WorldWideScience

Sample records for effectively reinforcing roles

  1. Habituation of reinforcer effectiveness

    OpenAIRE

    David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...

  2. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  3. Habituation of reinforcer effectiveness.

    Science.gov (United States)

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  4. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    Science.gov (United States)

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  5. Reinforcement, Behavior Constraint, and the Overjustification Effect.

    Science.gov (United States)

    Williams, Bruce W.

    1980-01-01

    Four levels of the behavior constraint-reinforcement variable were manipulated: attractive reward, unattractive reward, request to perform, and a no-reward control. Only the unattractive reward and request groups showed the performance decrements that suggest the overjustification effect. It is concluded that reinforcement does not cause the…

  6. PARTIAL REINFORCEMENT (ACQUISITION) EFFECTS WITHIN SUBJECTS.

    Science.gov (United States)

    AMSEL, A; MACKINNON, J R; RASHOTTE, M E; SURRIDGE, C T

    1964-03-01

    Acquisition performance of 22 rats in a straight alley runway was examined. The animals were subjected to partial reinforcement when the alley was black (B+/-) and continuous reinforcement when it was white (W+). The results indicated (a) higher terminal performance, for partial as against continuous reinforcement conditions, for starting-time and running-time measures, and (b) lower terminal performance under partial conditions for a goal-entry-time measure. These results confirm within subjects an effect previously demonstrated, in the runway, only in between-groups tests, where one group is run under partial reinforcement and a separate group is run under continuous reinforcement in the presence of the same external stimuli. Differences between the runway situation, employing a discrete-trial procedure and performance measures at three points in the response chain, and the Skinner box situation, used in its free-operant mode with a single performance measure, are discussed in relation to the present findings.

  7. Central reinforcing effects of ethanol are blocked by catalase inhibition.

    Science.gov (United States)

    Nizhnikov, Michael E; Molina, Juan C; Spear, Norman E

    2007-11-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol's positive reinforcing effects. Central administrations of ethanol (25-200mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn's response to a surrogate nipple scented with the CS. It has been shown that ethanol's first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats, catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (IC) administrations of 100mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with IC administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was used as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats.

  8. Simulating distributed reinforcement effects in concrete analysis

    International Nuclear Information System (INIS)

    Marchertas, A.H.

    1985-01-01

    The effect of the bond slip is brought into the TEMP-STRESS finite element code by relaxing the equal strain condition between concrete and reinforcement. This is done for the elements adjacent to the element which is cracked. A parabolic differential strain variation is assumed along the reinforcement from the crack, which is taken to be at the centroid of the cracked element, to the point where perfect bonding exists. This strain relationship is used to increase the strain of the reinforcement in the as yet uncracked elements located adjacent to a crack. By the same token the corresponding concrete strain is decreased. This estimate is made assuming preservation of strain energy in the element. The effectiveness of the model is shown by examples. Comparison of analytical results is made with structural test data. The influence of the bonding model on cracking is portrayed pictorially. 5 refs., 6 figs

  9. Effect of reinforcement learning on coordination of multiangent systems

    Science.gov (United States)

    Bukkapatnam, Satish T. S.; Gao, Greg

    2000-12-01

    For effective coordination of distributed environments involving multiagent systems, learning ability of each agent in the environment plays a crucial role. In this paper, we develop a simple group learning method based on reinforcement, and study its effect on coordination through application to a supply chain procurement scenario involving a computer manufacturer. Here, all parties are represented by self-interested, autonomous agents, each capable of performing specific simple tasks. They negotiate with each other to perform complex tasks and thus coordinate supply chain procurement. Reinforcement learning is intended to enable each agent to reach a best negotiable price within a shortest possible time. Our simulations of the application scenario under different learning strategies reveals the positive effects of reinforcement learning on an agent's as well as the system's performance.

  10. Diffusion with social reinforcement: The role of individual preferences

    NARCIS (Netherlands)

    Tur, Elena M.; Zeppini, Paolo; Frenken, Koen

    2018-01-01

    The debate on diffusion in social networks has traditionally focused on the structure of the network to understand the efficiency of a network in terms of diffusion. Recently, the role of social reinforcement has been added to the debate, as it has been proposed that simple contagions diffuse better

  11. The Role of Emotions in Reinforcement: Response Selection in Humans

    Science.gov (United States)

    Overskeid, Geir

    2012-01-01

    Historically, researchers have never quite been able to agree as to the role of emotions, if any, when behavior is selected by its consequences. A brief review of findings from several fields suggests that in contingency-shaped behavior, motivating events, often unconscious, seem needed for reinforcement to select behavior. In rule-governed…

  12. Reinforcement and the Overjustification Effect.

    Science.gov (United States)

    Williams, Bruce W.

    Reward contingencies and other extrinsic constraints on behavior can lead to reduced levels of interest in and/or decreased engagement in a target activity in a subsequent noncontingent situation. It has been hypothesized that this effect is caused by a change in the self-perceived locus of motivation from intrinsic to extrinsic. It follows from…

  13. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  14. Diffusion with social reinforcement: The role of individual preferences

    Science.gov (United States)

    Tur, Elena M.; Zeppini, Paolo; Frenken, Koen

    2018-02-01

    The debate on diffusion in social networks has traditionally focused on the structure of the network to understand the efficiency of a network in terms of diffusion. Recently, the role of social reinforcement has been added to the debate, as it has been proposed that simple contagions diffuse better in random networks and complex contagions diffuse better in regular networks. In this paper, we show that individual preferences cannot be overlooked: complex contagions diffuse better in regular networks only if the large majority of the population is biased against adoption.

  15. Effect of reinforcement on plastic limit loads of branch junctions

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Myeong, Man-Sik; Yoon, Kee-Bong

    2009-01-01

    This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  16. The role of menthol in cigarettes as a reinforcer of smoking behavior.

    Science.gov (United States)

    Ahijevych, Karen; Garrett, Bridgette E

    2010-12-01

    The World Health Organization has identified several additives such as menthol in the manufacturing of cigarettes to specifically reduce smoke harshness. These additives may have important implications for reinforcing smoking behavior and motivation to quit smoking. The purpose of this paper is to synthesize research related to the role of menthol's sensory characteristics in strengthening the reinforcing effects of nicotine in cigarettes and the impact on nicotine addiction and smoking behavior. Research reports from 2002 to 2010 on the addictive potential of menthol cigarettes were reviewed that included qualitative focus groups, self-reports and biomarkers of nicotine dependence, human laboratory, and epidemiological studies. Positive sensory effects of menthol cigarette use were identified via reports of early smoking experiences and as a potential starter product for smoking uptake in youth. Menthol cigarettes may serve as a conditioned stimulus that reinforces the rewarding effects of smoking. Nicotine dependence measured by shorter time-to-first cigarette upon waking was increased with menthol cigarette use in most of the studies reviewed. Smoking quit rates provide additional indicators of nicotine dependence, and the majority of the studies reviewed provided evidence of lower quit rates or higher relapse rates among menthol cigarette smokers. The effects of menthol cigarette use in increasing the reinforcing effects of nicotine on smoking behavior were evidenced in both qualitative and quantitative empirical studies. These findings have implications for enhanced prevention and cessation efforts in menthol smokers.

  17. Spreading in online social networks: the role of social reinforcement.

    Science.gov (United States)

    Zheng, Muhua; Lü, Linyuan; Zhao, Ming

    2013-07-01

    Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.

  18. Survival of the Partial Reinforcement Extinction Effect after Contextual Shifts

    Science.gov (United States)

    Boughner, Robert L.; Papini, Mauricio R.

    2006-01-01

    The effects of contextual shifts on the partial reinforcement extinction effect (PREE) were studied in autoshaping with rats. Experiment 1 established that the two contexts used subsequently were easily discriminable and equally salient. In Experiment 2, independent groups of rats received acquisition training under partial reinforcement (PRF) or…

  19. Origins of altered reinforcement effects in ADHD

    Directory of Open Access Journals (Sweden)

    Tripp Gail

    2009-02-01

    Full Text Available Abstract Attention-deficit/hyperactivity disorder (ADHD, characterized by hyperactivity, impulsiveness and deficient sustained attention, is one of the most common and persistent behavioral disorders of childhood. ADHD is associated with catecholamine dysfunction. The catecholamines are important for response selection and memory formation, and dopamine in particular is important for reinforcement of successful behavior. The convergence of dopaminergic mesolimbic and glutamatergic corticostriatal synapses upon individual neostriatal neurons provides a favorable substrate for a three-factor synaptic modification rule underlying acquisition of associations between stimuli in a particular context, responses, and reinforcers. The change in associative strength as a function of delay between key stimuli or responses, and reinforcement, is known as the delay of reinforcement gradient. The gradient is altered by vicissitudes of attention, intrusions of irrelevant events, lapses of memory, and fluctuations in dopamine function. Theoretical and experimental analyses of these moderating factors will help to determine just how reinforcement processes are altered in ADHD. Such analyses can only help to improve treatment strategies for ADHD.

  20. Wheel running decreases the positive reinforcing effects of heroin.

    Science.gov (United States)

    Smith, Mark A; Pitts, Elizabeth G

    2012-01-01

    The purpose of this study was to examine the effects of voluntary wheel running on the positive reinforcing effects of heroin in rats with an established history of drug self-administration. Rats were assigned to sedentary (no wheel) and exercise (wheel) conditions and trained to self-administer cocaine under positive reinforcement contingencies. Rats acquiring cocaine self-administration were then tested with various doses of heroin during daily test sessions. Sedentary rats self-administered more heroin than exercising rats, and this effect was greatest at low and moderate doses of heroin. These data suggest that voluntary wheel running decreases the positive reinforcing effects of heroin.

  1. The role of family planning communications--an agent of reinforcement or change.

    Science.gov (United States)

    Chen, E C

    1981-12-01

    Results are presented of a multiple classification analysis of responses to a 1972 KAP survey in Taiwan of 2013 married women aged 18-34 designed to determine whether family planning communication is primarily a reinforcement agent or a change agent. 2 types of independent variables, social demographic variables including age, number of children, residence, education, employment status, and duration of marriage; and social climate variables including ever receiving family planning information from mass media and ever discussing family planning with others, were used. KAP levels, the dependent variables, were measured by 2 variables each: awareness of effective methods and awareness of government supply of contraceptives for knowledge, wish for additional children and approve of 2-child family for attitude, and never use contraception and neither want children nor use contraception for practice. Social demographic and attitudinal variables were found to be the critical ones, while social climate and knowledge variables had only negligible effects on various stages of family planning adoption, indicating that family planning communications functioned primarily as a reinforcement agent. The effects of social demographic variables were prominent in all stages of contraceptive adoption. Examination of effects of individual variables on various stages of family planning adoption still supported the argument that family planning communications played a reinforcement role. Family planning communications functioned well in diffusing family planning knowledge and accessibility, but social demographic variables and desire for additional children were the most decisive influences on use of contraception.

  2. Treatment of Escape-Maintained Behavior with Positive Reinforcement: The Role of Reinforcement Contingency and Density

    Science.gov (United States)

    Ingvarsson, Einar T.; Hanley, Gregory P.; Welter, Katherine M.

    2009-01-01

    Functional analyses suggested that the disruptive behavior of three preschool children was maintained by escape from demands. While keeping the escape contingency intact, we conducted (a) a density analysis in which the children earned preferred items for task completion according to two schedules that varied in reinforcement density, and (b) a…

  3. Effects of Signaled Positive Reinforcement on Problem Behavior Maintained by Negative Reinforcement

    Science.gov (United States)

    Schieltz, Kelly M.; Wacker, David P.; Romani, Patrick W.

    2017-01-01

    We evaluated the effects of providing positive reinforcement for task completion, signaled via the presence of a tangible item, on escape-maintained problem behavior displayed by three typically developing children during one-time 90-min outpatient evaluations. Brief functional analyses of problem behavior, conducted within a multielement design,…

  4. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    OpenAIRE

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous sy...

  5. The Role of Reinforcement Sensitivity in the Development of Childhood Personality

    Science.gov (United States)

    Slobodskaya, Helena R.; Kuznetsova, Valeriya B.

    2013-01-01

    The study examined the contribution of reinforcement sensitivity to childhood personality at three levels of the hierarchical structure, mid-level traits, the Big Five and two higher-order factors, and the moderating role of sex and age in a sample of 3-18-year-olds. The canonical correlation analyses indicated that reinforcement sensitivity and…

  6. The detrimental effects of extrinsic reinforcement on "Intrinsic motivation".

    Science.gov (United States)

    Dickinson, A M

    1989-01-01

    Extrinsic consequences have been criticized on the grounds that they decrease intrinsic motivation or internally initiated behavior. Two popular rationales for this criticism, Lepper's overjustification hypothesis (1981) and Deci's motivational theory (Deci & Ryan, 1985), are reviewed and the criticism is then redefined behaviorally. "Intrinsically controlled" behavior is defined as behavior maintained by response-produced reinforcers, and the question concerning extrinsic consequences is thus restated as follows: When behavior is maintained by response-produced stimuli, does extrinsic reinforcement decrease the reinforcing value of those stimuli? The empirical support for this detrimental effect is summarized briefly, and several possible explanations for the phenomenon are offered. Research results that reflect on the effect's generality and social significance are discussed next, with the conclusion that the effect is transient and not likely to occur at all if extrinsic rewards are reinforcing, noncompetitive, based on reasonable performance standards, and delivered repetitively.

  7. Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: Micromechanical numerical study

    DEFF Research Database (Denmark)

    Pontefisso, Alessandro; Mishnaevsky, Leon

    2016-01-01

    of nanocomposites with inclusions of arbitrary and complex shapes. The effect of curved, zigzagged, snakelike shapes of real carbon nanotubes, as well as re-stacking of graphene on the damage evolution was studied in the computational experiments based on the developed code. The potential of hybrid (carbon...... nanotubes and graphene) nanoscale reinforcement was studied with view on its effect of damage resistance. It was demonstrated that idealized, cylinder like models of carbon nanotubes in polymers lead to an underestimation of the stress concentration and damage likelihood in the nanocomposites. The main...... damage mechanisms in CNT reinforced polymers are debonding and pull-out/fiber bridging, while in graphene reinforced polymers the main role is played by crack deviation and stack splitting, with following micro-crack merging. The potential of hybrid (carbon nanotubes and graphene) nanoscale reinforcement...

  8. Effect of kenaf fiber in reinforced concrete slab

    Science.gov (United States)

    Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.

    2018-04-01

    The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.

  9. Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping.

    Science.gov (United States)

    Gottlieb, Daniel A

    2006-03-01

    Partial reinforcement often leads to asymptotically higher rates of responding and number of trials with a response than does continuous reinforcement in pigeon autoshaping. However, comparisons typically involve a partial reinforcement schedule that differs from the continuous reinforcement schedule in both time between reinforced trials and probability of reinforcement. Two experiments examined the relative contributions of these two manipulations to asymptotic response rate. Results suggest that the greater responding previously seen with partial reinforcement is primarily due to differential probability of reinforcement and not differential time between reinforced trials. Further, once established, differences in responding are resistant to a change in stimulus and contingency. Secondary response theories of autoshaped responding (theories that posit additional response-augmenting or response-attenuating mechanisms specific to partial or continuous reinforcement) cannot fully accommodate the current body of data. It is suggested that researchers who study pigeon autoshaping train animals on a common task prior to training them under different conditions.

  10. Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI.

    Science.gov (United States)

    Carr, Katelyn A; Lin, Henry; Fletcher, Kelly D; Sucheston, Lara; Singh, Prashant K; Salis, Robbert J; Erbe, Richard W; Faith, Myles S; Allison, David B; Stice, Eric; Epstein, Leonard H

    2013-06-01

    Food reinforcement, or the motivation to eat, has been associated with increased energy intake, greater body weight, and prospective weight gain. Much of the previous research on the reinforcing value of food has focused on the role of dopamine, but it may be worthwhile to examine genetic polymorphisms in the serotonin and opioid systems as these neurotransmitters have been shown to be related to reinforcement processes and to influence energy intake. We examined the relationship among 44 candidate genetic polymorphisms in the dopamine, serotonin, and opioid systems, as well as food reinforcement and body mass index (BMI) in a sample of 245 individuals. Polymorphisms in the monoamine oxidase A (MAOA-LPR) and serotonin receptor 2A genes (rs6314) moderated the effect of food reinforcement on BMI, accounting for an additional 5-10% variance and revealed a potential role of the single nucleotide polymorphism, rs6314, in the serotonin 2A receptor as a differential susceptibility factor for obesity. Differential susceptibility describes a factor that can confer either risk or protection depending on a second variable, such that rs6314 is predictive of both high and low BMI based on the level of food reinforcement, while the diathesis stress or dual-gain model only influences one end of the outcome measure. The interaction with MAOA-LPR better fits the diathesis stress model, with the 3.5R/4R allele conferring protection for individuals low in food reinforcement. These results provide new insight into genes theoretically involved in obesity, and support the hypothesis that genetics moderate the association between food reinforcement and BMI. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Effect of Fiber Reinforcement on the Response of Structural Members

    DEFF Research Database (Denmark)

    Fischer, Gregor; Li, Victor

    2007-01-01

    This paper describes a series of investigations on the effect of fiber reinforcement on the response of structural members in direct tension and flexure under reversed cyclic loading conditions. The design approach of the fiber reinforced cementitious composite is based on fracture mechanics...... principles, which will be described in the first part of the paper along with an introduction of the relevant material properties of the resulting engineered cementitious composite (ECC). This class of composites is characterized by strain hardening and multiple cracking properties in uniaxial tension...... and an ultimate tensile strain capacity on the order of several percent. Subsequently, the synergistic effects of composite deformation mechanisms in the ECC and structural members subjected to large shear reversals are identified. Beneficial effects observed in the reinforced ECC structural members as compared...

  12. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    Science.gov (United States)

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  13. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  14. Debonding failure and size effects in micro reinforced composites

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2010-01-01

    -plastic formulation. Bi-axially loaded unit cells are used and failure is modeled using a cohesive zone at the reinforcement interface. During debonding a sudden stress drop in the overall average stress–strain response is observed. Adaptive higher-order boundary conditions are imposed at the reinforcement interface...... for realistically modeling the restrictions on moving dislocations as debonding occurs. It is found that the influence of the imposed higher-order boundary conditions at the interface is minor. If strain-gradient effects are accounted for a void with a smooth shape develops at the reinforcement interface while...... a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one...

  15. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  16. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    Science.gov (United States)

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  17. Effects of Material And Non-Material Reinforcers On Academic ...

    African Journals Online (AJOL)

    This study examined effects of material and non-material reinforcers on academic performance of Abia State Senior Secondary Schools girls on health science. As a quasi-experimental study, 120 SS II students were selected from six secondary schools located in the three Educational zones of the state. From each zone ...

  18. effect of uncertainty on the fatigue reliability of reinforced concrete ...

    African Journals Online (AJOL)

    In this paper, a reliability time-variant fatigue analysis and uncertainty effect on the serviceability of reinforced concrete bridge deck was carried out. A simply supported 15m bridge deck was specifically used for the investigation. Mathematical models were developed and the uncertainties in structural resistance, applied ...

  19. Effect of reinforcement volume fraction on the density & elastic ...

    African Journals Online (AJOL)

    Effect of reinforcement volume fraction on the density & elastic parameters of BMG's matrix composites. Wahiba Metiri 1, Fatiha Hadjoub1, 2 and Leila Touati Tliba 1. 1 Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-. Mokhtar, BP 12, Annaba -23000, Algeria.

  20. Effects of Music Notation Reinforcement on Aural Memory for Melodies

    Science.gov (United States)

    Buonviri, Nathan

    2015-01-01

    The purpose of this study was to investigate effects of music notation reinforcement on aural memory for melodies. Participants were 41 undergraduate and graduate music majors in a within-subjects design. Experimental trials tested melodic memory through a sequence of target melodies, distraction melodies, and matched and unmatched answer choices.…

  1. Aerobic exercise decreases the positive-reinforcing effects of cocaine.

    Science.gov (United States)

    Smith, Mark A; Schmidt, Karl T; Iordanou, Jordan C; Mustroph, Martina L

    2008-11-01

    Aerobic exercise can serve as an alternative, non-drug reinforcer in laboratory animals and has been recommended as a potential intervention for substance abusing populations. Unfortunately, relatively little empirical data have been collected that specifically address the possible protective effects of voluntary, long-term exercise on measures of drug self-administration. The purpose of the present study was to examine the effects of chronic exercise on sensitivity to the positive-reinforcing effects of cocaine in the drug self-administration procedure. Female rats were obtained at weaning and immediately divided into two groups. Sedentary rats were housed individually in standard laboratory cages that permitted no exercise beyond normal cage ambulation; exercising rats were housed individually in modified cages equipped with a running wheel. After 6 weeks under these conditions, rats were surgically implanted with venous catheters and trained to self-administer cocaine on a fixed-ratio schedule of reinforcement. Once self-administration was acquired, cocaine was made available on a progressive ratio schedule and breakpoints were obtained for various doses of cocaine. Sedentary and exercising rats did not differ in the time to acquire cocaine self-administration or responding on the fixed-ratio schedule of reinforcement. However, on the progressive ratio schedule, breakpoints were significantly lower in exercising rats than sedentary rats when responding was maintained by both low (0.3mg/kg/infusion) and high (1.0mg/kg/infusion) doses of cocaine. In exercising rats, greater exercise output prior to catheter implantation was associated with lower breakpoints at the high dose of cocaine. These data indicate that chronic exercise decreases the positive-reinforcing effects of cocaine and support the possibility that exercise may be an effective intervention in drug abuse prevention and treatment programs.

  2. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  3. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  4. Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history.

    Science.gov (United States)

    Janssens, Lizanne; Stoks, Robby

    2014-10-01

    The important ecological role of predation risk in shaping populations, communities and ecosystems is becoming increasingly clear. In this context, synergistic effects between predation risk and other natural stressors on prey organisms are gaining attention. Although non-pathogenic bacteria can be widespread in aquatic ecosystems, their role in mediating effects of predation risk has been ignored. We here address the hypothesis that non-pathogenic bacteria may reinforce the negative effects of predation risk in larvae of the damselfly Coenagrion puella. We found synergistic effects for all three life history variables studied: mortality increased, growth reductions were magnified and bacterial load was higher when both non-lethal stressors were combined. The combined exposure to the bacterium and predation risk considerably impaired the two key antipredator mechanisms of the damselfly larvae: they no longer reduced their food intake under predation risk and showed a synergistic reduction in escape swimming speed. The reinforcing negative effects on the fitness-related traits could be explained by the observed synergistic effects on food intake, swimming muscle mass, immune function and oxidative damage. These are likely widespread consequences of energetic constraints and increased metabolic rates associated with the fight-or-flight response. We therefore hypothesize that the here documented synergistic interactions with non-pathogenic bacteria may be widespread. Our results highlight the ignored ecological role of non-pathogenic bacteria in reinforcing the negative effects of predation risk on prey organisms.

  5. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    Science.gov (United States)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  6. The effect of rules on differential reinforcement of other behavior.

    Science.gov (United States)

    Watts, Amanda C; Wilder, David A; Gregory, Meagan K; Leon, Yanerys; Ditzian, Kyle

    2013-01-01

    Previous research on the treatment of problem behavior has shown differential reinforcement of other behavior (DRO) to be an effective behavior-reduction procedure. However, the extent to which presession descriptions of the DRO contingency enhance intervention effects has not been examined. In the current study, we compared a condition in which a presession rule that described the DRO contingency was given to a condition in which no rule was given for 4 participants. The target behavior was toy play, which served as an analogue to problem behavior maintained by automatic reinforcement. Results showed that DRO was more efficient for 1 participant and more effective for 2 participants when a rule was given. © Society for the Experimental Analysis of Behavior.

  7. Behavioral effects of delayed timeouts from reinforcement.

    Science.gov (United States)

    Byrne, Tom; Poling, Alan

    2017-03-01

    Timeouts are sometimes used in applied settings to reduce target responses, and in some circumstances delays are unavoidably imposed between the onset of a timeout and the offset of the response that produces it. The present study examined the effects of signaled and unsignaled timeouts in rats exposed to concurrent fixed-ratio 1 fixed-ratio 1 schedules of food delivery, where each response on one lever, the location of which changed across conditions, produced both food and a delayed 10-s timeout. Delays of 0 to 38 s were examined. Delayed timeouts often, but not always, substantially reduced the number of responses emitted on the lever that produced timeouts relative to the number emitted on the lever that did not produce timeouts. In general, greater sensitivity was observed to delayed timeouts when they were signaled. These results demonstrate that delayed timeouts, like other delayed consequences, can affect behavior, albeit less strongly than immediate consequences. © 2017 Society for the Experimental Analysis of Behavior.

  8. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.

    Science.gov (United States)

    Morimune-Moriya, Seira; Salajkova, Michaela; Zhou, Qi; Nishino, Takashi; Berglund, Lars A

    2018-04-05

    Although research on nanopaper structures from cellulose nanofibrils (CNF) is well established, the mechanical behavior is not well understood, especially not when CNF is combined with hard nanoparticles. Cationic CNF (Q-CNF) was prepared and successfully decorated by anionic nanodiamond (ND) nanoparticles in hydrocolloidal form. The Q-CNF/ND nanocomposites were filtered from a hydrocolloid and dried. Unlike many other carbon nanocomposites, the Q-CNF/ND nanocomposites were optically transparent. Reinforcement effects from the nanodiamond were remarkable, such as Young's modulus (9.8 GPa → 16.6 GPa) and tensile strength (209.5 MPa → 277.5 MPa) at a content of only 1.9% v/v of ND, and the reinforcement mechanisms are discussed. Strong effects on CNF network deformation mechanisms were revealed by loading-unloading experiments. Scratch hardness also increased strongly with increased addition of ND.

  9. The role of TiB2 in strengthening TiB2 reinforced aluminium casting composites

    International Nuclear Information System (INIS)

    Chen, Z; Kang, H; Zhao, Y; Zheng, Y; Wang, T

    2016-01-01

    With an aim of developing high quality in situ TiB 2 reinforced aluminium foundry alloy based composites, the conventional direct synthesis method was modified into a two-step route. In step one we optimized the halide salt route to fabricate in situ TiB 2 particulate reinforced aluminium matrix composites and in step two we investigated the effects of the Al-5wt.% TiB 2 composite, as a “master composite”, on strengthening the practical foundry alloys. The in situ formed TiB 2 particles play two roles while strengthening the composites: (1) The grain refinement effect that improves the quality of the alloy matrix; and (2) The interactions between the hard particulates and the matrix add extra increment to the material strength. In different alloy systems, TiB 2 may play distinct roles in these two aspects (figure 1). Further analysis of the strengthening mechanisms shows that particle agglomeration behaviour during solidification is responsible for the latter one. The present work details the role of TiB 2 in strengthening TiB 2 reinforced aluminium casting composites. (paper)

  10. Macroevolutionary data suggest a role for reinforcement in pollination system shifts

    NARCIS (Netherlands)

    Niet, van der T.; Johnson, S.D.; Linder, H.P.

    2006-01-01

    Reproductive isolation can evolve either as a by-product of divergent selection or through reinforcement. We used the Cape flora of South Africa, known for its high level of pollination specialization, as a model system to test the potential role of shifts in pollination system in the speciation

  11. The role of contextual associations in producing the partial reinforcement acquisition deficit.

    Science.gov (United States)

    Miguez, Gonzalo; Witnauer, James E; Miller, Ralph R

    2012-01-01

    Three conditioned suppression experiments with rats as subjects assessed the contributions of the conditioned stimulus (CS)-context and context-unconditioned stimulus (US) associations to the degraded stimulus control by the CS that is observed following partial reinforcement relative to continuous reinforcement training. In Experiment 1, posttraining associative deflation (i.e., extinction) of the training context after partial reinforcement restored responding to a level comparable to the one produced by continuous reinforcement. In Experiment 2, posttraining associative inflation of the context (achieved by administering unsignaled outcome presentations in the context) enhanced the detrimental effect of partial reinforcement. Experiment 3 found that the training context must be an effective competitor to produce the partial reinforcement acquisition deficit. When the context was down-modulated, the target regained behavioral control thereby demonstrating higher-order retrospective revaluation. The results are discussed in terms of retrospective revaluation, and are used to contrast the predictions of a performance-focused model with those of an acquisition-focused model. (c) 2012 APA, all rights reserved.

  12. Reinforcing effects of caffeine in coffee and capsules.

    OpenAIRE

    Griffiths, R R; Bigelow, G E; Liebson, I A

    1989-01-01

    In a residential research ward the reinforcing and subjective effects of caffeine were studied under double-blind conditions in volunteer subjects with histories of heavy coffee drinking. In Experiment 1, 6 subjects had 13 opportunities each day to self-administer either a caffeine (100 mg) or a placebo capsule for periods of 14 to 61 days. All subjects developed a clear preference for caffeine, with intake of caffeine becoming relatively stable after preference had been attained. Preference ...

  13. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    Science.gov (United States)

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  14. Reinforcement enhancing effects of acute nicotine via electronic cigarettes.

    Science.gov (United States)

    Perkins, Kenneth A; Karelitz, Joshua L; Michael, Valerie C

    2015-08-01

    Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. We assessed acute effects of nicotine via electronic cigarettes ("e-cigarettes") on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled "36mg/ml") or placebo ("0″) e-cigarette, or no e-cigarette use. A fourth session involved smoking one's own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Effect of the reinforcement bar arrangement on the efficiency of electrochemical chloride removal technique applied to reinforced concrete structures

    International Nuclear Information System (INIS)

    Garces, P.; Sanchez de Rojas, M.J.; Climent, M.A.

    2006-01-01

    This paper reports on the research done to find out the effect that different bar arrangements may have on the efficiency of the electrochemical chloride removal (ECR) technique when applied to a reinforced concrete structural member. Five different types of bar arrangements were considered, corresponding to typical structural members such as columns (with single and double bar reinforcing), slabs, beams and footings. ECR was applied in several steps. We observe that the extraction efficiency depends on the reinforcing bar arrangement. A uniform layer set-up favours chloride extraction. Electrochemical techniques were also used to estimate the reinforcing bar corrosion states, as well as measure the corrosion potential, and instant corrosion rate based on the polarization resistance technique. After ECR treatment, a reduction in the corrosion levels is observed falling short of the depassivation threshold

  16. Reinforcing effects of cigarette advertising on under-age smoking.

    Science.gov (United States)

    Aitken, P P; Eadie, D R

    1990-03-01

    Interviews were conducted with 848 Glasgow children aged between 11 and 14 years. There were consistent differences between smokers and non-smokers. Smokers tended to be more adept at recalling, recognizing and identifying cigarette advertisements. This suggests they tend to pay more attention to cigarette advertising. Smokers also tended to be generally more appreciative of cigarette advertising. Moreover, this greater awareness and appreciation of cigarette advertising was independent of other important predictors of under-age smoking, such as smoking by peers, siblings and parents. These findings, taken in conjunction with previous research, indicate that cigarette advertising is reinforcing under-age smoking. The smokers showed an enhanced or heightened preference for Kensitas Club, the brand favoured by adults. This is consistent with previous research indicating that promotional devices which help determine and reinforce adult cigarette brand preferences have an even greater effect on under-age smokers.

  17. Effect of steel reinforcement with different degree of corrosion on degeneration of mechanical performance of reinforced concrete frame joints

    Directory of Open Access Journals (Sweden)

    Wu Xu

    2016-02-01

    Full Text Available Beam-column joints which shoulders high-level and vertical shearing effect that maintains balance of beam and column end is the major component influencing the performance of the whole framework. Post earthquake investigation suggests that collapse of frame structure is induced by failure of joints in most cases. Thus, beam-column joints must have strong bearing capacity and good ductility, and reinforced concrete structure just meets the above requirement. But corrosion caused by long time use of reinforced concrete framework will lead to degeneration of mechanical performance of joints. To find out the rule of effect of steel reinforcement with different corrosion rate on degeneration of bearing capacity of reinforced concrete framework joints, this study made a nonlinear numerical analysis on fifteen models without stirrup in the core area of reinforced concrete frame joints using displacement method considering axial load ratio of column end and constraint condition. This work aims to find out the key factor that influences mechanical performance of joints, thus to provide a basis for repair and reinforcement of degenerated framework joints.

  18. Design of reinforced concrete containment structures for thermal gradients effects

    International Nuclear Information System (INIS)

    Bhat, P.D.; Vecchio, F.

    1983-01-01

    The need for more accurate prediction of structural behaviour, particularly under extreme load conditions, has made the consideration of thermal gradient effects and increasingly important part of the design of reinforced concrete structures for nuclear applications. While the thermal effects phenomenon itself has been qualitatively well understood, the analytical complications involved in theoretical analysis have made it necessary to resort to major simplifications for practical design applications. A number of methods utilizing different variations in approach have been developed and are in use today, including one by Ontario Hydro which uses an empirical relationship for determining an effective moment of inertia for cracked members. (orig./WL)

  19. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  20. The effect of concrete strength and reinforcement on toughness of reinforced concrete beams

    OpenAIRE

    Carneiro, Joaquim A. O.; Jalali, Said; Teixeira, Vasco M. P.; Tomás, M.

    2005-01-01

    The objective pursued with this work includes the evaluating of the strength and the total energy absorption capacity (toughness) of reinforced concrete beams using different amounts of steel-bar reinforcement. The experimental campaign deals with the evaluation of the threshold load prior collapse, ultimate load and deformation, as well as the beam total energy absorption capacity, using a three point bending test. The beam half span displacement was measured using a displacement transducer,...

  1. The Effects of Constant versus Varied Reinforcers on Preference and Resistance to Change

    Science.gov (United States)

    Milo, Jessie-Sue; Mace, F. Charles; Nevin, John A.

    2010-01-01

    Previous research has demonstrated that factors such as reinforcer frequency, amount, and delay have similar effects on resistance to change and preference. In the present study, 4 boys with autism made choices between a constant reinforcer (one that was the same food item every trial) and a varied food reinforcer (one that varied randomly between…

  2. GLASS-FIBRE REINFORCED COMPOSITES: THE EFFECT OF ...

    African Journals Online (AJOL)

    HOD

    mechanical and corrosion wear behaviour of any reinforced composites. In other ..... physical properties of glass fibre reinforced epoxy resin and the following .... waste in concrete and cement composites," Journal of Cleaner Production, vol.

  3. Evaluation of size effect on shear strength of reinforced concrete ...

    Indian Academy of Sciences (India)

    of the longitudinal and the web reinforcement, shear span-to-depth ratio and the ... A simple equation for predicting the shear strength of reinforced concrete deep ..... AASHTO 2007 LRFD Bridge Design Specifications, American Association of ...

  4. Effects of Video Games as Reinforcers for Computerized Addition Performance.

    Science.gov (United States)

    Axelrod, Saul; And Others

    1987-01-01

    Four 2nd-grade students completed addition problems on a computer, using video games as reinforcers. Two variable ratio schedules of reinforcement failed to increase student accuracy or the rate of correct responses. In a no-games reinforcement condition, students had more opportunities to respond and had a greater number of correct answers.…

  5. Reinforcing effects of caffeine in coffee and capsules.

    Science.gov (United States)

    Griffiths, R R; Bigelow, G E; Liebson, I A

    1989-09-01

    In a residential research ward the reinforcing and subjective effects of caffeine were studied under double-blind conditions in volunteer subjects with histories of heavy coffee drinking. In Experiment 1, 6 subjects had 13 opportunities each day to self-administer either a caffeine (100 mg) or a placebo capsule for periods of 14 to 61 days. All subjects developed a clear preference for caffeine, with intake of caffeine becoming relatively stable after preference had been attained. Preference for caffeine was demonstrated whether or not preference testing was preceded by a period of 10 to 37 days of caffeine abstinence, suggesting that a recent history of heavy caffeine intake (tolerance/dependence) was not a necessary condition for caffeine to function as a reinforcer. In Experiment 2, 6 subjects had 10 opportunities each day to self-administer a cup of coffee or (on different days) a capsule, dependent upon completing a work requirement that progressively increased and then decreased over days. Each day, one of four conditions was studied: caffeinated coffee (100 mg/cup), decaffeinated coffee, caffeine capsules (100 mg/capsule), or placebo capsules. Caffeinated coffee maintained the most self-administration, significantly higher than decaffeinated coffee and placebo capsules but not different from caffeine capsules. Both decaffeinated coffee and caffeine capsules were significantly higher than placebo capsules but not different from each other. In both experiments, subject ratings of "linking" of coffee or capsules covaried with the self-administration measures. These experiments provide the clearest demonstrations to date of the reinforcing effects of caffeine in capsules and in coffee.

  6. The role of multiple neuromodulators in reinforcement learning that is based on competition between eligibility traces

    Directory of Open Access Journals (Sweden)

    Marco A Huertas

    2016-12-01

    Full Text Available The ability to maximize reward and avoid punishment is essential for animal survival. Reinforcement learning (RL refers to the algorithms used by biological or artificial systems to learn how to maximize reward or avoid negative outcomes based on past experiences. While RL is also important in machine learning, the types of mechanistic constraints encountered by biological machinery might be different than those for artificial systems. Two major problems encountered by RL are how to relate a stimulus with a reinforcing signal that is delayed in time (temporal credit assignment, and how to stop learning once the target behaviors are attained (stopping rule. To address the first problem, synaptic eligibility traces were introduced, bridging the temporal gap between a stimulus and its reward. Although these were mere theoretical constructs, recent experiements have provided evidence of their existence. These experiments also reveal that the presence of specific neuromodulators converts the traces into changes in synaptic efficacy. A mechanistic implementation of the stopping rule usually assumes the inhibition of the reward nucleus; however, recent experimental results have shown that learning terminates at the appropriate network state even in setups where the reward cannot be inhibited. In an effort to describe a learning rule that solves the temporal credit assignment problem and implements a biologically plausible stopping rule, we proposed a model based on two separate synaptic eligibility traces, one for long-term potentiation (LTP and one for long-term depression (LTD, each obeying different dynamics and having different effective magnitudes. The model has been shown to successfully generate stable learning in recurrent networks. Although the model assumes the presence of a single neuromodulator, evidence indicates that there are different neuromodulators for expressing the different traces. What could be the role of different

  7. The Role of Multiple Neuromodulators in Reinforcement Learning That Is Based on Competition between Eligibility Traces.

    Science.gov (United States)

    Huertas, Marco A; Schwettmann, Sarah E; Shouval, Harel Z

    2016-01-01

    The ability to maximize reward and avoid punishment is essential for animal survival. Reinforcement learning (RL) refers to the algorithms used by biological or artificial systems to learn how to maximize reward or avoid negative outcomes based on past experiences. While RL is also important in machine learning, the types of mechanistic constraints encountered by biological machinery might be different than those for artificial systems. Two major problems encountered by RL are how to relate a stimulus with a reinforcing signal that is delayed in time (temporal credit assignment), and how to stop learning once the target behaviors are attained (stopping rule). To address the first problem synaptic eligibility traces were introduced, bridging the temporal gap between a stimulus and its reward. Although, these were mere theoretical constructs, recent experiments have provided evidence of their existence. These experiments also reveal that the presence of specific neuromodulators converts the traces into changes in synaptic efficacy. A mechanistic implementation of the stopping rule usually assumes the inhibition of the reward nucleus; however, recent experimental results have shown that learning terminates at the appropriate network state even in setups where the reward nucleus cannot be inhibited. In an effort to describe a learning rule that solves the temporal credit assignment problem and implements a biologically plausible stopping rule, we proposed a model based on two separate synaptic eligibility traces, one for long-term potentiation (LTP) and one for long-term depression (LTD), each obeying different dynamics and having different effective magnitudes. The model has been shown to successfully generate stable learning in recurrent networks. Although, the model assumes the presence of a single neuromodulator, evidence indicates that there are different neuromodulators for expressing the different traces. What could be the role of different neuromodulators for

  8. Effects of daily snack food intake on food reinforcement depend on body mass index and energy density.

    Science.gov (United States)

    Clark, Erika N; Dewey, Amber M; Temple, Jennifer L

    2010-02-01

    The reinforcing value of food plays a role in food consumption. We have shown previously that daily intake of a high-energy-density (HED) snack food decreases food reinforcement and food liking in nonobese women but increases food reinforcement and decreases food liking in obese women. These previous studies were conducted with the use of only HED snack foods. The purpose of this study was to determine whether these effects generalize to low-energy-density (LED) foods. Participants (n = 53) had food reinforcement and food liking tested at baseline and then again after 2 wk of daily consumption of 60-g portions of an HED (n = 26) or an LED (n = 27) snack food. We observed a decrease in food reinforcement in women with a lower body mass index (BMI) and an increase in food reinforcement in women with a higher BMI after 14 d of consumption of an HED snack food. Food liking decreased in all women, regardless of BMI, after repeated consumption of HED foods. Conversely, all women, regardless of BMI, showed a decrease in food reinforcement after 14 d of LED snack food consumption. Women with a lower BMI who consumed LED snacks also showed a decrease in liking, but women with a higher BMI who consumed LED foods reported no change in liking. These findings suggest that changes in food reinforcement after daily snack food intake are influenced by both BMI and the energy density of the foods. In addition, changes in food reinforcement cannot be explained by changes in food liking.

  9. Human Responding on Random-Interval Schedules of Response-Cost Punishment: The Role of Reduced Reinforcement Density

    Science.gov (United States)

    Pietras, Cynthia J.; Brandt, Andrew E.; Searcy, Gabriel D.

    2010-01-01

    An experiment with adult humans investigated the effects of response-contingent money loss (response-cost punishment) on monetary-reinforced responding. A yoked-control procedure was used to separate the effects on responding of the response-cost contingency from the effects of reduced reinforcement density. Eight adults pressed buttons for money…

  10. Dual Effects on Choice of Conditioned Reinforcement Frequency and Conditioned Reinforcement Value

    Science.gov (United States)

    McDevitt, Margaret A.; Williams, Ben A.

    2010-01-01

    Pigeons were presented with a concurrent-chains schedule in which the total time to primary reinforcement was equated for the two alternatives (VI 30 s VI 60 s vs. VI 60 s VI 30 s). In one set of conditions, the terminal links were signaled by the same stimulus, and in another set of conditions they were signaled by different stimuli. Choice was…

  11. Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement.

    Science.gov (United States)

    Hsu, Yun-Wei A; Wang, Si D; Wang, Shirong; Morton, Glenn; Zariwala, Hatim A; de la Iglesia, Horacio O; Turner, Eric E

    2014-08-20

    The habenular complex in the epithalamus consists of distinct regions with diverse neuronal populations. Past studies have suggested a role for the habenula in voluntary exercise motivation and reinforcement of intracranial self-stimulation but have not assigned these effects to specific habenula subnuclei. Here, we have developed a genetic model in which neurons of the dorsal medial habenula (dMHb) are developmentally eliminated, via tissue-specific deletion of the transcription factor Pou4f1 (Brn3a). Mice with dMHb lesions perform poorly in motivation-based locomotor behaviors, such as voluntary wheel running and the accelerating rotarod, but show only minor abnormalities in gait and balance and exhibit normal levels of basal locomotion. These mice also show deficits in sucrose preference, but not in the forced swim test, two measures of depression-related phenotypes in rodents. We have also used Cre recombinase-mediated expression of channelrhodopsin-2 and halorhodopsin to activate dMHb neurons or silence their output in freely moving mice, respectively. Optical activation of the dMHb in vivo supports intracranial self-stimulation, showing that dMHb activity is intrinsically reinforcing, whereas optical silencing of dMHb outputs is aversive. Together, our findings demonstrate that the dMHb is involved in exercise motivation and the regulation of hedonic state, and is part of an intrinsic reinforcement circuit. Copyright © 2014 the authors 0270-6474/14/3411366-19$15.00/0.

