in terms of policy ambition, force of the applied instruments, and implementation efforts. In the case of electric appliances, regulatory instruments may need wider application. And, in order to attain the substantial potential savings in motor-drive systems, an effort comparable to the effort to promote renewable electricity in the European Union may be both justified and necessary

  2. Improved production efficiency in cattle to reduce their carbon ...

    African Journals Online (AJOL)

    p2492989

    Keywords: Methane, global warming, greenhouse gas, crossbreeding, residual feed intake, feed efficiency. #Corresponding ... improved production per constant unit, crossbreeding and selection for residual feed intake. ... convert such a measure into kg calf produced per kg CO2 equivalent (CH4 can be converted to a CO2.

  3. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    International Nuclear Information System (INIS)

    Lanzi, Elisa; Verdolini, Elena; Hascic, Ivan

    2011-01-01

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: → We study innovation in efficiency-improving electricity generation technologies. → Relevant patents are identified and used as an indicator of innovation. → We show that there is significant technology transfer in this field. → Most patents are first filed in OECD countries and then in non-OECD countries. → Patents in non-OECD countries are mostly marketed domestically.

  4. Nuclear Weapons Sustainment: Improvements Made to Budget Estimates Report, but Opportunities Remain to Further Enhance Transparency

    Science.gov (United States)

    2015-12-01

    Enhance Transparency Report to Congressional Committees December 2015 GAO-16-23 United States Government Accountability Office United...SUSTAINMENT Improvements Made to Budget Estimates Report, but Opportunities Remain to Further Enhance Transparency Why GAO Did This Study DOD and DOE are...modernization plans and (2) complete, transparent information on the methodologies used to develop those estimates. GAO analyzed the departments

  5. Assembly Line Efficiency Improvement by Using WITNESS Simulation Software

    Science.gov (United States)

    Yasir, A. S. H. M.; Mohamed, N. M. Z. N.

    2018-03-01

    In the nowadays-competitive world, efficiencies and the productivity of the assembly line are essential in manufacturing company. This paper demonstrates the study of the existing production line performance. The actual cycle time observed and recorded during the working process. The current layout was designed and analysed using Witness simulation software. The productivity and effectiveness for every single operator are measured to determine the operator idle time and busy time. Two new alternatives layout were proposed and analysed by using Witness simulation software to improve the performance of production activities. This research provided valuable and better understanding of production effectiveness by adjusting the line balancing. After analysing the data, simulation result from the current layout and the proposed plan later been tabulated to compare the improved efficiency and productivity. The proposed design plan has shown an increase in yield and productivity compared to the current arrangement. This research has been carried out in company XYZ, which is one of the automotive premises in Pahang, Malaysia.

  6. 77 FR 19280 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Science.gov (United States)

    2012-03-30

    ... concerns that current system data quality might not allow for an AC optimal power flow model to be properly... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference: Increasing Real-Time and Day- Ahead Market Efficiency Through Improved Software Take notice that Commission staff will...

  7. Data Sharing: Convert Challenges into Opportunities

    Directory of Open Access Journals (Sweden)

    Ana Sofia Figueiredo

    2017-12-01

    Full Text Available Initiatives for sharing research data are opportunities to increase the pace of knowledge discovery and scientific progress. The reuse of research data has the potential to avoid the duplication of data sets and to bring new views from multiple analysis of the same data set. For example, the study of genomic variations associated with cancer profits from the universal collection of such data and helps in selecting the most appropriate therapy for a specific patient. However, data sharing poses challenges to the scientific community. These challenges are of ethical, cultural, legal, financial, or technical nature. This article reviews the impact that data sharing has in science and society and presents guidelines to improve the efficient sharing of research data.

  8. The opportunity cost of animal based diets exceeds all food losses.

    Science.gov (United States)

    Shepon, Alon; Eshel, Gidon; Noor, Elad; Milo, Ron

    2018-04-10

    Food loss is widely recognized as undermining food security and environmental sustainability. However, consumption of resource-intensive food items instead of more efficient, equally nutritious alternatives can also be considered as an effective food loss. Here we define and quantify these opportunity food losses as the food loss associated with consuming resource-intensive animal-based items instead of plant-based alternatives which are nutritionally comparable, e.g., in terms of protein content. We consider replacements that minimize cropland use for each of the main US animal-based food categories. We find that although the characteristic conventional retail-to-consumer food losses are ≈30% for plant and animal products, the opportunity food losses of beef, pork, dairy, poultry, and eggs are 96%, 90%, 75%, 50%, and 40%, respectively. This arises because plant-based replacement diets can produce 20-fold and twofold more nutritionally similar food per cropland than beef and eggs, the most and least resource-intensive animal categories, respectively. Although conventional and opportunity food losses are both targets for improvement, the high opportunity food losses highlight the large potential savings beyond conventionally defined food losses. Concurrently replacing all animal-based items in the US diet with plant-based alternatives will add enough food to feed, in full, 350 million additional people, well above the expected benefits of eliminating all supply chain food waste. These results highlight the importance of dietary shifts to improving food availability and security. Copyright © 2018 the Author(s). Published by PNAS.

  9. Does Competition Improve Public School Efficiency? A Spatial Analysis

    Science.gov (United States)

    Misra, Kaustav

    2010-01-01

    Proponents of educational reform often call for policies to increase competition between schools. It is argued that market forces naturally lead to greater efficiencies, including improved student learning, when schools face competition. In many parts of the country, public schools experience significant competition from private schools; however,…

  10. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  11. Improving Light Outcoupling Efficiency for OLEDs with Microlens Array Fabricated on Transparent Substrate

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-01-01

    Full Text Available Low light outcoupling efficiency restricts the wide application of organic light-emitting diodes in solid state light market although the internal quantum efficiency of the device could reach near to 100%. In order to improve the output efficiency, different kinds of microlens array on the substrate emission surface were designed and simulated using light tracing method. Simulation results indicate that the microlens array on the substrate could efficiently improve the light output efficiency and an enhancement of 1.8 could be obtained with optimized microlens structure design. The microlens array with semicircle shape using polymer material was fabricated on glass substrate by a facile approach. Finally, the organic device with microlens array substrate was manufactured and the light output of the device with surface microlens structure could increase to 1.64 times comparing with the device without microlens.

  12. Importance of organized energy efficiency introduction and improvement in PE EPS

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2015-01-01

    Full Text Available The energy management system (EnMS introduction into companies that are significant energy consumers has been initiated after adoption of the Law of efficient energy usage. Due to the fact that sectors for production, transmission and distribution of electrical and heat energy are also implied by this law, it is clear that PE EPS is also obligated to implement EnMS and to carry out the requirements defined by legislation. In this paper, the results of first-phase introduction of the system for supervision and improvement of energy efficiency in PE EPS in production of coal, and production and distribution of electrical and heat energy, are given. Recommended measures for energy efficiency improvement with stress on larger energy, financial savings and a lower rate of investment return are emphasised. Such systematic measures should also serve as a good basis for further stages of energy management introduction and implementation.

  13. Improving Compressed Air System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  14. Management efficiency improvement promotion of SS; SS no unei koritsuka sokushin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Full amount fund petroleum product marketer and Sumisyo petroleum of Sumitomo accelerate management efficiency improvement of service station (SS). National about 300 places have been developed in within the year Within SS, it aims at break-even point achievement of gasoline, coarse advantage 10 yen per light oil of 1 liter in 84 all tied SS stores. SS which has realized the system of 10 yen in the current is whole about 50%. But, by doing personnel configurations and operational procedures, that they reexamine the balance management, etc. in half remaining SS 12 yen-13 yen; the efficiency improvement is done thoroughly. (translated by NEDO)

  15. Thermoelectric Efficiency Improvement in Vacuum Tubes of Decomposing Liquid Lithium-Ammonia Solutions

    International Nuclear Information System (INIS)

    Lee, Jungyoon; Kim, Miae; Shim, Kyuchol; Kim, Jibeom; Jeon, Joonhyeon

    2013-01-01

    Lithium-ammonia (Li-NH 3 ) solutions are possible to be successfully made under the vacuum condition but there still remains a problem of undergoing stable and reliable decomposition in vacuum for high-efficiency thermoelectric power generation. This paper describes a new method for improving the thermoelectric conversion efficiency of Li-NH 3 solutions in vacuum. The proposed method uses a ‘U’-shaped Pyrex vacuum tube for the preparation and decomposition of pure fluid Li-NH 3 solutions. The tube is shaped so that a gas passageway (‘U’) connecting both legs of the ‘U’ helps to balance pressure inside both ends of the tube (due to NH 3 gasification) during decomposition on the hot side. Thermoelectric experimental results show that solution reaction in the ‘U’-shaped tube proceeds more stably and efficiently than in the ‘U’-shaped tube, and consequently, thermoelectric conversion efficiency is improved. It is also proved that the proposed method can provide a reversible reaction, which can rotate between synthesis and decomposition in the tube, for deriving the long-time, high-efficiency thermoelectric power

  16. MPACT Subgroup Self-Shielding Efficiency Improvements

    International Nuclear Information System (INIS)

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.; Clarno, Kevin T.

    2016-01-01

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The next improvement that is covered is what is currently being termed as ''Lumped Parameter MOC''. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.

  17. Improving Energy Efficiency of Micro-Networks Connected to a Smart Grid

    Directory of Open Access Journals (Sweden)

    Grzegorz Błajszczak

    2014-12-01

    Full Text Available Technological development of distribution and transmission grids and building a so called smart grid also enable improving the efficiency of microgrids and microgenerators. Better coordination and scheduling of microgenerators operation make more effective adjustment to local conditions and achieving better overall energy efficiency possible. Due to smart communication interfaces the microgrids and microgenerators can also contribute to ancillary services.

  18. Investigation of productivity in a south Indian Malabari goat herd shows opportunities for planned animal health management to improve food security.

    Science.gov (United States)

    Sargison, N D; Ivil, S A J; Abraham, J; Abubaker, S P S; Hopker, A M; Mazeri, S; Otter, I A; Otter, N

    2017-03-18

    Here the authors report the objective veterinary clinical measurement of productivity in a representative south Indian Malabari goat herd. The authors show failure to meet pragmatic production targets that are commensurate with the animals' genetic potential or adequate to meet the demands of global food security. The authors suggest that this situation may have arisen as a consequence of animal husbandry constraints and protein undernutrition and imply the involvement of nematode parasitism. Benzimidazole resistance was detected in Haemonchus species, showing the need for better understanding of the principles of sustainable helminth parasite control within the southern Indian context. This study highlights the need to understand the true costs of goat production in seasonally resource-poor environments, while also considering its impact on the overall ecosystem in which the animals are placed. They conclude that pragmatic opportunities for improvements in goat production efficiency lie in the development of problem-focused planned animal health and nutrition management. British Veterinary Association.

  19. Energy Efficiency Measures to Incorporate into Remodeling Projects

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C. [Building America Research Alliance, Kent, WA (United States)

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of U.S. households compared to piecemeal remodeling efforts. In this report, the U.S Department of Energy Building America Retrofit Alliance research team examines the improvement of a home’s energy performance in an opportunistic way by examining what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for energy efficiency upgrades to occur at the same time as remodeling proejcts. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home’s energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  20. Identifying entry points to improve fertilizer use efficiency in Taihu Basin, China

    NARCIS (Netherlands)

    Ma, Li; Feng, S.; Reidsma, P.; Qu, F.; Heerink, N.

    2014-01-01

    Overuse of fertilizers in China causes environmental problems and high costs for farmers. In this paper we aim to identify entry points to improve fertilizer use efficiency in Taihu Basin, China. We use stochastic frontier analysis to estimate the technical and fertilizer use efficiency of rice

  1. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  2. Efficient Generation and Selection of Combined Features for Improved Classification

    KAUST Repository

    Shono, Ahmad N.

    2014-05-01

    This study contributes a methodology and associated toolkit developed to allow users to experiment with the use of combined features in classification problems. Methods are provided for efficiently generating combined features from an original feature set, for efficiently selecting the most discriminating of these generated combined features, and for efficiently performing a preliminary comparison of the classification results when using the original features exclusively against the results when using the selected combined features. The potential benefit of considering combined features in classification problems is demonstrated by applying the developed methodology and toolkit to three sample data sets where the discovery of combined features containing new discriminating information led to improved classification results.

  3. Integration of quality improvement and cost-efficiency through industrial improvement techniques

    Directory of Open Access Journals (Sweden)

    Vink JP

    2016-06-01

    Full Text Available Jasper P Vink,1 Maxime T Rigaudy,1,2 Karl O Elmqvist11Imperial College Business School, Imperial College London, London, 2Hull York Medical School, York, UKIn this journal, Crema and Verbano1 discussed the importance of defining quality of health care and how quality can be improved through various industrial instruments and techniques. Quality of health care is a heavily debated topic that requires a wide scope of considerations across the many stakeholders of the health system. We acknowledge Crema and Verbano’s arguments that patient safety is a basic pillar of quality, upon which we would like to expand by highlighting the clinical effectiveness and patient-reported outcomes, which are the two further crucial components of quality. The arguments made regarding quality improvement techniques and cost efficiency in health care provision are insightful, yet appear to make a distinction between efforts to improve quality, eliminate waste from processes, and cut costs in health care provision. We would argue that in fact these achievements are all closely related and can be achieved simultaneously, if the industrial techniques of quality management are applied adequately.View the original paper by Crema and Verbano.

  4. Energy efficiency improvement and fuel savings in water heaters using baffles

    International Nuclear Information System (INIS)

    Moeini Sedeh, Mahmoud; Khodadadi, J.M.

    2013-01-01

    Highlights: ► Thermal efficiency improved by simple/novel design of baffles inside water reservoir. ► Noticeable steady-state natural gas savings of about 5%. ► Extensive 3-D numerical investigations followed by experimental verifications. ► Baffle designs prototyped in identical water heaters for ANSI/US DOE test protocols. ► Numerical/experimental results verified thermal efficiency improvement and fuel savings. -- Abstract: Thermal efficiency improvement of a water heater was investigated numerically and experimentally in response to presence of a baffle, particularly designed for modifying the flow field within the water reservoir and enhancing heat transfer extracted into the water tank. A residential natural gas-fired water heater was selected for modifying its water tank through introducing a baffle for lowering natural gas consumption by 5% as a target. Based on the geometric features of the selected water heater, three-dimensional models of the water heater subsections were developed. Upon detailed studies of flow and heat transfer in each subsection, various sub-models were integrated to a complete model of the water heater. Thermal performance of the selected water heater was investigated numerically using computational fluid dynamics analysis. Prior to baffle design process and in order to verify the developed model of the water heater, time-dependent numerically-predicted temperatures were compared to the experimentally-measured temperatures under the same conditions at six (6) different locations inside the water tank and good agreement was observed. Upon verifying the numerical model, the fluid flow and heat transfer patterns were characterized for the selected water heater. The overall design of the baffle and its location and orientation were finalized based on the numerical results and a set of parametric studies. Finally, two baffle designs were proposed, with the second design being an optimized version of the first design. The

  5. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  6. Using Technology and Mentorship to Improve Teacher Pedagogy and Educational Opportunities in Rural Nicaragua

    Directory of Open Access Journals (Sweden)

    Anni Lindenberg

    2016-02-01

    Full Text Available This study used ethnographic methods to understand factors influencing the implementation of an educational intervention combining short math content videos with teacher trainings and mentorship in high-poverty primary schools in Nicaragua with implications for rural school reform. Educators in rural schools in Latin American face serious obstacles to improve classroom instruction and pedagogy, including lack of resources and overcrowding. Research suggests an over-reliance on input-output models in which inputs (e.g. teacher salaries, textbooks, technology, computer labs, numbers of classrooms, etc. are expected to produce particular outputs (student retention, lowering drop-out rates, increasing graduation rates, etc.; however, studies show that regardless of the resources, much depends on effective use of resources for successful teaching and learning (O'Sullivan, 2006; L. S. Shulman, 1987. While input/output models provide insights into an educational systems economic efficiency, they do not offer insight into what actually transpires inside of a classroom (O'Sullivan, 2006. Much depends on effective training and use of these very resources. Though systemic issues in the Nicaraguan educational system produced numerous obstacles for the eleven participating 3rd and 6th grade teachers, the educational intervention model supported teachers’ ability to be innovative and grow their practice in four ways: a increased pedagogical knowledge; b opportunities to collaborate and support one another as a community of teachers; c flexibility in adaptation of the intervention model to their specific classroom context; and d use of videos as supportive resources for content knowledge.

