WorldWideScience

Sample records for effective surface tension

  1. Surface Tension

    Science.gov (United States)

    Theissen, David B.; Man, Kin F.

    1996-01-01

    The effect of surface tension is observed inmany everyday situations. For example, a slowly leaking faucet drips because the force surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free.

  2. Effect of Gravity on Surface Tension

    Science.gov (United States)

    Weislogel, M. M.; Azzam, M. O. J.; Mann, J. A.

    1998-01-01

    Spectroscopic measurements of liquid-vapor interfaces are made in +/- 1-g environments to note the effect of gravity on surface tension. A slight increase is detected at -1-g0, but is arguably within the uncertainty of the measurement technique. An increased dependence of surface tension on the orientation and magnitude of the gravitational vector is anticipated as the critical point is approached.

  3. The effects of ambient impurities on the surface tension

    Directory of Open Access Journals (Sweden)

    Ponce-Torres A.

    2016-01-01

    Full Text Available A liquid bridge is a liquid column held captive between two coaxial and parallel solid disks. It is an excellent test bench where measuring the surface tension. In this paper, we used this fluid configuration to examine experimentally the effects of ambient impurities on the surface tension over time. For this purpose, the liquid bridge equilibrium shape was analyzed when the liquid bridge was surrounded by three environments: the uncontrolled ambient, and both air and argon encapsulated in a small glass cover. Ambient contamination produced a sharp decrease of the surface tension of ultra-pure water. The presence of an anionic surfactant in the free surface of an aqueous solution did not inhibit the action of impurities coming from the ambient. Impurities can influence the dynamical behavior of the free surface in flows dominated by the surface tension. Therefore, a careful control of that influence can be crucial in many applications of fluid mechanics.

  4. The effects of ambient impurities on the surface tension

    OpenAIRE

    Ponce-Torres A.; Vega E. J.

    2016-01-01

    A liquid bridge is a liquid column held captive between two coaxial and parallel solid disks. It is an excellent test bench where measuring the surface tension. In this paper, we used this fluid configuration to examine experimentally the effects of ambient impurities on the surface tension over time. For this purpose, the liquid bridge equilibrium shape was analyzed when the liquid bridge was surrounded by three environments: the uncontrolled ambient, and both air and argon encapsulated in a...

  5. The Cartesian Diver, Surface Tension and the Cheerios Effect

    Science.gov (United States)

    Chen, Chi-Tung; Lee, Wen-Tang; Kao, Sung-Kai

    2014-01-01

    A Cartesian diver can be used to measure the surface tension of a liquid to a certain extent. The surface tension measurement is related to the two critical pressures at which the diver is about to sink and about to emerge. After sinking because of increasing pressure, the diver is repulsed to the centre of the vessel. After the pressure is…

  6. Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect

    Science.gov (United States)

    Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

    2004-01-01

    Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

  7. Demonstration of Surface Tension.

    Science.gov (United States)

    Rosenthal, Andrew J.

    2001-01-01

    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  8. The dependence of surface tension on surface properties of ionic surfactant solution and the effects of counter-ions therein.

    Science.gov (United States)

    Wang, Chuangye; Morgner, Harald

    2014-11-14

    In the present paper, we aim to investigate the dependence of surface tension on the surface properties and reveal the counter-ion effects on the adsorption of ionic surfactants on the solution surface. The surface tension, surface excess and surface concentration (defined as the amount of surfactant adsorbed in the surface phase divided by the surface area) of two anionic surfactants, namely dodecyl sulfate sodium and dodecyl sulfate caesium, dissolved in non-aqueous polar solvent formamide have been separately measured at 6 °C through independent experiments. Then, the correlation of surface tension with surface concentration and that of surface tension with surface excess is inspected in detail. It was found that there is a linear relationship between the surface tension and the surface concentration for the pure solutions of each surfactant, but their surface tension and surface excess cannot be correlated linearly. It is striking that the same surface tension-surface concentration linearity holds for two different surfactants, although they have apparently distinct counter-ions. Based on this finding, it is derived that the surface tension is decided by surface concentration of the surface active ions. After analyzing the surface structure, it is concluded that the counter-ions affect the surface tension indirectly through modifying the adsorption amount of the surface active ions in the surface layer.

  9. Effects of Induced Surface Tension in Nuclear and Hadron Matter

    Directory of Open Access Journals (Sweden)

    Sagun V.V.

    2017-01-01

    Full Text Available Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. In addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.

  10. Surface tension of aqueous humor.

    Science.gov (United States)

    Ross, Andrew; Blake, Robert C; Ayyala, Ramesh S

    2010-09-01

    To measure and compare the surface tension of aqueous humor in patients with and without glaucoma. The surface tension of aqueous humor was measured using a commercially available instrument and software that were validated by using a known fluid (deionized water and methanol). Analysis of aqueous and vitreous samples obtained from 20 rabbit eyes showed that the system could be used successfully for small amounts of ocular fluid. The effect of glaucoma drugs on the surface tension of aqueous humor was then studied in a rabbit model. Comparison of aqueous humor from 66 patients with glaucoma and 53 patients with cataracts but no glaucoma was carried out. The surface tension of rabbit aqueous humor was 65.9 ± 1.2; vitreous, 60.6 ± 2.6; and balanced salt solution, 70.7 ± 0.9. Timolol and latanoprost did not alter the surface tension of the aqueous humor in the rabbit model. The average surface tension of human aqueous humor was 63.33 ± 4.0 (glaucomatous eyes) and 66.19 ± 2.64 (nonglaucomatous eyes with cataracts) (P=0.0001). A technique of measuring the surface tension from small quantities of aqueous humor is validated. Surface tension of the aqueous humor in glaucoma patients was less than that of cataract patients.

  11. Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids.

    Science.gov (United States)

    Harikrishnan, A R; Dhar, Purbarun; Agnihotri, Prabhat K; Gedupudi, Sateesh; Das, Sarit K

    2017-05-01

    A systematically designed study has been conducted to understand and demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the surface tension of these complex fluids are studied employing the pendant drop shape analysis method by fitting the Young-Laplace equation. Only the particle has shown an increase in the surface tension with particle concentration in a polar medium like DI water, whereas only a marginal effect of particles on surface tension in weakly polar mediums like glycerol and ethylene glycol has been demonstrated. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a theory has been presented to quantify this. The combined particle and surfactant effect on the surface tension of a complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of particle concentration. This combined colloidal system recorded a surface tension value below the surface tension of an aqueous surfactant system at the same concentration, which is a counterintuitive observation as only the particle results in an increase in the surface tension and only the surfactant results in a decrease in the surface tension. The possible physical mechanism behind such an anomaly happening at the complex fluid air interface has been explained. Detailed analyses based on thermodynamic, mechanical and chemical equilibrium of the constituents and their adsorption-desorption characteristics as extracted from the Gibbs adsorption analysis have been provided. The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.

  12. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  13. Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    The surface tension of polymer melts is important for the bond strength of two component polymer parts through their roles in the process of wetting, adsorption and adhesion. This investigation deals with the influence of the melt surface tension and substrate surface energy on the polymer......-polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEl, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies....... The results and discussion presented in this paper reflect the temperature dependent behaviours of the surface tension and surface energy of polymers and their effects on the polymer-polymer bond strength....

  14. Surface tension of polymer melts - experimental investigations of its effects on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Jankova Atanasova, Katja; Hansen, Hans Nørgaard

    The surface tension of polymer melts is important for the bond strength of two component polymer parts through their roles in the process of wetting, adsorption and adhesion. This investigation deals with the influence of the melt surface tension and substrate surface energy on the polymer......-polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEI, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies....... The results and discussion presented in this paper reflect the temperature dependent behaviours of the surface tension and surface energy of polymers and their effects on the polymer-polymer bond strength....

  15. Surface Tension of Spacetime

    Science.gov (United States)

    Perko, Howard

    2017-01-01

    Concepts from physical chemistry and more specifically surface tension are introduced to spacetime. Lagrangian equations of motion for membranes of curved spacetime manifold are derived. The equations of motion in spatial directions are dispersion equations and can be rearranged to Schrodinger's equation where Plank's constant is related to membrane elastic modulus. The equation of motion in the time-direction has two immediately recognizable solutions: electromagnetic waves and corpuscles. The corpuscular membrane solution can assume different genus depending on quantized amounts of surface energy. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found that satisfies general relativity. Application of the surface tension to quantum electrodynamics and implications for quantum chromodynamics are discussed. Although much work remains, it is suggested that spacetime surface tension may provide a classical explanation that combines general relativity with field theories in quantum mechanics and atomic particle physics.

  16. Finite-Size and Solvent Dependent Line Tension Effects for Nanoparticles at the Air-Liquid Surface.

    Science.gov (United States)

    Matsubara, Hiroki; Otsuka, Jo; Law, Bruce M

    2018-01-09

    The line tension for a nanoparticle (NP) at the air-liquid surface can be determined by examining the variation in NP solution surface tension with bulk NP concentration. In this publication the variation in line tension with liquid solvent is examined for the homologous series of liquids from n-decane through to n-octadecane. Finite-size line tension effects are also studied by examining the variation in line tension with NP size for NPs at the air-octadecane surface. Both the line tension variation with solvent and NP size can be qualitatively explained using an interface displacement model for the line tension.

  17. Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae.

    Science.gov (United States)

    Xie, Wei-Hua; Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao

    2014-01-01

    Surface wrinkling of mucosae is crucial for the biological functions of many living tissues. In this paper, we investigate the instability of a cylindrical tube consisting of a mucosal layer and a submucosal layer. Our attention is focused on the effects of internal pressure and surface tension on the critical condition and mode number of surface wrinkling induced by tissue growth. It is found that the internal pressure plays a stabilizing role but basically has no effect on the critical mode number. Surface tension also stabilizes the system and reduces the critical mode number of surface patterns. Besides, the thinner the mucosal layer, the more significant the effect of surface tension. This work may help gain insights into the surface wrinkling and morphological evolution of such tubular organs as airways and esophagi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The effect of temperature and pH variations on the surface tension of EDTA solutions.

    Science.gov (United States)

    Yılmaz, Zeliha; Aktemur, Sevinc; Buzoglu, Hatice Dogan; Gümüsderelioglu, Menemse

    2011-06-01

    Surface tension of a liquid is one of the major factors that affect the wetting of a solid. The reduction in surface tension could improve the contact of irrigants with the dentinal walls of the root canal system. This in vitro study was conducted to evaluate the effect of pH and temperature variations on the surface tension of EDTA solutions. Three solutions, 17% EDTA, REDTA, and EDTA-T, were prepared and adjusted to have a pH of 5.5, 7.5, and 10.5. The surface tension of the test solutions was measured at 22 °C by the pendant drop technique, and the measurement was repeated after heating the solution at 37 °C. Differences among the experimental groups were statistically analyzed using three-way analysis of variance followed by the Bonferroni test for pair-wise comparison. The results of this study showed that there were significant differences in the surface tension values of solutions depending on the pH and temperature (P surface tension level of the EDTA solution dramatically decreased when surfactant was added to the EDTA solution in both pH and temperature variations (P surface tension value at a pH of 5.5 of all EDTA solutions, at a pH of 7.5 of EDTA and REDTA solutions, and at a pH of 10.5 of only REDTA solution (P surface tension of EDTA with and without surfactant is influenced by pH and temperature. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Surface tension of spherical drops from surface of tension

    Energy Technology Data Exchange (ETDEWEB)

    Homman, A.-A.; Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Stoltz, G. [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France); Malfreyt, P. [Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, UMR CNRS 6296, ICCF, BP 10448, F-63000 Clermont-Ferrand (France); Strafella, L.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr [Institut de Physique de Rennes, Université de Rennes 1 UMR 6251 CNRS, 263 avenue Général Leclerc, 35042 Rennes (France)

    2014-01-21

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  20. Numerical Study on the Effects of Gravity and Surface Tension on Condensation Process in Square Minichannel

    Science.gov (United States)

    Li, Panpan; Chen, Zhenqian; Shi, Juan

    2017-12-01

    A volume of fluid (VOF) method is adopted to simulate the condensation of R134a in a horizontal single square minichannel with 1 mm side length. The effect of gravity, surface tension and gas-liquid interfacial shear stress are taken into account. The result denotes that condensation is first appeared at the corner of channel, and then the condensation is stretched at the effect of surface tension until the whole channel boundary covered. The effect of gravity on the distribution of the liquid film depends on the channel length. In short channel, the gravity shows no significant effect, the distribution shape of steam in the cross section of the channel is approximately circular. In long channel, due to the influence of gravity, the liquid converges at the bottom under the effect of gravity, and the thickness of the liquid film at the bottom is obviously higher than that of the upper part of the channel. The effect of surface tension on condensation is also analysed. The surface tension can enhance the condensation heat transfer significantly when the inlet mass flux is low. Whilst, at high mass flux, the enhancement of surface tension on heat transfer is unobvious and can be neglected.

  1. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.

    Science.gov (United States)

    Massinon, M; De Cock, N; Salah, S Ouled Taleb; Lebeau, F

    2015-01-01

    A spray retention model was used in this study to explore theoretically the effect of a range of mixture surface tension on the spray retention and the variability of deposits. The spray retention model was based on an algorithm that tested whether droplets from a virtual nozzle intercepted a 3D plant model. If so, the algorithm determined the contribution of the droplet to the overall retention depending on the droplet impact behaviour on the leaf; adhesion, rebound or splashing. The impact outcome probabilities, function of droplet impact energy, were measured using high-speed imaging on an excised indoor grown barley leaf (BBCH12) both for pure water (surface tension of 0.072 N/m) and a non-ionic super spreader (static surface tension of 0.021 N/m) depending on the surface orientation. The modification of spray mixture properties in the simulations was performed by gradually changing the spray the droplet impact probabilities between pure water and a solution with non-ionic surfactant exhibiting super spreading properties. The plant architecture was measured using a structured light scanner. The final retention was expressed as the volume of liquid retained by the whole plant relative to the projected leaf surface area in the main spray direction. One hundred simulations were performed at different volumes per hectare and flat-fan nozzles for each formulation surface tension. The coefficient of variation was used as indicator of variability of deposits. The model was able to discriminate between mixture surface tension. The spray retention increased as the mixture surface tension decreased. The variability of deposits also decreased as the surface tension decreased. The proposed modelling approach provides a suited tool for sensitivity analysis: nozzle kind, pressure, volume per hectare applied, spray mixture physicochemical properties, plant species, growth stage could be screened to determine the best spraying characteristics maximizing the retention. The

  2. Effect of surface tension on the onset of convection in a double-diffusive layer

    Science.gov (United States)

    Chen, C. F.; Su, T. F.

    1992-01-01

    The effect of surface tension on the stability of a double-diffusive layer is considered using linear stability analysis. The surface tension is assumed to vary linearly with temperature and solute concentration. The eigenvalue problem is solved by the Galerkin method. Results show that the predicted stability boundary based on Marangoni effects alone is completely altered in the presence of buoyancy effects induced by low gravity levels (about 10 exp -5 g). At reduced gravity levels, salt-finger instability may onset in the overstable mode due to the stabilizing effect of surface tension. Fluid properties in terms of the Prandtl and the Lewis numbers have a profound effect on the stability conditions; opposite stability characteristics are found in salt solutions and in molten metals.

  3. Effects of small surface tension in Hele-Shaw multifinger dynamics: an analytical and numerical study.

    Science.gov (United States)

    Pauné, E; Siegel, M; Casademunt, J

    2002-10-01

    We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer [Philos. Trans. R. Soc. London, Ser. A 343, 155 (1993)] and Siegel and Tanveer [Phys. Rev. Lett. 76, 419 (1996)], as well as direct numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley [J. Comput. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (nonsingular) zero-surface-tension solutions. The effect is present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally unstable flow, restoring the hyperbolicity of multifinger fixed points.

  4. Effect of concentration and temperature on surface tension of sodium hyaluronate saline solutions.

    Science.gov (United States)

    Ribeiro, Walkiria; Mata, José Luis; Saramago, Benilde

    2007-06-19

    The effect of concentration and temperature on the surface tension of sodium hyaluronate (NaHA) saline solutions was investigated using the technique of the shape of pendant drops. The decay rate of the surface tension with the increase of NaHA concentration was well-described by the empirical Hua-Rosen equation. Adsorption at the air-liquid interface was estimated using the Gibbs equation. The temperature dependence of a dilute solution and a semidilute entangled solution was numerically fitted with a second-order polynomial equation. The surface behavior of the NaHA saline solutions was interpreted in terms of their known viscoelastic properties.

  5. Effect of an alcohol-based caries detector on the surface tension of sodium hypochlorite preparations.

    Science.gov (United States)

    Rossi-Fedele, Giampiero; Guastalli, Andrea R

    2015-01-01

    The purpose of this study was to evaluate the effect of an alcohol-based caries detector (Kurakay) on the surface tension of a conventional sodium hypochlorite (NaOCl) preparation, and a product containing a surface-active agent (Chlor-XTRA). The surface tensions of the following solutions were tested: NaOCl, a mixture of NaOCl and Kurakay 9:1 w/w, Chlor-XTRA, a mixture of Chlor-XTRA and Kurakay 9:1 w/w. Ten measurements per test solution were made at 20°C, using an optical method called the "Pendant drop method", with a commercially available apparatus. The addition of Kurakay reduced the surface tension for NaOCl (p0.05). Statistically significant differences between the NaOCl and Chlor-XTRA groups were found (psurface tension values for NaOCl only. Taking into account the fact that mixtures of NaOCl and Kurakay have been used to assess the penetration of root canal irrigants in vitro, the related changes in surface tension are a possible source of bias.

  6. Surface Tension and Capillary Rise

    Science.gov (United States)

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  7. [Effect of bile acids on surface tension of bronchoalveolar lavage fluid in rabbits].

    Science.gov (United States)

    Wang, Fei; Zhao, Cong; Tian, Yinghong; Yin, Yanru

    2014-10-01

    To observe changes in surface tension of bronchoalveolar lavage fluids (BALF) in rabbits with hyperbilirubinemia and the influence of bile diluents and 5 different bile acids on BALF surface tension to provide better insight into the regulatory role of bile acids on respiratory function. Bronchoalveolar lavage with 0.9% normal saline was carried out in 30 male New Zealand rabbits and the surface tensions of BALF were measured. The changes in BALF surface tension was measured in rabbits with hyperbilirubinemia. Different concentrations of bile diluents, normal saline, or water solutions of 5 bile acids were added into the collected BALF to test their influence on the surface tension of BALF. The BALF from rabbits with hyperbilirubinemia showed a significantly increased surface tension (Psurface tension of the BALF by 21.15%, 26.09%, and 19.64%, respectively. Among the water solutions of the 5 bile acids, UDCA produced no significant influence on the surface tension of BALF while CDCA, CA, LCA, and DCA increased the surface tension by 16.10%, 21.66%, 14.21%, and 13.05%, respectively. The surface tension of BALF increases significantly during hyperbilirubinemia. Bile diluents as well as the free bile acids CDCA, CA, LCA and DCA, but not UDCA, can increase the surface tension of BALF, suggesting that these bile acids may emulsify pulmonary alveolar surfactants to increase the alveolar surface tension.

  8. Effect of temperature and concentration on the surface tension of chia seed mucilage

    Science.gov (United States)

    Fu, Yuting; Arye, Gilboa

    2017-04-01

    The production of mucilage by the seed coat during hydration is a common adaptation of many different plant species. The mucilage may play many ecological roles in adaptation and seed germination in diverse environments, especially in extreme desert conditions. The major compound of the seed mucilage is polysaccharides (e.g. pectins and hemicelluloses), which makes it highly hydrophilic. Consequently, it can hydrate quickly in the presence of water; forming a gel like coating surrounding the seed. However, the seed mucilage also reported to contain small amounts of protein and lipid which may exhibit surface activity at the water-air interface. As a result, decay in the surface tension of water can be occur and consequently a reduction in soil capillary pressure. This in turn may affect the water retention and transport during seed germination. The physical properties of the seeds mucilage have been studied mainly in conjunction with its rheological properties. To the best of our knowledge, its surface activity at the water-air interface has been reported mainly in the realms of food engineering, using a robust method of extraction. The main objective of this study was to quantify the effect of temperature and concentration on the surface tension of seed mucilage. The mucilage in this study was extracted from chia (Salvia hispanica L.) seeds, using distilled water (1:20 w/w) by shaking for 12 h at 4°C. The extracts were freeze dried after centrifuge (5000rpm for 20min). Fresh samples of different concentrations, ranging from 0.5 to 6 mg/ml, were prepared before each surface tension measurements. The equilibrium surface tension was measured by the Wilhelmy plate method using a tensiometer (DCAT 11, Data Physics) with temperature control unit. For a given mucilage concentration, surface tension measurements carried out at 5, 15, 25, 35, 45 °C. The quantitative and thermodynamic analysis of the results will be presented and discussed.

  9. Surface tension prevails over solute effect in organic-influenced cloud droplet activation.

    Science.gov (United States)

    Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin

    2017-06-29

    The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future

  10. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    Science.gov (United States)

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Surface Tension Measurements of Chemically Modified Oleochemical

    Science.gov (United States)

    Surface tension is an important physical property of a substance, which plays a part in a variety of physical phenomenon relevant to many industrial processes. For example, the efficiency of the atomization of a fuel has been shown to be effected dramatically by surface tension and viscosity. Beca...

  12. Cation alkyl side chain length and symmetry effects on the surface tension of ionic liquids.

    Science.gov (United States)

    Almeida, Hugo F D; Freire, Mara G; Fernandes, Ana M; Lopes-da-Silva, José A; Morgado, Pedro; Shimizu, Karina; Filipe, Eduardo J M; Lopes, José N Canongia; Santos, Luís M N B F; Coutinho, João A P

    2014-06-10

    Aiming at providing a comprehensive study of the influence of the cation symmetry and alkyl side chain length on the surface tension and surface organization of ionic liquids (ILs), this work addresses the experimental measurements of the surface tension of two extended series of ILs, namely R,R'-dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(n)im][NTf2]) and R-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C(n)C(1)im][NTf2]), and their dependence with temperature (from 298 to 343 K). For both series of ILs the surface tension decreases with an increase in the cation side alkyl chain length up to aliphatic chains no longer than hexyl, here labeled as critical alkyl chain length (CACL). For ILs with aliphatic moieties longer than CACL the surface tension displays an almost constant value up to [C12C12im][NTf2] or [C16C1im][NTf2]. These constant values further converge to the surface tension of long chain n-alkanes, indicating that, for sufficiently long alkyl side chains, the surface ordering is strongly dominated by the aliphatic tails present in the IL. The enthalpies and entropies of surface were also derived and the critical temperatures were estimated from the experimental data. The trend of the derived thermodynamic properties highlights the effect of the structural organization of the IL at the surface with visible trend shifts occurring at a well-defined CACL in both symmetric and asymmetric series of ILs. Finally, the structure of a long-alkyl side chain IL at the vacuum-liquid interface was also explored using Molecular Dynamics simulations. In general, it was found that for the symmetric series of ILs, at the outermost polar layers, more cations point one of their aliphatic tails outward and the other inward, relative to the surface, than cations pointing both tails outward. The number of the former, while being the preferred conformation, exceeds the latter by around 75%.

  13. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    OpenAIRE

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading ...

  14. The energy release rate of a pressurized crack in soft elastic materials: effects of surface tension and large deformation.

    Science.gov (United States)

    Liu, Tianshu; Long, Rong; Hui, Chung-Yuen

    2014-10-21

    In this paper we present a theoretical study on how surface tension affects fracture of soft solids. In classical fracture theory, the resistance to fracture is partly attributed to the energy required to create new surfaces. Thus, the energy released to the crack tip must overcome the surface energy in order to propagate a crack. In soft materials, however, surface tension can cause significant deformation and can reduce the energy release rate for crack propagation by resisting the stretch of crack surfaces. We quantify this effect by studying the inflation of a penny-shaped crack in an infinite elastic body with applied pressure. To avoid numerical difficulty caused by singular fields near the crack tip, we derived an expression for the energy release rate which depends on the applied pressure, the surface tension, the inflated crack volume and the deformed crack area. This expression is evaluated using a newly developed finite element method with surface tension elements. Our calculation shows that, when the elasto-capillary number ω ≡ σ/Ea is sufficiently large, where σ is the isotropic surface tension, E is the small strain Young's modulus and a is the initial crack radius, both the energy release rate and the crack opening displacement of an incompressible neo-Hookean solid are significantly reduced by surface tension. For a sufficiently high elasto-capillary number, the energy release rate can be negative for applied pressure less than a critical amount, suggesting that surface tension can cause crack healing in soft elastic materials.

  15. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.

    Science.gov (United States)

    Kong, Xian; Qin, Shanshan; Lu, Diannan; Liu, Zheng

    2014-05-14

    While the surface tension of a cell membrane, or a plasma membrane, regulates cell functions, little is known about its effect on the conformational changes of the lipid bilayer and hence the resulting changes in the cell membrane. To obtain some insights into the phase transition of the lipid bilayer as a function of surface tension, we used a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer as a model lipid bilayer and aquaporin (AqpZ), a transmembrane channel protein for water, as a model embedded protein. A coarse-grained molecular dynamics simulation was applied to illustrate the phase transition behavior of the pure DPPC bilayer and aquaporin-embedded DPPC bilayer under different surface tensions. It was shown that an increased surface tension reduced the phase transition temperature of the DPPC bilayer. As for the DPPC bilayer in gel form, no significant changes occurred in the structure of the bilayer in response to the surface tension. Once in a liquid crystal state, both the structure and properties of the DPPC bilayer, such as area per lipid, lipid order parameters, bilayer thickness and lateral diffusion coefficients, were responsive to the magnitude of surface tension in a linear way. The presence of aquaporin attenuated the compact alignment of the lipid bilayer, hindered the parallel movement, and thus made the DPPC bilayer less sensitive to the surface tension.

