DEFF Research Database (Denmark)
Ruban, Andrei; Simak, S.I.; Shallcross, S.
2003-01-01
We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys on simple primitive lattices. A comparison with direct ab initio calculations for supercells representing random Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au-ri......-rich CuAu alloys shows that the model yields a quantitatively accurate description of the relaxtion energies in these systems. Finally, we discuss the bond length distribution in random alloys....
Spatial symmetry, local integrability and tetrahedron equations in the Baxter-Bazhanov model
International Nuclear Information System (INIS)
Kashaev, R.M.; Mangazeev, V.V.; Stroganov, Yu.G.
1992-01-01
It is shown that the Baxter-Bazhanov model is invariant under the action of the cube symmetry group. The three-dimensional star-star relations, proposed by Baxter and Bazhanov as local integrability conditions, correspond to a particular transformation from this group. Invariant Boltzmann weights, parameterized in terms of the Zamolodchikov's angle variables, apparently satisfy the tetrahedron equations. 12 refs
Dislocation-stacking fault tetrahedron interaction: what can we learn from atomic-scale modelling
International Nuclear Information System (INIS)
Osetsky, Yu.N.; Stoller, R.E.; Matsukawa, Y.
2004-01-01
The high number density of stacking fault tetrahedra (SFTs) observed in irradiated fcc metals suggests that they should contribute to radiation-induced hardening and, therefore, taken into account when estimating mechanical properties changes of irradiated materials. The central issue is describing the individual interaction between a moving dislocation and an SFT, which is characterized by a very fine size scale, ∼100 nm. This scale is amenable to both in situ TEM experiments and large-scale atomic modelling. In this paper we present results of an atomistic simulation of dislocation-SFT interactions using molecular dynamics (MD). The results are compared with observations from in situ deformation experiments. It is demonstrated that in some cases the simulations and experimental observations are quite similar, suggesting a reasonable interpretation of experimental observations
Research on the attitude detection technology of the tetrahedron robot
Gong, Hao; Chen, Keshan; Ren, Wenqiang; Cai, Xin
2017-10-01
The traditional attitude detection technology can't tackle the problem of attitude detection of the polyhedral robot. Thus we propose a novel algorithm of multi-sensor data fusion which is based on Kalman filter. In the algorithm a tetrahedron robot is investigated. We devise an attitude detection system for the polyhedral robot and conduct the verification of data fusion algorithm. It turns out that the minimal attitude detection system we devise could capture attitudes of the tetrahedral robot in different working conditions. Thus the Kinematics model we establish for the tetrahedron robot is correct and the feasibility of the attitude detection system is proven.
Tetrahedron equations and the relativistic S-matrix of straight-strings in 2+1-dimensions
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1981-01-01
The quantum S-matrix theory of straight-strings (infinite one-dimensioanl objects like straight domain walls) in 2 + 1-dimensions is considered. The S-matrix is supposed to be purely elastic and factorized. The tetrahedron equations (which are the factorization conditions) are investigated for the special two-colour model. The relativistic three-string S-matrix, which apparently satisfies this tetrahedron equation, is proposed. (orig.)
Explicit free parametrization of the modified tetrahedron equation
Gehlen, G V; Sergeev, S
2003-01-01
The modified tetrahedron equation (MTE) with affine Weyl quantum variables at the Nth root of unity is solved by a rational mapping operator which is obtained from the solution of a linear problem. We show that the solutions can be parametrized in terms of eight free parameters and 16 discrete phase choices, thus providing a broad starting point for the construction of three-dimensional integrable lattice models. The Fermat-curve points parametrizing the representation of the mapping operator in terms of cyclic functions are expressed in terms of the independent parameters. An explicit formula for the density factor of the MTE is derived. For the example N=2 we write the MTE in full detail.
Explicit free parametrization of the modified tetrahedron equation
International Nuclear Information System (INIS)
Gehlen, G von; Pakuliak, S; Sergeev, S
2003-01-01
The modified tetrahedron equation (MTE) with affine Weyl quantum variables at the Nth root of unity is solved by a rational mapping operator which is obtained from the solution of a linear problem. We show that the solutions can be parametrized in terms of eight free parameters and 16 discrete phase choices, thus providing a broad starting point for the construction of three-dimensional integrable lattice models. The Fermat-curve points parametrizing the representation of the mapping operator in terms of cyclic functions are expressed in terms of the independent parameters. An explicit formula for the density factor of the MTE is derived. For the example N=2 we write the MTE in full detail
Average geodesic distance of skeleton networks of Sierpinski tetrahedron
Yang, Jinjin; Wang, Songjing; Xi, Lifeng; Ye, Yongchao
2018-04-01
The average distance is concerned in the research of complex networks and is related to Wiener sum which is a topological invariant in chemical graph theory. In this paper, we study the skeleton networks of the Sierpinski tetrahedron, an important self-similar fractal, and obtain their asymptotic formula for average distances. To provide the formula, we develop some technique named finite patterns of integral of geodesic distance on self-similar measure for the Sierpinski tetrahedron.
Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container
DEFF Research Database (Denmark)
Ke, Yongang; Sharma, Jaswinder; Liu, Minghui
2009-01-01
We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is ∼54 nm in dimension. The estimated total external volume and the internal cavity of the triangular...... pyramid are about 1.8 × 10-23 and 1.5 × 10-23 m3, respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques....
Scaffolded DNA origami of a DNA tetrahedron molecular container.
Ke, Yonggang; Sharma, Jaswinder; Liu, Minghui; Jahn, Kasper; Liu, Yan; Yan, Hao
2009-06-01
We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is approximately 54 nm in dimension. The estimated total external volume and the internal cavity of the triangular pyramid are about 1.8 x 10(-23) and 1.5 x 10(-23) m(3), respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques.
Continuous Flattening of a Regular Tetrahedron with Explicit Mappings
Directory of Open Access Journals (Sweden)
Jin-ichi Itoh
2012-01-01
Full Text Available We proved in [10] that each Platonic polyhedron P can be folded into a flat multilayered face of P by a continuous folding process of polyhedra. In this paper, we give explicit formulas of continuous functions for such a continuous flattening process in R³ for a regular tetrahedron.The article is published in the author’s wording.
2010-07-23
... obligations of the contract. DATES: Tetrahedron, Inc., and its subcontractors: Syracuse Research Corporation... contract to perform work for OPP, and access to this information will enable Tetrahedron, Inc., and its... Contract No. EP-W-10-013, Tetrahedron, Inc., and its subcontractors: Syracuse Research Corporation, Tox...
DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells
Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen
2017-08-01
As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.
76 FR 6468 - Versar, Tetrahedron, Inc. and Info Impact; Transfer of Data
2011-02-04
..., to fulfill the obligations of the contract. DATES: Versar and its subcontractors, Tetrahedron, Inc... subcontractors, Tetrahedron, Inc. and Info Impact, have been awarded a contract to perform work for OPP, and.... II. Contractor Requirements Under Contract No. EP-W-11-007, Versar and its subcontractors...
Tetrahedron of medical academics: reasons for training in management, leadership and informatics.
Martins, Henrique
2009-06-01
Medical school professors and lecturers are often called to be practicing clinicians, researchers in their own field, in addition to executing their education and curricular responsibilities. Some further accumulate healthcare management responsibilities. These areas pose conflicting demands on time and intellectual activity, but despite their apparent differences, knowledge and skills from management, leadership and informatics may prove useful in helping to smooth these conflicts and hence increase personal effectiveness in these areas. This article tries to clarify some concepts and advance why training in management, leadership and health informatics would seem particularly useful for the medical academic. As opposed to the idea of educational dispersion/specialization, the concept of an integrative tetrahedronal education framework is advanced as a way to plan workshops and other faculty development activities which could be implemented transnationally as well as locally.
Capo-Lugo, Pedro A.
Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous
Stacking fault tetrahedron induced plasticity in copper single crystal
Energy Technology Data Exchange (ETDEWEB)
Zhang, Liang, E-mail: lz592@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Kiet; Su, Lihong; Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Pei, Linqing [Department of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)
2017-01-05
Stacking fault tetrahedron (SFT) is the most common type of vacancy clustered defects in fcc metals and alloys, and can play an important role in the mechanical properties of metallic materials. In this study, molecular dynamics (MD) simulations were carried out to investigate the incipience of plasticity and the underlying atomic mechanisms in copper single crystals with SFT. Different deformation mechanisms of SFT were reported due to the crystal orientations and loading directions (compression and tension). The results showed that the incipient plasticity in crystals with SFT resulted from the heterogeneous dislocation nucleation from SFT, so the stress required for plastic deformation was less than that needed for perfect single crystals. Three crystal orientations ([1 0 0], [1 1 0] and [1 1 1]) were specified in this study because they can represent most of the typical deformation mechanisms of SFT. MD simulations revealed that the structural transformation of SFT was frequent under the applied loading; a metastable SFT structure and the collapse of SFT were usually observed. The structural transformation resulted in a different reduction of yield stress in compression and tension, and also caused a decreased or reversed compression/tension asymmetry. Compressive stress can result in the unfaulting of Frank loop in some crystal orientations. According to the elastic theory of dislocation, the process of unfaulting was closely related to the size of the dislocation loop and the stacking fault energy.
A Structurally Variable Hinged Tetrahedron Framework from DNA Origami
Directory of Open Access Journals (Sweden)
David M. Smith
2011-01-01
Full Text Available Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.
A complete absorption mechanism of stacking fault tetrahedron by screw dislocation in copper
International Nuclear Information System (INIS)
Fan, Haidong; Wang, Qingyuan
2013-01-01
It was frequently observed in experiments that stacking fault tetrahedron (SFT) can be completely absorbed by dislocation and generate defect-free channels in irradiated materials, but the mechanism is still open. In this paper, molecular dynamics (MD) was used to explore the dislocation mechanism of reaction between SFT and screw dislocation in copper. Our computational results reveal that, at high temperature, the SFT is completely absorbed by screw dislocation with the help of Lomer–Cottrell (LC) lock transforming into Lomer dislocation. This complete absorption mechanism is very helpful to understand the defect-free channels in irradiated materials
Materials science tetrahedron--a useful tool for pharmaceutical research and development.
Sun, Changquan Calvin
2009-05-01
The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.
Wang, Shuang; Lu, Shasha; Zhao, Jiahui; Huang, Jianshe; Yang, Xiurong
2017-11-29
G-quadruplex plays roles in numerous physiological and pathological processes of organisms. Due to the unique properties of G-quadruplex (e.g., forming G4/hemin complexes with catalytic activity and electron acceptability, binding with metal ions, proteins, fluorescent ligands, and so on), it has been widely applied in biosensing. But the formation process of G-quadruplex is not yet fully understood. Here, a DNA tetrahedron platform with higher reproducibility, regenerative ability, and time-saving building process was coupled with dual polarization interferometry technique for the real-time and label-free investigation of the specific interaction process of guanine-rich singled-stranded DNA (G-rich ssDNA) and Pb 2+ . The oriented immobilization of probes greatly decreased the spatial hindrance effect and improved the accessibility of the probes to the Pb 2+ ions. Through real-time monitoring of the whole formation process of the G-quadruplex, we speculated that the probes on the tetrahedron platform initially stood on the sensing surface with a random coil conformation, then the G-rich ssDNA preliminarily formed unstable G-quartets by H-bonding and cation binding, subsequently forming a completely folded and stable quadruplex structure through relatively slow strand rearrangements. On the basis of these studies, we also developed a novel sensing platform for the specific and sensitive determination of Pb 2+ and its chelating agent ethylenediaminetetraacetic acid. This study not only provides a proof-of-concept for conformational dynamics of G-quadruplex-related drugs and pathogenes, but also enriches the biosensor tools by combining nanomaterial with interfaces technique.
Identification of rotating and vibrating tetrahedrons in the heavy nucleus {sup 208}Pb
Energy Technology Data Exchange (ETDEWEB)
Heusler, A.
2017-11-15
Ten known states in the heavy nucleus {sup 208}Pb at 2.6 < E{sub x} < 7.9 MeV are described by rotating and vibrating tetrahedrons. The 3{sup -} and 4{sup +} yrast states are the first members of the rotational band. A 2{sup ±} doublet state with the 2{sup +} yrast state as one member and the newly recognized 2{sup -} yrast state as the other member, the 1{sup -} yrast state, and the third 0{sup +} state are the heads of the three elementary tetrahedral rotating and vibrating bands. The newly recognized state at E{sub x} = 4142 keV was assigned spin 2 in 1975 and is suggested to have negative parity by the absent {sup 208}Pb(α, α{sup '}) excitation. Four more states at 5.7 < E{sub x} < 7.9 MeV are identified as the next members of the three elementary tetrahedral rotating and vibrating bands. The ambiguous spin assignment to the state at E{sub x} = 7020 keV is settled with 3{sup -}, the state at E{sub x} = 7137 keV is assigned 4{sup -}. (orig.)
Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.
Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang
2015-02-24
Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.
Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.
Hou, Hongying; Yao, Yuan; Liu, Song; Duan, Jixiang; Liao, Qishu; Yu, Chengyi; Li, Dongdong; Dai, Zhipeng
2017-07-01
The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection. Copyright © 2017. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Rath, J.; Freeman, A.J.
1975-01-01
A detailed study of the generalized susceptibility chi(vector q) of Sc metal determined from an accurate augmented-plane-wave method calculation of its energy-band structure is presented. The calculations were done by means of a computational scheme for chi(vector q) derived as an extension of the work of Jepsen and Andersen and Lehmann and Taut on the density-of-states problem. The procedure yields simple analytic expressions for the chi(vector q) integral inside a tetrahedral microzone of the Brillouin zone which depends only on the volume of the tetrahedron and the differences of the energies at its corners. Constant-matrix-element results have been obtained for Sc which show very good agreement with the results of Liu, Gupta, and Sinha (but with one less peak) and exhibit a first maximum in chi(vector q) at (0, 0, 0.31) 2π/c [vs (0, 0, 0.35) 2π/c obtained by Liu et al.] which relates very well to dilute rare-earth alloy magnetic ordering at vector q/sub m/ = (0, 0, 0.28) 2π/c and to the kink in the LA-phonon dispersion curve at (0, 0, 0.27) 2π/c. (U.S.)
International Nuclear Information System (INIS)
Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo
2014-01-01
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)
Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi
2014-02-01
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.
New series of 3 D lattice integrable models
International Nuclear Information System (INIS)
Mangazeev, V.V.; Sergeev, S.M.; Stroganov, Yu.G.
1993-01-01
In this paper we present a new series of 3-dimensional integrable lattice models with N colors. The weight functions of the models satisfy modified tetrahedron equations with N states and give a commuting family of two-layer transfer-matrices. The dependence on the spectral parameters corresponds to the static limit of the modified tetrahedron equations and weights are parameterized in terms of elliptic functions. The models contain two free parameters: elliptic modulus and additional parameter η. 12 refs
Institute of Scientific and Technical Information of China (English)
Nong Yue HE; Chun YANG; Jian Xin TANG; Peng Feng XIAO; Hong CHEN
2003-01-01
KL molecular sieves with different framework compositions were secondarily synthesized by substituting Si for Al with a solution of (NH4)2SiF6. The internal tetrahedron symmetric stretch frequency, at ν770 cm-1, is linear with the molar fraction of Al (XAl= Al/(Si+Al)) in the framework of KL samples: XAl = -7.309×10-3 (υ770-760) + 0.3242.
Li, Wei; Jiang, Wei; Ding, Yongshun; Wang, Lei
2015-09-15
MicroRNAs (miRNAs) play important roles in a variety of biological processes and have been regarded as tumor biomarkers in cancer diagnosis and prognosis. In this work, a single-molecule counting method for miRNA analysis was proposed based on toehold-mediated strand displacement reaction (SDR) and DNA tetrahedron substrate. Firstly, a specially designed DNA tetrahedron was assembled with a hairpin at one of the vertex, which has an overhanging toehold domain. Then, the DNA tetrahedron was immobilized on the epoxy-functional glass slide by epoxy-amine reaction, forming a DNA tetrahedron substrate. Next, the target miRNA perhybridized with the toehold domain and initiated a strand displacement reaction along with the unfolding of the hairpin, realizing the selective recognization of miRNA. Finally, a biotin labeled detection DNA was hybridized with the new emerging single strand and the streptavidin coated QDs were used as fluorescent probes. Fluorescent images were acquired via epi-fluorescence microscopy, the numbers of fluorescence dots were counted one by one for quantification. The detection limit is 5 fM, which displayed an excellent sensitivity. Moreover, the proposed method which can accurately be identified the target miRNA among its family members, demonstrated an admirable selectivity. Furthermore, miRNA analysis in total RNA samples from human lung tissues was performed, suggesting the feasibility of this method for quantitative detection of miRNA in biomedical research and early clinical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Ren, Zhimin; Wang, Zhiyu; Chen, Chao; Wang, Jia; Fu, Xinxin; Fan, Chenyao; Qian, Guodong
2014-01-01
Highlights: • A novel architecture of 3D carbon framework to encapsulate ZnO nanocrystals was prepared. • The ZnO@C exhibits ultralong cycle life and high specific capacity when was used as anode. • The in situ carbonization leads to a strong connection between the carbon and ZnO. - ABSTRACT: In this paper we report a novel architecture of three-dimension (3D) carbon framework to encapsulate tetrahedron ZnO nanocrystals that serves as an anode material for lithium-ion batteries (LIBs). The ZnO@C composites are prepared via a simple internal-reflux method combined with subsequent calcination in argon. The amorphous carbon is formed on the surface of the ZnO crystals by in situ carbonization of the surfactant, which leads to a strong connection between the carbon framework and the active materials and guarantees faster charge transfer on the electrode. The ZnO crystal calcined at 500°C (ZnO@C-5) possesses regular tetrahedron shape with a side length of 150-200 nm and all of them are uniformly anchored among the network of amorphous carbon. The developed ZnO@C structures not only improve the electronic conductivity of the electrode, but they also offer a larger volume expansion of ZnO during cycling. As a result, the ZnO@C-5 demonstrates a higher reversible capacity, ultralong cycle life and better rate capability than that of the ZnO@C-7 and pure ZnO crystals. After 300 cycles, the ZnO@C-5 demonstrates a high capacity of 518 mAhg −1 at a current density of 110.7 mAg −1 . Moreover, this simple approach prepared the 3D composites architecture could shed light on the design and synthesis of other transition metal oxides for energy storage
Training effectiveness evaluation model
International Nuclear Information System (INIS)
Penrose, J.B.
1993-01-01
NAESCO's Training Effectiveness Evaluation Model (TEEM) integrates existing evaluation procedures with new procedures. The new procedures are designed to measure training impact on organizational productivity. TEEM seeks to enhance organizational productivity through proactive training focused on operation results. These results can be identified and measured by establishing and tracking performance indicators. Relating training to organizational productivity is not easy. TEEM is a team process. It offers strategies to assess more effectively organizational costs and benefits of training. TEEM is one organization's attempt to refine, manage and extend its training evaluation program
International Nuclear Information System (INIS)
Ehrhardt, J.
1995-02-01
As one of the main objectives of the MARIA project (''Methods for Assessing the Radiological Impact of Accidents'') initiated by the Commission of the European Communities the program package COSYMA (''COde SYstem from MARIA'') for assessing the radiological and economic off-site consequences of accidental releases of radioactive material to the atmosphere has been jointly developed by the Kernforschungszentrum Karlsruhe (KfK), FRG, and the National Radiological Protection Board (NRPB), UK. COSYMA includes models and data for assessing a broad spectrum of accident consequences, and they are implemented in independent modules. The subject of this report are those modules, which incorporate models and data for assessing individual and collective risks for deterministic and stochastic health effects. It describes the models implemented, the mathematical algorithms and the required data. Examples are given and explained for the input and output part of the modules. (orig.)
Ecotoxicological effects extrapolation models
Energy Technology Data Exchange (ETDEWEB)
Suter, G.W. II
1996-09-01
One of the central problems of ecological risk assessment is modeling the relationship between test endpoints (numerical summaries of the results of toxicity tests) and assessment endpoints (formal expressions of the properties of the environment that are to be protected). For example, one may wish to estimate the reduction in species richness of fishes in a stream reach exposed to an effluent and have only a fathead minnow 96 hr LC50 as an effects metric. The problem is to extrapolate from what is known (the fathead minnow LC50) to what matters to the decision maker, the loss of fish species. Models used for this purpose may be termed Effects Extrapolation Models (EEMs) or Activity-Activity Relationships (AARs), by analogy to Structure-Activity Relationships (SARs). These models have been previously reviewed in Ch. 7 and 9 of and by an OECD workshop. This paper updates those reviews and attempts to further clarify the issues involved in the development and use of EEMs. Although there is some overlap, this paper does not repeat those reviews and the reader is referred to the previous reviews for a more complete historical perspective, and for treatment of additional extrapolation issues.
International Nuclear Information System (INIS)
Chełminiak, Przemysław
2012-01-01
A new approach to the assemblage of complex networks displaying the scale-free architecture is proposed. While the growth and the preferential attachment of incoming nodes assure an emergence of such networks according to the Barabási–Albert model, it is argued here that the preferential linking condition needs not to be a principal rule. To assert this statement a simple computer model based on random walks on fractal lattices is introduced. It is shown that the model successfully reproduces the degree distributions, the ultra-small-worldness and the high clustering arising from the topology of scale-free networks. -- Highlights: ► A new mechanism of evolution for scale-free complex networks is proposed. ► The preferential attachment rule is not necessary to construct such networks. ► It is shown that they reveal some basic properties of classical scale-free nets.
Biophysical models of radiobiological effects
International Nuclear Information System (INIS)
Obaturov, G.M.
1984-01-01
Models of radiation effect on biological structures and objects are presented. Physical and molecular models based on target theory and DNA or chromosome injuries, respectively, and reparation ''saturation'' theory, are considered
Revised nonstochastic health effects models
International Nuclear Information System (INIS)
Yaniv, S.S.; Scott, B.R.
1991-01-01
In 1989, the U.S. Nuclear Regulatory Commission (NRC) published a revision of the 1985 report, Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, NUREG/CR-4214, that included models for early occurring and continuing nonstochastic effects, cancers and thyroid nodules, and genetic effects. This paper discusses specific models for lethality from early occurring and continuing effects. For brevity, hematopoietic-syndrome lethality is called hematopoietic death; pulmonary-syndrome lethality is called pulmonary death; and gastrointestinal syndrome lethality is called gastrointestinal death. Two-parameter Weibull risk functions are recommended for estimating the risk of hematopoietic, pulmonary, or gastrointestinal death. The risks are obtained indirectly by using hazard functions; as a result, this type of approach has been called hazard-function modeling and the models generated are called hazard-function models. In the 1989 NUREG/CR-4214 report, changes were made in the parameter values for a number of effects, and the models used to estimate hematopoietic and pulmonary deaths were substantially revised. Upper and lower estimates of model parameters are provided for all early health effects models. In this paper, we discuss the 1989 models for hematopoietic and pulmonary deaths, highlighting the differences between the 1989 and 1985 models. In addition, we give the reasons for which the 1985 models were modified
Safeguards system effectiveness modeling
International Nuclear Information System (INIS)
Bennett, H.A.; Boozer, D.D.; Chapman, L.D.; Daniel, S.L.; Engi, D.; Hulme, B.L.; Varnado, G.B.
1976-01-01
A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. The overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined
Safeguards system effectiveness modeling
International Nuclear Information System (INIS)
Boozer, D.D.; Hulme, B.L.; Daniel, S.L.; Varnado, G.B.; Bennett, H.A.; Chapman, L.D.; Engi, D.
1976-09-01
A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. In this paper, the overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined
Safeguards system effectiveness modeling
International Nuclear Information System (INIS)
Bennett, H.A.; Boozer, D.D.; Chapman, L.D.; Daniel, S.L.; Engi, D.; Hulme, B.L.; Varnado, G.B.
1976-01-01
A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. In this paper, the overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined
Biophysical models of radiobiological effects
International Nuclear Information System (INIS)
Obaturov, G.M.
1987-01-01
Radiobiological effect models at different organization levels, developed by the author, are presented. Classification and analysis of concepts and biophysical models at molecular, genetic and cellular levels, developed by Soviet and foreign authors in comparison to inherent models, are conducted from the viewpoint of system approach to radiobiological processes and of modelling principles. Models are compared with each other, limits of their applicability and drawbacks are determined. Evaluation of the model truthfulness is conducted according to a number of criteria, ways of further investigations and experimental examination of some models are proposed
Notes on the quantum tetrahedron
Coquereaux, Robert
2002-01-01
This is a set of notes describing several aspects of the space of paths on ADE Dynkin diagrams, with a particular attention paid to the graph E6. Many results originally due to A. Ocneanu are here described in a very elementary way (manipulation of square or rectangular matrices). We define the concept of essential matrices for a graph and describe their module properties with respect to right and left actions of fusion algebras. In the case of the graph E6, essential matrices build up a right module with respect to its fusion algebra but a left module with respect to the fusion algebra of A11. We present two original results: 1) We show how to recover the Ocneanu graph of quantum symmetries of the Dynkin diagram E6 from the natural multiplication defined in the tensor square of its fusion algebra (the tensor product should be taken over a particular subalgebra); this is the Cayley graph for the two generators of the twelve dimensional algebra (E6 \\otimes_A3 E6); here A3 and E6 refer to the commutative fusion...
Kriging with mixed effects models
Directory of Open Access Journals (Sweden)
Alessio Pollice
2007-10-01
Full Text Available In this paper the effectiveness of the use of mixed effects models for estimation and prediction purposes in spatial statistics for continuous data is reviewed in the classical and Bayesian frameworks. A case study on agricultural data is also provided.
Propagator with positive cosmological constant in the 3D Euclidean quantum gravity toy model
International Nuclear Information System (INIS)
Bunting, William E; Rovelli, Carlo
2014-01-01
We study the propagator on a single tetrahedron in a three-dimensional toy model of quantum gravity with positive cosmological constant. The cosmological constant is included in the model via q-deformation of the spatial symmetry algebra, that is, we use the Turaev–Viro amplitude. The expected repulsive effect of dark energy is recovered in numerical and analytic calculations of the propagator at large scales comparable to the infrared cutoff. However, due to the simplicity of the model, we do not obtain the exact Newton limit of the propagator. This is a first step toward the similar calculation in the full 3+1 dimensional theory with larger numbers of simplicies. (paper)
Internet advertising effectiveness measurement model
Marcinkevičiūtė, Milda
2007-01-01
The research object of the master thesis is internet advertising effectiveness measurement. The goal of the work is after making theoretical studies of internet advertising effectiveness measurement (theoretical articles, practical researches and cetera), formulate the conceptual IAEM model and examine it empirically. The main tasks of the work are: to analyze internet advertising, it’s features, purposes, spread formats, functions, advantages and disadvantages; present the effectiveness of i...
Effective modelling of acoustofluidic devices
DEFF Research Database (Denmark)
Ley, Mikkel Wennemoes Hvitfeld
, and 3) acoustic streaming patterns in the devices considered in model 2). 1) We derive an effective model for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced......, and of the momentum transfer between the particles and the suspension. 2) We derive a full 3D numerical model for the coupled acoustic fields in mm-sized water-filled glass capillaries, calculating pressure field in the liquid coupled to the displacement field of the glass channel, taking into account mixed standing...... for the acoustic field in glass capillary devices derived in 2), we make an effective model for calculating the acoustic streaming velocity in 3D. To do this, we use recent analytical results that allows calculation of the acoustic streaming field resulting from channel-wall oscillations in any direction...
Modeling Incoherent Electron Cloud Effects
International Nuclear Information System (INIS)
Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.
2007-01-01
Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed
Trampoline Effect: Observations and Modeling
Guyer, R.; Larmat, C. S.; Ulrich, T. J.
2009-12-01
The Iwate-Miyagi earthquake at site IWTH25 (14 June 2008) had large, asymmetric at surface vertical accelerations prompting the sobriquet trampoline effect (Aoi et. al. 2008). In addition the surface acceleration record showed long-short waiting time correlations and vertical-horizontal acceleration correlations. A lumped element model, deduced from the equations of continuum elasticity, is employed to describe the behavior at this site in terms of a surface layer and substrate. Important ingredients in the model are the nonlinear vertical coupling between the surface layer and the substrate and the nonlinear horizontal frictional coupling between the surface layer and the substrate. The model produces results in qualitative accord with observations: acceleration asymmetry, Fourier spectrum, waiting time correlations and vertical acceleration-horizontal acceleration correlations. [We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work].
Toy models for wrapping effects
International Nuclear Information System (INIS)
Penedones, Joao; Vieira, Pedro
2008-01-01
The anomalous dimensions of local single trace gauge invariant operators in N = 4 supersymmetric Yang-Mills theory can be computed by diagonalizing a long range integrable Hamiltonian by means of a perturbative asymptotic Bethe ansatz. This formalism breaks down when the number of fields of the composite operator is smaller than the range of the Hamiltonian which coincides with the order in perturbation theory at study. We analyze two spin chain toy models which might shed some light on the physics behind these wrapping effects. One of them, the Hubbard model, is known to be closely related to N = 4 SYM. In this example, we find that the knowledge of the effective spin chain description is insufficient to reconstruct the finite size effects of the underlying electron theory. We compute the wrapping corrections for generic states and relate them to a Luscher like approach. The second toy models are long range integrable Hamiltonians built from the standard algebraic Bethe ansatz formalism. This construction is valid for any symmetry group. In particular, for non-compact groups it exhibits an interesting relation between wrapping interactions and transcendentality.
Modeling quantization effects in field effect transistors
International Nuclear Information System (INIS)
Troger, C.
2001-06-01
Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied
Better models are more effectively connected models
Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John
2016-04-01
The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity
Directory of Open Access Journals (Sweden)
Thomas Pressel
2010-01-01
Full Text Available Thomas Pressel1, Markus D Schofer1, Jörg Meiforth2, Markus Lengsfeld1, Jan Schmitt11Department of Orthopaedics and Rheumatology, University Hospital Marburg, Marburg, Germany; 2St. Vincentius Kliniken, Klinik für Orthopädie, Karlsruhe, GermanyAbstract: Wedge osteotomies are used to correct bone deformities or change the forces acting on bones and joints in the human body. Finite element models can be employed to simulate the effect of such operations on the bone or adjacent joints. The automatic generation of voxel models derived from computed tomography data is a common procedure, but the major drawback of the method lies in irregular model surfaces. Therefore, the concept of hybrid models combining voxel and tetrahedron meshes was developed. We present an algorithm to simulate wedge osteotomies in voxel models by adding tetrahedron to brick elements. Applicability of the procedure was tested by performing a parametric study using a tibia model created from computed tomography scans taken in vivo applying individually calculated force conditions. The osteotomy angle largely affected maximum stresses: at 2.5 degrees valgus, the stresses at the medial and lateral tibial plateau were equivalent, while increasing valgus angles reduced medial stresses. The algorithm described here is an improvement of former mesh generation procedures and allows a better representation of the geometry at the osteotomy level. The algorithm can be used for all wedge osteotomies and is not limited to the tibia.Keywords: finite element/osteotomy/voxel/pre-operative planning, simulation, mesh algorithm
Modelling irradiation effect of EUROFER
International Nuclear Information System (INIS)
Boutard, J.-L.; Dudarev, S.; Victoria, M.