  7. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures

    International Nuclear Information System (INIS)

    Li Da-Rang; Jiang Lan; Yin Jian-Hua; Lin Nai; Tan Yuan-Yuan

    2012-01-01

    Significant differences among the doping densities of PN junctions in semiconductors cause lattice mismatch and lattice defects that increase the recombination current of betavoltaic batteries. This extensively decreases the open circuit voltage and the short current, which results in low conversion efficiency. This study proposes P + PINN + -structure based betavoltaic batteries by adding an interlayer to typical PIN structures to improve conversion efficiency. Numerical simulations are conducted for the energy deposition of beta particles along the thickness direction in semiconductors. Based on this, 63 Ni-radiation GaAs batteries with PIN and P + PINN + structures are designed and fabricated to experimentally verify the proposed design. It turns out that the conversion efficiency of the betavoltaic battery with the proposed P + PINN + structure is about 1.45 times higher than that with the traditional PIN structure. (cross-disciplinary physics and related areas of science and technology)

  8. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  9. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics, Inc., Columbia, MD (United States)

    2018-02-01

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controls can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key

  10. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements

  11. A history of industrial statistics and quality and efficiency improvement

    NARCIS (Netherlands)

    de Mast, J.; Coleman, S.; Greenfield, T.; Stewardson, D.; Montgomery, D.C.

    2008-01-01

    The twentieth century witnessed incredible increases in product quality, while in the same period product priced dropped dramatically. These important improvements in quality and efficiency in industry were the result of innovations in management and engineering. But these developments were

  12. A systematic review of missed opportunities for improving tuberculosis and HIV/AIDS control in Sub-saharan Africa: what is still missed by health experts?

    Science.gov (United States)

    Keugoung, Basile; Fouelifack, Florent Ymele; Fotsing, Richard; Macq, Jean; Meli, Jean; Criel, Bart

    2014-01-01

    In sub-Saharan Africa, HIV/AIDS and tuberculosis are major public health problems. In 2010, 64% of the 34 million of people infected with HIV were reported to be living in sub-Saharan Africa. Only 41% of eligible HIV-positive people had access to antiretroviral therapy (ART). Regarding tuberculosis, in 2010, the region had 12% of the world's population but reported 26% of the 8.8 million incident cases and 254000 tuberculosis-related deaths. This paper aims to review missed opportunities for improving HIV/AIDS and tuberculosis prevention and care. We conducted a systematic review in PubMed using the terms 'missed'(Title) AND 'opportunities'(Title). We included systematic review and original research articles done in sub-Saharan Africa on missed opportunities in HIV/AIDS and/or tuberculosis care. Missed opportunities for improving HIV/AIDS and/or tuberculosis care can be classified into five categories: i) patient and community; ii) health professional; iii) health facility; iv) local health system; and v) vertical programme (HIV/AIDS and/or tuberculosis control programmes). None of the reviewed studies identified any missed opportunities related to health system strengthening. Opportunities that are missed hamper tuberculosis and/or HIV/AIDS care in sub-Saharan Africa where health systems remain weak. What is still missing in the analysis of health experts is the acknowledgement that opportunities that are missed to strengthen health systems also undermine tuberculosis and HIV/AIDS prevention and care. Studying why these opportunities are missed will help to understand the rationales behind the missed opportunities, and customize adequate strategies to seize them and for effective diseases control.

  13. Identifying Eating Occasion-Based Opportunities to Improve the Overall Diets of Australian Adolescents

    Directory of Open Access Journals (Sweden)

    Flavia Fayet-Moore

    2017-06-01

    Full Text Available Adolescents in Australia have a poor dietary intake, leading to large numbers of them being at risk for inadequate intake of micronutrients, and excessive intake of less healthful dietary components. This study examined dietary intakes at multiple eating occasions to identify opportunities for more targeted recommendations and strategies to improve dietary intakes among adolescents. Data from the first 24-h recall of 14–18 years old in the 2011–2012 National Nutrition and Physical Activity Survey were analysed (n = 772. Participant-defined eating occasions were classified as breakfast, lunch, dinner or other eating occasions combined. The mean percent contribution to the total day intake of top shortfall nutrients (calcium, magnesium, vitamin A, iron, discretionary calories, saturated fat, free sugars and sodium, as well as nutrient density, the foods consumed and the percent of consumers at each eating occasion, were calculated. Breakfast had the lowest prevalence of consumers (81%, contributed the least to total daily energy (14.6% and almost a quarter of daily calcium and iron. Other eating occasions combined contributed 47.5% of free sugars and were top contributors of daily calcium (34.6% and magnesium (31.7%. Discretionary foods contributed 32.4% of the energy at lunch, and the sodium content at lunch was 415 mg/1000 kJ. Key opportunities identified for adolescents were to increase breakfast consumption, given the high nutrient densities of breakfasts consumed; improve overall lunch quality, particularly the sodium content; promote the intake of milk, fruit and a variety of vegetables at both lunch and dinner; maintain healthful choices at in-between meal eating occasions while focusing on decreasing the intake of discretionary foods.

  14. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    Science.gov (United States)

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  15. Improved district heating substation efficiency with a new control strategy

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2010-01-01

    In this paper, we describe a new alternative control approach for indirectly connected district heating substations. Simulations results showed that the new approach results in an increased ΔT across the substation. Results were obtained for both ideal and non-ideal operation of the system, meaning that less water must be pumped through the district heating network, and a higher overall fuel efficiency can be obtained in the district heating power plants. When a higher fuel efficiency is achieved, the usage of primary fuel sources can be reduced. Improved efficiency also increases the effective heat transfer capacity of a district heating network, allowing more customers to be connected to an existing network without increasing the heating plant or network capacity. Also, if combined heat and power plants are used to produce the heat, the increased ΔT will result in a further improved overall fuel efficiency, as more electricity can be produced with colder cooling water. The idea behind the new control method is to consider the temperature of the water supplying the district heating substation with heat, often referred to as the primary supply temperature. This represents a logical next step, as currently, the only parameter generally taken into account or measured when controlling the temperature level of the radiator circuit is the local outdoor temperature. In this paper we show how the primary supply temperature together with thermodynamic knowledge of the building can be used to maximize the ΔT across the district heating substation.

  16. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  17. Impact of lean six sigma process improvement methodology on cardiac catheterization laboratory efficiency.

    Science.gov (United States)

    Agarwal, Shikhar; Gallo, Justin J; Parashar, Akhil; Agarwal, Kanika K; Ellis, Stephen G; Khot, Umesh N; Spooner, Robin; Murat Tuzcu, Emin; Kapadia, Samir R

    2016-03-01

    Operational inefficiencies are ubiquitous in several healthcare processes. To improve the operational efficiency of our catheterization laboratory (Cath Lab), we implemented a lean six sigma process improvement initiative, starting in June 2010. We aimed to study the impact of lean six sigma implementation on improving the efficiency and the patient throughput in our Cath Lab. All elective and urgent cardiac catheterization procedures including diagnostic coronary angiography, percutaneous coronary interventions, structural interventions and peripheral interventions performed between June 2009 and December 2012 were included in the study. Performance metrics utilized for analysis included turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start and manual sheath-pulls inside the Cath Lab. After implementation of lean six sigma in the Cath Lab, we observed a significant improvement in turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. The percentage of cases with optimal turn-time increased from 43.6% in 2009 to 56.6% in 2012 (p-trendprocess improvement initiative, lean six sigma, on improving and sustaining efficiency of our Cath Lab operation. After the successful implementation of this continuous quality improvement initiative, there was a significant improvement in the selected performance metrics namely turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Opportunity and Challenge of The Age of Big Data

    Science.gov (United States)

    Yunguo, Hong

    2017-11-01

    The arrival of large data age has gradually expanded the scale of information industry in China, which has created favorable conditions for the expansion of information technology and computer network. Based on big data the computer system service function is becoming more and more perfect, and the efficiency of data processing in the system is improving, which provides important guarantee for the implementation of production plan in various industries. At the same time, the rapid development of fields such as Internet of things, social tools, cloud computing and the widen of information channel, these make the amount of data is increase, expand the influence range of the age of big data, we need to take the opportunities and challenges of the age of big data correctly, use data information resources effectively. Based on this, this paper will study the opportunities and challenges of the era of large data.

  19. Energy efficiency as an opportunity for the natural gas industry

    International Nuclear Information System (INIS)

    Love, P.

    2003-01-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves

  20. Energy efficiency as an opportunity for the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Love, P. [Canadian Energy Efficiency Alliance (Canada)

    2003-07-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves.

  1. “Slowing” and “Narrowing” the Flow of Metals for Consumer Goods: Evaluating Opportunities and Barriers

    Directory of Open Access Journals (Sweden)

    Elsa Dominish

    2018-04-01

    Full Text Available Metal resources are essential materials for many consumer products, including vehicles and a wide array of electrical and electronic goods. These metal resources often cause adverse social and environmental impacts from their extraction, supply and disposal, and it is therefore important to increase the sustainability of their production and use. A broad range of strategies and actions to improve the sustainability of resources are increasingly being discussed within the evolving concept of the circular economy. This paper uses this lens to evaluate the opportunities and barriers to improve the sustainability of metals in consumer products in Australia, with a focus on strategies that “slow” and “narrow” material flow loops. We have drawn on Allwood’s characterisation of material efficiency strategies, as they have the potential to reduce the total demand for metals. These strategies target the distribution, sale, and use of products, which have received less research attention compared to the sustainability of mining, production, and recycling, yet it is vitally important for changing patterns of consumption in a circular economy. Specifically, we have considered the strategies of product longevity (life extension, intensity of use, repair, and resale, remanufacturing, component reuse, and using less material for the same product or service (digitisation, servicisation, and light-weighting. Within the Australian context, this paper identifies the strategies that have the greatest opportunity to increase material efficiency for metal-containing products (such as mobility, household appliances, and personal electronics, by evaluating current implementation of these strategies and identifying the material, economic, and social barriers to and opportunities for expanding these strategies. We find that many of these strategies have been successfully implemented for mobility, while applying these strategies to personal electronics remains

  2. Tune-Up Your Fan Systems for Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-03

    Fans are used extensively in commercial buildings and represent approximately 6% of total energy consumed by commercial buildings. The U.S. Department of Energy (DOE) estimates that fans in commercial buildings consume 158 billion kWh of electricity annually. Maintaining fan systems in proper condition provides energy savings and ensures a comfortable and healthy environment. While many fan systems have significant energy savings opportunities available through improvements in fan selection, system design, and operational practices, it is not always apparent when a fan system needs maintenance or what opportunities are available for improvements. This resource is designed for facility managers and maintenance staff to provide easy-to-implement actionable guidance on fan efficiency measures for existing ducted air systems.

  3. Artificial intelligence aid to efficient plant operations

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Pack, R.W.

    1987-01-01

    As the nuclear power industry matures, it is becoming more and more important that plants be operated in an efficient, cost-effective manner, without, of course, any decrease in the essential margins of safety. Indeed, most opportunities for improved efficiency have little or no relation to nuclear safety, but are based on trade-offs among operator controllable parameters both within and external to the reactor itself. While these trade-offs are describable in terms of basic physical theory, thermodynamics, and the mathematics of control systems, their actual application is highly plant specific and influenced even by the day-to-day condition of the various plant components. This paper proposes the use of artificial intelligence techniques to construct a computer-based expert assistant to the plant operator for the purpose of aiding him in improving the efficiency of plant operation on a routine basis. The proposed system, which only advises the human operator, seems more amenable to the current regulatory approach than a truly automated control system even if the latter provides for manual override

  4. Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adamu Murtala Zungeru

    2013-01-01

    Full Text Available The main problem for event gathering in wireless sensor networks (WSNs is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR algorithm, based on the ant colony optimization (ACO metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1 a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2 intelligent update of routing tables in case of a node or link failure, and (3 reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC and Beesensor.

  5. Improvement in the diffraction efficiency of a polymer using an ionic liquid

    Directory of Open Access Journals (Sweden)

    Kim Sung Ho

    2018-01-01

    Full Text Available In this paper, photosensitive materials for information storage devices are presented. The polymers were prepared using surface relief-grating (SRG fabrication with a diode-pumped solid-state (DPSS laser of 532 nm, and the diffraction efficiency (DE of the polymers were assessed with a low-power DPSS laser at 633 nm. However, the diffraction efficiency of the azo-functionalized epoxy-based polymer was low, even after 15 min of exposure. To improve the efficiency and reduce the time it takes for the DE measurements of the photosensitive polymer, the polymer was combined ionic liquids (ILs. Various ILs, i.e., 1-methylimidazolium chloride ([Mim]Cl from the imidazolium family of ILs and diethylammonium dihydrogen phosphate (DEAP, triethylammonium 4-aminotoluene-3-sulfonic acid (TASA and tributylmethylammonium methyl sulphate (TBMS from the ammonium family of ILs, were investigated. For the first time, it was observed that DE dramatically increased the DEAP–polymer mixture in 4 min compared to the polymer (alone and other polymer–IL mixtures. Therefore, DEAP IL could help improve the efficiency of DE measurements in a shorter time.

  6. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    International Nuclear Information System (INIS)

    Herrero Sola, Antonio Vanderley; Mota, Caroline Maria de Miranda; Kovaleski, Joao Luiz

    2011-01-01

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: → Lack of decision model in industrial motor system is the main motivation of the research. → A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. → The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  7. A model for improving energy efficiency in industrial motor system using multicriteria analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Sola, Antonio Vanderley, E-mail: sola@utfpr.edu.br [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil); Mota, Caroline Maria de Miranda, E-mail: carolmm@ufpe.br [Federal University of Pernambuco, Cx. Postal 7462, CEP 50630-970, Recife (Brazil); Kovaleski, Joao Luiz [Federal University of Technology, Parana, Brazil (UTFPR)-Campus Ponta Grossa, Av. Monteiro Lobato, Km 4, CEP: 84016-210 (Brazil)

    2011-06-15

    In the last years, several policies have been proposed by governments and global institutions in order to improve the efficient use of energy in industries worldwide. However, projects in industrial motor systems require new approach, mainly in decision making area, considering the organizational barriers for energy efficiency. Despite the wide application, multicriteria methods remain unexplored in industrial motor systems until now. This paper proposes a multicriteria model using the PROMETHEE II method, with the aim of ranking alternatives for induction motors replacement. A comparative analysis of the model, applied to a Brazilian industry, has shown that multicriteria analysis presents better performance on energy saving as well as return on investments than single criterion. The paper strongly recommends the dissemination of multicriteria decision aiding as a policy to support the decision makers in industries and to improve energy efficiency in electric motor systems. - Highlights: > Lack of decision model in industrial motor system is the main motivation of the research. > A multicriteria model based on PROMETHEE method is proposed with the aim of supporting the decision makers in industries. > The model can contribute to transpose some barriers within the industries, improving the energy efficiency in industrial motor system.

  8. Lean Maintenance Applied to Improve Maintenance Efficiency in Thermoelectric Power Plants

    OpenAIRE

    Orlando Duran; Andrea Capaldo; Paulo Andrés Duran Acevedo

    2017-01-01

    Thermoelectric power plants consist of a set of critical equipment that require high levels of availability and reliability. Due to this, maintenance of these physical assets is gaining momentum in industry. Maintenance is considered as an activity that contributes to improving the availability, efficiency and productivity of each piece of equipment. Several techniques have been used to achieve greater efficiencies in maintenance, among which we can find the lean maintenance philosophy. Despi...