  16. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-04-06

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  17. The Dynamic Surface Tension of Water

    Science.gov (United States)

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  18. Investigations of surface-tension effects due to small-scale complex boundaries

    Science.gov (United States)

    Feng, Jiansheng

    In this Ph.D. dissertation, we have investigated some important surface-tension phenomena including capillarity, wetting, and wicking. We mainly focus on the geometric aspects of these problems, and to learn about how structures affect properties. . In the first project (Chapter 2), we used numerical simulations and experiments to study the meniscus of a fluid confined in capillaries with complicated cross-sectional geometries. In the simulations, we computed the three-dimensional shapes of the menisci formed in polygonal and star-shaped capillaries with sharp or rounded corners. Height variations across the menisci were used to quantify the effect of surface tension. Analytical solutions were derived for all the cases where the cross-sectional geometry was a regular polygon or a regular star-shape. Power indices that characterize the effects of corner rounding were extracted from simulation results. These findings can serve as guide for fabrications of unconventional three-dimensional structures in Capillary Force Lithography experiments. Experimental demonstrations of the working principle was also performed. Although quantitative matching between simulation and experimental results was not achieved due to the limitation of material properties, clear qualitative trends were observed and interesting three-dimensional nano-structures were produced. A second project (Chapter 3) focused on developing techniques to produce three-dimensional hierarchically structured superhydrophobic surfaces with high aspect ratios. We experimented with two different high-throughput electron-beam-lithography processes featuring single and dual electron-beam exposures. After a surface modification procedure with a hydrophobic silane, the structured surfaces exhibited two distinct superhydrophobic behaviors---high and low adhesion. While both types of superhydrophobic surfaces exhibited very high (approximately 160° water advancing contact angles, the water receding contact angles on

  19. Surface tension effects on the onset of double-diffusive convection

    Science.gov (United States)

    Chen, C. F.

    1992-01-01

    Experiments have been carried out to determine the critical thermal Rayleigh number for onset of convection in a horizontal layer of density-stratified fluid with a free surface when heated from below. Three different aqueous solutions were used: salt, glycerol, and acetic acid. The rates of change in surface tension with concentration for these three solutions are positive, nearly zero, and negative, respectively. Compared to the rigid-rigid boundaries, the critical thermal Rayleigh number was found to be larger by 11.2 percent for the salt solution and smaller by 10.0 percent for the glycerol solution. With the acetic acid solution, however, the effect of the free surface was found to be negligible.

  20. Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt.%Al alloy

    Directory of Open Access Journals (Sweden)

    Deng Zhenghua

    2013-03-01

    Full Text Available Magnesium alloys are well known for their excellent properties, but the potential issues with oxidation and burning during melting and casting largely limit its industrial applications. The addition of Ce in magnesium alloys can significantly raise ignition-proof performance and change the structure of the oxide film on the surface of the molten metal as well as the surface tension values. Surface tension is an important physical parameter of the metal melts, and it plays an important role in the formation of surface oxide film. In this present work, the ignition temperature and the surface tension of Mg-9wt.%Al alloy with different Ce concentrations were studied. Surface tensions was measured using the maximum bubble pressure method (MBPM. Ignition temperature was measured using NiCr-NiSi type thermocouples and was monitored and recorded via a WXT-604 desk recording device. The results show that the ignition point of Mg-9wt.%Al alloy can be effectively elevated by adding Ce. The ignition temperature reaches its highest point of 720 ℃ when the addition of Ce is 1wt.%. The surface tension of the molten Mg-9wt.%Al alloy decreases exponentially with the increase of Ce addition at the same temperature. Similarly, the experiment also shows that the surface tension of Mg-9wt.%Al alloy decreases exponentially with the increase of temperature.

  1. A theoretical study on surfactant adsorption kinetics: effect of bubble shape on dynamic surface tension.

    Science.gov (United States)

    Yang, Ming-Wei; Wei, Hsien-Hung; Lin, Shi-Yow

    2007-12-04

    A planar or spherical fluid-liquid interface was commonly assumed on studying the surfactant adsorption kinetics for a pendant bubble in surfactant solutions. However, the shape of a pendant bubble deviates from a sphere unless the bubble's capillary constant is close to zero. Up to date, the literature has no report about the shape effect on the relaxation of surface tension due to the shape difference between a pendant bubble and a sphere. The dynamic surface tension (DST), based on the actual shape of a pendant bubble with a needle, of the diffusion-controlled process is simulated using a time-dependent finite element method in this work. The shape effect and the existence of a needle on DST are investigated. This numerical simulation resolves also the time-dependent bulk surfactant concentration. The depth of solution needed to satisfy the classical Ward-Tordai infinite-solution assumption was also studied. For a diffusion-controlled adsorption process, bubble shape and needle size are two major factors affecting the DST. The existence of a needle accelerates the bulk diffusion for a small bubble; however, the shape of a large pendant bubble decelerates the bulk diffusion. An example using this method on the DST data of C12E4 is illustrated at the end of this work.

  2. Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer

    Science.gov (United States)

    Kalkandelen, C.; Ozbek, B.; Ergul, N. M.; Akyol, S.; Moukbil, Y.; Oktar, F. N.; Ekren, N.; Kılıc, O.; Kılıc, B.; Gunduz, O.

    2017-12-01

    In the present study, gelatine scaffolds were manufactured by using modified 3D (3 Dimensional) printing machine and the effect of different parameters on scaffold structure were investigated. Such as; temperature, viscosity and surface tension of the gelatine solutions. The varying of gelatine solutions (1, 3, 5, 10, 15 and 20 wt.%) were prepared and characterized. It has been detected that, viscosity of those solutions were highly influenced by temperature and gelatine concentration. Specific CAD (Computer Assistant Design) model which has 67% porosity and original design were created via computer software. However, at high temperatures gelatine solutions caused like liquid but at the lower temperatures were observed the opposite behaviour. In addition to that, viscosity of 1,3,5 wt.% solutions were not enough to build a structure and 20 wt.% gelatine solution too hard to handle, because of the sudden viscosity changes with temperature. Even though, scaffold of the 20 wt.% gelatine solution printed hardly but it was observed the best printed solutions, which were 10 and 15 wt.% gelatine solutions. As a result, 3D printing of gelatine were found the values of the best temperature, viscosity, surface tension and gelatine concentration such as 25-35 °C, 36-163 cP, 46-59 mN/m and 15 wt.% gelatine concentration respectively.

  3. Effects of surface tension and viscosity on the forming and transferring process of microscale droplets

    Science.gov (United States)

    Chen, Shulei; Liu, Kun; Liu, Cunbin; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai; Lin, Qiao

    2016-12-01

    Surface tension and viscosity act as important roles on the fluid flow in microchannel channels. In order to understand the influencing mechanism, three dimensional numerical simulations as well as experimental investigations were carried out on the slug formation and transfer in a rectangle T-junction microchannel. The simulation showed that the increasing Capillary number (Ca) resulted in the decreasing slug volume. Due to the existence of film thickness and corner flow, the characteristic length of slug was not the same trend completely. The results also showed that the pressure of junction point fluctuated periodically in the process of slug formation, which can reflect the slug formation period and the effect of the various conditions on pressure change. Two other pressure monitoring points were located in vertical channel and main channel and they monitored the pressure of two phase flow respectively. The increasing surface tension resulted in an increasing of total pressure, the interface pressure drop of two phases and the period of slug formation. The frequency of slug formation and two phases total pressure increased with the viscosity of continuous phase.

  4. The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell.

    Science.gov (United States)

    Green, Christopher C; Lustri, Christopher J; McCue, Scott W

    2017-05-01

    New numerical solutions to the so-called selection problem for one and two steadily translating bubbles in an unbounded Hele-Shaw cell are presented. Our approach relies on conformal mapping which, for the two-bubble problem, involves the Schottky-Klein prime function associated with an annulus. We show that a countably infinite number of solutions exist for each fixed value of dimensionless surface tension, with the bubble shapes becoming more exotic as the solution branch number increases. Our numerical results suggest that a single solution is selected in the limit that surface tension vanishes, with the scaling between the bubble velocity and surface tension being different to the well-studied problems for a bubble or a finger propagating in a channel geometry.

  5. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  6. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  7. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    Science.gov (United States)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  8. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H. [Toyo Construction Co. Ltd., Tokyo (Japan)

    1996-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  9. A continuum method for modeling surface tension

    Science.gov (United States)

    Brackbill, J. U.; Kothe, D. B.; Zemach, C.

    1992-01-01

    In the novel method presented for modeling the effects of surface tension on fluid motion, the interfaces between fluids with different, color-represented properties are finite-thickness transition regions across which the color varies continuously. A force density proportional to the surface curvature of constant color is defined at each point in the transition region; this force-density is normalized in such a way that the conventional description of surface tension on an interface is recovered when the ratio of local transition-reion thickness to local curvature radius approaches zero. The properties of the method are illustrated by computational results for 2D flows.

  10. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    Science.gov (United States)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  11. Antimicrobial Effect and Surface Tension of Some Chelating Solutions with Added Surfactants.

    Science.gov (United States)

    Giardino, Luciano; Andrade, Flaviana Bombarda de; Beltrami, Riccardo

    2016-01-01

    This study assessed the antimicrobial efficacy and surface tension of established irrigating solutions with a new experimental chelating solution in infected dentin tubes. Twenty-five specimens were randomly assigned to each of the irrigating solutions. Twenty specimens were used as negative and positive controls. After 21 days of contamination with E. faecalis, the irrigating solutions MTAD, QMiX and Tetraclean NA were delivered into each infected root canal. The solutions were removed and dentin samples were withdrawn from the root canals with sterile low-speed round burs with increasing ISO diameters. The dentin powder samples obtained with each bur were immediately collected in separate test tubes containing 3 mL of BHI broth. After that, 100 μL from each test tube was cultured on blood agar. The grown colonies were counted and recorded as colony-forming units (CFU). The surface tension of the irrigants was measured using a Cahn DCA-322 Dynamic Contact Angle Analyzer. A Kruskal Wallis nonparametric ANOVA and a Friedman test were used (psurface tension and CFU values than MTAD and QMiX. Better antibacterial action and low surface tension were observed for Tetraclean NA, probably due to the improved penetration into the root canal and dentinal tubes.

  12. Light Scattering by Surface Tension Waves.

    Science.gov (United States)

    Weisbuch, G.; Garbay, F.

    1979-01-01

    This simple and inexpensive experiment is an illustration of the physical concepts of interaction between light and surface tension waves, and provides a new method of measuring surface tension. (Author/GA)

  13. SURFACE TENSION TECHNIQUES FOR MOLTEN SALTS

    Science.gov (United States)

    Some 200 surface tension determinations were made on 107 single-salt melts using eight experimental techniques. From a consideration of the... surface tension range of applicability and temperature limitation for these techniques are briefly considered.

  14. Superficial composition in binary solid solutions A(B): Drastic effect of pure element surface tensions

    Science.gov (United States)

    Rolland, A.; Aufray, B.

    1985-10-01

    This paper deals with a comparative study of surface segragation of Pb and Ni respectively from Ag(Pb)(111) and Ag(Ni)(111) solid solutions. A high level of segregation of the solute is observed for both systems characterized by very low solute solubility. However, the superficial composition strongly depends on the relative surface tensions of the pure elements: the solute atoms are strictly on superficial sites when γ solute is smaller than γ solvent; in contrast uppermost layer consists purely of solvent when γ solute is greater than γ solvent. Two schematic distributions in close proximity to the surface are proposed in the last case.

  15. The in vitro Effect of Irrigants with Low Surface Tension on Enterococcus faecalis.

    Science.gov (United States)

    Giardino, Luciano; Estrela, Carlos; Generali, Luigi; Mohammadi, Zahed; Asgary, Saeed

    2015-01-01

    Due to the complex anatomy of the root canal system and high surface tension of common root canal irrigants (RCI), conducting an investigation on RCIs containing surfactants is a priority. The aim of this in vitro study was to verify the antibacterial potential of RCI with low surface tension in root canals infected with Enterococcus faecalis (E. faecalis). Thirty-five extracted human maxillary anterior teeth were prepared and inoculated with E. faecalis for 60 days. After root canal preparation, the teeth were randomly divided to one positive and one negative control groups and 5 experimental groups: Hypoclean/Tetraclean NA, Hypoclean, Tetraclean, NaOCl/Tetraclean and NaOCl. Bacterial growth was observed by turbidity of culture medium and then measured using a UV spectrophotometer. Data were analyzed in three time intervals (pre-instrumentation and, 20 min and 72 h after canal preparation) using the ANOVA and post hoc Tukey's tests. The level of significance was set at 0.05. The results indicated the presence of E. faecalis in all post-irrigation samples irrespective of the RCI. However, the optical densities in both post-irrigation periods showed bacterial reduction and significant differences between groups. RCI with low surface tension showed antibacterial potential in E. faecalis infected roots.

  16. Effect of pH on dynamic and equilibrium surface tension of dissolve organic matter

    Science.gov (United States)

    Arye, Gilboa; Trifonov, Pavel; Ilani, Talli

    2014-05-01

    Dissolved organic matter (DOM) in the terrestrial environment may originate from the decomposition of soil organic matter accumulated from the degradation of vegetative residues, the release of root exudates, the lysis of microorganisms and addition of organic wastes, such as livestock manure, biosolids, and different composted organic residues, or from irrigation with wastewater. The structure of DOM macromolecules is known to vary with the following aqueous solution properties: ionic strength, the nature of the inorganic ions, pH and dissolved organic carbon (DOC) concentration. In aqueous solution, the DOM molecules are amphiphilic, that is, it possesses both hydrophilic and hydrophobic functional groups in the same molecule. This simultaneous presence, gave rise to the conceptual surfactant like model for DOM which has been studies in conjunction with the equilibrium surface tension at the liquid-air interface (STeq, mN/m). Measurements of STeq of DOM solution were reported in a relatively small number of studies for the conditions of the aqueous solution (e.g., temperature, pH, ionic strength, the valence of the metal ions, and DOC concentration). All studies demonstrate the decrease in STeq with increase aqueous concentration of the DOC. The effect of pH, however, exhibit contradictory results. Specifically, for a given DOC concentration, the patterns reported for STeq versus pH were different. With increasing pH values, STeq has been reported to decrease, increase or exhibit a minimum. These contradictory results have been attributed to the different DOC concentration examined in each of the studies. In current study we hypothesized that the inconsistent results of STeq vs. pH may also stem from the adsorption kinetics of the DOM amphiphilic molecules at the liquid air interface, which can be evaluated form dynamic surface tension measurements (STt). The STt is approaching STeq values and commonly exhibiting an exponential decay pattern. If for different p

  17. Theory and computer simulation of solute effects on the surface tension of liquids.

    Science.gov (United States)

    Chen, Feng; Smith, Paul E

    2008-07-31

    A complete description of the thermodynamics of planar mixed solute-solvent interfaces suitable for the analysis of computer simulation data is provided. The approach uses surface probability distributions to characterize the interface regions, coupled with radial distribution functions and the Kirkwood-Buff theory of solutions to characterize the bulk solution properties. The approach is then used to understand the relationship between changes in the surface tension, the degree of surface adsorption or depletion, and the bulk solution properties of two aqueous solute systems. The first, aqueous NaCl solutions, provides an example of a surface excluded solute. The second, aqueous methanol solutions, provides an example of a surface adsorbed solute. The numerical results support the theoretical relationships described here and provide a consistent picture of the thermodynamics of solution interfaces involving any number of components which can be applied to a wide variety of systems.

  18. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  19. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2017-07-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  20. Effects of contact line hysteresis and surface tension on contact line pinning of inclined droplets.

    Science.gov (United States)

    Berejnov, Viatcheslav; Thorne, Robert E.

    2006-03-01

    The stability and pinning of drops on inclined surfaces is of fundamental and technological interest. Contact line dynamics depends on the properties of the liquid, the solid surface and the manner in which line motion is driven. Achieving reproducible final contact line and drop shapes is important in biotechnology applications where drops are used as mini-reactors, such as in structural genomics where sessile drops are used for protein and virus crystallization. We will describe experiments investigating pinning and deformation of drops containing pure liquids, proteins and colloids, placed on substrates with a range of surface treatments. Proteins affect contact angle hysteresis at low concentrations, and surface tension at high concentration, leading to two different regimes of pinning. Theoretical approaches that can be useful in understanding our results will also be presented.

  1. Effects of Added Salts on Surface Tension and Aggregation of Crown Ether Surfactants.

    Science.gov (United States)

    Suzuki, Maki; Fujio, Katsuhiko

    2016-01-01

    Two crown ether surfactants, dodecanoyloxymethyl- (C11Φ6) and octanoyloxymethyl-18-crown-6 (C7Φ6), were synthesized and the surface tension dependence on surfactant concentration of their aqueous solutions was measured both in the absence and presence of alkali chlorides to confirm the critical micelle concentration (CMC) is highest for the added cation that have an ionic diameter comparable to the hole size of the crown ether ring and that several break points on the surface tension vs. concentration curves occur for these crown ether surfactants. For C11Φ6 and C7Φ6, in the absence of salt, the surface tension vs. concentration curves had two break points. Using the solubilization of a water-insoluble dye as an indicator, we found that the break point at the higher concentration (m0) for C7Φ6 was due to micelle formation. Two break points were also observed for the aqueous solution of C11Φ6 in the presence of NaCl, KCl, RbCl, and CsCl salts at concentrations of 0.22 mol kg(-1) and for C7Φ6 with 0.22 mol kg(-1) KCl added. The CMC (m0) was found to be the highest for solutions containing K(+) salts because K(+) has an ionic diameter comparable to the hole size of 18-crown-6 ring. Furthermore, the CMC decreased as the ionic diameters of the added cations deviated from the hole size. The molecular areas at two break points, estimated by the Gibbs adsorption isotherm, except for that at the break point at mI of C7Φ6, were very small for an adsorbed monolayer. Further investigation is required to elucidate the reason for the break point at mI.

  2. Dynamical Modeling of Surface Tension

    Science.gov (United States)

    Brackbill, Jeremiah U.; Kothe, Douglas B.

    1996-01-01

    In a recent review it is said that free-surface flows 'represent some of the difficult remaining challenges in computational fluid dynamics'. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF formulation might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin (1996). This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated. For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin (1996), are discussed.

  3. Surface tension and dynamics of fingering patterns

    OpenAIRE

    Magdaleno Escar, Francesc Xavier; Casademunt i Viader, Jaume

    1998-01-01

    We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (non-zero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences f...

  4. The Surface Tension of Pure Liquid Compounds,

    Science.gov (United States)

    The surface tension tables presented herein are the result of a literature survey, evaluation, and compilation of data of some 2200 pure liquid... surface tension values to establish the regression curves and their equations. The constants of the equations (slope and intercept), together with the...standard deviations are given for each compound. The selection factors establishing criteria of quality of surface tension data are discussed. These

  5. The effect of surface tension of dispersion medium on the process of emulsion cooligomerization of ?9 fraction

    OpenAIRE

    Fuch, Ulyana; Subtelnyy, Roman; Guminilovych, Liliya; Maresh, Zoryana

    2013-01-01

    This publication presents the results of research of emulsion cooligomerization of mixture of unsaturated hydrocarbons of C9 fraction from liquid products after diesel pyrolysis. This mixture of hydrocarbons is a by-product of the olefins production. This is one of the possible options to reduce the process temperature and duration of reaction, and hence energy consumption. The effect of surface tension on the process was investigated. The dependence of then concentration of emulsifier E-30 o...

  6. Actin cortex architecture regulates cell surface tension.

    Science.gov (United States)

    Chugh, Priyamvada; Clark, Andrew G; Smith, Matthew B; Cassani, Davide A D; Dierkes, Kai; Ragab, Anan; Roux, Philippe P; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2017-06-01

    Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.

  7. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-04-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  8. Multiphase Allen-Cahn and Cahn-Hilliard models and their discretizations with the effect of pairwise surface tensions

    Science.gov (United States)

    Wu, Shuonan; Xu, Jinchao

    2017-08-01

    In this paper, the mathematical properties and numerical discretizations of multiphase models that simulate the phase separation of an N-component mixture are studied. For the general choice of phase variables, the unisolvent property of the coefficient matrix involved in the N-phase models based on the pairwise surface tensions is established. Moreover, the symmetric positive-definite property of the coefficient matrix on an (N - 1)-dimensional hyperplane - which is of fundamental importance to the well-posedness of the models - can be proved equivalent to some physical condition for pairwise surface tensions. The N-phase Allen-Cahn and N-phase Cahn-Hilliard equations can then be derived from the free-energy functional. A natural property is that the resulting dynamics of concentrations are independent of phase variables chosen. Finite element discretizations for N-phase models can be obtained as a natural extension of the existing discretizations for the two-phase model. The discrete energy law of the numerical schemes can be proved and numerically observed under some restrictions pertaining to time step size. Numerical experiments including the spinodal decomposition and the evolution of triple junctions are described in order to investigate the effect of pairwise surface tensions.

  9. Surface tension measurements with a smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-11-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept of surface tension through simple experiments.

  10. Molecular-Level Insight of the Effect of Hofmeister Anions on the Interfacial Surface Tension of a Model Protein.

    Science.gov (United States)

    Willow, Soohaeng Yoo; Xantheas, Sotiris S

    2017-04-06

    The effect of the Hofmeister anions on the precipitation of proteins is often discussed using liquid-vapor coexisting systems with the assumption that the liquid-vapor interface mimics the liquid-protein interface. Solvated proteins, however, have both hydrophobic and hydrophilic regions on their surfaces rather than just a pure hydrophobic one. Using a solvated parallel β-sheet layer consisting of both hydrophobic and positively charged hydrophilic surfaces, we investigated the adsorption of kosmotropic (SO 4 2- ) and chaotropic (ClO 4 - ) anions toward the protein's hydrophobic and hydrophilic surfaces via Born-Oppenheimer molecular dynamics simulations using the BLYP density functional theory. It was found that both anions prefer to reside on the hydrophilic surface. Furthermore, kosmotropic anions, like SO 4 2- , enhance the interfacial surface tension of the protein and stabilize the protein, whereas, in contrast, chaotropic anions, like ClO 4 - , weaken the interfacial surface tension of the protein and allow water molecules to penetrate toward the peptide bonds to form water-peptide hydrogen bonds, thus destabilizing the protein.

  11. Small membranes under negative surface tension.

    Science.gov (United States)

    Avital, Yotam Y; Farago, Oded

    2015-03-28

    We use computer simulations and a simple free energy model to study the response of a bilayer membrane to the application of a negative (compressive) mechanical tension. Such a tension destabilizes the long wavelength undulation modes of giant vesicles, but it can be sustained when small membranes and vesicles are considered. Our negative tension simulation results reveal two regimes-(i) a weak negative tension regime characterized by stretching-dominated elasticity and (ii) a strong negative tension regime featuring bending-dominated elastic behavior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration experiment in giant unilamellar vesicles (GUVs) [E. Evans and W. Rawicz, Phys, Rev. Lett. 64, 2094 (1990)]. However, in GUVs the crossover between the two elasticity regimes occurs at a small positive surface tension, while in smaller membranes it takes place at a moderate negative tension. Another interesting observation concerning the response of a small membrane to negative surface tension is related to the relationship between the mechanical and fluctuation tensions, which are equal to each other for non-negative values. When the tension decreases to negative values, the fluctuation tension γ drops somewhat faster than the mechanical tension τ in the small negative tension regime, before it saturates (and becomes larger than τ) for large negative tensions. The bending modulus exhibits an "opposite" trend. It remains almost unchanged in the stretching-dominated elastic regime, and decreases in the bending-dominated regime. Both the amplitudes of the thermal height undulations and the projected area variations diverge at the onset of mechanical instability.

  12. Measuring Surface Tension of a Flowing Soap Film

    Science.gov (United States)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  13. Surface tension profiles in vertical soap films

    Science.gov (United States)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  14. Surface tension of Nanofluid-type fuels containing suspended nanomaterials.

    Science.gov (United States)

    Tanvir, Saad; Qiao, Li

    2012-04-18

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  15. Surface tension of Nanofluid-type fuels containing suspended nanomaterials

    Science.gov (United States)

    2012-01-01

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039

  16. Butler-Sugimoto monomolecular bilayer interface model: the effect of oxygen on the surface tension of a liquid metal and its wetting of a ceramic.

    Science.gov (United States)

    Yen, Pei-Shan; Datta, Ravindra

    2014-07-15

    The influence of oxygen on liquid-gas surface tension of molten metals has been well-investigated experimentally and modeled theoretically via the Szyszkowski equation, derivable from the Butler molecular monolayer interface model. However, there is no corresponding model describing the experimentally observed profound effect of oxygen partial pressure on solid-liquid surface tension as well as on contact angle of molten metals on ceramic substrates. Here, we utilize the Butler-Sugimoto thermodynamic approach based on a monomolecular bilayer interface model to investigate the effect of oxygen partial pressure on liquid-gas as well as solid-liquid surface tension of molten Cu/Al2O3 and molten Ag/Al2O3 systems. It is shown that both liquid-gas and solid-liquid surface tension are a strong function of oxygen activity in the melt, which, in turn, depends on gas-phase oxygen partial pressure, in conformity with experiments. The change in solid-liquid surface tension and wetting is also greatly affected by the change in liquid-gas surface tension. This improved understanding is of practical significance in many applications. Copyright © 2014. Published by Elsevier Inc.

  17. Surface tension-driven convection phenomena

    Science.gov (United States)

    Mann, J. A., Jr.

    1980-01-01

    The techniques for measuring surface tension-driven flow are reported. In addition to the fairly standard crossed beam LDV method, methods using ripplon scattering which do not require seeding of the fluid were developed. These methods can be used to determine thermophysical properties of the surface, such as surface tension, viscosity, and local temperature. This technique was utilized to observe the change in surface tension associated with the nematic to isotropic phase transition of para-azoxydianisole at 134 C. The ripplon scattering methods become difficult for surface velocities below 1 mm/sec because of the overlapping spectra. Careful analysis procedures could extend this to smaller flows, but the more conventional LDV techniques with seeded flows are the method of choice for slow flows.

  18. Surface tension of aqueous electrolyte solutions. Thermodynamics

    NARCIS (Netherlands)

    Drzymala, J.; Lyklema, J.

    2012-01-01

    A thermodynamic theory is developed for obtaining the enthalpic and entropic contributions to the surface excess Gibbs energy of electrolyte solutions from the dependence of the surface tension on concentration and temperature. For elaboration, accurate activity coefficients in solution as functions

  19. Effect of two hydrocarbon and one fluorocarbon surfactant mixtures on the surface tension and wettability of polymers.