  12. Effect Of Age And Concrete Cover Thickness On Steel Reinforcement Corrosion At Splash Zone In Reinforced Concrete Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Nada M. Al- Galawi

    2015-08-01

    Full Text Available Corrosion of reinforcing steel bars in reinforced concrete is considered as one of the biggest problems that face countries overlooking to the Arabian Gulf including Iraq. The research aims to study the effect of the corrosion of steel bars in concrete structures that are exposed to wetting and drying via waves. Reinforced concrete samples were exposed to marine simulated environment for 90 days using prepared system for this purpose. At the end of exposure period polarization test was implemented to measure the actual corrosion rate in each sample. After that the corrosion process was accelerated using impressed current technique by applying a constant electric current DC to the reinforcing bars. Depending on the corrosion current in natural conditions which was measured in polarization test periods of exposing samples to accelerated corrosion current so as to maintain virtual exposure ages of 5 and 25 years of exposure to natural corrosion were calculated. The results showed a remarkable increase in the corrosion current of steel bars in samples that had lower concrete cover thickness. The increase in the cover thickness from 20mm to 40 and 65 mm had a significant effect on reducing the corrosion current at the age of 90 days to about 70 of its original value in both cases. At the virtual exposure age of 5 years the reduction percentage in the corrosion current resulted from increasing cover thickness from 20mm to 40 and 65 mm were 43 and 79 respectively.

  13. Effects of 2-AG on the reinforcing properties of wheel activity in obese and lean Zucker rats.

    Science.gov (United States)

    Smith, Shilo L; Rasmussen, Erin B

    2010-07-01

    The endocannabinoid system plays a role in obesity, primarily by its role in food reward. Activity, also involved in obesity, seems to be at least partially controlled by the endocannabinoid system, but the relevant behavioral and neurochemical mechanisms have not been well established. This study represents an attempt to begin elucidating these mechanisms by examining the effects of an endogenous cannabinoid ligand, 2-arachidonoylglycerol (2-AG), on the reinforcing properties of exercise reinforcement in lean and obese Zucker rats. Ten obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min periods. After baseline breakpoints were established, doses of 2-AG (0.3-3 mg/kg) were administered before experimental sessions. Obese rats exhibited lower breakpoints for wheel activity, lower response rates, and fewer revolutions compared with lean rats. 2-AG decreased breakpoints, response rates, and revolutions for obese rats, and revolutions only for lean rats. These data suggest that 2-AG may reduce the reinforcing properties of activity, and that obese Zuckers may show a greater sensitivity to 2-AG. The data also suggest that endocannabinoids may play a role in the reinforcing properties of exercise.

  14. Reinforcement of wheel running in BALB/c mice: role of motor activity and endogenous opioids.

    Science.gov (United States)

    Vargas-Pérez, Héctor; Sellings, Laurie H L; Paredes, Raúl G; Prado-Alcalá, Roberto A; Díaz, José-Luis

    2008-11-01

    The authors investigated the effect of the opioid antagonist naloxone on wheel-running behavior in Balb/c mice. Naloxone delayed the acquisition of wheel-running behavior, but did not reduce the expression of this behavior once acquired. Delayed acquisition was not likely a result of reduced locomotor activity, as naloxone-treated mice did not exhibit reduced wheel running after the behavior was acquired, and they performed normally on the rotarod test. However, naloxone-blocked conditioned place preference for a novel compartment paired previously with wheel running, suggesting that naloxone may delay wheel-running acquisition by blocking the rewarding or reinforcing effects of the behavior. These results suggest that the endogenous opioid system mediates the initial reinforcing effects of wheel running that are important in acquisition of the behavior.

  15. Physical dependence increases the relative reinforcing effects of caffeine versus placebo.

    Science.gov (United States)

    Garrett, B E; Griffiths, R R

    1998-10-01

    Using a within-subject cross-over design, this study examined the role of physical dependence in caffeine reinforcement by experimentally manipulating physical dependence. Each subject was exposed to two chronic drug phases (300 mg/70 kg/day caffeine and placebo) for 9-12 days, with order of phases counterbalanced across subjects. On 2 separate days immediately following each of the chronic drug exposures, subjects received acute doses of either caffeine (300 mg/70 kg) or placebo in counterbalanced order. The reinforcing effects of these drugs were then determined by using a multiple-choice procedure in which subjects made a series of discrete choices between receiving varying amounts of money or receiving the drug again, and a choice between the two drugs. To ensure that subjects completed the form carefully, following exposure to both of the acute drug administrations, one of the subject's previous choices from the multiple-choice form was randomly selected and the consequence of that choice was implemented. When subjects were maintained on chronic caffeine, they were willing to forfeit significantly more money and showed significant increases in typical withdrawal symptoms (e.g. fatigue, mood disturbance) after receiving placebo as compared to the other three conditions. When subjects were maintained on chronic caffeine, they also chose to receive caffeine over placebo twice as often than when they were maintained on chronic placebo. These findings provide the strongest evidence to date indicating that caffeine physical dependence increases the relative reinforcing effects of caffeine versus placebo.

  16. Some effects of overall rate of earning reinforcers on run lengths and visit durations.

    Science.gov (United States)

    Macdonall, James S

    2006-07-01

    In a concurrent schedule, responding at each alternative is controlled by a pair of schedules that arrange reinforcers for staying at that alternative and reinforcers for switching to the other alternative. Each pair of schedules operates only while at the associated alternative. When only one pair of stay and switch schedules is presented, the rates of earning reinforcers for staying divided by the rates of earning reinforcers for switching controls the mean number responses in a visit and the mean duration of visits. The purpose of the present experiment was to see whether the sum of the rates of earning stay and switch reinforcers changed the way that run length and visit duration were affected by the ratio of the rates of stay to switch reinforcers. Rats were exposed to pairs of stay and switch schedules that varied both the ratio of the rates of earning stay and switch reinforcers and the sum of the rates of earning stay and switch reinforcers. Run lengths and visit durations were joint functions of the ratio of the rates of earning stay and switch reinforcers and the sum of the rates of earning stay and switch reinforcers. These results shows that the effect of the ratio of the sum of the rates of earning stay and switch reinforcers results from processes operating at the alternative, rather than from processes operating at both alternatives.

  17. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  18. The Effects of Variable-Time Delivery of Food Items and Praise on Problem Behavior Reinforced by Escape

    Science.gov (United States)

    Lomas, Joanna E.; Fisher, Wayne W.; Kelley, Michael E.

    2010-01-01

    Prior research indicates that reinforcement of an appropriate response (e.g., compliance) can produce concomitant reductions in problem behavior reinforced by escape when problem behavior continues to produce negative reinforcement (e.g., Lalli et al., 1999). These effects may be due to a preference for positive over negative reinforcement or to…

  19. Strain rate effects on reinforcing steels in tension

    Science.gov (United States)

    Cadoni, Ezio; Forni, Daniele

    2015-09-01

    It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.

  20. Separation of time-based and trial-based accounts of the partial reinforcement extinction effect.

    Science.gov (United States)

    Bouton, Mark E; Woods, Amanda M; Todd, Travis P

    2014-01-01

    Two appetitive conditioning experiments with rats examined time-based and trial-based accounts of the partial reinforcement extinction effect (PREE). In the PREE, the loss of responding that occurs in extinction is slower when the conditioned stimulus (CS) has been paired with a reinforcer on some of its presentations (partially reinforced) instead of every presentation (continuously reinforced). According to a time-based or "time-accumulation" view (e.g., Gallistel and Gibbon, 2000), the PREE occurs because the organism has learned in partial reinforcement to expect the reinforcer after a larger amount of time has accumulated in the CS over trials. In contrast, according to a trial-based view (e.g., Capaldi, 1967), the PREE occurs because the organism has learned in partial reinforcement to expect the reinforcer after a larger number of CS presentations. Experiment 1 used a procedure that equated partially and continuously reinforced groups on their expected times to reinforcement during conditioning. A PREE was still observed. Experiment 2 then used an extinction procedure that allowed time in the CS and the number of trials to accumulate differentially through extinction. The PREE was still evident when responding was examined as a function of expected time units to the reinforcer, but was eliminated when responding was examined as a function of expected trial units to the reinforcer. There was no evidence that the animal responded according to the ratio of time accumulated during the CS in extinction over the time in the CS expected before the reinforcer. The results thus favor a trial-based account over a time-based account of extinction and the PREE. This article is part of a Special Issue entitled: Associative and Temporal Learning. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The role of repetition and reinforcement in school-based oral health education-a cluster randomized controlled trial.

    Science.gov (United States)

    Haleem, Abdul; Khan, Muhammad Khalil; Sufia, Shamta; Chaudhry, Saima; Siddiqui, Muhammad Irfanullah; Khan, Ayyaz Ali

    2016-01-04

    Repetition and reinforcement have been shown to play a crucial role in the sustainability of the effect of Oral Health Education (OHE) programs. However, its relevance to school-based OHE imparted by different personnel is not depicted by the existing dental literature. The present study was undertaken to determine the effectiveness of the repeated and reinforced OHE (RR-OHE) compared to one-time OHE intervention and to assess its role in school-based OHE imparted by dentist, teachers and peers. The study was a cluster randomized controlled trial that involved 935 adolescents aged 10-11 years. Twenty four boys' and girls' schools selected at random in two towns of Karachi, Pakistan were randomly assigned to three groups to receive OHE by dentist (DL), teachers (TL) and peer-leaders (PL). The groups received a single OHE session and were evaluated post-intervention and 6 months after. The three groups were then exposed to OHE for 6 months followed by 1 year of no OHE activity. Two further evaluations at 6-month and 12-month intervals were conducted. The data were collected by a self-administered questionnaire preceded by a structured interview and followed by oral examination of participants. The adolescents' oral health knowledge (OHK) in the DL and PL groups increased significantly by a single OHE session compared to their baseline knowledge (p strategy. Although the OHK scores of the DL and PL groups decreased significantly at 12-month evaluation of RR-OHE (p play a key role in school-based OHE irrespective of educators. The trained teachers and peers can play a complementary role in RR-OHE.

  2. Reinforcement of drinking by running: effect of fixed ratio and reinforcement time1

    Science.gov (United States)

    Premack, David; Schaeffer, Robert W.; Hundt, Alan

    1964-01-01

    Rats were required to complete varying numbers of licks (FR), ranging from 10 to 300, in order to free an activity wheel for predetermined times (CT) ranging from 2 to 20 sec. The reinforcement of drinking by running was shown both by an increased frequency of licking, and by changes in length of the burst of licking relative to operant-level burst length. In log-log coordinates, instrumental licking tended to be a linear increasing function of FR for the range tested, a linear decreasing function of CT for the range tested. Pause time was implicated in both of the above relations, being a generally increasing function of both FR and CT. PMID:14120150

  3. REINFORCEMENT OF DRINKING BY RUNNING: EFFECT OF FIXED RATIO AND REINFORCEMENT TIME.

    Science.gov (United States)

    PREMACK, D; SCHAEFFER, R W; HUNDT, A

    1964-01-01

    Rats were required to complete varying numbers of licks (FR), ranging from 10 to 300, in order to free an activity wheel for predetermined times (CT) ranging from 2 to 20 sec. The reinforcement of drinking by running was shown both by an increased frequency of licking, and by changes in length of the burst of licking relative to operant-level burst length. In log-log coordinates, instrumental licking tended to be a linear increasing function of FR for the range tested, a linear decreasing function of CT for the range tested. Pause time was implicated in both of the above relations, being a generally increasing function of both FR and CT.

  4. Numerical Evaluation of Size Effect on the Stress-Strain Behaviour of Geotextile-Reinforced Sand

    DEFF Research Database (Denmark)

    Hosseinpour, I.; Mirmoradi, S.H.; Barari, Amin

    2010-01-01

    This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the con......This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers...... on the mechanical behavior of reinforced sand decreases with an increase in the sample size....

  5. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, GH.A., E-mail: Gh.a.bagheri65@gmail.com

    2016-08-15

    In this research, copper matrix composites reinforced with different amounts of titanium carbide particles were produced by mechanical milling and in-situ formation of reinforcements. Morphology and size of milled powders were inspected by scanning electron microscopy (SEM) several times during milling process. Changes in lattice parameter, crystallite size, lattice strain, dislocation density and Gibbs free energy changes (due to increasing in dislocation densities and grain boundaries) in different samples (with different TiC particles contents) were studied by X-Ray Diffraction technique with Cu-kα radiation and using Nelson–Riley method and Williamson–Hall equation. Microstructure of samples after sintering was investigated by FESEM. Finally, densitometry, hardness, determination of electrical resistance and pin on disk wear test were performed and effect of reinforcement percentages on the physical and mechanical properties of composites was studied. Results show incredible improvement in mechanical properties with increasing in TiC value, even though, electrical conductivity dropped off considerably. - Highlights: • Microstructures, mechanical and physical properties of composites have been studied. • Stored Gibbs free energy of dislocations and grain boundaries has been calculated. • Gibbs free energy increased with increasing in titanium percent. • Higher TiC percentage led to better mechanical and unfavorable physical properties.

  6. Temperature effects on bond between concrete and reinforcing steel

    Directory of Open Access Journals (Sweden)

    Lublóy Éva

    2014-01-01

    Full Text Available Bond behaviour between concrete and reinforcing bars was observed under elevated temperatures. Five different concrete compositions were used. Hundred five pull-out specimens (Ø120 mm, 100 mm were prepared. After removing the specimens from the formwork, they were stored in water for seven days then kept at laboratory conditions until testing. The specimens were 28 days old by testing. After heating up the specimens, they were kept for two hours at these maximum temperatures (20 °C, 150 °C, 300 °C, 400 °C, 500 °C, 800 °C. Specimens were then cooled down in laboratory conditions. Finally the specimens were tested at room temperature. In order to check the compressive strength standard cubes were cast, cured, and heat treated, then tested to compressive strength. The results showed reduction in residual compressive strength and considerable changes in steel-concrete bond under high temperatures. Based on test results, a proposal is presented for the modification of MC2010 bond-ship formula in order to consider temperature effect.

  7. The Effects of Prompting and Reinforcement on Safe Behavior of Bicycle and Motorcycle Riders

    Science.gov (United States)

    Okinaka, Takeru; Shimazaki, Tsuneo

    2011-01-01

    A reversal design was used to evaluate the effects of vocal and written prompts as well as reinforcement on safe behavior (dismounting and walking bicycles or motorcycles on a sidewalk) on a university campus. Results indicated that an intervention that consisted of vocal and written prompts and reinforcement delivered by security guards was…

  8. The Effects of Reinforcer Pairing and Fading on Preschoolers' Snack Selections

    Science.gov (United States)

    Solberg, Katherine M.; Hanley, Gregory P.; Layer, Stacy A.; Ingvarsson, Einar T.

    2007-01-01

    The effects of reinforcement pairing and fading on preschoolers' snack selections were evaluated in a multiple baseline design. Baseline preferences for snack options were assessed via repeated paired-item preference assessments. Edible, social, and activity-based reinforcers were then exclusively paired with a less preferred snack option. Once…

  9. Corrosion and protection in reinforced concrete : Pulse cathodic protection: an improved cost-effective alternative

    NARCIS (Netherlands)

    Koleva, D.A.

    2007-01-01

    Corrosion and protection in reinforced concrete. Pulse cathodic protection: an improved cost-effective alternative. The aim of the research project was to study the possibilities for establishing a new or improved electrochemical method for corrosion prevention/protection for reinforced concrete.

  10. Prior methylphenidate self-administration alters the subsequent reinforcing effects of methamphetamine in rats.

    Science.gov (United States)

    Baladi, Michelle G; Nielsen, Shannon M; Umpierre, Anthony; Hanson, Glen R; Fleckenstein, Annette E

    2014-12-01

    Methylphenidate (MPD) is clinically effective in treating the symptoms of attention-deficit hyperactivity disorder; however, its relatively widespread availability has raised public health concerns on nonmedical use of MPD among certain adult populations. Most preclinical studies investigate whether presumed therapeutically relevant doses of MPD alter sensitivity to the reinforcing effects of other drugs, but it remains unclear whether doses of MPD likely exceeding therapeutic relevance impact the subsequent reinforcing effects of drugs. To begin to address this question, the effect of prior MPD self-administration (0.56 mg/kg/infusion) on the subsequent reinforcing effects of methamphetamine (METH, 0.032 or 0.1 mg/kg/infusion) was investigated in male Sprague-Dawley rats. For comparison, it was also determined whether prior experimenter-administered MPD, injected daily at a presumed therapeutically relevant dose (2 mg/kg), altered the subsequent reinforcing effects of METH. Results indicated that, under the current conditions, only a history of MPD self-administration increased sensitivity to the subsequent reinforcing effects of METH. Furthermore, MPD did not impact food-maintained responding, suggesting that the effect of MPD might be specific to drug reinforcers. These data suggest that short-term, nonmedical use of MPD might alter the positive reinforcing effects of METH in a manner relevant to vulnerability to drug use in humans.

  11. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-01-01

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults. PMID:28793697

  12. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults.

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-11-27

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L'Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  13. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2015-11-01

    Full Text Available An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers. For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  14. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...

  15. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  16. Modulation of the conflict monitoring intensity: the role of aversive reinforcement, cognitive demand, and trait-BIS.

    Science.gov (United States)

    Leue, Anja; Lange, Sebastian; Beauducel, André

    2012-06-01

    According to Botvinick's (2007) integrative account, conflict monitoring is aversive because individuals anticipate cognitive demand, whereas the revised reinforcement sensitivity theory (rRST) predicts that conflict processing is aversive because individuals anticipate aversive reinforcement of erroneous responses. Because these accounts give different reasons for the aversive aspects of conflict, we manipulated cognitive demand and the aversive reinforcement as a consequence of wrong choices in a go/no-go task. Thereby, we also aimed to investigate whether individual differences in conflict sensitivity (i.e., in trait anxiety, linked to high sensitivity of the behavioral inhibition system [trait-BIS]) represent the effects of aversive reinforcement and cognitive demand in conflict tasks. We expected that these manipulations would have effects on the frontal N2 component representing activity of the anterior cingulate cortex. Moreover, higher-trait-BIS individuals should be more sensitive than lower-trait-BIS individuals to aversive effects in conflict situations, resulting in a more negative frontal N2 for higher-trait-BIS individuals. In Study 1, with N = 104 students, and Study 2, with N = 47 students, aversive reinforcement was manipulated in three levels (within-subjects factor) and cognitive demand in two levels (between-subjects factor). The behavioral findings from the go/no-go task with noncounterbalanced reinforcement levels (Study 1) could be widely replicated in a task with counterbalanced reinforcement levels (Study 2). The frontal mean no-go N2 amplitude and the frontal no-go N2 dipole captured predicted reinforcement-related variations of conflict monitoring, indicating that the anticipation of aversive reinforcement induces variations in conflict monitoring intensity in frontal brain areas. The aversive nature of conflict was underlined by the more pronounced conflict monitoring in higher- than in lower-trait-BIS individuals.

  17. The partial-reinforcement extinction effect and the contingent-sampling hypothesis.

    Science.gov (United States)

    Hochman, Guy; Erev, Ido

    2013-12-01

    The partial-reinforcement extinction effect (PREE) implies that learning under partial reinforcements is more robust than learning under full reinforcements. While the advantages of partial reinforcements have been well-documented in laboratory studies, field research has failed to support this prediction. In the present study, we aimed to clarify this pattern. Experiment 1 showed that partial reinforcements increase the tendency to select the promoted option during extinction; however, this effect is much smaller than the negative effect of partial reinforcements on the tendency to select the promoted option during the training phase. Experiment 2 demonstrated that the overall effect of partial reinforcements varies inversely with the attractiveness of the alternative to the promoted behavior: The overall effect is negative when the alternative is relatively attractive, and positive when the alternative is relatively unattractive. These results can be captured with a contingent-sampling model assuming that people select options that provided the best payoff in similar past experiences. The best fit was obtained under the assumption that similarity is defined by the sequence of the last four outcomes.

  18. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  19. Effect of sucrose availability on wheel-running as an operant and as a reinforcing consequence on a multiple schedule: Additive effects of extrinsic and automatic reinforcement.

    Science.gov (United States)

    Belke, Terry W; Pierce, W David

    2015-07-01

    As a follow up to Belke and Pierce's (2014) study, we assessed the effects of repeated presentation and removal of sucrose solution on the behavior of rats responding on a two-component multiple schedule. Rats completed 15 wheel turns (FR 15) for either 15% or 0% sucrose solution in the manipulated component and lever pressed 10 times on average (VR 10) for an opportunity to complete 15 wheel turns (FR 15) in the other component. In contrast to our earlier study, the components advanced based on time (every 8min) rather than completed responses. Results showed that in the manipulated component wheel-running rates were higher and the latency to initiate running longer when sucrose was present (15%) compared to absent (0% or water); the number of obtained outcomes (sucrose/water), however, did not differ with the presentation and withdrawal of sucrose. For the wheel-running as reinforcement component, rates of wheel turns, overall lever-pressing rates, and obtained wheel-running reinforcements were higher, and postreinforcement pauses shorter, when sucrose was present (15%) than absent (0%) in manipulated component. Overall, our findings suggest that wheel-running rate regardless of its function (operant or reinforcement) is maintained by automatically generated consequences (automatic reinforcement) and is increased as an operant by adding experimentally arranged sucrose reinforcement (extrinsic reinforcement). This additive effect on operant wheel-running generalizes through induction or arousal to the wheel-running as reinforcement component, increasing the rate of responding for opportunities to run and the rate of wheel-running per opportunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. An effect of immediate reinforcement and delayed punishment, with possible implications for self-control.

    Science.gov (United States)

    Epstein, R

    1984-12-01

    Behavior said to show self-control occurs virtually always as an alternative to behavior that produces conflicting consequences. One class of such consequences, immediate reinforcement and delayed punishment, is especially pervasive. Three experiments are described in which an effect of immediate reinforcement and delayed punishment is demonstrated. The results suggest that when immediate reinforcement and delayed punishment are imminent, the reinforcer alone controls the organism's behavior (in other words the organism behaves "impulsively"). The key to self-control, therefore, may be the acquisition of a large number of avoidance behaviors relevant to reinforcers that are correlated with delayed punishment. Human self-control may indeed involve such a process but undoubtedly involves others as well.

  1. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2003-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter...

  2. Effect of moisture on natural fibre reinforced plastics | Ogakwu | West ...

    African Journals Online (AJOL)

    In this research, the rate of moisture absorption of the composites reinforced with natural fibres – Ukam plant fibres (chochlostermum placoni) were studied and determined.Composite cubes and plates of different sizes were prepared, then immersed in water for 24 hours at room temperature in order to determine the extent ...

  3. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...

  4. Buspirone maintenance does not alter the reinforcing, subjective, and cardiovascular effects of intranasal methamphetamine.

    Science.gov (United States)

    Reynolds, Anna R; Strickland, Justin C; Stoops, William W; Lile, Joshua A; Rush, Craig R

    2017-12-01

    Medications development efforts for methamphetamine-use disorder have targeted central monoamines because these systems are directly involved in the effects of methamphetamine. Buspirone is a dopamine autoreceptor and D3 receptor antagonist and partial agonist at serotonin 1A receptors, making it a logical candidate medication for methamphetamine-use disorder. Buspirone effects on abuse-related behaviors of methamphetamine have been mixed in clinical and preclinical studies. Experimental research using maintenance dosing, which models therapeutic use, is limited. This study evaluated the influence of buspirone maintenance on the reinforcing effects of methamphetamine using a self-administration procedure, which has predictive validity for clinical efficacy. The impact of buspirone maintenance on the subjective and cardiovascular response to methamphetamine was also determined. Eight research participants (1 female) reporting recent illicit stimulant use completed a placebo-controlled, crossover, double-blind protocol in which the pharmacodynamic effects of intranasal methamphetamine (0, 15, and 30mg) were assessed after at least 6days of buspirone (0 and 45mg/day) maintenance. Intranasal methamphetamine functioned as a reinforcer and produced prototypical stimulant-like subjective (e.g., increased ratings of Good Effects and Like Drug) and cardiovascular (e.g., elevated blood pressure) effects. These effects of methamphetamine were similar under buspirone and placebo maintenance conditions. Maintenance on buspirone was well tolerated and devoid of effects when administered alone. These data suggest that buspirone is unlikely to be an effective pharmacotherapy for methamphetamine-use disorder. Given the central role of monoamines in methamphetamine-use disorder, it is reasonable for future studies to continue to target these systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of effect of reinforcement on plastic limit load of branch junction

    International Nuclear Information System (INIS)

    Myung, Man Sik; Kim, Yun Jae; Yoon, Ki Bong

    2009-01-01

    The present work provides effects of reinforcement shape and area on plastic limit loads of branch junctions, based on detailed three-dimensional finite element limit analysis and small strain FE limit analyses assuming elastic-perfectly plastic material behavior. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. It is found that reinforcement is the most effective in the case when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective, compared to the case when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  6. The potential role of cattail-reinforced clay plaster in sustainable building

    Directory of Open Access Journals (Sweden)

    G. Georgiev

    2014-06-01

    Full Text Available Sustainable development is a key goal in town and country planning, as well as in the building industry. The main aims are to avoid inefficient land use, to improve the energy efficiency of buildings and, thus, to move towards meeting the challenges of climate change. In this article we consider how the use of a traditional low-energy building material, namely clay, might contribute. Recent research has identified a promising connection between the reinforcement of clay for internal wall plastering with fibres from the wetland plant Typha latifolia (cattail and the positive environmental effects of cultivating this species. If large quantities of Typha fibres were to be used in building, the need for cultivation of the plant would increase and create new possibilities for the renaturalisation of polluted or/and degraded peatlands. We explore the topic first on the basis of literature, considering the suitability of Typha for this application and possibilities for its sustainable cultivation, as well as implications for the life cycle analyses of buildings in which it is used. We then report (qualitatively the results of testing different combinations of clay with natural plant (straw and cattail fibres for their suitability as a universal plaster, which demonstrate clearly the superior properties of Typha fibres as a reinforcement material for clay plaster mortars.

  7. Reinforced concrete bridges: effects due to corrosion and concrete young modulus variation

    Directory of Open Access Journals (Sweden)

    P. T. C. Mendes

    Full Text Available Most of the Brazilian bridges of federal road network are made of reinforced concrete and are more than 30 years old, with little information about the mechanical properties of their constitutive materials. Along the service life of these bridges much modification occurred on vehicles load and geometry and in design standard. Many of them show signs of concrete and steel deterioration and their stability conditions are unknown. With the aim of contributing to the structural evaluation of reinforced concrete bridges it was decided to analyze the stresses in reinforced concrete bridge sections to verify the effects due to reinforcement corrosion and variation of the concrete Young modulus on the stress distribution regarding several load patterns and cracking effects in a representative bridge of the Brazilian road network with different longitudinal reinforcement taxes and two concrete Young modulus, Ec and 0.5Ec, and with different percentage of reinforcement corrosion. The analysis considered two finite element models: frame and shell elements as well as solid elements. The results indicate that these variation effects are more significant in reinforcement bars than in concrete.

  8. Were Increased Closed Seclusions the Result of a Reinforcer-Abolishing Effect?

    Science.gov (United States)

    Poling, Alan

    2013-01-01

    In recent years, the motivating operation (MO) concept and the terms associated with it, including "reinforcer-abolishing effect" (Laraway, Snycerski, Michael, & Poling, 2003), have been widely used in the behavior-analytic literature (Laraway, Snycerski, Olson, Becker, & Poling, in press) and elsewhere (Lotfizadeh, Edwards, & Poling, 2013). MOs are changes in the environment that alter the reinforcing effectiveness of designated classes of stimuli, such as food or water.

  9. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    Science.gov (United States)

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve

  10. Responding for sucrose and wheel-running reinforcement: effect of pre-running.

    Science.gov (United States)

    Belke, Terry W

    2006-01-10

    Six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. To assess the effect of pre-running, animals were allowed to run for 1h prior to a session of responding for sucrose and running. Results showed that, after pre-running, response rates in the later segments of the 30-s schedule decreased in the presence of a wheel-running stimulus and increased in the presence of a sucrose stimulus. Wheel-running rates were not affected. Analysis of mean post-reinforcement pauses (PRP) broken down by transitions between successive reinforcers revealed that pre-running lengthened pausing in the presence of the stimulus signaling wheel running and shortened pauses in the presence of the stimulus signaling sucrose. No effect was observed on local response rates. Changes in pausing in the presence of stimuli signaling the two reinforcers were consistent with a decrease in the reinforcing efficacy of wheel running and an increase in the reinforcing efficacy of sucrose. Pre-running decreased motivation to respond for running, but increased motivation to work for food.

  11. Analysis of seismic effects on reinforced concrete structures

    International Nuclear Information System (INIS)

    Tai, A.A.

    1981-12-01

    An important bibliographical research was undertaken in order to make the best possible analysis of the dynamic behaviour of materials and of structural components. This research work was completed by the study of the structures tested on a seismic table. The results obtained from this preliminary study, particularly those concerning the modification in the rigidity of reinforced concrete structures under alternate and seismic loading, enabled a calculation method (called ''equivalent static'') to be drawn up for analyzing the behaviour of reinforced concrete structures in earthquakes. This method takes into account the non-linearity of the behaviour of materials, in particular. The earthquake responses that were obtained by this method on gantries tested on a vibrating table, tally very satisfactorily with the test figures [fr

  12. The detrimental effects of extrinsic reinforcement on “Intrinsic motivation”

    Science.gov (United States)

    Dickinson, Alyce M.

    1989-01-01

    Extrinsic consequences have been criticized on the grounds that they decrease intrinsic motivation or internally initiated behavior. Two popular rationales for this criticism, Lepper's overjustification hypothesis (1981) and Deci's motivational theory (Deci & Ryan, 1985), are reviewed and the criticism is then redefined behaviorally. “Intrinsically controlled” behavior is defined as behavior maintained by response-produced reinforcers, and the question concerning extrinsic consequences is thus restated as follows: When behavior is maintained by response-produced stimuli, does extrinsic reinforcement decrease the reinforcing value of those stimuli? The empirical support for this detrimental effect is summarized briefly, and several possible explanations for the phenomenon are offered. Research results that reflect on the effect's generality and social significance are discussed next, with the conclusion that the effect is transient and not likely to occur at all if extrinsic rewards are reinforcing, noncompetitive, based on reasonable performance standards, and delivered repetitively. PMID:22478013

  13. The role of ethics and deontology is essential must be reinforced in geosciences. Focus natural hazards and catastrophic risk.

    Science.gov (United States)

    Zango-Pascual, Marga

    2016-04-01

    Marga Zango-Pascual Area: Environmental Technologies. Department: Chemical, Physical and Natural Systems. Universidad Pablo de Olavide, Seville, Spain. mzanpas@upo.es In todaýs globalized and changing world, Natural Hazard Management is becoming a priority. It is essential for us to combine both global and interdisciplinary approaches with in-depth knowledge about the natural hazards that may cause damage to both people and property. Many catastrophic events have to see with geological hazards. Science and technology, and particularly geosciences, play an essential role. But this role is often not used, because it is not integrated into the legislation or public policy enacted by those who must manage risk to prevent disasters from occurring. Not only here and now, but also everywhere, whenever decisions are made on disaster risk reduction, we must call for the role of geology to be taken into account. And we must note that in several countries including Spain, the study of geology is being slighted in both universities and secondary education. If the discipline of geology disappears from formal education, there would be serious consequences. This warning has already been issued once and again, for instance in the 2007 Quarterly Natural Sciences Newsletter in relation to Katrina and The Tsunami in the Indian Ocean. There, the fact that knowledge of geoscience may be indispensable for attenuating the effects of natural disasters and that knowledge of geoscience benefits society always is clearly stated. And this necessarily includes generating and makings the best possible use of legislation and public policy where daily decisions are made both on risk management and everything that managing threats involves. The role of geology and geologists is essential and must be reinforced. But, we cannot forgive that is necessary to form of the professional of geology in law and ethical principles. And of course a deontological approach should be maintained. The role of

  14. Optimisation of cognitive performance in rodent operant (touchscreen) testing: Evaluation and effects of reinforcer strength.

    Science.gov (United States)

    Phillips, Benjamin U; Heath, Christopher J; Ossowska, Zofia; Bussey, Timothy J; Saksida, Lisa M

    2017-09-01

    Operant testing is a widely used and highly effective method of studying cognition in rodents. Performance on such tasks is sensitive to reinforcer strength. It is therefore advantageous to select effective reinforcers to minimize training times and maximize experimental throughput. To quantitatively investigate the control of behavior by different reinforcers, performance of mice was tested with either strawberry milkshake or a known powerful reinforcer, super saccharin (1.5% or 2% (w/v) saccharin/1.5% (w/v) glucose/water mixture). Mice were tested on fixed (FR)- and progressive-ratio (PR) schedules in the touchscreen-operant testing system. Under an FR schedule, both the rate of responding and number of trials completed were higher in animals responding for strawberry milkshake versus super saccharin. Under a PR schedule, mice were willing to emit similar numbers of responses for strawberry milkshake and super saccharin; however, analysis of the rate of responding revealed a significantly higher rate of responding by animals reinforced with milkshake versus super saccharin. To determine the impact of reinforcer strength on cognitive performance, strawberry milkshake and super saccharin-reinforced animals were compared on a touchscreen visual discrimination task. Animals reinforced by strawberry milkshake were significantly faster to acquire the discrimination than animals reinforced by super saccharin. Taken together, these results suggest that strawberry milkshake is superior to super saccharin for operant behavioral testing and further confirms that the application of response rate analysis to multiple ratio tasks is a highly sensitive method for the detection of behavioral differences relevant to learning and motivation.

  15. Brain Circuits of Methamphetamine Place Reinforcement Learning: The Role of the Hippocampus-VTA Loop.

    Science.gov (United States)

    Keleta, Yonas B; Martinez, Joe L

    2012-03-01

    The reinforcing effects of addictive drugs including methamphetamine (METH) involve the midbrain ventral tegmental area (VTA). VTA is primary source of dopamine (DA) to the nucleus accumbens (NAc) and the ventral hippocampus (VHC). These three brain regions are functionally connected through the hippocampal-VTA loop that includes two main neural pathways: the bottom-up pathway and the top-down pathway. In this paper, we take the view that addiction is a learning process. Therefore, we tested the involvement of the hippocampus in reinforcement learning by studying conditioned place preference (CPP) learning by sequentially conditioning each of the three nuclei in either the bottom-up order of conditioning; VTA, then VHC, finally NAc, or the top-down order; VHC, then VTA, finally NAc. Following habituation, the rats underwent experimental modules consisting of two conditioning trials each followed by immediate testing (test 1 and test 2) and two additional tests 24 h (test 3) and/or 1 week following conditioning (test 4). The module was repeated three times for each nucleus. The results showed that METH, but not Ringer's, produced positive CPP following conditioning each brain area in the bottom-up order. In the top-down order, METH, but not Ringer's, produced either an aversive CPP or no learning effect following conditioning each nucleus of interest. In addition, METH place aversion was antagonized by coadministration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK801, suggesting that the aversion learning was an NMDA receptor activation-dependent process. We conclude that the hippocampus is a critical structure in the reward circuit and hence suggest that the development of target-specific therapeutics for the control of addiction emphasizes on the hippocampus-VTA top-down connection.

  16. Reinforcement magnitude modulation of rate dependent effects in pigeons and rats.

    Science.gov (United States)

    Ginsburg, Brett C; Pinkston, Jonathan W; Lamb, R J

    2011-08-01

    Response rate can influence the behavioral effects of many drugs. Reinforcement magnitude may also influence drug effects. Further, reinforcement magnitude can influence rate-dependent effects. For example, in an earlier report, we showed that rate-dependent effects of two antidepressants depended on reinforcement magnitude. The ability of reinforcement magnitude to interact with rate-dependency has not been well characterized. It is not known whether our previous results are specific to antidepressants or generalize to other drug classes. Here, we further examine rate-magnitude interactions by studying effects of two stimulants (d-amphetamine [0.32-5.6 mg/kg] and cocaine [0.32-10 mg/kg]) and two sedatives (chlordiazepoxide [1.78-32 mg/kg] and pentobarbital [1.0-17.8 mg/kg]) in pigeons responding under a 3-component multiple fixed-interval (FI) 300-s schedule maintained by 2-, 4-, or 8-s of food access. We also examine the effects of d-amphetamine [0.32-3.2 mg/kg] and pentobarbital [1.8-10 mg/kg] in rats responding under a similar multiple FI300-s schedule maintained by 2- or 10- food pellet (45 mg) delivery. In pigeons, cocaine and, to a lesser extent, chlordiazepoxide exerted rate-dependent effects that were diminished by increasing durations of food access. The relationship was less apparent for pentobarbital, and not present for d-amphetamine. In rats, rate-dependent effects of pentobarbital and d-amphetamine were not modulated by reinforcement magnitude. In conclusion, some drugs appear to exert rate-dependent effect which are diminished when reinforcement magnitude is relatively high. Subsequent analysis of the rate-dependency data suggest the effects of reinforcement magnitude may be due to a diminution of drug-induced increases in low-rate behavior that occurs early in the fixed-interval. (c) 2011 APA, all rights reserved.

  17. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    OpenAIRE

    N. Panwar; R.P. Poonia; G. Singh; R. Dabral; A. Chauhan

    2017-01-01

    In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear...

  18. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    OpenAIRE

    Kamel Bezih; Alaa Chateauneuf; Mahdi Kalla; Claude Bacconnet

    2015-01-01

    In the design of reinforced concrete (RC) bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this ...

  19. Were Increased Closed Seclusions the Result of a Reinforcer-Abolishing Effect?

    OpenAIRE

    Poling, Alan

    2013-01-01

    In recent years, the motivating operation (MO) concept and the terms associated with it, including “reinforcer-abolishing effect” (Laraway, Snycerski, Michael, & Poling, 2003), have been widely used in the behavior-analytic literature (Laraway, Snycerski, Olson, Becker, & Poling, in press) and elsewhere (Lotfizadeh, Edwards, & Poling, 2013). MOs are changes in the environment that alter the reinforcing effectiveness of designated classes of stimuli, such as food or water.

  20. Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites

    OpenAIRE

    Halil B. Kaybal; Hasan Ulus; Okan Demir; Ömer S. Şahin; Ahmet Avcı

    2018-01-01

    The influence of alumina (Al2O3) nanoparticles addition upon low-velocity impact behaviors of carbon fiber (CF) reinforced laminated epoxy nanocomposites have been investigated. For this purpose, different amounts of Al2O3 nanoparticles ranging from 1 to 5 wt% were added to the epoxy resin in order to observe the effect of nanoparticle loadings. CF reinforced epoxy based laminated nanocomposites were produced using Vacuum Assisted Resin Infusion Method (VARIM). The low velocity impact (LVI) t...

  1. Responding for sucrose and wheel-running reinforcement: effect of D-amphetamine.

    Science.gov (United States)

    Belke, T W; Oldford, A C; Forgie, M Y; Beye, J A

    2005-07-01

    The present study assessed the effect of D-amphetamine on responding maintained by wheel-running and sucrose reinforcement. Six male albino Wistar rats were placed in running wheels and exposed to a fixed-interval 30-s schedule that produced either a drop of 5% sucrose solution or the opportunity to run for 15 s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. Doses of 0.25, 0.5, 1.0, 1.5, and 3.0 mg/kg D-amphetamine were administered by i.p. injection 20 min prior to a session. As the dose increased, index of curvature values decreased toward zero and rate-dependency plots revealed increases in lower rates early in the interval and decreases in higher rates toward the end of the interval. Effects were similar in the presence of both stimuli. However, an analysis of post-reinforcement pauses and local response rates broken down by transitions revealed a differential effect. As the dose increased, local response rates following a wheel-running reinforcer were affected more than those following a sucrose reinforcer.

  2. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: Pharmacological and behavioral genetics evidence

    Directory of Open Access Journals (Sweden)

    Jonathan eHollander

    2012-07-01

    Full Text Available Considerable evidence suggests that transmission at hypocretin-1 (orexin-1 receptors (Hcrt-R1 plays an important role in the reinstatement of extinguished cocaine-seeking behaviors in rodents. However, far less is known about the role for hypocretin transmission in regulating ongoing cocaine-taking behavior. Here, we investigated the effects of the selective Hcrt-R1 antagonist SB-334867 on cocaine intake, as measured by intravenous (IV cocaine self-administration in rats. The stimulatory effects of cocaine on brain reward systems contribute to the establishment and maintenance of cocaine-taking behaviors. Therefore, we also assessed the effects of SB-334867 on the reward-enhancing properties of cocaine, as measured by cocaine-induced lowering of intracranial self-stimulation (ICSS thresholds. Finally, to definitively establish a role for Hcrt-R1 in regulating cocaine intake, we assessed IV cocaine self-administration in Hcrt-R1 knockout mice. We found that SB-334867 (1-4 mg/kg dose-dependently decreased cocaine (0.5 mg/kg/infusion self-administration in rats but did not alter responding for food rewards under the same schedule of reinforcement. This suggests that SB-334867 decreased cocaine reinforcement without negatively impacting operant performance. SB-334867 (1-4 mg/kg also dose-dependently attenuated the stimulatory effects of cocaine (10 mg/kg on brain reward systems, as measured by reversal of cocaine-induced lowering of ICSS thresholds in rats. Finally, we found that Hcrt-R1 knockout mice self-administered far less cocaine than wildtype mice across the entire dose-response function. These data demonstrate that Hcrt-R1 play an important role in regulating the reinforcing and reward-enhancing properties of cocaine, and suggest that hypocretin transmission is likely essential for establishing and maintaining the cocaine habit in human addicts.

  3. Characterization of attenuated food motivation in high-fat diet-induced obesity: Critical roles for time on diet and reinforcer familiarity.

    Science.gov (United States)

    Tracy, Andrea L; Wee, Colin J M; Hazeltine, Grace E; Carter, Rebecca A

    2015-03-15

    Prior work using animal models to study the effects of obesogenic diets on food motivation have generated inconsistent results, with some reporting increases and others reporting decreases in responding on food-reinforced tasks. Here, we identified two specific variables that may account for these discrepant outcomes - the length of time on the obesigenic diet and the familiarity of the food reinforcer - and examined the independent roles of these factors. Time on diet was found to be inversely related to food motivation, as rats consuming a 40% high-fat diet (HFD) for only 3weeks did not differ from chow-fed rats when responding for a sucrose reinforcer on a progressive ratio (PR) schedule, but responding was suppressed after 6weeks of ad lib HFD consumption. Explicitly manipulating experience with the sucrose reinforcer by pre-exposing half the rats prior to 10weeks of HFD consumption attenuated the motivational deficit seen in the absence of this familiarity, resulting in obese rats performing at the same level as lean rats. Finally, after 8weeks on a HFD, rats did not express a conditioned place preference for sucrose, indicating a decrement in reward value independent of motivation. These findings are consistent with prior literature showing an increase in food motivation for rats with a shorter time consuming the obesigenic diet, and for those with more prior experience with the reinforcer. This account also helps reconcile these findings with increased food motivation in obese humans due to extensive experience with palatable food and suggests that researchers engaging in non-human animal studies of obesity would better model the conditions under which human obesity develops by using a varied, cafeteria-style diet to increase the breadth of food experiences. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of ionizing radiation on polypropylene composites reinforced with coconut fibers

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Leila F.; Pereira, Nilson C.; Faldini, Sonia B.; Masson, Terezinha J.; Silveira, Luiz H., E-mail: lfmiranda@sti.com.b [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Escola de Engenharia. Curso de Engenharia de Materiais; Silva, Leonardo G. de Andrade e, E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The use of the polymeric composite materials has been increasing but these materials have environmental problems related to the discard. To reduce the discard deleterious effect, coconuts, sisal, as well as sugar cane pulp natural based fiber have been studied to replace the synthetic ones. These fibers embedded in a polymeric matrix plays a similar role as the synthetic ones, in terms of mechanical and thermal properties. The natural fibers are environmentally friendly, easy to recycle and biodegradable. The aim of this work is the study of ionizing radiation effects on the properties of recycled polypropylene composites, reinforced with 10%, 15% and 20% of the coconut fibers, using as coupling agent a substance based on maleic anhydride (MAPP) graphitized polypropylene. The samples were molded by injection, irradiated and submitted to thermal and mechanical tests. The mechanical properties (hardness, impact strength and tensile strength), temperature of thermal distortion (HDT) and Vicat softening temperature of the non irradiated and irradiated composites were determined. The irradiation doses were of 30, 50 and 100kGy in a gamma cell. Regarding the thermal and mechanical properties of non-irradiated samples, the incorporation of coconut fibers to polypropylene resulted in a decrease of impact strength, tensile strength and Vicat softening temperature as well as in an increase in hardness and HDT. This result indicates that the coconut fibers do not act like a reinforcement agent but as biodegradable filler. In the irradiated samples, it was observed a decrease in the impact strength, tensile strength, HDT, and thermal distortion temperature and an increase in the hardness and tensile strength. The Vicat softening temperature shows no change. (author)

  5. Effect of ionizing radiation on polypropylene composites reinforced with coconut fibers

    International Nuclear Information System (INIS)

    Miranda, Leila F.; Pereira, Nilson C.; Faldini, Sonia B.; Masson, Terezinha J.; Silveira, Luiz H.