  9. Logistics costs evaluation as a way of company’s efficiency improvement

    OpenAIRE

    Galina VOLOSCENCO; Natalia SESTENCO-DIACEK

    2015-01-01

    In Logistic systems, besides the usual costs for work forces, material and supplies, there are specific costs which are not always identified with the term classic meaning. These are transaction costs which influence on financial indicators of the company and on its efficiency and competitiveness accordingly. These costs classification, factors influencing on their amount, allows to find ways for their reduction methods and so that to improve the efficiency of the company.

  10. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  12. Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model

    International Nuclear Information System (INIS)

    Clinch, J. Peter; Healy, John D.

    2003-01-01

    There are a number of stimuli behind energy efficiency, not least the Kyoto Protocol. The domestic sector has been highlighted as a key potential area. Improving energy efficiency in this sector also assists alleviating fuel poverty, for research is now demonstrating the strong relationship between poor domestic thermal efficiency, high fuel poverty and poor health and comfort status. Previous research has modelled the energy consumption and technical potential for energy saving resulting from energy-efficiency upgrades in this sector. However, there is virtually no work evaluating the economic benefit of improving households' thermal comfort post-retrofit. This paper does this for Ireland using a computer-simulation program. A dynamic modelling process is employed which projects into the future predicting the extent to which energy savings are forgone for improvements in comfort

  13. Energy efficiency: Key to solving economic, environmental problems

    International Nuclear Information System (INIS)

    Flanigan, T.

    1991-01-01

    Energy efficiency can boost economic development and competitiveness, maximize capital productivity, improve environmental quality, and guarantee lasting energy security. Each of these benefits is reason enough, but collectively they form an imperative for action. The energy future must be based on cultural development, not the wanton growth that has served as an indicator of success in the past. Energy efficiency provides not only technical fixes, regulatory innovation, and a host of new financing methods, it also provides a template - a model - for a resource-efficiency ethic congruent with the notion of respecting the rights of future citizens. The good news is that the authors now know how to check environmental despoliation caused by an unquenchable thirst for energy resources. Existing energy-efficiency opportunities allow them to redefine the national energy strategy and take account of the environment and the future

  14. Potential benefits from improved energy efficiency of key electrical products: The case of India

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie E.; McMahon, James E.

    2008-01-01

    The economy of the world's second most populous country continues to grow rapidly, bringing prosperity to a growing middle class while further straining an energy infrastructure already stretched beyond capacity. At the same time, efficiency policy initiatives have gained a foothold in India, and promise to grow in number over the coming years. This paper considers the maximum cost-effective potential of efficiency improvement for key energy-consuming products in the Indian context. The products considered are: household refrigerators, window air conditioners, motors and distribution transformers. Together, these products account for about 27% of delivered electricity consumption in India. The analysis estimates the minimum Life-Cycle Cost option for each product class, according to use patterns and prevailing customer marginal rates in each sector. This option represents an efficiency improvement ranging between 12% and 60%, depending on product class. If this level of efficiency was achieved starting in 2010, we estimate that total electricity consumption in India could be reduced by 4.7% by 2020, saving over 74 million tons of oil equivalent and over 246 million tons of carbon dioxide emissions. Net present financial savings of this efficiency improvement totals 8.1 billion dollars

  15. Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sharpe, Ben [International Council on Clean Transportation (United States); Delgado, Oscar [International Council on Clean Transportation (United States); Bandivadekar, Anup [International Council on Clean Transportation (United States); Garg, Mehul [International Council on Clean Transportation (United States)

    2017-06-14

    The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data and vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the

  16. The efficiency of SAP in improving the HR performance case study ...

    African Journals Online (AJOL)

    The efficiency of SAP in improving the HR performance case study: Masdar ... administrative and strategic levels, as well as identifying the contribution of ... Keywords: SAP, human resources management, Masdar Building Materials Company ...

  17. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  18. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Science.gov (United States)

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-04-20

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples.

  19. The Need for a Higher Fuel Efficiency of the Electricity Sector - An Analysis of Opportunities and Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Klimstra, J.

    2007-07-01

    The electricity sector is the single largest user of primary energy in the world. The issues of fuel prices, security of supply and greenhouse gas emissions are therefore closely connected with electricity generation. The total energy efficiency of the electricity sector is only 32.5% so that quick improvements are required. However, the uncertainty over fuel prices and technology preferences is such that most investors are hesitant. The life of existing, often low-efficiency, power plants is therefore extended. At the same time, the demand for electricity is rapidly increasing and the gap between capacity and demand decreases. This paper intends to bring more clarity into the economic and environmental boundary conditions of power plants. The goal is to find an attractive way for rapid efficiency improvement with an even better system reliability without increasing the costs. The paper discusses fuel price developments and the costs of generating technologies in connection with the typical demand pattern of electricity. Ultimately, it appears that local generation, preferably coupled with cogeneration, can be an important part of the solution. (auth)

  20. Double-layered ZnO nanostructures for efficient perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; S. Swain, Bhabani; Amassian, Aram

    2014-01-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field. This journal is

  1. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  2. Operational Efficiency and Productivity Improvement Initiatives in a Large Cardiac Catheterization Laboratory.

    Science.gov (United States)

    Reed, Grant W; Hantz, Scott; Cunningham, Rebecca; Krishnaswamy, Amar; Ellis, Stephen G; Khot, Umesh; Rak, Joe; Kapadia, Samir R

    2018-02-26

    This study sought to report outcomes from an efficiency improvement project in a large cardiac cath lab. Operational inefficiencies are common in the cath lab, yet solutions are challenging. A detailed report describing and providing solutions for these inefficiencies may be valuable in guiding improvements in productivity. In this observational study, the authors report metrics of efficiency before and after a cath lab quality improvement program in June 2014. Main outcomes included lab room start times, room turnaround times, laboratory use, and employee satisfaction. Time series analysis was used to assess trend over time. Chi-square testing and analysis of variance were used to assess change before and after the initiative. The principal changes included implementation of a pyramidal nursing schedule, increased use of an electronic scheduling system, and increased utilization of a preparation and recovery area. Comparing before with after the program, start times improved an average of 17 min, and on-time starts improved from 61.8% to 81.7% (p = 0.0024). Turnaround times improved from 20.5 min to 16.4 min (trend p productivity. This knowledge may be helpful in assisting other cath labs in similar efficiency improvement initiatives. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Ramakrishnan, R.; Hiremath, Somashekhar S.; Singaperumal, M.

    2014-01-01

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  4. Establishing strategic energy assessment indicators for Zimbabwe: A key to improving electrical energy efficiency

    Science.gov (United States)

    Goto, Felix

    In Zimbabwe, there is still very little realization of the potential of demand side management (DSM) to increase industrial energy efficiency. Without clear guidelines that indicate the most economic energy efficiency strategies to implement, it is difficult for industry to easily evaluate the benefits of energy assessments. This research focused on establishing and evaluating indicators that guide correct implementation of energy assessments into Zimbabwean industry. This quantitative and qualitative study used a theoretic approach to develop indicators that identified industrial subsectors that should be targeted for DSM interventions. This may bring about reduction in energy demand in high power consuming Zimbabwean industrial companies, which were compared with energy utility performances of similar industrial companies in countries located in other parts of the world. This research used pattern-matching, categorical aggregation, and stochastic frontier regression analysis for data analysis. In maximizing electrical efficiency, the implications of this study may be used by individual companies in Zimbabwe to perform energy efficiency self-diagnoses, operational efficiency evaluations, and capital resource justifications. From a societal perspective, this study may benefit Zimbabwe because it provides opportunities for the alleviation of both shortages in power supply and the capital constraints of building new generating capacity. This study will also benefit ordinary Zimbabweans by lowering energy costs and providing reliable power. This promotes sustainable economic growth and lowers the need for foreign currency to import power.

  5. Mental health system governance in Nigeria: challenges, opportunities and strategies for improvement.

    Science.gov (United States)

    Abdulmalik, J; Kola, L; Gureje, O

    2016-01-01

    A health systems approach to understanding efforts for improving health care services is gaining traction globally. A component of this approach focuses on health system governance (HSG), which can make or mar the successful implementation of health care interventions. Very few studies have explored HSG in low- and middle-income countries, including Nigeria. Studies focusing on mental health system governance, are even more of a rarity. This study evaluates the mental HSG of Nigeria with a view to understanding the challenges, opportunities and strategies for strengthening it. This study was conducted as part of the project, Emerging Mental Health Systems in Low and Middle Income Countries (Emerald). A multi-method study design was utilized to evaluate the mental HSG status of Nigeria. A situational analysis of the health policy and legal environment in the country was performed. Subsequently, 30 key informant interviews were conducted at national, state and district levels to explore the country's mental HSG. The existing policy, legislative and institutional framework for HSG in Nigeria reveals a complete exclusion of mental health in key health sector documents. The revised mental health policy is however promising. Using the Siddiqi framework categories, we identified pragmatic strategies for mental health system strengthening that include a consideration of existing challenges and opportunities within the system. The identified strategies provide a template for the subsequent activities of the Emerald Programme (and other interventions), towards strengthening the mental health system of Nigeria.

  6. Hospital operations management: improving organizational efficiency.

    Science.gov (United States)

    2013-08-01

    Reducing operational inefficiencies represents one of the most promising sources of potential savings in hospitals today. Health Forum convened a panel of hospital executives and industry experts to discuss the daunting challenges and big opportunities that lie ahead.

  7. Arctic resources : a mechatronics opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McKean, M.; Baiden, G. [Penguin Automated Systems Inc., Naughton, ON (Canada)

    2008-07-01

    This paper discussed the telerobotic mechatronics opportunities that exist to access mineral resources in the Arctic. The Mining Automation Project (MAP) determined that telerobotics could contribute to productivity gains while providing increased worker safety. The socio-economic benefits of advanced mechatronics for Arctic resource development are particularly attractive due to reduced infrastructure needs; operating costs; and environmental impacts. A preliminary analysis of mining transportation options by the authors revealed that there is a case for in-situ resource utilization (ISRU) for oil and gas processing to address resource development. The ISRU options build on concepts developed to support space exploration and were proposed to reduce or modify transportation loads to allow more sustainable and efficient Arctic resource development. Many benefits in terms of efficiency could be achieved by combining demonstrated mechatronics with ISRU because of the constrained transportation infrastructure in the Arctic. In the context of harsh environment operations, mechatronics may provide an opportunity for undersea resource facilities. 15 refs., 6 figs.

  8. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    Science.gov (United States)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  9. Genome editing for crop improvement: Challenges and opportunities.

    Science.gov (United States)

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of

  10. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  11. Factors affecting the technical efficiency of dairy farms in Kosovo

    Directory of Open Access Journals (Sweden)

    Egzon BAJRAMI

    2017-11-01

    Full Text Available A possible accession into the World Trade Organization (WTO and an expected membership in the European Union raise significant opportunities and challenges for the agricultural sector in Kosovo. As a result of these changes, the sector will have to improve efficiency and competitiveness. This research is motivated by the need to understand better the forces that drive competitiveness in the Kosovo dairy sector. This study estimates the technical efficiency (TE of 243 dairy farms in Kosovo and relates TE variation to farm size and other primary determinants of TE. A stochastic frontier production function is estimated using a two-stage procedure. Results reveal that concentrate feed intake, land use per cow, and the number of days cows had been kept on pasture have statistically significant impacts on milk productivity per cow. The mean technical efficiency of dairy farms was estimated at 0.72. The major determinants that increase efficiency are breed improvement, intensification of corn production on the farm, improving concentrate feed intake, and using free-range production systems. Given the results from the technical efficiency analysis, it is crucial for the Government of Kosovo to redesign their dairy policy—specifically their grant investment schemes—and target assistance on improving national herd genetics, promoting free range systems and expanding area planted in corn.

  12. Evaluation of energy efficiency opportunities of a typical Moroccan cement plant: Part I. Energy analysis

    International Nuclear Information System (INIS)

    Fellaou, S.; Bounahmidi, T.

    2017-01-01

    Highlights: • We have analyzed the degree of freedom of the overall system. • We validated the redundant measurements by the Lagrange multipliers technique. • We have analyzed the mass and the energy balances by two approaches. • We identified the factors that penalize the energetic performance of the whole plant. • We assessed options to improve energy efficiency of the entire cement plant. - Abstract: The cement industry is one of Morocco’s most highly energy intensive economic sectors. It suffers from abnormally high cost of energy supplies, representing more than two thirds of the cost of cement; the first item of expenditure is electricity and fuel with 40% and 30% respectively. Herefor, much more effort is needed to make the cement sector reach energy saving targets set by the Moroccan energy efficiency strategy. The present work aims to evaluate energy performance of an existing Moroccan cement plant based on a detailed mass and energy balances analysis. Redundant measurements were validated by the Lagrange multipliers technique before being used for the calculation of unmeasured variables. The values for energy consumption and related losses through the whole production line are reported, and the results obtained have been used to assess the energy performance of the process. The evaluation was completed by both an analysis of possible energy loss sources and important solutions described in the international literature to improve the energy efficiency of the entire cement plant.

  13. Improving efficiency in the radiology department

    Energy Technology Data Exchange (ETDEWEB)

    Towbin, Alexander J.; Perry, Laurie A. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2017-06-15

    The modern radiology department is built around the flow of information. Ordering providers request imaging studies to be performed, technologists complete the work required to perform the imaging studies, and radiologists interpret and report on the imaging findings. As each of these steps is performed, data flow between multiple information systems, most notably the radiology information system (RIS), the picture archiving and communication system (PACS) and the voice dictation system. Even though data flow relatively seamlessly, the majority of our systems and processes are inefficient. The purpose of this article is to describe the radiology value stream and describe how radiology informaticists in one department have worked to improve the efficiency of the value stream at each step. Through these examples, we identify and describe several themes that we believe have been crucial to our success. (orig.)

  14. Medical Care Provided Under California's Workers' Compensation Program: Effects of the Reforms and Additional Opportunities to Improve the Quality and Efficiency of Care.

    Science.gov (United States)

    Wynn, Barbara O; Timbie, Justin W; Sorbero, Melony E

    2011-01-01

    Since 2004, significant changes have been made to the California workers' compensation (WC) system. The Commission on Health and Safety and Workers' Compensation (CHSWC) asked the RAND Corporation to examine the impact that these changes have on the medical care provided to injured workers. This study synthesizes findings from interviews and available information regarding the implementation of the changes affecting WC medical care and identifies areas in which additional changes might increase the quality and efficiency of care delivered under the WC system. To improve incentives for efficiently providing medically appropriate care, California should revise its fee schedule allowances for services provided by hospitals to inpatients, freestanding ambulatory surgery centers, and physicians, create nonmonetary incentives for providing medically appropriate care in the medical provider network (MPN) context through more-selective contracting with providers and reducing medical review requirements for high-performing physicians; reduce incentives for inappropriate prescribing practices by curtailing in-office physician dispensing; and implement pharmacy benefit network regulations. To increase accountability for performance, California should revise the MPN certification process to place accountability for meeting MPN standards on the entity contracting with the physician network; strengthen Division of Workers' Compensation (DWC) authorities to provide intermediate sanctions for failure to comply with MPN requirements; and modify the Labor Code to remove payers and MPNs from the definition of individually identifiable data so that performance on key measures can be publicly available. To facilitate monitoring and oversight, California should provide DWC with more flexibility to add needed data elements to medical data reporting and provide penalties for a claim administrator failing to comply with the data-reporting requirements; require that medical cost

  15. Improving the efficiency of manuscript selection

    Directory of Open Access Journals (Sweden)

    A. Martínez–Abrain

    2009-01-01

    previous submittal were taken into account. Option b is suggested as an alternative to obliging authors to declare whether or not their submission was previously rejected by another journal, because they think this could prejudice the evaluation of the new submission. However, I believe that the system I propose here would prevent prejudiced evaluations because authors would have the opportunity to upload the response to reviewer’s comments so that second-round reviewers would have the chance to see both the problems previously de¬tected in the manuscript and the defence offered by authors. Although not a perfect system its benefits would probably outweigh the caveats. Such a system would improve the quality of the final paper and facilitate the work load for second–round reviewers and editors. Indeed, some journals already seem to be implementing a solution which is fairly similar to our proposal, asking authors of rejected papers for permission to forward reviewer reports to the new journal chosen by the authors to submit the revised work (see Hochberg et al., 2009. Proposals to reward or punish reviewers depending on their rapidity to elaborate their reports (Hauser & Fehr, 2007 does not foster accumulated quality improvement. Science quality would undoubtedly gain from making previous information concerning a manuscript’s review available to new reviewers, as in a Bayesian framework of inference (Martin et al., 2005 because starting a new each time, as if previous information did not exist, is simply not an efficient way to proceed in science.