    Science.gov (United States)

    Szymczyk, Katarzyna; González-Martín, Maria Luisa; Bruque, Jose Morales; Jańczuk, Bronisław

    2014-03-01

    The advancing contact angle of water, formamide and diiodomethane on polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) surfaces covered with the film of ternary mixtures of surfactants including p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethyleneglycols), Triton X-100 (TX100) and Triton X-165 (TX165) and the fluorocarbon surfactants, Zonyl FSN-100 (FSN100) or Zonyl FSO-100 (FSO100) was measured. The obtained results were used for the surface tension of PTFE and PMMA covered with this film determination from the Young equation on the basis of van Oss et al. and Neumann et al. approaches to the interfacial tension. The surface tension of PTFE and PMMA was also determined using the Neumann et al. equation and the contact angle values for the aqueous solutions of the above mentioned ternary surfactants mixtures which were taken from the literature. As follows from our calculations mainly the presence of the fluorocarbon surfactant in the mixture considerably changes the surface properties of PTFE and PMMA causing that in contrast to hydrocarbon surfactants and their mixtures there is no linear dependence between adhesion and surface tension in the whole range of concentration of the ternary mixtures of surfactants including the fluorocarbon one. The behavior of fluorocarbon surfactants at the polymer-air and polymer-water interfaces is quite different from those of hydrocarbons. In the case of fluorocarbon surfactants not only adsorption but also sorption can occur on the polymer surface. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Carbon speciation and surface tension of fog

    Science.gov (United States)

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  1. Molecular-Level Insight of the Effect of Hofmeister Anions on the Interfacial Surface Tension of a Model Protein

    Energy Technology Data Exchange (ETDEWEB)

    Willow, Soohaeng Yoo; Xantheas, Sotiris S.

    2017-03-21

    The effect of the Hofmeister anion series on the structure and stability of proteins is often discussed using simple systems such as a water-vapor interface with the assumption that the vapor region mimics the hydrophobic surface. Microscopic theories suggest that the Hofmeister anion series is highly correlated with the different contributions of the various ions to the surface tension of such a water-vapor interface. Proteins, however, have both hydrophobic and hydrophilic regions rather than just a pure hydrophobic one. Using a solvated parallel β -sheet layer consisting of both hydrophobic and positively charged hydrophilic surfaces as a more realistic model to represent a protein surface, we investigated the interaction of such a system with hydrophilic-like (SO42-) and hydrophobic-like (ClO4-) anions via Born-Oppenheimer Molecular Dynamics (BOMD) simulations. We found that both the SO42- and ClO4- anions prefer to reside on the hydrophilic rather than on the hydrophobic surface of the parallel β -sheet layer. In addition, our simulations suggest that the ClO4- ions not only penetrate towards the peptide groups through the hydrophilic residues, but also allow water molecules to penetrate as well to form water-peptide hydrogen bonds, while the SO42- ions stabilize the interface of the water-hydrophilic surface. Our results render a plausible explanation of why hydrophobic-like Hofmeister anions act as protein denaturants. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  2. Surface Tension Measurements with a Smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-01-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept…

  3. On Surface Tension for Compact Stars

    Indian Academy of Sciences (India)

    In an earlier analysis it was demonstrated that general relativity gives higher values of surface tension in strange stars with quark matter than neutron stars. We generate the modified Tolman–Oppenheimer–Volkoff equation to incorporate anisotropic matter and use this to show that pressure anisotropy provides for a wide ...

  4. Exact analytical density profiles and surface tension

    Indian Academy of Sciences (India)

    to nonideality, which distinguish electrolyte from nonelectrolyte solutions. An example is provided by the excess surface tension for an air–water interface, which is determined by the excess particle density, and which was first calculated by Onsager and Samaras. Because of the discrepancy between the dielectric constants ...

  5. Measuring the surface tension of soap bubbles

    Science.gov (United States)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  6. The Jones-Ray effect reinterpreted: Surface tension minima of low ionic strength electrolyte solutions are caused by electric field induced water-water correlations

    Science.gov (United States)

    Okur, H. I.; Chen, Y.; Wilkins, D. M.; Roke, S.

    2017-09-01

    The surface tension of electrolyte solutions exhibits a minimum at millimolar electrolyte concentrations and then rises with increasing concentration. This minimum, known as the Jones-Ray effect, has been hotly debated over the past ∼80 years. If not considered as an artifact, it is typically ascribed to a phenomenological rare binding site for ions or ion pairs. Here, we propose an alternative underlying mechanism, namely that the hydrogen bond network of water responds to the collective electrostatic field of ions by increasing its orientational order, supported by recent surface tension measurements of NaCl solutions in H2O and D2O, and second harmonic scattering experiments in combination with ion resonant second harmonic reflection experiments. Recent thermodynamic and purely electrostatic treatments of the surface tension provide support for this interpretation. In addition, concerns related to possible artifacts influencing the measurements are quantified experimentally.

  7. Viscosity and surface tension effects during multiphase flow in propped fractures

    Science.gov (United States)

    Dzikowski, Michał; Dąbrowski, Marcin

    2017-04-01

    Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants

  8. The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack

    KAUST Repository

    Zemlyanova, A. Y.

    2013-03-08

    A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings. The boundaries of the crack and the interface between semi-planes are subjected to a curvature-dependent surface tension. The resulting system of six singular integro-differential equations is reduced to the system of three Fredholm equations. It is shown that the introduction of the curvature-dependent surface tension eliminates both classical integrable power singularity of the order 1/2 and an oscillating singularity present in a classical linear elasticity solutions. The numerical results are obtained by solving the original system of singular integro-differential equations by approximating unknown functions with Taylor polynomials. © 2013 The Author.

  9. Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature.

    Science.gov (United States)

    Karapetsas, George; Sahu, Kirti Chandra; Sefiane, Khellil; Matar, Omar K

    2014-04-22

    We study the thermocapillary-driven spreading of a droplet on a nonuniformly heated substrate for fluids associated with a non-monotonic dependence of the surface tension on temperature. We use lubrication theory to derive an evolution equation for the interface that accounts for capillarity and thermocapillarity. The contact line singularity is relieved by using a slip model and a Cox-Voinov relation; the latter features equilibrium contact angles that vary depending on the substrate wettability, which, in turn, is linked to the local temperature. We simulate the spreading of droplets of fluids whose surface tension-temperature curves exhibit a turning point. For cases wherein these turning points correspond to minima, and when these minima are located within the droplet, then thermocapillary stresses drive rapid spreading away from the minima. This gives rise to a significant acceleration of the spreading whose characteristics resemble those associated with the "superspreading" of droplets on hydrophobic substrates. No such behavior is observed for cases in which the turning point corresponds to a surface tension maximum.

  10. Laplacian drop shapes and effect of random perturbations on accuracy of surface tension measurement for different drop constellations.

    Science.gov (United States)

    Saad, Sameh M I; Neumann, A Wilhelm

    2015-08-01

    Theoretical drop shapes are calculated for three drop constellations: pendant drops, constrained sessile drops, and unconstrained sessile drops. Based on total Gaussian curvature, shape parameter and critical shape parameter are discussed as a function of different drop sizes and surface tensions. The shape parameter is linked to physical parameters for every drop constellation. The as yet unavailable detailed dimensional analysis for the unconstrained sessile drop is presented. Results show that the unconstrained sessile drop shape depends on a dimensionless volume term and the contact angle. Random perturbations are introduced and the accuracy of surface tension measurement is assessed for precise and perturbed profiles of the three drop constellations. It is concluded that pendant drops are the best method for accurate surface tension measurement, followed by constrained sessile drops. The unconstrained sessile drops come last because they tend to be more spherical at low and moderate contact angles. Of course, unconstrained sessile drops are the only option if contact angles are to be measured. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Surface tension in microsystems engineering below the capillary length

    CERN Document Server

    Lambert, Pierre

    2014-01-01

    This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.

  12. Surface Tension Demonstration Aboard the ISS

    Science.gov (United States)

    2003-01-01

    Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, photographed this view of a surface tension demonstration using water that is held in place by a metal loop. The experiment took place in the Destiny laboratory on the International Space Station (ISS). The Expedition Six crew was delivered to the station via the Space Shuttle Orbiter Endeavor STS-113 mission which was launched on November 23, 2002.

  13. Ice Accretion with Varying Surface Tension

    Science.gov (United States)

    Bilanin, Alan J.; Anderson, David N.

    1995-01-01

    During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method.

  14. The effect of a soap film on a catenary: measurement of surface tension from the triangular configuration

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, F [Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Behroozi, P S, E-mail: behroozi@uni.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2011-09-15

    A chain assumes the well-known shape known as a catenary when it hangs loosely from two points in a gravitational field. The correct solution of the catenary was one of the early triumphs of the newly invented calculus of variations at the end of the 17th century. Here we revisit the catenary and show that, for a chain hanging from a horizontal rod, three new and distinct configurations are possible if a soap film covers the area bounded by the chain and the rod. We first review the general problem and discuss the conditions under which the chain assumes a concave, triangular or convex configuration. The deciding factor is the strength of surface tension relative to the gravitational force per unit length of the chain. The conditions under which the chain assumes the shape of a perfect triangle are discussed in greater detail and analysed to obtain the tension along the chain. The triangular configuration is especially intriguing to undergraduates and may be used as a simple experiment to obtain the surface tension of the soap solution by measuring just one angle of the triangle.

  15. Surface energy and surface tension of liquid metal nanodrops

    Directory of Open Access Journals (Sweden)

    Shebzukhov A.A.

    2011-05-01

    Full Text Available A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  16. Effects of a semi-infinite stratification on the Rayleigh-Taylor instability in an interface with surface tension

    Directory of Open Access Journals (Sweden)

    Ángel de Andrea González

    2017-09-01

    Full Text Available The Rayleigh-Taylor instability (RTI in an infinite slab where a constant density lower fluid is initially separated from an upper stratified fluid is discussed in linear regime. The upper fluid is of increasing exponential density and surface tension is considered between both of them. It was found useful to study stability by using the initial value problem approach (IVP, so that we ensure the inclusion of certain continuum modes, otherwise neglected. This methodology includes the branch cut in the complex plane, consequently, in addition to discrete modes (surface RTI modes, a set of continuum modes (internal RTI modes also appears. As a result, the usual information given by the normal mode method is now complete. Furthermore, a new role is found for surface tension: to transform surface RTI modes (discrete spectrum into internal RTI modes belonging to a continuous spectrum at a critical wavenumber. As a consequence, the cut-off wavenumber disappears: i.e. the growth rate of the RTI surface mode does not decay to zero at the cut-off wavenumber, as previous researchers used to believe. Finally, we found that, due to the continuum, the asymptotic behavior of the perturbation with respect to time is slower than the exponential when only the continuous spectrum exists.

  17. Dropwise condensation of low surface tension fluids on omniphobic surfaces.

    Science.gov (United States)

    Rykaczewski, Konrad; Paxson, Adam T; Staymates, Matthew; Walker, Marlon L; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H; Chinn, Jeff; Scott, John Henry J; Varanasi, Kripa K

    2014-03-05

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.

  18. Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces

    Science.gov (United States)

    Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.

    2014-01-01

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient. PMID:24595171

  19. Surface Tension Driven Convection Experiment Completed

    Science.gov (United States)

    Jacobson, Thomas P.; Sedlak, Deborah A.

    1997-01-01

    The Surface Tension Driven Convection Experiment (STDCE) was designed to study basic fluid mechanics and heat transfer on thermocapillary flows generated by temperature variations along the free surfaces of liquids in microgravity. STDCE first flew on the USML-1 mission in July 1992 and was rebuilt for the USML-2 mission that was launched in October 1995. This was a collaborative project with principal investigators from Case Western Reserve University (CWRU), Professors Simon Ostrach and Yasuhiro Kamotani, along with a team from the NASA Lewis Research Center composed of civil servants and contractors from Aerospace Design & Fabrication, Inc. (ADF), Analex, and NYMA, Inc.

  20. Surface Tension and Fingering of Miscible Interfaces

    Science.gov (United States)

    Abib, Mohammed; Liu, Jian-Bang; Ronney, Paul D.

    1999-01-01

    Experiments on miscible, buoyantly unstable reaction-diffusion fronts and non-reacting displacement fronts in Hele-Shaw cells show a fingering-type instability whose wavelengths (lambda*) are consistent with an interfacial tension (sigma) at the front caused by the change in chemical composition, even though the solutions are miscible in all proportions. In conjunction with the Saffman-Taylor model, the relation sigma = K/tau, where tau is the interface thickness and K approximately equal 4 +/- 2 x 10(exp -6) dyne, enables prediction of our measured values of lambda* as well as results from prior experiments on miscible interfaces. These results indicate that even for miscible fluids, surface tension is generally a more significant factor than diffusion in interfacial stability and flow characteristics.

  1. Off-Equilibrium Surface Tension in Colloidal Suspensions

    Science.gov (United States)

    Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca

    2014-03-01

    We study the fingering instability of the interface between two miscible fluids, a colloidal suspension and its own solvent. The temporal evolution of the interface in a Hele-Shaw cell is found to be governed by the competition between the nonlinear viscosity of the suspension and an off-equilibrium, effective surface tension Γe. By studying suspensions in a wide range of volume fractions, ΦC, we show that Γe˜ΦC2, in agreement with Korteweg's theory for miscible fluids. The surface tension exhibits an anomalous increase with particle size, which we account for using entropy arguments.

  2. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley

    2004-01-01

    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  3. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  4. Surface tension of ab initio liquid water at the water-air interface.

    Science.gov (United States)

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D

    2016-05-28

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  5. Surface tension measurement from the indentation of clamped thin films.

    Science.gov (United States)

    Xu, Xuejuan; Jagota, Anand; Paretkar, Dadhichi; Hui, Chung-Yuen

    2016-06-21

    We developed an indentation technique to measure the surface tension of relatively stiff solids. In the proposed method, a suspended thin solid film is indented by a rigid sphere and its deflection is measured by optical interferometry. The film deflection is jointly resisted by surface tension, elasticity and residual stress. Using a version of nonlinear von Karman plate theory that includes surface tension, we are able to separate the contribution of elasticity to the total tension in the film. Surface tension is determined by extrapolating the sum of surface tension and residual stress to zero film thickness. We measured the surface tension of polydimethylsiloxane (PDMS) using this technique and obtained a value of 19.5 ± 3.6 mN m(-1), consistent with the surface energy of PDMS reported in the literature.

  6. Surface tension of water in the presence of perfluorocarbon vapors.

    Science.gov (United States)

    Chernyshev, Vasiliy S; Skliar, Mikhail

    2014-03-28

    Fluorocarbons are highly hydrophobic, biocompatible compounds with a variety of medical applications. Despite significant interest, the study of interfacial properties of fluorocarbons in aqueous systems has received limited attention. In this study, we investigate the influence of perfluoropentane and perfluorohexane vapors on the surface tension of water at room temperature. The results show a substantial decrease in the surface tension of water in the presence of perfluorocarbon vapors. In the investigated range of partial pressures up to the saturation value, a linear correlation between the surface tension and the partial pressure was found. This suggests that an adsorbed perfluorocarbon layer is formed on the surface of water. For comparison, the effect of the perfluorocarbon vapor on the surface tension of methanol was also investigated and a similar dependence was observed. Our results indicate that the stability and dynamic transitions of fluorocarbon colloids, which may be dispersed under physiological conditions as microdroplets, bubbles, or their combination, are likely affected by the composition of liquid and gas phases.

  7. Augmented Gibbs-Tolman Model for Surface Tension.

    Science.gov (United States)

    Tumram, Sukesh; Kesava Rao, K; Ananth, M S

    2017-10-24

    Gibbs developed the thermodynamics of a liquid-vapor system by introducing the idea of a "dividing surface" a hypothetical surface that separates the system into two homogeneous phases. The area and curvatures of a conveniently chosen dividing surface, the "surface of tension", are used to account for the effects of the smooth variation of properties across the actual transition layer between the phases. Tolman (1948, 1949) considered a more detailed model of the interfacial region and obtained expressions for surface tension (σ) and the location of the surface of tension. Based on qualitative arguments, Tolman's model introduced a surface of tension, such that the pressure (P) increases from its saturation value (P sat ) to a maximum value (P max ) as the surface is approached from the vapor side and decreases from (P sat ) to its minimum value (P min ) as the surface is approached from the liquid side. Assuming an exponential decay of (P) away from the surface, Tolman obtained an explicit expression for (σ) in terms of P sat , P max , P min , and two length scales. In the this work, the Gibbs-Tolman (GT) model is used along with the Lee and Kesler (1975) equation of state. The model is augmented to take into account the effect of the density gradient in the transition zone and a 4-parameter augmented model (AGT model) is proposed. The GT and AGT models are shown to fit the data for 152 pure liquids with an absolute average deviation (AAD) of 4.91% and 2.02%, respectively. The corresponding AAD values for 57 liquid mixtures are 4.2% and 3.0% respectively. Arguments are also presented to counter some of the fundamental concerns that have been raised about the GT approach. Although the model correlates the data very well, one of the length parameters turns out to be persistently negative, and the reason for this behavior is not clear.

  8. Marangoni Flow and Surface Tension of High Temperature Melts

    Science.gov (United States)

    Hibiya, Taketoshi; Ozawa, Shumpei

    Marangoni flow plays an important role in the heat and mass transport for highly value-added high-temperature processes, such as crystal growth, welding, casting, and electron beam melting. For silicon single crystal growth, the effect of the oscillatory Marangoni flow on the introduction of growth striation was discussed by Chen and Wilcox for the first time in 1972 [1]. The existence of the Marangoni flow within molten silicon was proved through microgravity experiments in space on board a sounding rocket in 1983 by Eyer et al. [2], who found formation of growth striation in single crystals even under microgravity, where buoyancy-driven flow was suppressed. To explain the Marangoni effect at the melt surface, surface tension is essential. Keene [3] discussed the oxygen contamination in the surface tension measurement and recommended the use of a levitation technique, which is a containerless process and assures the contamination-free condition from measurement devices. It is well known that flow direction in the weld pool is dependent on surface contamination and that this is related to weldability [4, 5]. Flow direction is controlled by the temperature coefficient of surface tension for molten steels; contaminants are oxygen and sulfur. In the electron beam button melting system, the Marangoni flow is dominant because of intense heating at the melt surface [5]. In this chapter, surface tension of high temperature metallic melts is discussed from the viewpoint of the Marangoni effect in the value-added high temperature processes, particularly from the viewpoint of the effect of oxygen and sulfur. Theoretical treatment for oxygen adsorption is also discussed.

  9. Surface Tension of Biological Polyelectrolyte Solutions.

    Science.gov (United States)

    Okubo; Kobayashi

    1998-09-15

    Surface tensions, gamma, of biological polyelectrolytes in aqueous solutions are studied systematically as possible at the air-water interface by the Wilhelmy method. The polyelectrolytes measured are sodium chondroitin sulfates A (NaCRA) and C (NaCRC), sodium poly-alpha,l-glutamate (NaPGA), poly-l-lysine hydrobromide (PLL . HBr), deoxyribonucleic acid (DNA), lysozyme (LZ), and bovine serum albumin (BSA). Linear-type macroions such as NaCR, NaPGA, PLL . HBr, and DNA have no surface activity in a wide range of polymer concentrations below the critical polymer concentration, m*, and increases as the concentration increases above m*. Surface activity of the undissociated state of macroions is rather high in general. Globule-like macroions such as LZ and BSA show high surface activity at isoelectric point above m* accompanied with orientation of the molecules along the air-water interface. Separation into the hydrophobic and hydrophilic parts at the interface and balancing in their strength are important for appearance of surface activity. Copyright 1998 Academic Press.

  10. Surface tension of ionic liquids and ionic liquid solutions.

    Science.gov (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  11. Surface Tension Driven Convection Experiment (STDCE)

    Science.gov (United States)

    Ostrach, S.; Kamotani, Y.

    1996-01-01

    This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.

  12. Surface Tension and Adsorption without a Dividing Surface.

    Science.gov (United States)

    Marmur, Abraham

    2015-11-24

    The ingenious concept of a dividing surface of zero thickness that was introduced by Gibbs is the basis of the theory of surface tension and adsorption. However, some fundamental questions, mainly those related to the location of the dividing surface and the proper definition of relative adsorption, have remained open over the years. To avoid these questions, the present paper proposes to analyze an interfacial phase by defining a thermodynamic system of constant, but nonzero thickness. The interfacial phase is analyzed as it really is, namely a nonuniform three-dimensional entity. The current analysis redevelops the equation for calculating surface tension, though with different assumptions. However, the main point in the proposed model is that the thermodynamic interfacial system, due to its fixed thickness, conforms to the requirement of first-order homogeneity of the internal energy. This property is the key that allows using the Gibbs adsorption isotherm. It is also characteristic of the Gibbs dividing surface model, but has not always been discussed with regard to subsequent models. The resulting equation leads to a simple, "natural" expression for the relative adsorption. This expression may be compared with simulations and sophisticated surface concentration measurements, and from which the dependence of interfacial tension on the solution composition can be derived. Finally, it is important to point out that in order to calculate the interfacial tension as well as the relative adsorption from data on the properties of the interfacial phase, there is no need to know its exact thickness, as long as it is bigger than the actual thickness but sufficiently small.

  13. Melt-Bubble Surface Tension in Hydrous Magmas and the Effects of Alkalinity, Temperature, and Water Content

    Science.gov (United States)

    Lewis, A. E.; Gardner, J. E.

    2009-12-01

    Understanding the kinetics and controls on bubble nucleation in hydrous magmas is of fundamental importance to understanding volcanic eruptions. Eruptive style, whether explosive or effusive, may in fact be intrinsically linked to the nature of the nucleation of bubbles in the melt. The most abundant dissolved volatile to form bubbles in magma is H2O. To first order, melt-bubble surface tension (σ) and the supersaturation (ΔP) of water in the melt govern the onset and rate of bubble nucleation, assuming homogenous nucleation. The sensitivity of σ and its ability to significantly impact when nucleation occurs and ΔP warrants closer investigation. From the limited published data gathered, we know that surface tension varies in response to changes in temperature, water content, and melt composition, but their full impact is poorly constrained. For our analysis of σ we focus on the impact of melt composition, and have begun by using a trachytic melt with similar SiO2 content yet elevated alkali contents in comparison to available dacitic melt data (Mangan and Sisson, 2005). We have approached the problem by subjecting the trachyte melt to several hydrothermal decompression experiments at a single water content. We first hydrated the melt at super-liquidus conditions (1050° C and 150 MPa) for 5 days. Fourier transform infrared spectroscopy reveal consistent dissolved water contents of 4.70 (± 0.07) wt.% H2O in all samples. Five decompressions have been executed at 900°C, from the initial pressure of 150 MPa to various lower final pressures corresponding to ΔP values ranging from 94 MPa to 114 MPa. All samples were nearly instantaneously decompressed to the final pressure and held for 60 seconds before being rapidly quenched. Preliminary results tentatively indicate a σ of 0.078 N/m for hydrous trachyte. This value correlates well with the dacitic data, although those experiments were not conducted isothermally, suggesting the greater proportion of alkalis

  14. Surface tension and long range corrections of cylindrical interfaces.

    Science.gov (United States)

    Bourasseau, E; Malfreyt, P; Ghoufi, A

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  15. Surface tension in human pathophysiology and its application as a medical diagnostic tool.

    Science.gov (United States)

    Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem

    2015-01-01

    Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice.

  16. Investigation of surface tension phenomena using the KC-135 aircraft

    Science.gov (United States)

    Alter, W. S.

    1982-01-01

    The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments.

  17. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  18. Surface Tension Screen Failure Detection Method and Apparatus.

    Science.gov (United States)

    Apparatus for detecting failure of a surface tension screen disposed between a holding chamber and a main chamber of a tank includes a fixture for...Comparison of the measurements provides an assessment of the integrity of the surface tension screen. If the measurements are significantly different

  19. The influence of gradients in surface tension on the mass transfer in gas liquid systems

    NARCIS (Netherlands)

    Klooster, Hubertus Willem van der

    1978-01-01

    In this investigation attention has been paid to the influence of surface tensions gradients on the performance of a packed column. From earlier investigations it is known that surface tensions have a considerable influence on the magnitude of the effective interfacial area. The work presented here

  20. Tear fluid-eye drops compatibility assessment using surface tension.

    Science.gov (United States)

    Hotujac Grgurević, Martina; Juretić, Marina; Hafner, Anita; Lovrić, Jasmina; Pepić, Ivan

    2017-02-01

    To evaluate the compatibility of commercially available eye drop surface tension with the tear film physiological range and to characterize commonly used ophthalmic excipients in terms of their surface activity under eye-biorelevant conditions. There are a number of quality requirements for the eye drops (e.g. tonicity, pH, viscosity, refractive index) that needs to comply with the physiological parameters of the eye surface. However, the adjustment of surface tension properties of the eye drops to the normal range of surface tension at the air/tear fluid interface (40-46 mN/m) has received rather less attention thus far. Yet, the surface tension at the air/tear fluid interface is of vital importance for the normal function of the eye surface. The surface tension compatibility of the isotonic aqueous solutions of commonly used ophthalmic excipients as well as 18 approved eye drops with the tear fluid have been evaluated using surface tension method. Each ophthalmic ingredient including the preservatives, solubilizing agents and thickening agents can influence the surface tension of the final formulation. In case of complex ophthalmic formulations one should also consider the possible interactions among excipients and consequent impact on overall surface activity. Out of 18 evaluated eye drops, three samples were within, 12 samples were below and three samples were above the physiological range of the tear fluid surface tension. Our results provide a rationale for clinical studies aiming to assess the correlation between the eye drops surface tension and the tear film (in)stability.

  1. Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface.