2006-01-01
In fusion power reactor, the properties that controlled the behaviour of materials are affected at the atom scale: (i) the crystalline structure is locally destroyed where a displacement cascade occurs, (ii) the chemical bond is affected by transmutation products such as He and H, (iii) an radiation induced microstructure will take place due the diffusion of these point defects and impurities EFDA has launched a programme since 2002 to develop and validate modelling tools to predict the radiation effects in the reference ferritic martensitic steel Eurofer. Up to now, the effort has been devoted (i) to validate the multi-scale modelling approach based on ab-initio energetics map of point defects and He, (iii) to develop inter-atomic potentials for Molecular Dynamics simulation of displacement cascades and dislocation dynamics. Formation and migration energies and diffusion mechanisms of small vacancy (n< ) and interstitial clusters (n< ) were computed with the ab-initio code SIESTA and used to successfully predict via Kinetic Monte Carlo the experimental recovery stages of radiation damage in ultra high purity Fe. A complete He and point defect energetics mapping was ab-initio determined in Fe-C and used to reproduce via Rate Theory He-desorption from pre-implanted specimens. A developed '' magnetic '' potential is capable of transferring the magnetic properties of Fe due to the 3d-electron correlation to the scale of the Molecular Dynamics. An inter-atomic potential is being developed to reproduce the thermodynamics of the Fe-Cr system. The program will now be devoted (i) to develop atom-scale reference kinetic methods to predict the phase - stability of the Fe-Cr thermally and under irradiation (ii) to predict at the atom scale the core structure and dynamics of screw dislocation and their collective behaviour at the meso-scale, using Discrete Dislocation Dynamics (iii) to validate at the relevant scale using the multi-beam CEA-CNRS facility JANNUS. JANNUS allows
Modelling the effect of land use change on hydrological model ...
African Journals Online (AJOL)
Modelling the effect of land use change on hydrological model parameters via linearized calibration method in the upstream of Huaihe River Basin, China. ... is presented, based on the analysis of the problems of the objective function of the ...
A Departmental Cost-Effectiveness Model.
Holleman, Thomas, Jr.
In establishing a departmental cost-effectiveness model, the traditional cost-effectiveness model was discussed and equipped with a distant and deflation equation for both benefits and costs. Next, the economics of costing was examined and program costing procedures developed. Then, the model construct was described as it was structured around the…
MOS modeling hierarchy including radiation effects
International Nuclear Information System (INIS)
Alexander, D.R.; Turfler, R.M.
1975-01-01
A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits
The differential susceptibility to media effects model
Valkenburg, P.M.; Peter, J.
2013-01-01
In this theoretical article, we introduce the Differential Susceptibility to Media Effects Model (DSMM), a new, integrative model to improve our understanding of media effects. The DSMM organizes, integrates, and extends the insights developed in earlier microlevel media-effects theories. It
A Strategic Systems Model for Effective Recruiting
National Research Council Canada - National Science Library
Woolever, Daniel
2003-01-01
.... After introducing a model for effective and efficient recruiting, this Strategic Research Project describes the Air Force recruiting organizational structure, management processes and practices...
Modeling of Pressure Effects in HVDC Cables
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole; Strøbech, Esben
1999-01-01
A model is developed for the prediction of pressure effects in HVDC mass impregnatedcables as a result of temperature changes.To test the model assumptions, experiments were performed in cable like geometries.It is concluded that the model may predict the formation of gas cavities.......A model is developed for the prediction of pressure effects in HVDC mass impregnatedcables as a result of temperature changes.To test the model assumptions, experiments were performed in cable like geometries.It is concluded that the model may predict the formation of gas cavities....
Modeling the effects of labeling
DEFF Research Database (Denmark)
Juhl, Hans Jørn; Fjord, Thomas Ahle; Poulsen, Carsten Stig
A new approach to evaluate the consequences of labeling is presented and applied to test the potential effect of a label on fresh fish. Labeling effects on quality perceptions and overall quality are studied. The empirical study is based on an experimental design and nearly 500 respondents...
Effective potential models for hadrons
International Nuclear Information System (INIS)
Lucha, W.
1995-12-01
The aim of these lectures is to give a self-contained introduction to nonrelativistic potential models, to their formulation as well as to their possible applications. At the price of some lack of (in a mathematical sense) rigorous derivations, we try to give a feeling and understanding for the simplest conceivable method to extract the explicit form of the forces acting between quarks from the interplay between experimental observations and theoretical considerations. According to this spirit, we demonstrate, in detail, how to obtain the underlying Hamiltonian and how to determine the Lorentz structure of the quark-(anti-)quark interaction potential from well-established experimental facts. (author)
Standard Model Effective Potential from Trace Anomalies
Directory of Open Access Journals (Sweden)
Renata Jora
2018-01-01
Full Text Available By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We find that this kind of potential may describe well the known phenomenology of the Higgs boson.
Modelling of Size Effect with Regularised Continua
Directory of Open Access Journals (Sweden)
H. Askes
2004-01-01
Full Text Available A nonlocal damage continuum and a viscoplastic damage continuum are used to model size effects. Three-point bending specimens are analysed, whereby a distinction is made between unnotched specimens, specimens with a constant notch and specimens with a proportionally scaled notch. Numerical finite element simulations have been performed for specimen sizes in a range of 1:64. Size effects are established in terms of nominal strength and compared to existing size effect models from the literature.
Scientists' internal models of the greenhouse effect
Libarkin, J. C.; Miller, H.; Thomas, S. R.
2013-12-01
A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.
Consideration of the Verleur model of far-infrared spectroscopy of ternary compounds
International Nuclear Information System (INIS)
Robouch, B. V.; Kisiel, A.; Sheregii, E. M.
2001-01-01
The clustering model proposed by Verleur and Barker [Phys. Rev. 149, 715 (1966)] to interpret far infrared data for face-centered-cubic ternary compounds is critically analyzed. It is shown that their approach, satisfactory for fitting some ternary compound spectral curves, is too restricted by its one-parameter β model to be able to describe preferences (with respect to a random distribution case) for the five tetrahedron configurations
Decomposition of radiational effects of model feedbacks
International Nuclear Information System (INIS)
Ellsaesser, H.W.; MacCracken, M.C.; Potter, G.L.; Mitchell, C.S.
1981-08-01
Three separate doubled CO 2 experiments with the statistical dynamic model are used to illustrate efforts to study the climate dynamics, feedbacks, and interrelationships of meteorological parameters by decomposing and isolating their individual effects on radiation transport
Intergenerational modelling of the greenhouse effect
Spash, Clive L.
1994-01-01
A major implication of global climate change is that future generations will suffer severe damages while the current generation benefits. In this paper a model is developed to analyze the potential need for mitigating the adverse impacts of the greenhouse effect on efficiency grounds. The model characterises basic transfers, investigate the effect of greenhouse emissions, and analyze exogenous and endogenous uncertainty. The first (or current) generation faces the problem of dividing availabl...
Effective operator treatment of the Lipkin model
International Nuclear Information System (INIS)
Abraham, K.J.; Vary, J.P.
2004-01-01
We analyze the Lipkin model in the strong coupling limit using effective operator techniques. We present both analytical and numerical results for low energy effective Hamiltonians. We investigate the reliability of various approximations used to simplify the nuclear many body problem, such as the cluster approximation. We demonstrate, in explicit examples, certain limits to the validity of the cluster approximation but caution that these limits may be particular to this model where the interactions are of unlimited range
Magnetoelastic effect in an exchange model
International Nuclear Information System (INIS)
Vallejo, E.
2009-01-01
The effect of the interplay between magnetism, charge ordering and lattice distortion within a like double and super-exchange model is studied in low-dimensional systems. An important magnetoelastic effect that leads to a lattice contraction is presented in conjunction with an analytical minimization for a three-site one-dimensional model. The model is discussed in connection with the magnetism, charge ordering and the contraction of the rungs experimentally observed within the three-leg ladders (3LL) present in the oxyborate Fe 3 O 2 BO 3
Random effects models in clinical research
Cleophas, T. J.; Zwinderman, A. H.
2008-01-01
BACKGROUND: In clinical trials a fixed effects research model assumes that the patients selected for a specific treatment have the same true quantitative effect and that the differences observed are residual error. If, however, we have reasons to believe that certain patients respond differently
Modelling synergistic effects of appetite regulating hormones
DEFF Research Database (Denmark)
Schmidt, Julie Berg; Ritz, Christian
2016-01-01
We briefly reviewed one definition of dose addition, which is applicable within the framework of generalized linear models. We established how this definition of dose addition corresponds to effect addition in case only two doses per compound are considered for evaluating synergistic effects. The....... The link between definitions was exemplified for an appetite study where two appetite hormones were studied....
No acute tetrahedron is an 8-reptile
Haverkort, H.J.
2018-01-01
An r-gentiling is a dissection of a shape into r ≥ 2 parts which are all similar to the original shape. An r-reptiling is an r-gentiling of which all parts are mutually congruent. The complete characterization of all reptile tetrahedra has been a long-standing open problem. This note concerns acute
Atmospheric greenhouse effect - simple model; Atmosfaerens drivhuseffekt - enkel modell
Energy Technology Data Exchange (ETDEWEB)
Kanestroem, Ingolf; Henriksen, Thormod
2011-07-01
The article shows a simple model for the atmospheric greenhouse effect based on consideration of both the sun and earth as 'black bodies', so that the physical laws that apply to them, may be used. Furthermore, explained why some gases are greenhouse gases, but other gases in the atmosphere has no greenhouse effect. But first, some important concepts and physical laws encountered in the article, are repeated. (AG)
Mixed-effects regression models in linguistics
Heylen, Kris; Geeraerts, Dirk
2018-01-01
When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...
Kovacs effect in solvable model glasses
International Nuclear Information System (INIS)
Aquino, Gerardo; Leuzzi, Luca; Nieuwenhuizen, Theo M
2006-01-01
The Kovacs protocol, based on the temperature shift experiment originally conceived by A.J. Kovacs and applied on glassy polymers, is implemented in an exactly solvable model with facilitated dynamics. This model is based on interacting fast and slow modes represented respectively by spherical spins and harmonic oscillator variables. Due to this fundamental property and to slow dynamics, the model reproduces the characteristic nonmonotonic evolution known as the 'Kovacs effect', observed in polymers, spin glasses, in granular materials and models of molecular liquids, when similar experimental protocols are implemented
Kovacs effect in solvable model glasses
Aquino, Gerardo; Leuzzi, Luca; Nieuwenhuizen, Theo M.
2006-05-01
The Kovacs protocol, based on the temperature shift experiment originally conceived by A.J. Kovacs and applied on glassy polymers [1], is implemented in an exactly solvable model with facilitated dynamics. This model is based on interacting fast and slow modes represented respectively by spherical spins and harmonic oscillator variables. Due to this fundamental property and to slow dynamics, the model reproduces the characteristic nonmonotonic evolution known as the ''Kovacs effect'', observed in polymers, spin glasses, in granular materials and models of molecular liquids, when similar experimental protocols are implemented.
ANSYS Modeling of Hydrostatic Stress Effects
Allen, Phillip A.
1999-01-01
Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.
Effective field theory and integrability in two-dimensional Mott transition
International Nuclear Information System (INIS)
Bottesi, Federico L.; Zemba, Guillermo R.
2011-01-01
Highlights: → Mott transition in 2d lattice fermion model. → 3D integrability out of 2D. → Effective field theory for Mott transition in 2d. → Double Chern-Simons. → d-Density waves. - Abstract: We study the Mott transition in a two-dimensional lattice spinless fermion model with nearest neighbors density-density interactions. By means of a two-dimensional Jordan-Wigner transformation, the model is mapped onto the lattice XXZ spin model, which is shown to possess a quantum group symmetry as a consequence of a recently found solution of the Zamolodchikov tetrahedron equation. A projection (from three to two space-time dimensions) property of the solution is used to identify the symmetry of the model at the Mott critical point as U q (sl(2)-circumflex)xU q (sl(2)-circumflex), with deformation parameter q = -1. Based on this result, the low-energy effective field theory for the model is obtained and shown to be a lattice double Chern-Simons theory with coupling constant k = 1 (with the standard normalization). By further employing the effective filed theory methods, we show that the Mott transition that arises is of topological nature, with vortices in an antiferromagnetic array and matter currents characterized by a d-density wave order parameter. We also analyze the behavior of the system upon weak coupling, and conclude that it undergoes a quantum gas-liquid transition which belongs to the Ising universality class.
Generalized Born Models of Macromolecular Solvation Effects
Bashford, Donald; Case, David A.
2000-10-01
It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.
A single quark effective potential model
International Nuclear Information System (INIS)
Bodmann, B.E.J.; Vasconcellos, C.A.Z.
1994-01-01
In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Random effect selection in generalised linear models
DEFF Research Database (Denmark)
Denwood, Matt; Houe, Hans; Forkman, Björn
We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...
Modelling vocal anatomy's significant effect on speech
de Boer, B.
2010-01-01
This paper investigates the effect of larynx position on the articulatory abilities of a humanlike vocal tract. Previous work has investigated models that were built to resemble the anatomy of existing species or fossil ancestors. This has led to conflicting conclusions about the relation between
COMSOL modelling of the acoustoelastic effect
International Nuclear Information System (INIS)
Watson, N J; Hazlehurst, T; Povey, M J W; Drennan, A; Seaman, P
2015-01-01
Many structural components are subjected to either constant or temporal mechanical loads, such as a suspension bridge bolts and rail tracks. Methods are required to accurately and efficiently measure the stresses experienced by these components to ensure they can continue to operate in an effective and safe manner. Acoustic techniques can be used to monitor the stress in a solid material via the acoustoelastic effect. This is the stress dependence of the acoustic velocity in an elastic media. This work develops a multiphysics computational model to study the acoustoelastic effect in a three point bending system. A simple linear relationship was utilised to represent the stress effect on the acoustic velocity. The simulation results were compared with experimental results and the same general trend was observed. An increase in applied load resulted in a greater difference between the time of flight of two transducers at the top and bottom of a component and perpendicular to the applied load. However, there were quantitative differences between the model and the experiment. The model was used to investigate different ultrasound transducer location and operating frequency, highlighting the benefit of modelling tools for the design of acoustic equipment
Effective models for excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin
We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...
BUSINESS MODELS FOR INCREASING TECHNOLOGICAL TRANSFER EFFECTIVENESS
Directory of Open Access Journals (Sweden)
Simina FULGA
2016-05-01
Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer organizations (centers from ReNITT, by using the specific instruments of Business Model Canvas, associated to the technological transfer value chain for the value added services addressed to their clients and according to a continuously improved competitive strategy over competition analysis.
Biologically based multistage modeling of radiation effects
Energy Technology Data Exchange (ETDEWEB)
William Hazelton; Suresh Moolgavkar; E. Georg Luebeck
2005-08-30
This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of
Synergistic effects in threshold models on networks
Juul, Jonas S.; Porter, Mason A.
2018-01-01
Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.
Modeling of the Yarkovsky and YORP effects
Rozitis, B.
2014-07-01
The Yarkovsky and YORP effects are now widely regarded to be fundamental mechanisms, in addition to collisions and gravitational forces, which drive the dynamical and physical evolution of small asteroids in the Solar System [1]. They are caused by the net force and torque resulting from the asymmetric reflection and thermal re-radiation of sunlight from an asteroid's surface. The net force (Yarkovsky effect) causes the asteroid's orbit to drift outwards or inwards depending on whether the asteroid is a prograde or retrograde rotator. The first direct measurement of Yarkovsky orbital drift was achieved by sensitive radar-ranging on the near-Earth asteroid (NEA) (6489) Golevka in 2003 [2]. The net torque (YORP effect) changes the asteroid's rotation rate and the direction of its spin axis. It can cause an asteroid to spin faster or slower depending on the shape asymmetry, and the first direct measurement of the YORP rotational acceleration was achieved by lightcurve observations on NEA (54509) YORP in 2007 [3]. Since these first direct detections, the Yarkovsky orbital drift has been detected in several tens of NEAs [4,5], and the YORP rotational acceleration has been detected in four more NEAs [6--9]. Indirect evidence of the action of these two effects has also been seen in the populations of NEAs [10], small main-belt asteroids [11], and asteroid families [12]. Modeling of these effects allows further insights into the properties of detected asteroids to be gained, such as the bulk density, obliquity, and surface thermal properties. Recently, high-precision astrometric observations of the Yarkovsky orbital drift of PHA (101955) Bennu were combined with suitable models informed by thermal-infrared observations to derive a bulk density with an uncertainty comparable to that of in-situ spacecraft investigations [13]. Also, the recent YORP effect detection in (25143) Itokawa was combined with a model utilizing the highly detailed Hayabusa-derived shape model to infer
Are Quantum Models for Order Effects Quantum?
Moreira, Catarina; Wichert, Andreas
2017-12-01
The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.
Effective orthorhombic anisotropic models for wavefield extrapolation
Ibanez-Jacome, W.
2014-07-18
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
Effective orthorhombic anisotropic models for wavefield extrapolation
Ibanez-Jacome, W.; Alkhalifah, Tariq Ali; Waheed, Umair bin
2014-01-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth's subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
SOME THEORETICAL MODELS EXPLAINING ADVERTISING EFFECTS
Directory of Open Access Journals (Sweden)
Vasilica Magdalena SOMEŞFĂLEAN
2014-06-01
Full Text Available Persuade clients is still the main focus of the companies, using a set of methods and techniques designed to influence their behavior, in order to obtain better results (profits over a longer period of time. Since the late nineteenth - early twentieth century, the american E.St.Elmo Lewis, considered a pioneer in advertising and sales, developed the first theory, AIDA model, later used by marketers and advertisers to develop a marketing communications strategy. Later studies have developed other models that are the main subject of this research, which explains how and why persuasive communication works, to understand why some approaches are effective and others are not.
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
The modelling of health effects in COSYMA
International Nuclear Information System (INIS)
Ehrhardt, J.; Steinhauer, C.
1991-01-01
The presentation gives a brief overview of the types of health effects considered in each of the three subsystems of COSYMA, the way that the corresponding models are implemented and their present default parameter values. The risk of early effects is calculated using hazard functions, as recently recommended by US Nuclear Regulatory Commission and NRPB. The early fatal effects specified in COSYMA comprise those following the irradiation of the bone marrow (hematopoietic syndrome), the lung (pulmonary syndrome), the GI-tract (gastrointestinal syndrome) and skin (skin burns). In addition the mortality of pre-and neonates after exposure in utero is quantified. Of the possible non-fatal effects the only ones included are those which lead to a severe disability of the affected person for the rest of their life or which require medical treatment and/or social care
Models for impurity effects in tokamaks
International Nuclear Information System (INIS)
Hogan, J.T.
1980-03-01
Models for impurity effects in tokamaks are described with an emphasis on the relationship between attainment of high β and impurity problems. We briefly describe the status of attempts to employ neutral beam heating to achieve high β in tokamaks and propose a qualitative model for the mechanism by which heavy metal impurities may be produced in the startup phase of the discharge. We then describe paradoxes in impurity diffusion theory and discuss possible resolutions in terms of the effects of large-scale islands and sawtooth oscillations. Finally, we examine the prospects for the Zakharov-Shafranov catastrophe (long time scale disintegration of FCT equilibria) in the context of present and near-term experimental capability
Modelling of rate effects at multiple scales
DEFF Research Database (Denmark)
Pedersen, R.R.; Simone, A.; Sluys, L. J.
2008-01-01
, the length scale in the meso-model and the macro-model can be coupled. In this fashion, a bridging of length scales can be established. A computational analysis of a Split Hopkinson bar test at medium and high impact load is carried out at macro-scale and meso-scale including information from the micro-scale.......At the macro- and meso-scales a rate dependent constitutive model is used in which visco-elasticity is coupled to visco-plasticity and damage. A viscous length scale effect is introduced to control the size of the fracture process zone. By comparison of the widths of the fracture process zone...
Process model simulations of the divergence effect
Anchukaitis, K. J.; Evans, M. N.; D'Arrigo, R. D.; Smerdon, J. E.; Hughes, M. K.; Kaplan, A.; Vaganov, E. A.
2007-12-01
We explore the extent to which the Vaganov-Shashkin (VS) model of conifer tree-ring formation can explain evidence for changing relationships between climate and tree growth over recent decades. The VS model is driven by daily environmental forcing (temperature, soil moisture, and solar radiation), and simulates tree-ring growth cell-by-cell as a function of the most limiting environmental control. This simplified representation of tree physiology allows us to examine using a selection of case studies whether instances of divergence may be explained in terms of changes in limiting environmental dependencies or transient climate change. Identification of model-data differences permits further exploration of the effects of tree-ring standardization, atmospheric composition, and additional non-climatic factors.
Internet advertising effectiveness by using hierarchical model
RAHMANI, Samaneh
2015-01-01
Abstract. Present paper has been developed with the title of internet advertising effectiveness by using hierarchical model. Presenting the question: Today Internet is an important channel in marketing and advertising. The reason for this could be the ability of the Internet to reduce costs and people’s access to online services[1]. Also advertisers can easily access a multitude of users and communicate with them at low cost [9]. On the other hand, compared to traditional advertising, interne...
Entanglement effects in model polymer networks
Everaers, R.; Kremer, K.
The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic
ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL
Directory of Open Access Journals (Sweden)
Kok Hwa Yu
2011-10-01
Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.
Atomic Models for Motional Stark Effects Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K
2007-07-26
We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.
Quantum effects and regular cosmological models
International Nuclear Information System (INIS)
Gurovich, V.Ts.; Starobinskij, A.A.; AN SSSR, Moscow. Inst. Teoreticheskoj Fiziki)
1979-01-01
Allowance for the quantum nature of material fields and weak gravitational waves on the background of the classical metric of the cosmological model results in two basic effects: vacuum polarization and particle production. The first of the effects may be taken into account qualitatively by introducing into the lagrangian density of the gravitational field an additional term of the type A+BR 2 +CR 2 In|R/R 0 |; the second effect can be accounted for by prescribing a local rate of particle (graviton) production which is proportional to the square of the scalar curvature R 2 . It is shown that the taking into account of the combined effect of these phenomena on the evolution of a homogeneous anisotropic metric of the first Bianchi type removes the Einstein singularities. Asymptotic approach to the classical model, however, is attained only if additional assumptions are made. At the stage of compression the solution is close to the anisotropic vacuum Kasner solution; at the expansion stage it tends to the isotropic Friedman solution in which matter is produced by the gravitational field
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
Directory of Open Access Journals (Sweden)
Sh. Khachatryan
2015-10-01
Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
Cost effectiveness of recycling: A systems model
Energy Technology Data Exchange (ETDEWEB)
Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)
2013-11-15
Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.
Theoretical model of the SOS effect
Energy Technology Data Exchange (ETDEWEB)
Darznek, S A; Mesyats, G A; Rukin, S N; Tsiranov, S N [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics
1997-12-31
Physical principles underlying the operation of semiconductor opening switches (SOS) are highlighted. The SOS effect occurs at a current density of up to 60 kA/cm{sup 2} in silicon p{sup +}-p-n-n{sup +} structures filled with residual electron-hole plasma. Using a theoretical model developed for plasma dynamic calculations, the mechanism by which current passes through the structure at the stage of high conduction and the processes that take place at the stage of current interruption were analyzed. The dynamics of the processes taking place in the structure was calculated with allowance for both diffusive and drift mechanisms of carrier transport. In addition, two recombination types, viz. recombination via impurities and impact Auger recombination, were included in the model. The effect of the structure on the pumping-circuit current and voltage was also taken into account. The real distribution of the doped impurity in the structure and the avalanche mechanism of carrier multiplication were considered. The results of calculations of a typical SOS are presented. The dynamics of the electron-hole plasma is analyzed. It is shown that the SOS effect represents a qualitatively new mechanism of current interruption in semiconductor structures. (author). 4 figs., 7 refs.
Modeling cellular effects of coal pollutants
International Nuclear Information System (INIS)
Anon.
1981-01-01
The goal of this project is to develop and test models for the dose and dose-rate dependence of biological effects of coal pollutants on mammalian cells in tissue culture. Particular attention is given to the interaction of pollutants with the genetic material (deoxyribonucleic acid, or NDA) in the cell. Unlike radiation, which can interact directly with chromatin, chemical pollutants undergo numerous changes before the ultimate carcinogen becomes covalently bound to the DNA. Synthetic vesicles formed from a phospholipid bilayer are being used to investigate chemical transformations that may occur during the transport of pollutants across cellular membranes. The initial damage to DNA is rapidly modified by enzymatic repair systems in most living organisms. A model has been developed for predicting the effects of excision repair on the survival of human cells exposed to chemical carcinogens. In addition to the excision system, normal human cells also have tolerance mechanisms that permit continued growth and division of cells without removal of the damage. We are investigating the biological effect of damage passed to daughter cells by these tolerance mechanisms
Nambu sigma model and effective membrane actions
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Mathematical Institute, Charles University, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland (United Kingdom)
2012-07-09
We propose an effective action for a p{sup Prime }-brane with open p-branes ending on it. The action has dual descriptions similar to the commutative and non-commutative ones of the DBI action for D-branes and open strings. The Poisson structure governing the non-commutativity of the D-brane is replaced by a Nambu structure and the open-closed string relations are generalized to the case of p-branes utilizing a novel Nambu sigma model description of p-branes. In the case of an M5-brane our action interpolates between M5-actions already proposed in the literature and matrix-model like actions involving Nambu structures.
Nambu sigma model and effective membrane actions
International Nuclear Information System (INIS)
Jurčo, Branislav; Schupp, Peter
2012-01-01
We propose an effective action for a p ′ -brane with open p-branes ending on it. The action has dual descriptions similar to the commutative and non-commutative ones of the DBI action for D-branes and open strings. The Poisson structure governing the non-commutativity of the D-brane is replaced by a Nambu structure and the open-closed string relations are generalized to the case of p-branes utilizing a novel Nambu sigma model description of p-branes. In the case of an M5-brane our action interpolates between M5-actions already proposed in the literature and matrix-model like actions involving Nambu structures.
Effective hamiltonian calculations using incomplete model spaces
International Nuclear Information System (INIS)
Koch, S.; Mukherjee, D.
1987-01-01
It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations
Insider safeguards effectiveness model (ISEM). User's guide
International Nuclear Information System (INIS)
Boozer, D.D.; Engi, D.
1977-11-01
A comprehensive presentation of the ISEM computer program is provided. ISEM was designed to evaluate the effectiveness of a fixed-site facility safeguards system in coping with the theft, sabotage, or dispersal of radiological material by a single person who has authorized access to the facility. This insider may be aided by a group of insiders who covertly degrade sensor systems. Each ISEM run evaluates safeguards system performance for a particular scenario specified by the user. The dispatching of guards following alarms and their interaction with the insider are explicitly treated by the model
Optical model representation of coupled channel effects
International Nuclear Information System (INIS)
Wall, N.S.; Cowley, A.A.; Johnson, R.C.; Kobas, A.M.
1977-01-01
A modification to the usual 6-parameter Woods-Saxon parameterization of the optical model for the scattering of composite particles is proposed. This additional real term reflects the effect of coupling other channels to the elastic scattering. The analyses favor a repulsive interaction for this term, especially for alpha particles. It is found that the repulsive term when combined with a Woods-Saxon term yields potentials with central values and volume integrals similar to those found by uncoupled elastic scattering calculations. These values are V(r = 0) approximately equal to 125 MeV and J/4A approximately equal to 300 MeV-fm 3
A model for effective intergovernmental planning
International Nuclear Information System (INIS)
Moore, R.C.
1991-01-01
Effective intergovernmental planning processes are essential to the resolution of potential affects created by federal projects. Intergovernmental planning for the proposed Yucca Mountain High-level Nuclear Waste Repository has not been effective to date. In this paper, two successful planning efforts are described. The common elements of these processes are analyzed to provide a model that can be used for the resolution of impacts from other projects. Management authorities of the entities involved should establish a working group to conduct the intergovernmental planning. The parties must identify issues that can be resolved through intergovernmental planning. Clear management authority and direction to the staff participating the planning process is essential. Issues which cannot be resolved should not be included in the goals of the working group. Funding to support the planning process is essential
Cavitation erosion - scale effect and model investigations
Geiger, F.; Rutschmann, P.
2015-12-01
The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.
Modeling of interaction effects in granular systems
International Nuclear Information System (INIS)
El-Hilo, M.; Shatnawy, M.; Al-Rsheed, A.
2000-01-01
Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(ΔE) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(ΔE) can easily give a temperature-independent behavior of S(T) when these changes give a 1/ΔE behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur and the loops are only predicted when the interaction field is positive. From these predictions, minor loops will form when the interaction field is strong enough to magnetize some moments during the recoil process back to zero field. Thus, these minor loops are originated from interaction driving irreversible changes along the recoil curve and the irreversible component of magnetization has no direct influence on the formation of these minor loops
Modeling of interaction effects in granular systems
El-Hilo, M; Al-Rsheed, A
2000-01-01
Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...
Gyrofluid turbulence models with kinetic effects
International Nuclear Information System (INIS)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u parallel, T parallel, and T perpendicular along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ''FLR phase-mixing'' terms introduce a hyperviscosity-like damping ∝ k perpendicular 2 |Φ rvec k rvec k x rvec k'| which should provide a physics-based damping mechanism at high k perpendicular ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory
Generalized model of the microwave auditory effect
International Nuclear Information System (INIS)
Yitzhak, N M; Ruppin, R; Hareuveny, R
2009-01-01
A generalized theoretical model for evaluating the amplitudes of the sound waves generated in a spherical head model, which is irradiated by microwave pulses, is developed. The thermoelastic equation of motion is solved for a spherically symmetric heating pattern of arbitrary form. For previously treated heating patterns that are peaked at the sphere centre, the results reduce to those presented before. The generalized model is applied to the case in which the microwave absorption is concentrated near the sphere surface. It is found that, for equal average specific absorption rates, the sound intensity generated by a surface localized heating pattern is comparable to that generated by a heating pattern that is peaked at the centre. The dependence of the induced sound pressure on the shape of the microwave pulse is explored. Another theoretical extension, to the case of repeated pulses, is developed and applied to the interpretation of existing experimental data on the dependence of the human hearing effect threshold on the pulse repetition frequency.
Effective business models for electric vehicles
Directory of Open Access Journals (Sweden)
Gavrilescu Ileana
2017-07-01
Full Text Available The proposed study aims to use asyncretic and synthetic approach of two elements that have an intrinsic efficiency value: business models and electric vehicles. Our approach seeks to circumscribe more widespread concerns globally - on the one hand, to oil shortages and climate change - and on the other hand, economic efficiency to business models customized to new types of mobility. New “electric” cars projects besiege the traditional position of the conventional car. In the current economy context the concept of efficiency of business models is quite different from what it meant in a traditional sense, particularly because of new technological fields. The arguments put forward by us will be both factual and emotional. Therefore, we rely on interviews and questionnaires designed to fit significantly to the point of the study. Research in the field of new propulsion systems for vehicles has been exploring various possibilities lately, such as: electricity, hydrogen, compressed air, biogas, etc. Theoretically or in principle, it is possible for tomorrow’s vehicles to be driven by the widest variety if resources. A primary goal of our study would be to theoretically reconsider some of the contemporary entrepreneurship coordinates and secondly to provide minimum guidance for decision-making of businesses that will operate in the field of electric mobility. To achieve this, we shall specifically analyze an electric mobility system but in parallel we will address business models that lend themselves effectively on aspects of this field. With a methodology based on questionnaires that had to overcome the conventional mechanism using some of the most unusual ingredients, we hope that the results of our research will successfully constitute a contribution to the goals and especially as a means of managerial orientation for entrepreneurs in the Romanian market.
Simple model of the slingshot effect
Directory of Open Access Journals (Sweden)
Gaetano Fiore
2016-07-01
Full Text Available We present a detailed quantitative description of the recently proposed “slingshot effect.” Namely, we determine a broad range of conditions under which the impact of a very short and intense laser pulse normally onto a low-density plasma (or matter locally completely ionized into a plasma by the pulse causes the expulsion of a bunch of surface electrons in the direction opposite to the one of propagation of the pulse, and the detailed, ready-for-experiments features of the expelled electrons (energy spectrum, collimation, etc. The effect is due to the combined actions of the ponderomotive force and the huge longitudinal field arising from charge separation. Our predictions are based on estimating 3D corrections to a simple, yet powerful plane 2-fluid magnetohydrodynamic (MHD model where the equations to be solved are reduced to a system of Hamilton equations in one dimension (or a collection of which become autonomous after the pulse has overcome the electrons. Experimental tests seem to be at hand. If confirmed by the latter, the effect would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or Laser-Wake-Field ones.