  16. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly

    International Nuclear Information System (INIS)

    Kim, Joon-Hee; Yang, Min-Jee; Park, Jun-Young

    2014-01-01

    Highlights: • Faradaic efficiency and water transfer coefficient (WTC) of DMFC MEAs are calculated based on mass balance measurements. • Faradaic efficiency of the HC-based MEAs is generally improved over the Nafion-based MEAs. • Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of -2. • Low WTC of the HC-based MEAs indicates the back-diffusion of water from the cathode to the anode. • Performance of HC-based MEAs is improved as the fuel stoichiometry increases, maintaining high Faradaic efficiency. - Abstract: In order to improve the energy efficiency (fuel efficiency and electrical power) of direct methanol fuel cells (DMFCs), the hydrocarbon (HC) membrane-based membrane electrode assemblies (MEAs) are investigated under various operating conditions. The MEAs are then compared with the conventional Nafion-based MEA in terms of their efficiency and performance. The Faradaic efficiency and water transfer coefficient (WTC) are calculated based on mass balance measurements. The Faradaic efficiency of the HC-based MEAs is improved over the Nafion-based MEAs since methanol crossover decreased. The performance of HC-based MEAs shows strong dependency on the anode stoichiometry at high current densities probably because of the limited mass transport of fuel, which is not observed for the Nafion-based MEAs. The Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of −2, indicating the back-diffusion of water from the cathode to the anode. This may have limited mass transport by interrupting proton conduction at high current densities. The performance of HC-based MEAs at high current densities is improved as the fuel stoichiometry increases; High Faradaic efficiency is maintained by decreasing the cathode stoichiometry

  17. Idm@ti Network: An Innovative Proposal for Improving Teaching and Learning in Spanish Universities

    Science.gov (United States)

    Salan, Nuria; Cabedo, Luis; Segarra, Mercedes; Guraya, Teresa; Lopez, Pascal; Sales, David; Gamez, Jose

    2017-01-01

    IdM@ti network members concurred in the diagnosis of the difficulties and opportunities arising from Bologna process implementation and teaching methodologies improvement in Materials Science and Engineering (MSE) teaching. This network has been created with the aim of improving efficiency of underway and future collaborations.The main objectives…

  18. An efficiency improvement in warehouse operation using simulation analysis

    Science.gov (United States)

    Samattapapong, N.

    2017-11-01

    In general, industry requires an efficient system for warehouse operation. There are many important factors that must be considered when designing an efficient warehouse system. The most important is an effective warehouse operation system that can help transfer raw material, reduce costs and support transportation. By all these factors, researchers are interested in studying about work systems and warehouse distribution. We start by collecting the important data for storage, such as the information on products, information on size and location, information on data collection and information on production, and all this information to build simulation model in Flexsim® simulation software. The result for simulation analysis found that the conveyor belt was a bottleneck in the warehouse operation. Therefore, many scenarios to improve that problem were generated and testing through simulation analysis process. The result showed that an average queuing time was reduced from 89.8% to 48.7% and the ability in transporting the product increased from 10.2% to 50.9%. Thus, it can be stated that this is the best method for increasing efficiency in the warehouse operation.

  19. Efficiency Improvements of Antenna Optimization Using Orthogonal Fractional Experiments

    Directory of Open Access Journals (Sweden)

    Yen-Sheng Chen

    2015-01-01

    Full Text Available This paper presents an extremely efficient method for antenna design and optimization. Traditionally, antenna optimization relies on nature-inspired heuristic algorithms, which are time-consuming due to their blind-search nature. In contrast, design of experiments (DOE uses a completely different framework from heuristic algorithms, reducing the design cycle by formulating the surrogates of a design problem. However, the number of required simulations grows exponentially if a full factorial design is used. In this paper, a much more efficient technique is presented to achieve substantial time savings. By using orthogonal fractional experiments, only a small subset of the full factorial design is required, yet the resultant response surface models are still effective. The capability of orthogonal fractional experiments is demonstrated through three examples, including two tag antennas for radio-frequency identification (RFID applications and one internal antenna for long-term-evolution (LTE handheld devices. In these examples, orthogonal fractional experiments greatly improve the efficiency of DOE, thereby facilitating the antenna design with less simulation runs.

  20. Simulation of Standby Efficiency Improvement for a Line Level Control Resonant Converter Based on Solar Power Systems

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2015-01-01

    Full Text Available This paper proposes a new scheme to improve the standby efficiency of the high-power half-bridge line level control (LLC resonant converter. This new circuit is applicable to improving the efficiency of the renewable energy generation system in distributed power systems. The main purpose is to achieve high-efficiency solar and wind power and stable output under different load conditions. In comparison with the traditional one, this novel method can improve standby efficiency at standby. The system characteristics of this proposed method have been analyzed through detailed simulations, which prove its feasibility.

  1. Iraqi primary care system in Kurdistan region: providers' perspectives on problems and opportunities for improvement.

    Science.gov (United States)

    Shabila, Nazar P; Al-Tawil, Namir G; Al-Hadithi, Tariq S; Sondorp, Egbert; Vaughan, Kelsey

    2012-09-27

    As part of a comprehensive study on the primary health care system in Iraq, we sought to explore primary care providers' perspectives about the main problems influencing the provision of primary care services and opportunities to improve the system. A qualitative study based on four focus groups involving 40 primary care providers from 12 primary health care centres was conducted in Erbil governorate in the Iraqi Kurdistan region between July and October 2010. A topic guide was used to lead discussions and covered questions on positive aspects of and current problems with the primary care system in addition to the priority needs for its improvement. The discussions were fully transcribed and the qualitative data was analyzed by content analysis, followed by a thematic analysis. Problems facing the primary care system included inappropriate health service delivery (irrational use of health services, irrational treatment, poor referral system, poor infrastructure and poor hygiene), health workforce challenges (high number of specialists, uneven distribution of the health workforce, rapid turnover, lack of training and educational opportunities and discrepancies in the salary system), shortage in resources (shortage and low quality of medical supplies and shortage in financing), poor information technology and poor leadership/governance. The greatest emphasis was placed on poor organization of health services delivery, particularly the irrational use of health services and the related overcrowding and overload on primary care providers and health facilities. Suggestions for improving the system included application of a family medicine approach and ensuring effective planning and monitoring. This study has provided a comprehensive understanding of the factors that negatively affect the primary care system in Iraq's Kurdistan region from the perspective of primary care providers. From their experience, primary care providers have a role in informing the community and

  2. Dividing wall column: Improving thermal efficiency, energy savings and economic performance

    International Nuclear Information System (INIS)

    Aurangzeb, Md; Jana, Amiya K.

    2016-01-01

    Highlights: • A rigorous model is developed for a dividing wall column. • Heat transfer model for metal wall is proposed. • Performance improvement is quantified for a ternary system. • Thermal efficiency, energy savings and cost are three used indices. - Abstract: This work aims at investigating the performance improvement of a dividing wall column (DWC) for the separation of a ternary system. It is true that for fractionating a ternary mixture, at least a sequence of two conventional distillation columns is required. To improve energetic and economic potential, and reduce space requirement, two columns are proposed to merge into one shell with a dividing wall. For developing the mathematical model of a distillation column, we consider the effect of heat transfer through the metal wall placed at an intermediated position inside the cylindrical column. The simulated DWC model is verified using the Aspen Plus flowsheet simulator with a wide variety of phase equilibrium models. The superiority of this proposed heat integrated configuration is shown for a ternary hydrocarbon system over a conventional distillation sequence (CDS) in terms of mainly three performance indexes, namely thermal efficiency, energy savings and total annual cost (TAC). It is investigated that the dividing wall distillation scheme can secure a 37.5% energy efficiency, and a 22.6% savings in energy consumption and 23.23% in TAC. The promising performance can also be quantified in terms of a reasonably low payback period of 2.11 years.

  3. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  4. Energy efficiency improvement: A strong driver for Total operations and R and D

    Energy Technology Data Exchange (ETDEWEB)

    Garnaud, Frederic; Rocher, Anne

    2010-09-15

    Total has implemented an energy efficiency action plan for both producing fields and new projects linked to a dedicated R and D program. The Energy efficiency assessment methodology is described, with an example: base line of the current situation, energy efficiency plan, contribution to best practices at corporate level. A methodology to assess the energy efficiency of a new development has been defined and implemented within Total. This methodology as well as related indicators is presented. Examples of R and D results dedicated to improve energy efficiency in two major areas of future developments are given: sour gas production and deep offshore field architecture.

  5. LSB steganography with improved embedding efficiency and undetectability

    OpenAIRE

    Khalind, Omed; Aziz, Benjamin Yowell Yousif

    2015-01-01

    In this paper, we propose a new method of non-adapt ive LSB steganography in still images to improve the embedding efficiency from 2 to 8/3 rand om bits per one embedding change even for the embedding rate of 1 bit per pixel. The method t akes 2-bits of the secret message at a time and compares them to the LSBs of the two chosen pix el values for embedding, it always assumes a single mismatch between the two and uses the seco nd LSB o...

  6. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  7. Process efficiency. Redesigning social networks to improve surgery patient flow.

    Science.gov (United States)

    Samarth, Chandrika N; Gloor, Peter A

    2009-01-01

    We propose a novel approach to improve throughput of the surgery patient flow process of a Boston area teaching hospital. A social network analysis was conducted in an effort to demonstrate that process efficiency gains could be achieved through redesign of social network patterns at the workplace; in conjunction with redesign of organization structure and the implementation of workflow over an integrated information technology system. Key knowledge experts and coordinators in times of crisis were identified and a new communication structure more conducive to trust and knowledge sharing was suggested. The new communication structure is scalable without compromising on coordination required among key roles in the network for achieving efficiency gains.

  8. Indoor climate quality after renovation for improved energy efficiency

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Løck, Sebastian; Kolarik, Barbara

    2016-01-01

    The building sector is responsible for approximately 40 % of the Danish energy consumption. As every year less than 1 % of the building stock is rebuild after demolition of old buildings, improved energy efficiency of existing buildings are in focus. In the late seventies to mid-eighties unwise...... performance. The indoor quality classifications show minor improvements. By using design tools beyond the simple legal requirements, the rental dwelling marked is a far step ahead of most retrofitting of owner-occupied dwellings and houses. The fear of indoor climate degradation from retrofitted energy saving...... measures may be countered by the use of modern design tools and attention to inner moisture membranes and needs for renovation of ventilation systems....

  9. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Ahlfeldt, Christopher [Navigant Consulting, Inc., Burlington, MA (United States); Hiraiwa, Hirokazu [Navigant Consulting, Inc., Burlington, MA (United States); Sathe, Amul [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States)

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  10. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    Science.gov (United States)

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  11. Supply chain cost improvement opportunities through streamlining cross-border operations

    Directory of Open Access Journals (Sweden)

    Jan Hendrik Havenga

    2013-09-01

    Full Text Available The Cross-Border Road Transport Agency (CBRTA in South Africa aims to encourage and facilitate trade between South Africa and its neighbouring countries. The CBRTA sponsored a study by Stellenbosch University (SU to determine the logistics cost impact of cross-border delays between South Africa and its major neighbouring trading partners, and prioritise opportunities for improvement. SU is the proprietor of both a comprehensive freight demand model and a logistics cost model for South Africa, which enable extractions and extensions of freight flows and related costs for specific purposes. Through the application of these models, the following information is identified and presented in this paper: South Africa’s most important border posts (based on traffic flows; a product profile for imports and exports through these border posts; the modal split (road and rail; the annual logistics costs incurred on the corridors feeding the border posts, as well as the additional costs incurred due to border delays. The research has proved that the streamlining of border-post operations that take a total supply chain view (i.e. of both border operations and those that could be moved from the border is beneficial.

  12. Improving urban district heating systems and assessing the efficiency of the energy usage therein

    Science.gov (United States)

    Orlov, M. E.; Sharapov, V. I.

    2017-11-01

    The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.

  13. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  14. Dynamic water allocation policies improve the global efficiency of storage systems

    Science.gov (United States)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  15. Improving Stewardship of Marine Resources: Linking Strategy to Opportunity

    Directory of Open Access Journals (Sweden)

    Franciska von Heland

    2014-07-01

    Full Text Available The need for improved stewardship of coastal and marine resources is evident worldwide. However, complex ecosystem dynamics, institutional inertia, and budgetary constraints impede such action. This study explores how networks of change-oriented individuals or “institutional entrepreneurs” can introduce new types of human-environment interaction. The focus is on investigating the interplay between the strategies of institutional entrepreneurs and broader system dynamics that shape the context in which they are working, and possible impacts of institutional entrepreneurship on marine governance. We explore these issues in the context of Wakatobi National Park in eastern Indonesia. We suggest that creating links between different social spheres, such as between marine resource management and spirituality or between marine resource management and education, may accelerate the development of a new ecosystem stewardship. We further suggest that the use of media has significant power to show alternative futures, but that media may also serve to objectify certain resource users and increase the complexity of marine resource management. In general, institutional entrepreneurs play an important role in capturing and managing opportunity to open up space for experimentation and novel ideas, for example by linking their ideas to broader political priorities. Yet, such strategies bear the risk of institutional capture. Finally, institutional entrepreneurs sometimes have vested interests in certain solutions that may forsake experimentation toward a sustainable future.

  16. A situation analysis of public health interventions, barriers, and opportunities for improving maternal nutrition in Bihar, India.

    Science.gov (United States)

    Noznesky, Elizabeth A; Ramakrishnan, Usha; Martorell, Reynaldo

    2012-06-01

    Maternal underweight and anemia are highly prevalent in Bihar, especially among adolescent girls aged 15 to 19 years. Although numerous programs and platforms exist for delivering efficacious interventions for improving maternal nutrition, the coverage and quality of these interventions are low. To examine existing interventions for reducing maternal undernutrition in Bihar and identify barriers to and opportunities for expanding their coverage and quality. The research was conducted in New Delhi and Bihar between May and August 2010. Forty-eight key informant interviews were conducted with policy makers, program managers, and service providers at multiple levels. Secondary data were collected from survey reports and program documents. All data were analyzed thematically. Barriers to the delivery and uptake of interventions to improve maternal nutrition include the shortage of essential inputs, low prioritization of maternal undernutrition, sterilization bias within the family planning program, weak management systems, poverty, gender inequality, caste discrimination, and flooding. In order to overcome barriers and improve service delivery, the current government and its partners have introduced structural reforms within the public health system, launched new programs for underserved groups, developed innovative approaches, and experimented with new technologies. Since coming to power, the Government of Bihar has achieved impressive increases in the coverage of prioritized health services, such as institutional deliveries and immunization. This success presents it with an excellent opportunity to further reduce maternal and infant mortality by turning its attention to the serious problem of maternal undernutrition and low birthweight.