    Science.gov (United States)

    Pegram, Laurel M; Record, M Thomas

    2007-05-17

    We apply a recently developed surface-bulk partitioning model to interpret the effects of individual Hofmeister cations and anions on the surface tension of water. The most surface-excluded salt (Na2SO4) provides a minimum estimate for the number of water molecules per unit area of the surface region of 0.2 H2O A-2. This corresponds to a lower bound thickness of the surface region of approximately 6 A, which we assume is a property of this region and not of the salt investigated. At salt concentrations anions and cations follow the conventional Hofmeister series, qualitative rankings of ions based on their effects on protein processes (folding, precipitation, assembly). Most anions that favor processes that expose protein surface to water (e.g., SCN-), and hence must interact favorably with (i.e., accumulate at) protein surface, are also accumulated at the air-water interface (Kp >1, e.g., Kp,SCN- =1.6). Most anions that favor processes that remove protein surface from water (e.g., F-), and hence are excluded from protein surface, are also excluded from the air-water interface (Kp,F- = 0.5). The guanidinium cation, a strong protein denaturant and therefore accumulated at the protein surface exposed in unfolding, is somewhat excluded from the air-water surface (Kp,GuH+ = 0.7), but is much less excluded than alkali metal cations (e.g., Kp,Na+ identical with 0, Kp,K+ = 0.1). Hence, cation Kp values for the air-water surface appear shifted (toward exclusion) as compared with values inferred for interactions of these cations with protein surface.

  2. Grander system: a new technology to reduce surface tension of adhesive systems in dentistry.

    Science.gov (United States)

    Gonçalves, Sérgio Eduardo de Paiva; Cruz, Nilson; Brayner, Ricardo; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler; Barcellos, Daphne Câmara

    2014-01-01

    Reduced surface tension of liquids results in higher surface wetting ability and diffusivity by the substrate. The objective of this study was to evaluate the influence of the Grander Technology in reducing the surface tension of adhesive systems. Two adhesive systems (self-etch and total-etch) were modified by physical contact with the Grander system Flexible unit to revitalize water, for 48 h. Surface tension of adhesive systems and water in normal and grander-modified conditions was measured with a goniometer. The results showed a reduction of surface tension for all conditions grander-modified between 3-15%. Grander Technology was effective in reducing the surface tension of the Single Bond and Clearfil SE Bond adhesive systems. Clinical significance. Grander technology was employed to restructure the molecular structure of water-based adhesive systems, which can increase their wetness capacity and therefore ensure a greater diffusibility.

  3. Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry

    Science.gov (United States)

    Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek

    Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.

  4. Partial surface tension of components of a solution.

    Science.gov (United States)

    Kaptay, George

    2015-06-02

    First, extending the boundaries of the thermodynamic framework of Gibbs, a definition of the partial surface tension of a component of a solution is provided. Second, a formal thermodynamic relationship is established between the partial surface tensions of different components of a solution and the surface tension of the same solution. Third, the partial surface tension of a component is derived as a function of bulk and surface concentrations of the given component, using general equations for the thermodynamics of solutions. The above equations are derived without an initial knowledge of the Gibbs adsorption equation and without imposing any restrictions on the thickness or structure of the surface region of the solution. Only surface tension and the composition of the surface region are used as independent thermodynamic parameters, similar to Gibbs, who used only the surface tension of the solution and the relative surface excesses of the components. The final result formally coincides with the historical Butler equation (1932), but without its theoretical restrictions. (Butler used too many unnecessary model restrictions during his work: he started from the Gibbs adsorption equation, and he assumed the existence of a surface monolayer.) Thus, the renovated Butler equation has gained general validity in this article. It was applied to derive both the Langmuir equation and the Gibbs adsorption equation, but the latter two equations do not follow from each other. Thus, it is shown that logically (not historically) the renovated Butler equation is a root equation for surface tension and the adsorption of solutions. It can be used to perform calculations for specific systems if the corresponding specific experimental data/models are loaded into it. In this case, both surface tension and surface composition can be calculated from the renovated Butler equation, which cannot be done using the Gibbs adsorption equation alone.

  5. A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction.

    Science.gov (United States)

    Eaker, Collin B; Khan, M Rashed; Dickey, Michael D

    2016-01-26

    Controlling interfacial tension is an effective method for manipulating the shape, position, and flow of fluids at sub-millimeter length scales, where interfacial tension is a dominant force. A variety of methods exist for controlling the interfacial tension of aqueous and organic liquids on this scale; however, these techniques have limited utility for liquid metals due to their large interfacial tension. Liquid metals can form soft, stretchable, and shape-reconfigurable components in electronic and electromagnetic devices. Although it is possible to manipulate these fluids via mechanical methods (e.g., pumping), electrical methods are easier to miniaturize, control, and implement. However, most electrical techniques have their own constraints: electrowetting-on-dielectric requires large (kV) potentials for modest actuation, electrocapillarity can affect relatively small changes in the interfacial tension, and continuous electrowetting is limited to plugs of the liquid metal in capillaries. Here, we present a method for actuating gallium and gallium-based liquid metal alloys via an electrochemical surface reaction. Controlling the electrochemical potential on the surface of the liquid metal in electrolyte rapidly and reversibly changes the interfacial tension by over two orders of magnitude ( ̴500 mN/m to near zero). Furthermore, this method requires only a very modest potential (tension is due primarily to the electrochemical deposition of a surface oxide layer, which acts as a surfactant; removal of the oxide increases the interfacial tension, and vice versa. This technique can be applied in a wide variety of electrolytes and is independent of the substrate on which it rests.

  6. Effects of hydrophilicity/lipophilicity of nano-TiO2 on surface tension of TiO2-water nanofluids

    Science.gov (United States)

    Zhang, Shenghan; Han, Xiaoxue; Tan, Yu; Liang, Kexin

    2018-01-01

    Platinum plate method based on Wilhelmy plate was used to measure the surface tension of hydrophilic nano-titanium dioxide-deionized water (nano-TiO2- DIW) fluids and hydrophilic lipophilic nano-TiO2-DIW fluids. Experimental results show that the surface adsorption of hydrophilic lipophilic nano-TiO2 is positive adsorption, and hydrophilic nano-TiO2 is negative adsorption. The hydrophilic nano-TiO2 in deionized water increases the surface tension of base fluid, and hydrophilic lipophilic nano-TiO2 in deionized water decreases. The surface tension of hydrophilic TiO2-DIW nanofluids increases, and hydrophilic lipophilic TiO2-DIW nanofluids decreases linearly with an increase in the natural logarithm of the molar concentration of nanofluids.

  7. On the surface tension and Zeta potential of electrolyte solutions.

    Science.gov (United States)

    Manciu, Marian; Manciu, Felicia S; Ruckenstein, Eli

    2017-06-01

    The distribution of ions in the vicinity of the air/water interface is still a matter of strong debate, with numerous calculations and experiments providing contradictory results, even regarding the preference of simple ions (such as H + and OH - ) for interfacial or bulk water. When short range interactions between ions and the interface are assumed independent of bulk concentrations, if they are compatible with the surface tension data, they underpredict the experimental Zeta potentials by orders of magnitude. If they are compatible with Zeta potential data, they are in strong disagreement with surface tension experiments. It is suggested that these observations might be a result of the relatively low number of interfacial water molecules available to hydrate the ions and the competition between various ions for adsorption sites. Therefore, whereas at low bulk concentrations, the Structure-Breaking ions prefer the interface, at sufficiently large bulk concentrations the surface adsorptions of these ions become saturated, and their interfacial concentrations may become lower than in the bulk. Consequently, the total interactions of ions with the interface can be strongly attractive at low bulk concentrations, and less attractive (or even repulsive), at high concentrations. To model this effect, the interactions between ions and interface are taken into account via modified Langmuir adsorption expressions for OH - and Cl - , while the H + ions are considered to be attached to any interfacial water molecule, even if the latter participate in the hydration of anions. The simple model of adsorption employed here is in agreement with both experiments on Zeta potential and on surface tension, and might reveal the conditions under which a given ion exhibits propensity for either the air/water interface, or for bulk water. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Water surface tension modulates the swarming mechanics of Bacillus subtilis.

    Science.gov (United States)

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.

  9. Yield stress and elasticity influence on surface tension measurements.

    Science.gov (United States)

    Jørgensen, Loren; Le Merrer, Marie; Delanoë-Ayari, Hélène; Barentin, Catherine

    2015-07-07

    We have performed surface tension measurements on carbopol gels of different concentrations and yield stresses. Our setup, based on the force exerted by a capillary bridge on two parallel plates, allows us to measure an apparent surface tension of the complex fluid and to investigate the influence of flow history. More precisely the apparent surface tension measured after stretching the bridge is always higher than after compressing it. The difference between the two values is due to the existence of a yield stress in the fluid. The experimental observations are successfully reproduced with a simple elasto-plastic model. The shape of successive stretching-compression cycles can be described by taking into account the yield stress and the elasticity of the gel. We show that the surface tension γLV of yield stress fluids is the mean of the apparent surface tension values only if the elastic modulus is high compared to the yield stress. This work highlights that measurements of thermodynamic quantities are challenged by the fluid out-of-equilibrium state implied by jamming, even at small scales where the shape of the bridge is driven by surface energy. Therefore setups allowing for deformation in opposite directions are relevant for surface tension measurements on yield stress fluids.

  10. Pulmonary surfactant surface tension influences alveolar capillary shape and oxygenation.

    Science.gov (United States)

    Ikegami, Machiko; Weaver, Timothy E; Grant, Shawn N; Whitsett, Jeffrey A

    2009-10-01

    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb(-/-) mice, thereby inhibiting surface tension-lowering properties of surfactant in vivo within 24 hours after depletion of Sftpb. Minimum surface tension of isolated surfactant was increased and oxygen saturation was significantly reduced after 2 days of SP-B deficiency in association with deformation of alveolar capillaries. Intravascularly injected 3.2-mum-diameter microbeads through jugular vein were retained within narrowed pulmonary capillaries after reduction of SP-B. Ultrastructure studies demonstrated that the capillary protrusion typical of the normal alveolar-capillary unit was reduced in size, consistent with altered pulmonary blood flow. Pulmonary hypertension and intrapulmonary shunting are commonly associated with surfactant deficiency and dysfunction in neonates and adults with respiratory distress syndromes. Increased surfactant surface tension caused by reduction in SP-B induced narrowing of alveolar capillaries and oxygen desaturation, demonstrating an important role of surface tension-lowering properties of surfactant in the regulation of pulmonary vascular perfusion.

  11. Measurement of dynamic surface tension by mechanically vibrated sessile droplets.

    Science.gov (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  12. Characterization of the Dynamic Surface Tension of Aqueous Film-Forming Foam

    National Research Council Canada - National Science Library

    Hyland, Emily

    2004-01-01

    .... Additionally, the effects of varying the dilution of the AFFF concentrate by water, variation of the salinity of the water and variations in ambient temperature on the dynamic surface tension are investigated...

  13. The role of surface tension on the elastic decohesion of polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Hassager, Ole

    2001-01-01

    We simulate the rapid extension of polymeric filaments between parallel plates with special attention to the role of surface tension in the symmetry breaking aximuthal instability that may occur near the end plates. The instability is viewed as a precursor to the eventual elastic decohesion...... of the filament from the plate. It is demonstrated that high Deborah numbers are needed to initiate the instability and that surface tension provides a wavenumber selection. Moreover, the surface tension has a stabilising effect on the end plate instability....

  14. Porous micropillar structures for retaining low surface tension liquids.

    Science.gov (United States)

    Agonafer, Damena D; Lee, Hyoungsoon; Vasquez, Pablo A; Won, Yoonjin; Jung, Ki Wook; Lingamneni, Srilakshmi; Ma, Binjian; Shan, Li; Shuai, Shuai; Du, Zichen; Maitra, Tanmoy; Palko, James W; Goodson, Kenneth E

    2018-03-15

    The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 μm and ∼1 μm, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert™ (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical prediction

  15. Humidity-dependent surface tension measurements of individual inorganic and organic submicrometre liquid particles.

    Science.gov (United States)

    Morris, Holly S; Grassian, Vicki H; Tivanski, Alexei V

    2015-05-01

    Surface tension, an important property of liquids, is easily measured for bulk samples. However, for droplets smaller than one micron in size, there are currently no reported measurements. In this study, atomic force microscopy (AFM) and force spectroscopy have been utilized to measure surface tension of individual submicron sized droplets at ambient pressure and controlled relative humidity (RH). Since the surface tension of atmospheric aerosols is a key factor in understanding aerosol climate effects, three atmospherically relevant systems (NaCl, malonic and glutaric acids) were studied. Single particle AFM measurements were successfully implemented in measuring the surface tension of deliquesced particles on the order of 200 to 500 nm in diameter. Deliquesced particles continuously uptake water at high RH, which changes the concentration and surface tension of the droplets. Therefore, surface tension as a function of RH was measured. AFM based surface tension measurements are close to predicted values based on bulk measurements and activities of these three chemical systems. Non-ideal behaviour in concentrated organic acid droplets is thought to be important and the reason for differences observed between bulk solution predictions and AFM data. Consequently, these measurements are crucial in order to improve atmospheric climate models as direct measurements hitherto have been previously inaccessible due to instrument limitations.

  16. Surface tension of HCl-based stimulation fluids at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nasr-El-Din, H.A.; Al-Othman, A.M.; Taylor, K.C.; Al-Ghamdi, A.H. [RandD Center, Saudi Aramco, PO Box 62, Dhahran 31311 (Saudi Arabia)

    2004-06-01

    Surface tension of hydrochloric acid (HCl) solutions plays a key role in matrix stimulation of gas wells. A low surface tension is required to reduce the capillary forces that trap the aqueous phase in the formation. Accumulation of the aqueous phase near the well-bore area, known as water blockage, leads to a significant reduction in gas production. This work provides, for the first time, surface tension of acid-stimulating fluids at temperatures up to 120 C, HCl concentrations up to 28 wt.%, and pressures up to 220 bar. A pendant drop apparatus specially designed for corrosive fluids was used to measure the surface tension between acid solutions and nitrogen. The effects of commonly used acid additives on the surface tension of HCl solutions were also studied in detail. These additives included corrosion inhibitors, acetic acid, formic acid, methanol, mutual solvent, a nonionic fluorocarbon surfactant, iron control chemicals, and hydrogen sulfide scavengers. In addition to surface tension values of HCl up to 28 wt.% HCl at temperatures up to 120 C, experimental results indicated that several acid additives are capable of significantly lowering the surface tension of HCl solutions. The trends discussed in this study can be used to better design acid formulae used to stimulate deep gas wells.

  17. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... in the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds......., where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2- from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2- is also present and MgSO4 incorporates...

  18. Surface tension and stability of foams based of keratin hydrolyzate

    Directory of Open Access Journals (Sweden)

    Zhanar Ospanova

    2015-03-01

    Full Text Available The protein obtained in the alkali hydrolysis consist of amino acid residues that are natural macromolecular surfactants and they can may be used as effective foam stabilizers. The features of dynamic surface tension and stability of foams on based of aqueous solutions of keratin hydrolyzate in a concentration range of 1-10% were studied. The relaxation time – of the adsorption layers of keratin hydrolyzate is equaled to 10-12 min. The parameters of adsorption at the liquid – gas interface were defined. The maximum surface activity, foaming and foam stability corresponds to a neutral pH close to isoelectric state of the protein. Increase the foam stability at pH ~ 7 proceeds due to the conformational changes of macro-molecules of the protein at the interface liquid – gas, forming particles of colloidal size, clogging channels Plateau-Gibbs and preventing expiration of the liquid film between.

  19. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  20. Spontaneous Pattern Formation Induced by Bénard-Marangoni Convection for Sol-Gel-Derived Titania Dip-Coating Films: Effect of Co-solvents with a High Surface Tension and Low Volatility.

    Science.gov (United States)

    Uchiyama, Hiroaki; Matsui, Tadayuki; Kozuka, Hiromitsu

    2015-11-17

    Evaporation-driven surface tension gradient in the liquid layer often causes the convective flow, i.e., Bénard-Marangoni convection, resulting in the formation of cell-like patterns on the surface. Here, we prepared sol-gel-derived titania films from Ti(OC3H7(i))4 solutions by dip coating and discussed the effect of the addition of co-solvents with a high surface tension and low volatility on the spontaneous pattern formation induced by Bénard-Marangoni convection. Propylene glycol (PG, with a surface tension of 38.6 mN m(-1)) and dipropylene glycol (DPG, with a surface tension of 33.9 mN m(-1)) were added to the coating solutions containing 2-propanol (2-Pr, with a surface tension of 22.9 mN m(-1)) for controlling the evaporation-driven surface tension gradient in the coating layer on a substrate. During dip coating at a substrate withdrawal speed of 50 cm min(-1) in a thermostatic oven at 60 °C, linearly arranged cell-like patterns on a micrometer scale were spontaneously formed on the titania gel films, irrespective of the composition of coating solutions. Such surface patterns remained even after the heat treatment at 200 and 600 °C, where the densification and crystallization of the titania films progressed. The width and height of the cell-like patterns increased with increasing PG and DPG contents in the coating solutions, where the addition of PG resulted in the formation of cells with a larger height than DPG.

  1. Bubble merger and scaling law of the Rayleigh-Taylor instability with surface tension

    Science.gov (United States)

    Sohn, Sung-Ik; Baek, Seunghyeon

    2017-12-01

    We present a theoretical model to study the effects of surface tension on the growth of single and multiple bubbles in the Rayleigh-Taylor instability. The asymptotic solution for a single bubble is obtained and is expressed in terms of the Eötvös number. The bubble merger process is also demonstrated from the model. We find the contrasting effects of surface tension: it reduces the growth of a single bubble, but enhances the mixing rate of multiple bubbles at a late time. The bubble merger of Rayleigh-Taylor instability follows the same scaling law of the growth of mixing zone even when surface tension exists, but the growth coefficient in the scaling law increases with surface tension. A comparison with an experimental result is in good agreement.

  2. Dynamic surface tension of natural surfactant extract under superimposed oscillations.

    Science.gov (United States)

    Reddy, Prasika I; Al-Jumaily, Ahmed M; Bold, Geoff T

    2011-01-04

    Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf™ (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Surface tension regularizes the crack singularity of adhesion

    NARCIS (Netherlands)

    Karpitschka, Stefan; van Wijngaarden, L.; van Wijngaarden, L.; Snoeijer, Jacobus Hendrikus

    2016-01-01

    The elastic and adhesive properties of a solid surface can be quantified by indenting it with a rigid sphere. Indentation tests are classically described by the JKR-law when the solid is very stiff, while recent work highlights the importance of surface tension for exceedingly soft materials. Here

  4. Why is surface tension a force parallel to the interface?

    NARCIS (Netherlands)

    Marchand, Antonin; Weijs, Joost H.; Weijs, Joost; Snoeijer, Jacobus Hendrikus; Andreotti, Bruno

    2011-01-01

    A paperclip can float on water. Drops of mercury do not spread on a surface. These capillary phenomena are macroscopic manifestations of molecular interactions and can be explained in terms of surface tension. We address several conceptual questions that are often encountered when teaching

  5. Nanofluidic bubble pump using surface tension directed gas injection

    NARCIS (Netherlands)

    Tas, Niels Roelof; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van den Berg, Albert

    2002-01-01

    A new concept for liquid manipulation has been developed and implemented in surface-micromachined fluid channels. It is based on the surface tension directed injection of a gas into the liquid flow through micrometer-sized holes in the microchannel wall. The injected gas is directed to an exhaust by

  6. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  7. Theoretical Studies of the Surface Tension of Liquid Metal System

    Science.gov (United States)

    Stroud, D. G.; Shih, W. H.

    1985-01-01

    A major goal of this project is to understand the surface tension and other thermophysical properties of liquid metals and alloys from a fundamental viewpoint. The approach is to calculate these quantities by a first principles technique which combines the statistical-mechanical theory of the liquid state with an electronic pseudopotential theory of electrons in metals. The inhomogeneity of the surface is treated using an ionic-density-functional formalism developed with the support of NASA. Of particular interest are the variation of surface tension with temperature and impurity concentration: such variations strongly influence the types of convection which make take place in a low-gravity environment. Some progress has already been achieved in computing the reduction of surface tension due to the presence of low-surface-tension impurities, and the corresponding surface segregation of such impurities. In the coming year, it is planned to concentrate on the surface properties of materials of particular interest to the MSA program: Si, Ga and GaSn alloys. An additional goal is to gain some theoretical understanding of the high temperature thermophysical properties of liquid metals, particularly high melting point materials which have not been studied extensively from a theoretical viewpoint.

  8. Calculation of a solid/liquid surface tension: A methodological study

    Science.gov (United States)

    Dreher, T.; Lemarchand, C.; Soulard, L.; Bourasseau, E.; Malfreyt, P.; Pineau, N.

    2018-01-01

    The surface tension of a model solid/liquid interface constituted of a graphene sheet surrounded by liquid methane has been computed using molecular dynamics in the Kirkwood-Buff formalism. We show that contrary to the fluid/fluid case, the solid/liquid case can lead to different structurations of the first fluid layer, leading to significantly different values of surface tension. Therefore we present a statistical approach that consists in running a series of molecular simulations of similar systems with different initial conditions, leading to a distribution of surface tensions from which an average value and uncertainty can be extracted. Our results suggest that these distributions converge as the system size increases. Besides we show that surface tension is not particularly sensitive to the choice of the potential energy cutoff and that long-range corrections can be neglected contrary to what we observed in the liquid/vapour interfaces. We have not observed the previously reported commensurability effect.

  9. Dynamic surface tension of heat transfer additives suitable for use in steam condensers and absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Yong-Du [Department of Mechanical and Automotive Engineering, Kongju National University, Kongju, Chungnam, 314-701 (Korea); Kim, Kwang J.; Kennedy, John M. [Department of Mechanical Engineering, University of Nevada-Reno, MS 312, Reno, NV 89557 (United States)

    2010-03-15

    Additives are often effectively used in enhancing heat transfer by creating a surface tension gradient on the surface of a condensate film to induce Marangoni driven ''dropwise-like'' condensation. The objective of the current study is to use the Maximum Bubble Pressure Method (MBPM) to evaluate dynamic behavior of the surface tension of solutions of three different additives (2-ethoxy ethanol, isobutylamine, and 2-ethyl-1-hexanol) of varying concentrations with water. It was shown that the effects of 2-ethoxy ethanol on surface tension was primarily dependent on solute concentration and showed little dependence on time (i.e. surface age of bubble). While both isobutylamine and 2-ethyl-1-hexanol showed strong dependence on both concentration and time, the effects of the later were far more dramatic. The results for all solutions are presented as functions of concentration and time (i.e. surface age of bubble). (author)

  10. Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data

    Directory of Open Access Journals (Sweden)

    E. O. Fors

    2010-06-01

    Full Text Available HUmic-LIke Substances (HULIS have been identified as major contributors to the organic carbon in atmospheric aerosol. The term "HULIS" is used to describe the organic material found in aerosol particles that resembles the humic organic material in rivers and sea water and in soils. In this study, two sets of filter samples from atmospheric aerosols were collected at different sites. One set of samples was collected at the K-puszta rural site in Hungary, about 80 km SE of Budapest, and a second was collected at a site in Rondônia, Amazonia, Brazil, during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC biomass burning season experiment. HULIS were extracted from the samples and their hygroscopic properties were studied using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA at relative humidity (RH <100%, and a cloud condensation nucleus counter (CCNC at RH >100%. The H-TDMA measurements were carried out at a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS samples showed diameter growth factors between 1.04 and 1.07, reaching values of 1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples were analysed using two types of thermal static cloud condensation nucleus counters. Two different parameterization models were applied to investigate the potential effect of HULIS surface activity, both yielding similar results. For the K-puszta winter HULIS sample, the surface tension at the point of activation was estimated to be lowered by between 34% (47.7 mN/m and 31% (50.3 mN/m for dry sizes between 50 and 120 nm in comparison to pure water. A moderate lowering was also observed for the entire water soluble aerosol sample, including both organic and inorganic compounds, where the surface tension was decreased by between 2% (71.2 mN/m and 13% (63.3 mN/m.

  11. Surface tension in plasmas related to double layer formation

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Sebastian; Lozneanu, Erzilia [Al. I. Cuza University, Dept. of Plasma Physics, Iasi (Romania)

    2001-07-01

    Self-organized space charge configurations bordered by electric double layers appear in plasma as the result of the transition into a state characterized by local minimum of the free energy. Considering the self-assemblage process of such a complex well-confined space-charge configuration in plasma, known by the name of ball of fire, as a nucleation process, it becomes possible to define an equivalent surface tension for the double layer that covers the core of the ball of fire and to make some predictions for its surface tension coefficient and capacitance. (author)

  12. Surface tension mediated conversion of light to work

    Science.gov (United States)

    Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J

    2014-12-02

    Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.

  13. Fiber optic Fabry-Perot sensor for surface tension analysis.

    Science.gov (United States)

    Márquez-Cruz, Violeta A; Hernández-Cordero, Juan A

    2014-02-10

    We demonstrate a new technique for analyzing surface tension of liquids. This is done upon examining the interference signals reflected from a remnant drop pending at the cleaved end of a single mode optical fiber. The resulting interference patterns are fitted to a multimirror Fabry-Perot model yielding information of the drop size. We show that the wetting process of the fiber plays an important role in drop formation; in particular, the drop size can be correlated to the surface tension of the liquid sample. The proposed configuration may render useful for liquids analysis using small sample volume.

  14. Finite element discretization of two immiscible fluids with surface tension

    OpenAIRE

    Bernardi, Christine; Maarouf, Sarra; Yakoubi, Driss

    2015-01-01

    We consider a model for the flow of two immiscible fluids where the surface tension between both of them is taken into account. We first write the variational formulation of the problem and investigate its well-posedness. Next, we consider a finite element discretization of it and prove optimal a priori error estimates. Numerical experiments confirm its good properties. Résumé. Nous considérons un mod ele pour l'´ ecoulement de deux fluides immiscibles o` u la tension de surface entre les deu...

  15. Surface Tension Characteristics of Aqueous Lithium Bromide Solution with Alcoholic Surfactant

    Science.gov (United States)

    Sasaki, Naoe; Ogawa, Kiyoshi

    At present, the combination of aqueous lithium bromide (LiBr) solution as an absorbent and water as a refrigerant have widely been used as the working fluid for absorption refrigerating machines. In order to obtain absorption enhancement of water vapor into the LiBr solution by Marangoni convection, an alcoholic surfactant is being added in the LiBr solution. In that case, the surface tension of the LiBr solution with the surfactant plays an important role for the vapor absorption. In this study, the surface tensions of the LiBr solution with several alcoholic surfactants such as 1-butanol, 1-hexanol, 2-ethyl-1-butanol, 2-methyl-1-pentanol, 1-heptanol, 1-octanol and 2-ethyl-1-hexanol were measured by Wilhelmy plate method. As a result, the surface tensions of 50 wt% LiBr solution with several surfactants were obtained over the LiBr solution temperature range from 298 K to 318 K and the surfactant concentration range from 0 to 104 ppm by mass. The measured surface tension has decreased with the increasing number of carbons included in the surfactant at constant concentration, and the surface tension has increased with the increasing temperature of 50 wt% LiBr solution. The surface tension increase of 1-octanol became greater than any other surfactant used in this work. The effective carbon number of the surfactant for the absorption enhancement was in the range from 7 to 8.