A systemic approach to modelling of radiobiological effects
International Nuclear Information System (INIS)
Obaturov, G.M.
1988-01-01
Basic principles of the systemic approach to modelling of the radiobiological effects at different levels of cell organization have been formulated. The methodology is proposed for theoretical modelling of the effects at these levels
Surface effects in solid mechanics models, simulations and applications
Altenbach, Holm
2013-01-01
This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.
Marginal and Interaction Effects in Ordered Response Models
Debdulal Mallick
2009-01-01
In discrete choice models the marginal effect of a variable of interest that is interacted with another variable differs from the marginal effect of a variable that is not interacted with any variable. The magnitude of the interaction effect is also not equal to the marginal effect of the interaction term. I present consistent estimators of both marginal and interaction effects in ordered response models. This procedure is general and can easily be extended to other discrete choice models. I ...
Effect of defuzzification method of fuzzy modeling
Lapohos, Tibor; Buchal, Ralph O.
1994-10-01
Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.
Modeling demagnetization effects in permanent magnet synchronous machines
Kral, C.; Sprangers, R.L.J.; Waarma, J.; Haumer, A.; Winter, O.; Lomonova, E.
2010-01-01
This paper presents a permanent magnet model which takes temperature dependencies and demagnetization effects into account. The proposed model is integrated into a magnetic fundamental wave machine model using the model- ing language Modelica. For different rotor types permanent magnet models are
Assessing NARCCAP climate model effects using spatial confidence regions
Directory of Open Access Journals (Sweden)
J. P. French
2017-07-01
Full Text Available We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.
A synapse memristor model with forgetting effect
International Nuclear Information System (INIS)
Chen, Ling; Li, Chuandong; Huang, Tingwen; Chen, Yiran; Wen, Shiping; Qi, Jiangtao
2013-01-01
In this Letter we improved the ion diffusion term proposed in literature and redesigned the previous model as a dynamical model with two more internal state variables ‘forgetting rate’ and ‘retention’ besides the original variable ‘conductance’. The new model can not only describe the basic memory ability of memristor but also be able to capture the new finding forgetting behavior in memristor. And different from the previous model, the transition from short term memory to long term memory is also defined by the new model. Besides, the new model is better matched with the physical memristor (Pd/WOx/W) than the previous one.
Irradiation effects on polymer-model compounds
International Nuclear Information System (INIS)
Seguchi, Tadao; Hayakawa, Naohiro; Tamura, Naoyuki; Katsumura, Yosuke; Hayashi, Nariyuki; Tabata, Yoneho
1991-01-01
Irradiation effects on n-paraffins and squalane, used as models of polymers, were investigated by product analysis. Four n-paraffins, C 20 H 42 , C 21 H 44 , C 23 H 48 and C 24 H 50 , and squalane (C 30 H 62 ) were γ-irradiated under vacuum in liquid, crystalline and glassy states. The evolved gases were analyzed by gas chromatography and changes in molecular weight were analyzed by liquid chromatography and mass spectroscopy. G-values for crosslinking of n-paraffins were 1.2 for crystalline states (at 25 0 C) and 1.7 for liquid states (at 55 0 C), and showed no difference between odd and even carbon numbers. The G-value of liquid squalane was 1.7; it was 1.3 for the glassy state at low temperature (-77 0 C). Double bonds were common in the crosslinked products, especially after liquid-phase irradiation. The probability of chain scission was estimated as being negligible, though a small number of chain-scission products (which were products of scission at chain-ends or side chains) were observed by gas analysis. (author)
Modeling hydrodynamic effects on choanoflagellate feeding
Oakes, Christian; Hguyen, Hoa; Koehl, Mimi; Fauci, Lisa
2017-11-01
Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. As the closest living relative to animals, they are important for both ecological and evolutionary studies. Choanoflagellates have three unicellular types: slow swimmers, fast swimmers, and thecate (attached to a surface by a stalk). Each has different morphology and feeding rate. We use the method of regularized Stokeslets to simulate cell-fluid interactions of each type and show the hydrodynamic effects on the amount and directions of fluid flow toward the collar. After validating the swimming speeds of our models with experimental data, we calculate the rate of flow across a capture zone around the collar (flux). This sheds light on how each morphological aspect of the cell aids in bacteria capture during feeding. Among the three types, the thecate cells have the largest average flux values, implying that they take advantage of the nearby surface by creating eddies that draw bacteria into their collar for ingestion. Funding Source: FASTER Grant SURF `` National Science Foundation DUE S-STEM Award 1153796, Mach Fellowship.
Effective and efficient model clone detection
DEFF Research Database (Denmark)
Störrle, Harald
2015-01-01
Code clones are a major source of software defects. Thus, it is likely that model clones (i.e., duplicate fragments of models) have a significant negative impact on model quality, and thus, on any software created based on those models, irrespective of whether the software is generated fully...... automatically (“MDD-style”) or hand-crafted following the blueprint defined by the model (“MBSD-style”). Unfortunately, however, model clones are much less well studied than code clones. In this paper, we present a clone detection algorithm for UML domain models. Our approach covers a much greater variety...... of model types than existing approaches while providing high clone detection rates at high speed....
Modeling transient radiation effects in power MOSFETS
International Nuclear Information System (INIS)
Hoffman, J.R.; Hall, W.E.; Dunn, D.E.
1987-01-01
Using standard device specifications and simple assumptions, the transient radiation response of VDMOS MOSFETs can be modeled in a standard circuit analysis program. The device model consists of a body diode, a parasitic bipolar transistor, and elements to simulate high-current reduced breakdown. The attached photocurrent model emulates response to any pulse shape and accounts for bias-dependent depletion regions. The model can be optimized to best fit available test data
Populational Growth Models Proportional to Beta Densities with Allee Effect
Aleixo, Sandra M.; Rocha, J. Leonel; Pestana, Dinis D.
2009-05-01
We consider populations growth models with Allee effect, proportional to beta densities with shape parameters p and 2, where the dynamical complexity is related with the Malthusian parameter r. For p>2, these models exhibit a population dynamics with natural Allee effect. However, in the case of 1
models do not include this effect. In order to inforce it, we present some alternative models and investigate their dynamics, presenting some important results.
Modeling amorphization of tetrahedral structures under local approaches
International Nuclear Information System (INIS)
Jesurum, C.E.; Pulim, V.; Berger, B.; Hobbs, L.W.
1997-01-01
Many crystalline ceramics can be topologically disordered (amorphized) by disordering radiation events involving high-energy collision cascades or (in some cases) successive single-atom displacements. The authors are interested in both the potential for disorder and the possible aperiodic structures adopted following the disordering event. The potential for disordering is related to connectivity, and among those structures of interest are tetrahedral networks (such as SiO 2 , SiC and Si 3 N 4 ) comprising corner-shared tetrahedral units whose connectivities are easily evaluated. In order to study the response of these networks to radiation, the authors have chosen to model their assembly according to the (simple) local rules that each corner obeys in connecting to another tetrahedron; in this way they easily erect large computer models of any crystalline polymorphic form. Amorphous structures can be similarly grown by application of altered rules. They have adopted a simple model of irradiation in which all bonds in the neighborhood of a designated tetrahedron are destroyed, and they reform the bonds in this region according to a set of (possibly different) local rules appropriate to the environmental conditions. When a tetrahedron approaches the boundary of this neighborhood, it undergoes an optimization step in which a spring is inserted between two corners of compatible tetrahedra when they are within a certain distance of one another; component forces are then applied that act to minimize the distance between these corners and minimize the deviation from the rules. The resulting structure is then analyzed for the complete adjacency matrix, irreducible ring statistics, and bond angle distributions
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Thermal effects in shales: measurements and modeling
International Nuclear Information System (INIS)
McKinstry, H.A.
1977-01-01
Research is reported concerning thermal and physical measurements and theoretical modeling relevant to the storage of radioactive wastes in a shale. Reference thermal conductivity measurements are made at atmospheric pressure in a commercial apparatus; and equipment for permeability measurements has been developed, and is being extended with respect to measurement ranges. Thermal properties of shales are being determined as a function of temperature and pressures. Apparatus was developed to measure shales in two different experimental configurations. In the first, a disk 15 mm in diameter of the material is measured by a steady state technique using a reference material to measure the heat flow within the system. The sample is sandwiched between two disks of a reference material (single crystal quartz is being used initially as reference material). The heat flow is determined twice in order to determine that steady state conditions prevail; the temperature drop over the two references is measured. When these indicate an equal heat flow, the thermal conductivity of the sample can be calculated from the temperature difference of the two faces. The second technique is for determining effect of temperature in a water saturated shale on a larger scale. Cylindrical shale (or siltstone) specimens that are being studied (large for a laboratory sample) are to be heated electrically at the center, contained in a pressure vessel that will maintain a fixed water pressure around it. The temperature is monitored at many points within the shale sample. The sample dimensions are 25 cm diameter, 20 cm long. A micro computer system has been constructed to monitor 16 thermocouples to record variation of temperature distribution with time
A General Model for Testing Mediation and Moderation Effects
MacKinnon, David P.
2010-01-01
This paper describes methods for testing mediation and moderation effects in a dataset, both together and separately. Investigations of this kind are especially valuable in prevention research to obtain information on the process by which a program achieves its effects and whether the program is effective for subgroups of individuals. A general model that simultaneously estimates mediation and moderation effects is presented, and the utility of combining the effects into a single model is described. Possible effects of interest in the model are explained, as are statistical methods to assess these effects. The methods are further illustrated in a hypothetical prevention program example. PMID:19003535
Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M
2016-09-21
The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO 2 ) 57.5 -(B 2 O 3 ) 10 -(Na 2 O) 15 -(CaO) 15 -(MoO 3 ) 2.5 and (SiO 2 ) 57.3 -(B 2 O 3 ) 20 -(Na 2 O) 6.8 -(Li 2 O) 13.4 -(MoO 3 ) 2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na 2 MoO 4 and CaMoO 4 ). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.
Fractal Effects in Lanchester Models of Combat
2009-08-01
Lanchester models. 8. References 1 Aircraft in Warfare : The Dawn of the Fourth Arm, F W Lanchester , Constable & Co., London, 1916. 2 The Calculus of...Intermediate Asymptotics, G I Barenblatt, CUP, 1996. 14 Lanchester Models of Warfare Volumes 1 and 2, J G Taylor, Operations Research Society of America...Nagabhushana, Computers and Operations Research, 21, 615-628, 1994. 20 DSTO-TR-2331 18 Lanchester Type Models of Warfare , H K Weiss, Proc.First
Receiver Prejudice and Model Ethnicity: Impact on Advertising Effectiveness.
Lai, Hsiu-Chen Sandra; And Others
1990-01-01
Assesses the effect of model ethnicity on prejudiced respondents, and thus on advertising effectiveness. Finds that, for the most part, use of Asian models does not cause prejudiced respondents to evaluate a product or advertisement more negatively than when White models are used. (SR)
Effect of GPS errors on Emission model
DEFF Research Database (Denmark)
Lehmann, Anders; Gross, Allan
n this paper we will show how Global Positioning Services (GPS) data obtained from smartphones can be used to model air quality in urban settings. The paper examines the uncertainty of smartphone location utilising GPS, and ties this location uncertainty to air quality models. The results presented...... in this paper indicates that the location error from using smartphones is within the accuracy needed to use the location data in air quality modelling. The nature of smartphone location data enables more accurate and near real time air quality modelling and monitoring. The location data is harvested from user...
Effective Hamiltonian for 2-dimensional arbitrary spin Ising model
International Nuclear Information System (INIS)
Sznajd, J.; Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych)
1983-08-01
The method of the reduction of the generalized arbitrary-spin 2-dimensional Ising model to spin-half Ising model is presented. The method is demonstrated in detail by calculating the effective interaction constants to the third order in cumulant expansion for the triangular spin-1 Ising model (the Blume-Emery-Griffiths model). (author)
Advertisement Effectiveness for Print Media: A Conceptual Model
Prateek Maheshwari; Nitin Seth; Anoop Kumar Gupta
2015-01-01
The objective of present research paper is to highlight the importance of measuring advertisement effectiveness in print media and to develop a conceptual model for advertisement effectiveness. The developed model is based on dimensions on which advertisement effectiveness depends and on the dimensions which are used to measure the effectiveness. An in-depth and extensive literature review is carried out to understand the concept of advertisement effectiveness and its var...
Incorporating Context Effects into a Choice Model
Rooderkerk, Robert P.; Van Heerde, Harald J.; Bijmolt, Tammo H. A.
The behavioral literature provides ample evidence that consumer preferences are partly driven by the context provided by the set of alternatives. Three important context effects are the compromise, attraction, and similarity effects. Because these context effects affect choices in a systematic and
Incorporating context effects into a choice model
Bijmolt, T.H.A.; van Heerde, H.J.; Rooderkerk, R.P.
2011-01-01
The behavioral literature provides ample evidence that consumer preferences are partly driven by the context provided by the set of alternatives. three important context effects are the compromise, attraction, and similarity effects. because these context effects affect choices in a systematic and
Emergent universe model with dissipative effects
Debnath, P. S.; Paul, B. C.
2017-12-01
Emergent universe model is presented in general theory of relativity with isotropic fluid in addition to viscosity. We obtain cosmological solutions that permit emergent universe scenario in the presence of bulk viscosity that are described by either Eckart theory or Truncated Israel Stewart (TIS) theory. The stability of the solutions are also studied. In this case, the emergent universe (EU) model is analyzed with observational data. In the presence of viscosity, one obtains emergent universe scenario, which however is not permitted in the absence of viscosity. The EU model is compatible with cosmological observations.
Advertising effects in Sznajd marketing model
Christian Schulze
2002-01-01
The traditional Sznajd model, as well as its Ochrombel simplification for opinion spreading, are applied to marketing with the help of advertising. The larger the lattice is the smaller is the amount of advertising needed to convince the whole market
Effective model for deconfinement at high temperature
International Nuclear Information System (INIS)
Skokov, Vladimir
2013-01-01
In this talk I consider the deconfining phase transition at nonzero temperature in a SU(N) gauge theory, using a matrix model. I present some results including the position of the deconfining critical endpoint, where the first order transition for deconfinement is washed out by the presence of massive, dynamical quarks, and properites of the phase transition in the limit of large N. I show that the model is soluble at infinite N, and exhibits a Gross-Witten-Wadia transition
Review of health effects models for Level 3 PSA
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Hee; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Han, Seok Jung [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Many international organizations have developed health risk models. Especially, as radiation-induced cancer is an important part among health effects, development has been focused on cancer risk model. This paper reviewed the cancer risk models of international agencies; United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), National Academy of Sciences (NAS) and International Commission on Radiological Protection (ICRP). Moreover, as pre-research for improving the health risk model in Korea, this paper analyzed the three methodologies and specific details in modeling. International agencies have developed radiation-induced cancer risk model reflecting the recent A-bomb survivor LSS data. This paper reviewed the recent cancer risk model of UNSCEAR, NAS and ICRP. All three models were based on ERR and EAR model in the form of a multiplication of dose-response model and modification function. Lifetime risk was calculated as a function of exposure age and gender.
Force Modelling in Orthogonal Cutting Considering Flank Wear Effect
Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.
2017-05-01
In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.
A Bayesian Model of the Memory Colour Effect.
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects.
Tsai, Chia-Ching; Chang, Chih-Hsiang
2007-01-01
This study investigates the effect of advertising with physically attractive models on male and female adolescents. The findings suggest that highly attractive models are less effective than those who are normally attractive. Implications of social comparison are discussed.
Integrating Effects-Based and Attrition-Based Modeling
National Research Council Canada - National Science Library
DeGregorio, Edward A; Janssen, Raymond A; Wagenhals, Lee W; Messier, Richard H
2004-01-01
.... Modeling the NCW EBO process attempts to codify the belief structure and reasoning of adversaries and their cause-effect relationships with US and coalition actions, including mitigating undesired effects...
Organizational Effectiveness: Toward an Integrated Model for Schools of Nursing.
Baker, Constance M.; And Others
1997-01-01
Literature review on organizational effectiveness focuses on major assessment models: goal attainment, human relations, open systems, internal processes, culture, and life cycle. A review of studies of nursing school effectiveness is used to present an agenda for nursing research. (SK)
Modelling irradiation effects in fusion materials
International Nuclear Information System (INIS)
Victoria, M.; Dudarev, S.; Boutard, J.L.; Diegele, E.; Laesser, R.; Almazouzi, A.; Caturla, M.J.; Fu, C.C.; Kaellne, J.; Malerba, L.; Nordlund, K.; Perlado, M.; Rieth, M.; Samaras, M.; Schaeublin, R.; Singh, B.N.; Willaime, F.
2007-01-01
We review the current status of the European fusion materials modelling programme. We describe recent findings and outline potential areas for future development. Large-scale density functional theory (DFT) calculations reveal the structure of the point defects in α-Fe, and highlight the crucial part played by magnetism. The calculations give accurate migration energies of point defects and the strength of their interaction with He atoms. Kinetic models based on DFT results reproduce the stages of radiation damage recovery in iron, and stages of He-desorption from pre-implanted iron. Experiments aimed at validating the models will be carried out in the future using a multi-beam ion irradiation facility chosen for its versatility and rapid feedback
Modelling irradiation effects in fusion materials
Energy Technology Data Exchange (ETDEWEB)
Victoria, M. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Dudarev, S. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB, UK and Department of Physics, Imperial College, Exhibition Road, London SW7 2AZ (United Kingdom); Boutard, J.L. [EFDA-CSU Garching, Boltzmannstrasse 2, D-85748 Garching (Germany)], E-mail: jean-louis.boutard@tech.efda.org; Diegele, E.; Laesser, R. [EFDA-CSU Garching, Boltzmannstrasse 2, D-85748 Garching (Germany); Almazouzi, A. [Structural Materials Expert Group, Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Caturla, M.J. [Departamento de Fisica Aplicada, Universidad de Alicante, 03690 San Vicente de Raspeig (Spain); Fu, C.C. [Service de Metallurgie Physique, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France); Kaellne, J. [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Malerba, L. [Structural Materials Expert Group, Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Nordlund, K. [Association EURATOM-Tekes, Accelerator Laboratory, P.O. Box 43, 00014 University of Helsinki (Finland); Perlado, M. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Rieth, M. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung I, P.O. Box 3640, D-76021 Karlsruhe (Germany); Samaras, M. [Paul Scherrer Institute, Nuclear Energy and Safety Department, CH-5232 Villigen PSI (Switzerland); Schaeublin, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-5232 Villigen PSI (Switzerland); Singh, B.N. [Department of Materials Research, Risoe National Laboratory, DK-4000 Roskilde (Denmark); Willaime, F. [Service de Metallurgie Physique, CEA/Saclay, F-91191 Gif sur Yvette Cedex (France)
2007-10-15
We review the current status of the European fusion materials modelling programme. We describe recent findings and outline potential areas for future development. Large-scale density functional theory (DFT) calculations reveal the structure of the point defects in {alpha}-Fe, and highlight the crucial part played by magnetism. The calculations give accurate migration energies of point defects and the strength of their interaction with He atoms. Kinetic models based on DFT results reproduce the stages of radiation damage recovery in iron, and stages of He-desorption from pre-implanted iron. Experiments aimed at validating the models will be carried out in the future using a multi-beam ion irradiation facility chosen for its versatility and rapid feedback.
Modeling the effects of ozone on soybean growth and yield.
Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W
1990-01-01
A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.
An initial model for the RIED effect
International Nuclear Information System (INIS)
Hodgson, E.R.; Morono, A.
2000-01-01
A simple model based on electron acceleration in the conduction band giving rise to an increased F + oxygen vacancy lifetime provides an explanation for several radiation induced electrical degradation (RIED) associated observations in Al 2 O 3 . The increased F + radioluminescence noted during RIED is a direct consequence of the lifetime increase. The model predicts the observed electric field threshold for RIED, and an increase in the field threshold with increasing impurity content. RIED for RF electric fields is also explained. In addition the lifetime increase provides an explanation for the enhanced oxygen vacancy aggregation including colloid and gamma alumina production observed under RIED conditions
Overview of climate information needs for ecological effects models
Energy Technology Data Exchange (ETDEWEB)
Peer, R.L.
1990-01-01
Atmospheric scientists engaged in climate change research require a basic understanding of how ecological effects models incorporate climate. The report provides an overview of existing ecological models that might be used to model climate change effects on vegetation. Some agricultural models and statistical methods are also discussed. The weather input data requirements, weather simulation methods, and other model characteristics relevant to climate change research are described for a selected number of models. The ecological models are classified as biome, ecosystem, or tree models; the ecosystem models are further subdivided into species dynamics or process models. In general, ecological modelers have had to rely on readily available meteorological data such as temperature and rainfall. Although models are becoming more sophisticated in their treatment of weather and require more kinds of data (such as wind, solar radiation, or potential evapotranspiration), modelers are still hampered by a lack of data for many applications. Future directions of ecological effects models and the climate variables that will be required by the models are discussed.
Modelling irradiation effects in fusion materials
DEFF Research Database (Denmark)
Victoria, M.; Dudarev, S.; Boutard, J.L.
2007-01-01
We review the current status of the European fusion materials modelling programme. We describe recent findings and outline potential areas for future development. Large-scale density functional theory (DFT) calculations reveal the structure of the point defects in α-Fe, and highlight the crucial...
Enhanced battery model including temperature effects
Rosca, B.; Wilkins, S.
2013-01-01
Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a
Effective models for excitons in carbon nanotubes
DEFF Research Database (Denmark)
Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin
2007-01-01
We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...
Atmospheric characteristics essential for health effects modeling
International Nuclear Information System (INIS)
Nelson, N.S.
1977-01-01
Factors to be considered in evaluating the possible consequences of exposure of human populations to radioactive aerosols are reviewed. Mathematical models of the mechanisms of radioinduced carcinogenesis, tissue deposition and lung clearance of radioactive aerosols, and meteorological parameters affecting the diffusion of radioactive aerosols in the atmosphere are discussed
Unreliability effects in public transport modelling.
van Oort, Niels; Brands, Ties; de Romph, Erik; Aceves Flores, Jessica
2015-01-01
Nowadays, transport demand models do not explicitly evaluate the impacts of service reliability of transit. Service reliability of transit systems is adversely experienced by users, as it causes additional travel time and unsecure arrival times. Because of this, travellers are likely to perceive a
A Connectionist Model of Instructional Feedback Effects.
Clariana, Roy B.
Connectionist models apply various mathematical rules within neural network computer simulations in an effort, among other things, to mimic and describe human memory associations and learning. Learning involves the interaction of information provided by instruction with existing information already in the learner's memory (Ausubel, 1968; Bruner,…
Bilinear Mixed Effects Models for Dyadic Data
National Research Council Canada - National Science Library
Hoff, Peter D
2003-01-01
This article discusses the use of a symmetric multiplicative interaction effect to capture certain types of third-order dependence patterns often present in social networks and other dyadic datasets...
Ma, Yun-Xiang; Gong, Ya-Ping; Hu, Chun-li; Mao, Jiang-Gao; Kong, Fang
2018-06-01
Three new d10 transition metal selenites containing PO4 tetrahedron, namely, Cd7(HPO4)2(PO4)2(SeO3)2 (1), Cd6(PO4)1.34(SeO3)4.66 (2) and Zn3(HPO4)(SeO3)2(H2O) (3), have been synthesized by hydrothermal reaction. They feature three different structural types. Compound 1 exhibits a novel 3D network composed of 3D cadmium selenite open framework with phosphate groups filled in the 1D helical tunnels. The structure of compound 2 displays a new 3D framework consisted of 2D cadmium oxide layers bridged by SeO3 and PO4 groups. Compound 3 is isostructural with the reported solids of Co3(SeO3)3-x(PO3OH)x(H2O) when x is equal to 1.0. Its structure could be viewed as a 3D zinc oxide open skeleton with SeO3 and HPO4 polyhedra attached on the wall of the tunnels. They represent the only examples in metal selenite phosphates in addition to the above cobalt compounds. Optical diffuse reflectance spectra revealed that these solids are insulators, which are consistent with the results of band structure computations based on DFT algorithm.
The media effect in Axelrod's model explained
Peres, L. R.; Fontanari, J. F.
2011-11-01
We revisit the problem of introducing an external global field —the mass media— in Axelrod's model of social dynamics, where in addition to their nearest neighbors, the agents can interact with a virtual neighbor whose cultural features are fixed from the outset. The finding that this apparently homogenizing field actually increases the cultural diversity has been considered a puzzle since the phenomenon was first reported more than a decade ago. Here we offer a simple explanation for it, which is based on the pedestrian observation that Axelrod's model exhibits more cultural diversity, i.e., more distinct cultural domains, when the agents are allowed to interact solely with the media field than when they can interact with their neighbors as well. In this perspective, it is the local homogenizing interactions that work towards making the absorbing configurations less fragmented as compared with the extreme situation in which the agents interact with the media only.
Relativistic quarkonium model with retardation effect, 1
International Nuclear Information System (INIS)
Ito, Hitoshi
1990-01-01
A new relativistic two-body equation is proposed which has the charge-conjugation symmetry. The renormalization of the wave function at the origin (WFO) is done by incorporating the corresponding vertex equation. By using this model, the heavy-quarkonium phenomenology is developed putting emphasis on the short-distance interaction. The typical scale of the distance restricting the applicability of the ladder model for the mass spectra is found to be 0.13 fm: By assuming the equivalent high-momentum cutoff for the gluonic correction, good results are obtained for the charmonium masses. The improved fine-splittings of the bb-bar states are obtained by inclusion of the retardation. Leptonic decay rates are predicted by assuming the renormalized WFO reduced by another high-momentum cutoff. (author)
The effect of Cordia platythyrsa on various experimental models of ...
African Journals Online (AJOL)
Ned
2014-01-08
Jan 8, 2014 ... investigating the analgesic and anti-inflammatory properties of C. platythyrsa using various animal models: writhing test ... inhibited acetic acid-induced pain though these effects were weaker than the effects of morphine. Although, the ..... visceral pain model is used generally for screening compounds for ...
An Extended Optimal Velocity Model with Consideration of Honk Effect
International Nuclear Information System (INIS)
Tang Tieqiao; Li Chuanyao; Huang Haijun; Shang Huayan
2010-01-01
Based on the OV (optimal velocity) model, we in this paper present an extended OV model with the consideration of the honk effect. The analytical and numerical results illustrate that the honk effect can improve the velocity and flow of uniform flow but that the increments are relevant to the density. (interdisciplinary physics and related areas of science and technology)
Modeling the effects of binary mixtures on survival in time.
Baas, J.; van Houte, B.P.P.; van Gestel, C.A.M.; Kooijman, S.A.L.M.
2007-01-01
In general, effects of mixtures are difficult to describe, and most of the models in use are descriptive in nature and lack a strong mechanistic basis. The aim of this experiment was to develop a process-based model for the interpretation of mixture toxicity measurements, with effects of binary
Effects of Modeling and Desensitation in Reducing Dentist Phobia
Shaw, David W.; Thoresen, Carl E.
1974-01-01
Many persons avoid dentists and dental work. The present study explored the effects of systematic desensitization and social-modeling treatments with placebo and assessment control groups. Modeling was more effective than desensitization as shown by the number of subjects who went to a dentist. (Author)
Viscosity effect in Landau's hydrodynamical model
International Nuclear Information System (INIS)
Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore
1979-01-01
The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)
The Development of Hierarchy of Effects Model in Advertising
Bambang Sukma Wijaya
2012-01-01
This paper aims to review the hierarchy of effects models in adverti-sing, especially the well-known model, AIDA (Attention, Interest, De-sire, and Action). Since its introduction by Lewis (1900) and generally attributed in the marketing and advertising literature by Strong (1925), the concept of AIDA’s hierarchy of effects model has been used by many researchers, both academicians and practitioners. The model is used to measure the effect of an advertisement. However, the deve-lopment of inf...
The effectiveness and efficiency of model driven game design
Dormans, Joris
2012-01-01
In order for techniques from Model Driven Engineering to be accepted at large by the game industry, it is critical that the effectiveness and efficiency of these techniques are proven for game development. There is no lack of game design models, but there is no model that has surfaced as an industry
Seventh Grade Students' Mental Models of the Greenhouse Effect
Shepardson, Daniel P.; Choi, Soyoung; Niyogi, Dev; Charusombat, Umarporn
2011-01-01
This constructivist study investigates 225 student drawings and explanations from three different schools in the midwest in the US, to identify seventh grade students' mental models of the greenhouse effect. Five distinct mental models were derived from an inductive analysis of the content of the students' drawings and explanations: Model 1, a…
Modeling dynamic effects of promotion on interpurchase times
D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)
2002-01-01
textabstractIn this paper we put forward a duration model to analyze the dynamic effects of marketing-mix variables on interpurchase times. We extend the accelerated failure-time model with an autoregressive structure. An important feature of our model is that it allows for different long-run and
Modeling The Effect Of Extruder Screw Speed On The Mechanical ...
African Journals Online (AJOL)
Modeling The Effect Of Extruder Screw Speed On The Mechanical Properties Of High Density Polyethylene Blown Film. ... Journal of Modeling, Design and Management of Engineering Systems ... Two sets of multiple linear regression models were developed to predict impact failure weight and tenacity respectively.
A Spatial Model of the Mere Exposure Effect.
Fink, Edward L.; And Others
1989-01-01
Uses a spatial model to examine the relationship between stimulus exposure, cognition, and affect. Notes that this model accounts for cognitive changes that a stimulus may acquire as a result of exposure. Concludes that the spatial model is useful for evaluating the mere exposure effect and that affective change does not require cognitive change.…
Generalized reduced fluid model with finite ion-gyroradius effects
International Nuclear Information System (INIS)
Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.
1985-04-01
Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law
Environmental Radiation Effects on Mammals A Dynamical Modeling Approach
Smirnova, Olga A
2010-01-01
This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...
Modeling of dislocation channel width evolution in irradiated metals
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
2018-02-01
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel
Modeling terahertz heating effects on water
DEFF Research Database (Denmark)
Kristensen, Torben T.L.; Withayachumnankul, Withawat; Jepsen, Peter Uhd
2010-01-01
down to a spot with a diameter of 0.5 mm, we find that the steadystate temperature increase per milliwatt of transmitted power is 1.8◦C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample...
Towards effective food chains : models and applications
Trienekens, J.H.; Top, J.L.; Vorst, van der J.G.A.J.; Beulens, A.J.M.
2010-01-01
Food chain management research can help in the analysis and redesign of value creation and the product flow throughout the chain from primary producer down to the consumer. The aim is to meet consumer and societal requirements effectively at minimal cost. In the Wageningen UR strategic research
Modeling the Effects of Army Advertising
1988-11-01
was a multipurpose project dealing with advertising effectiveness, advertising strategy efficiency, management of the advertising program and planning...and development of new marketing strategies and segmentation. It is clearly impossible for a project with this breadth of objectives to also satisfy...achieving the broader objective. Likewise, advertising derives its objectives from marketing which when accomplished will lead to the achievement of
Modeling the effects of pharmaceutical marketing
Leeflang, P.S.H.; Wieringa, J.E.
Successful innovation of prescription drugs requires a substantial amount of marketing support. There is, however, much concern about the effects of marketing expenditures on the demand of pharmaceutical products (Manchanda et al., Market Lett 16(3/4):293-308, 2005). For example, excessive marketing
Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited
Terry, D. A.; Knapp, C. C.; Knapp, J. H.
2011-12-01
Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate
Life course models: improving interpretation by consideration of total effects.