    2009-01-01

    The use of the polymeric composite materials has been increasing but these materials have environmental problems related to the discard. To reduce the discard deleterious effect, coconuts, sisal, as well as sugar cane pulp natural based fiber have been studied to replace the synthetic ones. These fibers embedded in a polymeric matrix plays a similar role as the synthetic ones, in terms of mechanical and thermal properties. The natural fibers are environmentally friendly, easy to recycle and biodegradable. The aim of this work is the study of ionizing radiation effects on the properties of recycled polypropylene composites, reinforced with 10%, 15% and 20% of the coconut fibers, using as coupling agent a substance based on maleic anhydride (MAPP) graphitized polypropylene. The samples were molded by injection, irradiated and submitted to thermal and mechanical tests. The mechanical properties (hardness, impact strength and tensile strength), temperature of thermal distortion (HDT) and Vicat softening temperature of the non irradiated and irradiated composites were determined. The irradiation doses were of 30, 50 and 100kGy in a gamma cell. Regarding the thermal and mechanical properties of non-irradiated samples, the incorporation of coconut fibers to polypropylene resulted in a decrease of impact strength, tensile strength and Vicat softening temperature as well as in an increase in hardness and HDT. This result indicates that the coconut fibers do not act like a reinforcement agent but as biodegradable filler. In the irradiated samples, it was observed a decrease in the impact strength, tensile strength, HDT, and thermal distortion temperature and an increase in the hardness and tensile strength. The Vicat softening temperature shows no change. (author)

  6. Responding for sucrose and wheel-running reinforcement: effect of body weight manipulation.

    Science.gov (United States)

    Belke, Terry W

    2004-02-27

    As body weight increases, the excitatory strength of a stimulus signaling an opportunity to run should weaken to a greater degree than that of a stimulus signaling an opportunity to eat. To test this hypothesis, six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. The effect of varying body weight on responding maintained by these two reinforcers was investigated by systematically increasing and decreasing post-session food amounts. The initial body weight was 335 g. Body weights were increased to approximately 445 g and subsequently returned to 335 g. As body weight increased, overall and local lever-pressing rates decreased while post-reinforcement pauses lengthened. Analysis of post-reinforcement pauses and local lever-pressing rates in terms of transitions between successive reinforcers revealed that local response rates in the presence of stimuli signaling upcoming wheel and sucrose reinforcers were similarly affected. However, pausing in the presence of the stimulus signaling a wheel-running reinforcer lengthened to a greater extent than did pausing in the presence of the stimulus signaling sucrose. This result suggests that as body weight approaches ad-lib levels, the likelihood of initiation of responding to obtain an opportunity to run approaches zero and the animal "rejects" the opportunity to run in a manner similar to the rejection of less preferred food items in studies of food selectivity.

  7. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2014-02-01

    Full Text Available In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  8. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  9. Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets

    Directory of Open Access Journals (Sweden)

    Ehsan Badakhshan

    2015-12-01

    Full Text Available In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogrid reinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameter and sand in relative density of 60% are used. Also, the effects of depth of first and second geogrid layers and number of reinforcement layers (1–4 on the settlement-load response and tilt of footing under various load eccentricities (0 cm, 0.75 cm, 1.5 cm, 2.25 cm and 3 cm are investigated. Test results indicate that ultimate bearing capacity increases in comparison with unreinforced condition. It is observed that when the reinforcements are placed in the optimum embedment depth (u/D = 0.42 and h/D = 0.42, the bearing capacity ratio (BCR increases with increasing load eccentricity to the core boundary of footing, and that with further increase of load eccentricity, the BCR decreases. Besides, the tilt of footing increases linearly with increasing settlement. Finally, by reinforcing the sand bed, the tilt of footing decreases at 2 layers of reinforcement and then increases by increasing the number of reinforcement layers.

  10. Effects of differential reinforcement and rules with feedback on preference for choice and verbal reports.

    Science.gov (United States)

    Karsina, Allen; Thompson, Rachel H; Rodriguez, Nicole M; Vanselow, Nicholas R

    2012-01-01

    We evaluated the effects of differential reinforcement and accurate verbal rules with feedback on the preference for choice and the verbal reports of 6 adults. Participants earned points on a probabilistic schedule by completing the terminal links of a concurrent-chains arrangement in a computer-based game of chance. In free-choice terminal links, participants selected 3 numbers from an 8-number array; in restricted-choice terminal links participants selected the order of 3 numbers preselected by a computer program. A pop-up box then informed the participants if the numbers they selected or ordered matched or did not match numbers generated by the computer but not displayed; matching in a trial resulted in one point earned. In baseline sessions, schedules of reinforcement were equal across free- and restricted-choice arrangements and a running tally of points earned was shown each trial. The effects of differentially reinforcing restricted-choice selections were evaluated using a reversal design. For 4 participants, the effects of providing a running tally of points won by arrangement and verbal rules regarding the schedule of reinforcement were also evaluated using a nonconcurrent multiple-baseline-across-participants design. Results varied across participants but generally demonstrated that (a) preference for choice corresponded more closely to verbal reports of the odds of winning than to reinforcement schedules, (b) rules and feedback were correlated with more accurate verbal reports, and (c) preference for choice corresponded more highly to the relative number of reinforcements obtained across free- and restricted-choice arrangements in a session than to the obtained probability of reinforcement or to verbal reports of the odds of winning.

  11. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    De Vivo, B.; Lamberti, P.; Spinelli, G., E-mail: gspinelli@unisa.it; Tucci, V. [Department of Information Engineering, Electrical Engineering and Applied Mathematics—DIEM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA (Italy); Guadagno, L.; Raimondo, M. [Department of Industrial Engineering—DIIn, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA (Italy)

    2015-08-14

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10{sup −3} S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05–0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  12. Behavioral effects of microwave reinforcement schedules and variations in microwave intensity on albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Vitulli, W.F.; Lambert, J.K.; Brown, S.W.; Quinn, J.M.

    1987-12-01

    The objective of this exploratory investigation was to determine the interactive effects of fixed-ratio scheduling of microwave reinforcement in tandem with changes in microwave intensity. Nine albino rats were conditioned to regulate their thermal environment with microwave radiation while living in a Skinner (operant conditioning) Box in which the ambient temperature was about 27.13 degrees F at the beginning of the session. Each rat obtained a 6-sec. exposure of microwave radiation on a fixed-ratio schedule of MW reinforcement, the values of which varied from FR-1 to FR-30. Intensities of MW radiation were 62.5 W, 125 W, 250 W, and 437.5 W. Sessions lasted for 8 to 9 hr. over an approximate 13-mo. period. The effects of the intensity of microwave reinforcement varied as a function of the ratio value of the schedule used. Continuous reinforcement (FR-1) produced the lowest over-all rates, whereas FR-15, and FR-25 produced the highest over-all rates. Relatively higher thermal-behavior rates occurred under 62.5 W than under any of the other MW intensities for FR-1, FR-15, and FR-25, whereas FR-10 and FR-30 ratios produced intermediate rates of thermal responding which were constant for all values of MW intensity. These data are explained in terms of interactive effects between the local satiation or deprivation properties of the MW intensity and the ratio requirements of the schedule of MW reinforcement.

  13. The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-Mgo composites

    Directory of Open Access Journals (Sweden)

    Recep Calin

    2012-12-01

    Full Text Available In this study, the effects of reinforcement volume ratios (RVR on composite structure and thermal conductivity were examined in Al-MgO reinforced metal matrix composites (MMCs of 5%, 10% and 15% RVR produced by melt stirring. In the production of composites, EN AW 1050A aluminum alloy was used as the matrix material and MgO powders with particle size of -105 µm were used as the reinforcement material. For every composite specimen was produced at 500 rev/min stirring speed, at 750 °C liquid matrix temperature and 4 minutes stirring time. Composite samples were cooled under normal atmosphere. Then, microstructures of the samples were determined and evaluated by using Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDS analysis. In general, it was observed that the reinforcement exhibited a homogeneous distribution. Furthermore, it was determined that the increase in the RVR increased porosity. From the Scanning Electron Microscope images, a thermal Ansys model was generated to determine effective thermal conductivity. Effective thermal conductivity of Al-MgO composites increased with the decrease in reinforcement volume ratio.

  14. Reinforcing effects of caffeine and theobromine as found in chocolate.

    Science.gov (United States)

    Smit, Hendrik J; Blackburn, Rachel J

    2005-08-01

    Although in a previous study we showed that caffeine and theobromine were the main psychopharmacologically active constituents in a 50-g bar of chocolate, mere activity does not guarantee a role in our liking for the food. Our aim was to see if liking for a drink repeatedly paired with these amounts of caffeine and theobromine would increase compared to a placebo-paired drink. Participants (n=64) consumed a 'novel' drink + treatment capsule on six non-consecutive mornings using a double-blind, placebo-controlled independent-sample design. Aspects of liking and intensity of various sensory descriptors for these drinks were measured at every drink collection. Treatment capsules contained either an ecologically relevant dose combination of 19-mg caffeine and 250-mg theobromine or a placebo. Liking for the drink paired with the methylxanthine-containing capsules increased over time compared to the placebo-paired drink. This highly significant effect was confirmed by subjective, retrospective changes in liking for the drink. Methylxanthines in amounts found in 50-g chocolate may well contribute to our liking for chocolate, especially to the more acquired taste for dark chocolate.

  15. Responding for sucrose and wheel-running reinforcement: effects of sucrose concentration and wheel-running reinforcer duration.

    Science.gov (United States)

    Belke, Terry W; Hancock, Stephanie D

    2003-03-01

    Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.

  16. Study of the Effect of Reinforced Glass Fibers on Fatigue Properties for Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohamed G. Hamad

    2013-05-01

    Full Text Available This  research  included  the  study of  the effect  of  reinforced  glass fibers  on  fatigue  properties  for composite materials. Polyester  resin  is used  as  connective  material(matrix in two types  of  glass  fibers  for reinforced. The  first  type  is regular  glass fibers  (woven  roving with the  directional(0-90, the second  is  glass  fibers  with  the  random  direction. The first type is the panels with regular reinforced (0-90, and with number of layer (1,2.The  second  type  is  the  panels with random  reinforced  and  with  number  of  layers (1,2. The  results  and  the  laboratory  examinations  for  the samples  reinforce  with  fibers  have  manifested (0-90  that there  is  a decrease  in the number  of  cycles  to the  fatigue  limit  when  the  number  of  reinforce  layers  have  increased . And  an elasticity of this  type  of  samples  are decreased  by  increasing  the number  of  reinforced  layers  with  fiber  .We  find  the  random  reinforced  number  of  fatigue  cycles  for the samples  with  two  layers  of  random  reinforced  are  decreased  more  than the samples  with  one  layer of random  reinforced .

  17. Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section

    Science.gov (United States)

    Boichuk, V. Yu.

    2001-05-01

    This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented

  18. Evaluation of the reinforcing and subjective effects of heroin in combination with dextromethorphan and quinidine

    Science.gov (United States)

    Vosburg, Suzanne K.; Sullivan, Maria A.; Comer, Sandra D.

    2015-01-01

    Objective Studies have suggested that the N-methyl-d-aspartate antagonist dextromethorphan may be useful in the treatment of opioid dependence. Design This double-blinded, placebo-controlled inpatient study evaluated the effects of 0, 30, and 60 mg of dextromethorphan and quinidine (DMQ) on the reinforcing and subjective effects of heroin in recently detoxified heroin abusers. Participants Nine heroin-dependent participants were admitted and then detoxified from heroin over the course of several days. Interventions Participants were subsequently stabilized on 0, 30, or 60 mg of DMQ. Each dose of DMQ was administered for two consecutive weeks, and the effects of heroin (0, 12.5, and 50 mg) were studied under each DMQ maintenance dose condition. DMQ and heroin dose were administered in random order both within and between participants. Results Planned comparisons revealed statistically significant increases in progressive ratio breakpoint values and positive subjective ratings as a function of heroin dose. There were no consistent changes in any of the responses as a function of DMQ maintenance dose, other than a modest reduction in craving. Conclusions In summary, results from this study suggest that maintenance on dextromethorphan in combination with quinidine has a limited role in the treatment of opioid dependence. PMID:22320027

  19. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.

    Science.gov (United States)

    Golkhou, V; Parnianpour, M; Lucas, C

    2004-01-01

    In this study, we consider the role of multisensor data fusion in neuromuscular control using an actor-critic reinforcement learning method. The model we use is a single link system actuated by a pair of muscles that are excited with alpha and gamma signals. Various physiological sensor information such as proprioception, spindle sensors, and Golgi tendon organs have been integrated to achieve an oscillatory movement with variable amplitude and frequency, while achieving a stable movement with minimum metabolic cost and coactivation. The system is highly nonlinear in all its physical and physiological attributes. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. This paper proposes a reinforcement learning method with an Actor-Critic architecture instead of middle and low level of central nervous system (CNS). The Actor in this structure is a two layer feedforward neural network and the Critic is a model of the cerebellum. The Critic is trained by the State-Action-Reward-State-Action (SARSA) method. The Critic will train the Actor by supervisory learning based on previous experiences. The reinforcement signal in SARSA is evaluated based on available alternatives concerning the concept of multisensor data fusion. The effectiveness and the biological plausibility of the present model are demonstrated by several simulations. The system showed excellent tracking capability when we integrated the available sensor information. Addition of a penalty for activation of muscles resulted in much lower muscle coactivation while keeping the movement stable.

  20. Study of the effect of aggressive media on the long-term stability of reinforced plates

    International Nuclear Information System (INIS)

    Zelentsov, D.G.; Pochtman, Yu.M.

    1995-01-01

    Many important load-bearing structural elements that operate in agressive media are subjected to simultaneous mechanical and chemical attack. The current status of the problem of designing such members is adequately reflected. It follows from that only a few studies have been devoted to the long-term stability of reinforced plates in aggressive media, and most of them were based on structurally orthotropic theory. Such an approach makes it impossible to construct an adequate model of the deformation process. In particular, it precludes allowance for the effect of the discreteness of the reinforcement on plate stability and determination of changes in the character of deformation of the plate during service

  1. The Effect of Contingent Reinforcement on the Acquisition of Sight Vocabulary. Technical Report No. 49.

    Science.gov (United States)

    Brandt, Mary E.; And Others

    The present study is a replication of a Lahey and Drabman study (1974) which investigated the effects of contingent versus noncontingent reinforcement on the learning of sight words. The subjects in this study were 14 Kamehameha Early Education Program (KEEP) students who composed the lowest reading group in a combined first-second grade…

  2. Differential Effects of Reinforcement on the Self-Monitoring of On-Task Behavior

    Science.gov (United States)

    Otero, Tiffany L.; Haut, Jillian M.

    2016-01-01

    In the current study, the differential effects of reinforcement on a self-monitoring intervention were evaluated. Three students nominated by their teachers for having a marked difficultly maintaining on-task behaviors participated in the study. Using an alternating treatments single-case design to assess self-monitoring with and without…

  3. Effects of Multisensory Environments on Stereotyped Behaviours Assessed as Maintained by Automatic Reinforcement

    Science.gov (United States)

    Hill, Lindsay; Trusler, Karen; Furniss, Frederick; Lancioni, Giulio

    2012-01-01

    Background: The aim of the present study was to evaluate the effects of the sensory equipment provided in a multi-sensory environment (MSE) and the level of social contact provided on levels of stereotyped behaviours assessed as being maintained by automatic reinforcement. Method: Stereotyped and engaged behaviours of two young people with severe…

  4. The Effects of Delayed Reinforcement on Variability and Repetition of Response Sequences

    Science.gov (United States)

    Odum, Amy L.; Ward, Ryan D.; Burke, K. Anne; Barnes, Christopher A.

    2006-01-01

    Four experiments examined the effects of delays to reinforcement on key peck sequences of pigeons maintained under multiple schedules of contingencies that produced variable or repetitive behavior. In Experiments 1, 2, and 4, in the repeat component only the sequence right-right-left-left earned food, and in the vary component four-response…

  5. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the

  6. Probing the Behavioral and Neurophysiological Effects of Acute Smoking Abstinence on Drug and Nondrug Reinforcement During a Cognitive Task.

    Science.gov (United States)

    Schlienz, Nicolas J; Hawk, Larry W

    2017-06-01

    Smoking abstinence is theorized to increase smoking reinforcement and decrease nondrug reinforcement. A separate literature demonstrates the detrimental effects of abstinence on cognition. The present study integrates these two areas by examining the separate and combined effects of reinforcement and smoking abstinence on behavior and a neurophysiological index of response monitoring (ie, error-related negativity [ERN]) during a cognitive task. After a screening visit, adult smokers attended two laboratory visits, once while smoking and once while abstinent. Participants completed a flanker task under cigarette-, money-, and no-reinforcement conditions. The initial 15 participants had an easier reaction time (RT) requirement; to ensure sufficient error rates for ERN computation, a harder RT deadline was employed for the remaining 21 participants. Smoking abstinence reduced speeded accuracy and ERN amplitude only among participants tested with the harder RT deadline. Cigarette and money reinforcement each increased speeded accuracy and ERN amplitude compared to no reinforcement. The effect of cigarette reinforcement tended to be greater during abstinence for speeded accuracy but not the ERN. The effect of money reinforcement was unaffected by abstinence. The impact of smoking abstinence on reinforcement may depend on task demands. However, the effects of cigarette and money reinforcement generalize well from operant paradigms to cognitive tasks, fostering integration between the two literatures. Results provided modest evidence of abstinence-induced increases in smoking reinforcement; the absence of abstinence-induced reductions in nondrug reinforcement is consistent with recent work in suggesting that such effects are limited to a subset of sensory reinforcers. This study draws attention to the need for greater integration of reinforcement and cognition to better understand the mechanisms that contribute to smoking relapse. Results emphasize thoughtful

  7. The Effects of Varying Quality and Duration of Reinforcement on Mands to Work, Mands for Break, and Problem Behavior

    Science.gov (United States)

    Peterson, Stephanie M.; Frieder, Jessica E.; Smith, Shilo L.; Quigley, Shawn P.; Van Norman, Renee K.

    2009-01-01

    Research on the effects of concurrent schedules of reinforcement during treatment of problem behavior has shown that response allocation can be biased in favor of adaptive responses by providing increased reinforcement for these responses. However, this research has focused on the effects of only two concurrently available response options. In…

  8. Effect of reinforcing steel debonding on RC frame performance in resisting progressive collapse

    Directory of Open Access Journals (Sweden)

    Waleed Mohamed Elsayed

    2016-12-01

    Full Text Available This paper presents the experimental program performed to study the effect of reinforcing steel debonding on progressive collapse resistance of moment resisting frame designed and detailed in accordance with the Egyptian code provisions for seismic design. Half-scale specimens of the first story were extracted from the frame structure prototype. Each specimen represented a two-bay beam resulting from the removal of middle supporting column of the lower floor. In all specimens, the exterior two short columns were restrained against horizontal and vertical displacements and a monotonic vertical load was applied on the middle column stub to simulate the vertical load of the upper stories. Gradually increasing vertical load at the location of the removed column is continuously applied and increased up to failure. The cracking patterns, strains and the deformations at selected locations of reinforcing steel and concrete are recorded for further analysis. Different debonded reinforcement ratios, places and length are examined in this study to evaluate its effect on the collapse resistance performance of the frame. The effect of debonding on the distribution of reinforcing steel strain is evaluated. The nonlinear response of the frame to the removal of the column is evaluated and the amount of energy absorbed during the course of deformation is calculated.

  9. Numerical Investigation of Thermal and Thermo-mechanical Effective Properties for Short Fibre Reinforced Composite

    Science.gov (United States)

    Ioannou, Ioannis; Hodzic, Alma; Gitman, Inna M.

    2017-10-01

    This study aims to investigate the thermal conductivity and the linear coefficient of thermal expansion for short fibre reinforced composites. The study combines numerical and statistical analyses in order to primarily examine the representative size and the effective properties of the volume element. Effects of various micromechanical parameters, such as fibre's aspect ratio and fibre's orientation, on the minimum representative size are discussed. The numerically acquired effective properties, obtained for the representative size, are presented and compared with analytical models.

  10. Offspring of prenatal IV nicotine exposure exhibit increased sensitivity to the reinforcing effects of methamphetamine

    Directory of Open Access Journals (Sweden)

    Steven Brown Harrod

    2012-06-01

    Full Text Available Maternal smoking during pregnancy is associated with increased substance abuse in offspring. Preclinical research shows that in utero exposure to nicotine, the primary psychoactive compound in tobacco smoke, influences the neurodevelopment of reward systems and alters motivated behavior in offspring. The present study determined if prenatal nicotine (PN exposure altered the sensitivity to the reinforcing and aversive effects of methamphetamine (METH in offspring using a low dose, intravenous (IV exposure method. Pregnant dams were administered nicotine (0.05 mg/kg/injection or prenatal saline (PS 3×/day on gestational days 8-21, and adult offspring were tested using METH self-administration (experiment 1 or METH-induced conditioned taste aversion (CTA; experiment 2 procedures. For METH self-administration, animals were trained to respond for IV METH (0.05 mg/kg/injection; fixed-ratio 3 and they were tested on varying doses the reinforcer (0.0005-1.0 mg/kg/injection. For METH CTA, rats received three saccharin and METH pairings (0, 0.3, or 0.5 mg/kg, sc followed by fourteen daily extinction trials. Experiment 1: PN and PS animals exhibited inverted U-shaped dose-response curves; however, the PN animal’s curve was shifted to the left, suggesting PN animals were more sensitive to the reinforcing effects of METH. Experiment 2: METH CTA was acquired in a dose-dependent manner and the factor of PN exposure was not related to the acquisition or extinction of METH-induced CTA. There were no sex differences in either experiment. These results indicate that adult offspring of IV PN exposure exhibited altered motivation for the reinforcing effects of METH. This suggests that PN exposure, via maternal smoking, will alter the reinforcing effects of METH during later stages of development, and furthermore, will influence substance use vulnerability in adult human offspring.

  11. Effective properties of dispersed phase reinforced composite materials with perfect and imperfect interfaces

    Science.gov (United States)

    Han, Ru

    This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.

  12. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  13. The effects of physical activity on impulsive choice: Influence of sensitivity to reinforcement amount and delay.

    Science.gov (United States)

    Strickland, Justin C; Feinstein, Max A; Lacy, Ryan T; Smith, Mark A

    2016-05-01

    Impulsive choice is a diagnostic feature and/or complicating factor for several psychological disorders and may be examined in the laboratory using delay-discounting procedures. Recent investigators have proposed using quantitative measures of analysis to examine the behavioral processes contributing to impulsive choice. The purpose of this study was to examine the effects of physical activity (i.e., wheel running) on impulsive choice in a single-response, discrete-trial procedure using two quantitative methods of analysis. To this end, rats were assigned to physical activity or sedentary groups and trained to respond in a delay-discounting procedure. In this procedure, one lever always produced one food pellet immediately, whereas a second lever produced three food pellets after a 0, 10, 20, 40, or 80-s delay. Estimates of sensitivity to reinforcement amount and sensitivity to reinforcement delay were determined using (1) a simple linear analysis and (2) an analysis of logarithmically transformed response ratios. Both analyses revealed that physical activity decreased sensitivity to reinforcement amount and sensitivity to reinforcement delay. These findings indicate that (1) physical activity has significant but functionally opposing effects on the behavioral processes that contribute to impulsive choice and (2) both quantitative methods of analysis are appropriate for use in single-response, discrete-trial procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Effect of Pre-Tension on Deformation Behaviour of Natural Fabric Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Paulė BEKAMPIENĖ

    2011-03-01

    Full Text Available In the fiber-reinforced composites industry together with the promotion of environmental friendly production, synthetic materials are attempted to be replaced by renewable, biodegradable and recyclable materials. The most important challenge is to improve strength and durability of these materials. Matrix that supports the fiber-reinforcement in composite generally is brittle and deformation causes fragmentation of the matrix. Pre-tension of reinforcement is a well-known method to increase tensile strength of woven material. The current study develops the idea to use pre-tension of woven fabric in order to improve quality and strength properties of the obtained composite. Natural (cotton fiber and synthetic (glass fiber woven fabrics were investigated. The pressure forming operation was carried out in order to study clamping imposed strain variation across the surface of woven fabric. The uniaxial tension test of single-layer composite specimens with and without pre-tension was performed to study the effect of pre-tension on strength properties of composite. The results have shown that pre-tension imposed by clamping is an effective method to improve the quality of shaped composite parts (more smoothed contour is obtained and to increase the strength properties of composite reinforced by woven natural fabric. After pre-tension the tensile strength at break increased in 12 % in warp direction, in 58 % in weft direction and in 39 % in bias direction.http://dx.doi.org/10.5755/j01.ms.17.1.250

  15. The role of the lateral amygdala in the retrieval and maintenance of fear-memories formed by probabilistic reinforcement

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Erlich

    2012-04-01

    Full Text Available The lateral nucleus of the amygdala (LA is a key element in the neural circuit subserving Pavlovian fear conditioning, an animal model of fear and anxiety. Most studies have focused on the role of the LA in fear acquisition and extinction, i.e. how neural plasticity results from changing contingencies between a neutral conditioned stimulus (e.g. a tone and an aversive unconditioned stimulus (e.g. a shock. However, outside of the lab, fear memories are often the result of repeated and unpredictable experiences. Examples include domestic violence, child abuse or combat. To better understand the role of the LA in the expression of fear resulting from repeated and uncertain reinforcement, rats experienced a 30% partial reinforcement fear-conditioning schedule four days a week for four weeks. Rats reached asymptotic levels of conditioned fear expression after the first week. We then manipulated LA activity with drug (or vehicle infusions once a week, for the next three weeks, before the training session. LA infusions of muscimol, a GABA-A agonist that inhibits neural activity, reduced conditioned stimulus (CS evoked fear behavior to pre-conditioning levels. LA infusions of pentagastrin, a cholecystokinin-2 (CCK agonist that increases neural excitability, resulted in CS-evoked fear behavior that continued past the offset of the CS. This suggests that neural activity in the LA is required for the retrieval of fear memories that stem from repeated and uncertain reinforcement, and that CCK signaling in the LA plays a role in the recovery from fear after the removal of the fear-evoking stimulus.

  16. Evaluation of the Reinforcing Effect of Quetiapine, Alone and in Combination with Cocaine, in Rhesus Monkeys.

    Science.gov (United States)

    Brutcher, Robert E; Nader, Susan H; Nader, Michael A

    2016-02-01

    There are several case reports of nonmedicinal quetiapine abuse, yet there are very limited preclinical studies investigating quetiapine self-administration. The goal of this study was to investigate the reinforcing effects of quetiapine alone and in combination with intravenous cocaine in monkeys. In experiment 1, cocaine-experienced female monkeys (N = 4) responded under a fixed-ratio (FR) 30 schedule of food reinforcement (1.0-g banana-flavored pellets), and when responding was stable, quetiapine (0.003-0.1 mg/kg per injection) or saline was substituted for a minimum of five sessions; there was a return to food-maintained responding between doses. Next, monkeys were treated with quetiapine (25 mg, by mouth, twice a day) for approximately 30 days, and then the quetiapine self-administration dose-response curve was redetermined. In experiment 2, male monkeys (N = 6) self-administered cocaine under a concurrent FR schedule with food reinforcement (three food pellets) as the alternative to cocaine (0.003-0.3 mg/kg per injection) presentation. Once choice responding was stable, the effects of adding quetiapine (0.03 or 0.1 mg/kg per injection) to the cocaine solution were examined. In experiment 1, quetiapine did not function as a reinforcer, and chronic quetiapine treatment did not alter these effects. In experiment 2, cocaine choice increased in a dose-dependent fashion. The addition of quetiapine to cocaine resulted in increases in low-dose cocaine choice and number of cocaine injections in four monkeys, while not affecting high-dose cocaine preference. Thus, although quetiapine alone does not have abuse potential, there was evidence of enhancement of the reinforcing potency of cocaine. These results suggest that the use of quetiapine in cocaine-addicted patients should be monitored. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Effect of chloride-based deicers on reinforced concrete structures.

    Science.gov (United States)

    2012-07-01

    We conducted an extensive literature review and performed laboratory tests to assess the effect of chloride-based deicers on the rebars and dowel bars in concrete and to determine whether or not deicer corrosion inhibitors help preserve the transport...

  18. a review of the effects of wastewater on reinforced concrete

    African Journals Online (AJOL)

    user

    of such approaches is to use admixtures, which could reduce the effect of acidic attack common in ... chemical attack, abrasion, or any other process of ..... engineer prescribed the concrete strength without .... Journal of Applied Technology in.

  19. Assessing the relationship between latent inhibition and the partial reinforcement extinction effect in autoshaping with rats.

    Science.gov (United States)

    Boughner, Robert L; Papini, Mauricio R

    2008-05-01

    Results from a variety of independently run experiments suggest that latent inhibition (LI) and the partial reinforcement extinction effect (PREE) share underlying mechanisms. Experiment 1 tested this LI=PREE hypothesis by training the same set of rats in situations involving both nonreinforced preexposure to the conditioned stimulus (LI stage) and partial reinforcement training (PREE stage). Control groups were also included to assess both LI and the PREE. The results demonstrated a significant, but negative correlation between the size of the LI effect and that of the PREE. Experiment 2 extended this analysis to the effects on LI and the PREE of the anxiolytic benzodiazepine chlordiazepoxide (5 mg/kg, i.p.). Whereas chlordiazepoxide had no effect on LI, it delayed the onset of the PREE. No evidence in support of the LI=PREE hypothesis was obtained when these two learning phenomena were compared within the same experiment and under the same general conditions of training.

  20. Evidence for a role of 5-HT2C receptors in the motor aspects of performance, but not the efficacy of food reinforcers, in a progressive ratio schedule

    NARCIS (Netherlands)

    Bezzina, G.; Body, S.; Cheung, T.H.; Hampson, C.L.; Bradshaw, C.M.; Glennon, J.C.; Szabadi, E.

    2015-01-01

    RATIONALE: 5-Hydroxytryptamine2C (5-HT2C) receptor agonists reduce the breakpoint in progressive ratio schedules of reinforcement, an effect that has been attributed to a decrease of the efficacy of positive reinforcers. However, a reduction of the breakpoint may also reflect motor impairment.

  1. Effective Moment Of Inertia And Deflections Of Reinforced Concrete Beams Under Long-Term Loading

    OpenAIRE

    Mahmood, Khalid M.; Ashour, Samir A.; Al-Noury, Soliman I.

    1995-01-01

    The paper presents a method for estimating long-term deflections of reinforced concrete beams by considering creep and shrinkage effects separately. Based on equilibrium and compatibility conditions a method is developed for investigating the properties of a cracked transformed section under sustained load. The concept of effective moment of inertia is extended to predict initial-plus-creep deflections. Long-term deflections computed by the proposed method are compared with the experimental r...

  2. Effect of Different Fillers on Adhesive Wear Properties of Glass Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    E. Feyzullahoğlu

    2017-12-01

    Full Text Available Polymeric composites are used for different aims as substitute of traditional materials such as metals; due to their improved strength at small specific weight. The fiber reinforced polymer (FRP composite material consists of polymeric matrix and reinforcing material. Polymeric materials are commonly reinforced with synthetic fibers such as glass and carbon. The glass fiber reinforced polyester (GFRP composites are used with different filler materials. The aim of this study is to investigate the effects of different filler materials on adhesive wear behavior of GFRP. In this experimental study; polymetilmetacrilat (PMMA, Glass beads (GB and Glass sand (GS were used as filling material in GFRP composite samples. The adhesive wear behaviors of samples were carried out using ball on disc type tribometer. The friction force and coefficient of friction were measured during the test. The volume loss and wear rate values of samples were calculated according to test results. Barcol hardness values of samples were measured. The densities of samples were measured. Results show that the wear resistance of GB filled GFRP composite samples was much more than non-filled and PMMA filled GFRP composite samples.

  3. Effects of Reinforcement Method of Dissection Physiology Education on the Achievement in Pharmacology.

    Science.gov (United States)

    Kitayama, Tomoya; Kagota, Satomi; Yoshikawa, Noriko; Kawai, Nobuyuki; Nishimura, Kanae; Miura, Takeshi; Yasui, Naomi; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu

    2016-01-01

    The Pharmaceutical Education Support Center was established in the Department of Pharmacy at the School of Pharmacy and Pharmaceutical Science of Mukogawa Women's University in 2014. We started teaching first and second years students according to proficiency from the 2014 academic year. Students were divided into two classes: the regular class (high proficiency class) and the basic class (low proficiency class), based on achievement in several basic subjects related to the study of pharmacy. The staffs in the Pharmaceutical Education Support Center reinforce what is taught to students in the basic class. In this reinforcement method of education, the class size is small, consisting of about 15 students, a quiz to review the previous lesson is given at the beginning of each lecture, and an additional five lectures are conducted, compared to the high proficiency class, which receives 15 lectures. In this study, we evaluated the effects of the reinforcement method of physiology education on achievement in pharmacology that was not conducted in the proficiency-dependent teaching method. The students in the basic class in physiology education were chosen based on achievement levels in anatomy. Achievement levels of pharmacology students in the basic class of physiology improved compared with those of students who had the same achievement levels in physiology but were not taught according to proficiency-dependent teaching in the 2013 academic year. These results suggest that the reinforcement method for education in basic subjects in pharmacy, such as physiology, can improve achievement in more advanced subjects, such as pharmacology.

  4. Combined effect of high curing temperature and crack width on chloride migration in reinforced concrete beams

    Science.gov (United States)

    Elkedrouci, L.; Diao, B.; Pang, S.; Li, Y.

    2018-03-01

    Deterioration of reinforced concrete structures is a serious concern in the construction engineering, largely due to chloride induced corrosion of reinforcement. Chloride penetration is markedly influenced by one or several major factors at the same time such as cuing in combination with different crack widths which have spectacular effect on reinforced concrete structures. This research presents the results of an experimental investigation involving reinforced concrete beams with three different crack widths ranging from 0 to 0.2mm, curing temperatures of 20°C or 40°C and water-to-cement of 0.5. Chloride content profiles were determined under non-steady state diffusion at 20°C. Based on the obtained results, higher chloride content was obtained under condition of high curing temperature in combination with large crack more than 0.1mm and there are no significant differences between narrow crack width (less than 0.1 mm) and beams without crack (0 mm).

  5. The effects of a novel-reinforced bone substitute and Colloss®E on bone defect healing in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Røjskjaer, Jesper; Cheng, Liming

    2012-01-01

    Hydroxyappatite-β-tricalciumphosphate (HA/β-TCP) was reinforced with poly(D,L)-lactic acid (PDLLA) to overcome its weak mechanical properties. Two substitutes with porosities of 77% and 81% HA/β-TCP reinforced with 12 wt % PDLLA were tested in compression. The effects of allograft, substitute (HA...

  6. Modified graphene/polyimide nanocomposites: reinforcing and tribological effects.

    Science.gov (United States)

    Huang, Ting; Xin, Yuanshi; Li, Tongsheng; Nutt, Steven; Su, Chao; Chen, Haiming; Liu, Pei; Lai, Zuliang

    2013-06-12

    By taking advantage of design and construction of strong graphene-matrix interfaces, we have prepared modified graphene/polyimide (MG/PI) nanocomposites via a two-stage process consisting of (a) surface modification of graphene and (b) in situ polymerization. The 2 wt % MG/PI nanocomposites exhibited a 20-fold increase in wear resistance and a 12% reduction in friction coefficient, constituting a potential breakthrough for future tribological application. Simultaneously, MG also enhanced thermal stability, electrical conductivity, and mechanical properties, including tensile strength, Young's modulus, storage modulus, and microhardness. Excellent thermal stability and compatibility of interface, strong covalent adhesion interaction and mechanical interlocking at the interface, as well as homogeneous and oriented dispersion of MG were achieved here, contributing to the enhanced properties observed here. The superior wear resistance is ascribed to (a) tribological effect of MG, including suppression effect of MG in the generation of wear debris and protective effect of MG against the friction force, and (b) the increase in mechanical properties. In light of the relatively low cost and the unique properties of graphene, the results of this study highlight a pathway to expand the engineering applications of graphene and solve wear-related mechanical failures of polymer parts.

  7. An assessment of the geometry effect of geosynthetics for base course reinforcements

    Directory of Open Access Journals (Sweden)

    Xiaoming Yang, Ph.D.

    2012-09-01

    Full Text Available Geosynthetic-reinforced base course is potentially a cost-effective solution for flexible pavement construction. With the recent advance in the mechanistic-empirical pavement design in the United States, there is a need to develop the next generation design method for geosynthetic-reinforced bases in flexible pavements. To develop such a design method requires an improved understanding about the mechanistic behavior, especially the in-plane elastic behavior, of geosynthetics. In this paper, the geometry effect of geosynthetics was discussed. The author first reviewed recent experimental and numerical studies. Analytical equations based on cellular material mechanics were presented for determining the in-plane elastic properties of geosynthetics. The analytical equations were used to evaluate a few geosynthetics with typical geometries. The results showed that, with the same polymeric material and typical product geometries, the geocell has a better confinement effect than geogrids, and the triaxial geogrid with a triangular aperture has a better confinement effect than the biaxial geogrid with a rectangular aperture. It was also demonstrated that the traditional uniaxial tensile modulus may be a poor indicator of the effectiveness of geosynthetics for base course reinforcements.

  8. Effect of horizontal reinforcement in strengthening of masonry members

    International Nuclear Information System (INIS)

    Farooq, S.H.; Ilyas, M.; Ggaffar, A.

    2008-01-01

    An experimental research program was undertaken to ascertain the effectiveness of a new technique for strengthening masonry wall panels using steel strips on compressive and shear strength enhancement. The experimental work includes eight wall panels, four each for compressive and shear strength evaluation. This work was the phase I of extensive research project which include testing of strengthened masonry wall panels under monotonic load (Phase-I), static cyclic load (Phase-2) and dynamic load (Phase-3). The wall panels were strengthened with different steel strip arrangements, which consist of single/double face application of coarse and fine steel strip mesh with reduced spacing of horizontal strips. This paper investigates only the effectiveness of horizontal steel strips on strength enhancement. Four masonry wall panels are considered in two groups and in each group, one wall was retrofitted with coarse steel mesh on single face and on second wall fine steel mesh was applied on one side. Furthermore, test results of strengthened specimens are also compared with the un-strengthened specimen (REFE). The mechanisms by which load was carried were observed, varying from the initial, uncracked state, and the final, fully cracked state. The results demonstrate a quite significant increase in the compressive and shear capacity of strengthened panels as compared to REFE-panel. However, increase in the compressive strength of fine mesh above that of coarse mesh is negligible. The technique/approach is found quite viable for strengthening of masonry walls, for rehabilitation of old deteriorated buildings and unreinforced masonry structures in seismic zones. (author)

  9. Study of the effect of ionizing radiation on properties of polyamide 6 with fibreglass reinforcement

    International Nuclear Information System (INIS)

    Pinto, Clovis

    2007-01-01

    It is each time more common the use of polymers reinforced with fibreglass in the domestic market. Between them it is used polyamide 6 that it presents good tension resistance, to the impact and the humidity absorption compared with non-reinforced, being also at the present time used in the automobile industry in parts underneath the hood, especially in the radiator frames. The aim of this work is to study the effect of ionizing radiation on properties of polyamide 6 with fibreglass reinforcement, undergone to different radiation doses. Samples were prepared and irradiated on JOB 188 accelerator with an electron beam energy of 1.5 MeV in air with different doses (100 to 600 kGy) and a dose rate of 22.61 kGy/h. Afterward the irradiation, the properties of the samples of irradiated polyamide 6 with fibreglass reinforcement were evaluated and compared with the samples non-irradiated. It evidenced that the mechanical properties flexural resistance and tension resistance increased and the resistance to the impact decreased. Regarding the thermal properties of the temperature of fusing decreased of 224,4 deg C for 212,5 deg C but the loss of mass ahead of the constant increase of the temperature also decreased. In the property of resistance to the glow wire the polyamide 6 with fibreglass reinforcement had a good performance. The images caught for Scanning Electronic Microscopy show that the irradiation provoked a good integration enters the fibreglass and polymer what was responsible for the good performance in the property of resistance to the glow wire. (author)

  10. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    Science.gov (United States)

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    Directory of Open Access Journals (Sweden)

    Kamel Bezih

    2015-09-01

    Full Text Available In the design of reinforced concrete (RC bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this paper, a coupled reliability–mechanical approach is developed to study the effect of soil–structure interaction for RC bridges. The modeling of this interaction is incorporated into the mechanical model of RC continuous beams, by considering nonlinear elastic soil stiffness. The reliability analysis highlights the large importance of soil–structure interaction and shows that the structural safety is highly sensitive to the variability of soil properties, especially when the nonlinear behavior of soil is considered.

  12. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs.

    Science.gov (United States)

    Jun, Du; Guomin, Zhao; Mingzhu, Pan; Leilei, Zhuang; Dagang, Li; Rui, Zhang

    2017-07-15

    Nanocellulose reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites were prepared using melt compounding. The effects of nanocellulose types (CNCs and CNFs) and nanocellulose content (1, 2, 3, 4, 5, 6 and 7wt%) on the crystallization, thermal and mechanical properties of PHBV composites were systematically compared in this study. The thermal stability of PHBV composites was improved by both CNCs and CNFs. CNFs with a higher thermal stability leaded to a higher thermal stability of PHBV composites. Both CNCs and CNFs induced a reduction in the crystalline size of PHBV spherulites. Furthermore, CNCs could act as a better nucleating agent for PHBV than did CNFs. CNCs and CNFs showed reinforcing effects in PHBV composites. At the equivalent content of nanocellulose, CNCs led to a higher tensile modulus of PHBV composites than did CNFs. 1wt% CNCs/PHBV composites exhibited the most optimum mechanical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of sepiolite on the flocculation of suspensions of fibre-reinforced cement

    International Nuclear Information System (INIS)

    Jarabo, Rocio; Fuente, Elena; Moral, Ana; Blanco, Angeles; Izquierdo, Laura; Negro, Carlos

    2010-01-01

    Sepiolite is used to increase thixotropy of cement slurries for easier processing, to prevent sagging and to provide a better final quality in the manufacture of fibre-reinforced cement products. However, the effect of sepiolite on flocculation and its interactions with the components of fibre cement are yet unknown. The aim of this research is to study the effects of sepiolite on the flocculation of different fibre-reinforced cement slurries induced by anionic polyacrylamides (A-PAMs). Flocculation and floc properties were studied by monitoring the chord size distribution in real time employing a focused beam reflectance measurement (FBRM) probe. The results show that sepiolite increases floc size and floc stability in fibre-cement suspensions. Sepiolite competes with fibres and clay for A-PAMs adsorption and its interaction with A-PAM improves flocculation of mineral particles.

  14. Effects of Reinforcement on Denture Strain in Maxillary Implant Overdentures: An In Vitro Study Under Various Implant Configurations.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu

    Maxillary implant overdentures are often designed without palatal coverage to maximize wearer comfort. Although palateless dentures have been reported to be less rigid than conventional dentures, and require reinforcement to prevent complications, there is little documentation about the effects of such reinforcement. The purpose of this study was to examine the effects of reinforcement on the strain on maxillary implant overdentures supported by implants in a variety of configurations. A maxillary edentulous model with implants inserted in the anterior, premolar, and molar area was fabricated. Five types of experimental overdentures, with and without reinforcement, were fabricated, and two strain gauges were attached at the anterior midline of the labial and palatal sides. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the shear strain on the denture was measured. The measurements were compared using the Kruskal-Wallis test (P = .05). On both the labial and palatal sides, the strain on the palateless dentures with reinforcement was significantly lower than the strain on palateless dentures without reinforcement in all implant configurations (P overdenture with residual ridge reinforcement and a palatal bar could reduce the strain in the anterior midline to almost the same level as a denture with palatal coverage. This type of reinforcement may prevent prosthetic and implant complications.