  17. Desiccated coconut industry of Sri Lanka: opportunities for energy efficiency and environmental protection

    International Nuclear Information System (INIS)

    Kumar, S.; Senanayake, G.; Visvanathan, C.; Basu, B.

    2003-01-01

    The desiccated coconut (DC) industry is one of the major export oriented food processing industries in Sri Lanka. This paper discusses the production processes, types of fuel used, energy use pattern and the overall specific thermal and electrical energy consumption in the DC sector. An analysis of the energy use highlights the inefficient processes and the key energy loss areas. Options for energy conservation in the DC mills have been discussed, and carbon dioxide emissions from this sector and its mitigation potential are estimated. Other options to improve efficiency and reduce other pollution and policy aspects have been presented

  18. Energy Audit as a Tool for Improving System Efficiency in Industrial Sector

    OpenAIRE

    Gopi Srinath,; N. Uday Kumar

    2014-01-01

    This paper presents the characteristics of energy consumption in industrial sector, the methodology and results of energy audits (EA) performed in industrial sites and potentials for energy efficiency (EE) improvements. The present state of industrial energy in India could be characterized by significant technological out-of–date, low energy efficiency and low level of environmental protection. Presented analysis of the results of conducted energy audits in selected industrial...

  19. Possible improvements of efficiency by the use of new coal conversion technologies

    International Nuclear Information System (INIS)

    Krieb, K.H.

    1976-01-01

    Following a comparison of the efficiencies of conventional steam power processes, the gas fuel cell and the combined gas steam turbine processes are introduced as new coal utilization technologies. Coal conversion processes which can be coupled to combined gas-steam turbine processes such as the fluidized-bed firing, the solid bed gasification, the dust part-gasification and the fluidized-bed gasification are more closely mentioned and their coupling efficiencies discussed. The decoupling of third energy, such as low-temperature heat, high-temperature heat and chemical energy are briefly dealt with as third possibility for the improvement of the efficiency. (GG/LH) [de

  20. THE IMPROVEMENT OF THE CONCEPT OF THE EFFICIENCY OF VENTURE BUSINESS'S ATTRACTION

    Directory of Open Access Journals (Sweden)

    А. Cherednik

    2017-08-01

    Full Text Available The concept of the efficiency of venture business’s attraction was improved in the article. The theoretical foundations of venture business’s concept were explored, four approaches to venture business’s understanding were singled out, and its own definition which fully reflects the essence was developed in the investigation. The author examines the existing approaches to the concepts of effect and efficiency and revealed that efficiency is the ratio of the effect obtained to the costs incurred to achieve it. Also, the author developed the concept of effectiveness of venture business’s attraction.

  1. Water Technology Innovation: 10 Market Opportunities

    Science.gov (United States)

    The Water Technology Innovation Blueprint offers an overview of market opportunities that include conserving and recovering energy, recovering nutrients, improving water infrastructure, reducing costs for water monitoring, and improving water quality.

  2. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.

  3. Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment

    International Nuclear Information System (INIS)

    Lee, Ya-Ju; Chen, Yi-Ching; Lu, Tien-Chang

    2011-01-01

    The effects of pre-trimethlyindium (TMIn) flow on the improved electrical characteristics and highly stable temperature properties of InGaN green light-emitting diodes (LEDs) are discussed. For the LED sample with a pre-TMIn flow treatment, the tunnelling of injected carriers associated with threading defects is significantly reduced, which promotes the diffusion-recombination of injected carriers, as well as the overall emission efficiency of the LED. In addition, the pre-TMIn flow treatment evidently reduces the dependence of external quantum efficiency on temperature and efficiency droop of green LEDs. As a result, we conclude that the pre-TMIn flow treatment is a promising scheme for the improvement of output performance of InGaN-based green LEDs.

  4. Energy, climate change and the opportunity for liquid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Edgardo Olivares [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Emails: egomez@energiabr.org.br, gomez@bioware.com.br; Castaneda Ayarza, Juan Arturo; Zainaghi, Gislaine [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], Emails: jcastaneda@energiabr.org.br, zainaghi@yahoo.com; Chohfi, Felipe Moreton; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], Emails: fmchohfi@yahoo.com, cortez@reitoria.unicamp.br

    2006-07-01

    This paper provides an overview of the proven influence between anthropogenic actions such as those related with energy production and use on the natural environment. With the adverse perspectives of continued chemical changes occurring worldwide the paper also presents opportunities that can continue to ensure a more sustainable growth in harmony with the environment. A transition for a more efficient and environmentally correct final use of energy is needed in future in such a way as to diminish the conflicts between development and environment. Different scenarios aiming to provide the ideal routes for development to occur addressing sustainability indicators are studied. Some typical options for a more sustainable future include improved energy efficiency, more renewable energy and advanced energy technologies. National programs undertaken in Brazil such as those of the ethanol and bio diesel have a proven impact in the search for a sustainable future worldwide and should be further emphasized in future by means of the ratification of the Kyoto Protocol. (author)

  5. Challenges and opportunities for REDD+

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Sun, Zhanli; Müller, Daniel

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) is a promising mechanism of payments for ecosystem services with the aim to effectively reduce emissions in an efficient and equitable manner. REDD+ is part of the Paris-agreement reached at the UNFCCC COP21 in December 2015...... the opportunities and challenges of REDD+ for achieving effective, efficient and equitable outcomes and co-benefits (3E+). We substantiate our survey results with a literature review. Results suggest that the challenges in achieving the 3E+ relate to the disproportionality between deforestation drivers...

  6. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  7. System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System

    Directory of Open Access Journals (Sweden)

    Chengming Zhang

    2017-12-01

    Full Text Available To improve the endurance mileage of electric vehicles (EVs, it is important to decrease the energy consumption of the Permanent Magnet Synchronous Motor (PMSM drive system. This paper proposes a novel loss optimization control strategy named system efficiency improvement control which can optimize both inverter and motor losses. A nonlinear power converter loss model is built to fit the nonlinear characteristics of power devices. This paper uses double Fourier integral analysis to analytically calculate the fundamental and harmonic components of motor current by which the fundamental motor loss and harmonic motor loss can be accurately analyzed. From these loss models, a whole-frequency-domain system loss model is derived and presented. Based on the system loss model, the system efficiency improvement control method applies the genetic algorithm to adjust the motor current and PWM frequency together to optimize the inverter and motor losses by which the system efficiency can be significantly improved without seriously influence on the system stability over the whole operation range of EVs. The optimal effects of system efficiency is verified by the experimental results in both Si-IGBT-based PMSM system and SiC-MOSFET-based system.

  8. The Fuel Efficiency of Maritime Transport. Potential for improvement and analysis of barriers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M. [CE Delft, Delft (Netherlands); Behrends, B. [Marena Ltd., s.l. (United Kingdom); Lee, D.S. [Manchester Metropolitan University, Machester (United Kingdom)

    2012-02-15

    There is significant potential to improve the fuel efficiency of ships and thus contribute to reducing greenhouse gas emissions from maritime transport. It has long been recognised that this potential is not being fully exploited, owing to the existence of non-market barriers. This report analyses the barriers to implementing fuel efficiency improvements, and concludes that the most important of these are the split incentive between ship owners and operators, a lack of trusted data on new technologies, and transaction costs associated with evaluating measures. As a result, in practice about a quarter of the cost-effective abatement potential is unavailable. There are several ways to overcome these barriers. The split incentive can - to some extent - be overcome by providing more detailed information on the fuel efficiency of vessels, making due allowance for operational profiles. This would allow fuel consumption to be more accurately projected and a larger share of efficiency benefits to accrue to ship owners, thus increasing the return on investment in fuel-saving technologies. This would also require changes to standard charter parties. The credibility of information on new technologies can be improved through intensive collaboration between suppliers of new technologies and shipping companies. In order to overcome risk, government subsidies could provide an incentive. This could have the additional benefit that governments could require publication of results.

  9. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  10. Strategies of Transition to Sustainable Agriculture in Iran I- Improving Resources Use Efficiency

    Directory of Open Access Journals (Sweden)

    Alireza Koocheki

    2017-12-01

    Full Text Available Introduction Fast switch to sustainable agriculture patterns is not impossible for many farmers. However to achieve perfect sustainable in agro-ecosystems which are friendly with environment, changing conventional to sustainable agriculture should be carried slowly. For this purpose, three effective steps were mentioned: first level is increasing of inputs efficiency such as fertilizer and chemical pesticides which used in conventional agriculture now. Second level is related to changing inputs by friendly environmental inputs as alternative inputs and the final level is redesigning of the agro-ecosystems that its function is based on series of ecological process. On the other hand, achieving sustainable agriculture requires higher efficiency of inputs and many process should be replaced by friendly environmental inputs with chemical inputs and new system is designed based on ecological principles. The objective of this study was to offer approaches for improving inputs use efficiency as first step to transition from conventional to sustainable agriculture. Material and Methods In order to evaluate the transition status from conventional to sustainable agriculture in agro-ecosystems of Iran, scientific resource and researches that was performed about increasing of inputs efficiency as first step to transition from conventional to sustainable agriculture was studied. For this purpose, 177 studies that had been performed about using different inputs and its efficiency in various crops were assessed. Applied inputs included water, nitrogen and herbicides and studied plants included cereals (wheat, barley, rice, maize and sorghum, beans (bean, pea and lentil, oil crops (canola, sunflower, safflower and sesame, medicinal plants, potato, sugar beet and cotton. In this study, average and range of inputs use efficiency in different crops and also the relationship between increasing of inputs application with their use efficiency was assessed. In the

  11. Reluctance motor of new design with improved efficiency and power factor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen-Goos, P; Pieper, W

    1981-09-01

    Improvement of operating conditions and efficiency by development of new configurations of lamination and production methods for reluctance motors. Investigations during the starting-up period and of the operating behaviour in connection with variable frequency. Reluctance motors are designed in the range from 0,6-4kW with 4-pole winding. They are due to the following identification: 1. The power of motors is in accordance with VDE 42673. 2. The volume of lamination is equal to asynchronous motors of the same IED size. 3. Synchronous pull-out torque is in compliance with VDE 0530: Msub(K)sub(S) > 1,35 Mn (nominal torque). As against standard reluctance motors the following improvements with the new ones have been realized: 4. Increase of nominal power by approx. 100%. 5. Increase of quality factor by approx. 50%. 6. The efficiency is equal to asynchronous motors of the same IEC size.

  12. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    Science.gov (United States)

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  13. Research and Development Opportunities for Joining Technologies in HVAC&R

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States)

    2015-10-01

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reduction goals.

  14. IMPROVING THE EFFECTIVENESS AND EFFICIENCY OF EVIDENCE PRODUCTION FOR HEALTH TECHNOLOGY ASSESSMENT.

    Science.gov (United States)

    Facey, Karen; Henshall, Chris; Sampietro-Colom, Laura; Thomas, Sarah

    2015-01-01

    Health Technology Assessment (HTA) needs to address the challenges posed by high cost, effective technologies, expedited regulatory approaches, and the opportunities provided by collaborative real-world evaluation of technologies. The Health Technology Assessment International (HTAi) Policy Forum met to consider these issues and the implications for evidence production to inform HTA. This paper shares their discussion to stimulate further debate. A background paper, presentations, group discussions, and stakeholder role play at the 2015 HTAi Policy Forum meeting informed this paper. HTA has an important role to play in helping improve evidence production and ensuring that the health service is ready to adopt effective technologies. It needs to move from simply informing health system decisions to also working actively to align stakeholder expectations about realistic evidence requirements. Processes to support dialogue over the health technology life cycle need to be developed that are mindful of limited resources, operate across jurisdictions and learn from past processes. Collaborations between health technology developers and health systems in different countries should be encouraged to develop evidence that will inform decision making. New analytical techniques emerging for real-world data should be harnessed to support modeling for HTA. A paradigm shift (to "Health Innovation System 2.0") is suggested where HTA adopts a more central, proactive role to support alignment within and amongst stakeholders over the whole life cycle of the technology. This could help ensure that evidence production is better aligned with patient and health system needs and so is more effective and efficient.

  15. An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance.

    Science.gov (United States)

    Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Grabau, Jonathan D; Andres, Kristin N; Vandsburger, Moriel H; Powell, David K; Sorrell, Vincent L; Fornwalt, Brandon K

    2016-09-06

    Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10

  16. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  17. Evaluation and Improvement of Lighting Efficiency in Working Spaces

    Directory of Open Access Journals (Sweden)

    Ana Castillo-Martinez

    2018-04-01

    Full Text Available Lighting is an essential element for modern life, promoting a sense of wellbeing for users. However, bad illumination may produce health problems such as headaches and fatigue, among other vision problems. For that reason, this paper proposes the development of a smartphone-based application to help in lighting evaluation to guarantee the compliance of illumination regulations and to help increase illuminance efficiency, reducing its energy consumption. To perform this evaluation, the smartphone can be used as a lighting measurement tool, evaluating those measurements through an intelligent agent based in rules capable of guiding the decision-making process. As a result, this tool allows the evaluation of the real working environment to guarantee lighting requirements, helping in the prevention of health problems derived from bad illumination and improving the lighting efficiency at the same time.

  18. Integrated Circuit Chip Improves Network Efficiency

    Science.gov (United States)

    2008-01-01

    Prior to 1999 and the development of SpaceWire, a standard for high-speed links for computer networks managed by the European Space Agency (ESA), there was no high-speed communications protocol for flight electronics. Onboard computers, processing units, and other electronics had to be designed for individual projects and then redesigned for subsequent projects, which increased development periods, costs, and risks. After adopting the SpaceWire protocol in 2000, NASA implemented the standard on the Swift mission, a gamma ray burst-alert telescope launched in November 2004. Scientists and developers on the James Webb Space Telescope further developed the network version of SpaceWire. In essence, SpaceWire enables more science missions at a lower cost, because it provides a standard interface between flight electronics components; new systems need not be custom built to accommodate individual missions, so electronics can be reused. New protocols are helping to standardize higher layers of computer communication. Goddard Space Flight Center improved on the ESA-developed SpaceWire by enabling standard protocols, which included defining quality of service and supporting plug-and-play capabilities. Goddard upgraded SpaceWire to make the routers more efficient and reliable, with features including redundant cables, simultaneous discrete broadcast pulses, prevention of network blockage, and improved verification. Redundant cables simplify management because the user does not need to worry about which connection is available, and simultaneous broadcast signals allow multiple users to broadcast low-latency side-band signal pulses across the network using the same resources for data communication. Additional features have been added to the SpaceWire switch to prevent network blockage so that more robust networks can be designed. Goddard s verification environment for the link-and-switch implementation continuously randomizes and tests different parts, constantly anticipating

  19. Improving Energy Efficiency in Idle Listening of IEEE 802.11 WLANs

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan

    2016-01-01

    Full Text Available This paper aims to improve energy efficiency of IEEE 802.11 wireless local area networks (WLANs by effectively dealing with idle listening (IL, which is required for channel sensing and is unavoidable in a contention-based channel access mechanism. Firstly, we show that IL is a dominant source of energy drain in WLANs and it cannot be effectively alleviated by the power saving mechanism proposed in the IEEE 802.11 standard. To solve this problem, we propose an energy-efficient mechanism that combines three schemes in a systematic way: downclocking, frame aggregation, and contention window adjustment. The downclocking scheme lets a station remain in a semisleep state when overhearing frames destined to neighbor stations, whereby the station consumes the minimal energy without impairing channel access capability. As well as decreasing the channel access overhead, the frame aggregation scheme prolongs the period of semisleep time. Moreover, by controlling the size of contention window based on the number of stations, the proposed mechanism decreases unnecessary IL time due to collision and retransmission. By deriving an analysis model and performing extensive simulations, we confirm that the proposed mechanism significantly improves the energy efficiency and throughput, by up to 2.8 and 1.8 times, respectively, compared to the conventional power saving mechanisms.