Green, Michael J; Popham, Frank
2017-06-01
Life course epidemiology has used models of accumulation and critical or sensitive periods to examine the importance of exposure timing in disease aetiology. These models are usually used to describe the direct effects of exposures over the life course. In comparison with consideration of direct effects only, we show how consideration of total effects improves interpretation of these models, giving clearer notions of when it will be most effective to intervene. We show how life course variation in the total effects depends on the magnitude of the direct effects and the stability of the exposure. We discuss interpretation in terms of total, direct and indirect effects and highlight the causal assumptions required for conclusions as to the most effective timing of interventions. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.
Health effects models for nuclear power plant accident consequence analysis
International Nuclear Information System (INIS)
Abrahamson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.
1993-05-01
The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model
Improved Inference of Heteroscedastic Fixed Effects Models
Directory of Open Access Journals (Sweden)
Afshan Saeed
2016-12-01
Full Text Available Heteroscedasticity is a stern problem that distorts estimation and testing of panel data model (PDM. Arellano (1987 proposed the White (1980 estimator for PDM with heteroscedastic errors but it provides erroneous inference for the data sets including high leverage points. In this paper, our attempt is to improve heteroscedastic consistent covariance matrix estimator (HCCME for panel dataset with high leverage points. To draw robust inference for the PDM, our focus is to improve kernel bootstrap estimators, proposed by Racine and MacKinnon (2007. The Monte Carlo scheme is used for assertion of the results.
Development of Dynamic Environmental Effect Calculation Model
International Nuclear Information System (INIS)
Jeong, Chang Joon; Ko, Won Il
2010-01-01
The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed
Collective effects in microscopic transport models
International Nuclear Information System (INIS)
Greiner, Carsten
2003-01-01
We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hydrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hardonic description, which guarantees sufficiently fast chemical equilibration
Kovacs effect in a model for a fragile glass
Aquino, Gerardo; Leuzzi, Luca; Nieuwenhuizen, Theo M.
2006-03-01
The Kovacs protocol, based on the temperature shift experiment originally conceived by A. J. Kovacs for glassy polymers, is implemented in an exactly solvable dynamical model. This model is characterized by interacting fast and slow modes represented, respectively, by spherical spins and harmonic oscillator variables. Due to this fundamental property, the model reproduces the characteristic nonmonotonic evolution known as the “Kovacs effect,” observed in polymers, spin glasses, granular materials, and molecular liquid models, when similar experimental protocols are implemented.
Congruency class effects in the Hosotani model
International Nuclear Information System (INIS)
Davies, A.T.; McLachlan, A.
1989-01-01
We examine the Wilson loop breaking of gauge and central symmetries by determining the background gauge field which minimises the one-loop effective potential for massless Dirac fermions on manifolds of the form R m x S 1 . By writing the effective potential in terms of the polylogarithm function, it is found that the algebra preserving minima are always turning points of the potential and that the positions of the global minima of the potential are independent of the dimension of the space. A condition is obtained for stability of the classical symmetric vacua with respect to radiative corrections. We find that the gauge algebra can only be broken if we have periodic fermions in a representation of the group which lies in the same congruency class as the adjoint representation. The degree of breaking of the covering group central symmetries is found to depend both on the choice of congruency class and boundary condition for the fermion fields. (orig.)
A Normative Model of Work Team Effectiveness
1983-11-01
aspect of group design that often has been overlooked by both scholars and managers interested in work team effectiveness. Organizatinal ContextII...with other groups or higher management. Yet it is not always a good idea to decide in advance about the leadership structure of a work group. If a group...has been designed well and helped to begin exploring the group norms and member roles it wishes to have, questions of internal leadership should
Modeling the ocean effect of geomagnetic storms
DEFF Research Database (Denmark)
Olsen, Nils; Kuvshinov, A.
2004-01-01
At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....
Total, Direct, and Indirect Effects in Logit Models
DEFF Research Database (Denmark)
Karlson, Kristian Bernt; Holm, Anders; Breen, Richard
It has long been believed that the decomposition of the total effect of one variable on another into direct and indirect effects, while feasible in linear models, is not possible in non-linear probability models such as the logit and probit. In this paper we present a new and simple method...... average partial effects, as defined by Wooldridge (2002). We present the method graphically and illustrate it using the National Educational Longitudinal Study of 1988...
Multivariate Term Structure Models with Level and Heteroskedasticity Effects
DEFF Research Database (Denmark)
Christiansen, Charlotte
2005-01-01
The paper introduces and estimates a multivariate level-GARCH model for the long rate and the term-structure spread where the conditional volatility is proportional to the ãth power of the variable itself (level effects) and the conditional covariance matrix evolves according to a multivariate GA...... and the level model. GARCH effects are more important than level effects. The results are robust to the maturity of the interest rates. Udgivelsesdato: MAY...
The Rebound Effect: A Simulation Model of Telecommuting
Reitan, Fredrik Aadne
2014-01-01
This thesis aims to highlight the relationship between telecommuting and the rebound effect with respect to greenhouse gas emissions. This was done by gathering and analyzing the latest research from various fields that could provide information about telecommuting and the rebound effect. By surveying these fields, an informative and well-documented framework for modeling telecommuting and the rebound effect was made possible. The simulation model simulated the adoption of telecommuting in Lo...
Modeling hurricane effects on mangrove ecosystems
Doyle, Thomas W.
1997-01-01
Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.
COMPUTER MODELLING OF ENERGY SAVING EFFECTS
Directory of Open Access Journals (Sweden)
Marian JANCZAREK
2016-09-01
Full Text Available The paper presents the analysis of the dynamics of the heat transfer through the outer wall of the thermal technical spaces, taking into account the impact of the sinusoidal nature of the changes in atmospheric temperature. These temporal variations of the input on the outer surface of the chamber divider result at the output of the sinusoidal change on the inner wall of the room, but suitably suppressed and shifted in phase. Properly selected phase shift is clearly important for saving energy used for the operation associated with the maintenance of a specific regime of heat inside the thermal technical chamber support. Laboratory tests of the model and the actual object allowed for optimal design of the chamber due to the structure of the partition as well as due to the orientation of the geographical location of the chamber.
Model-Mapped RPA for Determining the Effective Coulomb Interaction
Sakakibara, Hirofumi; Jang, Seung Woo; Kino, Hiori; Han, Myung Joon; Kuroki, Kazuhiko; Kotani, Takao
2017-04-01
We present a new method to obtain a model Hamiltonian from first-principles calculations. The effective interaction contained in the model is determined on the basis of random phase approximation (RPA). In contrast to previous methods such as projected RPA and constrained RPA (cRPA), the new method named "model-mapped RPA" takes into account the long-range part of the polarization effect to determine the effective interaction in the model. After discussing the problems of cRPA, we present the formulation of the model-mapped RPA, together with a numerical test for the single-band Hubbard model of HgBa2CuO4.
Computer modelling of radiation-induced bystander effect
International Nuclear Information System (INIS)
Khvostunov, Igor K.; Nikjoo, Hooshang
2002-01-01
Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)
Composite symmetry-protected topological order and effective models
Nietner, A.; Krumnow, C.; Bergholtz, E. J.; Eisert, J.
2017-12-01
Strongly correlated quantum many-body systems at low dimension exhibit a wealth of phenomena, ranging from features of geometric frustration to signatures of symmetry-protected topological order. In suitable descriptions of such systems, it can be helpful to resort to effective models, which focus on the essential degrees of freedom of the given model. In this work, we analyze how to determine the validity of an effective model by demanding it to be in the same phase as the original model. We focus our study on one-dimensional spin-1 /2 systems and explain how nontrivial symmetry-protected topologically ordered (SPT) phases of an effective spin-1 model can arise depending on the couplings in the original Hamiltonian. In this analysis, tensor network methods feature in two ways: on the one hand, we make use of recent techniques for the classification of SPT phases using matrix product states in order to identify the phases in the effective model with those in the underlying physical system, employing Künneth's theorem for cohomology. As an intuitive paradigmatic model we exemplify the developed methodology by investigating the bilayered Δ chain. For strong ferromagnetic interlayer couplings, we find the system to transit into exactly the same phase as an effective spin-1 model. However, for weak but finite coupling strength, we identify a symmetry broken phase differing from this effective spin-1 description. On the other hand, we underpin our argument with a numerical analysis making use of matrix product states.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Analyzing ROC curves using the effective set-size model
Samuelson, Frank W.; Abbey, Craig K.; He, Xin
2018-03-01
The Effective Set-Size model has been used to describe uncertainty in various signal detection experiments. The model regards images as if they were an effective number (M*) of searchable locations, where the observer treats each location as a location-known-exactly detection task with signals having average detectability d'. The model assumes a rational observer behaves as if he searches an effective number of independent locations and follows signal detection theory at each location. Thus the location-known-exactly detectability (d') and the effective number of independent locations M* fully characterize search performance. In this model the image rating in a single-response task is assumed to be the maximum response that the observer would assign to these many locations. The model has been used by a number of other researchers, and is well corroborated. We examine this model as a way of differentiating imaging tasks that radiologists perform. Tasks involving more searching or location uncertainty may have higher estimated M* values. In this work we applied the Effective Set-Size model to a number of medical imaging data sets. The data sets include radiologists reading screening and diagnostic mammography with and without computer-aided diagnosis (CAD), and breast tomosynthesis. We developed an algorithm to fit the model parameters using two-sample maximum-likelihood ordinal regression, similar to the classic bi-normal model. The resulting model ROC curves are rational and fit the observed data well. We find that the distributions of M* and d' differ significantly among these data sets, and differ between pairs of imaging systems within studies. For example, on average tomosynthesis increased readers' d' values, while CAD reduced the M* parameters. We demonstrate that the model parameters M* and d' are correlated. We conclude that the Effective Set-Size model may be a useful way of differentiating location uncertainty from the diagnostic uncertainty in medical
Functional Mixed Effects Model for Small Area Estimation.
Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou
2016-09-01
Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.
Modeling Temporal Behavior of Awards Effect on Viewership of Movies
Altaf, Basmah
2017-04-22
The “rich get richer” effect is well-known in recommendation system. Popular items are recommended more, then purchased more, resulting in becoming even more popular over time. For example, we observe in Netflix data that awarded movies are more popular than non-awarded movies. Unlike other work focusing on making fair/neutralized recommendation, in this paper, we target on modeling the effect of awards on the viewership of movies. The main challenge of building such a model is that the effect on popularity changes over time with different intensity from movie to movie. Our proposed approach explicitly models the award effects for each movie and enables the recommendation system to provide a better ranked list of recommended movies. The results of an extensive empirical validation on Netflix and MovieLens data demonstrate the effectiveness of our model.
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
Park, Mihwa; Liu, Xiufeng; Smith, Erica; Waight, Noemi
2017-01-01
This study reports the effect of computer models as formative assessment on high school students' understanding of the nature of models. Nine high school teachers integrated computer models and associated formative assessments into their yearlong high school chemistry course. A pre-test and post-test of students' understanding of the nature of…
Technical note: Equivalent genomic models with a residual polygenic effect.
Liu, Z; Goddard, M E; Hayes, B J; Reinhardt, F; Reents, R
2016-03-01
Routine genomic evaluations in animal breeding are usually based on either a BLUP with genomic relationship matrix (GBLUP) or single nucleotide polymorphism (SNP) BLUP model. For a multi-step genomic evaluation, these 2 alternative genomic models were proven to give equivalent predictions for genomic reference animals. The model equivalence was verified also for young genotyped animals without phenotypes. Due to incomplete linkage disequilibrium of SNP markers to genes or causal mutations responsible for genetic inheritance of quantitative traits, SNP markers cannot explain all the genetic variance. A residual polygenic effect is normally fitted in the genomic model to account for the incomplete linkage disequilibrium. In this study, we start by showing the proof that the multi-step GBLUP and SNP BLUP models are equivalent for the reference animals, when they have a residual polygenic effect included. Second, the equivalence of both multi-step genomic models with a residual polygenic effect was also verified for young genotyped animals without phenotypes. Additionally, we derived formulas to convert genomic estimated breeding values of the GBLUP model to its components, direct genomic values and residual polygenic effect. Third, we made a proof that the equivalence of these 2 genomic models with a residual polygenic effect holds also for single-step genomic evaluation. Both the single-step GBLUP and SNP BLUP models lead to equal prediction for genotyped animals with phenotypes (e.g., reference animals), as well as for (young) genotyped animals without phenotypes. Finally, these 2 single-step genomic models with a residual polygenic effect were proven to be equivalent for estimation of SNP effects, too. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of suspension kinematic on 14 DOF vehicle model
Wongpattananukul, T.; Chantharasenawong, C.
2017-12-01
Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.
Modelling the effects of road traffic safety measures.
Lu, Meng
2006-05-01
A model is presented for assessing the effects of traffic safety measures, based on a breakdown of the process in underlying components of traffic safety (risk and consequence), and five (speed and conflict related) variables that influence these components, and are influenced by traffic safety measures. The relationships between measures, variables and components are modelled as coefficients. The focus is on probabilities rather than historical statistics, although in practice statistics may be needed to find values for the coefficients. The model may in general contribute to improve insight in the mechanisms between traffic safety measures and their safety effects. More specifically it allows comparative analysis of different types of measures by defining an effectiveness index, based on the coefficients. This index can be used to estimate absolute effects of advanced driver assistance systems (ADAS) related measures from absolute effects of substitutional (in terms of safety effects) infrastructure measures.
The Development of Hierarchy of Effects Model in Advertising
Directory of Open Access Journals (Sweden)
Bambang Sukma Wijaya
2012-04-01
Full Text Available This paper aims to review the hierarchy of effects models in adverti-sing, especially the well-known model, AIDA (Attention, Interest, De-sire, and Action. Since its introduction by Lewis (1900 and generally attributed in the marketing and advertising literature by Strong (1925, the concept of AIDA’s hierarchy of effects model has been used by many researchers, both academicians and practitioners. The model is used to measure the effect of an advertisement. However, the deve-lopment of information technology has radically changed the way of how people communicate and socialize; as well as a paradigm shift from product-oriented marketing to consumer-oriented marketing or people-oriented marketing. Therefore, the variables in the hierarchy of effects model needs to be updated in respond to the latest develop-ments in the notice of public power as consumer audience. Based on deep literature review and reflective method, this paper introduces a new developed concept of hierarchy of effects model that was adop-ted from AIDA’s hierarchy of effects model, namely: AISDALSLove (At-tention, Interest, Search, Desire, Action, Like/dislike, Share, and Love/hate.
The Development of Hierarchy of Effects Model in Advertising
Directory of Open Access Journals (Sweden)
Bambang Sukma Wijaya
2012-04-01
Full Text Available This paper aims to review the hierarchy of effects models in advertising, especially the well-known model, AIDA (Attention, Interest, Desire, and Action. Since its introduction by Lewis (1900 and generally attributed in the marketing and advertising literature by Strong (1925, the concept of AIDA’s hierarchy of effects model has been used by many researchers, both academicians and practitioners. The model is used to measure the effect of an advertisement. However, the development of information technology has radically changed the way of how people communicate and socialize; as well as a paradigm shift from product-oriented marketing to consumer-oriented marketing or people-oriented marketing. Therefore, the variables in the hierarchy of effects model needs to be updated in respond to the latest developments in the notice of public power as consumer audience. Based on deep literature review and reflective method, this paper introduces a new developed concept of hierarchy of effects model that was adopted from AIDA’s hierarchy of effects model, namely: AISDALSLove (At-tention, Interest, Search, Desire, Action, Like/dislike, Share, and Love/hate.
Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect
Yanhui Xi; Hui Peng; Yemei Qin
2016-01-01
The basic market microstructure model specifies that the price/return innovation and the volatility innovation are independent Gaussian white noise processes. However, the financial leverage effect has been found to be statistically significant in many financial time series. In this paper, a novel market microstructure model with leverage effects is proposed. The model specification assumed a negative correlation in the errors between the price/return innovation and the volatility innovation....
General Friction Model Extended by the Effect of Strain Hardening
DEFF Research Database (Denmark)
Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels
2016-01-01
An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...
Gompertzian stochastic model with delay effect to cervical cancer growth
International Nuclear Information System (INIS)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-01-01
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits
Gompertzian stochastic model with delay effect to cervical cancer growth
Energy Technology Data Exchange (ETDEWEB)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
Comparison of potential models through heavy quark effective theory
International Nuclear Information System (INIS)
Amundson, J.F.
1995-01-01
I calculate heavy-light decay constants in a nonrelativistic potential model. The resulting estimate of heavy quark symmetry breaking conflicts with similar estimates from lattice QCD. I show that a semirelativistic potential model eliminates the conflict. Using the results of heavy quark effective theory allows me to identify and compensate for shortcomings in the model calculations in addition to isolating the source of the differences in the two models. The results lead to a rule as to where the nonrelativistic quark model gives misleading predictions
STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies
Directory of Open Access Journals (Sweden)
Hepburn Iain
2012-05-01
Full Text Available Abstract Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins, conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates
Development of Dynamic Spent Nuclear Fuel Environmental Effect Analysis Model
International Nuclear Information System (INIS)
Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je
2010-07-01
The dynamic environmental effect evaluation model for spent nuclear fuel has been developed and incorporated into the system dynamic DANESS code. First, the spent nuclear fuel isotope decay model was modeled. Then, the environmental effects were modeled through short-term decay heat model, short-term radioactivity model, and long-term heat load model. By using the developed model, the Korean once-through nuclear fuel cycles was analyzed. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. If the disposal starts from 2060, the short-term decay heat of Cs-137 and Sr-90 isotopes are W and 1.8x10 6 W in 2100. Also, the total long-term heat load in 2100 will be 4415 MW-y. From the calculation results, it was found that the developed model is very convenient and simple for evaluation of the environmental effect of the spent nuclear fuel
A Bayesian Model of the Memory Colour Effect
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R.
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration....
A Bayesian model of the memory colour effect.
Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R.
2018-01-01
According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration....
Modelling the electrical properties of concrete for shielding effectiveness prediction
International Nuclear Information System (INIS)
Sandrolini, L; Reggiani, U; Ogunsola, A
2007-01-01
Concrete is a porous, heterogeneous material whose abundant use in numerous applications demands a detailed understanding of its electrical properties. Besides experimental measurements, material theoretical models can be useful to investigate its behaviour with respect to frequency, moisture content or other factors. These models can be used in electromagnetic compatibility (EMC) to predict the shielding effectiveness of a concrete structure against external electromagnetic waves. This paper presents the development of a dispersive material model for concrete out of experimental measurement data to take account of the frequency dependence of concrete's electrical properties. The model is implemented into a numerical simulator and compared with the classical transmission-line approach in shielding effectiveness calculations of simple concrete walls of different moisture content. The comparative results show good agreement in all cases; a possible relation between shielding effectiveness and the electrical properties of concrete and the limits of the proposed model are discussed
Modelling the effect of food availability on recruitment success of ...
African Journals Online (AJOL)
Modelling the effect of food availability on recruitment success of Cape anchovy ichthyoplankton in ... To characterise the recruitment dynamics of Cape anchovy ichthyoplankton, we used an individual-based ... AJOL African Journals Online.
FMCSA safety program effectiveness measurement: intervention model fiscal year 2009.
2013-04-01
The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the researcher, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in terms of crashes avoided, injuries avoided, ...
Comparison of Power Generating Systems Using Feedback Effect Modeling
International Nuclear Information System (INIS)
Kim, Seong Ho; Kim, Kil Yoo; Kim, Tae Woon
2005-01-01
Comparative assessment of various power systems can be treated as a multicriteria decision-making (MCDM) problem. In reality, there is interdependence among decision elements (e.g., decision goal, decision criteria, and decision alternatives). In our previous work, using an analytic hierarchy process (AHP) technique, a comprehensive assessment framework for national power systems has been developed. It was assumed in the AHP modeling that there is no interdependence among decision elements. In the present work, one of interdependence phenomena, feedback effect, is investigated in the context of network structures instead of one-way directional tree structures. Moreover, attitudes of decision-makers can be incorporated into the feedback effect modeling. The main objectives of this work are to develop a feedback effect modeling using an analytic network process (ANP) technique and to demonstrate the feedback effect using a numerical example in comparison to the hierarchy model
The effective Standard Model after LHC Run I
International Nuclear Information System (INIS)
Ellis, John; Sanz, Verónica; You, Tevong
2015-01-01
We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard S,T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model.
Modeling Reaction Control System Effects on Mars Odyssey
National Research Council Canada - National Science Library
Hanna, Jill
2002-01-01
...) simulations to determine rotational motion of the spacecraft. The main objective of this study was to assess the reaction control system models and their effects on the atmospheric flight of Odyssey...
Effective modelling for predictive analytics in data science ...
African Journals Online (AJOL)
Effective modelling for predictive analytics in data science. ... the nearabsence of empirical or factual predictive analytics in the mainstream research going on ... Keywords: Predictive Analytics, Big Data, Business Intelligence, Project Planning.
The Effective Standard Model after LHC Run I
Ellis, John; You, Tevong
2015-01-01
We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard $S,T$ formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run~1. We illustrate the combined constraints with the example of the two-Higgs doublet model.
Conceptual Model for Effective Sports Marketing in Nigeria | Akarah ...
African Journals Online (AJOL)
Conceptual Model for Effective Sports Marketing in Nigeria. ... that are influenced by the sports market mix and sports consumers that are influenced by psychological factors and notes that; ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT
Efficient estimation of feedback effects with application to climate models
International Nuclear Information System (INIS)
Cacugi, D.G.; Hall, M.C.G.
1984-01-01
This work presents an efficient method for calculating the sensitivity of a mathematical model's result to feedback. Feedback is defined in terms of an operator acting on the model's dependent variables. The sensitivity to feedback is defined as a functional derivative, and a method is presented to evaluate this derivative using adjoint functions. Typically, this method allows the individual effect of many different feedbacks to be estimated with a total additional computing time comparable to only one recalculation. The effects on a CO 2 -doubling experiment of actually incorporating surface albedo and water vapor feedbacks in radiative-convective model are compared with sensivities calculated using adjoint functions. These sensitivities predict the actual effects of feedback with at least the correct sign and order of magnitude. It is anticipated that this method of estimation the effect of feedback will be useful for more complex models where extensive recalculations for each of a variety of different feedbacks is impractical
Modeling of Reverberation Effects for Radio Localization and Communications
DEFF Research Database (Denmark)
Steinböck, Gerhard
2013-01-01
a recently proposed approach, we transcribe these models to electromagnetics and validate them experimentally following a systematic procedure. These transcribed models provide accurate predictions of the delay power spectrum in a typical office environment. Furthermore, they can predict changes...... into a distance dependent model of the delay power spectrum, which we then validate experimentally. From this model we derive secondary models that predict the received power, the mean delay, the rms delay spread and the kurtosis versus distance. The behavior of the diffuse component versus distance in indoor...... environment is linked to reverberation effects analog to reverberation effects observed in room acoustics and electromagnetic reverberation chambers. Reverberation models of room acoustics relate the decay rate of the diffuse component to the room geometry and an average absorption coefficient. Following...
Application of Poisson random effect models for highway network screening.
Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer
2014-02-01
In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hot Strange Hadronic Matter in an Effective Model
Institute of Scientific and Technical Information of China (English)
QIAN Wei-Liang; SU Ru-Keng; SONG Hong-Qiu
2003-01-01
An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperonsis extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fractiondependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy andpressure, as well as the equation of state of the matter, are given.
Hot Strange Hadronic Matter in an Effective Model
Institute of Scientific and Technical Information of China (English)
QIANWei-Liang; SURu-Keng; SONGHong-Qiu
2003-01-01
An effective model used to describe the strange hadronic matter with nucleons, A-hyperons, and [I]-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given.
Personal Coaching: Reflection on a Model for Effective Learning
Griffiths, Kerryn
2015-01-01
The article "Personal Coaching: A Model for Effective Learning" (Griffiths, 2006) appeared in the "Journal of Learning Design" Volume 1, Issue 2 in 2006. Almost ten years on, Kerryn Griffiths reflects upon her original article. Specifically, Griffiths looks back at the combined coaching-learning model she suggested in her…
Achievement Emotions and Academic Performance: Longitudinal Models of Reciprocal Effects
Pekrun, Reinhard; Lichtenfeld, Stephanie; Marsh, Herbert W.; Murayama, Kou; Goetz, Thomas
2017-01-01
A reciprocal effects model linking emotion and achievement over time is proposed. The model was tested using five annual waves of the Project for the Analysis of Learning and Achievement in Mathematics (PALMA) longitudinal study, which investigated adolescents' development in mathematics (Grades 5-9; N = 3,425 German students; mean starting…
Relative effectiveness of assertive training, modelling and their ...
African Journals Online (AJOL)
The study investigated the Relative Effectiveness of Assertive Training (AT), modelling (M) and a combination of Assertive Training and Modelling (AT & M) techniques in improving the social skills of primary school isolates and consequently reduce their isolate behaviour. The study is a quasi experimental research that ...
Chain Risk Model for quantifying cost effectiveness of phytosanitary measures
Benninga, J.; Hennen, W.H.G.J.; Schans, van de J.
2010-01-01
A Chain Risk Model (CRM) was developed for a cost effective assessment of phytosanitary measures. The CRM model can be applied to phytosanitary assessments of all agricultural product chains. In CRM, stages are connected by product volume flows with which pest infections can be spread from one stage
The Effect of Math Modeling on Student's Emerging Understanding
Sokolowski, Andrzej
2015-01-01
This study investigated the effects of applying mathematical modeling on revising students' preconception of the process of optimizing area enclosed by a string of a fixed length. A group of 28 high school pre-calculus students were immersed in modeling activity that included direct measurements, data collecting, and formulating algebraic…
Modeling the Effect of Oil Price on Global Fertilizer Prices
P-Y. Chen (Ping-Yu); C-L. Chang (Chia-Lin); C-C. Chen (Chi-Chung); M.J. McAleer (Michael)
2010-01-01
textabstractThe main purpose of this paper is to evaluate the effect of crude oil price on global fertilizer prices in both the mean and volatility. The endogenous structural breakpoint unit root test, the autoregressive distributed lag (ARDL) model, and alternative volatility models, including the
Using Dirichlet Processes for Modeling Heterogeneous Treatment Effects across Sites
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep
2016-01-01
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Modeling Dynamic Effects of the Marketing Mix on Market Shares
D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)
2003-01-01
textabstractTo comprehend the competitive structure of a market, it is important to understand the short-run and long-run effects of the marketing mix on market shares. A useful model to link market shares with marketing-mix variables, like price and promotion, is the market share attraction model.
Effects of Video Modeling on Treatment Integrity of Behavioral Interventions
DiGennaro-Reed, Florence D.; Codding, Robin; Catania, Cynthia N.; Maguire, Helena
2010-01-01
We examined the effects of individualized video modeling on the accurate implementation of behavioral interventions using a multiple baseline design across 3 teachers. During video modeling, treatment integrity improved above baseline levels; however, teacher performance remained variable. The addition of verbal performance feedback increased…
The Effectiveness of Cognitive Behavioural Counselling Model in ...
African Journals Online (AJOL)
This study focused on applying counselling models in managing adolescent psycho-social crisis. A laboratory approach using a simulated problem situation to determine the effectiveness of Cognitive-behavioural counselling model in managing psycho-social crisis and propensity to drug-abuse in adolescents was adopted ...
Directory of Open Access Journals (Sweden)
Mehran FARAJOLLAHI
2010-07-01
Full Text Available The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is an efficient factor in the planning of effective Distance learning in higher education. Considering the theoretical foundations of the present research, in the effective distance learning model, the learner is situated at the center of learning environment. For this purpose, the learner needs to be ready for successful learning and the teacher has to be ready to design the teaching- learning activities when they initially enter the environment. In the present model, group and individual active teaching-learning approach, timely feedback, using IT and eight types of interactions have been designed with respect to theoretical foundations and current university missions. From among the issues emphasized in this model, one can refer to the Initial, Formative and Summative evaluations. In an effective distance learning environment, evaluation should be part of the learning process and the feedback resulting from it should be used to improve learning. For validating the specified features, the opinions of Distance learning experts in Payame Noor, Shiraz, Science and Technology and Amirkabir Universities have been used which verified a high percentage of the statistical sample of the above mentioned features.
Memory Effects in the Two-Level Model for Glasses
Aquino, Gerardo; Allahverdyan, Armen; Nieuwenhuizen, Theo M.
2008-07-01
We study an ensemble of two-level systems interacting with a thermal bath. This is a well-known model for glasses. The origin of memory effects in this model is a quasistationary but nonequilibrium state of a single two-level system, which is realized due to a finite-rate cooling and slow thermally activated relaxation. We show that single-particle memory effects, such as negativity of the specific heat under reheating, vanish for a sufficiently disordered ensemble. In contrast, a disordered ensemble displays a collective memory effect [similar to the Kovacs effect], where nonequilibrium features of the ensemble are monitored via a macroscopic observable. An experimental realization of the effect can be used to further assess the consistency of the model.
de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M
2018-05-18
Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often
Health effects models for nuclear power plant accident consequence analysis
International Nuclear Information System (INIS)
Evans, J.S.; Abrahmson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.; Gilbert, E.S.
1993-10-01
This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other''. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk
A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins
Xu, Jingjie; Lu, Benzhuo
2018-01-01
Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Bubble column fermenter modeling: a comparison for pressure effects
Energy Technology Data Exchange (ETDEWEB)
Shioya, S; Dang, N D.P.; Dunn, I J
1978-01-01
Two models which describe the oxygen transfer, oxygen uptake, and axial mixing in a bubble column fermenter are described. Model I includes no pressure effects and can be solved analytically. Model II incorporates the influence of hydrostatic pressure on oxygen solubility and gas expansion and must be solved numerically. The liquid phase oxygen concentration profiles from both models are compared to ascertain for what parametric conditions and for what maximum column height Model I is valid. Results show that for many situations Model I can approximate the oxygen profiles in a 10 m column within 20%. As the transfer and uptake rates increase, the deviation of Model I can reach 80% for a 10 m column. 7 figures.
Quantification of effective plant rooting depth: advancing global hydrological modelling
Yang, Y.; Donohue, R. J.; McVicar, T.
2017-12-01
Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.
A mathematical model of radiation effect on the immunity system
International Nuclear Information System (INIS)
Smirnova, O.A.
1984-01-01
A mathematical model, simulating the effect of ionizing radiation on the dynamics of humoral immune reaction is suggested. It represents the system of nonlinear differential equations and is realized in the form of program in Fortran computer language. The model describes the primary immune reaction of nonirradiated organism on T-independent antigen, reflects the postradiation lymphopoiesis dynamics in nonimmunized mammals, simulates the processes of injury and recovery of the humoral immunity system under the combined effect of ionizing radiation and antigenic stimulation. The model can be used for forecasting imminity state in irradiated mammals
A Model for Effective Performance in the Indonesian Navy.
1987-06-01
NAVY LEADERSHIP AND MANAGEMENT COM PETENCY M ODEL .................................. 15 D. MCBER COMPETENT MANAGERS MODEL ................ IS E. SU M M... leadership and managerial skills which emphasize on effective performance of the officers in managing the human resources under their cormnand and...supervision. By effective performance we mean officers who not only know about management theories , but who possess the characteristics, knowledge, skill, and
Properties of Strange Matter in a Model with Effective Lagrangian
Institute of Scientific and Technical Information of China (English)
WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang
2001-01-01
The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``
School Processes Mediate School Compositional Effects: Model Specification and Estimation
Liu, Hongqiang; Van Damme, Jan; Gielen, Sarah; Van Den Noortgate, Wim
2015-01-01
School composition effects have been consistently verified, but few studies ever attempted to study how school composition affects school achievement. Based on prior research findings, we employed multilevel mediation modeling to examine whether school processes mediate the effect of school composition upon school outcomes based on the data of 28…
Building more effective sea level rise models for coastal management
Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.
2017-12-01
For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.
A Layered Decision Model for Cost-Effective System Security
Energy Technology Data Exchange (ETDEWEB)
Wei, Huaqiang; Alves-Foss, James; Soule, Terry; Pforsich, Hugh; Zhang, Du; Frincke, Deborah A.