  15. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  16. Parameters That Effect the Interfacial Stresses in Fibre Reinforced Plastic Laminates Strengthened Rc Beams

    Directory of Open Access Journals (Sweden)

    Barış Sayın

    2010-01-01

    Full Text Available The use of externally bonded fiber-reinforced plastic (FRP laminates for strengthening of reinforced concrete beams has become an effective method. This method has been used because of the advantages of FRP materials such as their high strength-to-weight ratio, good corrosion resistance, and versatility in coping with different sectional shapes and corners. Many studies on this theme have been carried out since the early 1900s. In this study, interfacial stresses of reinforced concrete beams strengthened with FRP effect the parameters will be studied as experimental and numerical. Adhesives used in the beams applied to FRP's thickness, adhesive type and the state of the concrete surface, produced experimental samples are exposed to the bending effect will be studied as a comparative. Afterwards, by using the ANSYS® WB finite element program to model and analyze RC beams by externally bonding FRP will be carried out. Adhesive thickness, adhesive type, the concrete surface will be performed by entering the parameters for analysis of stress can be obtained as a result. Thus, the analytical expressions of stress and normal stress equations will establish should be modified. Finite element analysis and experimental results will be compared, compatibility investigated, the results and recommendations presented by the study be completed.

  17. Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives

    CSIR Research Space (South Africa)

    Kumar, R

    2010-01-01

    Full Text Available 5083263; fax: +27 41 5832325. Composites: Part A xxx (2010) xxx–xxx Contents lists availabl tes ev E-mail address: krrakesh72@gmail.com (R. Kumar). strength and stiffness, dimensional stability, and thermal proper- ties [1]. But finite nature.... Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 2007;15:25–33. [15] Pothan LA, Thomas S, Groeninckx G. The role of fibre/matrix interactions on the dynamic mechanical properties...

  18. Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing

    Directory of Open Access Journals (Sweden)

    Sandeep Rathee

    2017-04-01

    Full Text Available Aluminium matrix surface composites are gaining alluring role especially in aerospace, defence, and marine industries. Friction stir processing (FSP is a promising novel solid state technique for surface composites fabrication. In this study, AA6061/SiC surface composites were fabricated and the effect of tool plunge depth on pattern of reinforcement particles dispersion in metal matrix was investigated. Six varying tool plunge depths were chosen at constant levels of shoulder diameter and tool tilt angle to observe the exclusive effect of plunge variation. Process parameters chosen for the experimentation are speed of rotation, travel speed and tool tilt angle which were taken as 1400 rpm, 40 mm/min, and 2.5°respectively. Macro and the microstructural study were performed using stereo zoom and optical microscope respectively. Results reflected that lower plunge depth levels lead to insufficient heat generation and cavity formation towards the stir zone center. On the other hand, higher levels of plunge depth result in ejection of reinforcement particles and even sticking of material to tool shoulder. Thus, an optimal plunge depth is needed in developing defect free surface composites.

  19. Research of Effective Width of FRP U-shaped Hoop Reinforcement Properties of Concrete Beams by Shear

    Directory of Open Access Journals (Sweden)

    Li Baokun

    2015-01-01

    Full Text Available The paste fiber reinforced composite material (hereinafter referred to as FRP U-shaped hoop of reinforced concrete beams interfacial debonding is an important reinforcement technology research. For the effective width of the CFRP U-shaped hoop reinforcement, it is still a lack of in-depth research, only relying on the test research huge workload, this article (ANSYS and the numerical simulation in the whole process of the shear load release properties of finite element calculation software. According to the results of finite element analysis, the author studied the CFRP U-shaped hoop to increase the width of the shear capacity of reinforced concrete beams by the impact.

  20. Reinforcement Enhances Vigilance Among Children With ADHD: Comparisons to Typically Developing Children and to the Effects of Methylphenidate

    Science.gov (United States)

    Bubnik, Michelle G.; Hawk, Larry W.; Pelham, William E.; Waxmonsky, James G.; Rosch, Keri S.

    2014-01-01

    Sustained attention and reinforcement are posited as causal mechanisms in Attention-Deficit/Hyperactivity Disorder (ADHD), but their interaction has received little empirical study. In two studies, we examined the impact of performance-based reinforcement on sustained attention over time, or vigilance, among 9- to 12-year-old children. Study 1 demonstrated the expected vigilance deficit among children with ADHD (n=25; 12% female) compared to typically developing (TD) controls (n=33; 22% female) on a standard continuous performance task (CPT). During a subsequent visit, reinforcement improved attention more among children with ADHD than controls. Study 2 examined the separate and combined effects of reinforcement and acute methylphenidate (MPH) on CPT performance in children with ADHD (n=19; 21% female). Both reinforcement and MPH enhanced overall target detection and attenuated the vigilance decrement that occurred in no-reinforcement, placebo condition. Cross-study comparisons suggested that the combination of MPH and reinforcement eliminated the vigilance deficit in children with ADHD, normalizing sustained attention. This work highlights the clinically and theoretically interesting intersection of reinforcement and sustained attention. PMID:24931776

  1. Effect of particle shapes on effective strain gradient of SiC particle reinforced aluminum composites

    International Nuclear Information System (INIS)

    Liu, X; Cao, D F; Mei, H; Liu, L S; Lei, Z T

    2013-01-01

    The stress increments depend not only on the plastic strain but also on the gradient of plastic strain, when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. In the present research, the Taylor-based nonlocal theory of plasticity (TNT plasticity), with considering both geometrically necessary dislocations and statistically stored dislocations, is applied to investigated the effect of particle shapes on the strain gradient and mechanical properties of SiC particle reinforced aluminum composites (SiC/Al composites). Based on this theory, a two-dimensional axial symmetry cell model is built in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface. Some comparisons with the classical plastic theory demonstrate that the effective stress predicted by TNT plasticity is obviously higher than that predicted by classical plastic theory. The results also demonstrate that the irregular particles cause higher effective gradient strain which is attributed to the fact that angular shape particles give more geometrically.

  2. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    International Nuclear Information System (INIS)

    Mistica, R.; Sood, D.K.; Janardhana, M.N.

    1993-01-01

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs

  3. Effect of reinforcement fibers on the collapse potential of clayey sands

    Directory of Open Access Journals (Sweden)

    Adjabi Souhila

    2018-01-01

    Full Text Available The collapse of soils under wetting is a major problem in Geotechnical engineering. The erection of structures on these types of soils, located in arid and semi-arid zones, needs careful treatment of these soils. Soil reinforcement techniques have been rapidly increased during these two decades because of their effectiveness in geotechnical engineering. The aim of this experimental work is to investigate the collapsible soil behaviour in order to improve its characteristics. To achieve this goal, Polyethylene fibers, and Sisal fibers were used as Polyethylene fibers content in mass are varied from 0% (unreinforced samples to 15%; and Sisal fibers content from 0.5% to 1%. The fiber reinforcement is combined with other processing procedures such as compaction and the addition of CPA cement to decrease the collapse potential.

  4. EFFECT OF HARDENER ON MECHANICAL PROPERTIES OF CARBON FIBRE REINFORCED PHENOLIC RESIN COMPOSITES

    Directory of Open Access Journals (Sweden)

    S. SULAIMAN

    2008-04-01

    Full Text Available In this paper the effect of hardener on mechanical properties of carbon reinforced phenolic resin composites is investigated. Carbon fibre is one of the most useful reinforcement materials in composites, its major use being the manufacture of components in the aerospace, automotive, and leisure industries. In this study, carbon fibres are hot pressed with phenolic resin with various percentages of carbon fibre and hardener contents that range from 5-15%. Composites with 15% hardener content show an increase in flexural strength, tensile strength and hardness. The ultimate tensile strength (UTS, flexural strength and hardness for 15% hardener are 411.9 MPa, 51.7 MPa and 85.4 HRR respectively.

  5. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R; Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M N [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1994-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  6. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M.N. [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1993-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  7. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    Science.gov (United States)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  8. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nonlinear analysis of reinforced concrete beam with/without tension stiffening effect

    International Nuclear Information System (INIS)

    Dede, T.; Ayvaz, Y.

    2009-01-01

    The aim of this paper is to do materially nonlinear failure analysis of RC beam by using finite element method. In the finite element modeling, two different approaches and different tension stress-strain models with/without tension stiffening effect are used by considering two different mesh sizes. In the first approach, the material matrices of concrete and reinforcement are constructed separately, and then superimposed to obtain the element stiffness matrix. In the second approach, the reinforcement is assumed to be uniformly distributed throughout the beam. So, the beam is modeled as a single composite element with increasing the modulus of elasticity of concrete by considering the reinforcement ratio. For these two approaches, elastic-perfectly plastic stress-strain relationship is used for concrete in compression. For the concrete in tension, a stress-strain relationship with/without tension stiffening is used. It is concluded that the approaches and the models considered in this study can be effectively used in the materially nonlinear analysis of RC beams.

  10. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  11. Bi-directional effect of increasing doses of baclofen on reinforcement learning

    Directory of Open Access Journals (Sweden)

    Jean eTerrier

    2011-07-01

    Full Text Available In rodents as well as in humans, efficient reinforcement learning depends on dopamine (DA released from ventral tegmental area (VTA neurons. It has been shown that in brain slices of mice, GABAB-receptor agonists at low concentrations increase the firing frequency of VTA-DA neurons, while high concentrations reduce the firing frequency. It remains however elusive whether baclofen can modulate reinforcement learning. Here, in a double blind study in 34 healthy human volunteers, we tested the effects of a low and a high concentration of oral baclofen in a gambling task associated with monetary reward. A low (20 mg dose of baclofen increased the efficiency of reward-associated learning but had no effect on the avoidance of monetary loss. A high (50 mg dose of baclofen on the other hand did not affect the learning curve. At the end of the task, subjects who received 20 mg baclofen p.o. were more accurate in choosing the symbol linked to the highest probability of earning money compared to the control group (89.55±1.39% vs 81.07±1.55%, p=0.002. Our results support a model where baclofen, at low concentrations, causes a disinhibition of DA neurons, increases DA levels and thus facilitates reinforcement learning.

  12. The effect of crack width on the service life of reinforced concrete structures

    Science.gov (United States)

    Van Hung, Nguyen; Viet Hung, Vu; Viet, Tran Bao

    2018-04-01

    Reinforced concrete has become a widely used construction material around the world. Nowadays, the assessment of deterioration and life expectancy of reinforced concrete structure is very important and necessary as concrete is a complex material with brittle failure. Under the effect of load and over time, cracks occur in the structure, significantly reducing its performance and durability. Therefore, a number of models for predicting the penetration of chloride ions into the concrete were proposed to assess the durability of the structure. In the study performed by T B Viet (2016) [1], the author proposed a new theoretical model, especially considering the effects of macro and micro cracking on the diffusion coefficient of chloride ion in the cracked concrete. The following experimental results, in term of electrical indication of concrete’s ability to resist chloride ion penetration, are used to calculate the lifespan of a reinforced concrete structure according to Dura Crete approach [8] with different crack widths to evaluate the accuracy and reliability of the above model in the range of concrete compressive strength of 30-70MPa.

  13. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    Directory of Open Access Journals (Sweden)

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  14. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  15. In vitro comparative evaluation of the effect of two different fiber reinforcements on the fracture toughness of provisional restorative resins

    Directory of Open Access Journals (Sweden)

    Vaibhav D Kamble

    2012-01-01

    Clinical Implications: On the basis of this in--vitro study, the use of Glass and Polyethylene fibers tested may be an effective way to reinforce resins used to fabricate fixed provisional restorations.

  16. Caffeine Reinforces Flavor Preference and Behavior in Moderate Users but Not in Low Caffeine Users

    Science.gov (United States)

    Dack, Charlotte; Reed, Phil

    2009-01-01

    The study examined the role of caffeine consumption in caffeine reinforcement. Previous findings have shown that caffeine reinforced flavor preference in moderate caffeine consumers who are caffeine deprived. However, most of these studies have employed rating procedures only, and have not shown the effectiveness of caffeine to reinforce behaviors…

  17. Analysis and discussion on several problems when testing the thickness of reinforcement cover of concrete component

    Science.gov (United States)

    Zhanhua, Zhang; Guiling, Ji; Lijie; Zhaobo, Zhang; Na, Han; Jing, Zhao; Tan, Li; Zhaorui, Liu

    2018-03-01

    Reinforcement cover of concrete component plays a very important role to ensure the durability of various types of structures and the effective anchorage between steel reinforcement and concrete. This paper discusses and analyzes the problems occurred when testing the thickness of reinforcement cover of concrete component, so as to provide reference and help for related work.

  18. Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    H. Assaedi

    2017-03-01

    Full Text Available The main concern of using natural fibres as reinforcement in geopolymer composites is the durability of the fibres. Geopolymers are alkaline in nature because of the alkaline solution that is required for activating the geopolymer reaction. The alkalinity of the matrix, however, is the key reason of the degradation of natural fibres. The purpose of this study is to determine the effect of nanoclay (NC loading on the mechanical properties and durability of flax fabric (FF reinforced geopolymer composites. The durability of composites after 4 and 32 weeks at ambient temperature is presented. The microstructure of geopolymer matrices was investigated using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The results showed that the incorporation of NC has a positive impact on the physical properties, mechanical performance, and durability of FF reinforced geopolymer composites. The presence of NC has a positive impact through accelerating the geopolymerization, reducing the alkalinity of the system and increasing the geopolymer gel.

  19. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Science.gov (United States)

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  20. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates

    Science.gov (United States)

    Justinova, Zuzana; Mangieri, Regina A.; Bortolato, Marco; Chefer, Svetlana I.; Mukhin, Alexey G.; Clapper, Jason R.; King, Alvin R.; Redhi, Godfrey H.; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R.

    2008-01-01

    Background CB1 cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors, however, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. Methods We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Δ9-tetrahydrocannabinol (THC), anandamide or cocaine, and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. Results URB597 (0.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597 and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine even though, as expected, it significantly potentiated anandamide self-administration. Conclusions In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system, and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse. PMID:18814866

  1. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Science.gov (United States)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root

  2. Examination of the effects of varenicline, bupropion, lorcaserin, or naltrexone on responding for conditioned reinforcement in nicotine-exposed rats.

    Science.gov (United States)

    Guy, Elizabeth G; Fisher, Daniel C; Higgins, Guy A; Fletcher, Paul J

    2014-12-01

    Smoking tobacco remains one of the leading causes of preventable deaths in North America. Nicotine reinforces smoking behavior, in part, by enhancing the reinforcing properties of reward-related stimuli, or conditioned stimuli (CSs), associated with tobacco intake. To investigate how pharmaceutical interventions may affect this property of nicotine, we examined the effect of four US Food and Drug Administration (FDA) approved drugs on the ability of nicotine to enhance operant responding for a CS as a conditioned reinforcer. Thirsty rats were exposed to 13 Pavlovian sessions where a CS was paired with water delivery. Nicotine (0.4 mg/kg) injections were administered before each Pavlovian session. Then, in separate groups of rats, the effects of varenicline (1 mg/kg), bupropion (10 and 30 mg/kg), lorcaserin (0.6 mg/kg), and naltrexone (2 mg/kg), and their interaction with nicotine on responding for conditioned reinforcement were examined. Varenicline and lorcaserin each reduced nicotine-enhanced responding for conditioned reinforcement, whereas naltrexone had a modest effect of reducing response enhancements by nicotine. In contrast, bupropion enhanced the effect of nicotine on this measure. The results of these studies may inform how pharmaceutical interventions can affect smoking cessation attempts and relapse through diverse mechanisms, either substituting for, or interacting with, the reinforcement-enhancing properties of nicotine.

  3. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Hussain, Syed Tajammul; Ahmad, Shahid Nisar

    2013-01-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  4. Hygrothermal effects on the mechanical behaviour of graphite fibre-reinforced epoxy laminates beyond initial failure

    Science.gov (United States)

    Ishai, O.; Garg, A.; Nelson, H. G.

    1986-01-01

    The critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed has been determined by loading graphite fiber-reinforced epoxy laminates to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. The residual stiffness and strength parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Within the range of experimental conditions studied, it is concluded that the transverse cracking process does not have a crucial effect on the structural performance of multidirectional composite laminates.

  5. Effect of Nitrite Inhibitor on the Macrocell Corrosion Behavior of Reinforcing Steel

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2015-01-01

    Full Text Available The effect of nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in cement mortar was investigated by comparing and analyzing the macrocell corrosion current, macrocell polarization ratios, and slopes of anodic and cathodic steels. Based on the experimental results, the relationship between macrocell potential difference and macrocell current density was analyzed, and the mechanism of macrocell corrosion affected by nitrite ions was proposed. The results indicated that nitrite ions had significant impact on the macrocell polarization ratios of cathode and anode. The presence of nitrite could reduce the macrocell current by decreasing the macrocell potential difference and increasing the macrocell polarization resistance of the anode.

  6. Radiation effects on carbon fiber-reinforced plastics for spacecraft materials

    International Nuclear Information System (INIS)

    Udagawa, Akira; Kudoh, Hisaaki; Sasuga, Tsuneo; Morino, Yoshiki; Seguchi, Tadao; Yudate, Kozo.

    1995-02-01

    The effects of space environment were studied for two kinds of carbon fiber-reinforced plastics(CFRP) which were an epoxy resin composite using construction materials of satellite and a polyimide(PMR-15) composite expecting bright future space materials for long term operation. Resistibility of these materials to the space environments were evaluated from the change of mechanical properties after exposure of electron, proton, atomic oxygen and thermal cycling. It was found that the CFRP with PMR-15 as a matrix had good performance in the space environments. No differences in the mechanical properties for the materials were observed between proton and electron irradiations. (author)

  7. Effects of oxygen plasma treatment on domestic aramid fiber III reinforced bismaleimide composite interfacial properties

    Science.gov (United States)

    Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze

    2017-12-01

    Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.

  8. The Effects of Work-Reinforcer Schedules on Performance and Preference in Students with Autism

    Science.gov (United States)

    Bukala, Magdalena; Hu, Meng Yao; Lee, Ronald; Ward-Horner, John C.; Fienup, Daniel M.

    2015-01-01

    This study investigated performance under and preference for continuous and discontinuous work-reinforcer schedules in 3 students who had been diagnosed with autism. Under continuous schedules, participants completed all work and consumed all reinforcers in contiguous units. Under discontinuous schedules, work and reinforcer access were broken up…

  9. Effects of sucrose concentration and water deprivation on Pavlovian conditioning and responding for conditioned reinforcement.

    Science.gov (United States)

    Tabbara, Rayane I; Maddux, Jean-Marie N; Beharry, Priscilla F; Iannuzzi, Jessica; Chaudhri, Nadia

    2016-04-01

    An appetitive Pavlovian conditioned stimulus (CS) can predict an unconditioned stimulus (US) and acquire incentive salience. We tested the hypothesis that US intensity and motivational state of the subject would influence Pavlovian learning and impact the attribution of incentive salience to an appetitive Pavlovian CS. To this end, we examined the effects of sucrose concentration and water deprivation on the acquisition of Pavlovian conditioning and responding for a conditioned reinforcer. Male Long-Evans rats (Harlan; 220-240 g) receiving 3% (3S) or 20% (20S) sucrose were either non-water deprived or given water for 1 hr per day. During Pavlovian conditioning sessions, half the rats in each concentration and deprivation condition received a 10-s CS paired with 0.2 ml of sucrose (16 trials/session; 3.2 ml/session). The remainder received unpaired CS and US presentations. Entries into a port where sucrose was delivered were recorded. Next, responding for conditioned reinforcement was tested, wherein pressing an active lever produced the CS and pressing an inactive lever had no consequences. CS-elicited port entries increased, and latency to the first CS-elicited port entry decreased across sessions in paired groups. Water deprivation augmented these effects, whereas sucrose concentration had no significant impact on behavior. Responding for conditioned reinforcement was observed in the 20S water-deprived, paired group. Thus, water deprivation can facilitate the acquisition of Pavlovian conditioning, potentially by enhancing motivational state, and a high-intensity US and a high motivational state can interact to heighten the attribution of incentive salience to an appetitive Pavlovian CS. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. The effect of reinforcer magnitude on probability and delay discounting of experienced outcomes in a computer game task in humans.

    Science.gov (United States)

    Greenhow, Anna K; Hunt, Maree J; Macaskill, Anne C; Harper, David N

    2015-09-01

    Delay and uncertainty of receipt both reduce the subjective value of reinforcers. Delay has a greater impact on the subjective value of smaller reinforcers than of larger ones while the reverse is true for uncertainty. We investigated the effect of reinforcer magnitude on discounting of delayed and uncertain reinforcers using a novel approach: embedding relevant choices within a computer game. Participants made repeated choices between smaller, certain, immediate outcomes and larger, but delayed or uncertain outcomes while experiencing the result of each choice. Participants' choices were generally well described by the hyperbolic discounting function. Smaller numbers of points were discounted more steeply than larger numbers as a function of delay but not probability. The novel experiential choice task described is a promising approach to investigating both delay and probability discounting in humans. © Society for the Experimental Analysis of Behavior.

  11. Effect of Neutron Irradiation on Beam-Column Interaction of Reinforced Concrete

    International Nuclear Information System (INIS)

    Kwon, Tae-Hyun; Park, Jiho; Kim, Jun Yeon; Kim, HyungTae; Park, Kyoungsoo; Kim, Sang-Ho

    2015-01-01

    Age-related effects on such RC structures have been extensively studied in detail. However, the effect of neutron irradiation requires further studies from its limited database. Most of RC structures have been regarded as sound as the neutron fluence below 1.0x10 19 n/cm 2 . The reduction of strength is not considered in a periodic inspection program at aging NPPs. However, RC structures, such as biological shields and supports for a reactor vessel, could be exposed to see the critical level of neutron fluence at years of operation. In this regard, beam-column interaction of a typical RC member is numerically investigated as a result of neutron irradiation. The effect of neutron irradiation on beam-column interaction is evaluated. ACI318 requires the strength reduction factor, ϕ=0.70, for the compression controlled area and the higher up to 0.9 as the tensile strain in steel reinforcement goes higher. This concept works well with this example. However, this does not take into account the energy dissipation capacity of the member but it only expresses the ultimate strength. Therefore, the current strength evaluation concept may be misleading when the material behavior of steel reinforcement becomes brittle due to the neutron irradiation. In such case, even for the transient and tension controlled area, the strength reduction factor needs to be modified to account for the potential ductility loss

  12. Study of Rust Effect on the Corrosion Behavior of Reinforcement Steel Using Impedance Spectroscopy

    Science.gov (United States)

    Bensabra, Hakim; Azzouz, Noureddine

    2013-12-01

    Most studies on corrosion of steel reinforcement in concrete are conducted on steel samples with polished surface (free of all oxides) in order to reproduce the same experimental conditions. However, before embedding in concrete, the steel bars are often covered with natural oxides (rust), which are formed during exposure to the atmosphere. The presence of this rust may affect the electrochemical behavior of steel rebar in concrete. In order to understand the effect of rust on the corrosion behavior of reinforcement steel, potentiodynamic and electrochemical impedance spectroscopy (EIS) tests were carried out in a simulated concrete pore solution using steel samples with two different surface conditions: polished and rusted samples. The obtained results have shown that the presence of rust on the steel bar has a negative effect on its corrosion behavior, with or without the presence of chlorides. This detrimental effect can be explained by the fact that the rust provokes a decrease of the electrolyte resistance at the metal-concrete interface and reduces the repassivating ability. In addition, the rust layer acts as a barrier against the hydroxyl ion diffusion, which prevents the realkalinization phenomenon.

  13. Effect of sewage wastes on the physico-mechanical properties of cement and reinforced steel

    Directory of Open Access Journals (Sweden)

    Magdy A. Abd El-Aziz

    2013-09-01

    Full Text Available The aggressive chemical attack due to salt water is one of many factors affecting the concrete deterioration. This effect includes corrosion of concrete and steel due to the exposure to the aggressive natural or artificial chemicals such as ammonia and ammonium salts. Ammonia is one of the compounds substantially in each of the remnants of sanitation plants, industrial or service of some units within building industrial waste. This work aims to study the effect of different concentrations of ammonia in the popular image on the physical, chemical and mechanical properties of different types of cement such as SRC; OPC and HSC. The electrochemical measurement (linear polarization systems as well as infrared spectroscopy (IR were used in this study. The behaviour of reinforced steel embedded in SRC; OPC and HSC with (5 wt.% ammonium sulphate solution were determined. The results show that ammonia gets a harmful effect on OPC and SRC mortars but HSC shows high resistivity. Also, the reinforced steel is greatly affected in the aggressive medium containing ammonium solution.

  14. The emotional context facing nursing home residents' families: a call for role reinforcement strategies from nursing homes and the community.

    Science.gov (United States)

    Bern-Klug, Mercedes

    2008-01-01

    Identify useful concepts related to the emotional context facing family members of nursing home residents. These concepts can be used in future studies to design and test interventions that benefit family caregivers. Secondary data analyses of qualitative ethnographic data. Two nursing homes in a large Midwestern city; 8 months of data collection in each. 44 family members of nursing home residents whose health was considered, "declining." Role theory was used to design and help interpret the findings. Data included transcripts of conversations between family members and researchers and were analyzed using a coding scheme developed for the secondary analysis. Comments about emotions related to the social role of family member were grouped into three categories: relief related to admission, stress, and decision making support/stress. Subcategories of stress include the role strain associated with "competing concerns" and the psychological pressures of 1) witnessing the decline of a loved one in a nursing home, and 2) guilt about placement. Decision-making was discussed as a challenge which family members did not want to face alone; support from the resident, health care professionals, and other family members was appreciated. Family members may benefit from role reinforcement activities provided by nursing home staff and community members. All nursing home staff members (in particular social workers) and physicians are called upon to provide educationa and support regarding nursing home admissions, during the decline of the resident, and especially regarding medical decision-making. Community groups are asked to support the family member by offering assistance with concrete tasks (driving, visiting, etc.) and social support.

  15. Reinforcement Learning in Autonomous Robots: An Empirical Investigation of the Role of Emotions

    OpenAIRE

    Gadanho, Sandra PCdC

    1999-01-01

    This thesis presents a study of the provision of emotions for artificial agents with the ultimate aim of enhancing their autonomy, i.e. making them more exible, robust and self-sufficient. In recent years, the importance of emotions and their assistance to cognition has been increasingly acknowledged. Emotions are no longer considered undesirable or simply useless. Their role in various aspects of human and animal cog- nition like perception, attention, memory, decision-mak...

  16. SDOF models for reinforced concrete beams under impulsive loads accounting for strain rate effects

    Energy Technology Data Exchange (ETDEWEB)

    Stochino, F., E-mail: fstochino@unica.it [Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari (Italy); Carta, G., E-mail: giorgio_carta@unica.it [Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari (Italy)

    2014-09-15

    Highlights: • Flexural failure of reinforced concrete beams under blast and impact loads is studied. • Two single degree of freedom models are formulated to predict the beam response. • Strain rate effects are taken into account for both models. • The theoretical response obtained from each model is compared with experimental data. • The two models give a good estimation of the maximum deflection at collapse. - Abstract: In this paper, reinforced concrete beams subjected to blast and impact loads are examined. Two single degree of freedom models are proposed to predict the response of the beam. The first model (denoted as “energy model”) is developed from the law of energy balance and assumes that the deformed shape of the beam is represented by its first vibration mode. In the second model (named “dynamic model”), the dynamic behavior of the beam is simulated by a spring-mass oscillator. In both formulations, the strain rate dependencies of the constitutive properties of the beams are considered by varying the parameters of the models at each time step of the computation according to the values of the strain rates of the materials (i.e. concrete and reinforcing steels). The efficiency of each model is evaluated by comparing the theoretical results with experimental data found in literature. The comparison shows that the energy model gives a good estimation of the maximum deflection of the beam at collapse, defined as the attainment of the ultimate strain in concrete. On the other hand, the dynamic model generally provides a smaller value of the maximum displacement. However, both approaches yield reliable results, even though they are based on some approximations. Being also very simple to implement, they may serve as an useful tool in practical applications.

  17. Effects of aggregate grading on the properties of steel fibre-reinforced concrete

    Science.gov (United States)

    Acikgens Ulas, M.; Alyamac, K. E.; Ulucan, Z. C.

    2017-09-01

    This study investigates the effects of changing the aggregate grading and maximum aggregate size (D max ) on the workability and mechanical properties of steel fibre-reinforced concrete (SFRC). Four different gradations and two different D max were used to produce SFRC mixtures with constant cement dosages and water/cement ratios. Twelve different concrete series were tested. To observe the properties of fresh concrete, slump and Ve-Be tests were performed immediately after the mixing process to investigate the effects of time on workability. The hardened properties, such as the compressive, splitting tensile and flexural strengths, were also evaluated. In addition, the toughness of the SFRC was calculated. Based on our test results, we can conclude that the grading of the aggregate and the D max have remarkable effects on the properties of fresh and hardened SFRC. In addition, the toughness of the SFRC was influenced by changing the grading of the aggregate and the D max .

  18. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Bachtiar, D.; Sapuan, S.M.; Hamdan, M.M.

    2008-01-01

    A study on the effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites is presented in this paper. The treatment was carried out using sodium hydroxide (NaOH) solutions at two different concentrations and three different soaking times. The hydrophilic nature of sugar palm fibre makes it difficult to adhere to hydrophobic epoxy and therefore posed the problem of interfacial bonding between fibre and matrix and such treatment was needed to alleviate such problem. The composite specimens were tested for tensile property determination. Some fractured specimens were examined under scanning electron microscope (SEM) to study the microstructure of the materials. Inconsistent results were obtained for tensile strengths, which indicate that the treatment is not very effective yet to improve the interfacial bonding. However, for tensile modulus, the results are much higher than untreated fibre composite specimens, which proved the effectiveness of the treatment

  19. The effect of processing on the mechanical properties of self-reinforced composites

    Science.gov (United States)

    Hassani, Farzaneh; Martin, Peter J.; Falzon, Brian G.

    2018-05-01

    Hot-compaction is one of the most common manufacturing methods for creating recyclable all thermoplastic composites. The current work investigates the compaction of highly oriented self-reinforced fabrics with three processing methods to study the effect of pressure and temperature in the tensile mechanical properties of the consolidated laminates. Hot-press, calender roller and vacuum bag technique were adopted to consolidate bi-component polypropylene woven fabrics in a range of pressures and compaction temperatures. Hot-pressed samples exhibited the highest quality of compaction. The modulus of the hot-pressed samples increased with compaction temperature initially due to the improved interlayer bonding and decreased after a maximum at 150°C because of partial melting of the reinforcement phase. The calender roller technique exhibited to have smaller processing temperature window as the pressure is only applied for a short time and the fabrics start to shrink with increasing the processing temperature. The need for constraining the fabrics through the process is therefore found to be paramount. The Vacuum bag results showed this technique to be the least efficient method because of the low compaction pressure. Microscopic images and void content measurement of the consolidated samples further validate the results from tensile testing.

  20. Effect of Accelerated Aging on Color Change of Direct and Indirect Fiber-Reinforced Composite Restorations

    Directory of Open Access Journals (Sweden)

    Masomeh Hasani Tabatabaei

    2016-10-01

    Full Text Available Objectives: The aim of this study was to assess the effect of artificial accelerated aging (AAA on color change of direct and indirect fiber-reinforced composite (FRC restorations.Materials and Methods: Direct (Z250 and indirect (Gradia composite resins were reinforced with glass (GF and polyethylene fibers (PF based on the manufacturers’ instructions. Forty samples were fabricated and divided into eight groups (n=5. Four groups served as experimental groups and the remaining four served as controls. Color change (∆E and color parameters (∆L*, ∆a*, ∆b* were read at baseline and after AAA based on the CIELAB system. Three-way ANOVA and Tukey’s test were used for statistical analysis.Results: Significant differences were found in ΔE, ΔL*, Δa* and Δb* among the groups after AAA (P<0.05. Most of the studied samples demonstrated an increase in lightness and a red-yellow shift after AAA.Conclusions: The obtained ∆E values were unacceptable after AAA (∆E≥ 3.3. All indirect samples showed a green-blue shift with a reduction in lightness except for Gradia/PF+ NuliteF.Keywords: Aging; Composite Resins; Color

  1. The effects of instructions on the sensitivity of negatively reinforced human behavior to extinction.

    Science.gov (United States)

    Alessandri, Jérôme; Cançado, Carlos R X

    2017-03-01

    The effects of instructions on the sensitivity of negatively reinforced (escape) behavior to extinction were studied. Initially, responding produced timeouts from pressing a force cell on a variable-ratio (VR) schedule, which was then discontinued (extinction). Based on extinction data, participants were distributed into two groups. Participants in the Persistence Group (for which response rates were low in extinction) were instructed that the experimenter expected them to continue responding in extinction after a second exposure to the VR schedule. Participants in the Extinction group (for which response rates were high in extinction) were instructed that the experimenter expected them to stop responding in extinction. Relative to the condition in which instructions were absent, extinction-response rates increased and decreased, respectively, for participants in the Persistence and Extinction groups. These results replicate and extend to negatively reinforced responding previous findings that showed behavioral control by instructions formulated as explicit experimenter demands or expectations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  3. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    International Nuclear Information System (INIS)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-01-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with "6"0Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0–1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite. - Highlights: • The properties of basalt fiber reinforced epoxy resin matrix composite under "6"0Co γ irradiation up to 2.0 MGy were studied. • Basalt fiber can weaken the aging effects of γ irradiation on the resin matrix. • Tensile property of basalt fiber composite remains stable and flexural property has a low degree of attenuation. • Basalt fiber composite is an ideal candidate of structural material for nuclear industry.

  4. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  5. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2002-01-01

    Numerical cell-model analyses for the matrix-fibre debonding in a metal matrix composite are used to study the effect of a characteristic material length in the plasticity description of the matrix material deformations. Characteristic material lengths are already present in the model problem...... in the problem. The nonlocal plasticity effect tends to increase the stress level at a given overall strain, which clearly tends to promote the onset of debonding......., in the form of fibre sizes and the length associated with the debonding process, so the nonlocal plasticity model brings in an additional material length. The analyses for metal reinforced by aligned short fibres are used to obtain an understanding of the interaction of the different length scales...

  6. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  7. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  8. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity

  9. Heads for learning, tails for memory: Reward, reinforcement and a role of dopamine in determining behavioural relevance across multiple timescales

    Directory of Open Access Journals (Sweden)

    Mathieu eBaudonnat

    2013-10-01

    Full Text Available Dopamine has long been tightly associated with aspects of reinforcement learning and motivation in simple situations where there are a limited number of stimuli to guide behaviour and constrained range of outcomes. In naturalistic situations, however, there are many potential cues and foraging strategies that could be adopted, and it is critical that animals determine what might be behaviourally relevant in such complex environments. This requires not only detecting discrepancies with what they have recently experienced, but also identifying similarities with past experiences stored in memory. Here, we review what role dopamine might play in determining how and when to learn about the world, and how to develop choice policies appropriate to the situation faced. We discuss evidence that dopamine is shaped by motivation and memory and in turn shapes reward-based memory formation. In particular, we suggest that hippocampal-striatal-dopamine networks may interact to determine how surprising the world is and to either inhibit or promote actions at time of behavioural uncertainty.

  10. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  11. Associative symmetry and stimulus-class formation by pigeons: the role of non-reinforced baseline relations.

    Science.gov (United States)

    Urcuioli, Peter J

    2010-10-01

    Two experiments tested the assumption of Urcuioli's (2008) theory of pigeons' equivalence-class formation that consistent non-reinforcement of certain stimulus combinations in successive matching juxtaposed with consistent reinforcement of other combinations generates stimulus classes containing the elements of the reinforced combinations. In Experiment 1, pigeons were concurrently trained on symbolic (AB) and two identity (AA and BB) successive tasks in which half of all identity trials ended in non-reinforcement but all AB trials were reinforced, contingent upon either responding or not responding to the comparisons. Subsequent symmetry (BA) probe trials showed evidence of symmetry in one of four pigeons. In Experiment 2, pigeons learned three pair-comparison tasks in which left versus right spatial choices were reinforced after the various sample-comparison combinations comprising AB, AA, and BB conditional discriminations. Non-differentially reinforced BA probe trials following acquisition showed some indication of symmetrical choice responding. The overall results contradict the theoretical predictions derived from Urcuioli (2008) and those from Experiment 2 challenge other stimulus-class analyses as well. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Effect of reinforcer magnitude on performance maintained by progressive-ratio schedules.

    Science.gov (United States)

    Rickard, J F; Body, S; Zhang, Z; Bradshaw, C M; Szabadi, E

    2009-01-01

    This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6-300 microl. Overall response rates in successive ratios conformed to a bitonic equation derived from Killeen's (1994) Mathematical Principles of Reinforcement. The "specific activation" parameter, a, which is presumed to reflect the incentive value of the reinforcer, was a monotonically increasing function of reinforcer volume; the "response time" parameter, delta, which defines the minimum response time, increased as a function of reinforcer volume; the "currency" parameter, beta, which is presumed to reflect the coupling of responses to the reinforcer, declined as a function of volume. Running response rate (response rate calculated after exclusion of the postreinforcement pause) decayed monotonically as a function of ratio size; the index of curvature of this function increased as a function of reinforcer volume. Postreinforcement pause increased as a function of ratio size. Estimates of a derived from overall response rates and postreinforcement pauses showed a modest positive correlation across conditions and between animals. Implications of the results for the quantification of reinforcer value and for the use of progressive-ratio schedules in behavioral neuroscience are discussed.

  13. An improved model for considering strain rate effects on reinforced concrete elements behavior under dynamic loads

    International Nuclear Information System (INIS)

    Sim, J.; Soroushian, P.

    1989-01-01

    An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was used to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections are suggested

  14. The Impact of Disulfiram Treatment on the Reinforcing Effects of Cocaine: A Randomized Clinical Trial

    Science.gov (United States)

    Haile, Colin N.; De La Garza, Richard; Mahoney, James J.; Nielsen, David A.; Kosten, Thomas R.; Newton, Thomas F.

    2012-01-01

    Background Clinical trials indicate that disulfiram (250 mg/d) reduces cocaine use, though one study found that treatment with lower doses of disulfiram (62.5 and 125 mg/d) increased cocaine use. We conducted the present study to better understand how disulfiram alters the reinforcing effects of cocaine in cocaine users. Methods Seventeen non-treatment seeking, cocaine-dependent volunteers participated in this double-blind, placebo-controlled, laboratory-based study. A cross-over design was utilized in which participants received placebo in one phase and disulfiram (250 mg/d) in the other. Following three days of study medication participants completed two choice sessions. In one they made 10 choices between receiving an intravenous infusion of saline or money that increased in value (US$ 0.05–16) and in the other cocaine (20 mg) or money. Results Participants chose cocaine more than saline under both disulfiram and placebo conditions (p<0.05). Unexpectedly, disulfiram increased both the number of cocaine and saline infusion choices (p<0.05). We next examined the relationship between disulfiram dose and cocaine choices. Disulfiram dose (mg/kg bodyweight) was negatively correlated with number of choices for cocaine (p<0.05). Disulfiram also enhanced cocaine-induced increases in cardiovascular measures (p's<0.05–0.01). Conclusions Disulfiram's impact on the reinforcing effects of cocaine depends on dose relative to body weight. Our results suggest that the use of weight-based medication doses would produce more reliable effects, consistent with weight-based dosing used in pediatrics and in preclinical research. Trial Registration Clinicaltrials.gov NCT00729300 PMID:23144826

  15. Effect of reinforcement element folds on stresses in NPP containment shell in the zone of technological tunnels

    International Nuclear Information System (INIS)

    Ul'yanov, A.N.; Medvedev, V.N.; Kiselev, A.S.

    1993-01-01

    Basing on the results of experimental and calculational studies of stressed state in the zone of a technological tunnel with one-side thicker part the approximated problem solution taking into account the effect of reinforcement element folds on opening zone stressed state is obtained. The great effect of reinforcement ropes on shell stressed state in the zone of technological tunnels, which causes the necessity of its accounting during this zone design, is revealed. Special attention shoul be paid to the sections, where the stretching stresses arising as a result of bundle bending are not compensated (sections of bundle fold origin from normal trajectory)

  16. Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics

    Science.gov (United States)

    Li, Zuo-li; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Ni, Xiu-ying

    2017-12-01

    Multilayer graphene (MLG)-reinforced Al2O3/TiC ceramics were fabricated through hot pressing sintering, and the reinforcing effect of MLG on the microstructure and mechanical properties of the composites was investigated by experiment and simulation. The simulation of dynamic crack initiation and propagation was investigated based on the cohesive zone method. The results show that the composite added with 0.2wt% MLG has excellent flexural strength and high fracture toughness. The major reinforcing mechanisms are the synergistic effect by strong and weak bonding interfaces, MLG pull-out, and grain refinement resulting from the addition of MLG. In addition, the aggravating of crack deflection, branching, blunting, and bridging have indispensable contribution to the improvement of the as-designed materials.

  17. Ductility Analysis of RC Beams Considering the Concrete Confinement Effect Produced by the Shear Reinforcement: a Numerical Approach

    Directory of Open Access Journals (Sweden)

    Caio Gorla Nogueira

    Full Text Available Abstract In this paper, a simplified numerical approach to study the influence of the confinement effect provided by transversal reinforcement on the ductility behavior of RC beams in bending is proposed. A unidimensional FEM mechanical model coupled to the Mazars’ damage model to simulate concrete behavior was adopted to assess ductility curvatures at the ultimate limit state. The confinement effect was incorporated to the numerical model through a calibration process of the damage internal parameters, based on the Least Square Method and an analytical law proposed by Kent and Park (1971. Several numerical analyses were carried out considering different designs of RC beams according to a parametric study varying the neutral axis position, concrete compressive strength and the volumetric transversal reinforcement ratio. The obtained results showed the importance of the amount of transversal reinforcement on the ductility behavior, increasing the ductility factor even for the cases with inappropriate neutral axis position.

  18. Effects of anomalies on fracture processes of graphite fiber reinforced aluminum composite

    International Nuclear Information System (INIS)

    Su, J.; Wu, G.H.; Li, Y.; Gou, H.S.; Chen, G.H.; Xiu, Z.Y.

    2011-01-01

    To determine the effects of anomalies on fracture processes of graphite fiber reinforced aluminum composite (Gr f /Al), unidirectional Gr f /Al specimens embedded with inclusions and aluminum-rich areas (Al-rich) were chosen for bending test. Fracture processes and fracture surfaces of anomaly-embedded specimens were analyzed by scanning electron microscopy in situ observation. The micromechanisms of fracture process are as following: interface layer between inclusions and composite is fractured by stress concentration in front of crack tip, and cracks connect voids in inclusions, resulting in failure of inclusion-embedded specimens immediately. However, Al-rich eases stress concentration in bending specimens and crack is blunted by Al-rich/composite interface debonding and friction during fracture process.

  19. Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Galimberti

    2014-06-01

    Full Text Available Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated. Carbon nanotubes (CNT and nano-graphite with high shape anisotropy (nanoG were melt blended with poly(1,4-cis-isoprene, as the only fillers or in combination with carbon black (CB, measuring the shear modulus at low strain amplitudes for peroxide crosslinked composites. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. This factor, fingerprint of the nanofiller, was higher for CNT than for nanoG. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve.