  16. The effect of plate thickness, surface tension and fluid flow on detachment of drops from a plate

    NARCIS (Netherlands)

    Lexmond, A.S.; Geld, C.W.M. van der

    2005-01-01

    The pinch-off of drops from the downstream end of plates is an important re-entrainment mechanism of condensate in compact condensers. The present experimental study complements a previous one [A.S. Lexmond, C.W.M. van der Geld, The effect of fluid flow on detachment of drops from the downstream end

  17. Effects of ionic strength on the surface tension and nonequilibrium interfacial characteristics of poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide mixtures.

    Science.gov (United States)

    Ábrahám, Ágnes; Kardos, Attila; Mezei, Amália; Campbell, Richard A; Varga, Imre

    2014-05-06

    We rationalize the surface tension behavior and nonequilibrium interfacial characteristics of high molecular weight poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide (NaPSS/DTAB) mixtures with respect to the ionic strength. Excellent agreement is achieved between experimental data and our recent empirical model [Langmuir 2013, 29, 11554], which is based on the lack of colloidal stability of bulk aggregates in the phase separation region and has no free fitting parameters. We show that the size of a surface tension peak positioned at the edge of the phase separation region can be suppressed by the addition of inert electrolyte, which lowers the critical micelle concentration in relation to the phase separation region. Such manipulation of the peak is possible for the 100 ppm NaPSS/DTAB system because there is a high free surfactant concentration in the phase separation region. The close agreement of our model with the experimental data of samples in the phase separation region with respect to the ionic strength indicates that the surface tension behavior can be rationalized in terms of comprehensive precipitation regardless of whether there is a peak or not. The time scale of precipitation for the investigated system is on the order of one month, which emphasizes the need to understand the dynamic changes in the state of bulk aggregation in order to rationalize the surface properties of strongly interacting mixtures; steady state surface properties measured in the interim period will represent samples far from equilibrium. We show also that the surface properties of samples of low ionic strength outside the equilibrium phase separation region can be extreme opposites depending on the sample history, which is attributed to the generation of trapped nonequilibrium states. This work highlights the need to validate the underlying nature of oppositely charged polyelectrolyte/surfactant systems prior to the interpretation of experimental data within an

  18. Drops, Sieves, and Paintbrushes: Teaching About Surface Tension

    Science.gov (United States)

    Barnes, George B.

    1978-01-01

    Surface tension, a characteristic of liquids, is discussed in this article. Several activities appropriate to the elementary grades are described and explained. Each activity uses common materials to explore this tendancy of water to act as if it were surrounded by a membrane. (MA)

  19. A Modified Jaeger's Method for Measuring Surface Tension.

    Science.gov (United States)

    Ntibi, J. Effiom-Edem

    1991-01-01

    A static method of measuring the surface tension of a liquid is presented. Jaeger's method is modified by replacing the pressure source with a variable pressure head. By using this method, stationary air bubbles are obtained thus resulting in controllable external parameters. (Author/KR)

  20. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    Science.gov (United States)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric aerosols, for which PEG serves as a surrogate in these experiments.

  1. A novel optimal sensitivity design scheme for yarn tension sensor using surface acoustic wave device.

    Science.gov (United States)

    Lei, Bingbing; Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Haoxin

    2014-08-01

    In this paper, we propose a novel optimal sensitivity design scheme for the yarn tension sensor using surface acoustic wave (SAW) device. In order to obtain the best sensitivity, the regression model between the size of the SAW yarn tension sensor substrate and the sensitivity of the SAW yarn tension sensor was established using the least square method. The model was validated too. Through analyzing the correspondence between the regression function monotonicity and its partial derivative sign, the effect of the SAW yarn tension sensor substrate size on the sensitivity of the SAW yarn tension sensor was investigated. Based on the regression model, a linear programming model was established to gain the optimal sensitivity of the SAW yarn tension sensor. The linear programming result shows that the maximum sensitivity will be achieved when the SAW yarn tension sensor substrate length is equal to 15 mm and its width is equal to 3mm within a fixed interval of the substrate size. An experiment of SAW yarn tension sensor about 15 mm long and 3mm wide was presented. Experimental results show that the maximum sensitivity 1982.39 Hz/g was accomplished, which confirms that the optimal sensitivity design scheme is useful and effective. Copyright © 2014. Published by Elsevier B.V.

  2. Surface Tension Driven Convection Experiment-2 (STDCE-2)

    Science.gov (United States)

    Masud, J.; Kamotani, Y.; Ostrach, S.

    1999-01-01

    Thermocapillary flows are known to become oscillatory (time-periodic), but how and when they become oscillatory in containers of unit-order aspect ratio are not yet fully understood. The present work is a part of our continuous effort to obtain a better understanding of the phenomenon. Thermocapillary flow experiments in normal gravity are limited to a narrow parametric range in order to minimize gravity and buoyancy effects, which is an important reason for our lack of full understanding of the oscillation phenomenon. One important unanswered question is what role, if any, free surface deformation plays in the oscillation mechanism. For that reason we performed thermocapillary flow experiments, called the Surface Tension Driven Convection Experiment-2 (STDCE-2), aboard the USML-2 Spacelab in 1995. The main objectives of the experiments were to investigate oscillatory thermocapillary flows in microgravity and to clarify the importance of free surface deformation in such flows. Steady and oscillatory thermocapillary flows were generated in cylindrical containers by employing two heating modes. A CO2 laser with adjustable power and beam diameter was used in the Constant Flux (CF) configuration to heat the free surface. The other configuration investigated in STDCE-2 was the Constant Temperature (CT) configuration in which a submerged cylindrical cartridge heater placed at the symmetry (axial) axis of the test container heated the fluid. Both heating modes cause non-uniform temperature distributions on the free surface, which generates thermocapillary flow. The flow field was investigated by flow visualization, and the temperature field was measured by thermistors and an infrared imager. The free surface shape and motion were measured by a Ronchi system. The hardware performed well and we were able to conduct more tests than originally planned. From the successful experiments a large amount of data was acquired. The analysis of the data is now nearly complete. Some

  3. Pericellular interphotoreceptor matrix dictates outer retina critical surface tension.

    Science.gov (United States)

    Gonzalez-Fernandez, Federico; Fornalik, Mark; Garlipp, Mary Alice; Gonzalez-Fernandez, Priscilla; Sung, Dongjin; Meyer, Anne; Baier, Robert

    2018-02-01

    Retinal detachments create two pathological surfaces, the surface of the outer neural retinal, and an apical retinal-pigmented epithelium (RPE) surface. The physicochemical properties of these two new surfaces are poorly understood. At a molecular level little is known how detachments form, how to optimize reattachment, or prevent extension of the detachment. A major limitation is lack of information about the biophysical consequences of the retina-RPE separation. The primary challenge is determining the molecular properties of the pathological interface surfaces. Here, using detached bovine retina, we show that this hurdle can be overcome through a combination of biophysical and ultrastructural approaches. The outer surface of freshly detached bovine neural retina, and isolated molecular components of the outer retina were subjected to: 1) Contact angle goniometry to determine the critical surface tension of the outer retinal surface, isolated insoluble interphotoreceptor matrix (IPM) and purified interphotoreceptor retinoid binding protein (IRBP); 2) Multiple attenuated internal reflectance infrared (MAIR-IR) spectroscopy was used to characterize the molecular composition of the retinal surface. MAIR-IR depth penetration was established through ellipsometric measurement of barium-stearate films. Light microscopy, immunohistochemistry and electron microscopy defined the structures probed spectroscopically. Furthermore, the data were correlated to IR spectra of docosahexaenoic acid, hyaluronan, chondroitin-6-sulfate and IRBP, and imaging by IR-microscopy. We found that the retinal critical surface tension is 24 mN/m, similar to isolated insoluble IPM and lower than IRBP. Barium-stearate calibration studies established that the MAIR-IR spectroscopy penetration depth was 0.2 μm. Ultrastructural observations and MAIR-IR studies of isolated outer retina components determined that the pericellular IPM coating the outer retinal surface is primarily responsible for

  4. Atmospheric Aqueous Aerosol Surface Tensions: Isotherm-Based Modeling and Biphasic Microfluidic Measurements.

    Science.gov (United States)

    Boyer, Hallie C; Dutcher, Cari S

    2017-06-29

    Surface properties of atmospheric aerosol particles are crucial for accurate assessments of the fates of liquid particles in the atmosphere. Surface tension directly influences predictions of particle activation to clouds, as well as indirectly acting as a proxy for chemical surface partitioning. Challenges to accounting for surface effects arise from surface tension dependence on solution concentration and the presence of complex aqueous mixtures in aerosols, including both surface-active organic solutes and inorganic electrolytes. Also, the interface itself is varied, in that it may be a liquid-vapor interface, as in the surface of an aerosol particle with ambient air, or a liquid-liquid interface between two immiscible liquids, as in the interior surfaces that exist in multiphase particles. In this Feature Article, we highlight our previous work entailing thermodynamic modeling of liquid-vapor surfaces to predict surface tension and microscopic examinations of liquid-liquid interfacial phenomena to measure interfacial tension using biphasic microscale flows. New results are presented for binary aqueous organic acids and their ternary solutions with ammonium sulfate. Ultimately, improved understanding of aerosol particle surfaces would enhance treatment of aerosol particle-to-cloud activation states and aerosol effects on climate.

  5. Surface Tension of Acid Solutions: Fluctuations beyond the Nonlinear Poisson-Boltzmann Theory.

    Science.gov (United States)

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-01-10

    We extend our previous study of surface tension of ionic solutions and apply it to acids (and salts) with strong ion-surface interactions, as described by a single adhesivity parameter for the ionic species interacting with the interface. We derive the appropriate nonlinear boundary condition with an effective surface charge due to the adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero loop (mean field) corresponds of the full nonlinear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension and the one-loop contribution gives a generalization of the Onsager-Samaras result. Adhesivity significantly affects both contributions to the surface tension, as can be seen from the dependence of surface tension on salt concentration for strongly absorbing ions. Comparison with available experimental data on a wide range of different acids and salts allows the fitting of the adhesivity parameter. In addition, it identifies the regime(s) where the hypotheses on which the theory is based are outside their range of validity.

  6. Calcium Hypochlorite Solutions: Evaluation of Surface Tension and Effect of Different Storage Conditions and Time Periods over pH and Available Chlorine Content.

    Science.gov (United States)

    Leonardo, Natália Gomes e Silva; Carlotto, Israel Bangel; Luisi, Simone Bonato; Kopper, Patrícia Maria Poli; Grecca, Fabiana Soares; Montagner, Francisco

    2016-04-01

    The aim of this study was to evaluate the pH and the available chlorine content from sodium hypochlorite (NaOCl) and calcium hypochlorite (Ca[OCl]2) solutions stored in different conditions and time periods and the surface tension of Ca(OCl)2 solutions in comparison with NaOCl. Solutions at 0.5%, 1%, 2.5%, and 5.25% concentrations were prepared. The pH level and the available chlorine content of freshly prepared solutions and solutions stored for 30, 60, and 90 days at 25°C, 4°C, or 37°C were evaluated in a digital pH meter and by titration, respectively. Surface tension was tested using a Du Nouy tensiometer (Sigma 702, Force Tensiometer; Attension, Espoo, Finland). Descriptive and inferential statistical analyses were performed. A precipitate formed by 2.5% and 5.25% Ca(OCl)2 solutions was observed. Ca(OCl)2 showed a higher concentration of available chlorine than NaOCl. Both 2.5% and 5.25% NaOCl and Ca(OCl)2 had a decrease in the available chlorine content when compared with freshly prepared solutions; 0.5% and 1% NaOCl tend to have a lower pH compared with 0.5% and 1% Ca(OCl)2. NaOCl, 5.25%, showed higher pH compared with 5.25% Ca(OCl)2. NaOCl and Ca(OCl)2 in 0.5% and 1% concentrations tend to show a reduced pH level, whereas 2.5% and 5.25% solutions showed an increase in pH. The heat contributed to the instability of the solutions. NaOCl showed lower surface tension values than Ca(OCl)2. Ca(OCl)2 solutions are extremely alkaline and tend to have more available chlorine content than NaOCl but have a higher surface tension than NaOCl. Regarding the available chlorine content, these solutions tend to be stable to 30 days of storage when kept at 4°C or at 25°C. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Virtual walls based on oil-repellent surfaces for low-surface-tension liquids.

    Science.gov (United States)

    Almeida, Riberet; Kwon, Jae Wan

    2013-01-29

    Manipulating and controlling water-based aqueous solutions with the use of virtual walls is relatively simple compared to that of nonaqueous low-surface-tension liquids, which pose greater challenges to microfluidic devices. This letter reports a novel technique to form a virtual wall for various low-surface-tension liquids. A microfluidic channel with virtual walls has been made to guide low-surface-tension liquids by using a specially designed oil-repellent surface. Unlike generic superoleophobic surfaces, our oil-repellent surface exhibited strong repellency to the lateral flow of low-surface-tension liquids such as hexadecane and dodecane. A plasma-assisted surface micromachining process has been utilized to form the oil-repellent surface. The use of combined features of re-entrant geometries on the surface played an important role in promoting its repellence to the lateral flow of low-surface-tension liquids. We have successfully demonstrated how low-surface-tension liquids can be well confined by the virtual walls.

  8. Surface tension dominates insect flight on fluid interfaces.

    Science.gov (United States)

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.

  9. Study Of Bubble-Count Measurement Of Surface Tension

    Science.gov (United States)

    Nishioka, Gary M.; Berg, James I.

    1993-01-01

    Report presents study of bubble-count method of measurement of surface or interfacial tension of liquids. In method, gas or liquid pumped at known rate along capillary tube. One end of tube open and immersed in liquid that wets tube. Pumped gas or liquid forms bubbles, detaching themselves from immersed open end of tube, and one measures average period, Pi, for formation and detachment of bubbles.

  10. Surface Tension Triggered Wetting and Point of Care Sensor Design.

    Science.gov (United States)

    Falde, Eric J; Yohe, Stefan T; Grinstaff, Mark W

    2015-08-05

    Rapid, simple, and inexpensive point-of-care (POC) medical tests are of significant need around the world. The transition between nonwetting and wetted states is used to create instrument-free surface tension sensors for POC diagnosis, using a layered electrospun mesh with incorporated dye to change color upon wetting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Surface tension and buoyancy in vertical soap films

    OpenAIRE

    Adami, Nicolas

    2013-01-01

    This manuscrit presents our experimental works about maintained vertical soap films. The purpose of this thesis was to realize experiments on vertical soap films. We designed a setup which allows to maintain vertical soap films on large timescales. The thickness profiles of those films were characterized using an infrared absorption method. We then designed an elastic sensor in order to probe the surface tension profiles in our films. Simple mechanical considerations allowed us to draw a s...

  12. Measurement of surface and interfacial tension using pendant drop tensiometry.

    Science.gov (United States)

    Berry, Joseph D; Neeson, Michael J; Dagastine, Raymond R; Chan, Derek Y C; Tabor, Rico F

    2015-09-15

    Pendant drop tensiometry offers a simple and elegant solution to determining surface and interfacial tension - a central parameter in many colloidal systems including emulsions, foams and wetting phenomena. The technique involves the acquisition of a silhouette of an axisymmetric fluid droplet, and iterative fitting of the Young-Laplace equation that balances gravitational deformation of the drop with the restorative interfacial tension. Since the advent of high-quality digital cameras and desktop computers, this process has been automated with high speed and precision. However, despite its beguiling simplicity, there are complications and limitations that accompany pendant drop tensiometry connected with both Bond number (the balance between interfacial tension and gravitational forces) and drop volume. Here, we discuss the process involved with going from a captured experimental image to a fitted interfacial tension value, highlighting pertinent features and limitations along the way. We introduce a new parameter, the Worthington number, Wo, to characterise the measurement precision. A fully functional, open-source acquisition and fitting software is provided to enable the reader to test and develop the technique further. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  13. Rayleigh Taylor instability in dusty magnetized fluids with surface tension flowing through porous medium

    Directory of Open Access Journals (Sweden)

    Sharma Praveen K.

    2016-01-01

    Full Text Available In this paper we investigate the effect of surface tension on hydromagnetic Rayleigh-Taylor (R-T instability of two incompressible superimposed fluids in a porous medium with suspended dust particles immersed in a uniform horizontal magnetic field. The relevant linearized perturbation equations have been solved using normal mode technique and the dispersion relation is derived analytically for the considered system. The dispersion relation is influenced by the simultaneous presence of medium porosity, suspended dust particles, permeability, magnetic field and surface tension. The onset criteria of R-T stability and instability are obtained and discussed. The growth rate of R-T instability is calculated numerically and is affected by the simultaneous presence of surface tension and magnetic field. The effects of various parameters on the growth rate of the R-T instability are discussed.

  14. A micro surface tension pump (MISPU) in a glass microchip.

    Science.gov (United States)

    Peng, Xing Yue Larry

    2011-01-07

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  15. Statistical Thermodynamic Model for Surface Tension of Organic and Inorganic Aqueous Mixtures.

    Science.gov (United States)

    Boyer, Hallie C; Bzdek, Bryan R; Reid, Jonathan P; Dutcher, Cari S

    2017-01-12

    The surface composition and tensions of aqueous aerosols govern a set of processes that largely determine the fate of particles in the atmosphere. Predictive modeling of surface tension can provide significant contributions to studies of atmospheric aerosol effects on climate and human health. A previously derived surface tension model for single solute aqueous solutions used adsorption isotherms and statistical mechanics to enable surface tension predictions across the entire concentration range as a function of solute activity. Here, we extend the model derivation to address multicomponent solutions and demonstrate its accuracy with systems containing mixtures of electrolytes and organic solutes. Binary model parameters are applied to the multicomponent model, requiring no further parametrization for mixtures. Five ternary systems are studied here and represent three types of solute combinations: organic-organic (glycerol-ethanol), electrolyte-organic (NaCl-succinic acid, NaCl-glutaric acid), and electrolyte-electrolyte (NaCl-KCl and NH 4 NO 3 -(NH 4 ) 2 SO 4 ). For the NaCl-glutaric acid system, experimental measurements of picoliter droplet surface tension using aerosol optical tweezers show excellent agreement with the model predictions.

  16. A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants

    Science.gov (United States)

    George, Jijo Easo; Chidangil, Santhosh; George, Sajan D.

    2017-07-01

    Fabrication of hydrophobic/hydrophilic surfaces by biomimicking nature has attracted significant attention recently due to their potential usage in technologies, ranging from self-cleaning to DNA condensation. Despite the potential applications, compared to surfaces of tailored wettability, less attention has been paid towards development and understanding of air bubble adhesion and its dynamics on surfaces with varying wettability. In this manuscript, following the commonly used approach of oxygen plasma treatment, polydimethylsiloxane surfaces with tunable wettability are prepared. The role of plasma treatment conditions on the surface hydrophilicity and the consequent effect on adhesion dynamics of an underwater air bubble is explored for the first time. The ATR-FTIR spectroscopic analysis reveals that the change in hydrophilicity arises from the chemical modification of the surface, manifested as Si-OH vibrations in the spectra. The thickness of the formed thin liquid film at the surface responsible for the experimentally observed air bubble repellency is estimated from the augmented Young-Laplace equation. The concentration dependent studies using cationic as well as anionic surfactant elucidate that the reduced surface tension of the aqueous solution results in a stable thicker film and causes non-adherence of air bubble to the aerophilic surface. Furthermore, the study carried out to understand the combined effect of plasma treatment and surfactants reveals that even below critical micelle concentration, a negatively charged surface results in air bubble repellency for the anionic surfactant, whereas only enhanced air bubble contact angle is observed for the cationic surfactant.

  17. Selection of the Taylor-Saffman bubble does not require surface tension.

    Science.gov (United States)

    Vasconcelos, Giovani L; Mineev-Weinstein, Mark

    2014-06-01

    A new general class of exact solutions is presented for the time evolution of a bubble of arbitrary initial shape in a Hele-Shaw cell when surface tension effects are neglected. These solutions are obtained by conformal mapping the viscous flow domain to an annulus in an auxiliary complex plane. It is then demonstrated that the only stable fixed point (attractor) of the nonsingular bubble dynamics corresponds precisely to the selected pattern. This thus shows that, contrary to the established theory, bubble selection in a Hele-Shaw cell does not require surface tension. The solutions reported here significantly extend previous results for a simply connected geometry (finger) to a doubly connected one (bubble). We conjecture that the same selection rule without surface tension holds for Hele-Shaw flows of arbitrary connectivity.

  18. Effects of interplay of nanoparticles, surfactants and base fluid on the interfacial tension of nanocolloids

    CERN Document Server

    Harikrishnan, A R; Agnihotri, PK; Gedupudi, Sateesh; Das, Sarit K

    2016-01-01

    A systematically designed study has been conducted to understand and clearly demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the interfacial tension of these complex fluids are studied employing pendant drop shape analysis method by fitting Young Laplace equation. Only particle has shown considerable increase in surface tension with particle concentration in a polar medium like DI water whereas only marginal effect particles on surface tension in weakly polar mediums like glycerol and ethylene glycol. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a mathematical framework has been derived to quantify this. Combined particle and surfactant effect on surface tension of complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of...

  19. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  20. Estimation of solid-liquid interfacial tension using curved surface of a soft solid.

    Science.gov (United States)

    Mondal, Subrata; Phukan, Monmee; Ghatak, Animangsu

    2015-10-13

    Unlike liquids, for crystalline solids the surface tension is known to be different from the surface energy. However, the same cannot be said conclusively for amorphous materials like soft cross-linked elastomers. To resolve this issue we have introduced here a direct method for measuring solid-liquid interfacial tension by using the curved surface of a solid. In essence, we have used the inner surface of tiny cylindrical channels embedded inside a soft elastomeric film for sensing the effect of the interfacial tension. When a liquid is inserted into the channel, because of wetting-induced alteration in interfacial tension, its thin wall deflects considerably; the deflection is measured with an optical profilometer and analyzed using the Föppl-von Kármán equation. We have used several liquids and cross-linked poly(dimethylsiloxane) as the solid to show that the estimated values of the solid-liquid interfacial tension matches with the corresponding solid-liquid interfacial energy reasonably well.

  1. Accuracy of surface tension measurement from drop shapes: the role of image analysis.

    Science.gov (United States)

    Kalantarian, Ali; Saad, Sameh M I; Neumann, A Wilhelm

    2013-11-01

    Axisymmetric Drop Shape Analysis (ADSA) has been extensively used for surface tension measurement. In essence, ADSA works by matching a theoretical profile of the drop to the extracted experimental profile, taking surface tension as an adjustable parameter. Of the three main building blocks of ADSA, i.e. edge detection, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure, only edge detection (that extracts the drop profile line from the drop image) needs extensive study. For the purpose of this article, the numerical integration of the Laplace equation for generating theoretical curves and the optimization procedure will only require a minor effort. It is the aim of this paper to investigate how far the surface tension accuracy of drop shape techniques can be pushed by fine tuning and optimizing edge detection strategies for a given drop image. Two different aspects of edge detection are pursued here: sub-pixel resolution and pixel resolution. The effect of two sub-pixel resolution strategies, i.e. spline and sigmoid, on the accuracy of surface tension measurement is investigated. It is found that the number of pixel points in the fitting procedure of the sub-pixel resolution techniques is crucial, and its value should be determined based on the contrast of the image, i.e. the gray level difference between the drop and the background. On the pixel resolution side, two suitable and reliable edge detectors, i.e. Canny and SUSAN, are explored, and the effect of user-specified parameters of the edge detector on the accuracy of surface tension measurement is scrutinized. Based on the contrast of the image, an optimum value of the user-specified parameter of the edge detector, SUSAN, is suggested. Overall, an accuracy of 0.01mJ/m(2) is achievable for the surface tension determination by careful fine tuning of edge detection algorithms. © 2013 Elsevier B.V. All rights reserved.

  2. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    Science.gov (United States)

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles.

  3. Surface tension and quasi-emulsion of cavitation bubble cloud.

    Science.gov (United States)

    Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun

    2017-03-01

    A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthetic Tracheal Mucus with Native Rheological and Surface Tension Properties

    Science.gov (United States)

    Hamed, R.; Fiegel, J.

    2016-01-01

    In this study the development of a model tracheal mucus with chemical composition and physical properties (bulk viscoelasticity and surface tension) matched to that of native tracheal mucus is described. The mucus mimetics were formulated using components that are abundant in tracheal mucus (glycoproteins, proteins, lipids, ions and water) at concentrations similar to those found natively. Pure solutions were unable to achieve the gel behavior observed with native mucus. The addition of a bi-functional crosslinking agent enabled control over the viscoelastic properties of the mucus mimetics by tailoring the concentration of the crosslinking agent and the duration of crosslinking. Three mucus mimetic formulations with different bulk viscoelastic properties, all within the normal range for non-diseased tracheal mucus, were chosen for investigation of surfactant spreading at the air-mimetic interface. Surfactant spread quickly and completely on the least viscoelastic mimetic surface, enabling the surface tension of the mimetic to be lowered to match native tracheal mucus. However, surfactant spreading on the more viscoelastic mimetics was hindered, suggesting that the bulk properties of the mimetics dictate the range of surface properties that can be achieved. PMID:23813841

  5. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    Abstract. We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at z = 3.32 Å. It was observed ...