  20. Improving the Efficiency of Photon Collection by Compton Rescue

    Science.gov (United States)

    2011-03-01

    burnished by vibratory shot peening,” Acta Physica Polonica , vol. A 110, pp. 739–46, 2006. [4] M. Cunningham et al., “First-generation hybrid compact...Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright...R. Kowash (Member) Date AFIT/GAP/ENP/11-M10 Abstract A method to improve the efficiency of photon collection in thin planar HPGe de- tectors was

  1. A two-factor method for appraising building renovation and energy efficiency improvement projects

    International Nuclear Information System (INIS)

    Martinaitis, Vytautas; Kazakevicius, Eduardas; Vitkauskas, Aloyzas

    2007-01-01

    The renovation of residential buildings usually involves a variety of measures aiming at reducing energy and building maintenance bills, increasing safety and market value, and improving comfort and aesthetics. A significant number of project appraisal methods in current use-such as calculations of payback time, net present value, internal rate of return or cost of conserved energy (CCE)-only quantify energy efficiency gains. These approaches are relatively easy to use, but offer a distorted view of complex modernization projects. On the other hand, various methods using multiple criteria take a much wider perspective but are usually time-consuming, based on sometimes uncertain assumptions and require sophisticated tools. A 'two-factor' appraisal method offers a compromise between these two approaches. The main idea of the method is to separate investments into those related to energy efficiency improvements, and those related to building renovation. Costs and benefits of complex measures, which both influence energy consumption and improve building constructions, are separated by using a building rehabilitation coefficient. The CCE is used for the appraisal of energy efficiency investments, while investments in building renovation are appraised using standard tools for the assessment of investments in maintenance, repair and rehabilitation

  2. A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-02-01

    Full Text Available The key to control the range extender generation system is to improve the efficiency and reduce the emissions of the electric vehicle (EV. In this paper, based on the purpose of efficiency optimization, both engine and generator are matched to get a public high efficiency region, and a partial power following control strategy was presented. The engine speed is constant in the defined power range, so the output power regulation of the range extender is only realized by the adjustment of the torque of the generator. Engine speed and generator torque were decoupled. An improved proportional resonant (PR controller is adopted to achieve fast output power regulation. In order to ensure the response characteristics of the control system and to improve the robustness, the impacts on system’s characteristics and stability caused by PR controller and parameters in the inner-current loop were analyzed via frequency response characteristics. A pre-Tustin with deviation compensation is proposed for PR controller’s discretization. A stable and robust power following control method is obtained for the range extender control system. Finally, simulation and experiment of the proposed control strategy illustrated its feasibility and correctness.

  3. Improving the efficiency of a chemotherapy day unit: Applying a business approach to oncology

    NARCIS (Netherlands)

    van Lent, W.A.M.; Goedbloed, N.; van Harten, Willem H.

    2009-01-01

    Aim: To improve the efficiency of a hospital-based chemotherapy day unit (CDU). - Methods: The CDU was benchmarked with two other CDUs to identify their attainable performance levels for efficiency, and causes for differences. Furthermore, an in-depth analysis using a business approach, called lean

  4. Improving the efficiency of cognitive-behavioural therapy by using formal client feedback.

    Science.gov (United States)

    Janse, Pauline D; De Jong, Kim; Van Dijk, Maarten K; Hutschemaekers, Giel J M; Verbraak, Marc J P M

    2017-09-01

    Feedback from clients on their view of progress and the therapeutic relationship can improve effectiveness and efficiency of psychological treatments in general. However, what the added value is of client feedback specifically within cognitive-behavioural therapy (CBT), is not known. Therefore, the extent to which the outcome of CBT can be improved is investigated by providing feedback from clients to therapists using the Outcome Rating Scale (ORS) and Session Rating Scale (SRS). Outpatients (n = 1006) of a Dutch mental health organization either participated in the "treatment as usual" (TAU) condition, or in Feedback condition of the study. Clients were invited to fill in the ORS and SRS and in the Feedback condition therapists were asked to frequently discuss client feedback. Outcome on the SCL-90 was only improved specifically with mood disorders in the Feedback condition. Also, in the Feedback condition, in terms of process, the total number of required treatment sessions was on average two sessions fewer. Frequently asking feedback from clients using the ORS/SRS does not necessarily result in a better treatment outcome in CBT. However, for an equal treatment outcome significantly fewer sessions are needed within the Feedback condition, thus improving efficiency of CBT.

  5. Biological opportunities for metal recovery

    International Nuclear Information System (INIS)

    Holmes, D.S.; Debus, S.H.

    1991-01-01

    An overview is presented of existing biological technologies for the recovery of copper and uranium. Engineering and biological challenges and opportunities in these areas are discussed. New opportunities for the bio oxidation of refractory goal ore are described. Techniques for the development of new strains of microorganisms for commercial metal recovery applications are discussed with special reference to the use of genetic manipulation for bacterial strain improvement. (author)

  6. Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China

    International Nuclear Information System (INIS)

    Lu, Yingying; Liu, Yu; Zhou, Meifang

    2017-01-01

    This paper explores the rebound effect of different energy types in China based on a static computable general equilibrium model. A one-off 5% energy efficiency improvement is imposed on five different types of energy, respectively, in all the 135 production sectors in China. The rebound effect is measured both on the production level and on the economy-wide level for each type of energy. The results show that improving energy efficiency of using electricity has the largest positive impact on GDP among the five energy types. Inter-fuel substitutability does not affect the macroeconomic results significantly, but long-run impact is usually greater than the short-run impact. For the exports-oriented sectors, those that are capital-intensive get big negative shock in the short run while those that are labour-intensive get hurt in the long run. There is no “backfire” effect; however, improving efficiency of using electricity can cause negative rebound, which implies that improving the energy efficiency of using electricity might be a good policy choice under China's current energy structure. In general, macro-level rebound is larger than production-level rebound. Primary energy goods show larger rebound effect than secondary energy goods. In addition, the paper points out that the policy makers in China should look at the rebound effect in the long term rather than in the short term. The energy efficiency policy would be a good and effective policy choice for energy conservation in China when it still has small inter-fuel substitution. - Highlights: • Primary energy goods show larger rebound effect than secondary energy goods. • Improving efficiency of using electricity can cause negative rebound. • The energy efficiency policy would be an effective policy choice for China. • Policy-makers should consider the rebound effect in the longer term.

  7. Improved contact metallization for high efficiency EFG polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Dube, C.E.; Gonsiorawski, R.C.

    1990-01-01

    Improvements in the performance of polycrystalline silicon solar cells based on a novel, laser patterned contact process are described. Small lots of cells having an average conversion efficiency of 14 + %, with several cells approaching 15%, are reported for cells of 45 cm 2 area. The high efficiency contact design is based on YAG laser patterning of the silicon nitride anti-reflection coating. The Cu metallization is done using light-induced plating, with the cell providing the driving voltage for the plating process. The Cu electrodeposits into the laser defined windows in the AR coating for reduced contact area, following which the Cu bridges on top of the Ar coating to form a continuous finger pattern. The higher cell conversion efficiency is attributed to reduced shadow loss, higher junction quality, and reduced metal-semiconductor interfacial area

  8. Opportunities and Challenges for Water and Wastewater Industries to Provide Exchangeable Services

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-13

    Water and wastewater treatment plants and distribution systems use significant amounts of energy, around 2 - 4% of the total electricity used in the US, and their energy use is projected to increase as populations increase and regulations become more stringent. Water and wastewater systems have largely been disconnected from the electric utilities' efforts to improve energy efficiency and provide energy efficiency and provide grid services, likely because their core mission is to provide clean water and treated wastewater. Energy efficiency has slowly crept into the water and wastewater industry as the economic benefit has become more apparent, but there is still potential for significant improvement. Some of the larger, more progressive water utilities are starting to consider providing grid services; however, it remains a foreign concept to many. This report explores intrinsic mechanisms by which the water and wastewater industries can provide exchangeable services, the benefit to the parties involved, and the barriers to implementation. It also highlights relevant case studies and next steps. Although opportunities for increasing process efficiencies are certainly available, this report focuses on the exchangeable services that water and wastewater loads can provide to help maintain grid reliability, keep overall costs down, and increase the penetration of distributed renewables on the electric grid. These services have potential to provide water utilities additional value streams, using existing equipment with modest or negligible upgrade cost.

  9. PROSPECTS OF ENERGY EFFICIENCY IMPROVEMENT AND DEVELOPMENT OF THE RENEWABLE ENERGY SOURCES IN PROVINCE OF VOJVODINA

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdenac, D.; Ciric, R.; Tesic, M.

    2007-07-01

    The paper presents the outcome of the research in the field of energy efficiency improvement and development of the renewable energy sources in province of Vojvodina (Serbia). The summarized results of the paper are: - Potentials for energy efficiency improvement in Vojvodina, - Potentials for development of renewable energy sources in Vojvodina, - Proposal of measures of the energy policy for the promotion of research and development (R and D) which will use local scientific and technical potentials in the field of renewable energy sources and energy efficiency and improve the sustainability on the long run. - Proposal of measures for the energy policy in the domain of renewable energy sources development and energy efficiency and estimation of potentials for improvements by applying proposed measures in order to accomplish established tasks. - Synthesizing findings and proposals in the Action Plan of the Executive Council of the Autonomous Province of Vojvodina for the realization of the medium term program as well as the establishment of the monitoring plan for the assessment of program objectives progress. (auth)

  10. A Novel Design for Drug-Drug Interaction Alerts Improves Prescribing Efficiency.

    Science.gov (United States)

    Russ, Alissa L; Chen, Siying; Melton, Brittany L; Johnson, Elizabette G; Spina, Jeffrey R; Weiner, Michael; Zillich, Alan J

    2015-09-01

    Drug-drug interactions (DDIs) are common in clinical care and pose serious risks for patients. Electronic health records display DDI alerts that can influence prescribers, but the interface design of DDI alerts has largely been unstudied. In this study, the objective was to apply human factors engineering principles to alert design. It was hypothesized that redesigned DDI alerts would significantly improve prescribers' efficiency and reduce prescribing errors. In a counterbalanced, crossover study with prescribers, two DDI alert designs were evaluated. Department of Veterans Affairs (VA) prescribers were video recorded as they completed fictitious patient scenarios, which included DDI alerts of varying severity. Efficiency was measured from time-stamped recordings. Prescribing errors were evaluated against predefined criteria. Efficiency and prescribing errors were analyzed with the Wilcoxon signed-rank test. Other usability data were collected on the adequacy of alert content, prescribers' use of the DDI monograph, and alert navigation. Twenty prescribers completed patient scenarios for both designs. Prescribers resolved redesigned alerts in about half the time (redesign: 52 seconds versus original design: 97 seconds; p<.001). Prescribing errors were not significantly different between the two designs. Usability results indicate that DDI alerts might be enhanced by facilitating easier access to laboratory data and dosing information and by allowing prescribers to cancel either interacting medication directly from the alert. Results also suggest that neither design provided adequate information for decision making via the primary interface. Applying human factors principles to DDI alerts improved overall efficiency. Aspects of DDI alert design that could be further enhanced prior to implementation were also identified.

  11. An economic evaluation of forest improvement opportunities and impacts from the emergence of a biomass fuel market in southwestern Nova Scotia

    International Nuclear Information System (INIS)

    Manley, A.L.; Savage, G.D.

    1993-01-01

    In 1991, Nova Scotia's public power utility initiated a process to purchase privately produced electrical power. A proposal was received to produce 20--25 megawatts from the burning of 350 to 400,000 tonnes annually of wood residue and forest biomass in a co-generation facility in southwestern Nova Scotia, Canada. This proposal has been proceeding and is nearing the construction phase. As a result of this potential market, there is an opportunity for increasing the scope and extent of forest improvement operations. Options for a closer integration of planning, harvesting, and silviculture activities will emerge. Optimum end use allocation could occur and enhance overall economic efficiency. The objective of this project is to assess the effect that this emerging market for forest biomass could have on forest management in the supply area. This project has two phases. Phase 1, presented here, develops the framework and methodology. Phase 2 will apply a linear programming-based analytical model for evaluation. Phase 1 accumulated the required data and information for both the current management and marketing situation and that including the emerging biomass market. Growth and yield of the natural stand types were calculated for a mixture of conventional roundwood products and chip equivalents. Management regimes, based on current forest type, site class, and appropriate silviculture treatments, were established. Expected multiproduct yields, by regime were estimated. Silviculture and harvest costs along with product revenues were used to calculate standing timber and soil expectation values. In Phase 2, a stand-based optimization model will be developed to explore and evaluate the long term opportunities and differences between the present and emerging management and market situations

  12. SCM: A method to improve network service layout efficiency with network evolution

    Science.gov (United States)

    Zhao, Qi; Zhang, Chuanhao

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299

  13. ANALYSIS AND IMPROVEMENT OF PRODUCTION EFFICIENCY IN A CONSTRUCTION MACHINE ASSEMBLY LINE

    Directory of Open Access Journals (Sweden)

    Alidiane Xavier

    2016-07-01

    Full Text Available The increased competitiveness in the market encourages the ongoing development of systems and production processes. The aim is to increase production efficiency to production costs and waste be reduced to the extreme, allowing an increased product competitiveness. The objective of this study was to analyze the overall results of implementing a Kaizen philosophy in an automaker of construction machinery, using the methodology of action research, which will be studied in situ the macro production process from receipt of parts into the end of the assembly line , prioritizing the analysis time of shipping and handling. The results show that the continuous improvement activities directly impact the elimination of waste from the assembly process, mainly related to shipping and handling, improving production efficiency by 30% in the studied processes.

  14. SCM: A method to improve network service layout efficiency with network evolution.

    Science.gov (United States)

    Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.

  15. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    Energy Technology Data Exchange (ETDEWEB)

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  16. Application of porous medium for efficiency improvement of a concentrated solar air heating system

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    The objective of this study is to evaluate the thermal efficiency of a concentrated solar collector for a high temperature air heating system. The proposed system consists of a 25-m2 focused multi-flat-mirror solar heliostat equipped with a porous medium solar collector/receiver which was installed on the top of a 3-m tower, called ‘tower receiver’. To know how the system efficiency cloud be improved by using porous medium, the proposed system with and without porous medium were tested and the comparative study was performed. The experimental results reveal that, for the proposed system, application of porous medium is promising, the efficiency can be increased about 2 times compared to the conventional one. In addition, due to the porous medium used in this study was the waste material with very low cost. It can be summarized that the substantial efficiency improvement with very low investment cost of the proposed system seem to be a vital measures for addressing the energy issues.

  17. Improving the bottom line

    International Nuclear Information System (INIS)

    Anderson, J.; Hennagir, T.

    1994-01-01

    With slower sales in North America and Europe, manufacturers are looking to supply power equipment in the expanding global markets. In doing so, they are finding opportunities and challenges. Competition is tougher in these markets; as well, each market has its own demands. Independent Energy recently spoke with a number of the top manufacturing companies and several system packagers about the markets for power equipment. The topics ranged from higher efficiencies and lower emissions on gas turbines to larger boilers. A growing need for cleaner combustion technologies in many emerging nations, are leading vendors to keep research and development (R ampersand D) budgets at the top of priority lists. In order to find ways to meet cleaner, more efficient demands, some of the equipment industry's leaders are renewing old partnerships and making new ones through alliances and joint ventures. Combining R ampersand D efforts and offering equipment delivery from points around the world instead of one central source is crucial to success in these expanding markets. As well, these alliances offer manufacturers the opportunity to find partners in the countries where much of the new power generation supply will be built. This makes doing business with local or state utilities - and developers who also are seeking local partners - less risky. At the same time, it offers opportunities for these companies to expand into new markets and provide equipment from a local level, boosting economic growth in emerging nations. As manufacturers adjust their market positions, they prepare themselves for an expanding world marketplace which demands more competitive, more efficient and constantly improving ways of doing business

  18. Equality of Opportunity for Well-Being

    DEFF Research Database (Denmark)

    Mahler, Daniel Gerszon; Ramos, Xavier

    2017-01-01

    A growing literature has tried to measure the extent to which individuals have equal opportunities to acquire income. At the same time, policy makers have doubled down on efforts to go beyond income when measuring well- being. We attempt to bridge these two areas by measuring the extent to which...... individuals have equal opportunities to achieve a high level of well-being. We use the German Socio-Economic Panel to measure well-being in four different ways including incomes. This makes it possible to determine if the way well-being is measured matters for identifying who the opportunity......-deprived are and for tracking inequality of opportunity over time. We find that, regardless of how well-being is measured, the same people are opportunity-deprived and equality of opportunity has improved over the past 20 years. This suggests that going beyond income has little relevance if the objective is to provide equal...