  20. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  1. The effect of fiber treatment on abrasive wear properties of palm fiber reinforced epoxy composite

    Science.gov (United States)

    Razak, Muhammad Firdaus Abdul; Bakar, Mimi Azlina Abu; Kasolang, Salmiah; Ahmad, Mohamad Ali

    2017-12-01

    Oil palm industries generate at least 30 million tons of lignocellulosic biomass annually in the form of oil palm trunks (OPT), empty fruit bunches (EFB), oil palm fronds (OPF) and palm pressed fibres (PPF). The palm fiber is one of the natural fibers used as reinforcement in composite materials in order to decrease environmental issues and promotes utilization of renewable resources. This paper presents a study on the effect of alkaline treatment on wear properties of palm fiber reinforced epoxy resin composite. Abrasive wear testing was deployed to investigate the wear profile of the composite surfaces. Testing was carried out which focused on the effect of alkaline treatment to the palm fiber under different amounts of fiber loading i.e. 1 wt%, 3 wt%, 5 wt% and 7 wt%. The palm fibers were soaked into 6 % of alkaline solution or natrium hydroxide (NaOH) for 12 hours. The fiber was treated in order to remove amorphous materials such as hemicelluloses, lignins and pectins of the fiber. The wear test samples were fabricated using hand lay-up technique and cured at room temperature for 24 hours. Surface roughness of the composite material was also measured using the surface measuring instrument. Dry sliding wear test was performed at room temperature at a constant velocity of 1.4 m/s with a constant load of 10 N by using the Abrasion Test Machine. Result shows that 5 wt% and 7 wt% treated palm fiber loadings have better specific wear rate compared to lower fiber loadings. The finding of this study contributes towards material development and utilization in promoting `waste into wealth' which is in line with national aspiration.

  2. Effect of γ-irradiation on the optical and electrical properties of fiber reinforced composites

    International Nuclear Information System (INIS)

    Anwar, Ahmad; Elfiky, Dalia; Ramadan, Ahmed M.; Hassan, G.M.

    2017-01-01

    The effect of gamma irradiation on the optical and electrical properties of the reinforced fiber polymeric based materials became an important issue. Fiberglass/epoxy and Kevlar fiber/epoxy were selected as investigated samples manufactured with hand lay-up without autoclave curing technique. The selected technique is simple and low cost while being rarely used in space materials production. The electric conductivity and dielectric constant for those samples were measured with increasing the gamma radiation dose. Moreover, the absorptivity, band gap and color change were determined. Fourier transform infrared (FTIR) was performed to each of the material's constituent to evaluate the change in the investigated materials due to radiation exposure dose. In this study, the change of electrical properties for both investigated materials showed a slight variation of the test parameters with respect to the gamma dose increase; this variation is placed in the insulators rang. The tested samples showed an insulator stable behavior during the test period. The change of optical properties for both composite specimens showed the maximum absorptivity at the gamma dose 750 kGy. These materials are suitable for structure materials and thermal control for orbital life less than 7 years. In addition, the transparency of epoxy matrix was degraded. However, there is no color change for either Kevlar fiber or fiberglass. - Highlights: • Space qualification for the reinforced fiber polymeric based materials which will be used for satellite structure. • Change of optical and electrical properties for selected material under the effect of gamma radiation. • Using a simple and low cost manufacturing method for space materials.

  3. Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites

    International Nuclear Information System (INIS)

    Kelkar, Ajit D.; Mohan, Ram; Bolick, Ronnie; Shendokar, Sachin

    2010-01-01

    Graphical abstract: Use of alumina nanoparticles and TEOS electrospun nanofibers at the interfaces of glass fiber plies to develop delamination resistant epoxy polymeric composites and compare their Mode I fracture toughness characteristics. - Abstract: In the recent past, the research involving the fabrication and processing of reinforced polymer nanocomposites has increased significantly. These new materials are enabling in the discovery, development and incorporation of improved nanocomposite materials with effective manufacturing methodologies for several defense and industrial applications. These materials eventually will allow the full utilization of nanocomposites in not only reinforcing applications but also in multifunctional applications where sensing and the unique optical, thermal, electrical and magnetic properties of nanoparticles can be combined with mechanical reinforcement to offer the greatest opportunities for significant advances in material design and function. This paper presents two methods and material systems for processing and integration of the nanomaterial constituents, namely: (a) dispersing alumina nanoparticles using high energy mixing (using ultrasonication, high shear mixing and pulverization) and (b) electrospinning technique to manufacture nanofibers. These reinforced polymer nanocomposites and the processing methodologies are likely to provide effective means of improving the interlaminar properties of woven fiber glass composites compared to the traditional methods such as stitching and Z-pinning. The electrospinning technology relies on the creation of nanofibers with improved molecular orientation with reduced concentration of fiber imperfections and crystal defects. Electrospinning process utilizes surface tension effects created by electrostatic forces acting on liquid droplets, creating numerous nanofibers. These nanofibers thus have potential to serve as through-the-thickness reinforcing agents in woven composites. While

  4. Effects of RO 15-1788 on a running response rewarded on continuous or partial reinforcement schedules.

    Science.gov (United States)

    Hawkins, M; Sinden, J; Martin, I; Gray, J A

    1988-01-01

    Two experiments were run in which rats were rewarded with food for running in a straight alley at one trial a day, followed by extinction of the running response. During acquisition of the response, reward was delivered either on a continuous reinforcement (CRF) or on a quasirandom 50% partial reinforcement (PRF) schedule. The groups given PRF were more resistant to extinction than those given CRF, the well-known partial reinforcement extinction effect. In Experiment 1 different groups of rats were injected during acquisition only with 1, 5 or 10 mg/kg of the benzodiazepine antagonist, RO 15-1788, or with placebo. In Experiment 2, 5 mg/kg RO 15-1788 or placebo were administered in a full cross-over design during acquisition, extinction or both. At the end of Experiment 2 only [3H]-flunitrazepam binding was measured in either the presence or absence of added gamma-aminobutyrate (GABA) in homogenates of hippocampi dissected from the animals that had received behavioural training. The drug affected running speeds during both acquisition and extinction in different ways depending upon the schedule of reinforcement (CRF or PRF) and also gave rise to enhanced GABA stimulation of [3H]-flunitrazepam binding. The results are discussed in relation to the hypothesis that the neurochemical pathways by which reinforcement schedules modify behaviour include a step influenced by benzodiazepine receptors.

  5. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    Science.gov (United States)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  6. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  7. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation

    International Nuclear Information System (INIS)

    Alavudeen, A.; Rajini, N.; Karthikeyan, S.; Thiruchitrambalam, M.; Venkateshwaren, N.

    2015-01-01

    Highlights: • This paper is presents the fabrications of kenaf/banana fiber hybrid composites. • Effect of weaving pattern and random orientation on mechanical properties was studied. • Role of interfacial adhesion due to chemical modifications were analyzed with the aid of SEM. • Hybridization of kenaf and banana fibers in plain woven composites exhibits maximum mechanical strength. - Abstract: The present work deals with the effect of weaving patterns and random orientatation on the mechanical properties of banana, kenaf and banana/kenaf fiber-reinforced hybrid polyester composites. Composites were prepared using the hand lay-up method with two different weaving patterns, namely, plain and twill type. Of the two weaving patterns, the plain type showed improved tensile properties compared to the twill type in all the fabricated composites. Furthermore, the maximum increase in mechanical strength was observed in the plain woven hybrid composites rather than in randomly oriented composites. This indicates minimum stress development at the interface of composites due to the distribution of load transfer along the fiber direction. Moreover, alkali (NaOH) and sodium lauryl sulfate (SLS) treatments appear to provide an additional improvement in mechanical strength through enhanced interfacial bonding. Morphological studies of fractured mechanical testing samples were performed by scanning electron microscopy (SEM) to understand the de-bonding of fiber/matrix adhesion

  8. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    Science.gov (United States)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  9. Numerical analyses of the effect of SG-interlayer shear stiffness on the structural performance of reinforced glass beams

    DEFF Research Database (Denmark)

    Louter, C.; Nielsen, Jens Henrik

    2013-01-01

    This paper focuses on the numerical modelling of SentryGlas-laminated reinforced glass beams. In these beams, which have been experimentally investigated in preceding research, a stainless steel reinforcement section is laminated at the inner recessed edge of a triple-layer glass beam by means...... of SentryGlas (SG) interlayer sheets. The current contribution numerically investigates the effect of the SG-interlayer shear stiffness on the overall structural response of the beams. This is done by means of a 3D finite element model in which the individual glass layers, the SG......-interlayers and the reinforcement are incorporated. In the model, the glass parts are allowed to crack, but all other parts are assumed linear elastic throughout the analyses. By changing the shear modulus of the SG-interlayer in multiple analyses, its contribution to the overall structural performance of the beams - especially...

  10. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    International Nuclear Information System (INIS)

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  11. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    Science.gov (United States)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  12. The Role of Friction Stir Processing (FSP Parameters on TiC Reinforced Surface Al7075-T651 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Felipe García-Vázquez

    Full Text Available Abstract: Aluminum alloys are very promising for structural applications in aerospace, military and transportation industries due to their light weight, high strength-to-weight ratio and excellent resistance to corrosion. In comparison to unreinforced aluminum alloys, aluminum/aluminum alloy matrix composites reinforced with ceramic phases exhibit higher strength and hardness, improved tribological characteristics. A novel surface modifying technique, friction stir processing (FSP, has been developed for fabrication of surface composite with an improved performance. The effect of FSP parameters such as number of passes, direction of each pass, sealed or unsealed groove on microstructure was investigated. In this work, nano-particles of TiC (2% in weight were added to aluminum alloy AA7075-T651 to produce a functional surface. Fixed parameters for this AA7075 alloy were used; rotation speed of 1000 rpm, travel speed of 300 mm/min and pin penetration of 2.8 mm. Optical microscopy (OM, scanning electron microscopy (SEM and atomic force microscopy (AFM were employed to study the microstructure of the fabricated surface composites. The results indicated that the selected FSP parameters influenced the area of surface composite, distribution of TiC particles and micro-hardness of the surface composites. Finally, in order to evaluate rate wear the pin on disk test was carried out.

  13. NUMERICAL ESTIMATION OF EFFECTIVE ELASTIC MODULI OF SYNTACTIC FOAMS REINFORCED BY SHORT GLASS FIBERS

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-03-01

    Full Text Available The mechanical properties of hollow glass microsphere/epoxy resin syntactic foams reinforced by short glass fibers are studied using representative volume elements. Both the glass fibers and the hollow glass microspheres exhibit random arrangement in the epoxy resin. The volume fraction and wall thickness of hollow glass microspheres and the volume fraction of glass fibers are considered as parameters. It is observed that the elastic modulus values of syntactic foams decrease with the increase of microsphere volume fraction when the microsphere relative wall thickness is lower. However, it increases with the increase of microsphere volume fraction when the relative wall thickness exceeds a critical value. The elastic modulus value goes through a maximum when the relative wall thickness is around 0.06 at 25 % volume fraction of microspheres. The addition of glass fibers reduces the critical wall thickness values of the microspheres and increases the mechanical properties of the composites. The highest stress lies on the equatorial plane perpendicular to the loading direction. Adding fibers reduces the large stress distribution areas on the microspheres, and the fibers aligned with the loading direction play an important load-bearing role.

  14. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  15. Effect of Short Fiber Reinforcement on Mechanical Properties of Hybrid Phenolic Composites

    Directory of Open Access Journals (Sweden)

    Sembian Manoharan

    2014-01-01

    Full Text Available Fiber plays an important role in determining the hardness, strength, and dynamic mechanical properties of composite material. In the present work, enhancement of viscoelastic behaviour of hybrid phenolic composites has been synergistically investigated. Five different phenolic composites, namely, C1, C2, C3, C4, and C5, were fabricated by varying the weight percentage of basalt and aramid fiber, namely, 25, 20, 15, 10, and 5% by compensating with barium sulphate (BaSO4 to keep the combined reinforcement concentration at 25 wt%. Hardness was measured to examine the resistance of composites to indentation. The hardness of phenolic composites increased from 72.2 to 85.2 with increase in basalt fiber loading. Composite C1 (25 wt% fiber is 1.2 times harder than composite C5. Compression test was conducted to find out compressive strength of phenolic composites and compressive strength increased with increase in fiber content. Dynamic mechanical analysis (DMA was carried out to assess the temperature dependence mechanical properties in terms of storage modulus (E′, loss modulus (E′′, and damping factor (tan δ. The results indicate great improvement of E′ values and decrease in damping behaviour of composite upon fiber addition. Further X-ray powder diffraction (XRD and energy-dispersive X-ray (EDX analysis were employed to characterize the friction composites.

  16. A study on the trans-crystallisation behaviour of flax fibre reinforced polypropylene composites and effect on mechanical properties

    NARCIS (Netherlands)

    George, J.; Garkhail, S.K.; Wieland, B.; Peijs, A.A.J.M.; Mattoso, L.H.C.

    2000-01-01

    The effect of flax fiber reinforcement on crystn. behavior of polypropylene (PP) was investigated using a hot-stage optical microscope. To follow the crystn. kinetics, cooling rate and crystn. temps. were varied. Flax fibers with different processing history e.g. green flax, Duralin flax, alkali and

  17. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  18. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  19. A systematic review of the effectiveness of the community reinforcement approach in alcohol, cocaine and opioid addiction

    NARCIS (Netherlands)

    Roozen, H.G.; Boulogne, J.J.; Tulder, M.W. van; Brink, W. van den; Jong, C.A.J. de; Kerkhof, A.J.F.M.

    2004-01-01

    The community reinforcement approach (CRA) has been applied in the treatment of disorders resulting from alcohol, cocaine and opioid use. The objectives were to review the effectiveness of (1) CRA compared with usual care, and (2) CRA versus CRA plus contingency management. Studies were selected

  20. A systematic review of the effectiveness of the community reinforcement approach in alcohol, cocaine and opioid addiction.

    NARCIS (Netherlands)

    Roozen, H.G.; Boulogne, J.J.; van Tulder, M.; van den Brink, W.; de Jong, C.A.J.; Kerkhof, A.J.F.M.

    2004-01-01

    The community reinforcement approach (CRA) has been applied in the treatment of disorders resulting from alcohol, cocaine and opioid use. The objectives were to review the effectiveness of (1) CRA compared with usual care, and (2) CRA versus CRA plus contingency management. Studies were selected

  1. A systematic review of the effectiveness of the community reinforcement approach in alcohol, cocaine and opioid addiction.

    NARCIS (Netherlands)

    Roozen, H.G.; Boulogne, J.J.; Tulder, van M.; Brink, van den W.; Jong, de C.A.J.; Kerkhof, A.J.F.M.

    2004-01-01

    Abstract The community reinforcement approach (CRA) has been applied in the treatment of disorders resulting from alcohol, cocaine and opioid use. The objectives were to review the effectiveness of (1) CRA compared with usual care, and (2) CRA versus CRA plus contingency management. Studies were

  2. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative study on Their Microstructures and Effects as Polymer Reinforcing Agents

    Science.gov (United States)

    Xuezhu Xu; Fei Liu; Long Jiang; J.Y. Zhu; Darrin Haagenson; Dennis P. Wiesenborn

    2013-01-01

    Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions...

  3. Elucidating the role of D4 receptors in mediating attributions of salience to incentive stimuli on Pavlovian conditioned approach and conditioned reinforcement paradigms.

    Science.gov (United States)

    Cocker, P J; Vonder Haar, C; Winstanley, C A

    2016-10-01

    The power of drug-associated cues to instigate drug 'wanting' and consequently promote drug seeking is a corner stone of contemporary theories of addiction. Gambling disorder has recently been added to the pantheon of addictive disorders due to the phenomenological similarities between the diseases. However, the neurobiological mechanism that may mediate increased sensitivity towards conditioned stimuli in addictive disorders is unclear. We have previously demonstrated using a rodent analogue of a simple slot machine that the dopamine D4 receptor is critically engaged in controlling animals' attribution of salience to stimuli associated with reward in this paradigm, and consequently may represent a target for the treatment of gambling disorder. Here, we investigated the role of acute administration of a D4 receptor agonist on animals' responsivity to conditioned stimuli on both a Pavlovian conditioned approach (autoshaping) and a conditioned reinforcement paradigm. Following training on one of the two tasks, separate cohorts of rats (male and female) were administered a dose of PD168077 shown to be maximally effective at precipitating errors in reward expectancy on the rat slot machine task (10mg/kg). However, augmenting the activity of the D4 receptors in this manner did not alter behaviour on either task. These data therefore provide novel evidence that the D4 receptor does not alter incentive motivation in response to cues on simple behavioural tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    Science.gov (United States)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  5. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites

    International Nuclear Information System (INIS)

    Song Wei; Gu Aijuan; Liang Guozheng; Yuan Li

    2011-01-01

    The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.

  6. The effect of the matrix superplastic deformation on interface reaction in fiber-reinforced composites

    International Nuclear Information System (INIS)

    Astanin, V.V.; Imayeva, L.A.

    1995-01-01

    It is known that superplastic deformation affects the processes o solid phases bonding. In particular, the effect of a character of matrix flow upon nucleation and growth of the reaction products at the fiber/matrix interface should be expected during consolidation of the fiber-reinforced composites under superplastic conditions. The matrix material flow in thin clearance (about 20μm) between strengthening fibers is a special feature of composite consolidation. In previous papers, it was shown that the character of the flow in thin specimens, when the specimen thickness is equal to several grain sizes, is very different from that in thick specimens. In this manner the question of the effect of the deformation on the fiber/matrix interface formation is complicated and one should consider the peculiarities of matrix deformation during the composite fabrication and the effect of localization of the deformation on the fiber/matrix interface reaction. In this paper, the authors shall focus on these two problems

  7. Stochastic Analysis of the Multi-dimensional Effect of Chloride Ingress into Reinforced Concrete

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2007-01-01

    For many reinforced concrete structures corrosion of the reinforcement is an important problem since it can result in expensive maintenance and repair actions. One mode of corrosion initiation occurs when the chloride content around the reinforcement bars exceeds a critical threshold value, which......, the assumption seems to be inaccurate. In this study, comparisons are made between analytical models based on infinite domains and series expansion solutions as well as numerical models based on FEM (Finite Element Method). As the parameters governing the problem are random in nature, MCS (Monte Carlo Simulation...

  8. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  9. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing, Chongqing 401123 (China); Zhang, Jianyue [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-15

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  10. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Zhang, Jianyue; Asif, Muhammad

    2015-01-01

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  11. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  12. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  13. Effects of caffeine on alcohol reinforcement: Beverage choice, self-administration, and subjective ratings

    Science.gov (United States)

    Sweeney, Mary M.; Meredith, Steven E.; Evatt, Daniel P.; Griffiths, Roland R.

    2017-01-01

    Rationale Combining alcohol and caffeine is associated with increased alcohol consumption, but no prospective experimental studies have examined whether added caffeine increases alcohol consumption. Objectives This study examined how caffeine alters alcohol self-administration and subjective reinforcing effects in healthy adults. Methods Thirty-one participants completed six double-blind alcohol self-administration sessions: three sessions with alcohol only (e.g., Beverage A) and three sessions with alcohol and caffeine (e.g., Beverage B). Participants chose which beverage to consume on a subsequent session (e.g., Beverage A or B). Effects of caffeine on overall beverage choice, number of self-administered drinks, subjective ratings (e.g., Biphasic Alcohol Effects Scale), and psychomotor performance were examined. Results A majority of participants (65%) chose to drink the alcohol beverage containing caffeine on their final self-administration session. Caffeine did not increase the number of self-administered drinks. Caffeine significantly increased stimulant effects, decreased sedative effects, and attenuated decreases in psychomotor performance attributable to alcohol. Relative to nonchoosers, caffeine choosers reported overall lower stimulant ratings, and reported greater drinking behavior prior to the study. Conclusions Although caffeine did not increase the number of self-administered drinks, most participants chose the alcohol beverage containing caffeine. Given the differences in subjective ratings and pre-existing differences in self-reported alcohol consumption for caffeine choosers and nonchoosers, these data suggest decreased stimulant effects of alcohol and heavier self-reported drinking may predict subsequent choice of combined caffeine and alcohol beverages. These predictors may identify individuals who would benefit from efforts to reduce risk behaviors associated with combining alcohol and caffeine. PMID:28108773

  14. EFFECTS OF COLUMN FAILURES ON THE INTERNAL FORCES OF ORTHOGONAL REINFORCED CONCRETE BUILDING FRAMES

    Directory of Open Access Journals (Sweden)

    Nilay KAYA

    2006-02-01

    Full Text Available In this study, the effects of column failures which may take place due to the special causes such as blast, vehicle impact, insufficient or deficient design, on the internal forces of orthogonal reinforced concrete building frames have been investigated. Calculations have been performed with SAP2000 structural analysis program, under static conditions. For a typical frame system, firstly, various column failure scenarios have been considered for uninfilled case and internal forces have been calculated and compared with those in the intact case. Then, similar calculations have been implemented for the case of presence of infill walls. The results of analyses have shown that the effects of column failures had condensed on the neighbor columns and beams of orthogonal frames on which the columns had been failed. Moreover, it has been determined that, while the bending moment capacities of the connected beams to the failed columns had exceeded in the bare frames, in the masonry infilled frames, walls give substantial support to the structural elements of the building, and capacities of the beams had not exceeded.

  15. Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Castellani, A.; Fontana, A.

    1977-01-01

    Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking

  16. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  17. Effect of Temperature Variation on Modal Frequency of Reinforced Concrete Slab and Beam in Cold Regions

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2016-01-01

    Full Text Available Changes of modal frequencies induced by temperature variation can be more obvious than those caused by structural damage, which will lead to the false damage identification results. Therefore, quantifying the temperature effect on modal frequencies is a critical step to eliminate its interference in damage detection. Due to the nonuniform and time-dependent characteristics of temperature distribution, it is insufficient to obtain the reliable relationships between temperatures and modal frequencies using temperatures in air or at surface. In this paper, correlations between measured temperatures (air temperature, surface temperature, mean temperature, etc. and modal frequencies for the slab and beam are comparatively analyzed. And the quantitative models are constructed considering nonuniform temperature distribution. Firstly, the reinforced concrete slab and beam were constructed and placed outside the laboratory to be monitored. Secondly, the correlation coefficients between modal frequencies and three kinds of temperatures are calculated, respectively. Thirdly, simple linear regression models between mean temperature and modal frequencies are established for the slab and beam. Finally, five temperature variables are selected to construct the multiple linear regression models. Prediction results reveal that the proposed multiple linear regression models possess favorable accuracy to quantify the temperature effect on modal frequencies considering nonuniform temperature distribution.

  18. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    Science.gov (United States)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  19. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  20. Irradiated Effect on Shear-Moment Interaction of Reinforced Concrete Slab

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Hyun; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, HyungTae; Park, Kyoungsoo [Yonsei University, Seoul (Korea, Republic of); Kim, Sang-Ho [Hyundai Engineering, Seoul (Korea, Republic of)

    2015-10-15

    Several deleterious mechanisms include chronic high-temperature exposure, freeze-thaw, and chemical attack and have been reviewed extensively in the literature. On the other hand, the effect of irradiation on RC needs further investigations for the long-term operation of existing NPPs. In this regard, the RC biological shield structure is located in closest proximity to a reactor core and expected to see the highest levels of irradiation over the lifetime. The biological shield structure may undergo a large lateral load from earthquake and become thicker for a suitable shielding. Although the bending strength is easily predictable with the altering steel properties, the more complete behaviors should be studied to see if the promised performance is achievable. Given this, in this study, the shear-moment (VM) interaction of a typical one-way slab representing the biological shield structure is investigated with incremental neutron irradiation. The effect of radiation on the behavior of one-way slab is presented by the shear and moment capacity interaction diagram. The results suggest that the yield strength increase of the longitudinal reinforcement barely affects the shear strength but it increases the bending strength significantly. This may be misleading, however, as the structural capacity to observe the energy from environmental loadings such as earthquake would be actually reducing.

  1. Effect of Home Bleaching on Microleakage of Fiber-reinforced and Particle-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Farahnaz Sharafeddin

    2013-12-01

    Full Text Available Background and aims. Bleaching may exert some negative effects on existing composite resin restorations. The aim of this study was to evaluate the effect of home bleaching on microleakage of fiber-reinforced and particle-filled composite resins. Materials and methods. Ninety class V cavities (1.5×2×3 mm were prepared on the buccal surfaces of 90 bovine teeth. The teeth were randomly divided into 6 groups (n=15 and restored as follows: Groups 1 and 2 with Z100, groups 3 and 4 with Z250, and groups 5 and 6 with Nulite F composite resins. All the specimens were thermocycled. Groups 1, 3 and 5 were selected as control groups (without bleaching and the experimental groups 2, 4 and 6 were bleached with 22% carbamide peroxide gel. All the samples were immersed in 2% basic fuchsin dye for 24 hours and then sectioned longitudinally. Dye penetration was evaluated under a stereomicroscope (×25, at both the gingival and incisal margins. Data were analyzed using Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (α=0.05. Results. Statistical analyses revealed that bleaching gel increased microleakage only at gingival margins with Z250 (P=0.007. Moreover, the control groups showed a statistically significant difference in microleakage at their gingival margins. Nulite F had the maximum microleakage while Z250 showed the minimum (P=0.006. Conclusion. Microleakage of home-bleached restorations might be related to the type of composite resin used.

  2. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Directory of Open Access Journals (Sweden)

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  3. Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH.

    Science.gov (United States)

    Acevedo, Beatriz; Rocha, Raquel P; Pereira, Manuel F R; Figueiredo, José L; Barriocanal, Carmen

    2015-12-01

    This paper compares the importance of the texture and surface chemistry of waste tyre activated carbons in the adsorption of commercial dyes. The adsorption of two commercial dyes, Basic Astrazon Yellow 7GLL and Reactive Rifafix Red 3BN on activated carbons made up of reinforcing fibres from tyre waste and low-rank bituminous coal was studied. The surface chemistry of activated carbons was modified by means of HCl-HNO3 treatment in order to increase the number of functional groups. Moreover, the influence of the pH on the process was also studied, this factor being of great importance due to the amphoteric characteristics of activated carbons. The activated carbons made with reinforcing fibre and coal had the highest SBET, but the reinforcing fibre activated carbon samples had the highest mesopore volume. The texture of the activated carbons was not modified upon acid oxidation treatment, unlike their surface chemistry which underwent considerable modification. The activated carbons made with a mixture of reinforcing fibre and coal experienced the largest degree of oxidation, and so had more acid surface groups. The adsorption of reactive dye was governed by the mesoporous volume, whilst surface chemistry played only a secondary role. However, the surface chemistry of the activated carbons and dispersive interactions played a key role in the adsorption of the basic dye. The adsorption of the reactive dye was more favored in a solution of pH 2, whereas the basic dye was adsorbed more easily in a solution of pH 12. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Hua [Key Laboratory for Liquid phase chemical oxidation Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Wang Chengguo, E-mail: sduwangchg@gmail.com [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Zhang Shan; Lin Xue [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. Black-Right-Pointing-Pointer Carbon fiber surface functional groups were analyzed by LRS and XPS. Black-Right-Pointing-Pointer Proper treatment of carbon fiber can prove an effective way to increase composite's performance. Black-Right-Pointing-Pointer Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H{sub 2}SO{sub 4}, KClO{sub 3} and silane coupling agent ({gamma}-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor

  5. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Yuan Hua; Wang Chengguo; Zhang Shan; Lin Xue

    2012-01-01

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H 2 SO 4 , KClO 3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  6. Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    B. Soltannia

    2016-01-01

    Full Text Available Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM model of Goldberg and his coworkers and Halpin-Tsai’s micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin.

  7. Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites

    International Nuclear Information System (INIS)

    Aigbodion, V.S.; Hassan, S.B.; Agunsoye, J.O.

    2012-01-01

    Highlights: → The influence of wear parameters on the wear rate of RLDPE were investigated. → The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. → The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance. -- Abstract: The tribological behaviour of recycled low density polyethylene (RLDPE) polymer composites with bagasse ash particles as a reinforcement was studied using a pin-on-disc wear rig under dry sliding conditions. The influence of wear parameters like, applied load, sliding speed, sliding distance and percentage of bagasse ash fillers, on the wear rate were investigated. A plan of experiments was performed to acquire data in a controlled way. Scanning electron microscope was used to analyse the worn surface of the samples. Linear regression equation and analysis of variance (ANOVA) were employed to investigate the influence of process parameters on the wear rate of the samples. The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. The confirmation of the experiments conducted using ANOVA to verify the optimal testing parameters show that sliding speed and applied load had significant effect on the wear rate. The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance of the composite greatly.

  8. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curaua fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Patricia M. [Servico Nacional de Aprendizagem Industrial (CETEPO/SENAI/RS), Sao Leopoldo, RS (Brazil). Centro Tecnologico de Polimeros; Tedesco, Adriana [Braskem S. A., III Polo Petroquimico, Triunfo, RS (Brazil); Lenz, Denise M., E-mail: denise.lenz@gmail.com [Universidade Luterana do Brasil (ULBRA), Canoas, RS (Brazil). Programa de Pos-graduacao em Engenharia de Materiais e Processos Sustentaveis

    2014-03-15

    Composites of styrene-butadiene-styrene triblock copolymer (SBS) matrix with curauá fiber and/or a nanoparticulated mineral (montmorillonite clay - MMT) used as reinforcing agents were prepared by melt-mixing. The influence of clay addition on properties like tensile and tear strength, rebound resilience, flex fatigue life, abrasion loss, hardness and water absorption of composites with 5, 10 and 20 wt% of curauá fiber was evaluated in presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene triblock copolymer (MA-g-SEBS) coupling agent. Furthermore, the effect of mineral plasticizer loading on tensile strength of selected composites was investigated. The hybrid SBS composite that showed the best overall mechanical performance was composed by 2 wt% of MMT and 5 wt% of curauá fiber. Increasing fiber content up to 20 wt% resulted in a general decrease in all mechanical properties as well as incorporation of 5 wt% MMT caused a decrease in the tensile strength in all fiber contents. The hybrid composites showed clay agglomerates (tactoids) poorly dispersed that could explain the poor mechanical performance of composites at higher concentrations of curauá fiber and MMT nanoparticles. The addition of plasticizer further decreased the tensile strength while the addition of MMT nanoparticles decreased water absorption for all SBS composites. (author)

  9. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    Directory of Open Access Journals (Sweden)

    Caitlin B O'Hara

    Full Text Available This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN, specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17 and healthy controls (HC, n = 15 were recruited. The acute phenylalanine/tyrosine depletion (APTD method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN.

  10. Affective-associative two-process theory: a neurocomputational account of partial reinforcement extinction effects.

    Science.gov (United States)

    Lowe, Robert; Almér, Alexander; Billing, Erik; Sandamirskaya, Yulia; Balkenius, Christian

    2017-12-01

    The partial reinforcement extinction effect (PREE) is an experimentally established phenomenon: behavioural response to a given stimulus is more persistent when previously inconsistently rewarded than when consistently rewarded. This phenomenon is, however, controversial in animal/human learning theory. Contradictory findings exist regarding when the PREE occurs. One body of research has found a within-subjects PREE, while another has found a within-subjects reversed PREE (RPREE). These opposing findings constitute what is considered the most important problem of PREE for theoreticians to explain. Here, we provide a neurocomputational account of the PREE, which helps to reconcile these seemingly contradictory findings of within-subjects experimental conditions. The performance of our model demonstrates how omission expectancy, learned according to low probability reward, comes to control response choice following discontinuation of reward presentation (extinction). We find that a PREE will occur when multiple responses become controlled by omission expectation in extinction, but not when only one omission-mediated response is available. Our model exploits the affective states of reward acquisition and reward omission expectancy in order to differentially classify stimuli and differentially mediate response choice. We demonstrate that stimulus-response (retrospective) and stimulus-expectation-response (prospective) routes are required to provide a necessary and sufficient explanation of the PREE versus RPREE data and that Omission representation is key for explaining the nonlinear nature of extinction data.

  11. The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand

    Directory of Open Access Journals (Sweden)

    Mostafa El Sawwaf

    2012-10-01

    Full Text Available This paper presents the results of laboratory model tests on the influence of deep excavation-induced lateral soil movements on the behavior of a model strip footing adjacent to the excavation and supported on reinforced granular soil. Initially, the response of the strip footings supported on un-reinforced sand and subjected to vertical loads (which were constant during the test due to adjacent deep excavation-induced lateral soil movement were obtained. Then, the effects of the inclusion of geosynthetic reinforcement in supporting soil on the model footing behavior under the same conditions were investigated. The studied factors include the value of the sustained footing loads, the location of footing relative to the excavation, the affected depth of soil due to deep excavation, and the relative density of sand. Test results indicate that the inclusion of soil reinforcement in the supporting sand significantly decreases both vertical settlements and the tilts of the footings due to the nearby excavation. However, the improvements in the footing behavior were found to be very dependent on the location of the footing relative to excavation. Based on the test results, the variation of the footing measured vertical settlements with different parameters are presented and discussed.

  12. Numerical Analysis of Slopes Stability and Shallow Foundations Behavior at Crest under Real Seismic Loading - Reinforcement Effect

    International Nuclear Information System (INIS)

    Mekdash, H.; Hage Chehade, F.; Sadek, M.; Abdel Massih, D.; El Hachem, E.; Youssef, E.

    2011-01-01

    The aim of this paper is to analyze the slopes stability under seismic loading using a global numerical dynamic approach. This approach allows important parameters that are generally ignored by traditional engineering methods such as the soil deformability, the dynamic amplification, non linear soil behavior, the spatial and temporal variability of the seismic loading and the reinforcement element. The present study is conducted by using measures recorded during real earthquakes (Turkey, 1999) and (Lebanon, 2008). Elastoplastic soil behavior analysis leads to monitor the evolution of the slope state after an earthquake and to clarify the most probable failure circles. A parametric study according to the reinforcement length, position, inclination and the number of elements has been studied in order to define the optimal reinforcement scheme for slopes under seismic loading. This study contains also the stability analysis of an existing foundation near the slope's crest. It will focus on the reinforcement in order to give recommendation for the most appropriate scheme that minimize the settlement of the foundation due to earthquake effect. (author)

  13. Within-Subject Testing of the Signaled-Reinforcement Effect on Operant Responding as Measured by Response Rate and Resistance to Change

    Science.gov (United States)

    Reed, Phil; Doughty, Adam H.

    2005-01-01

    Response rates under random-interval schedules are lower when a brief (500 ms) signal accompanies reinforcement than when there is no signal. The present study examined this signaled-reinforcement effect and its relation to resistance to change. In Experiment 1, rats responded on a multiple random-interval 60-s random-interval 60-s schedule, with…

  14. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Science.gov (United States)

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  15. Effects of SKF-83566 and haloperidol on performance on progressive ratio schedules maintained by sucrose and corn oil reinforcement: quantitative analysis using a new model derived from the Mathematical Principles of Reinforcement (MPR).

    Science.gov (United States)

    Olarte-Sánchez, C M; Valencia-Torres, L; Cassaday, H J; Bradshaw, C M; Szabadi, E

    2013-12-01

    Mathematical models can assist the interpretation of the effects of interventions on schedule-controlled behaviour and help to differentiate between processes that may be confounded in traditional performance measures such as response rate and the breakpoint in progressive ratio (PR) schedules. The effects of a D1-like dopamine receptor antagonist, 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide (SKF-83566), and a D2-like receptor antagonist, haloperidol, on rats' performance on PR schedules maintained by sucrose and corn oil reinforcers were assessed using a new model derived from Killeen's (Behav Brain Sci 17:105-172, 1994) Mathematical Principles of Reinforcement. Separate groups of rats were trained under a PR schedule using sucrose or corn oil reinforcers. SKF-83566 (0.015 and 0.03 mg kg(-1)) and haloperidol (0.05 and 0.1 mg kg(-1)) were administered intraperitoneally (five administrations of each treatment). Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model's parameters were compared between treatments. Haloperidol reduced a (the parameter expressing incentive value) in the case of both reinforcers, but did not affect the parameters related to response time and post-reinforcement pausing. SKF-83566 reduced a and k (the parameter expressing sensitivity of post-reinforcement pausing to the prior inter-reinforcement interval) in the case of sucrose, but did not affect any of the parameters in the case of corn oil. The results are consistent with the hypothesis that blockade of both D1-like and D2-like receptors reduces the incentive value of sucrose, whereas the incentive value of corn oil is more sensitive to blockade of D2-like than D1-like receptors.

  16. Theoretical and experimental study of the effect of fiber heads on the mechanical properties of non-continuous basalt fiber reinforced composites

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available The effect of basalt fibers, produced by the Junkers technology and used as reinforcement in polymer composites, was modeled on the properties of composites, adapting the statistical fiber mat model of Poisson type. The random distribution was approximated by so-called effective spheres that act as defect sites in composites, reducing their strength. The role of fiber heads in strength reduction and the corresponding failure modes were analyzed theoretically using a model and by experiments performed on specimens containing a single fiber head located at different distances from the crack initiation. The applicability of the model was proven both experimentally and by finite element analysis. Based on all these investigations, the effective cross section reduction, and hence the strength reduction (predicted by the model caused by the presence of fiber heads was proven.

  17. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  19. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  20. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites

    Science.gov (United States)

    Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md

    2018-05-01

    Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.

  1. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  2. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    Science.gov (United States)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  3. Effects of the prescription of reinforcing kidney, nourishing blood, improving eyesight on ARPE-19 cells induced by acrolein

    Directory of Open Access Journals (Sweden)

    Man Li

    2015-05-01

    Full Text Available AIM: To explore the effects of the prescription of reinforcing kidney, nourishing blood, improving eyesight on the oxidative stress model of ARPE-19 cells induced by acrolein. METHODS: SD rats serum containing the prescription of reinforcing kidney, nourishing blood, improving eyesight and the content of distilled water in serum were prepared. The effects of the prescription and distilled water in serum at different concentration(2.5%, 5%, 10%, 20% and 40%on cell vitality was observed by cell counting kit(CCK-8assay. the logarithmic phase of ARPE-19 cells were pretreated by different concentrations(1.25%, 2.5% and 5%of the prescription serum and distilled water in serum for 24h. Then it was treated with 75μmol/L acrolein for 24h. Cell vitality was observed by CCK-8 assay. The change of cell nucleus was detected by DAPI staining.RESULTS: 2.5% and 5% serum had no effect on cell viability(P>0.05, while 10%, 20%, 40% serum could inhibit cell viability(PPCONCLUSION: The prescription of reinforcing kidney, nourishing blood, improving eyesight has the protective effect on ARPE-19 cell damage induced by acrolein.

  4. Reinforcing effects of methamphetamine in an animal model of Attention-Deficit/Hyperactivity Disorder-the Spontaneously Hypertensive Rat

    Directory of Open Access Journals (Sweden)

    Ryu Jong

    2010-12-01

    Full Text Available Abstract Substrains of the Spontaneously Hypertensive rat (SHR, a putative animal model of Attention-Deficit/Hyperactivity Disorder (ADHD, have demonstrated increased sensitivity to many drugs of abuse, including psychostimulants. Therefore, it was suggested that studies in SHR may help elucidate ADHD and comorbidity with substance use disorder (SUD. However, the drug intake profile of the SHR in the most relevant animal model of drug addiction, the self-administration (SA test, and its response on the conditioned place preference (CPP paradigm are not yet determined. In the present study, we employed SA and CPP tests to investigate the reinforcing effects of the psychostimulant methamphetamine in an SHR substrain obtained from Charles River, Japan (SHR/NCrlCrlj. Concurrent tests were also performed in Wistar rats, the strain representing "normal" heterogeneous population. To address if the presence of ADHD behaviors further increases sensitivity to the rewarding effect of methamphetamine during adolescence, a critical period for the onset of drug abuse, CPP tests were especially conducted in adolescent Wistar and SHR/NCrlCrlj. We found that the SHR/NCrlCrlj also acquired methamphetamine SA and CPP, indicating reinforcing effects of methamphetamine in this ADHD animal model. However, we did not observe increased responsiveness of the SHR/NCrlCrlj to methamphetamine in both SA and CPP assays. This indicates that the reinforcing effects of methamphetamine may be similar in strains and that the SHR/NCrlCrlj may not adequately model ADHD and increased sensitivity to methamphetamine.

  5. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  6. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  7. Evidence for a role of 5-HT2C receptors in the motor aspects of performance, but not the efficacy of food reinforcers, in a progressive ratio schedule.

    Science.gov (United States)

    Bezzina, G; Body, S; Cheung, T H C; Hampson, C L; Bradshaw, C M; Glennon, J C; Szabadi, E

    2015-02-01

    5-Hydroxytryptamine2C (5-HT2C) receptor agonists reduce the breakpoint in progressive ratio schedules of reinforcement, an effect that has been attributed to a decrease of the efficacy of positive reinforcers. However, a reduction of the breakpoint may also reflect motor impairment. Mathematical models can help to differentiate between these processes. The effects of the 5-HT2C receptor agonist Ro-600175 ((αS)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine) and the non-selective 5-HT receptor agonist 1-(m-chlorophenyl)piperazine (mCPP) on rats' performance on a progressive ratio schedule maintained by food pellet reinforcers were assessed using a model derived from Killeen's Behav Brain Sci 17:105-172, 1994 general theory of schedule-controlled behaviour, 'mathematical principles of reinforcement'. Rats were trained under the progressive ratio schedule, and running and overall response rates in successive ratios were analysed using the model. The effects of the agonists on estimates of the model's parameters, and the sensitivity of these effects to selective antagonists, were examined. Ro-600175 and mCPP reduced the breakpoint. Neither agonist significantly affected a (the parameter expressing incentive value), but both agonists increased δ (the parameter expressing minimum response time). The effects of both agonists could be attenuated by the selective 5-HT2C receptor antagonist SB-242084 (6-chloro-5-methyl-N-{6-[(2-methylpyridin-3-yl)oxy]pyridin-3-yl}indoline-1-carboxamide). The effect of mCPP was not altered by isamoltane, a selective 5-HT1B receptor antagonist, or MDL-100907 ((±)2,3-dimethoxyphenyl-1-(2-(4-piperidine)methanol)), a selective 5-HT2A receptor antagonist. The results are consistent with the hypothesis that the effect of the 5-HT2C receptor agonists on progressive ratio schedule performance is mediated by an impairment of motor capacity rather than by a reduction of the incentive value of the food reinforcer.

  8. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)

    2015-08-15

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  9. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    International Nuclear Information System (INIS)

    Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab

    2015-01-01

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  10. The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats.

    Science.gov (United States)

    Wang, Xingang; You, Chuangang; Hu, Xinlei; Zheng, Yurong; Li, Qiyin; Feng, Zhanzeng; Sun, Huafeng; Gao, Changyou; Han, Chunmao

    2013-08-01

    Full-thickness skin defects represent a significant and urgent clinical problem. Dermal substitutes serving as a regenerative template to induce dermal reconstruction provide a promising method to treat serious skin defects. Although collagen-chitosan dermal scaffolds display good biocompatibility and a suitable porous structure for angiogenesis and tissue regeneration, their poor mechanical properties compromise their application. To develop a well-supported dermal substitute, a poly(l-lactide-co-glycolide) (PLGA) knitted mesh was fabricated and integrated with collagen-chitosan scaffold (CCS) to obtain a PLGA knitted mesh-reinforced CCS (PLGAm/CCS). The morphology of this PLGAm/CCS was investigated in vitro. To characterize the tissue response, specifically angiogenesis and tissue regeneration, the PLGAm/CCS was transplanted in combination with thin split-thickness autografts to repair full-thickness skin wounds using a one-step surgical procedure in Sprague-Dawley rats. These results were then compared with CCSs. At weeks 2, 4 and 8 after the operation, the healing wounds were imaged to analyse wound changes, and tissue specimens were harvested for histology, immunohistochemistry, real-time quantitative polymerase chain reaction and Western blot analysis. The results demonstrated that collagen-chitosan sponge in the PLGAm/CCS remained porous, interconnected and occupied the openings of PLGA mesh, and the incorporation of the PLGA knitted mesh into CCS improved the mechanical strength with little influence on its mean pore size and porosity. Following transplantation, PLGAm/CCS inhibited wound contraction, and effectively promoted neotissue formation and blood vessel ingrowth. In conclusion, the mechanical strength of the scaffolds plays an important role in the process of tissue regeneration and vascularization. The ability of PLGAm/CCS to promote angiogenesis and induce in situ tissue regeneration demonstrates its potential in skin tissue engineering. Copyright

  11. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    Science.gov (United States)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  12. Numerical modelling of the reinforcing effect of geosynthetic material used in a ballasted railway tracks

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Jíra, J.; Hrdlička, Ondřej; Kunecký, Jiří; Kytýř, Daniel; Vyčichl, J.; Doktor, Tomáš

    2010-01-01

    Roč. 224, č. 4 (2010), s. 259-267 ISSN 0954-4097 Institutional research plan: CEZ:AV0Z20710524 Keywords : railway track bed * reinforcing geogrid * finite-element modelling * settlement reduction * contact analysis * ballast material Subject RIV: JN - Civil Engineering Impact factor: 0.389, year: 2010 http://journals.pepublishing.com/content/k561040632411117/

  13. The Negative Effects of Positive Reinforcement in Teaching Children with Developmental Delay.

    Science.gov (United States)

    Biederman, Gerald B.; And Others

    1994-01-01

    This study compared the performance of 12 children (ages 4 to 10) with developmental delay, each trained in 2 tasks, one through interactive modeling (with or without verbal reinforcement) and the other through passive modeling. Results showed that passive modeling produced better rated performance than interactive modeling and that verbal…

  14. Effects of Reinforcement on Peer Imitation in a Small Group Play Context

    Science.gov (United States)

    Barton, Erin E.; Ledford, Jennifer R.