  6. Test-area surface tension calculation of the graphene-methane interface: Fluctuations and commensurability.

    Science.gov (United States)

    d'Oliveira, H D; Davoy, X; Arche, E; Malfreyt, P; Ghoufi, A

    2017-06-07

    The surface tension (γ) of methane on a graphene monolayer is calculated by using the test-area approach. By using a united atom model to describe methane molecules, strong fluctuations of surface tension as a function of the surface area of the graphene are evidenced. In contrast with the liquid-vapor interfaces, the use of a larger cutoff does not fully erase the fluctuations in the surface tension. Counterintuitively, the description of methane and graphene from the Optimized Potentials for Liquid Simulations all-atom model and a flexible model, respectively, led to a lessening in the surface tension fluctuations. This result suggests that the origin of fluctuations in γ is due to a model-effect rather than size-effects. We show that the molecular origin of these fluctuations is the result of a commensurable organization between both graphene and methane. This commensurable structure can be avoided by describing methane and graphene from a flexible force field. Although differences in γ with respect to the model have been often reported, it is the first time that the model drastically affects the physics of a system.

  7. Surface tension of phenol-formaldehyde wood adhesives

    Science.gov (United States)

    C. -Y. Hse

    1972-01-01

    Thirty-six phenol (P) fermaldehyde (F) resins were formulated to complete a factorial arrangement: three NAOH/P molar ratios (0.4, 0.7, and 1.0), three solid contents (37, 40, and 43 percent), and four F/P molar rations (1.6, 1.9, 2.2, and 2.5). Surface tension ranged from 68.4 to 79.9 dynes/cm. and was affected most by NAOH/P ratio, next by F/P ratio, and least by...

  8. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy......, line height and distance, and temperature. Focus of the work has been on predicting the equilibrium geometries with FEM simulations using as input measured adhesive wetting angles, different adhesive line distances and height. The studied substrates are glass microscope slides, PEEK and PMMA....... The studied adhesives are DYMAX 9-20318-F, 3070, 9001 version 3.5, and Sylgard 184 PDMS....

  9. Surface tension examination of various liquid oral, nasal, and ophthalmic dosage forms.

    Science.gov (United States)

    Han, Kimberly; Woghiren, Osakpolor E; Priefer, Ronny

    2016-01-01

    Surface tension at the surface-to-air interface is a physico-chemical property of liquid pharmaceutical formulations that are often overlooked. To determine if a trend between surface tension and route of administration exists, a suite of oral, nasal, and ophthalmic drug formulations were analyzed. The surface tension at the surface-to-air interface of the oral formulations studied were in or above the range of the surface tension of gastric, duodenum, and jejunum fluids. The range of surface tensions for oral formulations were 36.6-64.7 dynes/cm. Nasal formulations had surface tensions below that of the normal mucosal lining fluid with a range of 30.3-44.9 dynes/cm. Ophthalmic OTC formulations had the largest range of surface tensions at the surface-to-air interface of 34.3-70.9 dynes/cm; however, all formulations indicated for treatment of dry eye had surface tensions higher than that of normal tears, while those for treatment of red eye had surface tensions below. Therefore, surface tension at the surface-to-air interface of liquid formulations is dependent on the route of administration, environment at site of introduction, and for ophthalmics, what the formulation is indicated for.

  10. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    Science.gov (United States)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  11. Restraint of Liquid Jets by Surface Tension in Microgravity Modeled

    Science.gov (United States)

    Chato, David J.

    2001-01-01

    Tension in Microgravity Modeled Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, jets must be contained by surface tension forces. Recent NASA experiments in microgravity (Tank Pressure Control Experiment, TPCE, and Vented Tank Pressure Experiment, VTRE) resulted in a wealth of data about jet behavior in microgravity. VTRE was surprising in that, although it contained a complex geometry of baffles and vanes, the limit on liquid inflow was the emergence of a liquid jet from the top of the vane structure. Clearly understanding the restraint of liquid jets by surface tension is key to managing fluids in low gravity. To model this phenomenon, we need a numerical method that can track the fluid motion and the surface tension forces. The fluid motion is modeled with the Navier-Stokes equation formulated for low-speed incompressible flows. The quantities of velocity and pressure are placed on a staggered grid, with velocity being tracked at cell faces and pressure at cell centers. The free surface is tracked via the introduction of a color function that tracks liquid as 1/2 and gas as -1/2. A phase model developed by Jacqmin is used. This model converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly. Previous attempts at this formulation have been criticized for smearing the interface. However, by sharpening the phase

  12. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  13. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets.

    Science.gov (United States)

    Kremer, J; Kilzer, A; Petermann, M

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  14. New thermodynamics for evaluating the surface-phase enrichment in the lower surface tension component.

    Science.gov (United States)

    Santos, M Soledade C S; Reis, João Carlos R

    2014-09-15

    Regarding the surface phase of liquid mixtures as a thermodynamic phase, ideal surface phases are designed so that at fixed bulk-phase composition, real and ideal surface phases have the same chemical composition and identical limiting slopes for the dependence of surface tension on mole fraction. Standard chemical potentials are introduced for surface phase components, and quasi-exact expressions are worked out to compute ideal surface tensions and surface-phase compositions of real liquid mixtures. Guidelines for choosing molecular models to estimate the molar surface area of pure constituents are given. Ideal and excess surface tensions are calculated by using literature data for aqueous ethanol solutions at 298 K. These results show treatment based on Butler's equations grossly overestimate predicted surface tensions, thus leading to lower ethanol content in the surface phase. These inaccuracies are ascribed to the use of molar surface areas in model equations that are too small. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    CERN Document Server

    Mulero, A; Cuadros, F

    2003-01-01

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be cal...

  16. The effect of vesicle shape, line tension, and lateral tension on membrane-binding proteins

    Science.gov (United States)

    Hutchison, Jaime B.

    Model membranes allow for the exploration of complex biological phenomena with simple, controllable components. In this thesis we employ model membranes to determine the effect of vesicle properties such as line tension, lateral tension, and shape on membrane-binding proteins. We find that line tension at the boundary between domains in a phase separated vesicle can accumulate model membrane-binding proteins (green fluorescent protein with a histidine tag), and that those proteins can, in turn, alter vesicle shape. These results suggest that domains in biological membranes may enhance the local concentration of membrane-bound proteins and thus alter protein function. We also explore how membrane mechanical and chemical properties alter the function of the N-BAR domain of amphiphysin, a membrane-binding protein implicated in endocytosis. We find that negatively charged lipids are necessary for N-BAR binding to membranes at detectable levels, and that, at least for some lipid species, binding may be cooperative. Measurements of N-BAR binding as a function of vesicle tension reveal that modest membrane tension of around 2 mN/m, corresponding to a strain of around 1%, strongly increases N-BAR binding. We attribute this increase in binding with tension to the insertion of N-BAR's N-terminal amphipathic helix into the membrane which increases the membrane area. We propose that N-BAR, which was previously described as being able to sense membrane curvature, may be sensing strain instead. Measurements of membrane deformation by N-BAR as a function of membrane tension reveal that tension can hinder membrane deformation. Thus, tension may favor N-BAR binding yet suppress membrane deformation/tubulation, which requires work against tension. These results suggest that membrane tension, a parameter that is often not controlled in model membranes but is tightly controlled in biological cells, may be important in regulating protein binding and assembly and, hence, protein

  17. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 6. Adhesion energy, surface ... 2 G A Adebayo1. Department of Physics, University of Agriculture, Abeokuta, Nigeria; Department of Pure and Applied Physics, College of Pure and Applied Science, Caleb University, Imota, Lagos, Nigeria ...

  18. Surface tension and a self-consistent theory of soft composite solids with elastic inclusions.

    Science.gov (United States)

    Mancarella, Francesco; Wettlaufer, John S

    2017-02-07

    The importance of surface tension effects is being recognized in the context of soft composite solids, where they are found to significantly affect the mechanical properties, such as the elastic response to an external stress. It has recently been discovered that Eshelby's inclusion theory breaks down when the inclusion size approaches the elastocapillary length L≡γ/E, where γ is the inclusion/host surface tension and E is the host Young's modulus. Extending our recent results for liquid inclusions, here we model the elastic behavior of a non-dilute distribution of isotropic elastic spherical inclusions in a soft isotropic elastic matrix, subject to a prescribed infinitesimal far-field loading. Within our framework, the composite stiffness is uniquely determined by the elastocapillary length L, the spherical inclusion radius R, and the stiffness contrast parameter C, which is the ratio of the inclusion to the matrix stiffness. We compare the results with those from the case of liquid inclusions, and we derive an analytical expression for elastic cloaking of the composite by the inclusions. Remarkably, we find that the composite stiffness is influenced significantly by surface tension even for inclusions two orders of magnitude more stiff than the host matrix. Finally, we show how to simultaneously determine the surface tension and the inclusion stiffness using two independent constraints provided by global and local measurements.

  19. Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Tae; Lim, Dae Ho; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)

    2014-08-15

    Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02-0.1 m/s), liquid viscosity (0.1-3 Pa·s) and surface tension (66.1-72.9x10{sup -3} N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; h=2502U{sub G}{sup 0.236}{sub L}{sup -0.250}{sub L}{sup -}0{sup .028} Nu=3.25Re{sup 0.180}Pr{sup -0.067}We{sup 0.028}.

  20. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality.

    Science.gov (United States)

    Sett, Soumyadip; Yan, Xiao; Barac, George; Bolton, Leslie W; Miljkovic, Nenad

    2017-10-18

    The past few decades have seen substantial effort for the design and manufacturing of hydrophobic structured surfaces for enhanced steam condensation in water-based applications. Such surfaces promote dropwise condensation and easy droplet removal. However, less priority has been given to applications utilizing low-surface-tension fluids as the condensate. Lubricant-infused surfaces (LISs) or slippery liquid-infused porous surfaces (SLIPSs) have recently been developed, where the atomically smooth, defect-free slippery surface leads to reduced pinning of water droplets and omniphobic characteristics. The remarkable results of LISs and SLIPSs with a range of working fluid droplets give hope of their viability with low-surface-tension condensates. However, the presence of the additional liquid in the form of lubricant brings other issues to consider. Here, in an effort to study the dropwise condensation potential of LISs and SLIPSs, we investigate the miscibility of a range of low-surface-tension fluids with widely used lubricants in LIS and SLIPS design. We consider a wide range of condensate surface tensions (12-73 mN/m) and different categories of lubricants with varied viscosities (5-2700 cSt), namely, fluorinated Krytox oils, hydrocarbon silicone oils, mineral oil, and ionic liquids. In addition, we use both theory and pendant drop experiments to predict the cloaking behavior of the lubricants and immiscible condensate working fluid pairs. Our work not only shows that careful attention must be paid to lubricant-condensate selection to create long-lasting LISs or SLIPSs but also develops lubricant selection design guidelines for stable LISs and SLIPSs for enhanced condensation in applications utilizing low-surface-tension working fluids.

  1. Effect of oxidation and surface roughness on the shear strength of single-lap-joint adhesively bonded metal specimens by tension loading

    National Research Council Canada - National Science Library

    Khan, M H; Gali, O A; Edrisy, A; Riahi, A R

    2016-01-01

    An experimental investigation was performed to study the effect of surface roughness and oxidation on the shear strength of single-lap-joints of AA6061, AA7075 aluminum alloys and an AISI 1080 steel...

  2. Design of a surface deformation measuring instrument for the Surface Tension Driven Convection Experiment (STDCE-2)

    Science.gov (United States)

    Stahl, H. Philip

    1993-01-01

    This final technical report covers the work accomplished (under NAG3-1300) from 1 October 1991 to 1 October 1993. The grant is a direct result of Dr. H. Philip Stahl's (of Rose-Hulman Institute of Technology) participation in the NASA/ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center sponsored by Case Western Reserve University and the Ohio Aerospace Institute. The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid physics experiment designed to provide quantitative data on the thermocapillary flow of fluid under the influence of an increased localized surface temperature. STDCE flew on the Space Shuttle Columbia in the First United States Microgravity Laboratory (USML-1) in June 1992. The second flight of this experiment (STDCE-2) is scheduled for 1995. The specific science objectives of STDCE-2 are to determine the extent and nature of thermocapillary flows, the effect of heating mode and level, the effect of the liquid free-surface shape, and the onset conditions for and nature of oscillatory flows. In order to satisfy one of these objectives, an instrument for measuring the shape of an air/oil free surface must be developed.

  3. Dynamics of surface tension driven mixing of an alcohol droplet with water

    Science.gov (United States)

    Dandekar, Raj; Pant, Anurag; Puthenveettil, Baburaj

    2016-11-01

    We study the flow induced by the surface tension driven spreading of an ethanol droplet of radius rd on the surface of a 5mm water layer, visualizing the flow using aluminium flakes on the surface of the water layer with backlighting and high speed imaging. The concentration of tracer aluminium particles was found to have no effect on the scaling law for spreading.The drop,when brought in contact with the water surface causes a local depression in surface tension ,resulting in a thin circular region to expand radially outwards.We observe that the dimensionless radius of the expanding front (r* =r/rd) scales with the dimensionless time (t* = μ rd/ Δγ) , as r* t*1/4,where μ is the viscosity of water and Δγ is the surface tension difference between water and the ethanol droplet.A scaling analysis taking the viscous and the marangoni forces into account explains the observed scaling law.Our observations differ from that in the case of continuous alcohol supply where the observed scaling law is r* t*1/2. The expanding front radius reaches a maximum value and then decreases with time.

  4. A waveless free surface flow past a submerged triangular obstacle in presence of surface tension

    Directory of Open Access Journals (Sweden)

    Hakima Sekhri

    2016-07-01

    Full Text Available We consider the Free surface flows passing a submerged triangular obstacle at the bottom of a channel. The problem is characterized by a nonlinear boundary condition on the surface of unknown configuration. The analytical exact solutions for these problems are not known. Following Dias and Vanden Broeck [6], we computed numerically the solutions via a series truncation method. These solutions depend on two parameters: the Weber number $\\alpha$ characterizing the strength of the surface tension and the angle $\\beta$ at the base characterizing the shape of the apex. Although free surface flows with surface tension admit capillary waves, it is found that solution exist only for values of the Weber number greater than $\\alpha_0$ for different configurations of the triangular obstacle.

  5. Surface Tension Components Ratio: An Efficient Parameter for Direct Liquid Phase Exfoliation.

    Science.gov (United States)

    Wang, Man; Xu, Xiaowei; Ge, Yuancai; Dong, Pei; Baines, Robert; Ajayan, Pulickel M; Ye, Mingxin; Shen, Jianfeng

    2017-03-15

    Direct liquid phase exfoliation (LPE) is generally regarded as an effective and efficient methodology for preparing single- to few-layered nanosheets on a large scale. Based on a previous finding that the polar and dispersive components of surface tension can be used as critical parameters for screening suitable solvents for LPE, in this study, we conducted in-depth research on direct LPE of two-dimensional (2D) materials by the extensive LPE of a series of 2D materials and the thorough comparison of their surfaces properties and LPE efficiencies. We rationally developed the surface tension component matching (STCM) theory, and in nature, its key point lies in the close ratio of polar to dispersive components (P/D) between the solvents and the aimed 2D materials. To this end, the surface tension components ratio is demonstrated to be an effective parameter for screening LPE solvents. In addition to the optimization of the LPE process for these 2D materials, this work has further greatly enlarged the comprehensive library for the solvent and 2D material matching pairs based on the improved STCM theory.

  6. Surface tension model for surfactant solutions at the critical micelle concentration.

    Science.gov (United States)

    Burlatsky, Sergei F; Atrazhev, Vadim V; Dmitriev, Dmitry V; Sultanov, Vadim I; Timokhina, Elena N; Ugolkova, Elena A; Tulyani, Sonia; Vincitore, Antonio

    2013-03-01

    A model for the limiting surface tension of surfactant solutions (surface tension at and above the critical micelle concentration, cmc) was developed. This model takes advantage of the equilibrium between the surfactant molecules on the liquid/vacuum surface and in micelles in the bulk at the cmc. An approximate analytical equation for the surface tension at the cmc was obtained. The derived equation contains two parameters, which characterize the intermolecular interactions in the micelles, and the third parameter, which is the surface area per surfactant molecule at the interface. These parameters were calculated using a new atomistic modeling approach. The performed calculations of the limiting surface tension for four simple surfactants show good agreement with experimental data (~30% accuracy). The developed model provides the guidance for design of surfactants with low surface tension values. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Application of a pull on a disk method to measure surface tension of liquids.

    Science.gov (United States)

    Carvalho, Thiago C; Horng, Michelle; McConville, Jason T

    2012-03-01

    The intrinsic property of liquids is a vital indicator of formulation performance and stability. Therefore, investigation of the interfacial phenomenon of surface tension is a routine procedure in the development of products in a wide variety of areas including foods, pharmaceuticals, cosmetics, and painting technologies. We hypothesize that studies related to the maximum pull on a rod can be extrapolated to disk geometry and applied to measure surface tension using a texture analyzer. A glass disk probe was attached to the arm of a texture analyzer and pulled from the liquid surface. The maximum force of detachment was used to calculate surface tension extrapolating from the theory of maximum pull on a rod. The surface tension of water, ethanol, and a hydroalcoholic solution was measured and compared with literature values to validate this hypothesis. The calculated values of surface tension for the liquids studied were within 5% of the reported values. Probe diameter appears to have an important role on surface tension accuracy compared with literature values. Slight discrepancies can be attributed to temperature control and leveling of liquid surface, although still in accordance with the reported values of surface tension measured using different methods. This study presents a simple, precise, and quick method to determine the surface tension of liquids from the maximum pull on a disk. Further studies are warranted to determine the optimum glass disk probe diameter for better accuracy.

  8. Precise, contactless measurements of the surface tension of picolitre aerosol droplets.

    Science.gov (United States)

    Bzdek, Bryan R; Power, Rory M; Simpson, Stephen H; Reid, Jonathan P; Royall, C Patrick

    2016-01-01

    The surface composition and surface tension of aqueous droplets can influence key aerosol characteristics and processes including the critical supersaturation required for activation to form cloud droplets in the atmosphere. Despite its fundamental importance, surface tension measurements on droplets represent a considerable challenge owing to their small volumes. In this work, we utilize holographic optical tweezers to study the damped surface oscillations of a suspended droplet (surface tension and viscosity of droplets containing only 1-4 pL of material. An advantage of performing the measurement in aerosol is that supersaturated solute states (common in atmospheric aerosol) may be accessed. For pairs of droplets starting at their equilibrium surface composition, surface tensions and viscosities are consistent with bulk equilibrium values, indicating that droplet surfaces respond to changes in surface area on microsecond timescales and suggesting that equilibrium values can be assumed for growing atmospheric droplets. Furthermore, droplet surfaces are shown to be rapidly modified by trace species thereby altering their surface tension. This equilibration of droplet surface tension to the local environmental conditions is illustrated for unknown contaminants in laboratory air and also for droplets exposed to gas passing through a water-ethanol solution. This approach enables precise measurements of surface tension and viscosity over long time periods, properties that currently are poorly constrained.

  9. Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces

    Science.gov (United States)

    Sinha, Shayandev; Das, Siddhartha

    2015-11-01

    Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.

  10. Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension.

    Science.gov (United States)

    Tavana, H; Simon, F; Grundke, K; Kwok, D Y; Hair, M L; Neumann, A W

    2005-11-15

    Contact angle measurements with a large number of liquids on the semi-fluorinated acryl polymer EGC-1700 films are reported. The surface tension was determined to be gammasv=13.84 mJ/m2 from contact angles of octamethylcyclotetrasiloxane (OMCTS) and decamethylcyclopentasiloxane (DMCPS). Inertness of these two liquids makes them ideal for determination of surface tension of low-energy fluoropolymers. On the other hand, contact angles of many other liquids deviated somewhat from a smooth contact angle pattern that represents the EGC-1700 surface tension. It is argued that noninertness of the molecules of these liquids gives rise to specific interactions with the polymer film, causing the deviations. Furthermore, contact angles of a series of n-alkanes (n-hexane to n-hexadecane) showed systematic deviations from this curve, similar to the trend observed for n-alkanes/Teflon AF 1600 systems studied earlier. Adsorption of vapor of short-chain liquids onto the polymer film caused their contact angles to fall above the gammasv=13.84 mJ/m2 curve, and a parallel alignment of molecules of the long-chain n-alkanes in the vicinity of the solid was the explanation for the deviation of their contact angles below it. It is found that vapor adsorption effect is more significant in the case of Teflon AF 1600, while the alignment of liquid molecules close to the surface is more pronounced for EGC-1700.

  11. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  12. Reduction of water surface tension significantly impacts gecko adhesion underwater.

    Science.gov (United States)

    Stark, Alyssa Y; McClung, Brandon; Niewiarowski, Peter H; Dhinojwala, Ali

    2014-12-01

    The gecko adhesive system is dependent on weak van der Waals interactions that are multiplied across thousands of fine hair-like structures (setae) on geckos' toe pads. Due to the requirements of van der Waals forces, we expect that any interruption between the setae and substrate, such as a water layer, will compromise adhesion. Our recent results suggest, however, that the air layer (plastron) surrounding the superhydrophobic toe pads aid in expelling water at the contact interface and create strong shear adhesion in water when in contact with hydrophobic surfaces. To test the function of the air plastron, we reduced the surface tension of water using two surfactants, a charged anionic surfactant and a neutral nonionic surfactant. We tested geckos on three substrates: hydrophilic glass and two hydrophobic surfaces, glass with a octadecyl trichlorosilane self-assembled monolayer (OTS-SAM) and polytetrafluoroethylene (PTFE). We found that the anionic surfactant inhibited the formation of the air plastron layer and significantly reduced shear adhesion to all three substrates. Interestingly, the air plastron was more stable in the nonionic surfactant treatments than the anionic surfactant treatments and we found that geckos adhered better in the nonionic surfactant than in the anionic surfactant on OTS-SAM and PTFE but not on glass. Our results have implications for the evolution of a superhydrophobic toe pad and highlight some of the challenges faced in designing synthetic adhesives that mimic geckos' toes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Survismeter, 3-in-1 Instrument for Simultaneous Measurements of Surface Tension, Inter Facial Tension (IFT and Viscosity

    Directory of Open Access Journals (Sweden)

    Man Singh

    2007-12-01

    Full Text Available The article presents Inter Facial Tension (IFT (ift, N m-1 of benzene-water; surface tensions (, N m-1 and viscosities (, N s m-2 of ethanol, glycerol, ethyl acetate, n-hexane, diethyl ether, chloroform, benzene, carbon tetrachloride [CCl4], formic acid, measured with Survismeter with ± 1.1x10-5 N m-1, ± 1.3x10-5 N m-1 and ± 1.1x10-6 N s m-2 accuracies respectively. Also the surface tension and viscosities of carboxymethylcellulose (CMC, dodecylbenzenesulfonicacid (DBSA and tetramethylammoniumhydroxide (TMAH in aqueous media have been measured with survismeter at 298.15 K. IFT of water and benzene interface was determined with survismeter. The survismeter saves resources, user’s efforts and infrastructure more than 80 % as compared to usual methods and prevents 80% disposal of materials to environment. It very accurately measures surface tension and IFT of volatile and poisonous liquids at any desired temperatures as liquids are jacked (jacketed in closed glass made bulbs.

  14. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level

    Science.gov (United States)

    Lu, Gui; Duan, Yuan-Yuan; Wang, Xiao-Dong

    2014-09-01

    Nanofluids are suspensions of nanometer-sized particles which significantly modify the properties of the base fluids. Nanofluids exhibit attractive properties, such as high thermal conductivity, tunable surface tension, viscosity, and rheology. Various attempts have been made to understand the mechanisms for these property modifications caused by adding nanoparticles; however, due to the lack of direct nanoscale evidence, these explanations are still controversial. This work calculated the surface tension, viscosity, and rheology of gold-water nanofluids using molecular dynamics simulations which provide a microscopic interpretation for the modified properties on the molecular level. The gold-water interaction potential parameters were changed to mimic various nanoparticle types. The results show that the nanoparticle wettability is responsible for the modified surface tension. Hydrophobic nanoparticles always tend to stay on the free surface so they behave like a surfactant to reduce the surface tension. Hydrophilic nanoparticles immersed into the bulk fluid impose strong attractive forces on the water molecules at the free surface which reduces the free surface thickness and increases the surface tension of the nanofluid. Solid-like absorbed water layers were observed around the nanoparticles which increase the equivalent nanoparticle radius and reduce the mobility of the nanoparticles within the base fluid which increases the nanofluid viscosity. The results show the water molecule solidification between two or many nanoparticles at high nanoparticle loadings, but the solidification effect is suppressed for shear rates greater than a critical shear rate; thus Newtonian nanofluids can present shear-thinning non-Newtonian behavior.

  15. A surface tension based method for measuring oil dispersant concentration in seawater.

    Science.gov (United States)

    Cai, Zhengqing; Gong, Yanyan; Liu, Wen; Fu, Jie; O'Reilly, S E; Hao, Xiaodi; Zhao, Dongye

    2016-08-15

    This work developed a new method to determine concentration of Corexit EC9500A, and likely other oil dispersants, in seawater. Based on the principle that oil dispersants decrease surface tension, a linear correlation was established between the dispersant concentration and surface tension. Thus, the dispersant concentration can be determined by measuring surface tension. The method can accurately analyze Corexit EC9500A in the concentration range of 0.5-23.5mg/L. Minor changes in solution salinity (<0.3%), pH (7.9-9.0), and dissolved organic matter (<2.0mg/L as TOC) had negligible effects on the measurements. Moreover, effects of extracts from marine sediments were negligible, and thus, the method may be directly applied to seawater-sediment systems. The method accuracy was confirmed by comparing with direct TOC analysis. This simple, fast, economical method offers a convenient analytical tool for quantifying complex oil dispersants in water/seawater, which has been desired by the oil spill research community and industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of respiratory physiotherapy on arterial oxygen tension.

    Science.gov (United States)

    Hedstrand, U; Liw, M; Rooth, G; Ogren, C H

    1978-01-01

    The effect of deep breathing on arterial oxygen tension was investigated in 45 postoperative patients. Arterial oxygen tension was estimated by the transcutaneous oxygen tension method, which allows continuous non-invasive measurement of the arterial oxygen tension changes. Three deep breaths in 1 min, assisted by three respiratory therapy devices, were compared to a standard physiotherapy programme. A peak increase in arterial oxygen tension of 3--4.5 mmHg occurred after 1 min, and significantly increased values were seen for 2--4 min following deep breathing with the three respiratory devices. From the various physiotherapeutic procedures, verbally and manually assisted deep breathing gave a 7 mmHg PO2 peak and significantly increased values for 6 min. The sign mechanism is discussed in the light of the present knowledge of airway closure, which gives a satisfactory explanation of the short-lasting increase in oxygen tension.