  19. Currently developing opportunities in food irradiation and modern irradiation facilities

    International Nuclear Information System (INIS)

    Wanke, R.

    1997-01-01

    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics M ini Cell . A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local o nsite control . Red meat: a currently developing opportunity. (Author)

  20. Lean-driven improvements slash wait times, drive up patient satisfaction scores.

    Science.gov (United States)

    2012-07-01

    Administrators at LifePoint Hospitals, based in Brentwood, TN, used lean manufacturing techniques to slash wait times by as much as 30 minutes and achieve double-digit increases in patient satisfaction scores in the EDs at three hospitals. In each case, front-line workers took the lead on identifying opportunities for improvement and redesigning the patient-flow process. As a result of the new efficiencies, patient volume is up by about 25% at all three hospitals. At each hospital, the improvement process began with Kaizen, a lean process that involves bringing personnel together to flow-chart the current system, identify problem areas, and redesign the process. Improvement teams found big opportunities for improvement at the front end of the flow process. Key to the approach was having a plan up front to deal with non-compliance. To sustain improvements, administrators gather and disseminate key metrics on a daily basis.

  1. Efficient running of steam generator trims fuel cost

    International Nuclear Information System (INIS)

    Selim, M.; Eltouny, S.A.

    1993-01-01

    E scaling energy prices have led to drastic changes in the operating philosophy of the worldwide industry. About 50% of the thermal energy in industry is being consumed in steam boilers. The new energy reduction programs that have been adopted in egypt draw attention to the boilers, not only to trim energy consumption and improve the production of steam but also to save as much money as possible in doing it. Organization for energy planning (OEP) has started a program for 'Boiler efficiency improvement' in industry since 2 years. The program aimed at performing energy audits in a selective number of industries in both public and private sectors using fire tube boilers produced locally by El Nasr company. As a result of audits an evaluation of performance of this type of boilers was,performed. The energy profiles and the common problems affecting the efficiency of boilers were determined. Energy conservation opportunities (ECO) were identified. 9 figs

  2. How can whole house fiscal measures encourage consumers to improve the energy efficiency of their homes?

    International Nuclear Information System (INIS)

    Waterson, Elaine

    2005-01-01

    Over recent years energy efficiency markets in the UK have shown significant growth in the sale of energy efficient white goods and, more recently, efficient boilers. However, despite significant incentives available through energy supplier EEC programmes (a market mechanism), insulation markets have shown limited growth. In particular, cavity wall insulation - the largest single household energy efficiency opportunity in the UK - is difficult to sell. It is a discretionary purchase and not a priority for most consumers. To date UK fiscal measures for energy efficiency have been designed specifically to tackle barriers to the purchase of defined products, including insulation, rather than to tackle the energy efficiency of the house as a whole. For example contractor installed insulation already benefits from 5% VAT, but this is of little or no benefit where insulation is installed for free or is highly subsidised. This paper considers how a more holistic fiscal approach could stimulate consumer action on measures that have, to date, been difficult to sell. Specifically a fiscal approach that focuses on the energy efficiency of the house as a whole. In the context of introduction of the energy report in 2006, under the Energy Performance of Buildings Directive, this paper i) identifies a number of promising new fiscal measures, ii) discusses the prospects for their future success and iii) sets out the contribution that their introduction could make to the UK government's climate change targets and its sustainable energy agenda

  3. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach.

    Science.gov (United States)

    Grey, Charlotte N B; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina; Poortinga, Wouter

    2017-08-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes.

  4. Using silicon nanostructures for the improvement of silicon solar cells' efficiency

    International Nuclear Information System (INIS)

    Torre, J. de la; Bremond, G.; Lemiti, M.; Guillot, G.; Mur, P.; Buffet, N.

    2006-01-01

    Silicon nanostructures (ns-Si) show interesting optical and electrical properties as a result of the band gap widening caused by quantum confinement effects. Along with their potential utilization for silicon-based light emitters' fabrication, they could also represent an appealing option for the improvement of energy conversion efficiency in silicon-based solar cells whether by using their luminescence properties (photon down-conversion) or the excess photocurrent produced by an improved high-energy photon's absorption. In this work, we report on the morphological and optical studies of non-stoichiometric silica (SiO x ) and silicon nitride (SiN x ) layers containing silicon nanostructures (ns-Si) in view of their application for solar cell's efficiency improvement. The morphological studies of the samples performed by transmission electron microscopy (TEM) unambiguously show the presence of ns-Si in a crystalline form for high temperature-annealed SiO x layers and for low temperature deposition of SiN x layers. The photoluminescence emission (PL) shows a rather high efficiency in both kind of layers with an intensity of only a factor ∼ 100 lower than that of porous silicon (pi-Si). The photocurrent spectroscopy (PC) shows a significant increase of absorption at high photon energy excitation most probably related to photon absorption within ns-Si quantized states. Moreover, the absorption characteristics obtained from PC spectra show a good agreement with the PL emission states unambiguously demonstrating a same origin, related to Q-confined excitons within ns-Si. Finally, the major asset of this material is the possibility to incorporate it to solar cells manufacturing processing for an insignificant cost

  5. Energy Efficiency Policy in the United States: Overview of Trends at Different Levels of Government

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Cochran, J.; Vorum, M.

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  6. Energy Efficiency Policy in the United States. Overview of Trends at Different Levels of Government

    Energy Technology Data Exchange (ETDEWEB)

    Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vorum, Martin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  7. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  8. Currently developing opportunities in food irradiation and modern irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, R [Director Business Development. SteriGenics International Inc. 17901 East Warren Avenue No. 4, Detroit, Michigan 48224-1333 (United States)

    1998-12-31

    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics {sup M}ini Cell{sup .} A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local {sup o}nsite control{sup .} Red meat: a currently developing opportunity. (Author)

  9. Currently developing opportunities in food irradiation and modern irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, R. [Director Business Development. SteriGenics International Inc. 17901 East Warren Avenue No. 4, Detroit, Michigan 48224-1333 (United States)

    1997-12-31

    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics {sup M}ini Cell{sup .} A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local {sup o}nsite control{sup .} Red meat: a currently developing opportunity. (Author)

  10. Improving crop water use efficiency using carbon isotope discrimination

    International Nuclear Information System (INIS)

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  11. Quality initiatives: lean approach to improving performance and efficiency in a radiology department.

    Science.gov (United States)

    Kruskal, Jonathan B; Reedy, Allen; Pascal, Laurie; Rosen, Max P; Boiselle, Phillip M

    2012-01-01

    Many hospital radiology departments are adopting "lean" methods developed in automobile manufacturing to improve operational efficiency, eliminate waste, and optimize the value of their services. The lean approach, which emphasizes process analysis, has particular relevance to radiology departments, which depend on a smooth flow of patients and uninterrupted equipment function for efficient operation. However, the application of lean methods to isolated problems is not likely to improve overall efficiency or to produce a sustained improvement. Instead, the authors recommend a gradual but continuous and comprehensive "lean transformation" of work philosophy and workplace culture. Fundamental principles that must consistently be put into action to achieve such a transformation include equal involvement of and equal respect for all staff members, elimination of waste, standardization of work processes, improvement of flow in all processes, use of visual cues to communicate and inform, and use of specific tools to perform targeted data collection and analysis and to implement and guide change. Many categories of lean tools are available to facilitate these tasks: value stream mapping for visualizing the current state of a process and identifying activities that add no value; root cause analysis for determining the fundamental cause of a problem; team charters for planning, guiding, and communicating about change in a specific process; management dashboards for monitoring real-time developments; and a balanced scorecard for strategic oversight and planning in the areas of finance, customer service, internal operations, and staff development. © RSNA, 2012.

  12. Process improvement methods increase the efficiency, accuracy, and utility of a neurocritical care research repository.

    Science.gov (United States)

    O'Connor, Sydney; Ayres, Alison; Cortellini, Lynelle; Rosand, Jonathan; Rosenthal, Eric; Kimberly, W Taylor

    2012-08-01

    Reliable and efficient data repositories are essential for the advancement of research in Neurocritical care. Various factors, such as the large volume of patients treated within the neuro ICU, their differing length and complexity of hospital stay, and the substantial amount of desired information can complicate the process of data collection. We adapted the tools of process improvement to the data collection and database design of a research repository for a Neuroscience intensive care unit. By the Shewhart-Deming method, we implemented an iterative approach to improve the process of data collection for each element. After an initial design phase, we re-evaluated all data fields that were challenging or time-consuming to collect. We then applied root-cause analysis to optimize the accuracy and ease of collection, and to determine the most efficient manner of collecting the maximal amount of data. During a 6-month period, we iteratively analyzed the process of data collection for various data elements. For example, the pre-admission medications were found to contain numerous inaccuracies after comparison with a gold standard (sensitivity 71% and specificity 94%). Also, our first method of tracking patient admissions and discharges contained higher than expected errors (sensitivity 94% and specificity 93%). In addition to increasing accuracy, we focused on improving efficiency. Through repeated incremental improvements, we reduced the number of subject records that required daily monitoring from 40 to 6 per day, and decreased daily effort from 4.5 to 1.5 h/day. By applying process improvement methods to the design of a Neuroscience ICU data repository, we achieved a threefold improvement in efficiency and increased accuracy. Although individual barriers to data collection will vary from institution to institution, a focus on process improvement is critical to overcoming these barriers.

  13. Eco-Efficient Process Improvement at the Early Development Stage: Identifying Environmental and Economic Process Hotspots for Synergetic Improvement Potential.

    Science.gov (United States)

    Piccinno, Fabiano; Hischier, Roland; Seeger, Stefan; Som, Claudia

    2018-05-15

    We present here a new eco-efficiency process-improvement method to highlight combined environmental and costs hotspots of the production process of new material at a very early development stage. Production-specific and scaled-up results for life cycle assessment (LCA) and production costs are combined in a new analysis to identify synergetic improvement potentials and trade-offs, setting goals for the eco-design of new processes. The identified hotspots and bottlenecks will help users to focus on the relevant steps for improvements from an eco-efficiency perspective and potentially reduce their associated environmental impacts and production costs. Our method is illustrated with a case study of nanocellulose. The results indicate that the production route should start with carrot pomace, use heat and solvent recovery, and deactivate the enzymes with bleach instead of heat. To further improve the process, the results show that focus should be laid on the carrier polymer, sodium alginate, and the production of the GripX coating. Overall, the method shows that the underlying LCA scale-up framework is valuable for purposes beyond conventional LCA studies and is applicable at a very early stage to provide researchers with a better understanding of their production process.

  14. Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery?

    Science.gov (United States)

    Schwartz, H C

    2014-05-01

    The purpose of this study was to compare the efficiency of bimaxillary orthognathic surgery using computer-aided surgical simulation (CASS), with cases planned using traditional methods. Total doctor time was used to measure efficiency. While costs vary widely in different localities and in different health schemes, time is a valuable and limited resource everywhere. For this reason, total doctor time is a more useful measure of efficiency than is cost. Even though we use CASS primarily for planning more complex cases at the present time, this study showed an average saving of 60min for each case. In the context of a department that performs 200 bimaxillary cases each year, this would represent a saving of 25 days of doctor time, if applied to every case. It is concluded that CASS offers great potential for improving efficiency when used in the planning of bimaxillary orthognathic surgery. It saves significant doctor time that can be applied to additional surgical work. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Research Opportunities for Fischer-Tropsch Technology

    International Nuclear Information System (INIS)

    Jackson, Nancy B.

    1999-01-01

    Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment

  16. Achieving efficiency in Africa: What are the priorities, the best practices and the policy measures?

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Latsoucabe

    2010-09-15

    Energy Efficiency (EE) improvements offer huge opportunities for Africa to meet growing energy needs, secure a more sustainable energy supply and demand, improve business productivity, preserve local environment and mitigate GHG emissions. The paper focuses on the ways and means to overcome the related challenges in order to reap the benefits of such improvements. It also identifies the priorities for Africa and provides responses on how to establish and implement effective policy-measures to enhance EE in African countries. Subsequently, it delivers key recommendations to help improve EE policies and practices and to implement national and regional measures of EE improvements.

  17. Opportunities to improve the conversion of food waste to lactate: Fine-tuning secondary factors.

    Science.gov (United States)

    RedCorn, Raymond; Engelberth, Abigail S

    2017-11-01

    Extensive research has demonstrated the potential for bioconversion of food waste to lactate, with major emphasis on adjusting temperature, pH, and loading rate of the fermentation. Each of these factors has a significant effect on lactate production; however, additional secondary factors have received little attention. Here we investigate three additional factors where opportunities exist for process improvement: freezing of samples during storage, discontinuous pH control, and holdover of fermentation broth between fermentations. Freezing samples prior to fermentation was shown to reduce the production rate of lactate by 8%, indicating freeze-thaw should be avoided in experiments. Prior work indicated a trade-off in pH control strategies, where discontinuous pH control correlated with higher lactate accumulation while continuous pH control correlated with higher production rate. Here we demonstrate that continuous pH control can achieve both higher lactate accumulation and higher production rate. Finally, holding over fermentation broth was shown to be a simple method to improve production rate (by 18%) at high food waste loading rates (>140 g volatile solids L -1 ) but resulted in lower lactate accumulation (by 17%). The results inform continued process improvements within the waste treatment of food waste through fermentation to lactic acid.

  18. Prospects for Genetic Improvement in Internal Nitrogen Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2017-10-01

    Full Text Available While improving the efficiency at which rice plants take up fertiliser nitrogen (N will be critical for the sustainability of rice (Oryza sativa L. farming systems in future, improving the grain yield of rice produced per unit of N accumulated in aboveground plant material (agronomic N use efficiency; NUEagron through breeding may also be a viable means of improving the sustainability of rice cropping. Given that NUEagron (grain yield/total N uptake is a function of harvest index (HI; grain yield/crop biomass × crop biomass/total N uptake, and that improving HI is already the target of most breeding programs, and specific improvement in NUEagron can only really be achieved by increasing the crop biomass/N uptake. Since rice crops take up around 80% of total crop N prior to flowering, improving the biomass/N uptake (NUEveg prior to, or at, flowering may be the best means to improve the NUEagron. Ultimately, however, enhanced NUEagron may come at the expense of grain protein unless the N harvest index increases concurrently. We investigated the relationships between NUEagron, total N uptake, grain yield, grain N concentration (i.e., protein and N harvest index (NHI in 16 rice genotypes under optimal N conditions over two seasons to determine if scope exists to improve the NHI and/or grain protein, while maintaining or enhancing NUEagron in rice. Using data from these experiments and from an additional experiment with cv. IR64 under optimum conditions at an experimental farm to establish a benchmark for NUE parameters in high-input, high yielding conditions, we simulated theoretical potential improvements in NUEveg that could be achieved in both low and high-input scenarios by manipulating target NHIs and grain protein levels. Simulations suggested that scope exists to increase grain protein levels in low yielding scenarios with only modest (5–10% reductions in current NUEagron by increasing the current NHI from 0.6 to 0.8. Furthermore

  19. Improving solar-pumped laser efficiency by a ring-array concentrator

    Science.gov (United States)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  20. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  1. Improving robustness and computational efficiency using modern C++

    International Nuclear Information System (INIS)

    Paterno, M; Kowalkowski, J; Green, C

    2014-01-01

    For nearly two decades, the C++ programming language has been the dominant programming language for experimental HEP. The publication of ISO/IEC 14882:2011, the current version of the international standard for the C++ programming language, makes available a variety of language and library facilities for improving the robustness, expressiveness, and computational efficiency of C++ code. However, much of the C++ written by the experimental HEP community does not take advantage of the features of the language to obtain these benefits, either due to lack of familiarity with these features or concern that these features must somehow be computationally inefficient. In this paper, we address some of the features of modern C+-+, and show how they can be used to make programs that are both robust and computationally efficient. We compare and contrast simple yet realistic examples of some common implementation patterns in C, currently-typical C++, and modern C++, and show (when necessary, down to the level of generated assembly language code) the quality of the executable code produced by recent C++ compilers, with the aim of allowing the HEP community to make informed decisions on the costs and benefits of the use of modern C++.