    2018-01-01

    Children with disabilities often have deficits in imitation skills, particularly in imitating peers. Imitation is considered a behavioral cusp--which, once learned, allows a child to access additional and previously unavailable learning opportunities. In the current study, researchers examined the efficacy of contingent reinforcement delivered…

  15. Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    Directory of Open Access Journals (Sweden)

    A Fazel

    2011-08-01

    Full Text Available Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05.In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration.

  16. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion

  17. Creating Tic Suppression: Comparing the Effects of Verbal Instruction to Differential Reinforcement

    Science.gov (United States)

    Woods, Douglas W.; Himle, Michael B.

    2004-01-01

    The purpose of this study was to compare two methods designed to produce tic reduction in 4 children with Tourette's syndrome. Specifically, a verbal instruction not to engage in tics was compared to a verbal instruction plus differential reinforcement of zero-rate behavior (DRO). Results showed that the DRO-enhanced procedure yielded greater…

  18. Effect of overlap length on the mechanical properties of flake reinforced thermoplastic composites

    NARCIS (Netherlands)

    Abdul Rasheed, M. I.; van Hattum, F.W.J.; Rietman, B.; Visser, H. A.; Akkerman, R.

    2015-01-01

    The in-plane mechanical properties of laminates with two dimensional planar reinforcing elements (flakes in this case) are investigated. A woven structure for the flakes is considered in this study, comprising of fiber bundles in both warp and weft direction. Failure of the flake or the interface

  19. The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate

    Science.gov (United States)

    Davison, Michael; Elliffe, Douglas; Marr, M. Jackson

    2010-01-01

    Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from 0.1 to 0.9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of…

  20. Effect of corrosion on the fatigue service-life on steel and reinforced concrete beams

    NARCIS (Netherlands)

    Veerman, R.P.; van Breugel, K.; Koenders, E.A.B.

    2015-01-01

    Chloride-induced corrosion is a point of big concern in reinforced concrete (RC) structures. To monitor the actual health and to predict the remaining service-life of structures, it is important to understand the structural behaviour and the failure mechanism of structures exposed to chlorides under

  1. Effect of fiberglass reinforcement on the behavior of bolted wood connections

    Science.gov (United States)

    Lawrence A. Soltis; Robert J. Ross; Daniel E. Windorski

    1997-01-01

    Bolted connections often fail by a shear plug or by splitting beneath the bolt caused by tension perpendicular-to-grain stress as the bolt wedges its way through the wood. Preventing this type of failure enhances both the capacity and reliability of bolted connections. This research investigated the use of fiberglass reinforcement to enhance the load-carrying capacity...

  2. Agrofibre reinforced poly(lactic acid) composites: Effect of moisture on degradation and mechanical properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Beck, B.; Müssig, J.

    2010-01-01

    Natural fibre reinforced PLA composites are a 100% biobased material with a promising mechanical properties profile. However, natural fibres are hygroscopic whereas PLA is sensitive to hydrolytic degradation under melt processing conditions in the presence of small amounts of water. Here, we

  3. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    International Nuclear Information System (INIS)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-01-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  4. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    Science.gov (United States)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  5. Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics

    Institute of Scientific and Technical Information of China (English)

    Zuo-li Li; Jun Zhao; Jia-lin Sun; Feng Gong; Xiu-ying Ni

    2017-01-01

    Multilayer graphene (MLG)-reinforced Al2O3/TiC ceramics were fabricated through hot pressing sintering, and the reinforcingef-fect of MLG on the microstructure and mechanical properties of the composites was investigated by experiment and simulation. The simula-tion of dynamic crack initiation and propagation was investigated based on the cohesive zone method. The results show that the composite added with 0.2wt% MLG has excellent flexural strength and high fracture toughness. The major reinforcing mechanisms are the synergistic effect by strong and weak bonding interfaces, MLG pull-out, and grain refinement resulting from the addition of MLG. In addition, the ag-gravating of crack deflection, branching, blunting, and bridging have indispensable contribution to the improvement of the as-designed mate-rials.

  6. Effect of quinolinic acid-induced lesions of the nucleus accumbens core on performance on a progressive ratio schedule of reinforcement: implications for inter-temporal choice.

    Science.gov (United States)

    Bezzina, G; Body, S; Cheung, T H C; Hampson, C L; Deakin, J F W; Anderson, I M; Szabadi, E; Bradshaw, C M

    2008-04-01

    The nucleus accumbens core (AcbC) is believed to contribute to the control of operant behaviour by reinforcers. Recent evidence suggests that it is not crucial for determining the incentive value of immediately available reinforcers, but is important for maintaining the values of delayed reinforcers. This study aims to examine the effect of AcbC lesions on performance on a progressive-ratio schedule using a quantitative model that dissociates effects of interventions on motor and motivational processes (Killeen 1994 Mathematical principles of reinforcement. Behav Brain Sci 17:105-172). Rats with bilateral quinolinic acid-induced lesions of the AcbC (n = 15) or sham lesions (n = 14) were trained to lever-press for food-pellet reinforcers under a progressive-ratio schedule. In Phase 1 (90 sessions) the reinforcer was one pellet; in Phase 2 (30 sessions), it was two pellets; in Phase 3, (30 sessions) it was one pellet. The performance of both groups conformed to the model of progressive-ratio performance (group mean data: r2 > 0.92). The motor parameter, delta, was significantly higher in the AcbC-lesioned than the sham-lesioned group, reflecting lower overall response rates in the lesioned group. The motivational parameter, a, was sensitive to changes in reinforcer size, but did not differ significantly between the two groups. The AcbC-lesioned group showed longer post-reinforcement pauses and lower running response rates than the sham-lesioned group. The results suggest that destruction of the AcbC impairs response capacity but does not alter the efficacy of food reinforcers. The results are consistent with recent findings that AcbC lesions do not alter sensitivity to reinforcer size in inter-temporal choice schedules.

  7. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    International Nuclear Information System (INIS)

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M. Imran; Hussain, Muhammad Asif

    2016-01-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi 2 , Ni 3 Ti, and Ni 4 Ti 3 . The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni 3 Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi 2 , Ni 3 Ti and Ni 4 Ti 3 were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  8. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    Energy Technology Data Exchange (ETDEWEB)

    Akmal, Muhammad, E-mail: muhammad.akmal@giki.edu.pk [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Raza, Ahmad, E-mail: ahmadrazac@yahoo.com [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Khan, Muhammad Mudasser; Khan, M. Imran [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Hussain, Muhammad Asif [Department of Chemical Engineering, Kangwon National University, Samcheok, 25913 (Korea, Republic of)

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi{sub 2}, Ni{sub 3}Ti, and Ni{sub 4}Ti{sub 3}. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni{sub 3}Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi{sub 2}, Ni{sub 3}Ti and Ni{sub 4}Ti{sub 3} were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  9. Effects of Rotation and Gravity Field on Surface Waves in Fibre-Reinforced Thermoelastic Media under Four Theories

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2013-01-01

    Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.

  10. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  11. Effect of combined extrusion parameters on mechanical properties of basalt fiber-reinforced plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.; Boot, Yu. A.

    1997-11-01

    Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.

  12. Separate effects testing and analyses to investigate liner tearing of the 1:6-scale reinforced concrete containment building

    International Nuclear Information System (INIS)

    Spletzer, B.L.; Lambert, L.D.; Bergman, V.L.

    1995-06-01

    The overpressurization of a 1:6-scale reinforced concrete containment building demonstrated that liner tearing is a plausible failure mode in such structures under severe accident conditions. A combined experimental and analytical program was developed to determine the important parameters which affect liner tearing and to develop reasonably simple analytical methods for predicting when tearing will occur. Three sets of test specimens were designed to allow individual control over and investigation of the mechanisms believed to be important in causing failure of the liner plate. The series of tests investigated the effect on liner tearing produced by the anchorage system, the loading conditions, and the transition in thickness from the liner to the insert plate. Before testing, the specimens were analyzed using two- and three-dimensional finite element models. Based on the analysis, the failure mode and corresponding load conditions were predicted for each specimen. Test data and post-test examination of test specimens show mixed agreement with the analytical predictions with regard to failure mode and specimen response for most tests. Many similarities were also observed between the response of the liner in the 1:6-scale reinforced concrete containment model and the response of the test specimens. This work illustrates the fact that the failure mechanism of a reinforced concrete containment building can be greatly influenced by details of liner and anchorage system design. Further, it significantly increases the understanding of containment building response under severe conditions

  13. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  14. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    Science.gov (United States)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  15. Effect of TiH2 in the preparation of MMC Ti based with TiC reinforcement

    International Nuclear Information System (INIS)

    Peillon, N.; Fruhauf, J.B.; Gourdet, S.; Feraille, J.; Saunier, S.; Desrayaud, C.

    2015-01-01

    Highlights: • Using TiH 2 precursors promotes the MMC densification and microstructure homogeneity. • Clear description of the TiH 2 interest and limitations. • Coupling of TGA, TMA and EBSD analyses to investigate the sintering process of MMC. • Process parameters: granulometry, precursor composition, temperature and rate. - Abstract: Many studies were carried out on the elaboration Metal Matrix Composites (MMCs) and a wide variety of process is reported in the bibliography. For titanium based MMC, the basis material for these elaboration techniques mainly consists of atomized titanium powder. In this work a titanium hydride powder is used to elaborate Ti/TiC MMC. Although an additional dehydrogenation operation is required a significant decrease of the sintering temperature is expected with this basis powder. In this context, the behavior of titanium hydride powder mixed with 0, 10 and 20 vol.% TiC reinforcement is studied during densification by free sintering. The effects of particle size, temperature and rate of sintering reinforcement are discussed. The comparison of the TiH 2 process with Ti HDH (Hydride Dehydride) and atomized Ti mixture is made with 10 vol.% reinforcement. The results indicate that the sintering temperature is lowered and the final densities achieved are higher if the hydride is used. Interactions between dehydrogenation and sintering mechanisms clearly appear for the higher sintering temperature rate (10 °C/min) and need specific attention to prevent porosity nucleation through hydrogen entrapment

  16. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  17. Effect OF NaOH Treatment on Bending Strength Of The Polyester Composite Reinforce By Sugar Palm Fibers

    Science.gov (United States)

    Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko

    2018-04-01

    The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.

  18. Long-term effects of waste solutions on concrete and reinforcing steel

    International Nuclear Information System (INIS)

    Daniel, J.I.; Stark, D.C.; Kaar, P.H.

    1982-04-01

    This report has been prepared for the In Situ Waste Disposal Program Tank Assessment Task (WG-11) as part of an investigation to evaluate the long-term performance of waste storage tanks at the Hanford Site. This report, prepared by the Portland Cement Association, presents the results of four years of concrete degradation studies which exposed concrete and reinforcing steel, under load and at 180 0 F, to simulated double-shell slurry, simulated salt cake solution, and a control solution. Exposure length varied from 3 months to 36 months. In all cases, examination of the concrete and reinforcing steel at the end of the exposure indicated there was no attack, i.e., no evidence of rusting, cracking, disruption of mill scale or loss of strength

  19. Effect of intercritical heat treatment on mechanical properties of reinforcing steel bars

    International Nuclear Information System (INIS)

    Abro, M.I.; Memon, R.A.; Soomro, I.A.; Aftab, U.

    2017-01-01

    Intercritical heat treatments attempts were made to enhance the mechanical properties of reinforcing steel bars milled from scrap metal. For this, two grades of steel bars were obtained from different steel mills and their mechanical properties that include hardness, ultimate tensile strength, and percent elongation before and after intercritical heat treatment were determined. Results indicated that 25.5 and 17.6%, improvements in UTS (Ultimate Tensile Strength) and 18.8 and 14.3% improvement in percent elongation in two grades of reinforcing steel samples containing 0.17 and 0.24% carbon respectively was achieved while heating at 750 degree C for 2h. Appreciable improvement in the mechanical properties was noted due to birth of sufficient quantity of martensite along with ferrite. (author)

  20. The effects of various reinforcements on dry sliding wear behaviour of AA 6061 nanocomposites

    International Nuclear Information System (INIS)

    Jeyasimman, D.; Narayanasamy, R.; Ponalagusamy, R.; Anandakrishnan, V.; Kamaraj, M.

    2014-01-01

    Highlights: • Wear and friction coefficient of nanocomposites were investigated. • The worn surface morphologies of nanocomposites were analysed. • The wear rate was increased with increasing load and sliding velocity. • The friction coefficient was decreased with increasing load and sliding velocity. - Abstract: The present work aims to investigate the dry sliding wear behaviour of AA 6061 nanocomposites reinforced with various nanolevel reinforcements, such as titanium carbide (TiC), gamma phase alumina (γ-Al 2 O 3 ) and hybrid (TiC + Al 2 O 3 ) nanoparticles with two weight percentages (wt.%) prepared by 30 h of mechanical alloying (MA). The tests were performed using a pin-on-disk wear tester by sliding these pin specimens at sliding speeds of 0.6, 0.9 and 1.2 m/s against an oil-hardened non-shrinking (OHNS) steel disk at room temperature. Wear tests were conducted for normal loads of 5, 7 and 10 N at different sliding speeds at room temperature. The variations of the friction coefficient and the wear rate with the sliding distances (500 m, 1000 m and 1600 m) for different normal loads and sliding velocities were plotted and investigated. To observe the wear characteristics and to investigate the wear mechanism, the morphologies of the worn surfaces were analysed using a scanning electron microscope (SEM). The formation of an oxide layer on the worn surface was examined by energy dispersive spectroscopy (EDS). The wear rate was found to increase with the load and sliding velocity for all prepared nanocomposites. Hybrid (TiC + Al 2 O 3 ) reinforced AA 6061 nanocomposites had lower wear rates and friction coefficients compared with TiC and Al 2 O 3 reinforced AA 6061 nanocomposites

  1. Research on reinforcement effect of vacuum preloading to treatment of the soft foundation

    Science.gov (United States)

    Li, bin; Li, maoji

    2017-12-01

    vacuum preloading method is a commonly used method to reinforce soft ground at present. Monitoring during construction stage is a dynamic monitoring, which is a standard to judge the quality of construction. This paper relies on the reclamation project of Tianjin Port Industrial Zone in North China, analyzed the monitoring purposes, monitoring method and collection data. Results had shown that vacuum preloading monitoring can make an accurate evaluation of construction quality during construction. The project practice can provide reference for similar projects.

  2. The detrimental effects of extrinsic reinforcement on “Intrinsic motivation”

    OpenAIRE

    Dickinson, Alyce M.

    1989-01-01

    Extrinsic consequences have been criticized on the grounds that they decrease intrinsic motivation or internally initiated behavior. Two popular rationales for this criticism, Lepper's overjustification hypothesis (1981) and Deci's motivational theory (Deci & Ryan, 1985), are reviewed and the criticism is then redefined behaviorally. “Intrinsically controlled” behavior is defined as behavior maintained by response-produced reinforcers, and the question concerning extrinsic consequences is thu...

  3. Effects of Carbon Nanomaterial Reinforcement on Composite Joints Under Cyclic and Impact Loading

    Science.gov (United States)

    2012-03-01

    prepreg . 2 Figure 1. Composite decks on DDG1000. (From [3]) Figure 2. USV built from nanotube-reinforced carbon fiber composites. (From [2...been proven that the infusion of CNTs enhances the strength and fracture toughness of CFRP laminates under static loading (mode I and mode II...Kostopoulos et al. [5] investigated the influence of the multi-walled carbon nanotubes (MWCNTs) on the impact and after-impact behavior of CFRP laminates

  4. Experimental studies on the effects of bolt parameters on the bearing characteristics of reinforced rock.

    Science.gov (United States)

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei

    2016-01-01

    Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports.

  5. Accounting for Fiber Bending Effects in Homogenization of Long Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2015-01-01

    The present work deals with homogenized finite-element models of long fiber reinforced composite materials in the context of studying compressive failure modes such as the formation of kink bands and fiber micro-buckling. Compared to finite-element models with an explicit discretization of the ma......The present work deals with homogenized finite-element models of long fiber reinforced composite materials in the context of studying compressive failure modes such as the formation of kink bands and fiber micro-buckling. Compared to finite-element models with an explicit discretization...... of the material micro-structure including individual fibers, homogenized models are computationally more efficient and hence more suitable for modeling of larger and complex structure. Nevertheless, the formulation of homogenized models is more complicated, especially if the bending stiffness of the reinforcing...... fibers is to be taken into account. In that case, so-called higher order strain terms need to be considered. In this paper, important relevant works from the literature are discussed and numerical results from a new homogenization model are presented. The new model accounts for two independent...

  6. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding

    Directory of Open Access Journals (Sweden)

    Teghpal eSingh

    2010-10-01

    Full Text Available The nucleus accumbens (NA has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10 sec CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  7. Kenaf Fibre Reinforced Polypropylene Composites: Effect of Cyclic Immersion on Tensile Properties

    Directory of Open Access Journals (Sweden)

    W. H. Haniffah

    2015-01-01

    Full Text Available This research studied the degradation of tensile properties of kenaf fibre reinforced polypropylene composites due to cyclic immersion into two different solutions, as well as comparison of the developed composites’ tensile properties under continuous and cyclic immersion. Composites with 40% and 60% fibre loadings were immersed in tap water and bleach for 4 cycles. Each cycle consisted of 3 days of immersion and 4 days of conditioning in room temperature (28°C and 55% humidity. The tensile strength and modulus of composites were affected by fibre composition, type of liquid of immersion, and number of cycles. The number of immersion cycles and conditioning caused degradation to tensile strength and modulus of kenaf fibre reinforced polypropylene composites. Continuous and cyclic immersion in bleach caused tensile strength of the composites to differ significantly whereas, for tensile modulus, the difference was insignificant in any immersion and fibre loadings. However, continuous immersion in the bleach reduced the tensile strength of composites more compared to cyclic immersion. These preliminary results suggest further evaluation of the suitability of kenaf fibre reinforced polypropylene composites for potential bathroom application where the composites will be exposed to water/liquid in cyclic manner due to discontinuous usage of bathroom.

  8. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    Science.gov (United States)

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol. PMID:22336593

  9. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Science.gov (United States)

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  10. Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.; Odette, G.R.

    1994-01-01

    The influence of the type, volume fraction, thickness and orientation of ductile phase reinforcements on the room temperature fatigue and fracture resistance of γ-TiAl intermetallic alloys is investigated. Large improvements in toughness compared to monolithic γ-TiAl are observed in both the TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing ductile phase content, reinforcement thickness and strength; orientation effect are minimal. Crack-growth behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to monolithic γ-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic loading

  11. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    Science.gov (United States)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  12. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances.

    Science.gov (United States)

    Ghedini, Giulia; Russell, Bayden D; Connell, Sean D

    2015-02-01

    Disturbance often results in small changes in community structure, but the probability of transitioning to contrasting states increases when multiple disturbances combine. Nevertheless, we have limited insights into the mechanisms that stabilise communities, particularly how perturbations can be absorbed without restructuring (i.e. resistance). Here, we expand the concept of compensatory dynamics to include countervailing mechanisms that absorb disturbances through trophic interactions. By definition, 'compensation' occurs if a specific disturbance stimulates a proportional countervailing response that eliminates its otherwise unchecked effect. We show that the compounding effects of disturbances from local to global scales (i.e. local canopy-loss, eutrophication, ocean acidification) increasingly promote the expansion of weedy species, but that this response is countered by a proportional increase in grazing. Finally, we explore the relatively unrecognised role of compensatory effects, which are likely to maintain the resistance of communities to disturbance more deeply than current thinking allows. © 2015 John Wiley & Sons Ltd/CNRS.

  13. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    Science.gov (United States)

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  14. Effect of Reinforced Hybrid Palm Shells on Mechanical Properties of Polyurethane-Jute Woven/ Vinyl Ester Sandwich Board

    International Nuclear Information System (INIS)

    Cheng, T.S.; Nurul Ain Nanyan; Lan, D.N.U.; Leng, T.P.

    2014-01-01

    A natural fiber sandwich was constructed from palm shells/polyurethane core and jute woven/vinyl ester face sheets by the in-situ sandwich process (core and panel prepared simultaneously). The polyurethane sandwich core was reinforced by hybrid shell systems of dried palm shell (DPS) and palm kernel shell (PKS) (50P-50D, 25P-75D), and single shell system of PKS (100P) as well as 20 phr empty fruit bunch (EFB) based on hundred part of polyurethane. The sandwich face sheets are prepared by using two jute woven layers and impregnated by vinyl ester. Interlocking between DPS and polyurethane matrix was formed, which hence enhanced the mechanical properties. The interfacial adhesion between DPS, PKS, and EFB with the polyurethane binder played the important role to achieve high mechanical properties. It was found that hybrid shells exhibited high reinforcement for sandwich's performance resulting better compression (50P-50D) and flexural (25P-75D) properties. The single shell 100P showed only improvement on flexural modulus.The fracture surface morphology of sandwich under mechanical test was performed by using optical microscopy. (author)

  15. Effect of reinforced fiber on morphology of Si phases in Al2O3/AI-Si alloy composite

    Directory of Open Access Journals (Sweden)

    Zheng LIU

    2005-05-01

    Full Text Available Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcement on the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alumina fiber can serve as propitious sites for the heterogeneous nucleation of the silicon phase, and the primary silicon in the composite can nucleate on the surface of the fiber. The fiber in the composite can trigger twin during the coupled growth of the aluminum-silicon eutectic and lead to modification of the eutectic silicon near the fiber.

  16. Object habituation in horses: The effect of voluntary vs. negatively reinforced approach to frightening stimuli

    DEFF Research Database (Denmark)

    Christensen, Janne Winther

    2013-01-01

    of the horses (NR group) were negatively reinforced by a familiar human handler to approach a collection of novel objects in a test arena. The other half were individually released in the arena and were free to explore the objects (VOL group). On the next day, the horses were exposed to the objects again...... without a human handler, to investigate the rate of habituation. Behavioural and heart rate responses were recorded. Results: All VOL horses initially avoided the unknown objects, whereas the handler was able to get all NR horses to approach and stand next to the objects within the first 2 min session...

  17. ELASTICITY of SHORT FIBRE REINFORCED POLYAMIDE: MORPHOLOGICAL AND NUMERICAl ANALYSIS OF FIBRE ORIENTATION EFFECTS

    Directory of Open Access Journals (Sweden)

    Francesca Cosmi

    2010-10-01

    Full Text Available The fatigue behaviour of injection moulded short fibre reinforced polymers depends upon fibre orientation, as shown in experiments conducted with notched specimens injected through different injection gates. The different fatigue behaviour is mainly related to the different local elastic properties, as determined by the different fibre orientation patterns, resulting into different strain distributions. In order to quantify the relationship between fibre orientation and elastic constants, the Cell Method was applied to volumes extracted from the specimens, reconstructed by micro-tomography.

  18. Study of the effect of hard projectiles impacting reinforced concrete walls

    International Nuclear Information System (INIS)

    Berriaud, C.; Sokolovsky, A.

    1977-01-01

    Among the risks examined in the framework of nuclear safety in France, quite unlikely events are examined as constituting a safety cover. This type of event includes the possible impact of aircrafts, or rotor splinters. Research on the limit strength of a wall under the impact of a hard projectile presently gives incentive results. First, a good agreement appears between works performed in parallel directions by EDF and CEA. Secondly, the special field of aerial projectiles is much better known as it was with previous formulations. Third, such research highly contributes to the knowledge of the mechanical strength of reinforced concrete structures [fr

  19. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  20. Differential effects of daily snack food intake on the reinforcing value of food in obese and nonobese women123

    OpenAIRE

    Temple, Jennifer L; Bulkley, Alison M; Badawy, Rebecca L; Krause, Nicole; McCann, Sarah; Epstein, Leonard H

    2009-01-01

    Background: Food reinforcement, ie, motivation to obtain food, is associated with energy intake and obesity. Finding ways to decrease the reinforcing value of unhealthy foods may help with adherence to diets and maintenance of weight loss. Our previous study in nonobese adults showed that daily consumption of the same snack food (food consumed apart from meals) for 14 d significantly decreased its reinforcing value.

  1. Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2017-10-01

    Full Text Available In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance

  2. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  3. Effects of reinforcement ratio and arrangement on the structural behavior of a nuclear building under aircraft impact

    International Nuclear Information System (INIS)

    Thai, Duc-Kien; Kim, Seung-Eock; Lee, Hyuk-Kee

    2014-01-01

    Highlights: • Numerical analysis of RC nuclear building model under aircraft impact was conducted. • The analysis result shows similar behavior as compared to the Riera function. • The effects of reinforcement ratio and arrangement were enumerated. • The appropriate number of layer of longitudinal rebar was recommended. - Abstract: This study presents the effectiveness of the rebar ratio and the arrangement of reinforced concrete (RC) structures on the structural behavior of nuclear buildings under aircraft impact using a finite element (FE) approach. A simplified model of a fictitious nuclear building using RC structures was fully modeled. The aircraft model of a Boeing 767-400 was used for impact simulation and was developed and verified with a conventional impact force–time history curve. The IRIS Punching test was used to validate the damage prediction capabilities of the RC wall under impact loading. With regard to the different rebar ratios and rebar arrangements of a nuclear RC building, the structural behavior of a building under aircraft impact was investigated. The structural behavior investigated included plastic deformation, displacement, energy dissipation, perforation/penetration depth and scabbing area. The results showed that the rebar ratio has a significant effect on withstanding aircraft impact and reducing local damage. With four layers of rebar, the RC wall absorbed and dissipated the impact energy more than once with only two layers of rebar for the same rebar ratio

  4. [Effect of heat-reinforcing needling combined with rehabilitation training on the motor function of ischemic stroke patients].

    Science.gov (United States)

    Zhang, Ning-xia; Liu, Gui-zhen; Huang, Tai-quan; Li, Wei-jiang; Luo, Jia-qi; Liu, Wei-wei; Huang, Yong; Wang, Ai-min

    2009-12-01

    To observe the therapeutic effect of heat-reinforcing needling combined with modem rehabilitation training on the motor function of ischemic stroke patients. Fifty case of ischemic stroke patients were randomly divided into rehabilitation (Rehab, n=40) and acupuncture (Acup) + Rehab (n=40) groups. Heat-reinforcing needling was applied to Jianyu (LI 15), Quchi (LI 11), Hegu (LI 14), Zusanli (ST 36), Yanglingquan (GB 34), Yinlingquan (SP 9) and Sanyinjiao (SP 6), once daily for 3 weeks. Rehabilitation training including healthy limb and joint movement was conducted, once daily for 3 weeks. The patient's neurological impairment degree and the motor function (Fugl-Meyer index) were evaluated before and after the treatment. After the treatment, of the each 40 cases in Rehab and Acup + Rehab groups, 10 (25.0%) and 17 (42.5%) experienced marked improvement in their symptoms, 17 (42.5%) and 18 (45.0%) had improvement, 13 (32.5%) and 5 (12.5%) failed, with the effective rates being 67.5% and 87.5% respectively. The therapeutic effect of Acup + Rehab group was markedly superior to that of Rehab group (P0.05). After the treatment, the scores of neurological impairment degree of two groups both decreased significantly (PRehab group was significantly lower than that of Rehab group (PRehab group were obviously higher than those of Rehab group (Pstroke patients.

  5. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  6. Universal effect of dynamical reinforcement learning mechanism in spatial evolutionary games

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Wu, Zhi-Xi; Wang, Bing-Hong

    2012-01-01

    One of the prototypical mechanisms in understanding the ubiquitous cooperation in social dilemma situations is the win–stay, lose–shift rule. In this work, a generalized win–stay, lose–shift learning model—a reinforcement learning model with dynamic aspiration level—is proposed to describe how humans adapt their social behaviors based on their social experiences. In the model, the players incorporate the information of the outcomes in previous rounds with time-dependent aspiration payoffs to regulate the probability of choosing cooperation. By investigating such a reinforcement learning rule in the spatial prisoner's dilemma game and public goods game, a most noteworthy viewpoint is that moderate greediness (i.e. moderate aspiration level) favors best the development and organization of collective cooperation. The generality of this observation is tested against different regulation strengths and different types of network of interaction as well. We also make comparisons with two recently proposed models to highlight the importance of the mechanism of adaptive aspiration level in supporting cooperation in structured populations

  7. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy

    International Nuclear Information System (INIS)

    Manjunatha, B.; Niranjan, H.B.; Satyanarayana, K.G.

    2015-01-01

    Metal Matrix Composites (MMC) considered as one of the ‘advanced materials’ have evoked growing interest during the last three decades due to their high performance and applications in strategic sectors. These composites exhibit unique and attractive properties over the monolithic alloys, but suffer from low ductility, which makes them not so attractive for some of the applications where high toughness is one of the design criteria. This limitation of MMCs has been overcome by resorting to various treatments such as mechanical and thermal loading. Considering very limited reports available on Al alloy reinforced with boron carbide (B 4 C) particles, this paper presents (i) preparation of Al-6061 alloy reinforced with 1.5–10 wt% B 4 C, (ii) subjecting them to mechanical and thermal treatments and (iii) characterization of all the above samples. Specific ultimate tensile strength and hardness of all the composites were higher than those of matrix. Also, these values increased with increasing amount of particles, with composites containing 8 wt% B 4 C showing the maximum values in all the three conditions. These observations are supported by the uniform distribution of particles in the matrix as observed in their microstructure

  8. Combined Effect of Initial Curing Temperature and Crack Width on Chloride Penetration in Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Elkedrouci Lotfi

    2018-01-01

    Full Text Available Reinforced concrete (RC structures are gradually being degraded all over the world, largely due to corrosion of the embedded steel bars caused by an attack of chloride penetration. Initial curing would be regarded as one factor influencing chloride diffusion in concrete in combination with cover cracking that is also of great attention for reinforced structures. In this study, a non-steady state diffusion test of chloride ion involving RC beam specimens with a water-to-cement ratio of 0.5, initial curing temperatures of 5°C or 20°C and three types of crack widths ranging from 0 to 0.2mm was performed. Chloride content at 5°C or was determined. The results show that the higher chloride content was obtained in condition of crack width large than 0.1mm with low initial curing temperature and there are no obvious differences in chloride content when the crack width was not larger than 0.1mm.

  9. Soil reinforcement with geosynthetics

    Directory of Open Access Journals (Sweden)

    Bessaim Mohammed Mustapha

    2018-01-01

    Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.

  10. Effect of sucrose availability and pre-running on the intrinsic value of wheel running as an operant and a reinforcing consequence.

    Science.gov (United States)

    Belke, Terry W; Pierce, W David

    2014-03-01

    The current study investigated the effect of motivational manipulations on operant wheel running for sucrose reinforcement and on wheel running as a behavioral consequence for lever pressing, within the same experimental context. Specifically, rats responded on a two-component multiple schedule of reinforcement in which lever pressing produced the opportunity to run in a wheel in one component of the schedule (reinforcer component) and wheel running produced the opportunity to consume sucrose solution in the other component (operant component). Motivational manipulations involved removal of sucrose contingent on wheel running and providing 1h of pre-session wheel running. Results showed that, in opposition to a response strengthening view, sucrose did not maintain operant wheel running. The motivational operations of withdrawing sucrose or providing pre-session wheel running, however, resulted in different wheel-running rates in the operant and reinforcer components of the multiple schedule; this rate discrepancy revealed the extrinsic reinforcing effects of sucrose on operant wheel running, but also indicated the intrinsic reinforcement value of wheel running across components. Differences in wheel-running rates between components were discussed in terms of arousal, undermining of intrinsic motivation, and behavioral contrast. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    International Nuclear Information System (INIS)

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-01-01

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete

  12. The effect of music-reinforced nonnutritive sucking on state of preterm, low birthweight infants experiencing heelstick.

    Science.gov (United States)

    Whipple, Jennifer

    2008-01-01

    This study examined the physiologic and behavioral effects of music-reinforced nonnutritive sucking (NNS) for preterm, low birthweight (LBW) infants experiencing heelstick. Subjects were 60 infants, age 32 to 37 weeks post conceptional age in a neonatal intensive care unit. Infants were randomly assigned to one of three treatment groups: pacifier-activated lullaby (PAL), pacifier-only, and no-contact. Experimental infants were provided the Sondrex PAL System, which plays music contingent on infant sucking. Pacifier-only infants did not receive music reinforcement for sucking, and no-contact infants were not provided a pacifier or music at any point during the procedure. Stress level and behavior state were assessed continuously and heart, respiratory, and oxygen saturation rates were recorded at 15-second intervals for all infants. Most physiologic data results were inconclusive. However, analysis of behavior state and stress level revealed the following significant differences for the PAL and pacifier-only groups compared to the no-contact group, all of which were greatest between the PAL and no-contact groups: lower during-heelstick behavior state means, less time in undesirable behavior states, lower during- and post-heelstick stress level means, and smaller behavior state and stress level differences between intervals. In addition, the PAL group had a significantly lower pre-heelstick stress level mean than the no-contact group. Behavior state and stress level were also more stable across time for the PAL group than the other groups, and patterns of changes in oxygen saturation, behavior state, and stress level indicate that music-reinforced NNS may facilitate return to homeostasis.

  13. Conditioned reinforcement can be mediated by either outcome-specific or general affective representations

    Directory of Open Access Journals (Sweden)

    Kathryn A Burke

    2007-11-01

    Full Text Available Conditioned reinforcers are Pavlovian cues that support the acquisition and maintenance of new instrumental responses. Responding on the basis of conditioned rather than primary reinforcers is a pervasive part of modern life, yet we have a remarkably limited understanding of what underlying associative information is triggered by these cues to guide responding. Specifically, it is not certain whether conditioned reinforcers are effective because they evoke representations of specific outcomes or because they trigger general affective states that are independent of any specific outcome. This question has important implications for how different brain circuits might be involved in conditioned reinforcement. Here, we use specialized Pavlovian training procedures, reinforcer devaluation and transreinforcer blocking, to create cues that were biased to preferentially evoke either devaluation-insensitive, general affect representations or, devaluationsensitive, outcome-specific representations. Subsequently, these cues, along with normally conditioned control cues, were presented contingent on lever pressing.We found that intact rats learned to lever press for either the outcome or the affect cues to the same extent as for a normally conditioned cue. These results demonstrate that conditioned reinforcers can guide responding through either type of associative information. Interestingly, conditioned reinforcement was abolished in rats with basolateral amygdala lesions. Consistent with the extant literature, this result suggests a general role for basolateral amygdala in conditioned reinforcement. The implications of these data, combined with recent reports from our laboratory of a more specialized role of orbitofrontal cortex in conditioned reinforcement, will be discussed.

  14. Mutual irradiation grafting on indigenous aramid fiber-3 in diethanolamine and epichlorohydrin and its effect on interfacially reinforced epoxy composite

    International Nuclear Information System (INIS)

    Xing, Lixin; Liu, Li; Xie, Fei; Huang, Yudong

    2016-01-01

    Highlights: • High energy gamma rays were used to decorate the surface of aramid fiber via mutual irradiation grafting process in two medium. • The effects of different grafting medium on aramid fiber surface were investigated through SEM, AFM, XPS, wettability and adsorption measurements. • Interfacial properties of aramid reinforced polymer composites were remarkable improved after mutual irradiation. - Abstract: The surface of indigenous aramid fiber-3 (IAF3) was decorated via mutual irradiation grafting process in diethanolamine (DEA) and epichlorohydrin (ECH), respectively, with the assist of high energy gamma rays. This modification method with great permeability produced the homogeneous and ameliorative AF3 surfaces, which were observed by the scanning electron microscopy (SEM) and atom forced microscopy (AFM). Enhanced surface free energy and reduced contact angles of irradiated AF3 verified the fabulous effectiveness of mutual irradiation without seriously injured tensile strength. The composites based on epoxy resin (ER) polymer as the matrix and irradiated IAF3 grafted DEA and ECH as the reinforcement. By capitalizing on the irradiated IAF3 which has higher wettability and adsorption on resin, the irradiated IAF3-ECH/ER composites exhibit admirable interfacial mechanical performance as compared to the pristine IAF3 contained composites. The interfacial shear strength (IFSS), interlaminar shear strength (ILSS) and flexural strength of composites were remarkable improved to 86.5, 60.13 and 511 MPa respectively, from the pristine IAF3/ER composite with IFSS of 65.9 MPa, ILSS of 48.1 MPa, and flexural strength of 479 MPa.

  15. Effects of Thermal and Humidity Aging on the Interfacial Adhesion of Polyketone Fiber Reinforced Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Han Ki Lee

    2016-01-01

    Full Text Available Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacial adhesion and material properties. Also, the effect of adhesive primer treatment, based on the resorcinol formaldehyde resin and latex (RFL, of polyketone fiber for high interfacial adhesion was evaluated. Morphological and property changes of the rubber composites were analyzed by using various instrumental analyses. As a result, the rubber composite was aged largely by thermal aging at high temperature rather than humidity aging condition. Interfacial adhesion of the polyketone/NR composites was improved by the primer treatment and its effect was maintained in aging conditions.

  16. Mutual irradiation grafting on indigenous aramid fiber-3 in diethanolamine and epichlorohydrin and its effect on interfacially reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Lixin [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Liu, Li, E-mail: liuli@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); Xie, Fei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); Huang, Yudong [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-01

    Highlights: • High energy gamma rays were used to decorate the surface of aramid fiber via mutual irradiation grafting process in two medium. • The effects of different grafting medium on aramid fiber surface were investigated through SEM, AFM, XPS, wettability and adsorption measurements. • Interfacial properties of aramid reinforced polymer composites were remarkable improved after mutual irradiation. - Abstract: The surface of indigenous aramid fiber-3 (IAF3) was decorated via mutual irradiation grafting process in diethanolamine (DEA) and epichlorohydrin (ECH), respectively, with the assist of high energy gamma rays. This modification method with great permeability produced the homogeneous and ameliorative AF3 surfaces, which were observed by the scanning electron microscopy (SEM) and atom forced microscopy (AFM). Enhanced surface free energy and reduced contact angles of irradiated AF3 verified the fabulous effectiveness of mutual irradiation without seriously injured tensile strength. The composites based on epoxy resin (ER) polymer as the matrix and irradiated IAF3 grafted DEA and ECH as the reinforcement. By capitalizing on the irradiated IAF3 which has higher wettability and adsorption on resin, the irradiated IAF3-ECH/ER composites exhibit admirable interfacial mechanical performance as compared to the pristine IAF3 contained composites. The interfacial shear strength (IFSS), interlaminar shear strength (ILSS) and flexural strength of composites were remarkable improved to 86.5, 60.13 and 511 MPa respectively, from the pristine IAF3/ER composite with IFSS of 65.9 MPa, ILSS of 48.1 MPa, and flexural strength of 479 MPa.

  17. Nalfurafine hydrochloride, a selective κ opioid receptor agonist, has no reinforcing effect on intravenous self-administration in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Kaoru Nakao

    2016-01-01

    Full Text Available Nalfurafine hydrochloride [(E-N-[17-(cyclopropylmethyl-4,5α-epoxy-3,14-dihydroxymorphinan-6β-yl]-3-(furan-3-yl-N-methylprop-2-enamide monohydrochloride; nalfurafine] is used in Japan as an antipruritic for the treatment of intractable pruritus in patients undergoing hemodialysis or with chronic liver disease. It is a potent and selective agonist at the κ opioid receptor, but also has weak and partial agonist activity at μ opioid receptors. Opioids, especially those acting at μ receptors, carry a risk of abuse. This is an important factor in the consideration of therapeutic risk vs. benefit in clinical use and the potential for misuse as a public health problem. It is therefore necessary to carefully evaluate the reinforcing effects of nalfurafine. To this end, we investigated intravenous self-administration of nalfurafine in rhesus monkeys. The number of self-administration of nalfurafine at doses of 0.0625, 0.125 and 0.25 μg/kg/infusion was not higher than that of saline in rhesus monkeys that frequently self-administered pentazocine (0.25 mg/kg/infusion. These results indicate that nalfurafine has no reinforcing effect in rhesus monkeys in the intravenous self-administration paradigm.

  18. Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Fan, Lei; Zhuang, Houlong L; Zhang, Kaihang; Cooper, Valentino R; Li, Qi; Lu, Yingying

    2016-12-01

    Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified cathode through both chemical and physical confinements, these chloride-coated cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. From adsorption experiments and theoretical calculations, it is shown that not only the sulfide-adsorption effect but also the diffusivity in the vicinity of these chlorides materials plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Balancing the adsorption and diffusion effects of these nonconductive materials could lead to the enhanced cycling performance of an Li-S cell. Electrochemical analyses over hundreds of cycles indicate that cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salts, delivering an average specific capacity of above 1200 mAh g -1 at 0.2 C.

  19. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  20. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  1. Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Haydaruzzaman [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Khan, Ruhul A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, G. P.O. Box 3787, Dhaka 1000 (Bangladesh); Khan, Mubarak A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, G. P.O. Box 3787, Dhaka 1000 (Bangladesh)], E-mail: makhan.inst@gmail.com; Khan, A.H.; Hossain, M.A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2009-11-15

    Jute fabrics-reinforced polypropylene (PP) composites (50% fiber) were prepared by compression molding. Composites were fabricated with non-irradiated jute fabrics/non-irradiated PP (C-0), non-irradiated jute fabrics/irradiated PP (C-1), irradiated jute fabrics/non-irradiated PP (C-2) and irradiated jute fabrics/irradiated PP (C-3). It was found that C-3 composite performed the best mechanical properties over other composites. Total radiation dose varied from 250-1000 krad and composites made of using 500 krad showed the best results. The optimized values (C-3 composites) for tensile strength (TS), bending strength (BS) and impact strength (IS) were found to be 63 MPa, 73 MPa and 2.93 kJ/m{sup 2}, respectively.

  2. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants

    Directory of Open Access Journals (Sweden)

    Sk. Sharfuddin Chestee

    2017-01-01

    Full Text Available Short jute fiber reinforced polypropylene (PP composites were prepared using a single screw extrusion moulding. Jute fiber content in the composites is optimized with the extent of mechanical properties, and composites with 20% jute show higher mechanical properties. Dissimilar concentrations of several fire retardants (FRs, such as magnesium oxide (MO, aluminum oxide (AO, and phosphoric acid (PA, were used in the composites. The addition of MO, AO, and PA improved the fire retardancy properties (ignition time, flame height, and total firing time of the composites. Ignition time for 30% MO, flame height for 30% PA, and total firing time for 20% MO content composites showed good results which were 8 sec, 1 inch, and 268 sec, respectively. Mechanical properties (tensile strength, tensile modulus, bending strength, bending modulus, and elongation at break, degradation properties (soil test, weathering test, and percentage of weight loss, and water uptake were studied.

  3. Obtainment of silica nanofiber and its preliminary investigation and its effects as reinforcement in polymeric matrix

    International Nuclear Information System (INIS)

    Teixeira, R.S.; Oliveira, G.L.; Silva, F.D.C.; Teofilo, E. T.; Farias, R.C.; Menezes, R.R.