  17. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    Science.gov (United States)

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  18. Prediction of viscosities and surface tensions of fuels using a new corresponding states model

    DEFF Research Database (Denmark)

    Queimada, A.J.; Rolo, L.I.; Caco, A.I.

    2006-01-01

    While some properties of diesels are cheap, easy and fast to measure, such as densities, others such as surface tensions and viscosities are expensive and time consuming. A new approach that uses some basic information such as densities to predict viscosities and surface tensions is here proposed...

  19. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows.

    Science.gov (United States)

    Li, Qing; Luo, K H

    2013-11-01

    In this paper, we aim to address an important issue about the pseudopotential lattice Boltzmann (LB) model, which has attracted much attention as a mesoscopic model for simulating interfacial dynamics of complex fluids, but suffers from the problem that the surface tension cannot be tuned independently of the density ratio. In the literature, a multirange potential was devised to adjust the surface tension [Sbragaglia et al., Phys. Rev. E 75, 026702 (2007)]. However, it was recently found that the density ratio of the system will be changed when the multirange potential is employed to adjust the surface tension. An alternative approach is therefore proposed in the present work. The basic strategy is to add a source term to the LB equation so as to tune the surface tension of the pseudopotential LB model. The proposed approach can guarantee that the adjustment of the surface tension does not affect the mechanical stability condition of the pseudopotential LB model, and thus provides a separate control of the surface tension and the density ratio. Meanwhile, it still retains the mesoscopic feature and the computational simplicity of the pseudopotential LB model. Numerical simulations are carried out for stationary droplets, capillary waves, and droplet splashing on a thin liquid film. The numerical results demonstrate that the proposed approach is capable of achieving a tunable surface tension over a very wide range and can keep the density ratio unchanged when adjusting the surface tension.

  20. The interfacial surface tension of a quark-gluon plasma fireball in a ...

    Indian Academy of Sciences (India)

    We calculate the interfacial surface tension of a QGP-fireball in a hadronic medium in the Ramanathan et al statistical model. The constancy of the ratio of the surface tension with the cube of the critical transition temperature is in overall accordance with lattice QCD findings. It is in complete agreement with a recent MIT bag ...

  1. Transparent, Superhydrophobic Surface with Varied Surface Tension Responsiveness in Wettability Based on Tunable Porous Silica Structure for Gauging Liquid Surface Tension.

    Science.gov (United States)

    Wang, Yan; Zhu, Yingjie; Zhang, Chunyang; Li, Jun; Guan, Zisheng

    2017-02-01

    Any solid surface can spontaneously exhibit variational wettability toward liquids with varied surface tension (γ). However, this correspondence has seldom been proposed or used on an artificial superhydrophobic surface, which should be more remarkable and peculiar. Herein, we fabricated robust, transparent superhydrophobic surfaces utilizing acid- and base-catalyzed silica (AC- and BC-silica) particles combined with candle soot template for structural construction and the CVD process for chemical modification. Three types of porous silica structures were devised, which presented distinctive surface tension responsiveness in wettability. Interestingly, all types of surfaces (i.e., AC-, AC/BC-, and BC-silica) show high repellence to high surface tension liquid (γ > 35 mN/m), and small differences are observed. With decreasing γ of the ethanol-water mixtures (γ surfaces have an evident decline, but the features of the decreases are fairly different. As γ decreases, the SCA on the AC-silica surface decreases gradually, but the extent of decline becomes larger when γ surface decreases gradually except for γ ≈ 30.81 mN/m, and the SCA undergoes a sharp decline at γ ≈ 30.81 mN/m. The SCA on the AC/BC-silica surface has a similar variation as that of the SCA on the BC-silica surface, but a lower rate of BC-silica particles, e.g., 1/16, 1/8, 1/1 (AC/BC), further diminishes the critical γ values (where a sharp SCA drop occurs) to 30.16, 29.56, and 28.04 mN/m, respectively. The diversity is believed to be ascribed to the structure-induced selectivity of pore infiltration for the liquid. The tunable responsiveness can be generalized to various classes of organic aqueous solutions including methanol, acetic acid, acetone, and N,N-dimethylformamide. Benefiting from this, we can estimate organics concentration of an organic aqueous solution as well as its liquid surface tension by detecting its wettability on all of the diverse superhydrophobic surfaces.

  2. Calculation of Surface Tensions of Polar Mixtures with a Simplified Gradient Theory Model

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    Key Words: Thermodynamics, Simplified Gradient Theory, Surface Tension, Equation of state, Influence Parameter.In this work, assuming that the number densities of each component in a mixture across the interface between the coexisting vapor and liquid phases are linearly distributed, we developed...... a simplified gradient theory (SGT) model for computing surface tensions. With this model, it is not required to solve the time-consuming density profile equations of the gradient theory model. The SRK EOS was applied to calculate the properties of the homogeneous fluid. First, the SGT model was used to predict...... surface tensions of 34 binary mixtures with an overall average absolute deviation of 3.46%. The results show good agreement between the predicted and experimental surface tensions. Next, the SGT model was applied to correlate surface tensions of binary mixtures containing alcohols, water or/and glycerol...

  3. Surface Tension of Supercooled Water: No Inflection Point down to -25 °C.

    Science.gov (United States)

    Hrubý, Jan; Vinš, Václav; Mareš, Radim; Hykl, Jiří; Kalová, Jana

    2014-02-06

    A dramatic increase in the surface tension of water with decreasing temperature in the supercooled liquid region has appeared as one of the many anomalies of water. This claimed anomaly characterized by the second inflection point at about +1.5 °C was observed in older surface tension data and was partially supported by some molecular simulations and theoretical considerations. In this study, two independent sets of experimental data for the surface tension of water in the temperature range between +33 and -25 °C are reported. The two data sets are mutually consistent, and they lie on a line smoothly extrapolating from the stable region. No second inflection point and no other anomalies in the course of the surface tension were observed. The new data lies very close to the extrapolated IAPWS correlation for the surface tension of ordinary water, which hence can be recommended for use, e.g., in atmospheric modeling.

  4. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Kamali

    2015-01-01

    Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.

  5. Surface tension in situ in flooded alveolus unaltered by albumin

    Science.gov (United States)

    Kharge, Angana Banerjee; Wu, You

    2014-01-01

    In the acute respiratory distress syndrome, plasma proteins in alveolar edema liquid are thought to inactivate lung surfactant and raise surface tension, T. However, plasma protein-surfactant interaction has been assessed only in vitro, during unphysiologically large surface area compression (%ΔA). Here, we investigate whether plasma proteins raise T in situ in the isolated rat lung under physiologic conditions. We flood alveoli with liquid that omits/includes plasma proteins. We ventilate the lung between transpulmonary pressures of 5 and 15 cmH2O to apply a near-maximal physiologic %ΔA, comparable to that of severe mechanical ventilation, or between 1 and 30 cmH2O, to apply a supraphysiologic %ΔA. We pause ventilation for 20 min and determine T at the meniscus that is present at the flooded alveolar mouth. We determine alveolar air pressure at the trachea, alveolar liquid phase pressure by servo-nulling pressure measurement, and meniscus radius by confocal microscopy, and we calculate T according to the Laplace relation. Over 60 ventilation cycles, application of maximal physiologic %ΔA to alveoli flooded with 4.6% albumin solution does not alter T; supraphysiologic %ΔA raise T, transiently, by 51 ± 4%. In separate experiments, we find that addition of exogenous surfactant to the alveolar liquid can, with two cycles of maximal physiologic %ΔA, reduce T by 29 ± 11% despite the presence of albumin. We interpret that supraphysiologic %ΔA likely collapses the interfacial surfactant monolayer, allowing albumin to raise T. With maximal physiologic %ΔA, the monolayer likely remains intact such that albumin, blocked from the interface, cannot interfere with native or exogenous surfactant activity. PMID:24970853

  6. Surface tension in situ in flooded alveolus unaltered by albumin.

    Science.gov (United States)

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2014-09-01

    In the acute respiratory distress syndrome, plasma proteins in alveolar edema liquid are thought to inactivate lung surfactant and raise surface tension, T. However, plasma protein-surfactant interaction has been assessed only in vitro, during unphysiologically large surface area compression (%ΔA). Here, we investigate whether plasma proteins raise T in situ in the isolated rat lung under physiologic conditions. We flood alveoli with liquid that omits/includes plasma proteins. We ventilate the lung between transpulmonary pressures of 5 and 15 cmH2O to apply a near-maximal physiologic %ΔA, comparable to that of severe mechanical ventilation, or between 1 and 30 cmH2O, to apply a supraphysiologic %ΔA. We pause ventilation for 20 min and determine T at the meniscus that is present at the flooded alveolar mouth. We determine alveolar air pressure at the trachea, alveolar liquid phase pressure by servo-nulling pressure measurement, and meniscus radius by confocal microscopy, and we calculate T according to the Laplace relation. Over 60 ventilation cycles, application of maximal physiologic %ΔA to alveoli flooded with 4.6% albumin solution does not alter T; supraphysiologic %ΔA raise T, transiently, by 51 ± 4%. In separate experiments, we find that addition of exogenous surfactant to the alveolar liquid can, with two cycles of maximal physiologic %ΔA, reduce T by 29 ± 11% despite the presence of albumin. We interpret that supraphysiologic %ΔA likely collapses the interfacial surfactant monolayer, allowing albumin to raise T. With maximal physiologic %ΔA, the monolayer likely remains intact such that albumin, blocked from the interface, cannot interfere with native or exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  7. Sodium hypochlorite with reduced surface tension does not improve in situ pulp tissue dissolution.

    Science.gov (United States)

    De-Deus, Gustavo; de Berredo Pinho, Marco André; Reis, Claudia; Fidel, Sandra; Souza, Erick; Zehnder, Matthias

    2013-08-01

    Sodium hypochlorite (NaOCl) solutions with added wetting agents are advertised to dissolve necrotic tissue in root canals faster than their counterparts without a lowered surface tension. This was tested in the current study, and the null hypothesis formulated was that there was no difference between a commercially available NaOCl solution with a lowered surface tension (Chlor-XTRA; Vista Dental Products, Racine, WI) and a counterpart containing the same amount of available chlorine without added wetting agents regarding the soft tissue that remains in oval-shaped canals after mechanical preparation and irrigation. Formerly vital extracted teeth (N = 44, 22 pairs) with similar anatomy were radiographically paired and chemomechanically prepared. In 1 tooth from each pair, a 5.25% NaOCl solution with reduced surface tension was used; in the other, a pure, technical-grade NaOCl solution of 5.25% was used. The percentage of remaining pulp tissue (PRPT) was histologically assessed in root cross-sections. The non-Gaussian raw data were subjected to Kruskal-Wallis and Mann-Whitney U tests to verify the respective effect of the cross-section level and solution on the PRPT. The relationship between the cross-section level and the PRPT was estimated by the Spearman correlation test. The alpha-type error was set at 5%. The cross-section level significantly influenced the PRPT (P .05). A significant inverse correlation was found between the cross-section level and the PRPT (P surface tension did not dissolve vital pulp tissue in oval root canals any better than a conventional NaOCl solution of similar strength. Closer to the apex, pulp tissue dissolution is less efficient irrespective of the solution. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Surface crack growth in cylindrical hollow specimen subject to tension and torsion

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2015-07-01

    Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.

  9. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  10. A mean field approach for computing solid-liquid surface tension for nanoscale interfaces

    Science.gov (United States)

    Chiu, Chi-cheng; Ranatunga, R. J. K. Udayana; Flores, David Torres; Pérez, D. Vladimir; Moore, Preston B.; Shinoda, Wataru; Nielsen, Steven O.

    2010-02-01

    The physical properties of a liquid in contact with a solid are largely determined by the solid-liquid surface tension. This is especially true for nanoscale systems with high surface area to volume ratios. While experimental techniques can only measure surface tension indirectly for nanoscale systems, computer simulations offer the possibility of a direct evaluation of solid-liquid surface tension although reliable methods are still under development. Here we show that using a mean field approach yields great physical insight into the calculation of surface tension and into the precise relationship between surface tension and excess solvation free energy per unit surface area for nanoscale interfaces. Previous simulation studies of nanoscale interfaces measure either excess solvation free energy or surface tension, but these two quantities are only equal for macroscopic interfaces. We model the solid as a continuum of uniform density in analogy to Hamaker's treatment of colloidal particles. As a result, the Hamiltonian of the system is imbued with parametric dependence on the size of the solid object through the integration limits for the solid-liquid interaction energy. Since the solid-liquid surface area is a function of the size of the solid, and the surface tension is the derivative of the system free energy with respect to this surface area, we obtain a simple expression for the surface tension of an interface of arbitrary shape. We illustrate our method by modeling a thin nanoribbon and a solid spherical nanoparticle. Although the calculation of solid-liquid surface tension is a demanding task, the method presented herein offers new insight into the problem, and may prove useful in opening new avenues of investigation.

  11. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension.

    Science.gov (United States)

    Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min

    2017-08-28

    The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.

  12. Molecular Tension Probes for Imaging Forces at the Cell Surface.

    Science.gov (United States)

    Liu, Yang; Galior, Kornelia; Ma, Victor Pui-Yan; Salaita, Khalid

    2017-11-21

    Mechanical forces are essential for a variety of biological processes ranging from transcription and translation to cell adhesion, migration, and differentiation. Through the activation of mechanosensitive signaling pathways, cells sense and respond to physical stimuli from the surrounding environment, a process widely known as mechanotransduction. At the cell membrane, many signaling receptors, such as integrins, cadherins and T- or B-cell receptors, bind to their ligands on the surface of adjacent cells or the extracellular matrix (ECM) to mediate mechanotransduction. Upon ligation, these receptor-ligand bonds transmit piconewton (pN) mechanical forces that are generated, in part, by the cytoskeleton. Importantly, these forces expose cryptic sites within mechanosensitive proteins and modulate the binding kinetics (on/off rate) of receptor-ligand complexes to further fine-tune mechanotransduction and the corresponding cell behavior. Over the past three decades, two categories of methods have been developed to measure cell receptor forces. The first class is traction force microscopy (TFM) and micropost array detectors (mPADs). In these methods, cells are cultured on elastic polymers or microstructures that deform under mechanical forces. The second category of techniques is single molecule force spectroscopy (SMFS) including atomic force microscopy (AFM), optical or magnetic tweezers, and biomembrane force probe (BFP). In SMFS, the experimenter applies external forces to probe the mechanics of individual cells or single receptor-ligand complexes, serially, one bond at a time. Although these techniques are powerful, the limited throughput of SMFS and the nN force sensitivity of TFM have hindered further elucidation of the molecular mechanisms of mechanotransduction. In this Account, we introduce the recent advent of molecular tension fluorescence microscopy (MTFM) as an emerging tool for molecular imaging of receptor mechanics in living cells. MTFM probes are

  13. Surface tension and Wulff shape for a lattice model without spin flip symmetry.

    CERN Document Server

    Bodineau, T

    2003-01-01

    We propose a new definition of surface tension and check it in a spin model of the Pirogov-Sinai class where the spin flip symmetry is broken. We study the model at low temperatures on the phase transitions line and prove: (i) existence of the surface tension in the thermodynamic limit, for any orientation of the surface and in all dimensions $d\\ge 2$; (ii) the Wulff shape constructed with such a surface tension coincides with the equilibrium shape of the cluster which appears when fixing the total spin magnetization (Wulff problem).

  14. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

    KAUST Repository

    Schroeder, Craig

    2012-02-01

    We present a method for applying semi-implicit forces on a Lagrangian mesh to an Eulerian discretization of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The resulting method has semi-implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension as a semi-implicit Lagrangian force, the resulting method benefits from improved stability and the ability to take larger time steps. The resulting discretization is also able to maintain parasitic currents at low levels. © 2011.

  15. A Simple Prediction Method for the Surface Tension of Ionic Liquids as a Function of Temperature

    Science.gov (United States)

    Koller, Thomas M.; Steininger, Corina; Rausch, Michael H.; Fröba, Andreas P.

    2017-11-01

    In this study, a simple prediction method for the surface tension of ionic liquids (ILs) as a function of temperature is developed. Based on a database of experimental surface tension values collected from the literature, first a prediction scheme for the surface tension at a reference temperature of 298.15 K using only information on the density, molar mass, and anion type of the IL is suggested. By combination of this approach with the temperature dependence of the density, an extended prediction scheme describing the temperature dependence of the surface tension of ILs is recommended. The optimized prediction model for the surface tension allows for the prediction of about 3500 temperature-dependent experimental surface tension data of 226 different ILs with a standard deviation of about 7 %. In comparison with fluid-specific prediction methods found in the literature, the developed simple empirical prediction model requires only easily accessible parameters and can be applied for ILs with arbitrary cation and anion combinations. Thus, the proposed prediction method seems to be a valuable engineering tool for the quantitative estimation of the surface tension of ILs.

  16. Density-functional calculations of the surface tension of liquid Al and Na

    Science.gov (United States)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  17. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    Science.gov (United States)

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  18. Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method

    Science.gov (United States)

    Seric, Ivana; Afkhami, Shahriar; Kondic, Lou

    2018-01-01

    We develop a general methodology for the inclusion of a variable surface tension coefficient into a Volume-of-Fluid based Navier-Stokes solver. This new numerical model provides a robust and accurate method for computing the surface gradients directly by finding the tangent directions on the interface using height functions. The implementation is applicable to both temperature and concentration dependent surface tension coefficient, along with the setups involving a large jump in the temperature between the fluid and its surrounding, as well as the situations where the concentration should be strictly confined to the fluid domain, such as the mixing of fluids with different surface tension coefficients. We demonstrate the applicability of our method to the thermocapillary migration of bubbles and the coalescence of drops characterized by a different surface tension coefficient.

  19. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  20. Surface Tension between Two Paradigms of Writing Instruction.

    Science.gov (United States)

    Glasgow, Jacqueline

    1995-01-01

    Reviews the tensions between discourse-centered writing instruction and expressivist approaches. Considers the conflict when the writing instructor's approach differs from the writing tutor's approach. Explores the possibilities of a reflective response style of writing instruction. Advocates such an approach as a useful means of fostering writing…

  1. Page 1 Sharma parameter and surface tension of liquids 229 ...

    Indian Academy of Sciences (India)

    tension with increasing pressure since the compressibility decreases with increasing pressure, in accordance with the experiment for liquids (Patterson and Rastogi 1970;. Soczkiewicz 1977; Sharma 1981, 1984a; Sahli et al 1976). For most of the simple, non- polar liquids, the values of Eötvös constant, Ke are of the order of ...

  2. A Macroscopic Model for Simulating the Mucociliary Clearance in a Bronchial Bifurcation: The Role of Surface Tension.

    Science.gov (United States)

    Manolidis, Michail; Isabey, Daniel; Louis, Bruno; Grotberg, James B; Filoche, Marcel

    2016-12-01

    The mucociliary clearance in the bronchial tree is the main mechanism by which the lungs clear themselves of deposited particulate matter. In this work, a macroscopic model of the clearance mechanism is proposed. Lubrication theory is applied for thin films with both surface tension effects and a moving wall boundary. The flow field is computed by the use of a finite-volume scheme on an unstructured grid that replicates a bronchial bifurcation. The carina in bronchial bifurcations is of special interest because it is a location of increased deposition of inhaled particles. In this study, the mucus flow is computed for different values of the surface tension. It is found that a minimal surface tension is necessary for efficiently removing the mucus while maintaining the mucus film thickness at physiological levels.

  3. Selective surface tension induced patterning on flexible textiles via click chemistry.

    Science.gov (United States)

    Wang, Ben; Zhang, Yabin; Zhang, Li

    2017-04-06

    A solid surface commonly forms two wetting modes by alternating the type of the liquids, i.e. wetting and nonwetting. Here we report that a textile can be programmed to exhibit three wetting modes by simply alternating the surface tension of the liquids, they are in turn, wetting, selective wetting and nonwetting. The hidden patterns are prepared via a combination of wet chemical etching and two-step UV-induced thiol-ene click chemistry to graft low-surface-tension thiols and high-surface-tension thiols, respectively, on the textile surface. The as-prepared flexible textiles possess the nonwetting and wetting properties of the high-surface-tension liquids, such as water and glycerol, and the low-surface-tension liquids, such as decane and ethanol, respectively. Furthermore, the selective wetting behavior can be revealed only if the surface tension of the liquids is within a narrow range of approximately 44.8 mN m -1 to 28.1 mN m -1 , such as N,N-dimethylformamide and acetonitrile. In addition, the as-patterned textiles demonstrated high mechanical and chemical stability with long-term and repeated usage, which implies their high potential to act as novel encoded information carrier materials for flexible and textile-based devices.

  4. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    DEFF Research Database (Denmark)

    Müller, Hanna; End, Caroline; Renner, Marcus

    2007-01-01

    to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. CONCLUSION: Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated...... that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease....

  5. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing.

    Science.gov (United States)

    Folmsbee, Martha

    2015-01-01

    Approximately 97% of filter validation tests result in the demonstration of absolute retention of the test bacteria, and thus sterile filter validation failure is rare. However, while Brevundimonas diminuta (B. diminuta) penetration of sterilizing-grade filters is rarely detected, the observation that some fluids (such as vaccines and liposomal fluids) may lead to an increased incidence of bacterial penetration of sterilizing-grade filters by B. diminuta has been reported. The goal of the following analysis was to identify important drivers of filter validation failure in these rare cases. The identification of these drivers will hopefully serve the purpose of assisting in the design of commercial sterile filtration processes with a low risk of filter validation failure for vaccine, liposomal, and related fluids. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to the effect of bacterial load (CFU/cm(2)), bacterial load rate (CFU/min/cm(2)), volume throughput (mL/cm(2)), and maximum filter flux (mL/min/cm(2)) on bacterial penetration. The data set (∼1162 individual filtrations) included all instances of process-specific filter validation failures performed at Pall Corporation, including those using other filter media, but did not include all successful retentive filter validation bacterial challenges. It was neither practical nor necessary to include all filter validation successes worldwide (Pall Corporation) to achieve the goals of this analysis. The percentage of failed filtration events for the selected total master data set was 27% (310/1162). Because it is heavily weighted with penetration events, this percentage is considerably higher than the actual rate of failed filter validations, but, as such, facilitated a close examination of the conditions that lead to filter validation failure. In agreement with our previous reports, two of the significant drivers of bacterial penetration identified were the total

  6. Prediction of surface tension of binary mixtures with the parachor method

    Directory of Open Access Journals (Sweden)

    Němec Tomáš

    2015-01-01

    Full Text Available The parachor method for the estimation of the surface tension of binary mixtures is modified by considering temperature-dependent values of the parachor parameters. The temperature dependence is calculated by a least-squares fit of pure-solvent surface tension data to the binary parachor equation utilizing the Peng-Robinson equation of state for the calculation of equilibrium densities. A very good agreement between experimental binary surface tension data and the predictions of the modified parachor method are found for the case of the mixtures of carbon dioxide and butane, benzene, and cyclohexane, respectively. The surface tension is also predicted for three refrigerant mixtures, i.e. propane, isobutane, and chlorodifluoromethane, with carbon dioxide.

  7. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    OpenAIRE

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2009-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples be...

  8. Autonomous Control of Fluids in a Wide Surface Tension Range in Microfluidics.

    Science.gov (United States)

    Ge, Peng; Wang, Shuli; Liu, Yongshun; Liu, Wendong; Yu, Nianzuo; Zhang, Jianglei; Shen, Huaizhong; Zhang, Junhu; Yang, Bai

    2017-07-25

    In this paper, we report the preparation of anisotropic wetting surfaces that could control various wetting behaviors of liquids in a wide surface tension range (from water to oil), which could be employed as a platform for controlling the flow of liquids in microfluidics (MFs). The anisotropic wetting surfaces are chemistry-asymmetric "Janus" silicon cylinder arrays, which are fabricated via selecting and regulating the functional groups on the surface of each cylinder unit. Liquids (in a wide surface tension range) wet in a unidirectional manner along the direction that was modified by the group with large surface energy. Through introducing the Janus structure into a T-shaped pattern and integrating it with an identical T-shaped poly(dimethylsiloxane) microchannel, the as-prepared chips can be utilized to perform as a surface tension admeasuring apparatus or a one-way valve for liquids in a wide surface tension range, even oil. Furthermore, because of the excellent ability in controlling the flowing behavior of liquids in a wide surface tension range in an open system or a microchannel, the anisotropic wetting surfaces are potential candidates to be applied both in open MFs and conventional MFs, which would broaden the application fields of MFs.

  9. Surface tension of the two center Lennard-Jones plus point dipole fluid.

    Science.gov (United States)

    Werth, Stephan; Horsch, Martin; Hasse, Hans

    2016-02-07

    Molecular dynamics simulations are used for systematically studying the surface tension of the two center Lennard-Jones plus point dipole (2CLJD) model fluid. In a dimensionless representation, this model fluid has two parameters describing the elongation and the dipole moment. These parameters were varied in the entire range relevant for describing real fluids resulting in a grid of 38 individual models. For each model, the surface tension was determined at temperatures between 60% and 90% of the critical temperature. For completeness, the vapor pressure and the saturated densities were also determined. The latter results agree well with the literature data, whereas for the surface tension, only few data were previously available. From the present results, an empirical correlation for the surface tension of the 2CLJD model as a function of the model parameters is developed. The correlation is used to predict the surface tension of 46 2CLJD molecular models from the literature, which were adjusted to bulk properties, but not to interfacial properties. The results are compared to the experimental data. The molecular models overestimate the surface tension, and deviations between the predictions and experimental data are below 12% on average.

  10. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    Science.gov (United States)

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.

  11. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species.

    Science.gov (United States)

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T; Mussone, Paolo G

    2011-04-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus aucuparia over 3 months. We measured the instantaneous surface tension and followed changes over a period of 0.5-5 h using the pendant drop technique. In all three species the instantaneous surface tension was equal to or within a few percent of that of pure water. Further, in B. papyrifera and S. aucuparia the change over time following drop establishment, although significant, was very small. In P. tremuloides, however, there was a steep decline in surface tension over time that leveled off towards values 21-27% lower than that of pure water. This indicated the presence of surfactants. The values were lower for thinner distal branch segments than for proximal ones closer to the trunk. In some species it appears valid to assume that the surface tension of xylem sap is equal to that of water. However, in branch segments of P. tremuloides close to the terminal bud and hence potentially in other species as well, it may be necessary to take into account the presence of surfactants that reduce the surface tension over time.