2008-10-01
System security involves decisions in at least three areas: identification of well-defined security policies, selection of cost-effective defence strategies, and implementation of real-time defence tactics. Although choices made in each of these areas affect the others, existing decision models typically handle these three decision areas in isolation. There is no comprehensive tool that can integrate them to provide a single efficient model for safeguarding a network. In addition, there is no clear way to determine which particular combinations of defence decisions result in cost-effective solutions. To address these problems, this paper introduces a Layered Decision Model (LDM) for use in deciding how to address defence decisions based on their cost-effectiveness. To validate the LDM and illustrate how it is used, we used simulation to test model rationality and applied the LDM to the design of system security for an e-commercial business case.
Degradation modeling with application to aging and maintenance effectiveness evaluations
International Nuclear Information System (INIS)
Samanta, P.K.; Hsu, F.; Subduhi, M.; Vesely, W.E.
1990-01-01
This paper describes a modeling approach to analyze component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends. 2 refs., 8 figs
Degradation modeling with application to aging and maintenance effectiveness evaluations
International Nuclear Information System (INIS)
Samanta, P.K.; Vesely, W.E.; Hsu, F.; Subudhi, M.
1991-01-01
This paper describes a modeling approach to analyze light water reactor component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends
Temperature shifts in the Sinai model: static and dynamical effects
International Nuclear Information System (INIS)
Sales, Marta; Bouchaud, Jean-Philippe; Ritort, Felix
2003-01-01
We study analytically and numerically the role of temperature shifts in the simplest model where the energy landscape is explicitly hierarchical, namely the Sinai model. This model has both attractive features (there are valleys within valleys in a strict self-similar sense), but also one important drawback: there is no phase transition so that the model is, in the large-size limit, effectively at zero temperature. We compute various static chaos indicators, that are found to be trivial in the large-size limit, but exhibit interesting features for finite sizes. Correspondingly, for finite times, some interesting rejuvenation effects, related to the self-similar nature of the potential, are observed. Still, the separation of time scales/length scales with temperature in this model is much weaker than in experimental spin glasses
Simulation of finite size effects of the fiber bundle model
Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui
2018-01-01
In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.
Deformed Calogero-Sutherland model and fractional quantum Hall effect
Atai, Farrokh; Langmann, Edwin
2017-01-01
The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.
Non-perturbative effective interactions in the standard model
Arbuzov, Boris A
2014-01-01
This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...
Effective potential in Lorentz-breaking field theory models
Energy Technology Data Exchange (ETDEWEB)
Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)
2017-12-15
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
Effective potential in Lorentz-breaking field theory models
International Nuclear Information System (INIS)
Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.
2017-01-01
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
School leadership effects revisited: a review of empirical studies guided by indirect-effect models
Hendriks, Maria A.; Scheerens, Jaap
2013-01-01
Fourteen leadership effect studies that used indirect-effect models were quantitatively analysed to explore the most promising mediating variables. The results indicate that total effect sizes based on indirect-effect studies appear to be low, quite comparable to the results of some meta-analyses of
Modeling of MOS radiation and post irradiation effects
International Nuclear Information System (INIS)
Neamen, D.A.
1984-01-01
The radiation response and long term recovery effects in a n-channel MOSFET due to a pulse of ionizing radiation were modeled assuming that electron tunneling from the semiconductor into the oxide and the buildup of interface states were the postirradiation recovery mechanisms. The modeling used convolution theory and took into account the effects of bias changes during the recovery period and charge yield effects. Changing the bias condition during the post-irradiation recovery period changed the recovery rate. The charge yield effects changed the density of trapped positive charge in the oxide but did not change the recovery characteristics for a given oxide thickness. The modeling results were compared to previous experimental results
A Simple Model of Global Aerosol Indirect Effects
Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter
2013-01-01
Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
DEFF Research Database (Denmark)
Olesen, H. R.; Løfstrøm, P.; Berkowicz, R.
dispersion models for estimating local concentration levels in general. However, the report focuses on some particular issues, which are relevant for subsequent work on odour due to animal production. An issue of primary concern is the effect that buildings (stables) have on flow and dispersion. The handling...... of building effects is a complicated problem, and a major part of the report is devoted to the treatment of building effects in dispersion models......A project within the framework of a larger research programme, Action Plan for the Aquatic Environment III (VMP III) aims towards improving an atmospheric dispersion model (OML). The OML model is used for regulatory applications in Denmark, and it is the candidate model to be used also in future...
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin; Alkhalifah, Tariq Ali
2014-01-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects
Directory of Open Access Journals (Sweden)
Guangjie Li
2015-07-01
Full Text Available We examine the relationship between consistent parameter estimation and model selection for autoregressive panel data models with fixed effects. We find that the transformation of fixed effects proposed by Lancaster (2002 does not necessarily lead to consistent estimation of common parameters when some true exogenous regressors are excluded. We propose a data dependent way to specify the prior of the autoregressive coefficient and argue for comparing different model specifications before parameter estimation. Model selection properties of Bayes factors and Bayesian information criterion (BIC are investigated. When model uncertainty is substantial, we recommend the use of Bayesian Model Averaging to obtain point estimators with lower root mean squared errors (RMSE. We also study the implications of different levels of inclusion probabilities by simulations.
Effect Displays in R for Generalised Linear Models
Directory of Open Access Journals (Sweden)
John Fox
2003-07-01
Full Text Available This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.
Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect
Directory of Open Access Journals (Sweden)
Yanhui Xi
2016-01-01
Full Text Available The basic market microstructure model specifies that the price/return innovation and the volatility innovation are independent Gaussian white noise processes. However, the financial leverage effect has been found to be statistically significant in many financial time series. In this paper, a novel market microstructure model with leverage effects is proposed. The model specification assumed a negative correlation in the errors between the price/return innovation and the volatility innovation. With the new representations, a theoretical explanation of leverage effect is provided. Simulated data and daily stock market indices (Shanghai composite index, Shenzhen component index, and Standard and Poor’s 500 Composite index via Bayesian Markov Chain Monte Carlo (MCMC method are used to estimate the leverage market microstructure model. The results verify the effectiveness of the model and its estimation approach proposed in the paper and also indicate that the stock markets have strong leverage effects. Compared with the classical leverage stochastic volatility (SV model in terms of DIC (Deviance Information Criterion, the leverage market microstructure model fits the data better.
Modelling the effects of a CBRN defence system using a Bayesian Belief Model
Phillipson, F.; Bastings, I.C.L.; Vink, N.
2015-01-01
In this paper a Bayes model to quantify the effects of a passive CBRN defence system is presented. The model gives insight in the way of the mutual influence of all the elements of passive CBRN defence, by the use of detailed scenario analysis, sensitivity analysis and root cause analysis. This can
Species Distribution Modeling: Comparison of Fixed and Mixed Effects Models Using INLA
Directory of Open Access Journals (Sweden)
Lara Dutra Silva
2017-12-01
Full Text Available Invasive alien species are among the most important, least controlled, and least reversible of human impacts on the world’s ecosystems, with negative consequences affecting biodiversity and socioeconomic systems. Species distribution models have become a fundamental tool in assessing the potential spread of invasive species in face of their native counterparts. In this study we compared two different modeling techniques: (i fixed effects models accounting for the effect of ecogeographical variables (EGVs; and (ii mixed effects models including also a Gaussian random field (GRF to model spatial correlation (Matérn covariance function. To estimate the potential distribution of Pittosporum undulatum and Morella faya (respectively, invasive and native trees, we used geo-referenced data of their distribution in Pico and São Miguel islands (Azores and topographic, climatic and land use EGVs. Fixed effects models run with maximum likelihood or the INLA (Integrated Nested Laplace Approximation approach provided very similar results, even when reducing the size of the presences data set. The addition of the GRF increased model adjustment (lower Deviance Information Criterion, particularly for the less abundant tree, M. faya. However, the random field parameters were clearly affected by sample size and species distribution pattern. A high degree of spatial autocorrelation was found and should be taken into account when modeling species distribution.
The transition model test for serial dependence in mixed-effects models for binary data
DEFF Research Database (Denmark)
Breinegaard, Nina; Rabe-Hesketh, Sophia; Skrondal, Anders
2017-01-01
Generalized linear mixed models for longitudinal data assume that responses at different occasions are conditionally independent, given the random effects and covariates. Although this assumption is pivotal for consistent estimation, violation due to serial dependence is hard to assess by model...
Effects of Mode of Modeling, Model Age, and Ethnicity on Rule-Governed Language Behaviors
Grieshop, James I.; Harris, Mary B.
1974-01-01
The effect of three model variables on student performance of syntactic and semantic language behaviors in the absence of direct or vicarious reinforcement was examined. Subjects were sixth-grade students of both sexes attending New Mexico Schools. Half of the subjects and models were Chicanos and half were Anglos. (BJG)
Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda Geiser; Gretchen G. Moisen
2006-01-01
We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by...
The problematic estimation of "imitation effects" in multilevel models
Directory of Open Access Journals (Sweden)
2003-09-01
Full Text Available It seems plausible that a person's demographic behaviour may be influenced by that among other people in the community, for example because of an inclination to imitate. When estimating multilevel models from clustered individual data, some investigators might perhaps feel tempted to try to capture this effect by simply including on the right-hand side the average of the dependent variable, constructed by aggregation within the clusters. However, such modelling must be avoided. According to simulation experiments based on real fertility data from India, the estimated effect of this obviously endogenous variable can be very different from the true effect. Also the other community effect estimates can be strongly biased. An "imitation effect" can only be estimated under very special assumptions that in practice will be hard to defend.
Modeling the Effects of Stress: An Approach to Training
Cuper, Taryn
2010-01-01
Stress is an integral element of the operational conditions experienced by combat medics. The effects of stress can compromise the performance of combat medics who must reach and treat their comrades under often threatening circumstances. Examples of these effects include tunnel vision, loss of motor control, and diminished hearing, which can result in an inability to perceive further danger, satisfactorily treat the casualty, and communicate with others. While many training programs strive to recreate this stress to aid in the experiential learning process, stress inducement may not always be feasible or desired. In addition, live simulations are not always a practical, convenient, and repeatable method of training. Instead, presenting situational training on a personal computer is proposed as an effective training platform in which the effects of stress can be addressed in a different way. We explore the cognitive and motor effects of stress, as well as the benefits of training for mitigating these effects in real life. While many training applications focus on inducing stress in order to "condition" the stress response, the author explores the possibilities of modeling stress to produce a similar effect. Can presenting modeled effects of stress help prepare or inoculate soldiers for stressful situations in which they must perform at a high level? This paper investigates feasibility of modeling stress and describes the preliminary design considerations of a combat medic training system that utilizes this method of battlefield preparation.
Wang, Wei; Griswold, Michael E
2016-11-30
The random effect Tobit model is a regression model that accommodates both left- and/or right-censoring and within-cluster dependence of the outcome variable. Regression coefficients of random effect Tobit models have conditional interpretations on a constructed latent dependent variable and do not provide inference of overall exposure effects on the original outcome scale. Marginalized random effects model (MREM) permits likelihood-based estimation of marginal mean parameters for the clustered data. For random effect Tobit models, we extend the MREM to marginalize over both the random effects and the normal space and boundary components of the censored response to estimate overall exposure effects at population level. We also extend the 'Average Predicted Value' method to estimate the model-predicted marginal means for each person under different exposure status in a designated reference group by integrating over the random effects and then use the calculated difference to assess the overall exposure effect. The maximum likelihood estimation is proposed utilizing a quasi-Newton optimization algorithm with Gauss-Hermite quadrature to approximate the integration of the random effects. We use these methods to carefully analyze two real datasets. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Uncertainty and validation. Effect of model complexity on uncertainty estimates
International Nuclear Information System (INIS)
Elert, M.
1996-09-01
In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root
Effectiveness of discovery learning model on mathematical problem solving
Herdiana, Yunita; Wahyudin, Sispiyati, Ririn
2017-08-01
This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.
Gluonic effects in color dielectric model. Pt. 2
International Nuclear Information System (INIS)
Aoki, N.; Hyuga, H.
1990-01-01
We study generalized versions of the Nielsen and Patkos color dielectric model with an effective quark mass m q (χ=m q /χ τ and a dielectric function Κ(χ)=χ β . Gluonic effects are studied in this model with both perturbative and self-consistent calculations. In the case of τ=0.5 and β=2, it is shown that the perturbative gluonic effects are too strong to obtain a reasonable description of N and Δ. The choice of τ=2 and β=4 is shown to give a reasonable agreement of the masses of N and Δ with their observed ones. Taking into account the results in our previous paper, it is therefore suggested that the choice of τ:β=1:2 is superior to that of 1:4, the latter of which corresponds of the Nielsen and Patkos model. (orig.)
A theoretical model on surface electronic behavior: Strain effect
International Nuclear Information System (INIS)
Qin, W.G.; Shaw, D.
2009-01-01
Deformation from mechanical loading can affect surface electronic behavior. Surface deformation and electronic behavior can be quantitatively expressed using strain and work function, respectively, and their experimental relationship can be readily determined using the Kelvin probing technique. However, the theoretical correlation between work function and strain has been unclear. This study reports our theoretical exploration, for the first time, of the effect of strain on work function. We propose a simple electrostatic action model by considering the effect of a dislocation on work function of a one-dimensional lattice and further extend this model to the complex conditions for the effect of dislocation density. Based on this model, we established successfully a theoretical correlation between work function and strain.
Kinetic modeling of Nernst effect in magnetized hohlraums
Joglekar, A. S.; Ridgers, Christopher Paul; Kingham, R J; Thomas, A. G. R.
2016-01-01
We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such...
Modeling the Substrate Skin Effects in Mutual RL Characteristics.,
Directory of Open Access Journals (Sweden)
D. de Roest
2003-12-01
Full Text Available The goal of this work was to model the influence of the substrateskin effects on the distributed mutual impedance per unit lengthparameters of multiple coupled on-chip interconnects. The proposedanalytic model is based on the frequency-dependent distribution of thecurrent in the silicon substrate and the closed form integrationapproach. It is shown that the calculated frequency-dependentdistributed mutual inductance and the associated mutual resistance arein good agreement with the results obtained from CAD-oriented circuitmodeling technique.
Modeling atmospheric effects of the September 1859 Solar Flare
Thomas, Brian; Jackman, Charles; Melott, Adrian
2006-01-01
We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.
Wang, Hui
2014-05-01
This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my
Non-perturbative effective interactions in the standard model
Energy Technology Data Exchange (ETDEWEB)
Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2014-07-01
This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.
Guidance for modeling causes and effects in environmental problem solving
Armour, Carl L.; Williamson, Samuel C.
1988-01-01
Environmental problems are difficult to solve because their causes and effects are not easily understood. When attempts are made to analyze causes and effects, the principal challenge is organization of information into a framework that is logical, technically defensible, and easy to understand and communicate. When decisionmakers attempt to solve complex problems before an adequate cause and effect analysis is performed there are serious risks. These risks include: greater reliance on subjective reasoning, lessened chance for scoping an effective problem solving approach, impaired recognition of the need for supplemental information to attain understanding, increased chance for making unsound decisions, and lessened chance for gaining approval and financial support for a program/ Cause and effect relationships can be modeled. This type of modeling has been applied to various environmental problems, including cumulative impact assessment (Dames and Moore 1981; Meehan and Weber 1985; Williamson et al. 1987; Raley et al. 1988) and evaluation of effects of quarrying (Sheate 1986). This guidance for field users was written because of the current interest in documenting cause-effect logic as a part of ecological problem solving. Principal literature sources relating to the modeling approach are: Riggs and Inouye (1975a, b), Erickson (1981), and United States Office of Personnel Management (1986).
Evaluation of radiobiological effects in 3 distinct biological models
International Nuclear Information System (INIS)
Lemos, J.; Costa, P.; Cunha, L.; Metello, L.F.; Carvalho, A.P.; Vasconcelos, V.; Genesio, P.; Ponte, F.; Costa, P.S.; Crespo, P.
2015-01-01
Full text of publication follows. The present work aims at sharing the process of development of advanced biological models to study radiobiological effects. Recognizing several known limitations and difficulties of the current monolayer cellular models, as well as the increasing difficulties to use advanced biological models, our group has been developing advanced biological alternative models, namely three-dimensional cell cultures and a less explored animal model (the Zebra fish - Danio rerio - which allows the access to inter-generational data, while characterized by a great genetic homology towards the humans). These 3 models (monolayer cellular model, three-dimensional cell cultures and zebra fish) were externally irradiated with 100 mGy, 500 mGy or 1 Gy. The consequences of that irradiation were studied using cellular and molecular tests. Our previous experimental studies with 100 mGy external gamma irradiation of HepG2 monolayer cells showed a slight increase in the proliferation rate 24 h, 48 h and 72 h post irradiation. These results also pointed into the presence of certain bystander effects 72 h post irradiation, constituting the starting point for the need of a more accurate analysis realized with this work. At this stage, we continue focused on the acute biological effects. Obtained results, namely MTT and clonogenic assays for evaluating cellular metabolic activity and proliferation in the in vitro models, as well as proteomics for the evaluation of in vivo effects will be presented, discussed and explained. Several hypotheses will be presented and defended based on the facts previously demonstrated. This work aims at sharing the actual state and the results already available from this medium-term project, building the proof of the added value on applying these advanced models, while demonstrating the strongest and weakest points from all of them (so allowing the comparison between them and to base the subsequent choice for research groups starting
[Identification of novel therapeutically effective antibiotics using silkworm infection model].
Hamamoto, Hiroshi; Urai, Makoto; Paudel, Atmika; Horie, Ryo; Murakami, Kazuhisa; Sekimizu, Kazuhisa
2012-01-01
Most antibiotics obtained by in vitro screening with antibacterial activity have inappropriate properties as medicines due to their toxicity and pharmacodynamics in animal bodies. Thus, evaluation of the therapeutic effects of these samples using animal models is essential in the crude stage. Mammals are not suitable for therapeutic evaluation of a large number of samples due to high costs and ethical issues. We propose the use of silkworms (Bombyx mori) as model animals for screening therapeutically effective antibiotics. Silkworms are infected by various pathogenic bacteria and are effectively treated with similar ED(50) values of clinically used antibiotics. Furthermore, the drug metabolism pathways, such as cytochrome P450 and conjugation systems, are similar between silkworms and mammals. Silkworms have many advantages compared with other infection models, such as their 1) low cost, 2) few associated ethical problems, 3) adequate body size for easily handling, and 4) easier separation of organs and hemolymph. These features of the silkworm allow for efficient screening of therapeutically effective antibiotics. In this review, we discuss the advantages of the silkworm model in the early stages of drug development and the screening results of some antibiotics using the silkworm infection model.
Behavioral effects of nerve agents: laboratory animal models
International Nuclear Information System (INIS)
Myers, T. M.
2009-01-01
Diverse and often subtle behavioral consequences have been reported for humans exposed to nerve agents. Laboratory studies of nerve agent exposure offer rigorous control over important variables, but species other than man must be used. Nonhuman primate models offer the best means of identifying the toxic nervous system effects of nerve agent insult and the countermeasures best capable of preventing or attenuating these effects. Comprehensive behavioral models must evaluate preservation and recovery of function as well as new learning ability. The throughput and sensitivity of the tests chosen are important considerations. A few nonhuman primate studies will be discussed to elaborate recent successes, current limitations, and future directions.(author)
The Effect of Model Problem Based Learning (Pbl)
Safrina, Safrina; Saminan, Saminan
2015-01-01
This study aims to determine the effect of the application of PBL models of science process skills (PPP) and the understanding of the concept of chemical substances in food at eighth grade students MTsN Meureudu. This study is a descriptive study using the research design one group pretest and posttest design. Samples were 19 eighth grade students MTsN Meureudu school year 2013/2014. Data collected by pretest and posttest to determine the effect of the application of PBL models and observatio...
Attractive Casimir effect in an infrared modified gluon bag model
International Nuclear Information System (INIS)
Oxman, L.E.; Amaral, R.L.P.G.; Svaiter, N.F.
2005-01-01
In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy
E-Model MOS Estimate Precision Improvement and Modelling of Jitter Effects
Directory of Open Access Journals (Sweden)
Adrian Kovac
2012-01-01
Full Text Available This paper deals with the ITU-T E-model, which is used for non-intrusive MOS VoIP call quality estimation on IP networks. The pros of E-model are computational simplicity and usability on real-time traffic. The cons, as shown in our previous work, are the inability of E-model to reflect effects of network jitter present on real traffic flows and jitter-buffer behavior on end user devices. These effects are visible mostly on traffic over WAN, internet and radio networks and cause the E-model MOS call quality estimate to be noticeably too optimistic. In this paper, we propose a modification to E-model using previously proposed Pplef (effective packet loss using jitter and jitter-buffer model based on Pareto/D/1/K system. We subsequently perform optimization of newly added parameters reflecting jitter effects into E-model by using PESQ intrusive measurement method as a reference for selected audio codecs. Function fitting and parameter optimization is performed under varying delay, packet loss, jitter and different jitter-buffer sizes for both, correlated and uncorrelated long-tailed network traffic.
A hydrodynamic model for granular material flows including segregation effects
Gilberg, Dominik; Klar, Axel; Steiner, Konrad
2017-06-01
The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.
Multivariate longitudinal data analysis with mixed effects hidden Markov models.
Raffa, Jesse D; Dubin, Joel A
2015-09-01
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.
Modelling baryonic effects on galaxy cluster mass profiles
Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke
2018-06-01
Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.
Analog model for quantum gravity effects: phonons in random fluids.
Krein, G; Menezes, G; Svaiter, N F
2010-09-24
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.
A dynamic model of the greenhouse effect and its control
International Nuclear Information System (INIS)
Perman, R.; Nisbet, R.; Ma, Y.
1991-01-01
A dynamic model is developed for the analysis of programmes to control the greenhouse effect. The model uses simplified representations of physical processes determining climate change, linked to an economic model of emissions and emissions abatement. Feedbacks between physical and economic processes are incorporated, and the costs of emissions reduction are compared with the benefits through averted damage. Simulation analyses explore the relative merits of several intervention scenarios, each of which is compared with non intervention. Throughout the paper, emphasis is placed upon the long term consequences of behaviour, and the patterns of dynamic adjustment over time. (author)
Non-uniform chiral phase in effective chiral quark models
International Nuclear Information System (INIS)
Sadzikowski, M.; Broniowski, W.
2000-01-01
We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)
Modelling Baryonic Effects on Galaxy Cluster Mass Profiles
Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke
2018-03-01
Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.
A Fay-Herriot Model with Different Random Effect Variances
Czech Academy of Sciences Publication Activity Database
Hobza, Tomáš; Morales, D.; Herrador, M.; Esteban, M.D.
2011-01-01
Roč. 40, č. 5 (2011), s. 785-797 ISSN 0361-0926 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : small area estimation * Fay-Herriot model * Linear mixed model * Labor Force Survey Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.274, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/hobza-a%20fay-herriot%20model%20with%20different%20random%20effect%20variances.pdf
Numerical modeling of coanda effect in a novel propulsive system
Directory of Open Access Journals (Sweden)
S Das
2016-09-01
Full Text Available Coanda effect (adhesion of jet flow over curved surface is fundamental characteristics of jet flow. In the present paper, we carried out numerical simulations to investigate Coanda flow over a curved surface and its application in a newly proposed Propulsive system "A.C.H.E.O.N" (Aerial Coanda High Efficiency Orienting jet Nozzle which supports thrust vectoring. The ACHEON system is presently being proposed for propelling a new V/STOL airplane in European Union. This system is based on cumulative effects of three physical effects such as (1 High speed jet mixing speeds (2 Coanda effect control by electrostatic fields (3 Coanda effect adhesion of an high speed jet to a convex surface. The performance of this nozzle can be enhanced by increasing the jet deflection angle of synthetic jet over the Coanda surface. This newly proposed nozzle has wide range of applications. It can be used in industrial sector such as plasma spray gun and for direct injection in combustion chamber to enhance the efficiency of the combustion chamber. Also, we studied the effect of Dielectric barrier discharge (DBD plasma actuators on A.C.H.E.O.N system. Dielectric barrier discharge (DBD plasma actuators are active control devices for controlling boundary layer and to delay the flow separation over any convex surfaces. Computations were performed under subsonic condition. Two dimensional CFD calculations were carried out using Reynolds averaged Navier stokes equations (RANS. A numerical method based on finite volume formulation (FVM was used. SST k-ω model was considered to model turbulent flow inside nozzle. DBD model was used to model the plasma. Moreover, a body force treatment was devised to model the effect of plasma and its coupling with the fluid. This preliminary result shows that, the presence of plasma near Coanda surface accelerates the flow and delays the separation and enhances the efficiency of the nozzle.
Model-independent effects of Δ excitation in nucleon polarizabilities
International Nuclear Information System (INIS)
Pascalutsa, Vladimir; Phillips, Daniel R.
2003-01-01
Model-independent effects of Δ(1232) excitation on nucleon polarizabilities are computed in a Lorentz-invariant fashion. We find a large effect of relative order (M Δ -M)/M in some of the spin polarizabilities, with the backward spin polarizability receiving the largest contribution. Similar subleading effects are found to be important in the fourth-order spin-independent polarizabilities α Eν , α E2 , β Mν , and β M2 . Combining our results with those for the model-independent effects of pion loops we obtain predictions for spin and fourth-order polarizabilities which compare favorably with the results of a recent dispersion-relation analysis of data
Edge effect modeling of small tool polishing in planetary movement
Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng
2018-03-01
As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects
Modeling of surface tension effects in venturi scrubbing
Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.
A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.
Energy Technology Data Exchange (ETDEWEB)
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
Modeling the effect of comprehensive interventions on Ebola virus transmission
Shen, Mingwang; Xiao, Yanni; Rong, Libin
2015-10-01
Since the re-emergence of Ebola in West Africa in 2014, comprehensive and stringent interventions have been implemented to decelerate the spread of the disease. The effectiveness of interventions still remains unclear. In this paper, we develop an epidemiological model that includes various controlling measures to systematically evaluate their effects on the disease transmission dynamics. By fitting the model to reported cumulative cases and deaths in Guinea, Sierra Leone and Liberia until March 22, 2015, we estimate the basic reproduction number in these countries as 1.2552, 1.6093 and 1.7994, respectively. Model analysis shows that there exists a threshold of the effectiveness of isolation, below which increasing the fraction of latent individuals diagnosed prior to symptoms onset or shortening the duration between symptoms onset and isolation may lead to more Ebola infection. This challenges an existing view. Media coverage plays a substantial role in reducing the final epidemic size. The response to reported cumulative infected cases and deaths may have a different effect on the epidemic spread in different countries. Among all the interventions, we find that shortening the duration between death and burial and improving the effectiveness of isolation are two effective interventions for controlling the outbreak of Ebola virus infection.
Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.
Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng
2017-10-01
The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.
Use of nonlinear dose-effect models to predict consequences
International Nuclear Information System (INIS)
Seiler, F.A.; Alvarez, J.L.
1996-01-01
The linear dose-effect relationship was introduced as a model for the induction of cancer from exposure to nuclear radiation. Subsequently, it has been used by analogy to assess the risk of chemical carcinogens also. Recently, however, the model for radiation carcinogenesis has come increasingly under attack because its calculations contradict the epidemiological data, such as cancer in atomic bomb survivors. Even so, its proponents vigorously defend it, often using arguments that are not so much scientific as a mix of scientific, societal, and often political arguments. At least in part, the resilience of the linear model is due to two convenient properties that are exclusive to linearity: First, the risk of an event is determined solely by the event dose; second, the total risk of a population group depends only on the total population dose. In reality, the linear model has been conclusively falsified; i.e., it has been shown to make wrong predictions, and once this fact is generally realized, the scientific method calls for a new paradigm model. As all alternative models are by necessity nonlinear, all the convenient properties of the linear model are invalid, and calculational procedures have to be used that are appropriate for nonlinear models
How to use the Standard Model effective field theory
Energy Technology Data Exchange (ETDEWEB)
Henning, Brian; Lu, Xiaochuan [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Murayama, Hitoshi [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),Todai Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan)
2016-01-05
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.
Effect of Keishibukuryogan on Genetic and Dietary Obesity Models
Directory of Open Access Journals (Sweden)
Fengying Gao
2015-01-01
Full Text Available Obesity has been recognized as one of the most important risk factors for a variety of chronic diseases, such as diabetes, hypertension/cardiovascular diseases, steatosis/hepatitis, and cancer. Keishibukuryogan (KBG, Gui Zhi Fu Ling Wan in Chinese is a traditional Chinese/Japanese (Kampo medicine that has been known to improve blood circulation and is also known for its anti-inflammatory or scavenging effect. In this study, we evaluated the effect of KBG in two distinct rodent models of obesity driven by either a genetic (SHR/NDmcr-cp rat model or dietary (high-fat diet-induced mouse obesity model mechanism. Although there was no significant effect on the body composition in either the SHR rat or the DIO mouse models, KBG treatment significantly decreased the serum level of leptin and liver TG level in the DIO mouse, but not in the SHR rat model. Furthermore, a lower fat deposition in liver and a smaller size of adipocytes in white adipose tissue were observed in the DIO mice treated with KBG. Importantly, we further found downregulation of genes involved in lipid metabolism in the KBG-treated liver, along with decreased liver TG and cholesterol level. Our present data experimentally support in fact that KBG can be an attractive Kampo medicine to improve obese status through a regulation of systemic leptin level and/or lipid metabolism.
The effect of nonstationarity on models inferred from neural data
International Nuclear Information System (INIS)
Tyrcha, Joanna; Roudi, Yasser; Marsili, Matteo; Hertz, John
2013-01-01
Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)
The effect of nonstationarity on models inferred from neural data
Energy Technology Data Exchange (ETDEWEB)
Tyrcha, Joanna [Department of Mathematical Statistics, Stockholm University, SE-10691 Stockholm (Sweden); Roudi, Yasser [Kavli Institute for Systems Neuroscience, NTNU, NO-7010 Trondheim (Norway); Marsili, Matteo [The Abdus Salam ICTP, Strada Costiera 11, I-34151, Trieste (Italy); Hertz, John [Nordita, Royal Institute of Technology and Stockholm University, SE-106 91 Stockholm (Sweden)
2013-03-01
Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)
Longitudinal mixed-effects models for latent cognitive function
van den Hout, Ardo; Fox, Gerardus J.A.; Muniz-Terrera, Graciela
2015-01-01
A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response
Developing a More Effective Recruitment and Retention Model.
Janke, Walter; Kelly, Gary
The purpose of a project was to develop a model for more effective recruitment and retention of people of color in the Associate Degree Interior Design and Diploma Interior Design Assistant Program at Milwaukee Area Technical College (MATC), Wisconsin. During Activity One, individuals in MATC's Student Development and High School Relations…
STAS and Logit Modeling of Advertising and Promotion Effects
DEFF Research Database (Denmark)
Hansen, Flemming; Yssing Hansen, Lotte; Grønholdt, Lars
2002-01-01
This paper describes the preliminary studies of the effect of advertising and promotion on purchases using the British single-source database Adlab. STAS and logit modeling are the two measures studied. Results from the two measures have been compared to determine the extent to which, they give...
An Integrated Model for Effective Knowledge Management in Chinese Organizations
An, Xiaomi; Deng, Hepu; Wang, Yiwen; Chao, Lemen
2013-01-01
Purpose: The purpose of this paper is to provide organizations in the Chinese cultural context with a conceptual model for an integrated adoption of existing knowledge management (KM) methods and to improve the effectiveness of their KM activities. Design/methodology/approaches: A comparative analysis is conducted between China and the western…
Towards a more effective model for distance education
Koper, Rob
2014-01-01
Reference: Koper, E.J.R. (2014). Towards a more effective model for distance education. e-Learning and Education. e-Learning and Education, 10. urn:nbn:de:0009-5-40105 http://eleed.campussource.de/archive/10/4010
Correlation effects in the Ising model in an external field
International Nuclear Information System (INIS)
Borges, H.E.; Silva, P.R.