    2016-01-01

    Silica is widely used as fillers in polymers, and may confer flame retardant characteristics and improve mechanical properties. their use usually occurs as spherical nanoparticles or short fibers of. Studies using this reinforce in the form of nanofibers are promising. This analysis proposes to obtain silica nanofibers by blowspinning method in solution (SBS), and investigate its application in polymeric matrix. To synthesize the silica nanofibers it was used a precursor solution that has been subjected to SBS process and calcined for forming the silica layer. The DR-X indicated the obtainment of amorphous silica phase and SEM showed the the fibers are at the nanometer scale. Silica nanofibers were incorporated into filmogenic solution Polyamide 6. Preliminary results showed no improvement in mechanical properties. Future stages propose to verify that the surface chemical modification of silica nanofibers enables interaction charge / matrix. (author)

  4. Effect of steel surface conditions on reinforcing steel corrosion in concrete exposed to marine environments

    Directory of Open Access Journals (Sweden)

    Anzola, E.

    2005-09-01

    Full Text Available Laboratory methods and experimental tests were deployed in the present study to evaluate corrosion in reinforced concrete exposed to marine environments. Reinforcing steel exhibiting two different surface conditions prior to embedment in concrete were studied, one the one hand to assess the electrochemical behaviour of the bars during exposure of the concrete specimens to a simulated marine environment, and on the other to determine the strength of the steel/concrete bond. The reinforced concrete specimens prepared were adapted as required for electrochemical potential and corrosion rate testing. A total of 56 7x15-cm cylindrical specimens containing 3/8" steel rods anchored at a depth of 11.5 cm were made to evaluate the steel / concrete bond and exposed to a natural marine environment for 28 or 190 days prior to testing. All the specimens were made with ready-mixed concrete. It may be concluded from the results of the corrosion tests on reinforcing steel with different surface conditions that the oxide initially covering the bars was dissolved and the steel passivated by the alkalinity in the concrete. The chief finding of the bonding study was that the layer of oxide formed in pre-embedment steel deterioration contributed to establishing a better bond.

    En el contexto de esta investigación, se tomaron en consideración métodos y ensayos experimentales de laboratorio, que permiten hacer una evaluación de la corrosión del hormigón armado expuesto en ambientes marinos. Por una parte se evaluó el comportamiento electroquímico de dos condiciones de estados superficiales del acero embebido en el hormigón, exponiéndolo en un ambiente marino simulado y, por otra parte, se estudió la adherencia entre el acero y el hormigón, con los mismos estados superficiales usados para la evaluación electroquímica. Las probetas se fabricaron de hormigón con acero de refuerzo en su interior, adecuándolas para realizar los ensayos de potenciales

  5. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    Science.gov (United States)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  6. Effects of different crumb rubber sizes on the flowability and compressive strength of hybrid fibre reinforced ECC

    Science.gov (United States)

    Khed, Veerendrakumar C.; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd

    2018-04-01

    The different sizes of crumb rubber have been used to investigate the effects on flowability and the compressive strength of the hybrid fibre reinforced engineered cementitious composite. Two sizes of crumb rubber 30 mesh and 1 to 3mm were used in partial replacement with the fine aggregate up to 60%. The experimental study was carried out through mathematical and statistical analysis by response surface methodology (RSM) using the Design Expert software. The response models have been developed and the results were validated by analysis of variance (ANOVA). It was found that finer sized crumb rubber inclusion had produced better workability and higher compressive strength when compared to the larger size and it was concluded that crumb rubber has negative effect on compressive strength and positive effect on workability. The optimization results are found to an approximately good agreement with the experimental results.

  7. Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete

    International Nuclear Information System (INIS)

    Rambo, Dimas Alan Strauss; Andrade Silva, Flávio de; Toledo Filho, Romildo Dias; Fonseca Martins Gomes, Otávio da

    2015-01-01

    Highlights: • The thermo-mechanical behavior of basalt TRC is investigated. • The fiber polymer coating can become a deterministic factor in the TRC response. • Pre-heating the TRC at 150 °C leads to a matrix–polymer interlocking mechanism. • Above 400 °C a sudden drop in the TRC tensile response is observed. - Abstract: The work in hand presents the results of an experimental investigation on the thermo-mechanical properties of a textile refractory composite reinforced with polymer coated basalt fibers under tensile loading. The composites were produced as a laminate material using basalt bi-directional fabric layers as reinforcement. A high alumina cement matrix was used in the matrix composition which was designed using the compressible packing method. A series of uniaxial tensile tests was performed under temperatures ranging from 25 to 1000 °C. The cracking mechanisms were discussed and compared to that obtained at room temperature. Thermogravimetry and X-ray diffraction analysis were used to study the deterioration/phase changes as a function of the studied temperatures. Scanning electron microscopy (SEM) was used to study the damage processes in the fiber–matrix interfaces after exposure to high temperatures. The obtained results indicated that the presence and the type of coating can become a deterministic factor in the tensile response of the composite submitted to elevated temperatures. A sudden drop in the serviceability limit state of the composite was observed above 400 °C, caused by the degradation of the polymer used as a fiber surface coating, the degradation of the basalt fiber and by the dehydration process of the refractory matrix

  8. Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees.

    Directory of Open Access Journals (Sweden)

    Miguel A Rodríguez-Gironés

    Full Text Available The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities.

  9. [Effects of prefrontal ablations on the reaction of the active choice of feeder under different probability and value of the reinforcement on dog].

    Science.gov (United States)

    Preobrazhenskaia, L A; Ioffe, M E; Mats, V N

    2004-01-01

    The role of the prefrontal cortex was investigated on the reaction of the active choice of the two feeders under changes value and probability reinforcement. The experiments were performed on 2 dogs with prefrontal ablation (g. proreus). Before the lesions the dogs were taught to receive food in two different feeders to conditioned stimuli with equally probable alimentary reinforcement. After ablation in the inter-trial intervals the dogs were running from the one feeder to another. In the answer to conditioned stimuli for many times the dogs choose the same feeder. The disturbance of the behavior after some times completely restored. In the experiments with competition of probability events and values of reinforcement the dogs chose the feeder with low-probability but better quality of reinforcement. In the experiments with equal value but different probability the intact dogs chose the feeder with higher probability. In our experiments the dogs with prefrontal lesions chose the each feeder equiprobably. Thus in condition of free behavior one of different functions of the prefrontal cortex is the reactions choose with more probability of reinforcement.

  10. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber

    International Nuclear Information System (INIS)

    Song, Yingze; Yu, Jinhong; Dai, Dan; Song, Lixian; Jiang, Nan

    2014-01-01

    Highlights: • In-situ and ex-situ methods were applied to modify silica particles. • In-situ method was more beneficial to preparing silica particles with high BET surface area. • Silicone rubber filled with in-situ modified silica exhibits excellent mechanical and thermal properties. - Abstract: In-situ and ex-situ methods were applied to modify silica particles in order to investigate their effects on the reinforcement of silicone rubber. Surface area and pore analyzer, laser particle size analyzer, Fourier-transform infrared spectroscopy (FTIR), contact-angle instrument, and transmission electron microscope (TEM) were utilized to investigate the structure and properties of the modified silica particles. Dynamic mechanical thermal analyzer (DMTA) was employed to characterize the vulcanizing behavior and mechanical properties of the composites. Thermogravimetric analysis (TGA) was performed to test the thermal stability of the composites. FTIR and contact angle analysis indicated that silica particles were successfully modified by these two methods. The BET surface area and TEM results reflected that in-situ modification was more beneficial to preparing silica particles with irregular shape and higher BET surface area in comparison with ex-situ modification. The DMTA and TGA data revealed that compared with ex-situ modification, the in-situ modification produced positive influence on the reinforcement of silicone rubber

  11. Effect of Environmental Degradation on Mechanical Properties of Kenaf/Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Mohamad Zaki Abdullah

    2013-01-01

    Full Text Available The main objective of this research is to investigate the effect of environmental degradation on the mechanical properties of kenaf/PET fiber reinforced POM hybrid composite. Kenaf and PET fibers were selected as reinforcements because of their good mechanical properties and resistance to photodegradation. The test samples were produced by compression molding. The samples were exposed to moisture, water spray, and ultraviolet penetration in an accelerated weathering chamber for 672 hours. The tensile strength of the long fiber POM/kenaf (80/20 composite dropped by 50% from 127.8 to 64.8 MPa while that of the hybrid composite dropped by only 2% from 73.8 to 72.5 MPa. This suggests that the hybrid composite had higher resistance to tensile strength than the POM/kenaf composite. Similarly, the results of flexural and impact strengths also revealed that the hybrid composite showed less degradation compared to the kenaf fiber composite. The results of the investigation revealed that the hybrid composite had better retention of mechanical properties than that of the kenaf fiber composites and may be suitable for outdoor application in the automotive industry.

  12. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Directory of Open Access Journals (Sweden)

    Jesús Carmona

    2015-05-01

    Full Text Available This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  13. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Science.gov (United States)

    Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro

    2015-01-01

    This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  14. The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites

    International Nuclear Information System (INIS)

    Shadlou, Shahin; Ahmadi-Moghadam, Babak; Taheri, Farid

    2014-01-01

    Highlights: • The epoxy/graphene nanocomposites were studied at various strain rates. • The variations in constitutive stress–strain response were scrutinized. • Positive reinforcing attributes of graphene diminished at higher strain rates. • Graphene particles have higher efficiency under compression loading than tension. • A new modification factor for Halpin–Tsai model was proposed. - Abstract: The effect of strain rate on the mechanical behavior of epoxy reinforced with graphene nanoplatelets (GNPs) is investigated. Nanocomposites containing various amounts of GNP are prepared and tested at four different strain rates (0.01, 0.1, 1 and 10/s) under compressive and tensile loading regimes. The results show that incorporation of GNP highly affects the behavior of epoxy. The fracture surfaces of tensile specimens are also investigated using scanning electron microscopy (SEM) to discern the surface features and dispersion state of GNP. Finally, the predictive capability of some of the available models for evaluating the strength of nanocomposites are assessed and compared against the experimental results. Moreover, a modification factor to the widely used Halpin–Tsai model is proposed to improve the accuracy of the model when evaluating the Young’s modulus of nanocomposites at various strain rates

  15. Laboratory Investigation for the Effects of Using Fiber Reinforcement in Rigid Pavements on Compressive and Flexural Properties

    Directory of Open Access Journals (Sweden)

    Ahmed Abbas Jasim Alsabbagh

    2016-03-01

    Full Text Available Rigid pavements provide durable service life and have remarkable application under heavy traffic loading. But, though the rigid pavements have several advantages, it suffers from some disadvantages that are relating with concrete is brittle material. One solution have been carried out in order to overcome this problem is using fibers reinforced to improve tensile strength and provides ductility. The main objective of this study is to investigating the effects of using fiber reinforced concrete (Polyvinyl alcohol and steel fiber in Rigid Pavements on Compressive and Flexural Properties. The study results shown the compressive strength has been increased by (20% when adding (0.5% of Polyvinyl alcohol concrete mixture. While modulus of elasticity has been decreasing by (23% when adding the same content of Polyvinyl alcohol. On the other hand, the study results show that using steel fiber (1.5% in concrete mixtures increase compressive strength by more than 145%.However modulus of elasticity slightly decrease. Also the addition of PVA fiber by 0.5% increase of about (51% in the Modulus of Rupture, while using steel fiber (1.5% increase Modulus of Rupture by more than (24%.

  16. [Effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker].

    Science.gov (United States)

    Zhu, Ming-yi; Zhang, Xiu-yin

    2015-06-01

    To evaluate the effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker (ABW). ABW was surface-treated with 0%, 1%, 2%, 3% and 4% silan coupling agent (γ-MPS), and mixed with resin matrix to synthesize 5 groups of composite resins. After heat-cured at 120 degrees centigrade for 1 h, specimens were tested in three-point flexure to measure strength according to ISO-4049. One specimen was selected randomly from each group and observed under scanning electron microscope (SEM). The data was analyzed with SAS 9.2 software package. The flexural strength (117.93±11.9 Mpa) of the group treated with 2% silane coupling agent was the highest, and significantly different from that of the other 4 groups (α=0.01). The amount of silane coupling agent has impact on the flexural strength of dental composite resins reinforced with whiskers; The flexual strength will be reduced whenever the amount is higher or lower than the threshold. Supported by Research Fund of Science and Technology Committee of Shanghai Municipality (08DZ2271100).

  17. A generalized matching law analysis of cocaine vs. food choice in rhesus monkeys: effects of candidate 'agonist-based' medications on sensitivity to reinforcement.

    Science.gov (United States)

    Hutsell, Blake A; Negus, S Stevens; Banks, Matthew L

    2015-01-01

    We have previously demonstrated reductions in cocaine choice produced by either continuous 14-day phendimetrazine and d-amphetamine treatment or removing cocaine availability under a cocaine vs. food choice procedure in rhesus monkeys. The aim of the present investigation was to apply the concatenated generalized matching law (GML) to cocaine vs. food choice dose-effect functions incorporating sensitivity to both the relative magnitude and price of each reinforcer. Our goal was to determine potential behavioral mechanisms underlying pharmacological treatment efficacy to decrease cocaine choice. A multi-model comparison approach was used to characterize dose- and time-course effects of both pharmacological and environmental manipulations on sensitivity to reinforcement. GML models provided an excellent fit of the cocaine choice dose-effect functions in individual monkeys. Reductions in cocaine choice by both pharmacological and environmental manipulations were principally produced by systematic decreases in sensitivity to reinforcer price and non-systematic changes in sensitivity to reinforcer magnitude. The modeling approach used provides a theoretical link between the experimental analysis of choice and pharmacological treatments being evaluated as candidate 'agonist-based' medications for cocaine addiction. The analysis suggests that monoamine releaser treatment efficacy to decrease cocaine choice was mediated by selectively increasing the relative price of cocaine. Overall, the net behavioral effect of these pharmacological treatments was to increase substitutability of food pellets, a nondrug reinforcer, for cocaine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Effects of reinforcement-blocking doses of pimozide on neural systems driven by rewarding stimulation of the MFB: a /sup 14/C-2-deoxyglucose analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gomita, Y.; Gallistel, C.R.

    1982-10-01

    An analysis by means of /sup 14/C-2-deoxyglucose autoradiography of the neural systems unilaterally activated by the reinforcing stimulation used in the two accompanying papers revealed strong and reliable effects in the nucleus of the diagonal band of Broca, in the medial forebrain bundle (MFB) and/or the fornix throughout the diencephalon, and in the part of the anterior ventral tegmentum where the dopaminergic projection to the lateral habenula originates. The terminal fields of the dopaminergic forebrain projections were not affected, but there was bilateral suppression of lateral habenular activity. A second experiment found that the same systems are still activated by (automatically administered) reinforcing stimulation in rats treated with reinforcement blocking doses of pimozide. The only clear effect of pimozide was to reverse the bilateral suppressive effect of the stimulation on lateral habenular activity. Animals treated with pimozide show greatly elevated activity in the lateral habenula, whether or not they receive reinforcing stimulation. The results suggest that pimozide's effect on reinforcement is mediated by the circuitry interconnecting the lateral habenula with the nucleus of the diagonal band of Broca and/or the anterior ventral tegmentum.

  19. Affect and the computer game player: the effect of gender, personality, and game reinforcement structure on affective responses to computer game-play.

    Science.gov (United States)

    Chumbley, Justin; Griffiths, Mark

    2006-06-01

    Previous research on computer games has tended to concentrate on their more negative effects (e.g., addiction, increased aggression). This study departs from the traditional clinical and social learning explanations for these behavioral phenomena and examines the effect of personality, in-game reinforcement characteristics, gender, and skill on the emotional state of the game-player. Results demonstrated that in-game reinforcement characteristics and skill significantly effect a number of affective measures (most notably excitement and frustration). The implications of the impact of game-play on affect are discussed with reference to the concepts of "addiction" and "aggression."

  20. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  1. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  2. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  3. Conditioned Reinforcement Value and Resistance to Change

    Science.gov (United States)

    Shahan, Timothy A.; Podlesnik, Christopher A.

    2008-01-01

    Three experiments examined the effects of conditioned reinforcement value and primary reinforcement rate on resistance to change using a multiple schedule of observing-response procedures with pigeons. In the absence of observing responses in both components, unsignaled periods of variable-interval (VI) schedule food reinforcement alternated with…

  4. Study on the Reinforcement Measures and Control Effect of the Surrounding Rock Stability Based on the Shield Tunneling Under Overpass Structure

    Directory of Open Access Journals (Sweden)

    Qian-cheng Fang

    2016-04-01

    Full Text Available To study the stability of surrounding rocks for shield tunneling under overpass structures and the safety of existing bridge structures, a practical example of the method was cited through a shield tunneling project under the overpass structure between K1+110 and K1+700 on Line 2 of Shenyang Subway, China. The sub-area reinforcement was proposed according to surrounding rock deformation characteristics during shield tunnel excavation. The bridge foundation (i.e., the clear spacing to the shield tunnel is less than 2 m was reinforced by steel support, the bridge foundation (the clear spacing is about 2~7m used “jet grouting pile” reinforcement, whereas the bridge foundation (the clear spacing is greater than 7 m did not adopt any reinforcement measures for the moment. For this study, the mean value and material heterogeneity models were established to evaluate the reinforcement effect from several aspects, such as surrounding rock deformation, plastic zone development, and safety factor. The simulation results were consistent with those of field monitoring. After reinforcement, the maximum deformation values of the surrounding rock were reduced by 4.9%, 12.2%, and 48.46%, and the maximum values of surface subsidence were decreased by 5.6%, 72.2%, and 88.64%. By contrast, the overall safety factor was increased by 4.1%, 55.46%, and 55.46%. This study posited that this reinforcement method can be adopted to solve tunnel construction problems in engineering-geological conditions effectively. References for evaluating similar projects are provided.

  5. Immediate effects of scalp acupuncture with twirling reinforcing manipulation on hemiplegia following acute ischemic stroke: a hidden association study

    Directory of Open Access Journals (Sweden)

    Xiao-zheng Du

    2016-01-01

    Full Text Available Data mining has the potential to provide information for improving clinical acupuncture strategies by uncovering hidden rules between acupuncture manipulation and therapeutic effects in a data set. In this study, we performed acupuncture on 30 patients with hemiplegia due to acute ischemic stroke. All participants were pre-screened to ensure that they exhibited immediate responses to acupuncture. We used a twirling reinforcing acupuncture manipulation at the specific lines between the bilateral Baihui (GV20 and Taiyang (EX-HN5. We collected neurologic deficit score, simplified Fugl-Meyer assessment score, muscle strength of the proximal and distal hemiplegic limbs, ratio of the maximal H-reflex to the maximal M-wave (H max /M max , muscle tension at baseline and immediately after treatment, and the syndromes of traditional Chinese medicine at baseline. We then conducted data mining using an association algorithm and an artificial neural network backpropagation algorithm. We found that the twirling reinforcing manipulation had no obvious therapeutic difference in traditional Chinese medicine syndromes of "Deficiency and Excess". The change in the muscle strength of the upper distal and lower proximal limbs was one of the main factors affecting the immediate change in Fugl-Meyer scores. Additionally, we found a positive correlation between the muscle tension change of the upper limb and H max /M max immediate change, and both positive and negative correlations existed between the muscle tension change of the lower limb and immediate H max /M max change. Additionally, when the difference value of muscle tension for the upper and lower limbs was > 0 or < 0, the difference value of H max /M max was correspondingly positive or negative, indicating the scalp acupuncture has a bidirectional effect on muscle tension in hemiplegic limbs. Therefore, acupuncture with twirling reinforcing manipulation has distinct effects on acute ischemic stroke patients

  6. Investigating the interactive role of stressful life events, reinforcement sensitivity and personality traits in prediction of the severity of Multiple Sclerosis (MS symptoms

    Directory of Open Access Journals (Sweden)

    2017-06-01

    Full Text Available Background & Objective: Multiple sclerosis is a chronic neurological condition recognized by demyelination in the central nervous system. The present study was conducted to investigate the interactive role of stressful life events, reinforcement sensitivity, and personality traits in prediction of the severity of symptoms of Multiple sclerosis (MS symptoms. Materials & Methods: This is a correlational study whose statistical population consisted of all the patients suffering from Multiple Sclerosis in Shiraz in the first half of 1394, among whom 162 patients were included in this research by means of purposive sampling method. Five-Factor Personality Inventory, Jackson Personality Inventory, Stressful Life Events Scale, and Expanded Disability Status Scale (EDSS were utilised as research tools. In order to analyze the data, descriptive and inferential methods were used. The data were analysed using Pearson correlation and hierarchical regression. Results: The findings revealed that stressful life events (β = 0.41, p <0.001, Behavioral Inhibition System (β = 0.26, p<0.05, and neuroticism index (β = 0.92, p <0.05 were able to predict variance of scores of the severity of symptoms of Multiple Sclerosis significantly. Conclusion: Stressful life events, Behavioral Inhibition System, and neuroticism showed a significant relationship with the severity of symptoms of Multiple Sclerosis; thus, it seems that interaction of personality traits and environmental conditions are among influential factors of the severity of symptoms of Multiple Sclerosis. This fact implies that individuals' personal traits play an eminent role in the progression of the disease.

  7. Annealing effects of carbon fiber-reinforced epoxy resin composites irradiated by electron beams

    International Nuclear Information System (INIS)

    Udagawa, Akira; Sasuga, Tuneo; Ito, Hiroshi; Hagiwara, Miyuki

    1987-01-01

    Carbon cloth-reinforced epoxy resin composites were irradiated with 2 MeV electrons at room temperature and then annealed in air for 2 h at temperatures up to 180 deg C. A considerable decrease in the three-point bending strength occurred when the irradiated composites were annealed in the temperature range of 115 - 135 deg C which is below the glass transition temperature T g of the matrix resin, while the bending strength remained unchanged up to 180 deg C for the unirradiated composites. In the dynamic viscoelastic spectra of the irradiated matrix, a new relaxation appeared at the temperature extending from 50 deg C to just below the matrix T g and disappeared on annealing for 2 h at 135 deg C. Annealing also decreased the concentration of free radicals existing stably in the irradiated matrix at room temperature. After annealing, a large amount of clacks and voids were observed in the fractography of the composites by scanning electron microscopy. These results indicate: (1) Annealing brings about rearrangement of the radiation-induced molecular chain scission in the matrix; (2) The bending strength of the irradiated composites decreased owing to the increased brittleness of the matrix by annealing. (author)

  8. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  9. Effect of reinforcement with resin composite on fracture strength of structurally compromised roots.

    Science.gov (United States)

    Fukui, Yuji; Komada, Wataru; Yoshida, Keiichi; Otake, Shiho; Okada, Daizo; Miura, Hiroyuki

    2009-09-01

    This study was aimed at evaluating the fracture resistance of structurally compromised roots restored with four different post and core systems. Thirty-two bovine roots were uniformly shaped to simulate human mandibular premolar roots. The roots were divided into four groups based on the type of restoration: cemented cast post and core (Group MC), resin composite build-up (Group CR), resin composite and prefabricated glass fiber post build-up (Group FRC), and thick-layer dual-cured resin composite-reinforced small-diameter tapered cast post and core (Group CRM). After a static loading test, the failure mode and fracture resistance were recorded. Group CRM (719.38+/-196.73 N) exhibited a significantly high fracture resistance compared with the other groups (Group MC: 429.56+/-82.43 N; Group CR: 349.56+/-66.21 N; Group FRC: 398.94+/-112.71 N; pCRM exhibited better mechanical properties for structurally compromised roots with no ferrules, although all types of restorations showed non-restorable fracture modes.

  10. The effect of clay nanoparticles as reinforcement on mechanical properties of bioplastic base on cassava starch

    Science.gov (United States)

    Harunsyah; Sariadi; Raudah

    2018-01-01

    Plastics have been used widely for packaging material since long time ago. However, environmentally friendly plastics or plastics whose raw materials come from natural polymers are still very low in development. Efforts have been conducted to develop environmental friendly plastic from renewable resources such as biopolymer. The aim of this paper is to study the influence of clay nanoparticles as reinforcment on the mechanical properties of bioplastic were prepared by solution-casting method. The content of clay nanoparticles in the bioplastic was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Structural characterization was done by Fourier Transform Infrared Spectroscopy. Surface morphologies of the plastic film were examined by scanning electron microscope.The result showed that the Tensile strength was improved significantly with the addition of clay nanoparticles. The maximum tensile strength obtained was 24.18 M.Pa on the additional of clay nanoparticles by 0.6% and plasticizer by 25%. Based on data of FTIR, the produced bioplastic did not change the group function and it can be concluded that the interaction in bioplastic produced was only a physical interaction. The bioplastic based on cassava starch-clay nanoparticles and plasticizer glycerin showed that interesting mechanical properties being transparent, clear, homogeneous, flexible and easy to be handled.

  11. Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates

    International Nuclear Information System (INIS)

    Rassmann, S.; Paskaramoorthy, R.; Reid, R.G.

    2011-01-01

    The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.

  12. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol nanocomposite films

    Directory of Open Access Journals (Sweden)

    H. Y. Zhan

    2012-10-01

    Full Text Available Three techniques including acid hydrolysis (AH, 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO-mediated oxidation (TMO and ultrasonication (US were introduced to isolate nanocellulose from microcrystalline cellulose, in order to reinforce poly(vinyl alcohol (PVA films. Important differences were noticed in fiber quality of nanocellulose and film properties of PVA nanocomposite films. The TMO treatment was more efficient in nanocellulose isolation with higher aspect ratio, surface charge (–47 mV and yields (37%. While AH treatment resulted in higher crystallinity index (88.1% and better size dispersion. The fracture surface, thermal behavior and mechanical properties of the PVA nanocomposite films were investigated by means of scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA and tensile testing. The results showed that both the TMO-derived and AH-derived nanocellulose could be dispersed homogeneously in the PVA matrices. AH/PVA films had higher elongation at break (51.59% at 6 wt% nanocellulose loading as compared with TMO/PVA, while TMO/PVA films shown superior tensile modulus and strength with increments of 21.5% and 10.2% at 6wt% nanocellulose loading. The thermal behavior of the PVA nanocomposite films was higher improved with TMO-derived nanofibrils addition.

  13. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  14. Effect of Material Variability and Mechanical Eccentricity on the Seismic Vulnerability Assessment of Reinforced Concrete Buildings

    Directory of Open Access Journals (Sweden)

    Mario Lucio Puppio

    2017-07-01

    Full Text Available The present paper deals with the influence of material variability on the seismic vulnerability assessment of reinforced concrete buildings. Existing r.c. buildings are affected by a strong dispersion of material strengths of both the base materials. This influences the seismic response in linear and nonlinear static analysis. For this reason, it is useful to define a geometrical parameter called “material eccentricity”. As a reference model, an analysis of a two storey building is presented with a symmetrical plan but asymmetrical material distribution. Furthermore, an analysis of two real buildings with a similar issue is performed. Experimental data generate random material distributions to carry out a probabilistic analysis. By rotating the vector that defines the position of the center of strength it is possible to describe a strength domain that is characterized by equipotential lines in terms of the Risk Index. Material eccentricity is related to the Ultimate Shear of non-linear static analyses. This relevant uncertainty, referred to as the variation of the center of strength, is not considered in the current European and Italian Standards. The “material eccentricity” therefore reveals itself to be a relevant parameter to considering how material variability affects such a variation.

  15. Experimental Investigations on Effect of Damage on Vibration Characteristics of a Reinforced Concrete Beam

    Science.gov (United States)

    Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi

    2012-02-01

    Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.

  16. Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar

    Directory of Open Access Journals (Sweden)

    Danuta Barnat-Hunek

    2018-04-01

    Full Text Available The influence of roughness and the way it affects the adhesion properties and surface free energy (SFE of polysiloxanes hydrophobised basalt fibres–reinforced cement mortars were determined in this article. The physical properties of mortars were investigated in the experimental part, which also explored the impact of hydrophobisation and basalt fibres (BF addition on SFE, frost resistance, contact angle (CA, and roughness. A device capable of calculating all parameters was used to indicate the surface roughness and 3D topography. Prior to and after conducting surface and weight hydrophobisation, the contact angle of mortars was specified. Subsequently, it was used for carrying out SFE calculation by means of Neumann’s method, enabling us to characterize the adhesion properties and wettability of mortars. The research indicated that the surface roughness was substantially decreased, in turn raising the frost resistance. The corrosion resistance drops when the surface roughness, water absorption, and number of fibres in the mortar increase. The SEM images presenting the structure of polysiloxane coating and mortars were provided.

  17. Effect of Compatibilizer on the Dynamic Mechanical and Electrical Properties of Kaolin Clay Reinforced EPDM Rubber

    International Nuclear Information System (INIS)

    Sarkhel, G.; Manjhi, S.

    2013-01-01

    Industrial pollution issue and dark colour of carbon black, clay based non black filler are getting more importance for reinforcing elastomer. EPDM-Kaolin composites with various maleated EPDM concentration have been prepared by mixing on a two roll mill. The rheometry data showed the optimum cure time increases with increasing compatibilizer concentration without decreasing torque value indicating that acidic functional groups comes from compatibilizer could retard cure rate and increase the optimum cure time rather than change in the ultimate cure state. As the filler concentration increases, the edge to edge and face to edge interaction between filler and EPDM increases and the free volume between EPDM molecules is reduced, the storage modulus increases. Moreover, the dynamic mechanical analysis also showed the increase in glass transition temperature with increase in filler concentration due to the inter-tubular diffusion of EPDM inside the clay. It was also observed that with increasing filler concentration, the resistivity and dielectric strength decreases and moreover with increasing compatibilizer concentration the resistivity decreases due to better dispersion of filler helps to build conduction path. The morphological study also revealed that homogeneity of filler dispersion increases with increase in compatibilizer concentration. (author)

  18. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    Science.gov (United States)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-11-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with 60Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0-1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite.

  19. Effect of short fiber reinforcement on the properties of recycled poly(ethylene terephthalate)/poly(ethylene naphthalate) blends

    International Nuclear Information System (INIS)

    Karsli, Nevin Gamze; Yesil, Sertan; Aytac, Ayse

    2013-01-01

    Highlights: ► Short fiber reinforcement to the r-PET/PEN blend improved to the tensile strength. ► Fiber reinforcement increased the storage modulus of r-PET/PEN blend. ► CF reinforced composite has the highest storage modulus value. - Abstract: In this study, short carbon (CF), glass (GF) and hybrid carbon/glass fiber reinforced recycled poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) (r-PET/PEN) blends were prepared by melt mixing method. The mechanical, thermal and morphological properties of composites were investigated by using tensile tests, differential scanning calorimeter, dynamic mechanical analyzer and scanning electron microscopy. The microscopic analysis showed that there is a better interfacial interaction between fiber and polymer matrix for CF reinforced composite. It was found that addition of short fiber reinforcement to the r-PET/PEN blend improved the tensile strength and Young’s modulus values more than the addition of PEN into r-PET. According to DMA analysis, fiber reinforcement increased the storage modulus of composites when compared with r-PET/PEN blend and among them storage modulus of CF reinforced composite was the highest. It was concluded that mechanical properties of r-PET can be enhanced with addition of PEN and more efficiently with short fiber reinforcement

  20. Effect of runway training on rat brain tyrosine hydroxylase: differential effect of continuous and partial reinforcement schedules.

    Science.gov (United States)

    Boarder, M R; Feldon, J; Gray, J A; Fillenz, M

    1979-12-01

    Previous experiments have implicated ascending noradrenergic systems in the development of the behavioural responses to different patterns of reward. In this report food deprived male Sprague--Dawley rats were trained to run a straight alley for good reward on a continuous reinforcement (CRF) or a partial reinforcement (PRF) schedule. Tyrosine hydroxylase measured in a partially solubilized preparation from hippocampus and hypothalamus at the end of acquisition was not different from controls, indicating that enzyme induction does not occur during either training schedules. However, hippocampal synaptosomal tyrosine hydroxylation rates from the CRF group was significantly higher than from either the PRF group or the handled controls. This indicates that at the end of the acquisition schedule the noradrenergic projection to hippocampus was more active in the CRF group than with the PRF group or the handled control.

  1. Response Blocking with Guided Compliance and Reinforcement for a Habilitative Replacement Behavior: Effects on Public Masturbation and On-Task Behavior

    Science.gov (United States)

    Dufrene, Brad A.; Watson, T. Steuart; Weaver, Adam

    2005-01-01

    There is limited empirical research regarding effective treatment for public masturbation. In the current study, the relative and combined effects of reinforcement of an incompatible habilitative replacement behavior and response blocking with guided compliance on masturbation and on-task behavior were evaluated for a seven year-old…

  2. Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles

    Directory of Open Access Journals (Sweden)

    Anil K. Chaubey

    2016-11-01

    Full Text Available The effect of Mg-7.4%Al reinforcement particle size on the microstructure and mechanical properties in pure Al matrix composites was investigated. The samples were prepared by hot consolidation using 10 vol.% reinforcement in different size ranges, D, 0 < D < 20 µm (0–20 µm, 20 ≤ D < 40 µm (20–40 µm, 40 ≤ D < 80 µm (40–80 µm and 80 ≤ D < 100 µm (80–100 µm. The result reveals that particle size has a strong influence on the yield strength, ultimate tensile strength and percentage elongation. As the particle size decreases from 80 ≤ D < 100 µm to 0 < D < 20 µm, both tensile strength and ductility increases from 195 MPa to 295 MPa and 3% to 4% respectively, due to the reduced ligament size and particle fracturing. Wear test results also corroborate the size effect, where accelerated wear is observed in the composite samples reinforced with coarse particles.

  3. Change in the structure and properties of carbon fiber-reinforced plastic with a polysulfone matrix under the effect of gamma irradiation

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.; Rodin, Yu.P.

    1993-01-01

    This article presents the results of studying the change in the structure and properties of carbon fiber-reinforced plastic with a thermoplastic matrix -- aromatic polysulfone -- as a function of the absorbed dose of gamma radiation. In view of the presence in the polysulfone macromolecules and in carbon fibers of a large number of aromatic rings and double bonds providing high radiation resistance of the composite, irradiation was carried out up to large values of absorbed doses (10 9 rad). Specimens of orthogonally reinforced composite KTMU-1 with a thickness of 1.3 mm made from aromatic polysulfone PSF-150 and carbon ribbon that absorbed various gamma radiation dosages were used. It was found that structural transformations under the effect of gamma radiation did not have a substantial effect on the mechanical properties of carbon fiber-reinforced plastic. 2 refs., 3 figs., 3 tabs

  4. Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater

    International Nuclear Information System (INIS)

    Katkar, V.A.; Gunasekaran, G.; Rao, A.G.; Koli, P.M.

    2011-01-01

    Highlights: → Presence of boron carbide increases the corrosion rate of A6061 alloy in seawater. → Increasing the B 4 C content decreases passive layer thickness. → Passive films formed on A6061 and its B 4 C composites are n-type semiconductors. - Abstract: The effect of boron carbide (B 4 C) reinforcement on the corrosion of AA6061 alloy was studied by investigating passive films formed in seawater. The higher passive current and its potential-dependence for these composites indicated formation of porous passive film. Electrochemical impedance spectroscopy (EIS) graph suggests that the alloy surface is partly or totally active. The formed passive film is n-type semiconductor junction in nature. The difference between corrosion potential (E corr ) and potential at zero charge (PZC) suggests that the chloride ions responsible for film breakdown exist within the passive film. A suitable mechanism is proposed for the passive film breakdown.

  5. Effects of Alkali Treatment and Polyisocyanate Crosslinking on the Mechanical Properties of Kraft Fiber-Reinforced Unsaturated Polyester Composites

    Directory of Open Access Journals (Sweden)

    Zhenhua Gao

    2014-08-01

    Full Text Available The effects of alkali treatment and polyisocyanate crosslinking on the mechanical properties of kraft fiber-reinforced UPE composites were investigated by means of tensile evaluation, SEM analysis, and XRD analysis. The results indicated that the alkali treatment decreased the tensile strength of the prepared composite before aging from 121 MPa to 97 MPa due to the decreased degree of crystallinity of the alkali-treated kraft fiber. Polyisocyanate crosslinking could apparently improve the mechanical properties and stability in terms of a 43% increase of non-aged tensile strength and 52% increase of hydrothermal-aged tensile strength compared with the controlled composite without crosslinking modification, which was attributable to the formation of strong chemical bonding between the interfaces of kraft fiber and polyester.

  6. Mechanical Characterization of High-Performance Steel-Fiber Reinforced Cement Composites with Self-Healing Effect

    Science.gov (United States)

    Kim, Dong Joo; Kang, Seok Hee; Ahn, Tae-Ho

    2014-01-01

    The crack self-healing behavior of high-performance steel-fiber reinforced cement composites (HPSFRCs) was investigated. High-strength deformed steel fibers were employed in a high strength mortar with very fine silica sand to decreasing the crack width by generating higher interfacial bond strength. The width of micro-cracks, strongly affected by the type of fiber and sand, clearly produced the effects on the self-healing behavior. The use of fine silica sand in HPSFRCs with high strength deformed steel fibers successfully led to rapid healing owing to very fine cracks with width less than 20 μm. The use of very fine silica sand instead of normal sand produced 17%–19% higher tensile strength and 51%–58% smaller width of micro-cracks. PMID:28788471

  7. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  8. Working Memory and Reinforcement Schedule Jointly Determine Reinforcement Learning in Children: Potential Implications for Behavioral Parent Training

    Directory of Open Access Journals (Sweden)

    Elien Segers

    2018-03-01

    Full Text Available Introduction: Behavioral Parent Training (BPT is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children.Methods: Ninety-seven children (age 6–10 completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials, followed by an extinction phase (80 trials. Data of 88 children were used for analysis.Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF condition. Working memory was negatively related to acquisition but not extinction performance.Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement.

  9. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  10. Rimonabant’s Reductive Effects on High Densities of Food Reinforcement, but not Palatability, in Lean and Obese Zucker Rats

    Science.gov (United States)

    Buckley, Jessica Lynn; Rasmussen, Erin B.

    2014-01-01

    Rationale Cannabinoid antagonists purportedly have greater effects in reducing the intake of highly palatable food compared to less palatable food. However, this assertion is based on free-feeding studies in which the amount of palatable food eaten under baseline conditions is often confounded with other variables, such as unequal access to both food options and differences in qualitative features of the foods. Objective We attempted to reduce these confounds by using a model of choice that programmed the delivery rates of sucrose and carrot-flavored pellets. Methods Lever-pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three conditions in which programmed ratios for food pellets on two levers were 5:1, 1:1, and 1:5. In Phase 1, responses on the two levers produced one type of pellet (sucrose or carrot); in Phase 2, responses on one lever produced sucrose pellets and on the other lever produced carrot pellets. After responses stabilized under each food ratio, acute doses of rimonabant (0, 3, and 10 mg/kg) were administered before experimental sessions. The number of reinforcers and responses earned per session under each ratio and from each lever was compared. Results and Conclusions Rimonabant reduced reinforcers in 1:5 and 5:1 food ratios in Phase 1, and across all ratios in Phase 2. Rimonabant reduced sucrose and carrot-flavored pellet consumption similarly; rimonabant did not affect bias toward sucrose, but increased sensitivity to amount differences in lean rats. This suggests that relative amount of food, not palatability, may be an important behavioral mechanism in the effects of rimonabant. PMID:24398820

  11. Rimonabant's reductive effects on high densities of food reinforcement, but not palatability, in lean and obese Zucker rats.

    Science.gov (United States)

    Buckley, Jessica L; Rasmussen, Erin B

    2014-05-01

    Cannabinoid antagonists purportedly have greater effects in reducing the intake of highly palatable food compared to less palatable food. However, this assertion is based on free-feeding studies in which the amount of palatable food eaten under baseline conditions is often confounded with other variables, such as unequal access to both food options and differences in qualitative features of the foods. We attempted to reduce these confounds by using a model of choice that programmed the delivery rates of sucrose and carrot-flavored pellets. Lever pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three conditions in which programmed ratios for food pellets on two levers were 5:1, 1:1, and 1:5. In phase 1, responses on the two levers produced one type of pellet (sucrose or carrot); in phase 2, responses on one lever produced sucrose pellets and on the other lever produced carrot pellets. After responses stabilized under each food ratio, acute doses of rimonabant (0, 3, and 10 mg/kg) were administered before experimental sessions. The number of reinforcers and responses earned per session under each ratio and from each lever was compared. Rimonabant reduced reinforcers in 1:5 and 5:1 food ratios in phase 1, and across all ratios in phase 2. Rimonabant reduced sucrose and carrot-flavored pellet consumption similarly; rimonabant did not affect bias toward sucrose, but increased sensitivity to amount differences in lean rats. This suggests that relative amount of food, not palatability, may be an important behavioral mechanism in the effects of rimonabant.

  12. Effect of Using Metakaolin on Chloride Ion Penetration in High Performance Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adnan Mohammed Shihab

    2016-03-01

    Full Text Available This paper attempts to reduce the penetrability of high performance steel fiber reinforced concrete to chloride ions originating from external sources, by using High Reactivity Metakaolin (HRM as a highly active pozzolanic material, in order to prolong the time to initiation of the steel fibers corrosion and to minimize concrete damage that may occur due to the exposure to chloride ion penetration. According to pozzolanic activity index (P.A.I., 8% content of HRM was used as a partial replacement by weight of cement with 2% steel fibers by volume of concrete. During the exposure period of 300 days in 4.5% of NaCl solution, the total and free chloride contents (Cltotal, Clfree with the chloride profiles at the ages of 28 and 300 days were investigated. Also the rapid chloride penetrability test (RCPT, compressive and flexural strengths tests were conducted at the ages of 28, 90, 180 and 300 days. Results showed that the incorporation of 8% HRM caused a reduction in the (Clfree/Cltota ratio, the chloride penetration depth and the electrical conductivity with percentages of 21%, 40% and 43% respectively after 300 days exposure to chloride solution in comparing with the mix of 0% HRM. Results also indicated that the losses in compressive and flexural strengths after exposure of 300 days to chloride solution for the mix incorporating 8% HRM were by 5% and 5.8% respectively while they reached 9.5% and 11% respectively for the mix without HRM in relation to the correspondent test specimens cured in tap water.

  13. The effect of silica fume and metakaolin on glass-fibre reinforced concrete (GRC ageing

    Directory of Open Access Journals (Sweden)

    Enfedaque Díaz, A.

    2010-12-01

    Full Text Available The deterioration of the mechanical properties of glassfibre reinforced concrete (GRC over time rules out the use of this material in load-bearing structures. While one possible solution to this problem is the addition of pozzolans or metakaolin to the cement mortar, the amounts needed to ensure GRC integrity raise its price to non-competitive levels. Experimental research has been conducted to analyze whether the addition of small amounts of silica fume or metakaolin can prevent or mitigate the ageing issue. Unfortunately, the findings indicate that the addition of small proportions of metakaolin or silica fume to GRC are ineffective in improving its long-term performance.

    Para el uso del mortero de cemento reforzado con fibras de vidrio (GRC en estructuras portantes se han de solucionar los problemas de reducción de las propiedades mecánicas que aparecen con el paso del tiempo. Estos problemas pueden ser solucionados mediante la adición de puzolanas o de metacaolín, a la pasta de mortero de cemento. Sin embargo, la cantidad de metacaolín que ha de ser añadida es elevada y el precio del GRC fabricado está fuera del mercado. Se ha realizado una campaña experimental que analiza si la adición de humo de sílice o de metacaolín en proporciones reducidas consigue evitar o paliar el problema del envejecimiento, que supone un freno al uso del GRC en elementos estructurales. Desgraciadamente, los resultados experimentales muestran que proporciones bajas de metacaolín o de humo de sílice no son efectivas para reducir el problema de pérdida de propiedades mecánicas.