  2. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  3. Improving Continuing Professional Development opportunities for radiographers: A single centre evaluation

    International Nuclear Information System (INIS)

    Stevens, Barry J.; Wade, Demetri

    2017-01-01

    Purpose: This study aimed to identify current barriers to CPD and generate ideas for strategies to overcome these issues. Further aims were to gather an overview of respondents' understanding and opinions of CPD. Methods: An online survey was used to acquire information from departmental band 5 and band 6 radiographers. Descriptive statistical analysis and thematic analysis were performed to understand demographics and individuals' behaviours and experiences. Findings: Radiographers (n = 33) were sent an invitation via email providing a response rate of 75.8% (n = 25), with 20 females (80%) and 5 males (20%). 52% (n = 13) dedicate less than three hours a month. Participants highlighted time restraint as their biggest barrier to CPD. They also indicated a reluctance to use their own time to undertake work-related learning, despite exhibiting positive attitudes towards CPD. Radiographers see CPD as a vital and necessary, career-long learning process and they recognise the impacts on service provision. The notion of dedicated study time was unanimously suggested as the best approach to increase commitment to CPD. Conclusion: Radiographers demonstrated positive opinions of CPD, yet it was evident that many are not undertaking activities during their own time and it was acknowledged that opportunities during work time are limited. The provision of study time in work was suggested as an approach to improve radiographer's opportunities to complete CPD. Training sessions underlining the necessity of CPD in maintaining registration, what constitutes CPD and reinforcement of the benefits of systematic recording of CPD should be provided. - Highlights: • 80% believe they do not do enough CPD, 52% dedicate less than 3 h a month. • Radiographers are aware of the positive impact of learning on development. • Training should be given as a strategy to address radiographers' CPD inactivity. • The overarching theme relating to barriers to CPD is

  4. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    Energy Technology Data Exchange (ETDEWEB)

    Michael Killian

    2009-09-30

    The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have

  5. Investigation of Electrical Energy Efficiency Use in an Automobile Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jacob TSADO

    2016-12-01

    Full Text Available This research work investigated the electrical energy efficiency improvement and cost saving potentials for automobile assembly plant; a case of Peugeot Automobile Nigeria Limited. The study identified lighting system as a major source through which energy is being wasted, hence efficient energy saving lighting systems are being proffered; also saving accrued were determined to justify their deployment. In the course of this work, an energy saving calculating tool was developed to calculate energy saving capabilities using energy efficient lamps. With ample devotion to the implementation of the recommendations made, the cost of energy per car will be drastically reduced while profits are also made simultaneously. In all, more cars will be produced thus translating to more employment opportunities in the industry.

  6. Improving The Efficiency Of Ammonia Electrolysis For Hydrogen Production

    Science.gov (United States)

    Palaniappan, Ramasamy

    Given the abundance of ammonia in domestic and industrial wastes, ammonia electrolysis is a promising technology for remediation and distributed power generation in a clean and safe manner. Efficiency has been identified as one of the key issues that require improvement in order for the technology to enter the market phase. Therefore, this research was performed with the aim of improving the efficiency of hydrogen production by finding alternative materials for the cathode and electrolyte. 1. In the presence of ammonia the activity for hydrogen evolution reaction (HER) followed the trend Rh>Pt>Ru>Ni. The addition of ammonia resulted in lower rates for HER for Pt, Ru, and Ni, which have been attributed to competition from the ammonia adsorption reaction. 2. The addition of ammonia offers insight into the role of metal-hydrogen underpotential deposition (M-Hupd) on HER kinetics. In addition to offering competition via ammonia adsorption it resulted in fewer and weaker M-Hupd bonds for all metals. This finding substantiates the theory that M-Hupd bonds favor HER on Pt electrocatalyst. However, for Rh results suggest that M-Hupd bond may hinder the HER. In addition, the presence of unpaired valence shell electrons is suggested to provide higher activity for HER in the presence of ammonia. 3. Bimetals PtxM1-x (M = Ir, Ru, Rh, and Ni) offered lower overpotentials for HER compared to the unalloyed metals in the presence of ammonia. The activity of HER in the presence of ammonia follows the trend Pt-Ir>Pt-Rh>Pt-Ru>Pt-Ni. The higher activity of HER is attributed to the synergistic effect of the alloy, where ammonia adsorbs onto the more electropositive alloying metal leaving Pt available for Hupd formation and HER to take place. Additionally, this supports the theory that the presence of a higher number of unpaired electrons favors the HER in the presence of ammonia. 4. Potassium polyacrylate (PAA-K) was successfully used as a substitute for aqueous KOH for ammonia

  7. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

    2004-01-01

    A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs'', was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. The project has received a one-year, no-cost extension to September 27, 2005. During this extra time additional deliverables will be (1) the version of MASTER that has been debugged and a foam option added for CO 2 mobility control and (2) adsorption/desorption data on pure component minerals common in reservoir rock that will be used to improve predictions of chemical loss to adsorption in reservoirs. This report discusses the activity during the six-month period covering October 1, 2003 through March 31, 2004 that comprises the first and second fiscal quarters of the project's third year. During this period of the project several areas have advanced: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. Presentations and papers included: a papers covered in a previous report was presented at the fall SPE ATCE in Denver in October 2003, a presentation at the Southwest ACS meeting in Oklahoma City, presentation on CO 2 flood basic behavior at the Midland Annual CO 2 Conference December 2003; two papers prepared for the biannual SPE/DOE Symposium on IOR, Tulsa, April 2004; one paper accepted for the fall 2004 SPE ATCE in Houston; and a paper submitted to an international journal Journal of Colloid and Interface Science which is being revised after peer review

  8. Smart Cities, an Opportunity for Energy Efficiency Companies; Smart Cities, una oportunidad para las empresas de Eficiencia Energetica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Nava Munoz, A.

    2016-07-01

    The changing city model towards the Smart City that we will be seeing in the years to come will provide major opportunities to companies that know how to discover new products and services adapted to a new demand, or to companies that are able to position themselves in the sectors with the best growth prospects. We will also witness the disappearance of companies that are not able to adapt to these changes or that react too late. From an energy perspective, this change will necessarily require energy efficiency and the use of renewable energy sources. But what are the products and services that are going to be demanded most in future cities? What materials, technologies or processes will they require? What sectors will have the fastest growth as a result of the development of Smart. (Author)

  9. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  10. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...

  11. Improving the efficiency of a chemotherapy day unit: applying a business approach to oncology.

    Science.gov (United States)

    van Lent, Wineke A M; Goedbloed, N; van Harten, W H

    2009-03-01

    To improve the efficiency of a hospital-based chemotherapy day unit (CDU). The CDU was benchmarked with two other CDUs to identify their attainable performance levels for efficiency, and causes for differences. Furthermore, an in-depth analysis using a business approach, called lean thinking, was performed. An integrated set of interventions was implemented, among them a new planning system. The results were evaluated using pre- and post-measurements. We observed 24% growth of treatments and bed utilisation, a 12% increase of staff member productivity and an 81% reduction of overtime. The used method improved process design and led to increased efficiency and a more timely delivery of care. Thus, the business approaches, which were adapted for healthcare, were successfully applied. The method may serve as an example for other oncology settings with problems concerning waiting times, patient flow or lack of beds.

  12. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  13. Energy efficiency opportunities in the production process of cast iron foundries: An experience in Italy

    International Nuclear Information System (INIS)

    Lazzarin, Renato M.; Noro, Marco

    2015-01-01

    Foundry sector is one of the most energy intensive in industry. Energy audits performed in 5 Italian cast iron foundries allowed to identify energy utilization in the various processes that from the melting of the iron arrive at the finishing of the casting. Main equipment was surveyed, evaluating the influence on the overall energy consumption, producing a detailed analysis of energy use per department and energy performance indexes. A separate study was carried out for foundries with induction furnaces and cold or hot blast cupolas. Possibilities of heat recovery was identified particularly in combustion air preheating, but also for building heating or to power direct cycles to produce electricity. Better insulation and new insulating materials can improve the efficiency and the quality of the processes. Suggestions are supplied in the various foundry departments for energy saving. Possible energy saving actions on the service plants will be dealt with in a separate paper. - Highlights: • The Authors performed energy audits in 5 Italian cast iron foundries. • Main equipment was surveyed, evaluating the influence on the overall energy consumption. • An analysis of energy use per department and energy performance indexes was performed. • Possibilities of heat recovery were identified in combustion air preheating and for building heating. • Better and new insulating materials were analyzed to improve the efficiency and process quality.

  14. European Innovation Partnership on Active and Healthy Ageing (EIP on AHA – the opportunities for Polish scientists and institutions

    Directory of Open Access Journals (Sweden)

    Kardas Przemysław

    2016-05-01

    Full Text Available Europe is facing great social and economic challenges now, being a result of the ageing process progressing faster than ever. This, however, might be perceived also as an opportunity for innovation, as well as an additional impulse for the so-called “Silver Economy”. To address these new needs and opportunities, the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA was initiated by the European Commission in 2012. After three years of its activity, it has proved to be a strong movement of European stakeholders committed to innovation, with its overarching target to increase the average healthy lifespan by two years by 2020. The ‘Triple Win’ strategy for Europe is based on the concepts of enabling the EU citizens to lead healthy, active and independent lives while ageing, improving the sustainability and efficiency of social and health care systems, and boosting and improving the competitiveness of markets for innovative products and services. Now, the EIP on AHA opens new calls that enable new stakeholders to become partners of this collaboration. This provides a unique opportunity to Polish institutions, as well as scientists. In order to help them use this opportunity effectively, the history, aims, structure and achievements of the EIP on AHA are shortly described in this paper.

  15. Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions

    Directory of Open Access Journals (Sweden)

    Michael Peters

    2013-12-01

    Full Text Available Forage-based livestock production plays a key role in national and regional economies, for food security and poverty alleviation, but is considered a major contributor to agricultural GHG emissions. While demand for livestock products is predicted to increase, there is political and societal pressure both to reduce environmental impacts and to convert some of the pasture area to alternative uses, such as crop production and environmental conservation. Thus, it is essential to develop approaches for sustainable intensification of livestock systems to mitigate GHG emissions, addressing biophysical, socio-economic and policy challenges. This paper highlights the potential of improved tropical forages, linked with policy incentives, to enhance livestock production, while reducing its environmental footprint. Emphasis is on crop-livestock systems. We give examples for sustainable intensification to mitigate GHG emissions, based on improved forages in Brazil and Colombia, and suggest future perspectives.

  16. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  17. The use of long term agreements to improve energy efficiency in the industrial sector: Overview of the European experiences and proposal for a common framework

    International Nuclear Information System (INIS)

    Bertoldi, P.

    1999-01-01

    In the European Union efficiency improvements in the industrial sector are regarded as a key element of Member States' strategies to meet their Kyoto target. Besides the traditional policy instruments, such as fiscal and financial aids, minimum efficiency standards, R and D and technology programs, there is an increasing interest by both public authorities and industry for voluntary approaches to improve industrial energy efficiency. In the European context the term voluntary approach is often used to describe a wide range of industry actions including, inter alia: industry covenants, negotiated agreements, long term agreements, self regulations, codes of conduct, benchmarking and monitoring schemes. These voluntary approaches differ in relation to their form, legal status, provisions and enforceability. The paper provides an up-to-date overview of the present status of the different voluntary approaches for the industrial sector in several Member States (the Netherlands, Sweden, Germany, Denmark, Finland, Ireland, and the United Kingdom). The paper will focus on the particular type of voluntary approach implemented in the Netherlands and commonly called Long Term Agreements (LTA). The paper analyses the opportunities and advantages for creating a common EU framework for the conclusion and implementation of LTAs, based on the successful Dutch model. In doing so, the paper intends also to contribute to the approximation of the LTA's essential elements throughout the Community in order to reduce possible distortions of the internal market and of the competitive position of national industries, thus enlarging the acceptability of this instrument by public authorities and industry. For some industrial sectors, which are quite homogeneous throughout the Community and represent a limited number of companies, the paper analyses the advantages of having European LTAs and recommends their implementation. The paper presents the achievable results at EU level in terms of

  18. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-02-01

    Full Text Available Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of electricity generation. This research focuses on improving the efficiency of electricity generation through the use of hydrogen and oxygen mixture (HHO gas. In this research, experiments have been conducted to investigate the combined effects of HHO gas with other fuels, including coal and oil. The results show that the combinations of HHO with coal and oil can improve the efficiency of electricity generation while reducing the pollution to our environment.

  19. Time-zero efficiency of European power derivatives markets

    International Nuclear Information System (INIS)

    Peña, Juan Ignacio; Rodriguez, Rosa

    2016-01-01

    We study time-zero efficiency of electricity derivatives markets. By time-zero efficiency is meant a sequence of prices of derivatives contracts having the same underlying asset but different times to maturity which implies that prices comply with a set of efficiency conditions that prevent profitable time-zero arbitrage opportunities. We investigate whether statistical tests, based on the law of one price, and trading rules, based on price differentials and no-arbitrage violations, are useful for assessing time-zero efficiency. We apply tests and trading rules to daily data of three European power markets: Germany, France and Spain. In the case of the German market, after considering liquidity availability and transaction costs, results are not inconsistent with time-zero efficiency. However, in the case of the French and Spanish markets, limitations in liquidity and representativeness are challenges that prevent definite conclusions. Liquidity in French and Spanish markets should improve by using pricing and marketing incentives. These incentives should attract more participants into the electricity derivatives exchanges and should encourage them to settle OTC trades in clearinghouses. Publication of statistics on prices, volumes and open interest per type of participant should be promoted. - Highlights: •We test time-zero efficiency of derivatives power markets in Germany, France and Spain. •Prices in Germany, considering liquidity and transaction costs, are time-zero efficient. •In France and Spain, limitations in liquidity and representativeness prevent conclusions. •Liquidity in France and Spain should improve by using pricing and marketing incentives. •Incentives attract participants to exchanges and encourage them to settle OTC trades in clearinghouses.

  20. Double-Grating Displacement Structure for Improving the Light Extraction Efficiency of LEDs

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2012-01-01

    Full Text Available To improve the light extraction efficiency of light-emitting diodes (LEDs, grating patterns were etched on GaN and silver film surfaces. The grating-patterned surface etching enabled the establishment of an LED model with a double-grating displacement structure that is based on the surface plasmon resonance principle. A numerical simulation was conducted using the finite difference time domain method. The influence of different grating periods for GaN surface and silver film thickness on light extraction efficiency was analyzed. The light extraction efficiency of LEDs was highest when the grating period satisfied grating coupling conditions. The wavelength of the highest value was also close to the light wavelength of the medium. The plasmon resonance frequencies on both sides of the silver film were affected by silver film thickness. With increasing film thickness, plasmon resonance frequency tended toward the same value and light extraction efficiency reached its maximum. When the grating period for the GaN surface was 365 nm and the silver film thickness was 390 nm, light extraction efficiency reached a maximum of 55%.