1983-01-01
The thermodynamic properties of the spin-1/2 Ising Model in an external field are evaluated through the use of the exponential differential operator method and Callen's exact relations. The correlations effects are treated in a phenomenological approach and the results are compared with other treatments. (Author) [pt
Computer Simulation (Microcultures): An Effective Model for Multicultural Education.
Nelson, Jorge O.
This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…
CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE
Directory of Open Access Journals (Sweden)
D. V. Koliesnikov
2011-01-01
Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.
Modeling the Constructs Contributing to the Effectiveness of Marketing Lecturers
Sweeney, Arthur D. P.; Morrison, Mark D.; Jarratt, Denise; Heffernan, Troy
2009-01-01
Student evaluation of teaching has been examined in higher education research for over 70 years but there are gaps in our knowledge about the contribution, and relationships between, the relevant constructs. Recent literature encourages researchers to test multivariate models of Teaching Effectiveness. Seven main constructs known to influence…
Modeling of eating style and its effect on intake
Boer, van den J.H.W.; Mars, M.
2015-01-01
Observational research has indicated that modeling of eating style might occur when eating in the presence of an eating companion. This experiment investigated the effect of bite frequency of a same-sex eating companion on bite frequency, meal size and meal duration. A total of 30 normal weight
Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media
Waheed, Umair Bin
2016-04-22
Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i
Global model for the lithospheric strength and effective elastic thickness
Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.
2013-01-01
Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young
Conceptual Models and Theory-Embedded Principles on Effective Schooling.
Scheerens, Jaap
1997-01-01
Reviews models and theories on effective schooling. Discusses four rationality-based organization theories and a fifth perspective, chaos theory, as applied to organizational functioning. Discusses theory-embedded principles flowing from these theories: proactive structuring, fit, market mechanisms, cybernetics, and self-organization. The…
Varying parameter models to accommodate dynamic promotion effects
Foekens, E.W.; Leeflang, P.S.H.; Wittink, D.R.
1999-01-01
The purpose of this paper is to examine the dynamic effects of sales promotions. We create dynamic brand sales models (for weekly store-level scanner data) by relating store intercepts and a brand's own price elasticity to a measure of the cumulated previous price discounts - amount and time - for
Modeling of the effective thermal conductivity of sintered porous pastes
Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.
2014-01-01
The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the
Influence of seeing effects on cloud model inversions
Czech Academy of Sciences Publication Activity Database
Tziotziou, K.; Heinzel, Petr; Tsiropoula, G.
2007-01-01
Roč. 472, č. 1 (2007), s. 287-292 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : cloud model * inversions * seeing effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007
Effective single scattering albedo estimation using regional climate model
CSIR Research Space (South Africa)
Tesfaye, M
2011-09-01
Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...
Genomic Model with Correlation Between Additive and Dominance Effects.
Xiang, Tao; Christensen, Ole Fredslund; Vitezica, Zulma Gladis; Legarra, Andres
2018-05-09
Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such correlation. Wellmann and Bennewitz showed two ways of considering directional relationships between additive and dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of individuals instead of loci in a mixed model and are not compatible with standard animal or plant breeding software. This comes from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a consequence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood (REML) algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by mixed model software and accuracy of prediction for genetic values is slightly improved if such correlations are used in GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant
Evaluating significance in linear mixed-effects models in R.
Luke, Steven G
2017-08-01
Mixed-effects models are being used ever more frequently in the analysis of experimental data. However, in the lme4 package in R the standards for evaluating significance of fixed effects in these models (i.e., obtaining p-values) are somewhat vague. There are good reasons for this, but as researchers who are using these models are required in many cases to report p-values, some method for evaluating the significance of the model output is needed. This paper reports the results of simulations showing that the two most common methods for evaluating significance, using likelihood ratio tests and applying the z distribution to the Wald t values from the model output (t-as-z), are somewhat anti-conservative, especially for smaller sample sizes. Other methods for evaluating significance, including parametric bootstrapping and the Kenward-Roger and Satterthwaite approximations for degrees of freedom, were also evaluated. The results of these simulations suggest that Type 1 error rates are closest to .05 when models are fitted using REML and p-values are derived using the Kenward-Roger or Satterthwaite approximations, as these approximations both produced acceptable Type 1 error rates even for smaller samples.
Effect of vergence adaptation on convergence-accommodation: model simulations.
Sreenivasan, Vidhyapriya; Bobier, William R; Irving, Elizabeth L; Lakshminarayanan, Vasudevan
2009-10-01
Several theoretical control models depict the adaptation effects observed in the accommodation and vergence mechanisms of the human visual system. Two current quantitative models differ in their approach of defining adaptation and in identifying the effect of controller adaptation on their respective cross-links between the vergence and accommodative systems. Here, we compare the simulation results of these adaptation models with empirical data obtained from emmetropic adults when they performed sustained near task through + 2D lens addition. The results of our experimental study showed an initial increase in exophoria (a divergent open-loop vergence position) and convergence-accommodation (CA) when viewing through +2D lenses. Prolonged fixation through the near addition lenses initiated vergence adaptation, which reduced the lens-induced exophoria and resulted in a concurrent reduction of CA. Both models showed good agreement with empirical measures of vergence adaptation. However, only one model predicted the experimental time course of reduction in CA. The pattern of our empirical results seem to be best described by the adaptation model that indicates the total vergence response to be a sum of two controllers, phasic and tonic, with the output of phasic controller providing input to the cross-link interactions.
Transmission Model of Hepatitis B Virus with the Migration Effect
Directory of Open Access Journals (Sweden)
Muhammad Altaf Khan
2013-01-01
Full Text Available Hepatitis B is a globally infectious disease. Mathematical modeling of HBV transmission is an interesting research area. In this paper, we present characteristics of HBV virus transmission in the form of a mathematical model. We analyzed the effect of immigrants in the model to study the effect of immigrants for the host population. We added the following flow parameters: “the transmission between migrated and exposed class” and “the transmission between migrated and acute class.” With these new features, we obtained a compartment model of six differential equations. First, we find the basic threshold quantity Ro and then find the local asymptotic stability of disease-free equilibrium and endemic equilibrium. Furthermore, we find the global stability of the disease-free and endemic equilibria. Previous similar publications have not added the kind of information about the numerical results of the model. In our case, from numerical simulation, a detailed discussion of the parameters and their numerical results is presented. We claim that with these assumptions and by adding the migrated class, the model informs policy for governments, to be aware of the immigrants and subject them to tests about the disease status. Immigrants for short visits and students should be subjected to tests to reduce the number of immigrants with disease.
Multiscale modeling of radiation effects in nuclear reactor structural materials
Energy Technology Data Exchange (ETDEWEB)
Kwon, Junhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
Most problems in irradiated materials originate from the atomic collision of high-energy particles and lattice atoms. This collision leads to displacement cascades through the energy transfer reaction and causes various types of defects such as vacancies, interstitials, and clusters. The behavior of the point defects created in the displacement cascades is important because these defects play a major role in a microstructural evolution and further affect the changes in material properties. Rapid advances have been made in the computational capabilities for a realistic simulation of complex physical phenomena, such as irradiation and aging effects. At the same time, progress has been made in understanding the effect of radiation in metals, especially iron-based alloys. In this work, we present some of our ongoing work in this area, which illustrates a multiscale modeling for evaluating a microstructural evolution and mechanical property changes during irradiation. Multiscale modeling approaches are briefly presented here in the following order: nuclear interaction, atomic-level interaction, atomistic modeling, microstructural evolution modeling and mechanical property modeling. This is one of many possible methods for classifying techniques. The effort in developing physical multiscale models applied to radiation damage has been focused on a single crystal or single-grain materials.
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19
Modelling the effects of treatment and quarantine on measles
Beay, Lazarus Kalvein
2018-03-01
Treatment and quarantine are efforts to cure as well as to overcome the spread of diseases including measles. The spread of measles can be expressed by mathematical modelling in the form of nonlinear dynamical systems. In this study was conducted on the spread of measles by considering the effect of treatment and quarantine on the infected individuals. By using the basic reproduction number of the model, can be analyzed the effects of treatment and quarantine to reduce the spread of measles. Basic reproduction number of models is monotonically descreasing as treatment and quarantine increasing. Numerical simulations conducted on the analysis of the results. The results showed that treatment and quarantine was given to infected individuals who were infectious has a major influence to eliminate measles from the system.
CORPORATE FORESIGHT AND PERFORMANCE: A CHAIN-OF-EFFECTS MODEL
DEFF Research Database (Denmark)
Jissink, Tymen; Huizingh, Eelko K.R.E.; Rohrbeck, René
2015-01-01
In this paper we develop and validate a measurement scale for corporate foresight and examine its impact on performance in a chain-of-effects model. We conceptualize corporate foresight as an organizational ability consisting of five distinct dimensions: information scope, method usage, people......, formal organization, and culture. We investigate the relation of corporate foresight with three innovation performance dimensions – new product success, new product innovativeness, and financial performance. We use partial-least-squares structural equations modelling to assess our measurement mode ls...... and test our research hypotheses. Using a cross-industry sample of 153 innovative firms, we find that corporate foresight can be validly and reliably measured by our measurement instrument. The results of the structural model support the hypothesized positive effects of corporate foresight on all...
Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects
Directory of Open Access Journals (Sweden)
Yi Hu
2014-01-01
Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.
Modelling the effect of acoustic waves on nucleation
Energy Technology Data Exchange (ETDEWEB)
Haqshenas, S. R., E-mail: seyyed.haqshenas.12@ucl.ac.uk; Saffari, N., E-mail: n.saffari@ucl.ac.uk [Department of Mechanical Engineering, University College London, Gower Street, London WC1E 7JE (United Kingdom); Ford, I. J., E-mail: i.ford@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2016-07-14
A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory.
Fluid analog model for boundary effects in field theory
International Nuclear Information System (INIS)
Ford, L. H.; Svaiter, N. F.
2009-01-01
Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.
Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models
Directory of Open Access Journals (Sweden)
Joseph A. Wayman
2015-03-01
Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge
Multi-region unstructured volume segmentation using tetrahedron filling
Energy Technology Data Exchange (ETDEWEB)
Willliams, Sean Jamerson [Los Alamos National Laboratory; Dillard, Scott E [Los Alamos National Laboratory; Thoma, Dan J [MDI, INSTITUTES; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS
2010-01-01
Segmentation is one of the most common operations in image processing, and while there are several solutions already present in the literature, they each have their own benefits and drawbacks that make them well-suited for some types of data and not for others. We focus on the problem of breaking an image into multiple regions in a single segmentation pass, while supporting both voxel and scattered point data. To solve this problem, we begin with a set of potential boundary points and use a Delaunay triangulation to complete the boundaries. We use heuristic- and interaction-driven Voronoi clustering to find reasonable groupings of tetrahedra. Apart from the computation of the Delaunay triangulation, our algorithm has linear time complexity with respect to the number of tetrahedra.
Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect
Directory of Open Access Journals (Sweden)
Sanhong Liu
2015-01-01
Full Text Available Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.
Global dynamics of avian influenza epidemic models with psychological effect.
Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan
2015-01-01
Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.
Evolutive Masing model, cycling plasticity, ageing and memory effects
International Nuclear Information System (INIS)
Sidoroff, F.
1987-01-01
Many models are proposed for the mechanical description of the cyclic behaviour of metals and used for structure analysis under cyclic loading. The evolutive Masing model has been proposed (Fougeres, Sidoroff, Vincent and Waille 1985) to combine - the accuracy of hereditary models for the description of hysteresis on each cycle, - the versatility of internal variables for the state description and evolution, - a sufficient microstructural basis to make the interaction easier with microstructural investigations. The purpose of the present work is to discuss this model and to compare different evolution assumptions with respect to some memory effects (cyclic hardening and softening, multilevel tests, ageing). Attention is limited to uniaxial, rate independent elasto-plastic behaviour. (orig./GL)
VDT microplane model with anisotropic effectiveness and plasticity
Benelfellah, Abdelkibir; Gratton, Michel; Caliez, Michael; Frachon, Arnaud; Picart, Didier
2018-03-01
The opening-closing state of the microcracks is a kinematic phenomenon usually modeled using a set of damage effectiveness variables, which results in different elastic responses for the same damage level. In this work, the microplane model with volumetric, deviatoric and tangential decomposition denoted V-D-T is modified. The influence of the confining pressure is taken into account in the damage variables evolution laws. For a better understanding of the mechanisms introduced into the model, the damage rosettes are presented for a strain given level. The model is confirmed through comparisons of the simulations with the experimental results of monotonic, and cyclic tensile and compressive testing with different levels of confining pressure.
Quark matter inside neutron stars in an effective chiral model
International Nuclear Information System (INIS)
Kotlorz, A.; Kutschera, M.
1994-02-01
An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab
CRLH Transmission Lines for Telecommunications: Fast and Effective Modeling
Directory of Open Access Journals (Sweden)
Juanjuan Gao
2017-01-01
Full Text Available A different parameter extraction approach based on zero immittances for composite right/left-handed (CRLH structure is presented. For lossless unit cell equivalent circuit model, LC parameters of series and parallel branches are extracted according to series resonance frequency and parallel resonance frequency, respectively. This approach can be applied to symmetric and unbalanced CRLH structures. The parameter extraction procedure is provided and validated by T-type unit cell model. The responses of distributed prototype and extracted equivalent LC circuit model are in good agreement. The equivalent circuit modeling can improve the degree of freedom in the CRLH TLs design. This parameter extraction method provides an effective and straightforward way in CRLH metamaterials design and applications in telecommunication systems.
Modeling of Drift Effects on Solar Tower Concentrated Flux Distributions
Directory of Open Access Journals (Sweden)
Luis O. Lara-Cerecedo
2016-01-01
Full Text Available A novel modeling tool for calculation of central receiver concentrated flux distributions is presented, which takes into account drift effects. This tool is based on a drift model that includes different geometrical error sources in a rigorous manner and on a simple analytic approximation for the individual flux distribution of a heliostat. The model is applied to a group of heliostats of a real field to obtain the resulting flux distribution and its variation along the day. The distributions differ strongly from those obtained assuming the ideal case without drift or a case with a Gaussian tracking error function. The time evolution of peak flux is also calculated to demonstrate the capabilities of the model. The evolution of this parameter also shows strong differences in comparison to the case without drift.
Modelling Dominance Hierarchies Under Winner and Loser Effects.
Kura, Klodeta; Broom, Mark; Kandler, Anne
2015-06-01
Animals that live in groups commonly form themselves into dominance hierarchies which are used to allocate important resources such as access to mating opportunities and food. In this paper, we develop a model of dominance hierarchy formation based upon the concept of winner and loser effects using a simulation-based model and consider the linearity of our hierarchy using existing and new statistical measures. Two models are analysed: when each individual in a group does not know the real ability of their opponents to win a fight and when they can estimate their opponents' ability every time they fight. This estimation may be accurate or fall within an error bound. For both models, we investigate if we can achieve hierarchy linearity, and if so, when it is established. We are particularly interested in the question of how many fights are necessary to establish a dominance hierarchy.
Uncertainty and validation. Effect of model complexity on uncertainty estimates
Energy Technology Data Exchange (ETDEWEB)
Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)] [ed.
1996-09-01
In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root
Modelling the regional effects of climate change on air quality
International Nuclear Information System (INIS)
Giorgi, F.; Meleux, F.
2007-01-01
The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies. (authors)
Interpreting Marginal Effects in the Multinomial Logit Model
DEFF Research Database (Denmark)
Wulff, Jesper
2014-01-01
with a substantial increase in the probability of entering a foreign market using a joint venture, while increases in the unpredictability in the host country environment are associated with a lower probability of wholly owned subsidiaries and a higher probability of exporting entries....... that have entered foreign markets. Through the application of a multinomial logit model, careful analysis of the marginal effects is performed through graphical representations, marginal effects at the mean, average marginal effects and elasticities. I show that increasing cultural distance is associated......This paper presents the challenges when researchers interpret results about relationships between variables from discrete choice models with multiple outcomes. The recommended approach is demonstrated by testing predictions from transaction cost theory on a sample of 246 Scandinavian firms...
Micromagnetic modeling of the effects of stress on magnetic properties
International Nuclear Information System (INIS)
Zhu, B.; Lo, C. C. H.; Lee, S. J.; Jiles, D. C.
2001-01-01
A micromagnetic model has been developed for investigating the effect of stress on the magnetic properties of thin films. This effect has been implemented by including the magnetoelastic energy term into the Landau - Lifshitz - Gilbert equation. Magnetization curves of a nickel film were calculated under both tensile and compressive stresses of various magnitudes applied along the field direction. The modeling results show that coercivity increased with increasing compressive stress while remanence decreased with increasing tensile stress. The results are in agreement with the experimental data in the literature and can be interpreted in terms of the effects of the applied stress on the irreversible rotation of magnetic moments during magnetization reversal under an applied field. [copyright] 2001 American Institute of Physics
2015-01-01
The Carrier Intervention Effectiveness Model (CIEM) : provides the Federal Motor Carrier Safety : Administration (FMCSA) with a tool for measuring : the safety benefits of carrier interventions conducted : under the Compliance, Safety, Accountability...
2014-11-01
The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in te...
2016-02-01
The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National : Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside : inspections and traffic enforcements i...
2015-06-01
The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in te...
2017-08-01
The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the John A. Volpe National Transportation Systems Center, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in te...
Circuit models and SPICE macro-models for quantum Hall effect devices
International Nuclear Information System (INIS)
Ortolano, Massimo; Callegaro, Luca
2015-01-01
Precise electrical measurement technology based on the quantum Hall effect is one of the pillars of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a concise review of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided. (paper)
The picture superiority effect: support for the distinctiveness model.
Mintzer, M Z; Snodgrass, J G
1999-01-01
The form change paradigm was used to explore the basis for the picture superiority effect. Recognition memory for studied pictures and words was tested in their study form or the alternate form. Form change cost was defined as the difference between recognition performance for same and different form items. Based on the results of Experiment 1 and previous studies, it was difficult to determine the relative cost for studied pictures and words due to a reversal of the mirror effect. We hypothesized that the reversed mirror effect results from subjects' basing their recognition decisions on their assumptions about the study form. Experiments 2 and 3 confirmed this hypothesis and generated a method for evaluating the relative cost for pictures and words despite the reversed mirror effect. More cost was observed for pictures than words, supporting the distinctiveness model of the picture superiority effect.
Assessment of bullet effectiveness based on a human vulnerability model.
Liu, Susu; Xu, C; Wen, Y; Li, G; Zhou, J
2017-12-25
Penetrating wounds from explosively propelled fragments and bullets are the most common causes of combat injury. There is a requirement to assess the potential effectiveness of bullets penetrating human tissues in order to optimise preventive measures and wound trauma management. An advanced voxel model based on the Chinese Visible Human data was built. A digital human vulnerability model was established in combination with wound reconstruction and vulnerability assessment rules, in which wound penetration profiles were obtained by recreating the penetration of projectiles into ballistic gelatin. An effectiveness evaluation method of bullet penetration using the Abbreviated Injury Scale (AIS) was developed and solved using the Monte Carlo sampling method. The effectiveness of rifle bullets was demonstrated to increase with increasing velocity in the range of 300-700 m/s. When imparting the same energy, the effectiveness of the 5.56 mm bullet was higher than the 7.62 mm bullet in this model. The superimposition of simulant penetration profiles produced from ballistic gelatin simulant has been used to predict wound tracts in damaged tissues. The authors recognise that determining clinical effectiveness based on the AIS scores alone without verification of outcome by review of clinical hospital records means that this technique should be seen more as a manner of comparing the effectiveness of bullets than an injury prediction model. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Evolutive masing model, cyclic plasticity, ageing and memory effects
International Nuclear Information System (INIS)
Sidoroff, F.
1987-01-01
Many models are proposed for the mechanical description of the cyclic behaviour of metals and used for structure analysis under cyclic loading. Such a model must include two basic features: Dissipative behaviour on each cycle (hysteresis loop); evolution of this behaviour during the material's life (cyclic hardening or softening, aging,...). However, if both aspects are present in most existing models, the balance between them may be quite different. Many metallurgical investigations have been performed about the microstructure and its evolution during cyclic loading, and it is desirable to introduce these informations in phenomenological models. The evolutive Masing model has been proposed to combine: the accuracy of hereditary models for the description of hysteresis on each cycle, the versatility of internal variables for the state description and evolution, a sufficient microstructural basis to make the interaction easier with microstructural investigations. The purpose of the present work is to discuss this model and to compare different evolution assumptions with respect to some memory effects (cyclic hardening and softening, multilevel tests, aging). Attention is limited to uniaxial, rate independent elasto-plastic behaviour
[The effect of disinfectant soaking on dental gypsum model size].
Zhu, Cao-yun; Xu, Yun-wen; Xu, Kan
2012-12-01
To study the influence of disinfectant soaking on the dimensional stability of three kinds of dental gypsum model. Three commonly used gypsums ( type III,IV,Vtype) in clinic were used to make 24 specimens for 50 mm×15 mm×10 mm in size. One hour after release, the specimens were placed for 24 h. A digital caliper was used to measure the size of the gypsum model. Distilled water immersion was as used control, glutaraldehyde disinfectant and Metrix CaviCide disinfectant soaking were used for the experimental group. After soaking for 0.5h, the gypsum models were removed and placed for 0.5 h, 1 h, 2 h, 24 h. The size of the models was measured again using the same method. The data was analyzed with SPSS10.0 software package. The initial gypsum model length was (50.07±0.017) mm, (50.048±0.015) mm and (50.027±0.015) mm. After soaking for different times, the size of the model changed little, and the dimensions changed less than 0.01%. The results show that disinfectant soaking has no significant effect on dental model dimensions.
Modeling the dispersion effects of contractile fibers in smooth muscles
Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.
2010-12-01
Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.
Examples of mixed-effects modeling with crossed random effects and with binomial data
Quené, H.; van den Bergh, H.
2008-01-01
Psycholinguistic data are often analyzed with repeated-measures analyses of variance (ANOVA), but this paper argues that mixed-effects (multilevel) models provide a better alternative method. First, models are discussed in which the two random factors of participants and items are crossed, and not
Modeling the Cumulative Effects of Social Exposures on Health: Moving beyond Disease-Specific Models
Directory of Open Access Journals (Sweden)
Heather L. White
2013-03-01
Full Text Available The traditional explanatory models used in epidemiology are “disease specific”, identifying risk factors for specific health conditions. Yet social exposures lead to a generalized, cumulative health impact which may not be specific to one illness. Disease-specific models may therefore misestimate social factors’ effects on health. Using data from the Canadian Community Health Survey and Canada 2001 Census we construct and compare “disease-specific” and “generalized health impact” (GHI models to gauge the negative health effects of one social exposure: socioeconomic position (SEP. We use logistic and multinomial multilevel modeling with neighbourhood-level material deprivation, individual-level education and household income to compare and contrast the two approaches. In disease-specific models, the social determinants under study were each associated with the health conditions of interest. However, larger effect sizes were apparent when outcomes were modeled as compound health problems (0, 1, 2, or 3+ conditions using the GHI approach. To more accurately estimate social exposures’ impacts on population health, researchers should consider a GHI framework.
Numerical modeling of ductile tearing effects on cleavage fracture toughness
International Nuclear Information System (INIS)
Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.
1994-05-01
Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)
Religiousness and hazardous alcohol use: a conditional indirect effects model.
Jankowski, Peter J; Hardy, Sam A; Zamboanga, Byron L; Ham, Lindsay S
2013-08-01
The current study examined a conditional indirect effects model of the association between religiousness and adolescents' hazardous alcohol use. In doing so, we responded to the need to include both mediators and moderators, and the need for theoretically informed models when examining religiousness and adolescents' alcohol use. The sample consisted of 383 adolescents, aged 15-18, who completed an online questionnaire. Results of structural equation modeling supported the proposed model. Religiousness was indirectly associated with hazardous alcohol use through both positive alcohol expectancy outcomes and negative alcohol expectancy valuations. Significant moderating effects for alcohol expectancy valuations on the association between alcohol expectancies and alcohol use were also found. The effects for alcohol expectancy valuations confirm valuations as a distinct construct to that of alcohol expectancy outcomes, and offer support for the protective role of internalized religiousness on adolescents' hazardous alcohol use as a function of expectancy valuations. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
A model to evaluate quality and effectiveness of disease management.
Lemmens, K M M; Nieboer, A P; van Schayck, C P; Asin, J D; Huijsman, R
2008-12-01
Disease management has emerged as a new strategy to enhance quality of care for patients suffering from chronic conditions, and to control healthcare costs. So far, however, the effects of this strategy remain unclear. Although current models define the concept of disease management, they do not provide a systematic development or an explanatory theory of how disease management affects the outcomes of care. The objective of this paper is to present a framework for valid evaluation of disease-management initiatives. The evaluation model is built on two pillars of disease management: patient-related and professional-directed interventions. The effectiveness of these interventions is thought to be affected by the organisational design of the healthcare system. Disease management requires a multifaceted approach; hence disease-management programme evaluations should focus on the effects of multiple interventions, namely patient-related, professional-directed and organisational interventions. The framework has been built upon the conceptualisation of these disease-management interventions. Analysis of the underlying mechanisms of these interventions revealed that learning and behavioural theories support the core assumptions of disease management. The evaluation model can be used to identify the components of disease-management programmes and the mechanisms behind them, making valid comparison feasible. In addition, this model links the programme interventions to indicators that can be used to evaluate the disease-management programme. Consistent use of this framework will enable comparisons among disease-management programmes and outcomes in evaluation research.
Model study of radiation effects on the gastrointestinal cell system
International Nuclear Information System (INIS)
Kicherer, G.
1983-03-01
Since it is now possible to calculate the radiation fields used for medicinal purposes by means of radiation transport programs it was started to determine with mathematical models of radioeffects not only the physical effects or irradiation, but also the resulting biological radioresponses. This supplementary biologic information is not only of large general importance, but particularly valuable for the medicinal application of the biologically highly effective neutron radiation. With support by the Institute for Medicinal Radiophysics and Radiobiology of Essen University Hospital, and of two biomathematical working groups of Ulm University and Cologne University Hospital, who are experienced in the field of establishing mathematical models of the hematogenic cellular system, we developed out of experimental fundamental findings a cellkinetic, kybernetic model of the intestinal mucosa, which is highly sensitive to radiation. With this newly established model we succeeded for the first time in simulating comprehensively and quantitatively the time-dependent acute radioresponse of such a radiosensitive cellular system. For the first time we successfully used the computer simulation languages DARE-P and GASP, which are principally employed for solving problems in automatic control technology, and set up a radioresponse model. (orig.) [de
Modelling of structural effects on chemical reactions in turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Gammelsaeter, H.R.
1997-12-31
Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.
Model Uncertainties for Valencia RPA Effect for MINERvA
Energy Technology Data Exchange (ETDEWEB)
Gran, Richard [Univ. of Minnesota, Duluth, MN (United States)
2017-05-08
This technical note describes the application of the Valencia RPA multi-nucleon effect and its uncertainty to QE reactions from the GENIE neutrino event generator. The analysis of MINERvA neutrino data in Rodrigues et al. PRL 116 071802 (2016) paper makes clear the need for an RPA suppression, especially at very low momentum and energy transfer. That published analysis does not constrain the magnitude of the effect; it only tests models with and without the effect against the data. Other MINERvA analyses need an expression of the model uncertainty in the RPA effect. A well-described uncertainty can be used for systematics for unfolding, for model errors in the analysis of non-QE samples, and as input for fitting exercises for model testing or constraining backgrounds. This prescription takes uncertainties on the parameters in the Valencia RPA model and adds a (not-as-tight) constraint from muon capture data. For MINERvA we apply it as a 2D ($q_0$,$q_3$) weight to GENIE events, in lieu of generating a full beyond-Fermi-gas quasielastic events. Because it is a weight, it can be applied to the generated and fully Geant4 simulated events used in analysis without a special GENIE sample. For some limited uses, it could be cast as a 1D $Q^2$ weight without much trouble. This procedure is a suitable starting point for NOvA and DUNE where the energy dependence is modest, but probably not adequate for T2K or MicroBooNE.
Effective Orthorhombic Anisotropic Models for Wave field Extrapolation
Ibanez Jacome, Wilson
2013-05-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the
Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet
2010-10-24
Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary
Directory of Open Access Journals (Sweden)
Shashikant Mishra
2011-01-01
Full Text Available Objective: We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS. Our objective was to determine whether high-fidelity non-virtual reality (VR models are as effective as the VR model in teaching flexible URS skills. Materials and Methods: Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer TM ; Endo-Urologie-Modell TM and a high-fidelity VR model (URO Mentor TM . The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS. The participants rated a face validity questionnaire at the end of each session. Results: The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3. Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05. The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. Conclusions: All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.
Modeling the prediction of business intelligence system effectiveness.
Weng, Sung-Shun; Yang, Ming-Hsien; Koo, Tian-Lih; Hsiao, Pei-I
2016-01-01
Although business intelligence (BI) technologies are continually evolving, the capability to apply BI technologies has become an indispensable resource for enterprises running in today's complex, uncertain and dynamic business environment. This study performed pioneering work by constructing models and rules for the prediction of business intelligence system effectiveness (BISE) in relation to the implementation of BI solutions. For enterprises, effectively managing critical attributes that determine BISE to develop prediction models with a set of rules for self-evaluation of the effectiveness of BI solutions is necessary to improve BI implementation and ensure its success. The main study findings identified the critical prediction indicators of BISE that are important to forecasting BI performance and highlighted five classification and prediction rules of BISE derived from decision tree structures, as well as a refined regression prediction model with four critical prediction indicators constructed by logistic regression analysis that can enable enterprises to improve BISE while effectively managing BI solution implementation and catering to academics to whom theory is important.
Modeling Refuge Effect of Submerged Macrophytes in Lake System.
Lv, Dongyu; Fan, Meng; Kang, Yun; Blanco, Krystal
2016-04-01
This paper considers a significant problem in biological control of algae issue in ecological environment. A four-dimensional dynamic model is carefully formulated to characterize the interactions among phytoplankton, submerged macrophyte, zooplankton, and general fish class in a lake ecosystem. The predation relationship is modeled by Beddington-DeAngelis functional responses derived from the classical Holling time budget arguments. Qualitative analyses of the global dynamics show that the system can generate very rich dynamics with potentially 10 different equilibria and several bistable scenarios. We perform analysis on the existence and local stability of equilibria and explore the refuge effect of macrophyte on the zooplankton with numerical simulations on aquatic ecosystems. We also discuss effective methods of biological control used to restrain the increase of phytoplankton. Our study shows the proposed model could have rich and complex dynamics including but not limited to bistable and chaotic phenomenon. Numerical simulation results demonstrate that both the refuge constant and the density of the macrophytes are two key factors where refuge effects take place. In addition, the intraspecific competition between the macrophyte and the phytoplankton can also affect the macrophyte's refuge effect. Our analytical and simulation results suggest that macrophytes provide structure and shelter against predation for zooplankton such that it could restore the zooplankton population, and that planting macrophyte properly might achieve the purpose of controlling algae growth.
Edge effect modeling and experiments on active lap processing.
Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian
2014-05-05
Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity
Effect of PLISSIT Model on Solution of Sexual Problems
Directory of Open Access Journals (Sweden)
Esra Uslu
2016-03-01
Full Text Available This systematic review study aims to determine the effect of PLISSIT model (permission, limited information, special suggestions, intensive therapy in the care of individuals having sexual problems. Two of the studies included in the systematic review have been carried out in Iran and one of them in Turkey. These studies were limited to the patients with stoma and women having sexual problems. Results presented that care via PLISSIT model improves the sexual functions and reduces sexual stress, increases the sexual desire, sexual arousal, lubrication, orgasm, sexual satisfaction and frequency of sexual activity. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(1: 52-63
The model of manpower management influence on mining business effectiveness
Directory of Open Access Journals (Sweden)
Miriama Hakelová
2013-12-01
Full Text Available Manpower management is one of the documents in a business firm which reflects the philosophy of human resources work, sets the priorities and procedures for the capacity of personal processes. The article describes the theoretical model considering the manpower management aspects which are related to adopting the competency model in mining business respecting the triad of capacity management namely by assessing the work capacity, remuneration, education and employees ? growth. The motivation of employees, their efficiency and the work productivity will increase by the impact of the manpower management aspects which will provide the increase of mining business effectiveness.