  14. Effect of Alkali-Silica Reaction on Shear Strength of Reinforced Concrete Structural Members

    Energy Technology Data Exchange (ETDEWEB)

    Hariri-Ardebili, Mohammad [Univ. of Colorado, Boulder, CO (United States); Saouma, Victor [Univ. of Colorado, Boulder, CO (United States); Le Pape, Yann [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Alkali-silica reaction (ASR) was discovered in the early 40s by Stanton (1940) of the California Division of Highways. Since, it has been recognized as a major degradation mechanism for concrete dams and transportation infrastructures. Sometimes described as the ’cancer of concrete’, this internal swelling mechanism causes expansion, cracking and loss of mechanical properties. There are no known economically viable solutions applicable to massive concrete to prevent the reaction once initiated. The e ciency of the mitigation strategies for ASR subjected structures is limited. Several cases of ASR in nuclear generating stations have been disclosed in Japan (Takatura et al. 2005), Canada at Gentilly 2 NPP (Tcherner and Aziz 2009) 1, and more recently, in the United States for which the U.S. Nuclear Regulatory Commission issued Information Notice (IN) 2011-20, ’Concrete Degradation by Alkali Silica Reaction,’ on November 18, 2011, to provide the industry with information related to the ASR identified at Seabrook. Considering that US commercial reactors in operation enter the age when ASR degradation can be visually detected and that numerous non nuclear infrastructures (transportation, energy production) have already experienced ASR in a large majority of the States (e.g., Department of Transportation survey reported by Touma (Touma 2000)), the susceptibility and significance of ASR for nuclear concrete structures must be addressed in the perspective of license renewal and long-term operation beyond 60 years. The aim of this report is to perform an extensive parametric series of 3D nonlinear finite element analyses of three di erent “beam-like” geometries, including two di erent depths, three di erent types of boundary conditions, and four other parameters: namely, the ASR volumetric expansion, the reinforcement ratio, the loss of elastic modulus induced by ASR and the loss of tensile strength caused by ASR.

  15. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  16. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  17. Effects of short fiber reinforcement and mean stress on tensile fatigue strength characteristics of polyethersulfone; Tansen`i kyoka porieterusaruhon no hippari hiro tokusei ni oyobosu heikin oryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Furue, H.; Nonaka, K. [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1996-01-15

    Thermoplastics are often reinforced with short fibers with aims of improvement of their strengths, rigidities and hardness or maintenance of their dimensional stabilities. Such short fiber reinforced plastic materials have more expectation for high performance plastics. Authors already examined of some effects of reinforced fiber and of orientation in injection molding on flexural fatigue characteristics of the injection-molded high performance thermoplastic materials. However, the examination of short fiber reinforced effects on fatigue strength characteristics was not always sufficient. In this study, in order to obtain a guiding principle for fatigue resistant design of the short fiber reinforced injection molding materials, polyethersulfones (PES) was examined on its tensile fatigue strength and an effect of short fiber reinforcement for improvement of its fundamental dynamic properties on its fatigue characteristics. Especially, its fatigue life characteristics was elucidated mainly on relationship of mean stress, stress amplitude and number of repeating fracture in tensile fatigue behavior. 10 refs., 15 figs., 2 tabs.

  18. Role of end effects in helical aggregation

    NARCIS (Netherlands)

    Gestel, van J.A.M.; Schoot, van der P.P.A.M.; Michels, M.A.J.

    2003-01-01

    End effects are known to play a pivotal role in equilibrium polymerization. To investigate their role in detail, we apply constraints to the first and last bonds of model linear aggregates that exhibit a helix-coil type configurational transition. Three different classes of behavior manifest

  19. Methods for an investigation of the effect of material components on the mechanical characteristics of glass-fiber-reinforced plastics

    Science.gov (United States)

    Willax, H. O.

    1980-01-01

    The materials used in the production of glass reinforced plastics are discussed. Specific emphasis is given to matrix polyester materials, the reinforcing glass materials, and aspects of specimen preparation. Various methods of investigation are described, giving attention to optical impregnation and wetting measurements and the gravimetric determination of the angle of contact. Deformation measurements and approaches utilizing a piezoelectric device are also considered.

  20. The Curriculum-Faculty-Reinforcement Alignment and Its Effect on Learning Retention of Core Marketing Concepts of Marketing Capstone Students

    Science.gov (United States)

    Raska, David; Keller, Eileen Weisenbach; Shaw, Doris

    2014-01-01

    Curriculum-Faculty-Reinforcement (CFR) alignment is an alignment between fundamental marketing concepts that are integral to the mastery of knowledge expected of our marketing graduates, their perceived importance by the faculty, and their level of reinforcement throughout core marketing courses required to obtain a marketing degree. This research…

  1. Experimental Investigation of the Effect of Curtailed Reinforcement on the Shear Failure of RC Members Without Stirrups

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Gustenhoff Hansen, Søren

    2017-01-01

    Curtailing of reinforcement in concrete beams and slabs is often carried out in practice for different reasons; in continuous beams, top reinforcement is often curtailed in accordance with the extent of the hogging moments and generally, in concrete structures it is often necessary to add extra...

  2. Effective strategic leadership: Balancing roles during church ...

    African Journals Online (AJOL)

    Effective strategic leadership: Balancing roles during church transitions. ... a substantive grounded theory of organisational change and leadership, particularly focusing on the manifestation and management of organisation inertia in churches ...

  3. The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1 M HCl solution

    Directory of Open Access Journals (Sweden)

    Husnu Gerengi

    2015-01-01

    Full Text Available The greatest disadvantage of reinforced concrete structures is the corrosion occurring in the reinforcement which, over time, causes a reduction in the reinforcement-concrete adherence and eventual sectional loss. The purpose of this study was to reveal the corrosion mechanism of ribbed reinforcement inside additive-free (reference, 20% zeolite-doped and 20% diatomite-doped concrete samples after exposure to 1 M HCl over 240 days. Electrochemical impedance spectroscopy (EIS measurements were made every 10 days. Consequently, it was determined that the 20% zeolite-doped concrete samples had higher concrete and reinforcement resistance compared to the 20% diatomite-doped and the reference concrete, i.e. they exhibited less corrosion.

  4. Experimental and numerical investigations of higher mode effects on seismic inelastic response of reinforced concrete shear walls

    Science.gov (United States)

    Ghorbanirenani, Iman

    This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program

  5. Autoshaping i.v. cocaine self-administration in rats: effects of nondrug alternative reinforcers on acquisition.

    Science.gov (United States)

    Carroll, M E; Lac, S T

    1993-01-01

    The purpose of this experiment was to examine the effects of a nondrug alternative reinforcer and feeding conditions on the acquisition of cocaine self-administration. Rats were autoshaped to press a lever that resulted in a 0.2 mg/kg i.v. cocaine infusion. Responses on the lever were monitored during six consecutive autoshaping sessions that occurred each day. A retractable lever was inserted into the operant chamber on a random time 60 s schedule 10 times per session for six sessions that began each hour. Each day the six autoshaping sessions were followed by a 6-h cocaine self-administration session. During self-administration the lever remained extended, and each response on the lever resulted in a cocaine infusion (0.2 mg/kg). The criterion for acquisition of cocaine-reinforced behavior was met when there were 5 consecutive days during which the mean number of infusions during the 6-h self-administration session was at least 100. This procedure was repeated daily until the criterion was met or 30 days elapsed. The rats were also trained to respond on lick-operated automatic drinking devices that delivered 0.05 ml water or a glucose and saccharin solution (G + S) contingent upon each lick response. Five groups of 12-14 rats were compared. The first four groups constituted a 2 x 2 factorial design whereby either G + S or water was available in the home cage for 3 weeks before autoshaping began and G + S or water was available in the operant chamber during autoshaping. These groups were limited to 20 g food per day and all had free access to water.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  7. Tunable electromechanical coupling of a carbon nanotube-reinforced variable cross-section nanoswitch with a piezoelectric effect

    International Nuclear Information System (INIS)

    Yang, W D; Li, Y D; Wang, X

    2016-01-01

    An analytical method is presented to investigate the pull-in instability of a carbon nanotube (CNT)-reinforced variable cross-section nanoswitch with a piezoelectric effect. Governing equations with variable coefficients are derived based on the nonlocal beam model with geometrical nonlinearity and are solved using the shooting method. All the nonlinear effects of the piezoelectric voltage, van der Waals force, Casimir force, CNT volume fraction, nonlocal parameters and width ratio on the pull-in instability are investigated. The pull-in electrostatic voltage increases with the increment of nonlocal parameters, which exhibits the significant scale-dependent behavior of nanostructures. The results show that the variable cross-section improves the flexural rigidity of the cantilever-type nanoswitch effectively, and that the piezoelectric effect of the piezoelectric layer is utilized to control the electrostatic force induced by the voltage exerted on the elastic layer, owing to piezoelectric materials’ advantages of rapid response, light weight and low energy consumption. (paper)

  8. A Methanol Extract of Brugmansia arborea Affects the Reinforcing and Motor Effects of Morphine and Cocaine in Mice

    Directory of Open Access Journals (Sweden)

    Antonio Bracci

    2013-01-01

    Full Text Available Previous reports have shown that several of the effects of morphine, including the development of tolerance and physical withdrawal symptoms, are reduced by extracts of Brugmansia arborea (L. Lagerheim (Solanaceae (B. arborea. In the present study we evaluate the action of the methanol extract of B. arborea (7.5–60 mg/kg on the motor and reinforcing effects of morphine (20 and 40 mg/kg and cocaine (25 mg/kg using the conditioned place preference (CPP procedure. At the doses employed, B. arborea did not affect motor activity or induce any effect on CPP. The extract partially counteracted morphine-induced motor activity and completely blocked the CPP induced by 20 mg/kg morphine. On the other hand, B. arborea blocked cocaine-induced hyperactivity but did not block cocaine-induced CPP. Reinstatement of extinguished preference with a priming dose of morphine or cocaine was also inhibited by B. arborea. The complex mechanism of action of B. arborea, which affects the dopaminergic and the cholinergic systems, seems to provide a neurobiological substrate for the effects observed. Considered as a whole, these results point to B. arborea as a useful tool for the treatment of morphine or cocaine abuse.

  9. The Influence of Function, Topography, and Setting on Noncontingent Reinforcement Effect Sizes for Reduction in Problem Behavior: A Meta-Analysis of Single-Case Experimental Design Data

    Science.gov (United States)

    Ritter, William A.; Barnard-Brak, Lucy; Richman, David M.; Grubb, Laura M.

    2018-01-01

    Richman et al. ("J Appl Behav Anal" 48:131-152, 2015) completed a meta-analytic analysis of single-case experimental design data on noncontingent reinforcement (NCR) for the treatment of problem behavior exhibited by individuals with developmental disabilities. Results showed that (1) NCR produced very large effect sizes for reduction in…

  10. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  11. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  12. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    Science.gov (United States)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  13. A behavioral economic analysis of the value-enhancing effects of nicotine and varenicline and the role of nicotinic acetylcholine receptors in male and female rats.

    Science.gov (United States)

    Barrett, Scott T; Geary, Trevor N; Steiner, Amy N; Bevins, Rick A

    2018-04-09

    Reinforcement value enhancement by nicotine of non-nicotine rewards is believed to partially motivate smoking behavior. Recently, we showed that the value-enhancing effects of nicotine are well characterized by reinforcer demand models and that the value-enhancing effects of the smoking-cessation aid bupropion (Zyban) are distinct from those of nicotine and differ between the sexes. The present study evaluated potential sex differences in the enhancement effects of nicotine and varenicline (Chantix) using a reinforcer demand methodology. The role of α4β2* and α7 nicotinic acetylcholine receptors (nAChRs) in the enhancing effects of nicotine and varenicline is also evaluated. Male and female rats (n=12/sex) were trained to lever press maintained by sensory reinforcement by visual stimulus (VS) presentations. Changes in the VS value following nicotine and varenicline administration were assessed using an established reinforcer demand approach. Subsequently, the effects of antagonism of α4β2* and α7 nAChRs on varenicline and nicotine-induced enhancement active lever-pressing were assessed using a progressive ratio schedule. Nicotine and varenicline enhanced VS demand equivalently between the sexes as evaluated by reinforcer demand. However, α4β2* receptor antagonism attenuated value enhancement by nicotine and varenicline in females, but only of nicotine in males.

  14. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  15. Facilitating tolerance of delayed reinforcement during functional communication training.

    Science.gov (United States)

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  16. Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, D., E-mail: davide.micheli@uniroma1.it [“Sapienza” University of Rome, Department of Astronautic, Electric and Energy Engineering (DIAEE), Via Salaria 851, 00184 Rome (Italy); Pastore, R.; Vricella, A.; Morles, R.B.; Marchetti, M.; Delfini, A. [“Sapienza” University of Rome, Department of Astronautic, Electric and Energy Engineering (DIAEE), Via Salaria 851, 00184 Rome (Italy); Moglie, F.; Primiani, V. Mariani [Università Politecnica delle Marche, Department of Information Engineering (DII), Via Brecce Bianche 12, Ancona (Italy)

    2014-10-15

    Highlights: • The frequency band 0.75–1.12 GHz is exploited in mobile phone radio access network. • A lot of nanomaterial is needed for the measurement and no literature is available. • The manufacturing procedure is usually used for preparation of concrete composite. • High EM absorbing walls could be used to mitigate the human exposure to EM fields. • A shielding effectiveness of 50 dB is obtained for a 15 cm thick wall–3 wt% of CNT. - Abstract: The electromagnetic properties of carbon nanotube powder reinforced concretes are numerically and experimentally characterized. This typology of composite material is built by following the simple procedure usually adopted for the on-site concrete production. The dielectric parameters are investigated by means of waveguide measurements in the frequency band 0.75–1.12 GHz that is currently exploited in mobile phone radio access networks. The obtained results are used to compute the electromagnetic shielding effectiveness of large wall-shaped concrete structures. A shielding effectiveness up to 50 dB is obtained for a 15 cm thick wall when the carbon nanotube inclusion is raised up to 3 wt%.

  17. Separate effects testing to investigate liner tearing of the 1:6-scale reinforced concrete containment building

    International Nuclear Information System (INIS)

    Spletzer, B.L.; Lambert, L.D.

    1993-01-01

    The US Nuclear Regulatory Commission (NRC) is investigating the performance of containments subject to severe accidents. This work is being performed by Sandia National Laboratories (SNL). In 1987, a 1:6-scale Reinforced Concrete Containment (RCC) model was tested to failure. The failure mode was a liner tear. As a result, a separate effects test program has been conducted to investigate liner tearing. This paper discusses the design of test specimens and the results of the testing. The post-test examination of the 1:6-scale RCC model revealed that the large tear was not an isolated event. Other small tears in similar locations were also discovered. All tears occurred near the insert-to-liner transition which is also the region of closest stud spacing. Also, all tears propagated vertically, in response to the hoop strain. Finally, all tears were adjacent to a row of studs. The tears point to a mechanism which could involve the liner/insert transition, the liner anchorage, and the material properties. The separate effects tests investigated these effects. The program included the design of three types of specimens with each simulating some features of the 1:6-scale RCC model. The specimens were instrumented using strain gages and photoelastic materials

  18. Effect of Addition of A Marble Dust on Drying Shrinkage Cracks of Cement Mortar Reinforced with Various Fibers

    Directory of Open Access Journals (Sweden)

    Basim Thabit Al-Khafaji

    2017-05-01

    Full Text Available This investigation is conducted to study the effect of addition of marble powder (marble dust and different fibers on drying shrinkage cracks and some properties of fibers reinforcment cement mortar. Steel molds having a trapezoidal section, and the end restrained at square shape with( 2.7 meter at length are used to study restrained drying shrinkage of cement mortar. Specimens of ( compressive .flextural. splitting strength were cast. The admixture (marble dust was used to replacie weight of cement with three levels of (4%, 8% and 16% and the fiber hemp and sisal fiber were added for all mixes with proportion by volum of cement . All specimens were cured for (14 days. Average of three results was taken for any test of compressive, tensil and flextural strength. The experimental results showed that the adding of this admixture(marble dust cause adelay in a formation of cracks predicted from a drying shrinkage ,decreases of its width , and hence increases of (compressive, splitting tensil and flextural strength at levels of (4%, and 8%. Thus there is a the positive effect when fiberes added for all mixes of cement mortar with addition of (marble dust. All The admixtures (marble dust and fibers have the obvious visible effect in the delay of the information of shrinkage cracks and the decrease of its width as Compared to the cement mortar mixes when marble dust added a alone.

  19. Effect of length and diameter of fiber reinforced composite post (FRC on fracture resistance of remaining tooth structure

    Directory of Open Access Journals (Sweden)

    Mahdiyeh seifi

    2013-03-01

    Full Text Available Introduction: Post and core has been considered for endodontically treated tooth, especially in cases with severe damage crowns. Recently fiber reinforced composite posts (FRC post have been used in the treatment of endodontically treated teeth. Because the length and diameter of posts are effective in stress distribution, the purpose of this study is to evaluate the effect of length and diameter of FRC post on fracture resistance. Methods: In this experimental study, 36 glass fiber posts with combination of 7mm, 9mm, and 12mm length and 1.1mm, 1.3mm and 1.5mm diameter were divided into 9 groups of 4. These posts were cemented in root canals by Panavia. Samples were tested with 45° compressive forces for the evaluation of fracture resistance. Datas were analyzed using SPSS soft ware and One- way and Two-way ANOVA analyses. Results: Fracture resistance did not increase significantly with the effect of length and diameter simultaneously (P=0.85. Samples with 12mm length and 1.5mm diameter had the greatest fracture resistance (1023/33N±239/22. The minimum fracture resistance had occurred in post with 7mm length and 1.5mm diameter (503/13N ±69/18. Fracture resistance increased significantly by increasing the length and the same diameter. Conclusion: It can be concluded that fracture resistance is affected by the length and not the diameter of FRC post.

  20. Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band

    International Nuclear Information System (INIS)

    Micheli, D.; Pastore, R.; Vricella, A.; Morles, R.B.; Marchetti, M.; Delfini, A.; Moglie, F.; Primiani, V. Mariani

    2014-01-01

    Highlights: • The frequency band 0.75–1.12 GHz is exploited in mobile phone radio access network. • A lot of nanomaterial is needed for the measurement and no literature is available. • The manufacturing procedure is usually used for preparation of concrete composite. • High EM absorbing walls could be used to mitigate the human exposure to EM fields. • A shielding effectiveness of 50 dB is obtained for a 15 cm thick wall–3 wt% of CNT. - Abstract: The electromagnetic properties of carbon nanotube powder reinforced concretes are numerically and experimentally characterized. This typology of composite material is built by following the simple procedure usually adopted for the on-site concrete production. The dielectric parameters are investigated by means of waveguide measurements in the frequency band 0.75–1.12 GHz that is currently exploited in mobile phone radio access networks. The obtained results are used to compute the electromagnetic shielding effectiveness of large wall-shaped concrete structures. A shielding effectiveness up to 50 dB is obtained for a 15 cm thick wall when the carbon nanotube inclusion is raised up to 3 wt%

  1. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhou, Weiwei; Yamaguchi, Tatsuya; Kikuchi, Keiko; Nomura, Naoyuki; Kawasaki, Akira

    2017-01-01

    The thermal expansion response of multi-walled carbon nanotube (MWCNT) reinforced Al matrix composites was employed to discuss the improvement of the load transfer at the interface between the MWCNTs and the Al matrix. An aluminum carbide (Al_4C_3) nanostructure at the end of the MWCNTs, incorporated in the Al matrix, was produced by appropriate heat-treatment. The stress contrast around the Al_4C_3 observed in the high-resolution transmission electron microscopy (HRTEM) image revealed the evidence of a trace of friction, which would lead to the enhancement of the anchor effect from the Al matrix. This anchor effect of Al_4C_3 may hinder the local interfacial slippage and constrain the deformation of the Al matrix. As a result, the thermal expansion behavior became linear and reversible under cyclic thermal load. It is concluded that the formation of Al_4C_3 could effectively enhance the load transfer in MWCNT/Al composites. The yield strength of MWCNT/Al composites was substantially increased under the appropriate quantity of Al_4C_3 produced at the MWCNT-Al interface by precisely controlled heat-treatment.

  2. The Effects of Sensor Performance as Modeled by Signal Detection Theory on the Performance of Reinforcement Learning in a Target Acquisition Task

    Science.gov (United States)

    Quirion, Nate

    Unmanned Aerial Systems (UASs) today are fulfilling more roles than ever before. There is a general push to have these systems feature more advanced autonomous capabilities in the near future. To achieve autonomous behavior requires some unique approaches to control and decision making. More advanced versions of these approaches are able to adapt their own behavior and examine their past experiences to increase their future mission performance. To achieve adaptive behavior and decision making capabilities this study used Reinforcement Learning algorithms. In this research the effects of sensor performance, as modeled through Signal Detection Theory (SDT), on the ability of RL algorithms to accomplish a target localization task are examined. Three levels of sensor sensitivity are simulated and compared to the results of the same system using a perfect sensor. To accomplish the target localization task, a hierarchical architecture used two distinct agents. A simulated human operator is assumed to be a perfect decision maker, and is used in the system feedback. An evaluation of the system is performed using multiple metrics, including episodic reward curves and the time taken to locate all targets. Statistical analyses are employed to detect significant differences in the comparison of steady-state behavior of different systems.

  3. Effect of Welding Speed on Microstructure and Mechanical Properties due to The Deposition of Reinforcements on Friction Stir Welded Dissimilar Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Baridula Ravinder Reddy

    2017-01-01

    Full Text Available The strength of the welded joint obtained by solid state stir welding process was found to be improved as compared to fusion welding process. The deposition of reinforcements during friction stir welding process can further enhance the strength of the welded joint by locking the movement of grain boundaries. In the present study, the aluminium alloys AA2024 and AA7075 were welded effectively by depositing the multi-walled carbon nanotubes in to the stir zone. The mechanical properties and microstructures were studied by varying the traverse speed at constant rotational speed. The results show that rotating tool pin stirring action and heat input play an important role in controlling the grain size. The carbon nanotubes were found to be distributed uniformly at a welding speed (traverse speed of 80mm/min. This enhanced the mechanical properties of the welded joint. The microstructure and Electron dispersive X-ray analysis (EDX studies indicate that the deposition of carbon nanotubes in the stir zone was influenced by the traverse speed.

  4. Attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Conn, P Jeffrey; Lindsley, Craig

    2010-01-01

    substituted for cocaine and enhanced its discriminative stimulus. Conversely, muscarinic agonists blunted cocaine discrimination and abolished cocaine self-administration with varying effects on food-maintained behavior. Specifically, increasing selectivity for the M(1) subtype (oxotremorine ...'s abuse-related effects, whereas non-M(1)/M(4) receptors probably contribute to undesirable effects of muscarinic stimulation. These data provide the first demonstration of anticocaine effects of systemically applied, M(1) receptor agonists and suggest the possibility of a new approach to pharmacotherapy...

  5. The Effects of Reinforcing Intermediate Elementary Students to Constructively Use Free Time for Vocational Exploration

    Science.gov (United States)

    Hosie, Thomas W.

    1975-01-01

    This study investigated the effectiveness of operant conditioning procedures in stimulating intermediate elementary students to constructively utilize free time for pursuing occupational information. (RC)

  6. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot recreational yachts

    Directory of Open Access Journals (Sweden)

    Dave (Dae-Wook Kim

    2010-03-01

    Full Text Available Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL, vacuum infusion (VI, and hybrid (HL + VI processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

  7. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

    Science.gov (United States)

    Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel

    2010-03-01

    Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results

  8. The effect of moment redistribution on the stability of reinforced concrete moment resisting frame buildings under the ground motion

    Directory of Open Access Journals (Sweden)

    Mahdi Golpayegani

    2017-08-01

    Full Text Available In recent years some studies have been done on the moment rredistribution in buildings and new methods offered for calculating of redistribution. Observations demonstrated that the combination of moment and shear force is important in analysis of reinforced concrete structures. But little research is done about the effect of redistribution by using moding in software. In order to study the effect of moment redistribution on the stability of RC moment resisting frame structures, four buildings with 4, 7, 10 and 13 story have been considered. In these models, the nonlinear behavior of elements (beam and column is considered by the use of interaction PMM hinges. The average plastic rotation was calculated by performing pushover analysis and storing stiffness matrix for 5 points and then the buckling coefficients were obtained by conducting buckling analysis. By the use of modal analysis natural frequency was calculated and it was attempted to be related the average plastic rotation with the buckling coefficients and the natural frequency.   It could be concluded that increase in the plastic rotation reduce the buckling coefficients to about 96% which this amount of reduction is related to the average plastic rotation. Moreover, the buildings experience instability state when the average plastic rotation reached to 0.006 radian.

  9. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  10. Proposed Model of Predicting the Reduced Yield Axial Load of Reinforced Concrete Columns Due to Casting Deficiency Effect

    Directory of Open Access Journals (Sweden)

    Achillopoulou Dimitra

    2014-12-01

    Full Text Available The study deals with the investigation of the effect of casting deficiencies- both experimentally and analytically on axial yield load or reinforced concrete columns. It includes 6 specimens of square section (150x150x500 mm of 24.37 MPa nominal concrete strength with 4 longitudinal steel bars of 8 mm (500 MPa nominal strength with confinement ratio ωc=0.15. Through casting procedure the necessary provisions defined by International Standards were not applied strictly in order to create construction deficiencies. These deficiencies are quantified geometrically without the use of expensive and expertise non-destructive methods and their effect on the axial load capacity of the concrete columns is calibrated trough a novel and simplified prediction model extracted by an experimental and analytical investigation that included 6 specimens. It is concluded that: a even with suitable repair, load reduction up to 22% is the outcome of the initial construction damage presence, b the lower dispersion is noted for the section damage index proposed, c extended damage alters the failure mode to brittle accompanied with longitudinal bars buckling, d the proposed model presents more than satisfying results to the load capacity prediction of repaired columns.

  11. Effects of muscimol, amphetamine, and DAMGO injected into the nucleus accumbens shell on food-reinforced lever pressing by undeprived rats.

    Science.gov (United States)

    Stratford, Thomas R; Wirtshafter, David

    2012-05-01

    Previous studies have shown that large increases in food intake in nondeprived animals can be induced by injections of both the GABA(A) agonist muscimol and the μ-opioid agonist DAMGO into the nucleus accumbens shell (AcbSh), while injections of the catecholamine agonist amphetamine have little effect. In the current study we examined whether injections of these drugs are able to increase food-reinforced lever pressing in nondeprived rats. Twelve subjects were trained to lever press on a continuous reinforcement schedule while food deprived and were then tested after being placed back on ad libitum feeding. Under these conditions, responding was markedly increased by injections of either muscimol or DAMGO, although the onset of the effects of the latter drug was delayed by 30-40 min. In contrast, amphetamine injections failed to increase reinforced lever pressing, although they did enhance responding on a non-reinforced lever, presumably reflecting alterations in behavioral activation. These results demonstrate that stimulation of GABA(A) and μ-opioid receptors within the AcbSh is able to promote not only food intake, but also food-directed operant behavior. In contrast, stimulation of AcbSh dopamine receptors may enhance behavioral arousal, but does not appear to specifically potentiate behaviors directed toward food procurement. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effects of Thermal and Humidity Aging on the Interfacial Adhesion of Polyketone Fiber Reinforced Natural Rubber Composites

    OpenAIRE

    Lee, Han Ki; Kim, Dae Sik; Won, Jong Sung; Jin, Da Young; Lee, Hyun Jae; Lee, Seung Goo

    2016-01-01

    Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG) such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacia...

  13. Correlated evolution of male and female reproductive traits drive a cascading effect of reinforcement in Drosophila yakuba

    Science.gov (United States)

    Comeault, Aaron A.; Venkat, Aarti; Matute, Daniel R.

    2016-01-01

    Selection against maladaptive hybridization can drive the evolution of reproductive isolation in a process called reinforcement. While the importance of reinforcement in evolution has been historically debated, many examples now exist. Despite these examples, we typically lack a detailed understanding of the mechanisms limiting the spread of reinforced phenotypes throughout a species' range. Here we address this issue in the fruit fly Drosophila yakuba, a species that hybridizes with its sister species D. santomea and is undergoing reinforcement in a well-defined hybrid zone on the island of São Tomé. Within this region, female D. yakuba show increased postmating-prezygotic (gametic) isolation towards D. santomea when compared with females from allopatric populations. We use a combination of natural collections, fertility assays, and experimental evolution to understand why reinforced gametic isolation in D. yakuba is confined to this hybrid zone. We show that, among other traits, D. yakuba males from sympatric populations sire fewer progeny than allopatric males when mated to allopatric D. yakuba females. Our results provide a novel example of reinforcement acting on a postmating-prezygotic trait in males, resulting in a cascade of reproductive isolation among conspecific populations. PMID:27440664

  14. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  15. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  16. Making access to TV contingent on physical activity: effects on liking and relative reinforcing value of TV and physical activity in overweight and obese children.

    Science.gov (United States)

    Goldfield, Gary S

    2012-02-01

    This study examined the effects of making access to television (TV) viewing contingent on physical activity on the liking and reinforcing value of TV and attitudes towards physical activity in overweight and obese children. Secondary data analysis from a randomized controlled trial designed to increase physical activity and reduce TV viewing in 30, 8-12 years old overweight or obese children by making access to TV contingent on physical activity (intervention) or free access to TV (control). Liking of TV and physical activity was measured by a 100 point visual analog scale, while the relative reinforcing value of TV in relation to physical activity was assessed using a questionnaire based on behavioural choice paradigm that provided children an opportunity to work (button presses) to gain access to TV or physical activity according to a progressive ratio schedule of reinforcement. Enjoyment, Adequacy, Predilection and Motivation for physical activity was assessed by self-report questionnaire. Making access to TV contingent on physical activity showed a trend that approached statistical significance towards increased enjoyment of physical activity and did not adversely affect change in the liking or the relative reinforcing value of TV viewing. Making access to TV contingent on physical activity had no adverse effects on the liking or reinforcing value of TV and even showed a suggestive effect of increased enjoyment of physical activity. Thus, given this intervention markedly increased physical activity and reduced TV viewing in overweight and obese children, long-term evaluations of this interventions to assess sustainability of these behavioral changes and associated health benefits are warranted.

  17. Effect of gravity loading on inelastic seismic response of reinforced concrete structures

    International Nuclear Information System (INIS)

    Chowdhury, Rajib; Reddy, G. Rami; Roy, Raghupati; Dutta, Sekhar Chandra

    2003-01-01

    The effect of gravity loading is not considered in inelastic seismic response to avoid complexity and to reduce the number of influencing parameters. However, the possibility of considerable effect of this factor is indicated in many studies on inelastic seismic behaviour of structures. Hence, it is necessary to study the nature and extent of this effect on inelastic seismic behaviour of structures. The present paper attempts to fulfill this objective by studying the variation of energy dissipation due to presence of various level of axial load. The study is further extended to see the effect of axial force due to gravity loading on the ductility demand of hysteretic energy demand arising in structural elements of a simple one storey structures. The study shows that the presence of axial force may increase the energy dissipation capacity of structure leading to a reduction in ductility demand. (author)

  18. Token Reinforcement: Effects for Reducing Tardiness with a Socially Disadvantaged Adolescent Student.

    Science.gov (United States)

    Inkster, J. A.; McLaughlin, T. F.

    1993-01-01

    This study found that microcomputer free time was a very effective consequence in decreasing the tardiness of a middle school boy, in improving his academic achievement, and in improving the student's attitude toward school and school assignments. (Author/JDD)

  19. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  20. Effect of sewage wastes on the physico-mechanical properties of cement and reinforced steel

    OpenAIRE

    Abd El-Aziz, Magdy A.; Sufe, Waleed H.

    2013-01-01

    The aggressive chemical attack due to salt water is one of many factors affecting the concrete deterioration. This effect includes corrosion of concrete and steel due to the exposure to the aggressive natural or artificial chemicals such as ammonia and ammonium salts. Ammonia is one of the compounds substantially in each of the remnants of sanitation plants, industrial or service of some units within building industrial waste. This work aims to study the effect of different concentrations of ...

  1. Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus

    DEFF Research Database (Denmark)

    Peng, R.D.; Zhou, H.W.; Wang, H.W.

    2012-01-01

    ” algorithm was developed in the ABAQUS Scripting Interface. In the computational studies, it was observed that the elastic modulus increases with the increasing the aspect ratio of nanoparticles. The thickness and properties of effective interface layers and the shape and degree of particles clustering have...

  2. Attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Conn, P Jeffrey; Lindsley, Craig

    2010-01-01

    Muscarinic cholinergic receptors modulate dopaminergic function in brain pathways thought to mediate cocaine's abuse-related effects. Here, we sought to confirm and extend in the mouse species findings that nonselective muscarinic receptor antagonists can enhance cocaine's discriminative stimulus...... for cocaine addiction....

  3. Effect of cellulose fiber reinforcement on the temperature dependent mechanical performance of nylon 6

    Science.gov (United States)

    Mehdi Tajvidi; Mokhtar Feizmand; Robert H. Falk; Colin Felton

    2009-01-01

    In order to quantify the effect of temperature on the mechanical properties of pure nylon 6 and its composite with cellulose fibers (containing 25 wt% cellulose fibers), the materials were sampled and tested at three representative temperatures of 256, 296, and 336 K. Flexural and tensile tests were performed and the reductions in mechanical properties were evaluated....

  4. EFFECT OF GAMMA RAY IRRADIATION ON INTERLAMINAR SHEAR STRENGTH OF GLASS FIBER REINFORCED PLASTICS AT 77 K

    International Nuclear Information System (INIS)

    Nishimura, A.; Nishijima, S.; Izumi, Y.

    2008-01-01

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation

  5. Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Algrafi, M.W.

    2014-01-01

    Highlights: • Increase in fiber loading increased tensile strength and modulus of the composites. • Tensile strain was decreasing with increase in fiber loading. • Flexural strength and modulus increased with increase in fiber content. • Impact strength was deteriorated with increasing fiber loading. • Morphology observations shown a good adhesion between fibers and matrix. - Abstract: In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced thermoplastic polyurethane (TPU) was prepared by melt compounding method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Effect of fiber loading on mechanical (i.e. tensile, flexural properties and impact strength) and morphological properties was studied. TPU/CPH composites showed increase in tensile strength and modulus with increase in fiber loading, while tensile strain was decreasing with increase in fiber loading. The composite also showed increase in flexural strength and modulus with increase in fiber content. Impact strength was deteriorated with increase in fiber loading. Morphology observations using Scanning Electron Microscope (SEM) showed fiber/matrix good adhesion

  6. Effect of fiber content on the thermal conductivity and dielectric constant of hair fiber reinforced epoxy composite

    Science.gov (United States)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2018-03-01

    This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.

  7. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    Lin Tiesong; Jia Dechang; He Peigang; Wang Meirong; Liang Defu

    2008-01-01

    A kind of sheet-like carbon fiber preform was developed using short fibers (2, 7 and 12 mm, respectively) as starting materials and used to strengthen a geopolymer. Mechanical properties, fracture behavior, microstructure and toughening mechanisms of the as-prepared composites were investigated by three-point bending test, optical microscope and scanning electron microscopy. The results show that the short carbon fibers disperse uniformly in geopolymer matrix. The C f /geopolymer composites exhibit apparently improved mechanical properties and an obvious noncatastrophic failure behavior. The composite reinforced by the carbon fibers of 7 mm in length shows a maximum flexural strength as well as the highest work of facture, which are nearly 5 times and more than 2 orders higher than that of the geopolymer matrix, respectively. The predominant strengthening and toughening mechanisms are attributed to the apparent fiber bridging and pulling-out effect based on the weak fiber/matrix interface as well as the sheet-like carbon fiber preform

  8. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  9. Effect of Rice Husk Surface Modification by LENR the on Mechanical Properties of NR/ HDPE Reinforced Rice Husk Composite

    International Nuclear Information System (INIS)

    Rahmadini Syafri; Ishak Ahmad; Ibrahim Abdullah

    2011-01-01

    Surface modification of rice husk (RH) with alkali pre-treatment (NaOH solution 5 % w/ v) was carried out at the initial state to investigate the effect of surface treatment of fibre on the surface interaction between fibre and rubber. Further modification of RH surfaces after alkali treatment was using Liquid Epoxidized Natural Rubber (LENR) coating at three concentrations, 5 %, 10 %, and 20 % wt LENR solution in toluene. Interfacial morphology and chemical reactions between RH fibre and rubber were analyzed by FTIR and Scanning Electron Microscope (SEM). It was found that 10 % wt LENR solution gave the optimum interaction between fibre and rubber. Matrix and composite blends derived from 60 % natural rubber (NR), 40 % high density polyethylene (HDPE) reinforced with RH fibre were prepared using an internal mixer (Brabender Plasticoder). Result showed that pre-treatment of RH treated with 5 % NaOH followed by treatment with 10 % LENR solution given the maximum interaction between fibre and matrix that gave rise to better mechanical properties of the composites. (author)

  10. Investigation of Non-Uniform Rust Distribution and Its Effects on Corrosion Induced Cracking in Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Sutrisno Wahyuniarsih

    2017-01-01

    Full Text Available Uniform corrosion still widely used by a lot of researchers and engineers to analyze the corrosion induced cracking. However, in practice, corrosion process occurred non-uniformly. The part nearest to the exposed surface is more likely to have faster corrosion initiation compared with other regions. This research is mainly focused on investigating the effect of non-uniform rust distribution to cover cracking in reinforced concrete. An experimental test performed using accelerated corrosion test by using 5% NaCl solution and applied a constant electric current to the concrete samples. The rust distribution and measurement were observed by using a digital microscope. Based on the experimental result, it was found that the rust was distributed in a non-uniform pattern. As a result, the cracks also formed non-uniformly along the perimeter of steel bar. At the last part of this paper, a simulation result of concrete cracking induced by non-uniform corrosion is presented. The result compared with a simulation using uniform corrosion assumption to investigate the damage pattern of each model. The simulation result reveals stress evolution due to rust expansion which leads to concrete cracking. Furthermore, a comparison of stresses induced by non-uniform corrosion and uniform corrosion indicates that non-uniform corrosion could lead to earlier damage to the structure which is specified by the formation and propagation of the crack.

  11. The Effects of Orientation on the Mechanical and Morphological Properties of Woven Kenaf-reinforced Poly Vinyl Butyral Film

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2015-12-01

    Full Text Available Kenaf is one of the important plants cultivated for natural fibres globally and is regarded as an industrial crop in Malaysia for various applications. This study was conducted to determine the effects of orientation on the tensile and flexural strengths, Charpy impact test, and morphological properties of kenaf fibre-reinforced poly vinyl butyral (PVB composites. Laminates of 40% fibre weight fraction were manufactured using the hot press manufacturing technique at 0˚/90˚ and 45˚/−45˚ orientations, and eight specimens were prepared for each test. The mechanical properties of the composites were variably affected by the fibre orientation angle. The results showed that the composites at 0o/90o had the highest tensile strength, flexural strength, and flexural modulus, while the elongation at break was almost the same. Additionally, tests were carried out on the composites to determine their impact energy and impact strength. The results revealed that impact properties were affected in markedly different ways by different orientations. The composite at 45˚/−45˚ offered better impact properties than the composites at 0˚/90˚. In addition, scanning electron microscopy for impact specimens was employed to demonstrate the different failures in the fracture surfaces.

  12. Study of injection moulded long glass fibre-reinforced polypropylene and the effect on the fibre length and orientation distribution

    Science.gov (United States)

    Parveeen, B.; Caton-Rose, P.; Costa, F.; Jin, X.; Hine, P.

    2014-05-01

    Long glass fibre (LGF) composites are extensively used in manufacturing to produce components with enhanced mechanical properties. Long fibres with length 12 to 25mm are added to a thermoplastic matrix. However severe fibre breakage can occur in the injection moulding process resulting in shorter fibre length distribution (FLD). The majority of this breakage occurs due to the melt experiencing extreme shear stress during the preparation and injection stage. Care should be taken to ensure that the longer fibres make it through the injection moulding process without their length being significantly degraded. This study is based on commercial 12 mm long glass-fibre reinforced polypropylene (PP) and short glass fibre Nylon. Due to the semi-flexiable behaviour of long glass fibres, the fibre orientation distribution (FOD) will differ from the orientation distribution of short glass fibre in an injection molded part. In order to investigate the effect the change in fibre length has on the fibre orientation distribution or vice versa, FOD data was measured using the 2D section image analyser. The overall purpose of the research is to show how the orientation distribution chnages in an injection moulded centre gated disc and end gated plaque geometry and to compare this data against fibre orientation predictions obtained from Autodesk Moldflow Simulation Insight.

  13. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  14. Influence of Torsion Effect on the Mechanical Characteristics of Reinforced Concrete Column

    Science.gov (United States)

    Wang, Debin; Fan, Guoxi

    2017-11-01

    The purpose of this paper is to study the effect of torsional effect and loading rate on the flexural capacity of RC members. Based on the fiber model of finite element software ABAQUS, a model has been established with the consideration of the strain rate sensitivity of steel and concrete. The model is used to reflect the influence of the rotational component of ground motion by applying the initial angular displacement. The mechanical properties of RC columns under monotonic loads are simulated. The simulation results show that there has been a decrease in the carrying capacity and initial stiffness of RC columns for high initial torsion angle. With the increase of initial torsion angle, the influence of loading rate on RC columns gradually increases.

  15. Time Effects on Morphology and Bonding Ability in Mercerized Natural Fibers for Composite Reinforcement

    Science.gov (United States)

    2011-01-01

    control number. 1. REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Time Effects On Morphology And...and R. Sun, “Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose frommaize stems, rye ...Lawther, and W. B. Banks, “Influence of alkaline pre-treatments on the cell wall components of wheat straw,” Industrial Crops and Products, vol. 4, no. 2

  16. Effects of atmospheric air plasma treatment on interfacial properties of PBO fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chengshuang, E-mail: cszhang83@163.com; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong

    2013-07-01

    Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.

  17. Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components

    Science.gov (United States)

    Nazarenko, Lidiya; Khoroshun, Leonid; Müller, Wolfgang H.; Wille, Ralf

    2009-02-01

    In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.

  18. Effect of flexible fuels on mechanical properties of reinforced polyoxymethylenes (POM

    Directory of Open Access Journals (Sweden)

    M. Gómez-Mares

    2014-08-01

    Full Text Available The use of flexible fuels has been increased during the last years making essential to run compatibility tests with those materials exposed to them. In this work the effect of the flexible fuels M15A (Volume Mixture of 85% fuel C and 15 % Aggressive methanol and M30A (Volume mixture of 70% fuel C and 30 % Aggressive methanol on the mechanical properties of some polymers of the Polyoxymethylene (POM family is assessed. The polymers chosen had different levels of glass fiber filler (0, 10 and 25%. The samples were immersed on fuel and kept on a chamber at 80°C during 1008h. The results showed that the properties of polymers with filler are more affected than the ones of the polymers without it. Tensile stress at break and Tensile stress at yield diminished with the fuel exposure. The most aggressive fuel was found to be M30A, due to the higher methanol concentration.

  19. Effect of red mud addition on the corrosion parameters of reinforced concrete evaluated by electrochemical methods

    Directory of Open Access Journals (Sweden)

    D.V. Ribeiro

    Full Text Available Red mud, the main waste generated in aluminum and alumina production from bauxite ore by the Bayer process, is considered "hazardous" due to its high pH. The high pH also provides greater protection of rebars, which is reflected in the low corrosion potential and high electrical resistivity (filler effect of concrete. The corrosion potential was monitored by electrochemical measurements and the electrical resistivity was evaluated using sensors embedded in concrete test specimens. The results showed that the addition of red mud is beneficial to concrete, reducing its corrosion potential and increasing its electrical resistivity. Red mud proved to be a promising additive for concrete to inhibit the corrosion process.

  20. EVALUATION OF EFFECTIVE PROPERTIES OF BASALT TEXTILE REINFORCED CERAMIC MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    Soňa Valentová

    2017-11-01

    Full Text Available The present paper is concerned with the analysis of a ceramic matrix composite, more specifically the plain weave textile fabric composite made of basalt fibers embedded into the pyrolyzed polysiloxane matrix. Attention is paid to the determination of effective elastic properties of the yarn via homogenization based on the Mori-Tanaka averaging scheme and the 1st order numerical homogenization method adopting a suitable representative computational model. The latter approach is then employed to simulate the response of the yarn when loaded beyond the elastic limits. The required mechanical properties of individual material phases are directly measured using nanoindentation with in-build scanning probe microscopy. Applicability of the proposed computational methodology is supported by the analysis of a unidirectional fibrous composite, representing the yarn, subjected to a macroscopically uniform strain.