A Linear Mixed-Effects Model of Wireless Spectrum Occupancy
Directory of Open Access Journals (Sweden)
Pagadarai Srikanth
2010-01-01
Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.
Development and validation of a tokamak skin effect transformer model
International Nuclear Information System (INIS)
Romero, J.A.; Moret, J.-M.; Coda, S.; Felici, F.; Garrido, I.
2012-01-01
A lumped parameter, state space model for a tokamak transformer including the slow flux penetration in the plasma (skin effect transformer model) is presented. The model does not require detailed or explicit information about plasma profiles or geometry. Instead, this information is lumped in system variables, parameters and inputs. The model has an exact mathematical structure built from energy and flux conservation theorems, predicting the evolution and non-linear interaction of plasma current and internal inductance as functions of the primary coil currents, plasma resistance, non-inductive current drive and the loop voltage at a specific location inside the plasma (equilibrium loop voltage). Loop voltage profile in the plasma is substituted by a three-point discretization, and ordinary differential equations are used to predict the equilibrium loop voltage as a function of the boundary and resistive loop voltages. This provides a model for equilibrium loop voltage evolution, which is reminiscent of the skin effect. The order and parameters of this differential equation are determined empirically using system identification techniques. Fast plasma current modulation experiments with random binary signals have been conducted in the TCV tokamak to generate the required data for the analysis. Plasma current was modulated under ohmic conditions between 200 and 300 kA with 30 ms rise time, several times faster than its time constant L/R ≈ 200 ms. A second-order linear differential equation for equilibrium loop voltage is sufficient to describe the plasma current and internal inductance modulation with 70% and 38% fit parameters, respectively. The model explains the most salient features of the plasma current transients, such as the inverse correlation between plasma current ramp rates and internal inductance changes, without requiring detailed or explicit information about resistivity profiles. This proves that a lumped parameter modelling approach can be used to
A Model for Effective Professional Development of Formal Science Educators
Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.
2015-01-01
The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.
A Model for Effective Professional Development of Formal Science Educators
Bleacher, L.; Jones, A. P.; Farrell, W. M.
2015-12-01
The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.
Modelling non-linear effects of dark energy
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Global model for the lithospheric strength and effective elastic thickness
Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2013-08-01
Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.
Effects of random noise in a dynamical model of love
Energy Technology Data Exchange (ETDEWEB)
Xu Yong, E-mail: hsux3@nwpu.edu.cn [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Gu Rencai; Zhang Huiqing [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2011-07-15
Highlights: > We model the complexity and unpredictability of psychology as Gaussian white noise. > The stochastic system of love is considered including bifurcation and chaos. > We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.
Effects of random noise in a dynamical model of love
International Nuclear Information System (INIS)
Xu Yong; Gu Rencai; Zhang Huiqing
2011-01-01
Highlights: → We model the complexity and unpredictability of psychology as Gaussian white noise. → The stochastic system of love is considered including bifurcation and chaos. → We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.
Modeling of Air Attenuation Effects on Gamma Detection at Altitude
International Nuclear Information System (INIS)
Detwiler, R. S.
2002-01-01
This paper focuses on modeling the detection capabilities of NaI sensor systems at high altitudes for ground sources. The modeling was done with the Monte Carlo N-Transport (MCNP) code developed at Los Alamos National Laboratory. The specific systems modeled were the fixed wing and helicopter aircraft sensor systems, assets of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Aerial Measuring System (AMS). In previous (2001) modeling, Sodium Iodine (NaI) detector responses were simulated for both point and distributed surface sources as a function of gamma energy and altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 (micro)Ci/m 2 . To validate the calculations, benchmark measurements were made for simple source-detector configurations. The 2002 continuation of the modeling presented here includes checking models against available data, and modifications to allow more effective and accurate directional biasing of ground point and distributed sources. Fixed-wing data results will be shown for two point sources as a function of altitude
Effects of Meteorological Data Quality on Snowpack Modeling
Havens, S.; Marks, D. G.; Robertson, M.; Hedrick, A. R.; Johnson, M.
2017-12-01
Detailed quality control of meteorological inputs is the most time-intensive component of running the distributed, physically-based iSnobal snow model, and the effect of data quality of the inputs on the model is unknown. The iSnobal model has been run operationally since WY2013, and is currently run in several basins in Idaho and California. The largest amount of user input during modeling is for the quality control of precipitation, temperature, relative humidity, solar radiation, wind speed and wind direction inputs. Precipitation inputs require detailed user input and are crucial to correctly model the snowpack mass. This research applies a range of quality control methods to meteorological input, from raw input with minimal cleaning, to complete user-applied quality control. The meteorological input cleaning generally falls into two categories. The first is global minimum/maximum and missing value correction that could be corrected and/or interpolated with automated processing. The second category is quality control for inputs that are not globally erroneous, yet are still unreasonable and generally indicate malfunctioning measurement equipment, such as temperature or relative humidity that remains constant, or does not correlate with daily trends observed at nearby stations. This research will determine how sensitive model outputs are to different levels of quality control and guide future operational applications.
Effect of Using Extreme Years in Hydrologic Model Calibration Performance
Goktas, R. K.; Tezel, U.; Kargi, P. G.; Ayvaz, T.; Tezyapar, I.; Mesta, B.; Kentel, E.
2017-12-01
Hydrological models are useful in predicting and developing management strategies for controlling the system behaviour. Specifically they can be used for evaluating streamflow at ungaged catchments, effect of climate change, best management practices on water resources, or identification of pollution sources in a watershed. This study is a part of a TUBITAK project named "Development of a geographical information system based decision-making tool for water quality management of Ergene Watershed using pollutant fingerprints". Within the scope of this project, first water resources in Ergene Watershed is studied. Streamgages found in the basin are identified and daily streamflow measurements are obtained from State Hydraulic Works of Turkey. Streamflow data is analysed using box-whisker plots, hydrographs and flow-duration curves focusing on identification of extreme periods, dry or wet. Then a hydrological model is developed for Ergene Watershed using HEC-HMS in the Watershed Modeling System (WMS) environment. The model is calibrated for various time periods including dry and wet ones and the performance of calibration is evaluated using Nash-Sutcliffe Efficiency (NSE), correlation coefficient, percent bias (PBIAS) and root mean square error. It is observed that calibration period affects the model performance, and the main purpose of the development of the hydrological model should guide calibration period selection. Acknowledgement: This study is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 115Y064.
Ecotoxicity Effect Indicator for use in the OMNIITOX Base Model
DEFF Research Database (Denmark)
Larsen, Henrik Fred; Payet, Jerome; Molander, S
2004-01-01
for the estimation of the EFI. However none of these methods are found to be adequately robust and/or able to work on the low data input defined by the OMNIITOX Base Model (BM), i.e. a minimum of three acute EC50 values. Given the fact that the BM should be applicable to a significant number of chemicals......, this requirement follows from the current and the most likely future data availability as defined by the proposed EU chemicals policy REACH. In this paper, a theoretical elaboration of effect-based average approaches (arithmetic mean, geometric mean and median) and the non-effect based approach (PNEC) is made...... focusing on their statistical robustness. Considerations about the possibility to relate the effect indicator to damage on the endpoint, the ecosystem, are also included. The effect-based approaches are tested for their robustness in estimating an HC50 in a practical test on datasets from eleven different...
A model for electrode effects using percolation theory
International Nuclear Information System (INIS)
Wuethrich, R.; Bleuler, H.
2004-01-01
Electrode effects are known for more than 150 years. These effects, with undesirable consequences in industrial aluminium electrolysis, can be used to micro-machine glass with Spark Assisted Chemical Engraving (SACE). In this paper, a novel approach for theoretical analysis of the phenomenon is proposed by considering the bubble growth and bubble departure from electrodes as a stochastic process. The critical conditions (critical voltage and current density) are predicted in function of electrode geometry and electrolyte concentration as well as the static mean current-voltage characteristics prior to the onset of the effects. The different regions of the current-voltage characteristics, as identified by previous authors, are described and explained. It is shown that all relevant processes for the onset of the electrodes effects happen in the adherence region of the bubble layer. The model is applied for vertical cylindrical electrodes and compared with experimental data
The biogeophysical effects of extreme afforestation in modeling future climate
Wang, Ye; Yan, Xiaodong; Wang, Zhaomin
2014-11-01
Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.
A brief introduction to mixed effects modelling and multi-model inference in ecology.
Harrison, Xavier A; Donaldson, Lynda; Correa-Cano, Maria Eugenia; Evans, Julian; Fisher, David N; Goodwin, Cecily E D; Robinson, Beth S; Hodgson, David J; Inger, Richard
2018-01-01
The use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools. Here, we provide a general overview of current methods for the application of LMMs to biological data, and highlight the typical pitfalls that can be encountered in the statistical modelling process. We tackle several issues regarding methods of model selection, with particular reference to the use of information theory and multi-model inference in ecology. We offer practical solutions and direct the reader to key references that provide further technical detail for those seeking a deeper understanding. This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions.
Portfolio Effects of Renewable Energies - Basics, Models, Exemplary Results
Energy Technology Data Exchange (ETDEWEB)
Wiese, Andreas; Herrmann, Matthias
2007-07-01
The combination of sites and technologies to so-called renewable energy portfolios, which are being developed and implemented under the same financing umbrella, is currently the subject of intense discussion in the finance world. The resulting portfolio effect may allow the prediction of a higher return with the same risk or the same return with a lower risk - always in comparison with the investment in a single project. Models are currently being developed to analyse this subject and derive the portfolio effect. In particular, the effect of the spatial distribution, as well as the effects of using different technologies, suppliers and cost assumptions with different level of uncertainties, are of importance. Wind parks, photovoltaic, biomass, biogas and hydropower are being considered. The status of the model development and first results are being presented in the current paper. In a first example, the portfolio effect has been calculated and analysed using selected parameters for a wind energy portfolio of 39 sites distributed over Europe. Consequently it has been shown that the predicted yield, with the predetermined probabilities between 75 to 90%, is 3 - 8% higher than the sum of the yields for the individual wind parks using the same probabilities. (auth)
Morphing the Shell Model into an Effective Theory
International Nuclear Information System (INIS)
Haxton, W. C.; Song, C.-L.
2000-01-01
We describe a strategy for attacking the canonical nuclear structure problem--bound-state properties of a system of point nucleons interacting via a two-body potential--which involves an expansion in the number of particles scattering at high momenta, but is otherwise exact. The required self-consistent solutions of the Bloch-Horowitz equation for effective interactions and operators are obtained by an efficient Green's function method based on the Lanczos algorithm. We carry out this program for the simplest nuclei, d and 3 He , in order to explore the consequences of reformulating the shell model as a controlled effective theory. (c) 2000 The American Physical Society
Leverage effect in financial markets: the retarded volatility model.
Bouchaud, J P; Matacz, A; Potters, M
2001-11-26
We investigate quantitatively the so-called "leverage effect," which corresponds to a negative correlation between past returns and future volatility. For individual stocks this correlation is moderate and decays over 50 days, while for stock indices it is much stronger but decays faster. For individual stocks the magnitude of this correlation has a universal value that can be rationalized in terms of a new "retarded" model which interpolates between a purely additive and a purely multiplicative stochastic process. For stock indices a specific amplification phenomenon seems to be necessary to account for the observed amplitude of the effect.
Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link
Directory of Open Access Journals (Sweden)
A. Prokes
2009-04-01
Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.
Schwinger effect and negative differential conductivity in holographic models
Directory of Open Access Journals (Sweden)
Shankhadeep Chakrabortty
2015-01-01
Full Text Available The consequences of the Schwinger effect for conductivity are computed for strong coupling systems using holography. The one-loop diagram on the flavor brane introduces an O(λNc imaginary part in the effective action for a Maxwell flavor gauge field. This in turn introduces a real conductivity in an otherwise insulating phase of the boundary theory. Moreover, in certain regions of parameter space the differential conductivity is negative. This is computed in the context of the Sakai–Sugimoto model.
A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model
Energy Technology Data Exchange (ETDEWEB)
Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.
2012-10-01
In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.
Modelling the cost effectiveness of antidepressant treatment in primary care.
Revicki, D A; Brown, R E; Palmer, W; Bakish, D; Rosser, W W; Anton, S F; Feeny, D
1995-12-01
The aim of this study was to estimate the cost effectiveness of nefazodone compared with imipramine or fluoxetine in treating women with major depressive disorder. Clinical decision analysis and a Markov state-transition model were used to estimate the lifetime health outcomes and medical costs of 3 antidepressant treatments. The model, which represents ideal primary care practice, compares treatment with nefazodone to treatment with either imipramine or fluoxetine. The economic analysis was based on the healthcare system of the Canadian province of Ontario, and considered only direct medical costs. Health outcomes were expressed as quality-adjusted life years (QALYs) and costs were in 1993 Canadian dollars ($Can; $Can1 = $US0.75, September 1995). Incremental cost-utility ratios were calculated comparing the relative lifetime discounted medical costs and QALYs associated with nefazodone with those of imipramine or fluoxetine. Data for constructing the model and estimating necessary parameters were derived from the medical literature, clinical trial data, and physician judgement. Data included information on: Ontario primary care physicians' clinical management of major depression; medical resource use and costs; probabilities of recurrence of depression; suicide rates; compliance rates; and health utilities. Estimates of utilities for depression-related hypothetical health states were obtained from patients with major depression (n = 70). Medical costs and QALYs were discounted to present value using a 5% rate. Sensitivity analyses tested the assumptions of the model by varying the discount rate, depression recurrence rates, compliance rates, and the duration of the model. The base case analysis found that nefazodone treatment costs $Can1447 less per patient than imipramine treatment (discounted lifetime medical costs were $Can50,664 vs $Can52,111) and increases the number of QALYs by 0.72 (13.90 vs 13.18). Nefazodone treatment costs $Can14 less than fluoxetine
Hot Strange Hadronic Matter in an Effective Model
Qian, Wei-Liang; Su, Ru-Keng; Song, Hong-Qiu
2003-10-01
An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given. The project supported in part by National Natural Science Foundation of China under Grant Nos. 10075071, 10047005, 19947001, 19975010, and 10235030, and the CAS Knowledge Innovation Project No. KJCX2-N11. Also supported by the State Key Basic Research Development Program under Grant No. G200077400 and the Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences
Modeling of ELM events and their effect on impurity enrichment
International Nuclear Information System (INIS)
Hogan, J.; Colchin, R.; Coster, D.; Baylor, L.; Fenstermacher, M.; Groth, M.; Wade, M.
2003-01-01
Modeling of transient impurity transport during large ELMs is used to explore basic processes which may determine ELM-averaged enrichment. The b2-Eirene code (solps4), used for DIII-D geometry, suggests that a complex sequence can occur during an ELM cycle in which a transiently detached phase, with relatively low enrichment, can occur even under nominally attached conditions. A slower recovery phase then follows, in which the effect of induced scrape-off layer flows can increase in importance. The model results are compared with available fast time-scale measurements. The observed increased enrichment with higher Z is similar to trends in basic particle reflection properties. Neon recycling processes may thus introduce a significant history effect, as illustrated by analysis of continuous, unforced neon accumulation in a DIII-D discharge with a well-characterized operational history
Modeling Correlation Effects in Nickelates with Slave Particles
Georgescu, Alexandru Bogdan; Ismail-Beigi, Sohrab
Nickelate interfaces display interesting electronic properties including orbital ordering similar to that of cuprate superconductors and thickness dependent metal-insulator transitions. One-particle band theory calculations do not include dynamic localized correlation effects on the nickel sites and thus often incorrectly predict metallic systems or incorrect ARPES spectra. Building on two previous successful slave-particle treatments of local correlations, we present a generalized slave-particle method that includes prior models and allows us to produce new intermediate models. The computational efficiency of these slave-boson methods means that one can readily study correlation effects in complex heterostructures. We show some predictions of these methods for the electronic structure of bulk and thin film nickelates. Work supported by NSF Grant MRSEC DMR-1119826.
A microscopic modeling of the instant coffee effect
International Nuclear Information System (INIS)
Isoda, M; Nishimori, Y
2014-01-01
So-called the instant coffee effect is well known in the field of the physics education. The effect is explained that the sound yielded by touching the cup with a spoon is shifted to low-pitched by adulterating bubble owing to putting a spoon of instant coffee into hot water. The phenomenon has been interpreted with the averaged density and compressibility of the fluid in the macroscopic relation for the sound velocity, ν = √(κρ)"-"1. We introduce the linear coupled oscillator model with finite oscillators including the impurity air-mass oscillator. The model may well reproduce the increase in the shift of the eigen frequency accompanying with the amount of bubble.
String effects in the 3d gauge Ising model
International Nuclear Information System (INIS)
Caselle, Michele; Panero, Marco; Hasenbusch, Martin
2003-01-01
We compare the predictions of the effective string description of confinement with a set of Monte Carlo data for the 3d gauge Ising model at finite temperature. Thanks to a new algorithm which makes use of the dual symmetry of the model we can reach very high precisions even for large quark-antiquark distances. We are thus able to explore the large R regime of the effective string. We find that for large enough distances and low enough temperature the data are well described by a pure bosonic string. As the temperature increases higher order corrections become important and cannot be neglected even at large distances. These higher order corrections seem to be well described by the Nambu-Goto action truncated at the first perturbative order. (author)
A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch
Directory of Open Access Journals (Sweden)
Fan He
2015-01-01
Full Text Available Background. Compliance mismatch is a negative factor and it needs to be considered in arterial bypass grafting. Objective. A computational model was employed to investigate the effects of arterial compliance mismatch on blood flow, wall stress, and deformation. Methods. The unsteady blood flow was assumed to be laminar, Newtonian, viscous, and incompressible. The vessel wall was assumed to be linear elastic, isotropic, and incompressible. The fluid-wall interaction scheme was constructed using the finite element method. Results. The results show that there are identical wall shear stress waveforms, wall stress, and strain waveforms at different locations. The comparison of the results demonstrates that wall shear stresses and wall strains are higher while wall stresses are lower at the more compliant section. The differences promote the probability of intimal thickening at some locations. Conclusions. The model is effective and gives satisfactory results. It could be extended to all kinds of arteries with complicated geometrical and material factors.
Effects of model layer simplification using composite hydraulic properties
Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan
2011-01-01
Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with
Gastroprotective effect of Senecio candicans DC on experimental ulcer models.
Hariprasath, Lakshmanan; Raman, Jegadeesh; Nanjian, Raaman
2012-03-06
Senecio candicans DC (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris district, Tamil Nadu for which no scientific evidence exists. The present study was performed to evaluate the gastroprotective effects and acute oral toxicity of aqueous leaf extract of Senecio candicans (AESC) in experimental models. The antiulcerogenic activity of AESC was performed in two different ulcer models viz., pylorus-ligated model and ethanol-induced model using Wistar albino rats. Acute toxicity study was also performed to get information on the admissible dose for treatment of ulcer. Preliminary phytochemical screening of AESC was performed to find the active principles present, which are thus responsible for the antiulcerogenic activity. DPPH assay was performed to confirm the antioxidant activity of AESC. The acute toxicity study did not show any mortality up to 2500mg/kg b.w. of AESC. Both the ulcer models showed gastroprotective effect comparable to that of the standard Omeprazole. The results of antioxidant enzymes, histopathology sections, ATPase and mucus content of gastric secretion showed that several mechanisms are involved in the gastroprotective effect. The preliminary phytochemical screening revealed the presence of alkaloids, flavonoids and steroids in AESC. The DPPH assay confirmed the antioxidant activity of AESC. The traditional consumption of AESC for the treatment of gastric ulcer is thus true, the antioxidant constituents present in the extract plays a major role in the gastroprotective activity, but since Senecio species are known for the presence of pyrrolizidine alkaloids, a detailed study in future is required to describe the safe dose for a prolonged period. Copyright Â© 2012 Elsevier Ireland Ltd. All rights reserved.
Noise stabilization effects in models of interdisciplinary physics
International Nuclear Information System (INIS)
Spagnolo, B; Augello, G; Caldara, P; Fiasconaro, A; La Cognata, A; Pizzolato, N; Valenti, D; Dubkov, A A; Pankratov, A L
2009-01-01
Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The investigation of noise-induced phenomena in far from equilibrium systems is one of the approaches used to understand the behaviour of physical and biological complex systems. The enhancement of the lifetime of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) polymer translocation dynamics; (ii) transient regime of FitzHugh-Nagumo model; (iii) market stability in a nonlinear Heston model; (iv) dynamics of Josephson junctions; (v) metastability in a quantum bitable system.
Kinetic modeling of Nernst effect in magnetized hohlraums.
Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R
2016-04-01
We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.
An effective convolutional neural network model for Chinese sentiment analysis
Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong
2017-06-01
Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.
Modeling the Effects of Mergers in the Retail Sector
DEFF Research Database (Denmark)
Blomgren-Hansen, Niels
2013-01-01
the retail and wholesale markets is constructed, calibrated and simulated based on a concrete case (the acquisition and merger of 250 shops previously organized in a voluntary chain of shops comprising roughly half of the market for high-end cosmetics in Denmark). Model simulations predicts that the merger......According to EU competition law, mergers that significantly impedes effective competition, particularly by creating or strengthening a dominant position are prohibited. To identify these cases, authorities need a quantifiable model of the relationship between the variables that are affected...... by the merger and some measure of competition. Furthermore, the authorities must make their decision quickly, rendering deliberate data collection and econometric analyses infeasible in practice. The decision must be based on easily accessible data. In this paper, a simple model of the interaction between...
Micromagnetic recording model of writer geometry effects at skew
Plumer, M. L.; Bozeman, S.; van Ek, J.; Michel, R. P.
2006-04-01
The effects of the pole-tip geometry at the air-bearing surface on perpendicular recording at a skew angle are examined through modeling and spin-stand test data. Head fields generated by the finite element method were used to record transitions within our previously described micromagnetic recording model. Write-field contours for a variety of square, rectangular, and trapezoidal pole shapes were evaluated to determine the impact of geometry on field contours. Comparing results for recorded track width, transition width, and media signal to noise ratio at 0° and 15° skew demonstrate the benefits of trapezoidal and reduced aspect-ratio pole shapes. Consistency between these modeled results and test data is demonstrated.
Fluidized bed catalytic cracking regenerator model: grid effects
Energy Technology Data Exchange (ETDEWEB)
Errazu, A.F. (Universidad Nacional del Sur, Conicet, Argentina); De Lasa, H.I.; Sarti, F.
1979-04-01
A grid model including thermal effects is proposed. The aim is the simulation of a fluidized catalytic cracking regenerator similar to the industrial unit of Destileria La Palta, YPF, Argentina. It is demonstrated that a simple C.S.T.R. model without bypass of gas feed entering the bed provides a good approach for representing the fluidized bed including the grid region. In addition, by means of the C.S.T.R. model, it is shown that there exist two characteristic operating regions: a zone where (C/sub 0//sup 0/ to C/sub c/) depends on the initial coke concentration and a zone where (C/sub c//sub 0/ to C/sub c/) is controlled by oxygen supply. 40 references, 6 figures, 5 tables.
Model instruments of effective segmentation of the fast food market
Directory of Open Access Journals (Sweden)
Mityaeva Tetyana L.
2013-03-01
Full Text Available The article presents results of optimisation step-type calculations of economic effectiveness of promotion of fast food with consideration of key parameters of assessment of efficiency of the marketing strategy of segmentation. The article justifies development of a mathematical model on the bases of 3D-presentations and three-dimensional system of management variables. The modern applied mathematical packages allow formation not only of one-dimensional and two-dimensional arrays and analyse links of variables, but also of three-dimensional, besides, the more links and parameters are taken into account, the more adequate and adaptive are results of modelling and, as a result, more informative and strategically valuable. The article shows modelling possibilities that allow taking into account strategies and reactions on formation of the marketing strategy under conditions of entering the fast food market segments.
Lewis Jordon; Richard F. Daniels; Alexander Clark; Rechun He
2005-01-01
Earlywood and latewood microfibril angle (MFA) was determined at I-millimeter intervals from disks at 1.4 meters, then at 3-meter intervals to a height of 13.7 meters, from 18 loblolly pine (Pinus taeda L.) trees grown in southeastern Texas. A modified three-parameter logistic function with mixed effects is used for modeling earlywood and latewood...
Estimating the Effects of Parental Divorce and Death With Fixed Effects Models
Amato, Paul R.; Anthony, Christopher J.
2014-01-01
The authors used child fixed effects models to estimate the effects of parental divorce and death on a variety of outcomes using 2 large national data sets: (a) the Early Childhood Longitudinal Study, Kindergarten Cohort (kindergarten through the 5th grade) and (b) the National Educational Longitudinal Study (8th grade to the senior year of high school). In both data sets, divorce and death were associated with multiple negative outcomes among children. Although evidence for a causal effect o...
Model instruments of effective segmentation of the fast food market
Mityaeva Tetyana L.
2013-01-01
The article presents results of optimisation step-type calculations of economic effectiveness of promotion of fast food with consideration of key parameters of assessment of efficiency of the marketing strategy of segmentation. The article justifies development of a mathematical model on the bases of 3D-presentations and three-dimensional system of management variables. The modern applied mathematical packages allow formation not only of one-dimensional and two-dimensional arrays and analyse ...
Effective hamiltonian within the microscopic unitary nuclear model
International Nuclear Information System (INIS)
Avramenko, V.I.; Blokhin, A.L.
1989-01-01
Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs
Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics
Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.
2016-01-01
Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.
A neural network model of ventriloquism effect and aftereffect.
Magosso, Elisa; Cuppini, Cristiano; Ursino, Mauro
2012-01-01
Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.
Estimation and Inference for Very Large Linear Mixed Effects Models
Gao, K.; Owen, A. B.
2016-01-01
Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...
Note on the butterfly effect in holographic superconductor models
Directory of Open Access Journals (Sweden)
Yi Ling
2017-05-01
Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
Observation of the Meissner effect in a lattice Higgs model
Damgaard, Poul H.; Heller, Urs M.
1988-01-01
The lattice-regularized U(1) Higgs model in an external electromagnetic field is studied by Monte Carlo techniques. In the Coulomb phase, magnetic flux can flow through uniformly. The Higgs phase splits into a region where magnetic flux can penetrate only in the form of vortices and a region where the magnetic flux is completely expelled, the relativistic analog of the Meissner effect in superconductivity. Evidence is presented for symmetry restoration in strong external fields.
Treatment of cloud radiative effects in general circulation models
Energy Technology Data Exchange (ETDEWEB)
Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others
1996-04-01
We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.
An Effective Model for Improving Global Health Nursing Competence
Sunjoo Kang
2016-01-01
This paper proposed an effective model for improving global health nursing competence among undergraduate students. A descriptive case study was conducted by evaluation of four implemented programs by the author. All programs were conducted with students majoring in nursing and healthcare, where the researcher was a program director, professor, or facilitator. These programs were analyzed in terms of students’ needs assessment, program design, and implementation and evaluation factors. The co...
Global model for the lithospheric strength and effective elastic thickness
Magdala Tesauro; Mikhail Kaban; S. A. P. L. Cloetingh
2013-01-01
Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member ‘hard’ (HRM) and a ‘soft’ (SR...
Note on the butterfly effect in holographic superconductor models
International Nuclear Information System (INIS)
Ling, Yi; Liu, Peng; Wu, Jian-Pin
2017-01-01
In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
Note on the butterfly effect in holographic superconductor models
Energy Technology Data Exchange (ETDEWEB)
Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)
2017-05-10
In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
A neural network model of ventriloquism effect and aftereffect.
Directory of Open Access Journals (Sweden)
Elisa Magosso
Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.
Modeling elephant-mediated cascading effects of water point closure.
Hilbers, Jelle P; Van Langevelde, Frank; Prins, Herbert H T; Grant, C C; Peel, Mike J S; Coughenour, Michael B; De Knegt, Henrik J; Slotow, Rob; Smit, Izak P J; Kiker, Greg A; De Boer, Willem F
2015-03-01
Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are, however, alternative ways to control wildlife densities, such as opening or closing water points. The effects of these alternatives are poorly studied. In this paper, we focus on manipulating large herbivores through the closure of water points (WPs). Removal of artificial WPs has been suggested in order to change the distribution of African elephants, which occur in high densities in national parks in Southern Africa and are thought to have a destructive effect on the vegetation. Here, we modeled the long-term effects of different scenarios of WP closure on the spatial distribution of elephants, and consequential effects on the vegetation and other herbivores in Kruger National Park, South Africa. Using a dynamic ecosystem model, SAVANNA, scenarios were evaluated that varied in availability of artificial WPs; levels of natural water; and elephant densities. Our modeling results showed that elephants can indirectly negatively affect the distributions of meso-mixed feeders, meso-browsers, and some meso-grazers under wet conditions. The closure of artificial WPs hardly had any effect during these natural wet conditions. Under dry conditions, the spatial distribution of both elephant bulls and cows changed when the availability of artificial water was severely reduced in the model. These changes in spatial distribution triggered changes in the spatial availability of woody biomass over the simulation period of 80 years, and this led to changes in the rest of the herbivore community, resulting in increased densities of all herbivores, except for giraffe and steenbok, in areas close to rivers. The spatial distributions of elephant bulls and cows showed to be less affected by the closure of WPs than most of the other herbivore species. Our study contributes to ecologically
Colored noise and memory effects on formal spiking neuron models
da Silva, L. A.; Vilela, R. D.
2015-06-01
Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.
Modeling the effects of transcranial magnetic stimulation on cortical circuits.
Esser, Steve K; Hill, Sean L; Tononi, Giulio
2005-07-01
Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.
Development of realistic concrete models including scaling effects
International Nuclear Information System (INIS)
Carpinteri, A.
1989-09-01
Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behaviour. Both Virtual Crack Propagation Model and Cohesive Limit Analysis (Section 2), show a trend towards brittle behaviour and catastrophical events for large structural sizes. A numerical Cohesive Crack Model is proposed (Section 3) to describe strain softening and strain localization in concrete. Such a model is able to predict the size effects of fracture mechanics accurately. Whereas for Mode I, only untieing of the finite element nodes is applied to simulate crack growth, for Mixed Mode a topological variation is required at each step (Section 4). In the case of the four point shear specimen, the load vs. deflection diagrams reveal snap-back instability for large sizes. By increasing the specimen sizes, such instability tends to reproduce the classical LEFM instability. Remarkable size effects are theoretically predicted and experimentally confirmed also for reinforced concrete (Section 5). The brittleness of the flexural members increases by increasing size and/or decreasing steel content. On the basis of these results, the empirical code rules regarding the minimum amount of reinforcement could be considerably revised
Effect of external fields in Axelrod's model of social dynamics
Peres, Lucas R.; Fontanari, José F.
2012-09-01
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
Normal tissue dose-effect models in biological dose optimisation
International Nuclear Information System (INIS)
Alber, M.
2008-01-01
Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)
On effective temperature in network models of collective behavior
International Nuclear Information System (INIS)
Porfiri, Maurizio; Ariel, Gil
2016-01-01
Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems with small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.
Quantifying and modeling birth order effects in autism.
Directory of Open Access Journals (Sweden)
Tychele Turner
Full Text Available Autism is a complex genetic disorder with multiple etiologies whose molecular genetic basis is not fully understood. Although a number of rare mutations and dosage abnormalities are specific to autism, these explain no more than 10% of all cases. The high heritability of autism and low recurrence risk suggests multifactorial inheritance from numerous loci but other factors also intervene to modulate risk. In this study, we examine the effect of birth rank on disease risk which is not expected for purely hereditary genetic models. We analyzed the data from three publicly available autism family collections in the USA for potential birth order effects and studied the statistical properties of three tests to show that adequate power to detect these effects exist. We detect statistically significant, yet varying, patterns of birth order effects across these collections. In multiplex families, we identify V-shaped effects where middle births are at high risk; in simplex families, we demonstrate linear effects where risk increases with each additional birth. Moreover, the birth order effect is gender-dependent in the simplex collection. It is currently unknown whether these patterns arise from ascertainment biases or biological factors. Nevertheless, further investigation of parental age-dependent risks yields patterns similar to those observed and could potentially explain part of the increased risk. A search for genes considering these patterns is likely to increase statistical power and uncover novel molecular etiologies.
Effective theory analysis for vector-like quark model
Morozumi, Takuya; Shimizu, Yusuke; Takahashi, Shunya; Umeeda, Hiroyuki
2018-04-01
We study a model with a down-type SU(2) singlet vector-like quark (VLQ) as a minimal extension of the standard model (SM). In this model, flavor-changing neutral currents (FCNCs) arise at tree level and the unitarity of the 3× 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix does not hold. In this paper, we constrain the FCNC coupling from b\\rArr s transitions, especially B_s\\rArr μ^+μ^- and \\bar{B}\\rArr X_sγ processes. In order to analyze these processes we derive an effective Lagrangian that is valid below the electroweak symmetry breaking scale. For this purpose, we first integrate out the VLQ field and derive an effective theory by matching Wilson coefficients up to one-loop level. Using the effective theory, we construct the effective Lagrangian for b\\rArr sγ^{(*)}. It includes the effects of the SM quarks and the violation of CKM unitarity. We show the constraints on the magnitude of the FCNC coupling and its phase by taking account of the current experimental data on Δ M_{B_s}, Br[B_s\\rArrμ^+μ^-], Br[\\bar{B}\\rArr X_sγ], and CKM matrix elements, as well as theoretical uncertainties. We find that the constraint from Br[B_s\\rArrμ^+μ^-] is more stringent than that from Br[\\bar{B}\\rArr X_sγ]. We also obtain a bound for the mass of the VLQ and the strength of the Yukawa couplings related to the FCNC coupling of the b\\rArr s transition. Using the CKM elements that satisfy the above constraints, we show how the unitarity is violated on the complex plane.
Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling
International Nuclear Information System (INIS)
Milliez, Maya
2006-01-01
Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr
Zealotry effects on opinion dynamics in the adaptive voter model
Klamser, Pascal P.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.
2017-11-01
The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that the spreading of the zealots' opinion in the adaptive voter model is strongly dependent on the link rewiring probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a complete dominance of the zealots' opinion, there are two possible strategies for the remaining nodes: adjusting the probability of rewiring and/or the number of connections with other nodes, respectively.
Design Change Model for Effective Scheduling Change Propagation Paths
Zhang, Hai-Zhu; Ding, Guo-Fu; Li, Rong; Qin, Sheng-Feng; Yan, Kai-Yin
2017-09-01
Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train's bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency.
Boundary effects on car accidents in a cellular automaton model
International Nuclear Information System (INIS)
Yang Xianqing; Ma Yuqiang; Zhao Yuemin
2004-01-01
In this paper we numerically study the probability P ac of occurrence of car accidents in the Nagel-Schreckenberg (NS) model with open boundary condition. In the deterministic NS model, numerical results show that there exists a critical value of extinction rate β above which no car accidents occur, and below which the probability P ac is independent of the speed limit v max and the injection rate α, but only determined by the extinction rate β. In the non-deterministic NS model, the probability P ac is a non-monotonic function of β in the region of low β value, while it is independent of β in the region of high β value. The stochastic braking not only reduces the occurrence of car accidents, but splits degenerate effects of v max on the probability P ac . Theoretical analyses give an agreement with numerical results in the deterministic NS model and in the non-deterministic NS model with v max = 1 in the case of low β value region. Qualitative differences between open and periodic systems in the relations of P ac to the bulk density ρ imply that various correlations may exist between the two systems
Multi-atom Jaynes-Cummings model with nonlinear effects
International Nuclear Information System (INIS)
Aleixo, Armando Nazareno Faria; Balantekin, Akif Baha; Ribeiro, Marco Antonio Candido
2001-01-01
The standard Jaynes-Cummings (JC) model and its extensions, normally used in quantum optics, idealizes the interaction of matter with electromagnetic radiation by a simple Hamiltonian of a two-level atom coupled to a single bosonic mode. This Hamiltonian has a fundamental importance to the field of quantum optics and it is a central ingredient in the quantized description of any optical system involving the interaction between light and atoms. The JC Hamiltonian defines a molecule, a composite system formed from the coupling of a two-state system and a quantized harmonic oscillator. For this Hamiltonian, mostly the single-particle situation has been studied. This model can also be extended for the situation where one has N two-level systems, which interact only with the electromagnetic radiation. In this case the effects of the spatial distribution of the particles it is not taken into account and the spin angular momentum S-circumflex i of each particle contributes to form a total angular momentum J-circumflex of the system. When one considers the effects due to the spatial variation in the field intensity in a nonlinear medium it is necessary to further add a Kerr term to the standard JC Hamiltonian. This kind of nonlinear JC Hamiltonian is used in the study of micro masers. Another nonlinear variant of the JC model takes the coupling between matter and the radiation to depend on the intensity of the electromagnetic field. This model is interesting since this kind of interaction means that effectively the coupling is proportional to the amplitude of the field representing a very simple case of a nonlinear interaction corresponding to a more realistic physical situation. In this work we solve exactly the problem of the interaction of a N two-level atoms with an electromagnetic radiation when nonlinear effects due to the spatial variation in the field intensity in a nonlinear Kerr medium and the dependence on the intensity of the electromagnetic field on the matter
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
Modeling food matrix effects on chemical reactivity: Challenges and perspectives.
Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S
2017-06-29
The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.
The salinity effect in a mixed layer ocean model
Miller, J. R.
1976-01-01
A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.
The modelling of direct chemical kinetic effects in turbulent flames
Energy Technology Data Exchange (ETDEWEB)
Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering
2000-06-01
Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential
Effective potential in ultraviolet completions for composite Higgs models
Golterman, Maarten; Shamir, Yigal
2018-05-01
We consider a class of composite Higgs models based on asymptotically free S O (d ) gauge theories with d odd, with fermions in two irreducible representations, and in which the Higgs field arises as a pseudo-Nambu-Goldstone boson and the top quark is partially composite. The Nambu-Goldstone coset containing the Higgs field, or Higgs coset, is either S U (4 )/S p (4 ) or S U (5 )/S O (5 ), whereas the top partners live in two-index representations of the relevant flavor group [S U (4 ) or S U (5 )]. In both cases, there is a large number of terms in the most general four-fermion Lagrangian describing the interaction of third-generation quarks with the top partners. We derive the top-induced effective potential for the Higgs coset together with the singlet pseudo-Nambu-Goldstone boson associated with the non-anomalous axial symmetry, to leading order in the couplings between the third-generation quarks and the composite sector. We obtain expressions for the low-energy constants in terms of top-partner two-point functions. We revisit the effective potential of another composite Higgs model that we have studied previously, which is based on an S U (4 ) gauge theory and provides a different realization of the S U (5 )/S O (5 ) coset. The top partners of this model live in the fundamental representation of S U (5 ), and, as a result, the effective potential of this model is qualitatively different from the S O (d ) gauge theories. We also discuss the role of the isospin-triplet fields contained in the S U (5 )/S O (5 ) coset, and show that, without further constraints on the four-fermion couplings, an expectation value for the Higgs field will trigger the subsequent condensation of an isospin-triplet field.
Quantifying the dilution effect for models in ecological epidemiology.
Roberts, M G; Heesterbeek, J A P
2018-03-01
The dilution effect , where an increase in biodiversity results in a reduction in the prevalence of an infectious disease, has been the subject of speculation and controversy. Conversely, an amplification effect occurs when increased biodiversity is related to an increase in prevalence. We explore the conditions under which these effects arise, using multi species compartmental models that integrate ecological and epidemiological interactions. We introduce three potential metrics for quantifying dilution and amplification, one based on infection prevalence in a focal host species, one based on the size of the infected subpopulation of that species and one based on the basic reproduction number. We introduce our approach in the simplest epidemiological setting with two species, and show that the existence and strength of a dilution effect is influenced strongly by the choices made to describe the system and the metric used to gauge the effect. We show that our method can be generalized to any number of species and to more complicated ecological and epidemiological dynamics. Our method allows a rigorous analysis of ecological systems where dilution effects have been postulated, and contributes to future progress in understanding the phenomenon of dilution in the context of infectious disease dynamics and infection risk. © 2018 The Author(s).
Effect of Saraswatarishta in animal models of behavior despair
Directory of Open Access Journals (Sweden)
Reshma R Parekar
2014-01-01
Full Text Available Background: Saraswatarishta (SA is a herbo-mineral formulation consisting of 18 plants some of which are Medhyarasayanas. It has been claimed to be useful in treating central nervous system disorders. Objective: To evaluate antidepressant effect of ′Saraswatarishta′(SA alone and in combination with imipramine and fluoxetine in animal models of depression. Materials and Methods: After obtaining IAEC permission, 144 rats (n = 36/part were randomized into 6 groups- Group 1: Distilled water (1 mL, Group 2: Imipramine (30 mg/kg, Group 3: Fluoxetine (10 mg/kg, Group 4: SA (1.8 mL/kg, Group 5: Imipramine + SA, Group 6: Fluoxetine + SA. Effects of study drugs were evaluated in forced swim test (FST with single exposure to FST (Part 1 and repeated exposure for 14 days (Part 2. In Part 3, reserpine was used with FST and effects of study drugs were evaluated against single exposure to FST. Same model was used with repeated exposures to FST (Part 4. In each part, rats were subjected to open field test (OFT for 5 min prior to final FST. The variables measured: Immobility time in FST; line crossing, rearing and defecation in the OFT. Results: In all four parts, individual drugs and combinations thereof produced significant decrease in immobility time as compared to control, and extent of decrease was comparable amongst these groups. However, values for combination of fluoxetine with SA group were found to be lesser than that for individual agents in Parts 2 and 3. Combination of SA with imipramine did not enhance its anti-depressant effect in any of the parts. OFT findings did not vary significantly amongst the study groups. Conclusion: Decreased immobility in FST and absence of generalized stimulation or depression of motor activity in OFT point towards potential antidepressant effect of Saraswatarishta. Its co-administration with fluoxetine showed more promising effects.
Memory of irrigation effects on hydroclimate and its modeling challenge
Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng
2018-06-01
Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.
Directory of Open Access Journals (Sweden)
Zhixin Zhang
2016-03-01
Full Text Available Qingkailing injection (QKLI is a modern Chinese medicine preparation derived from a well-known classical formulation, An-Gong-Niu-Huang Wan. Although the clinical efficacy of QKLI has been well defined, its severe adverse drug reactions (ADRs were extensively increased. Through thorough attempts to reduce ADR rates, it was realized that the effect-based rational use plays the key role in clinical practices. Hence, the pharmacokinetic-pharmacodynamic (PK-PD model was introduced in the present study, aiming to link the pharmacokinetic profiles with the therapeutic outcomes of QKLI, and subsequently to provide valuable guidelines for the rational use of QKLI in clinical settings. The PK properties of the six dominant ingredients in QKLI were compared between the normal treated group (NTG and the pyrexia model group (MTG. Rectal temperatures were measured in parallel with blood sampling for NTG, MTG, model control group (MCG, and normal control group (NCG. Baicalin and geniposide exhibited appropriate PK parameters, and were selected as the PK markers to map the antipyretic effect of QKLI. Then, a PK-PD model was constructed upon the bacalin and geniposide plasma concentrations vs. the rectal temperature variation values, by a two-compartment PK model with a Sigmoid Emax PD model to explain the time delay between the drug plasma concentration of PK markers and the antipyretic effect after a single dose administration of QKLI. The findings obtained would provide fundamental information to propose a more reasonable dosage regimen and improve the level of individualized drug therapy in clinical settings.
The effective field theory of inflation models with sharp features
International Nuclear Information System (INIS)
Bartolo, Nicola; Cannone, Dario; Matarrese, Sabino
2013-01-01
We describe models of single-field inflation with small and sharp step features in the potential (and sound speed) of the inflaton field, in the context of the Effective Field Theory of Inflation. This approach allows us to study the effects of features in the power-spectrum and in the bispectrum of curvature perturbations, from a model-independent point of view, by parametrizing the features directly with modified ''slow-roll'' parameters. We can obtain a self-consistent power-spectrum, together with enhanced non-Gaussianity, which grows with a quantity β that parametrizes the sharpness of the step. With this treatment it is straightforward to generalize and include features in other coefficients of the effective action of the inflaton field fluctuations. Our conclusion in this case is that, excluding extrinsic curvature terms, the only interesting effects at the level of the bispectrum could arise from features in the first slow-roll parameter ε or in the speed of sound c s . Finally, we derive an upper bound on the parameter β from the consistency of the perturbative expansion of the action for inflaton perturbations. This constraint can be used for an estimation of the signal-to-noise ratio, to show that the observable which is most sensitive to features is the power-spectrum. This conclusion would change if we consider the contemporary presence of a feature and a speed of sound c s < 1, as, in such a case, contributions from an oscillating folded configuration can potentially make the bispectrum the leading observable for feature models
Zheng, Y.; Wu, B.; Wu, X.
2015-12-01
Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real
Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In
2017-07-01
Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.
Two-dimensional sigma models: modelling non-perturbative effects of gauge theories
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.
1984-01-01
The review is devoted to a discussion of non-perturbative effects in gauge theories and two-dimensional sigma models. The main emphasis is put on supersymmetric 0(3) sigma model. The instanton-based method for calculating the exact Gell-Mann-Low function and bifermionic condensate is considered in detail. All aspects of the method in simplifying conditions are discussed. The basic points are: the instanton measure from purely classical analysis; a non-renormalization theorem in self-dual external fields; existence of vacuum condensates and their compatibility with supersymmetry
Modeling of helium effects in metals: High temperature embrittlement
International Nuclear Information System (INIS)
Trinkaus, H.
1985-01-01
The effects of helium on swelling, creep rupture and fatigue properties of fusion reactor materials subjected to (n,α)-reactions and/or direct α-injection, are controlled by bubble formation. The understanding of such effects requires therefore the modeling of (1) diffusional reactions of He atoms with other defects; (2) nucleation and growth of He bubbles; (3) transformation of such bubbles into cavities under continuous He generation and irradiation or creep stress. The present paper is focussed on the modeling of the (coupled) high temperature bubble nucleation and growth processes within and on grain boundaries. Two limiting cases are considered: di-atomic nucleation described by the simplest possible sets of rate equations, and multi-atomic nucleation described by classical nucleation theory. Scaling laws are derived which characterize the dependence of the bubble densities upon time (He-dose), He generation rate and temperature. Comparison with experimental data of AISI 316 SS α-implanted at temperatures around 1000 K indicates bubble nucleation of the multi-atomic type. The nucleation and growth models are applied to creep tests performed during α-implantation suggesting that in these cases gas driven bubble growth is the life time controlling mechanism. The narrow (creep stress/He generation rate) range of this mechanism in a mechanism map constructed from these tests indicates that in many reactor situations the time to rupture is probably controlled by stress driven cavity growth rather than by gas driven bubble growth. (orig.)
Memory effects in the relaxation of the Gaussian trap model
Diezemann, Gregor; Heuer, Andreas
2011-03-01
We investigate the memory effect in a simple model for glassy relaxation, a trap model with a Gaussian density of states. In this model, thermal equilibrium is reached at all finite temperatures and we therefore can consider jumps from low to high temperatures in addition to the quenches usually considered in aging studies. We show that the evolution of the energy following the Kovacs protocol can approximately be expressed as a difference of two monotonously decaying functions and thus show the existence of a so-called Kovacs hump whenever these functions are not single exponentials. It is well established that the Kovacs effect also occurs in the linear response regime, and we show that most of the gross features do not change dramatically when large temperature jumps are considered. However, there is one distinguishing feature that only exists beyond the linear regime, which we discuss in detail. For the memory experiment with inverted temperatures, i.e., jumping up and then down again, we find a very similar behavior apart from an opposite sign of the hump.
Ising and Potts models: binding disorder-and dimension effects
International Nuclear Information System (INIS)
Curado, E.M.F.
1983-01-01
Within the real space renormalization group framework, some thermal equilibrium properties of pure and disordered insulating systems are calculated. In the pure hypercubic lattice system, the Ising model surface tension and the correlation length of the q-state Potts model, which generalizes the former are analyzed. Several asymptotic behaviors are obtained (for the first time as far as we know) for both functions and the influence of dimension over them can be observed. Accurate numerical proposals for the surface tension are made in several dimensions, and the effect of the number of states (q) on the correlation lenght is shown. In disordered systems, attention is focused essentiall on those which can be theoretically represented by pure sistem Hamiltonians where probability distributions are assumed for the coupling constants (disorder in the bonds). It is obtained with high precision several approximate critical surfaces for the quenched square-lattice Ising model, whose probability distribution can assume two positive values (hence there is no frustration). These aproximate surfaces contain all the exact known points. In the cases where the coupling constant probability distribution can also assume negative values (allowing disordered and frustrated systems), a theoretical treatment which distinguishes the frustration effect from the dilution one is proposed. This distinction can be seen by the different ways in which the bonds of any series-parallel topological array combine. (Author) [pt
Effective media models for unsaturated fractured rock: A field experiment
International Nuclear Information System (INIS)
Nicholl, M.J.; Glass, R.J.
1995-01-01
A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock
The Significance of the Bystander Effect: Modeling, Experiments, and More Modeling
Energy Technology Data Exchange (ETDEWEB)
Brenner, David J.
2009-07-22
Non-targeted (bystander) effects of ionizing radiation are caused by intercellular signaling; they include production of DNA damage and alterations in cell fate (i.e. apoptosis, differentiation, senescence or proliferation). Biophysical models capable of quantifying these effects may improve cancer risk estimation at radiation doses below the epidemiological detection threshold. Understanding the spatial patterns of bystander responses is important, because it provides estimates of how many bystander cells are affected per irradiated cell. In a first approach to modeling of bystander spatial effects in a three-dimensional artificial tissue, we assumed the following: (1) The bystander phenomenon results from signaling molecules (S) that rapidly propagate from irradiated cells and decrease in concentration (exponentially in the case of planar symmetry) as distance increases. (2) These signals can convert cells to a long-lived epigenetically activated state, e.g. a state of oxidative stress; cells in this state are more prone to DNA damage and behavior alterations than normal and therefore exhibit an increased response (R) for many end points (e.g. apoptosis, differentiation, micronucleation). These assumptions were implemented by a mathematical formalism and computational algorithms. The model adequately described data on bystander responses in the 3D system using a small number of adjustable parameters. Mathematical models of radiation carcinogenesis are important for understanding mechanisms and for interpreting or extrapolating risk. There are two classes of such models: (1) long-term formalisms that track pre-malignant cell numbers throughout an entire lifetime but treat initial radiation dose-response simplistically and (2) short-term formalisms that provide a detailed initial dose-response even for complicated radiation protocols, but address its modulation during the subsequent cancer latency period only indirectly. We argue that integrating short- and long
Effective models of new physics at the Large Hadron Collider
International Nuclear Information System (INIS)
Llodra-Perez, J.
2011-07-01
With the start of the Large Hadron Collider runs, in 2010, particle physicists will be soon able to have a better understanding of the electroweak symmetry breaking. They might also answer to many experimental and theoretical open questions raised by the Standard Model. Surfing on this really favorable situation, we will first present in this thesis a highly model-independent parametrization in order to characterize the new physics effects on mechanisms of production and decay of the Higgs boson. This original tool will be easily and directly usable in data analysis of CMS and ATLAS, the huge generalist experiments of LHC. It will help indeed to exclude or validate significantly some new theories beyond the Standard Model. In another approach, based on model-building, we considered a scenario of new physics, where the Standard Model fields can propagate in a flat six-dimensional space. The new spatial extra-dimensions will be compactified on a Real Projective Plane. This orbifold is the unique six-dimensional geometry which possesses chiral fermions and a natural Dark Matter candidate. The scalar photon, which is the lightest particle of the first Kaluza-Klein tier, is stabilized by a symmetry relic of the six dimension Lorentz invariance. Using the current constraints from cosmological observations and our first analytical calculation, we derived a characteristic mass range around few hundred GeV for the Kaluza-Klein scalar photon. Therefore the new states of our Universal Extra-Dimension model are light enough to be produced through clear signatures at the Large Hadron Collider. So we used a more sophisticated analysis of particle mass spectrum and couplings, including radiative corrections at one-loop, in order to establish our first predictions and constraints on the expected LHC phenomenology. (author)
Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M
2015-07-01
Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.
Cognitive behaviour therapy territory model: effective disputing approach.
Lam, D
1997-06-01
This paper proposes a disputing model (territory model) which is particularly useful and effective for disputing clients who persistently hold on to their dysfunctional thinking and/or core irrational beliefs. Their 'stubbornness' to change is compounded by unhealthy negative emotions during sessions. The intense emotion makes it difficult to access the belief system, and therefore any attempt to dispute it often proves futile. This model advocates the shift of disputing onto a different 'territory/ground' where the client can be facilitated to acquire higher, abstract and objective thinking, and at the same time his/her emotional level is susceptible to rational and logical arguments. The new thinking would act as a catalyst for the client to reflect on his/her dysfunctional thought/irrational beliefs. In this paper, the author uses a case example to illustrate and discuss the ineffectiveness of the 'traditional' way of disputing the dysfunctional thinking/core beliefs of a difficult and emotional client. This is contrasted with the 'territory' model.
Effective dielectric mixture model for characterization of diesel contaminated soil
International Nuclear Information System (INIS)
Al-Mattarneh, H.M.A.
2007-01-01
Human exposure to contaminated soil by diesel isomers can have serious health consequences like neurological diseases or cancer. The potential of dielectric measuring techniques for electromagnetic characterization of contaminated soils was investigated in this paper. The purpose of the research was to develop an empirical dielectric mixture model for soil hydrocarbon contamination application. The paper described the basic theory and elaborated in dielectric mixture theory. The analytical and empirical models were explained in simple algebraic formulas. The experimental study was then described with reference to materials, properties and experimental results. The results of the analytical models were also mathematically explained. The proposed semi-empirical model was also presented. According to the result of the electromagnetic properties of dry soil contaminated with diesel, the diesel presence had no significant effect on the electromagnetic properties of dry soil. It was concluded that diesel had no contribution to the soil electrical conductivity, which confirmed the nonconductive character of diesel. The results of diesel-contaminated soil at saturation condition indicated that both dielectric constant and loss factors of soil were decreased with increasing diesel content. 15 refs., 2 tabs., 9 figs
Incorporating pion effects into the naive quark model
International Nuclear Information System (INIS)
Nogami, Y.; Ohtuska, N.
1982-01-01
A hybrid of the naive nonrelativistic quark model and the Chew-Low model is proposed. The pion is treated as an elementary particle which interacts with the ''bare baryon'' or ''baryon core'' via the Chew-Low interaction. The baryon core, which is the source of the pion interaction, is described by the naive nonrelativistic quark model. It turns out that the baryon-core radius has to be as large as 0.8 fm, and consequently the cutoff momentum Λ for the pion interaction is < or approx. =3m/sub π/, m/sub π/ being the pion mass. Because of this small Λ (as compared with Λapprox. nucleon mass in the old Chew-Low model) the effects of the pion cloud are strongly suppressed. The baryon masses, baryon magnetic moments, and the nucleon charge radii can be reproduced quite well. However, we found it singularly difficult to fit the axial-vector weak decay constant g/sub A/
Bayesian Hierarchical Random Effects Models in Forensic Science
Directory of Open Access Journals (Sweden)
Colin G. G. Aitken
2018-04-01
Full Text Available Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.
Bayesian Hierarchical Random Effects Models in Forensic Science.
Aitken, Colin G G
2018-01-01
Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.
Ageing model considering effects of maintenance and working conditions
International Nuclear Information System (INIS)
Martorell, S.; Sanchez, A.; Serradell, V.
1998-01-01
Nowadays, there is some doubt about building new Nuclear Power Plants (NPPs). Instead, there is a growing interest in analyzing the possibility to extend current NPP operation where life management programs play an important role. The evolution of the NPP safety depends on the evolution of the reliability of its safety components as a function of their age along the NPP operational life. In this paper, a new age-dependent reliability model is presented, which includes parameters related to surveillance and maintenance effectiveness and working conditions, both environmental and operational, of the equipment. This model may be used to support NPP life management and life extension programs by improving or optimizing surveillance and maintenance tasks using risk and cost models based on such an age-dependent reliability model. The results of the sensitivity study in the application show that the selection of the most appropriate maintenance strategy would directly depend on the previous parameters and very important differences are expected to appear under certain circumstance. (Author) 7 refs
Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms
Simmer, C.
2015-12-01
An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.
Scattering effects on the performance of carbon nanotube field effect transistor in a compact model
Hamieh, S. D.; Desgreys, P.; Naviner, J. F.
2010-01-01
Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.
Cosmology of a holographic induced gravity model with curvature effects
International Nuclear Information System (INIS)
Bouhmadi-Lopez, Mariam; Errahmani, Ahmed; Ouali, Taoufiq
2011-01-01
We present a holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalizes the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and a holographic dark energy with the Hubble scale as the infrared cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard four-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.
Cardioprotective Effect of Resveratrol in a Postinfarction Heart Failure Model
Directory of Open Access Journals (Sweden)
Adam Riba
2017-01-01
Full Text Available Despite great advances in therapies observed during the last decades, heart failure (HF remained a major health problem in western countries. In order to further improve symptoms and survival in patients with heart failure, novel therapeutic strategies are needed. In some animal models of HF resveratrol (RES, it was able to prevent cardiac hypertrophy, contractile dysfunction, and remodeling. Several molecular mechanisms are thought to be involved in its protective effects, such as inhibition of prohypertrophic signaling molecules, improvement of myocardial Ca2+ handling, regulation of autophagy, and the reduction of oxidative stress and inflammation. In our present study, we wished to further examine the effects of RES on prosurvival (Akt-1, GSK-3β and stress signaling (p38-MAPK, ERK 1/2, and MKP-1 pathways, on oxidative stress (iNOS, COX-2 activity, and ROS formation, and ultimately on left ventricular function, hypertrophy and fibrosis in a murine, and isoproterenol- (ISO- induced postinfarction heart failure model. RES treatment improved left ventricle function, decreased interstitial fibrosis, cardiac hypertrophy, and the level of plasma BNP induced by ISO treatment. ISO also increased the activation of P38-MAPK, ERK1/2Thr183-Tyr185, COX-2, iNOS, and ROS formation and decreased the phosphorylation of Akt-1, GSK-3β, and MKP-1, which were favorably influenced by RES. According to our results, regulation of these pathways may also contribute to the beneficial effects of RES in HF.
Experimental animal data and modeling of late somatic effects
International Nuclear Information System (INIS)
Fry, R.J.M.
1988-01-01
This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable
The constructive backlash dissipate effect model for concrete blocks
International Nuclear Information System (INIS)
Tepes-Onea Florin
2004-01-01
From physical point of view, the dumping represents the soil seismic excitation energy taken over process through internal absorption, rubbed between existent layers, as and cracks on rocky foundations. Generally, on heavy dams dynamic analysis it is considered a viscous dump, proportional with deformation speed. The dumping can be evaluated on experimental bases or on environmental conditions measurements. The latest determine higher values of dumping elements. This it could be explained with the local factors influence which is not possible to modeled as backlash treatment, foundation ground characteristics, the concrete technology. This represents atypical dissipate phenomenon. A major influence is done by the excitation level as real seism or experimental excitation. The present work is about to establish the influence of the dissipate effect of the backlash on concrete blocks. The backlash finite elements modeling make this possible, studying different situations as rub effect, cohesion effect, seismic action on varying directions with the same accelerogram of 0.4 g. The studied blocks have the same dimensions, the relative displacement being obtained by foundation stiffness modified under two block parts. (author)
Modeling the Effects of Mergers in the Retail Sector
DEFF Research Database (Denmark)
Blomgren-Hansen, Niels
2013-01-01
According to EU competition law, mergers that significantly impedes effective competition, particularly by creating or strengthening a dominant position are prohibited. To identify these cases, authorities need a quantifiable model of the relationship between the variables that are affected by th...... if the producers keep the wholesale prices unchanged. If the producers adjust their wholesale prices, then RPM hurts both the merged and the independent shops and benefits only the producers. The harmful effects on consumer welfare and efficiency are intensified....... by the merger and some measure of competition. Furthermore, the authorities must make their decision quickly, rendering deliberate data collection and econometric analyses infeasible in practice. The decision must be based on easily accessible data. In this paper, a simple model of the interaction between...... would most likely significantly affect retail prices. The harmful effects are markedly intensified through the possible abuse of buyer power to raise barriers to the market and curb the competitiveness of minor rivals. However, the dominant position is vulnerable if increased profits induce the entrance...
Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.
Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas
2016-03-08
Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.
Effective-field-theory model for the fractional quantum Hall effect
International Nuclear Information System (INIS)
Zhang, S.C.; Hansson, T.H.; Kivelson, S.
1989-01-01
Starting directly from the microscopic Hamiltonian, we derive a field-theory model for the fractional quantum hall effect. By considering an approximate coarse-grained version of the same model, we construct a Landau-Ginzburg theory similar to that of Girvin. The partition function of the model exhibits cusps as a function of density and the Hall conductance is quantized at filling factors ν = (2k-1)/sup -1/ with k an arbitrary integer. At these fractions the ground state is incompressible, and the quasiparticles and quasiholes have fractional charge and obey fractional statistics. Finally, we show that the collective density fluctuations are massive
Modelling of capital asset pricing by considering the lagged effects
Sukono; Hidayat, Y.; Bon, A. Talib bin; Supian, S.
2017-01-01
In this paper the problem of modelling the Capital Asset Pricing Model (CAPM) with the effect of the lagged is discussed. It is assumed that asset returns are analysed influenced by the market return and the return of risk-free assets. To analyse the relationship between asset returns, the market return, and the return of risk-free assets, it is conducted by using a regression equation of CAPM, and regression equation of lagged distributed CAPM. Associated with the regression equation lagged CAPM distributed, this paper also developed a regression equation of Koyck transformation CAPM. Results of development show that the regression equation of Koyck transformation CAPM has advantages, namely simple as it only requires three parameters, compared with regression equation of lagged distributed CAPM.
Effects of Internet Sales Promotion on a Differential Advertising Model
Directory of Open Access Journals (Sweden)
Hui Jiang
2018-01-01
Full Text Available Advertising and sales promotion are two important specific marketing communications tools. In this paper, Internet sales promotion is introduced into a differential advertising model and investigated quantitatively. The conditions for the existence and stability of periodic solutions are obtained. Flip bifurcation of periodic solution is investigated analytically. The results show that the sales promotion parameter can modify the stability of the differential advertising model and lead to chaos through flip bifurcation, the sales level will eventually be no less than a given value by adjusting the value of the sales promotion parameter, and the optimal sales promotion strategy can lead to maximum profit. Numerical results for periodic solutions, bifurcation diagrams, and the effects of sales promotion strategies, which are illustrated with an example, are in good agreement with the theoretical analysis. These results have certain significant theoretical and practical value in related markets.
Effects of induced stress on seismic forward modelling and inversion
Tromp, Jeroen; Trampert, Jeannot
2018-05-01
We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.
Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation
DEFF Research Database (Denmark)
Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G
2006-01-01
The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...... into account a number of individual compartments. The signal dephasing is simulated in a semianalytical way by embedding Monte Carlo simulations in the framework of analytical theory. This approach yields a tool for fast, realistic simulation of the change in the transverse relaxation. The results indicate...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...