  12. Surface tension of nitric oxide and its binary mixtures with krypton, methane, and ethene

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Santos Mendonca, A.F.S. dos; Saramago, B.J.V.; Soares, V.A.M. [Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural

    1997-05-15

    The surface tension of three binary liquid mixtures of NO with Kr, CH{sub 4}, and C{sub 2}H{sub 4} has been determined as a function of composition in the temperature range 102.0 to 119.0 K. These measurements are a contribution to the study of binary liquid mixtures in which one component is unassociated while the molecules of the other can associate between themselves. Nitric oxide is the simplest molecule capable of forming dimers, but not larger aggregates. This results in the surface tension of liquid nitric oxide having a strong temperature dependence: when the temperature increases the degree of dimerization decreases, contributing to a larger decrease of the surface tension. The surface tension of NO mixtures shows strong deviations from ideality. The mixtures containing Kr and CH{sub 4} exhibit negative deviations, while for the NO + C{sub 2}H{sub 4} system the surface tension shows a complex dependence on the composition. This strong departure from ideality had already been found for the bulk properties of these three systems. The surface tension of the CH{sub 4} + Kr system, already well characterized in the literature, was also measured to test the equipment.

  13. Quantification of surface tension and internal pressure generated by single mitotic cells.

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A; Jülicher, Frank; Müller, Daniel J; Helenius, Jonne

    2014-08-29

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.

  14. Humidity-dependent surface tension measurements of individual inorganic and organic submicrometre liquid particles† †Electronic supplementary information (ESI) available: SEM image of AFM nanoneedles, force plot data from bulk AFM surface tension, data used for surface tension vs. RH predictions, comparison of AIM and bulk predictions for NaCl. See DOI: 10.1039/c4sc03716b Click here for additional data file.

    Science.gov (United States)

    Morris, Holly S.

    2015-01-01

    Surface tension, an important property of liquids, is easily measured for bulk samples. However, for droplets smaller than one micron in size, there are currently no reported measurements. In this study, atomic force microscopy (AFM) and force spectroscopy have been utilized to measure surface tension of individual submicron sized droplets at ambient pressure and controlled relative humidity (RH). Since the surface tension of atmospheric aerosols is a key factor in understanding aerosol climate effects, three atmospherically relevant systems (NaCl, malonic and glutaric acids) were studied. Single particle AFM measurements were successfully implemented in measuring the surface tension of deliquesced particles on the order of 200 to 500 nm in diameter. Deliquesced particles continuously uptake water at high RH, which changes the concentration and surface tension of the droplets. Therefore, surface tension as a function of RH was measured. AFM based surface tension measurements are close to predicted values based on bulk measurements and activities of these three chemical systems. Non-ideal behaviour in concentrated organic acid droplets is thought to be important and the reason for differences observed between bulk solution predictions and AFM data. Consequently, these measurements are crucial in order to improve atmospheric climate models as direct measurements hitherto have been previously inaccessible due to instrument limitations. PMID:28706693

  15. Magma differentiation in shallow sills controlled by compaction and surface tension: San Rafael desert, Utah

    Science.gov (United States)

    Diez, M.; Savov, I. P.; Connor, C.

    2010-12-01

    Veinlets, veins, sheet or layers of syenite are common structures found in alkaline basalt sills. The mechanism usually invoked to explain their formation are liquid immiscibility, multiple intrusion or crystal fractionation from primitive mafic melt. Syenite veins of few centimeters to sheets of up to 1-2 m thick are ubiquitous in remarkably well-exposed sills of the San Rafael subvolcanic field in the Colorado Plateau, Utah. In some of these exposures we have found an intriguing configuration in which the main body of the alkaline sill is underlain by a lower density sheet of syenite of ~ 1 m thick. The contact is flat and is not a chilled margin, therefore a multiple intrusion scenario with long intervals between injections can be disregarded. This implies that both layers were fluid at the time of magma emplacement. As the more felsic less dense syenite is at the bottom of the sill any mechanism governed exclusively by bouyancy would be problematic. In an attempt to shed light on this apparent riddle we propose the following geological scenario: The sill is built by continuous injections. Magma starts to cool and fractional crystallization operates at this stage to differentiate the alkaline magma into syenite. By the time ~60% of crystallization is attained the system can be described as two-phase flow consisting of pore-syenite melt in hot-creeping matrix. The forces acting to segregate melt into veins or sheets are the gravitational force and surface tension. When surface tension is stronger than the gravitational force, differences in average curvature or surface tension translates into pressure differences that drive melt flow from low to high porosity regions. If the last injections occur at the bottom of the sill a syenite layer may be formed. With the aid of dimensional analysis and two-phase numerical models that account for gravitational compaction and surface tension effects, we explore the conditions that allow for centimeter-scale veins to meter

  16. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  17. Relaxation of surface tension in the free-surface boundary layer of simple Lennard-Jones liquids.

    Science.gov (United States)

    Lukyanov, A V; Likhtman, A E

    2013-01-21

    In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call "intrinsic" interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the surface tension. We have observed this scenario for monatomic Lennard-Jones (LJ) liquid as well as for binary LJ mixtures at different temperatures, monitoring a wide range of physical observables.

  18. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in

  19. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  20. Pulling force and surface tension drive membrane fusion.

    Science.gov (United States)

    Liu, Xuejuan; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Zhong, Chongli

    2017-11-21

    Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.

  1. Pulling force and surface tension drive membrane fusion

    Science.gov (United States)

    Liu, Xuejuan; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Zhong, Chongli

    2017-11-01

    Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.

  2. Surface tension of supercooled water determined by using a counterpressure capillary rise method.

    Science.gov (United States)

    Vinš, Václav; Fransen, Maurice; Hykl, Jiří; Hrubý, Jan

    2015-04-30

    Measurements of the surface tension of supercooled water down to -25 °C have been reported recently (Hrubý et al. J. Phys. Chem. Lett. 2014, 5, 425-428). These experiments did not show any anomalous temperature dependence of the surface tension of supercooled water reported by some earlier measurements and molecular simulations. In the present work, this finding is confirmed using a counterpressure capillary rise method (the counterpressure method) as well as through the use of the classical capillary rise method (the height method). In the counterpressure method, the liquid meniscus inside the vertical capillary tube was kept at a fixed position with an in-house developed helium distribution setup. A preset counterpressure was applied to the liquid meniscus when its temperature changed from a reference temperature (30 °C) to the temperature of interest. The magnitude of the counterpressure was adjusted such that the meniscus remained at the same height, thus compensating the change of the surface tension. One advantage of the counterpressure method over the height method consists of avoiding the uncertainty due to a possible variation of the capillary diameter along its length. A second advantage is that the equilibration time due to the capillary flow of the highly viscous supercooled water can be shortened. For both the counterpressure method and the height method, the actual results are relative values of surface tension with respect to the surface tension of water at the reference temperature. The combined relative standard uncertainty of the relative surface tensions is less than or equal to 0.18%. The new data between -26 and +30 °C lie close to the IAPWS correlation for the surface tension of ordinary water extrapolated below 0.01 °C and do not exhibit any anomalous features.

  3. Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems.

    Science.gov (United States)

    Atefi, Ehsan; Joshi, Ramila; Mann, Jay Adin; Tavana, Hossein

    2015-09-30

    Aqueous two-phase systems (ATPS) provide a mild environment for the partition and separation of cells. We report a combined experimental and theoretical study on the effect of interfacial tension of polymeric ATPS on the partitioning of cells between two phases and their interface. Two-phase systems are generated using polyethylene glycol and dextran of specific properties as phase-forming polymers and culture media as the solvent component. Ultralow interfacial tensions of the solutions are precisely measured using an axisymmetric drop shape analysis method. Partition experiments show that two-phase systems with an interfacial tension of 30 μJ/m(2) result in distribution of majority of cells to the bottom dextran phase. An increase in the interfacial tension results in a distribution of cells toward the interface. An independent cancer cell spheroid formation assay confirms these observations: a drop of the dextran phase containing cancer cells is dispensed into the immersion polyethylene glycol phase to form a cell-containing drop. Only at very small interfacial tensions do cells remain within the drop to aggregate into a spheroid. We perform a thermodynamic modeling of cell partition to determine variations of free energy associated with displacement of cells in ATPS with respect to the ultralow interfacial tensions. This modeling corroborates with the experimental results and demonstrates that at the smallest interfacial tension of 30 μJ/m(2), the free energy is a minimum with cells in the bottom phase. Increasing the interfacial tension shifts the minimum energy and partition of cells toward the interfacial region of the two aqueous phases. Examining differences in the partition behavior and minimum free energy modeling of A431.H9 cancer cells and mouse embryonic stem cells shows that the surface properties of cells further modulate partition in ATPS. This combined approach provides a fundamental understanding of interfacial tension role on cell partition in

  4. Effects of tension on vortex-induced vibration (VIV) responses of a long tensioned cylinder in uniform flows

    Science.gov (United States)

    Kang, Ling; Ge, Fei; Wu, Xiaodong; Hong, Youshi

    2017-02-01

    The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.

  5. Surface tension of water and acid gases from Monte Carlo simulations

    Science.gov (United States)

    Ghoufi, A.; Goujon, F.; Lachet, V.; Malfreyt, P.

    2008-04-01

    We report direct Monte Carlo (MC) simulations on the liquid-vapor interfaces of pure water, carbon dioxide, and hydrogen sulfide. In the case of water, the recent TIP4P/2005 potential model used with the MC method is shown to reproduce the experimental surface tension and to accurately describe the coexistence curves. The agreement with experiments is also excellent for CO2 and H2S with standard nonpolarizable models. The surface tensions are calculated by using the mechanical and the thermodynamic definitions via profiles along the direction normal to the surface. We also discuss the different contributions to the surface tension due to the repulsion-dispersion and electrostatic interactions. The different profiles of these contributions are proposed in the case of water.

  6. The effect of tension wood on roughness of poplar wood and its modification by steaming

    Directory of Open Access Journals (Sweden)

    اصغر طارمیان

    2016-12-01

    Full Text Available In this research, the effect of tension wood on the roughness of poplar wood in tangential and radial sections was investigated. Steaming at120 ̊C for 30 and 60 min was aslo applied to reduce the roughness. The potential use of roughness measurement technique for macroscopically detection of tension wood was one of the main objectives of this research. Before roughness measurement and for accurate sampling, the detection of tension wood was carried out using Herzberg reagent and microscopic studies. The roughness of samples was measured by stylus profilometer at 12 % moisture content and the surface quality was also studied by stereo-microscope. Results showed that there is no significant difference in the radial and tangential roughness between tension and normal wood. No difference was also observed between the roughness of tangential and radial sections of both types of woods. In contrast, stereo-microscopic studies clearly showed the higher roughness of tension wood. Steaming for 30 min increased the roughness but the treatment for 60 min had a decreasing effect on the roughness of both types of woods. Overall, it can be concluded that the roughness measurement technique cannot be used as a suitable method to nondestructively detect the poplar tension wood.

  7. Effects of eugenol on resting tension of rat atria

    Directory of Open Access Journals (Sweden)

    R.R. Olivoto

    2014-04-01

    Full Text Available In cardiac and skeletal muscle, eugenol (μM range blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131 and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR blocker] and procaine (30 mM; a nonspecific RyR blocker did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM, however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]. Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state.

  8. Effects of eugenol on resting tension of rat atria.

    Science.gov (United States)

    Olivoto, R R; Damiani, C E N; Kassouf Silva, I; Lofrano-Alves, M S; Oliveira, M A; Fogaça, R T H

    2014-04-01

    In cardiac and skeletal muscle, eugenol (μM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).

  9. Direct Surface Tension Measurements of Individual Sub-Micrometer Particles Using Atomic Force Microscopy.

    Science.gov (United States)

    Lee, Hansol D; Estillore, Armando D; Morris, Holly S; Ray, Kamal K; Alejandro, Aldair; Grassian, Vicki H; Tivanski, Alexei V

    2017-11-02

    Understanding the role of sea spray aerosol (SSA) on climate and the environment is of great interest due to their high number concentration throughout the Earth's atmosphere. Despite being of fundamental importance, direct surface tension measurements of SSA relevant sub-micrometer particles are rare, largely due to their extremely small volumes. Herein, atomic force microscopy (AFM) is used to directly measure the surface tension of individual sub-micrometer SSA particle mimics at ambient temperature and varying relative humidity (RH). Specifically, we probed both atmospherically relevant and fundamentally important model systems including electrolyte salts, dicarboxylic acids, and saccharides as single components and mixtures. Our results show that the single particle surface tension depends on RH or solute mole percentage and chemical composition. Moreover, for liquid droplets at and below 100 Pa s in viscosity, or at corresponding RH, we show good agreement between the AFM single particle and the bulk solution surface tension measurements at overlapping concentration ranges. Thus, direct surface tension measurements of individual particles using AFM is shown over a wide range of chemical systems as a function of RH, solute mole percentage, and viscosity than previously reported.

  10. Surface-tension phenomena in organismal biology: an introduction to the symposium.

    Science.gov (United States)

    Bourouiba, Lydia; Hu, David L; Levy, Rachel

    2014-12-01

    Flows driven by surface tension are both ubiquitous and diverse, involving the drinking of birds and bees, the flow of xylem in plants, the impact of raindrops on animals, respiration in humans, and the transmission of diseases in plants and animals, including humans. The fundamental physical principles underlying such flows provide a unifying framework to interpret the adaptations of the microorganisms, animals, and plants that rely upon them. The symposium on "Surface-Tension Phenomena in Organismal Biology" assembled an interdisciplinary group of researchers to address a large spectrum of topics, all articulated around the role of surface tension in shaping biology, health, and ecology. The contributions to the symposium and the papers in this issue are meant to be a starting point for novices to familiarize themselves with the fundamentals of flows driven by surface tension; to understand how they can play a governing role in many settings in organismal biology; and how such understanding of nature's use of surface tension can, in turn, inspire humans to innovate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    Science.gov (United States)

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion. PMID:19217876

  12. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Directory of Open Access Journals (Sweden)

    Blaha J.

    2013-04-01

    Full Text Available A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951, i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and –11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994; however it disagrees with data by Hacker.

  13. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Science.gov (United States)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  14. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  15. A Method to Calculate the Surface Tension of a Cylindrical Droplet

    Science.gov (United States)

    Wang, Xiaosong; Zhu, Ruzeng

    2010-01-01

    The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…

  16. The surface tension of pure liquids. Thermodynamic components and corresponding states

    NARCIS (Netherlands)

    Lyklema, J.

    1999-01-01

    From the temperature dependency of surface and interfacial tensions the surface excess energy and entropy per unit area can be obtained. The excess energy is a liquid-specific property; it varies over about three decades between liquid helium and molten metals. On the other hand, the excess entropy

  17. Molecular Dynamics calculation of solid/liquid surface tension: a methodological study

    Science.gov (United States)

    Pineau, Nicolas; Dreher, Thibaud; Soulard, Laurent; Bourasseau, Emeric; Malfreyt, Patrice

    2017-06-01

    The influence of polymer/molecular crystal interfaces on the mechanical properties of Polymer Binded Explosives under high strains is an open topic which can be explored through surface tension calculations. While such calculations are being performed for liquid/liquid and liquid/vapor interfaces intensively, little is known for the solid/liquid and solid/solid interfaces. The aim of this work is to fill that gap by computing the solid/liquid surface tension of a simple model system consisting of a graphene sheet embedded in liquid methane. We show that, unlike the liquid/vapour and liquid/liquid systems, the presence of a solid substrate has a strong impact on the structure of the fluid phase and that the simulation parameters should be chosen carefully to compute accurate surface tensions.

  18. Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.

    Science.gov (United States)

    Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans

    2012-03-15

    Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy. © 2012 American Chemical Society

  19. Predicting the minimum liquid surface tension activity of pseudomonads expressing biosurfactants.

    Science.gov (United States)

    Mohammed, I U; Deeni, Y; Hapca, S M; McLaughlin, K; Spiers, A J

    2015-01-01

    Bacteria produce a variety of biosurfactants capable of significantly reducing liquid (aqueous) surface tension (γ) with a range of biological roles and biotechnological uses. To determine the lowest achievable surface tension (γMin ), we tested a diverse collection of Pseudomonas-like isolates from contaminated soil and activated sludge and identified those expressing biosurfactants by drop-collapse assay. Liquid surface tension-reducing ability was quantitatively determined by tensiometry, with 57 isolates found to significantly lower culture supernatant surface tensions to 24·5-49·1 mN m(-1) . Differences in biosurfactant behaviour determined by foaming, emulsion and oil-displacement assays were also observed amongst isolates producing surface tensions of 25-27 mN m(-1) , suggesting that a range of structurally diverse biosurfactants were being expressed. Individual distribution identification (IDI) analysis was used to identify the theoretical probability distribution that best fitted the surface tension data, which predicted a γMin of 24·24 mN m(-1) . This was in agreement with predictions based on earlier work of published mixed bacterial spp. data, suggesting a fundamental limit to the ability of bacterial biosurfactants to reduce surface tensions in aqueous systems. This implies a biological restriction on the synthesis and export of these agents or a physical-chemical restriction on their functioning once produced. Numerous surveys of biosurfactant-producing bacteria have been conducted, but only recently has an attempt been made to predict the minimum liquid surface tension these surface-active agents can achieve. Here, we determine a theoretical minimum of 24 mN m(-1) by statistical analysis of tensiometry data, suggesting a fundamental limit for biosurfactant activity in bacterial cultures incubated under standard growth conditions. This raises a challenge to our understanding of biosurfactant expression, secretion and function, as well as

  20. Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using Drude oscillator polarizable and nonpolarizable models.

    Science.gov (United States)

    Neyt, Jean-Claude; Wender, Aurélie; Lachet, Véronique; Ghoufi, Aziz; Malfreyt, Patrice

    2013-07-28

    Molecular simulations using Drude oscillator polarizable and nonpolarizable models for water and ions are carried out to predict the dependence of the surface tension on salt concentration. The polarizable water and ion models are based only on the classical Drude oscillators. The temperature dependence of the surface tension of water is examined for different water models. The dependence of salt densities on salt concentration is investigated through the nonpolarizable and Drude oscillator polarizable models. Finally, the reproduction of the surface tension of salt solution over a large range of concentrations is analyzed through a number of combinations between ions and water force fields. The structure of the interface is then discussed as a function of polarization effects. We establish here the inability of the Drude oscillator polarizable force fields to reproduce the salt concentration dependence of surface tension of NaCl aqueous solutions.

  1. Size effect in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars

    1999-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is an explanation relying on an increased probability of encountering a strength reducing flaw when the volume...

  2. Plasticity size effects in tension and compression of single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2005-01-01

    The effect of size and loading conditions on the tension and compression stress-strain response of micron-sized planar crystals is investigated using discrete dislocation plasticity. The crystals are taken to have a single active slip system and both small-strain and finite-strain analyses are

  3. Surface Tension and Viscosity of Quasicrystal-Forming Ti-Zr-Ni Alloys

    Science.gov (United States)

    Hyers, R. W.; Bradshaw, R. C.; Rogers, J. R.; Rathz, T. J.; Lee, G. W.; Kelton, K. F.; Gangopadhyay, A. K.

    2003-01-01

    The surface tension and viscosity of quasicrystal-forming Ti-Zr-Ni alloys were measured over a range of temperature, including both stable and undercooled liquids by an Electrostatic Levitation (ESL) technique. ESL is a containerless technique which allows processing of samples without contact, greatly reducing contamination and increasing access to the metastable undercooled liquid. The measured viscosity is typical of glass-forming alloys of similar composition to the quasicrystal-forming alloys studied here, while the surface tension shows an anomaly at deep undercoolings.

  4. Development of corresponding states model for estimation of the surface tension of chemical compounds

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Eslamimanesh, Ali; Sattari, Mehdi

    2013-01-01

    The gene expression programming (GEP) strategy is applied for presenting two corresponding states models to represent/predict the surface tension of about 1,700 compounds (mostly organic) from 75 chemical families at various temperatures collected from the DIPPR 801 database. The models parameters...... include critical temperature or temperature/critical volume/acentric factor/critical pressure/reduced temperature/reduced normal boiling point temperature/molecular weight of the compounds. Around 1,300 surface tension data of 118 random compounds are used for developing the first model (a four...

  5. A collocation method for surface tension calculations with the density gradient theory

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.

    2016-01-01

    Surface tension calculations are important in many industrial applications and over a wide range of temperatures, pressures and compositions. Empirical parachor methods are not suitable over a wide condition range and the combined use of density gradient theory with equations of state has been...... proposed in literature. Often, many millions of calculations are required in the gradient theory methods, which is computationally very intensive. In this work, we have developed an algorithm to calculate surface tensions an order of magnitude faster than the existing methods, with no loss of accuracy...

  6. Increased phosphatidylcholine concentration in saliva reduces surface tension and improves airway patency in obstructive sleep apnoea.

    Science.gov (United States)

    Kawai, M; Kirkness, J P; Yamamura, S; Imaizumi, K; Yoshimine, H; Oi, K; Ayuse, T

    2013-10-01

    Surface tension may have important role for maintaining upper airway patency in patients with obstructive sleep apnoea. It has been demonstrated that elevated surface tension increases the pharyngeal pressures required to reopen the upper airway following collapse. The aim of the study was to evaluate the associations between the concentrations of endogenous surfactants in saliva with indices of upper airway patency in obstructive sleep apnoea. We studied 20 male patients with obstructive sleep apnoea (age: 60·3 ± 10·3 years; BMI: 25·9 ± 4·6 kg m(-2); AHI: 41·5 ± 18·6 events h(-1)). We obtained 100-μL samples of saliva prior to overnight polysomnographic sleep study. The surface tension was determined using the pull-off force technique. The concentration of phosphatidylcholine (PC) was evaluated by liquid chromatography-mass spectrometry (LC-MS/MS). Regression analysis between apnoea, hypopnoea and apnoea/hypopnoea indices and the ratio of hypopnoea time/total disordered breathing time (HT/DBT) with surface tension and PC were performed. P surface tension was 48·8 ± 8·0 mN m(-1) and PC concentration was 15·7 ± 11·1 nM. The surface tension was negatively correlated with the PC concentration (r = -0·48, P = 0·03). There was a significant positive correlation between surface tension with hypopnoea index (r = 0·50, P = 0·03) and HT/DBT (r = 0·6, P = 0·006), but not apnoea or apnoea/hypopnoea index (P > 0·11). Similarly, PC concentration negatively correlated with hypopnoea index (r = -0·45, P = 0·04) and HT/DBT (r = -0·6, P = 0·004), but not with apnoea index or AHI (P > 0·08). An increase in salivary PC concentration may increase upper airway patency in obstructive sleep apnoea through a reduction in surface tension. © 2013 John Wiley & Sons Ltd.

  7. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  8. Surface tension and viscosity of molten vanadium measured with an electrostatic levitation furnace

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Junpei T., E-mail: okada.junpei@jaxa.j [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Watanabe, Yuki [Advanced Engineering Service Co., Ltd., 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Paradis, Paul-Francois [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2010-07-15

    Surface tension and viscosity of molten vanadium were measured over a wide temperature range by the oscillating drop method in an electrostatic levitation furnace. Over the (2023 to 2517) K temperature range, the surface tension can be expressed as gamma(T)/(10{sup -3} N/m) = 1935 - 0.27 left brace(T - T{sub m})/Kright brace with T{sub m} = 2183 K. Over the same temperature span, the viscosity can be expressed as eta(T)/(10{sup -3} Pa . s) = 1.23exp[2.27 . 10{sup 4}/(RTK{sup -1})], where R is the gas constant.

  9. Optovibrometry: tracking changes in the surface tension and viscosity of multicomponent droplets in real-time.

    Science.gov (United States)

    Harrold, Victoria C; Sharp, James S

    2016-10-26

    An instrument was developed for measuring real time changes in the surface tension and viscosity of multicomponent droplets of miscible liquids and other soft materials. Droplets containing glycerol and water were supported on superamphiphobic surfaces and vibrated by applying a short mechanical impulse. Laser light was refracted through the droplets and allowed to fall on the surface of a photodiode. Time dependent variations in the intensity measured by the photodiode during vibration were used to monitor the decay of the droplet oscillations. The frequencies and spectral widths of the droplet vibrational resonances were then obtained from Fourier transforms of these time dependent intensity signals. A recently developed model of viscoelastic droplet vibration was used along with these values and measurements of the drop dimensions to extract the surface tension and viscosity of the drops as they evaporated. Collection of data was automated and values of frequency, spectral width, drop size, surface tension and viscosity were obtained with a time resolution of three seconds over a period of thirty minutes. The values of surface tension and viscosity obtained were shown to be in good agreement with literature values obtained from bulk glycerol/water solutions; thus validating the technique for wider application to other multicomponent liquids and soft matter systems.

  10. Capillary meniscus dynamometry - Method for determining the surface tension of drops and bubbles with isotropic and anisotropic surface stress distributions

    NARCIS (Netherlands)

    Danov, K.D.; Stanimirova, R.D.; Kralchevsky, P.A.; Marinova, K.G.; Alexandrov, N.A.; Stoyanov, S.D.; Blijdenstein, T.B.J.; Pelan, E.G.

    2015-01-01

    The stresses acting in interfacial adsorption layers with surface shear elasticity are, in general, anisotropic and non-uniform. If a pendant drop or buoyant bubble is covered with such elastic layer, the components of surface tension acting along the "meridians" and "parallels", σs

  11. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry

    NARCIS (Netherlands)

    Danov, Krassimir D.; Stanimirova, Rumyana D.; Kralchevsky, Peter A.; Marinova, Krastanka G.; Stoyanov, Simeon D.; Blijdenstein, Theodorus B.J.; Cox, Andrew R.; Pelan, Eddie G.

    2016-01-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are

  12. Influence of Surface Tension and Surface Shear on Final Coat Thickness in Jet-Stripped Continuous Coating of Sheet Materials.

    Science.gov (United States)

    1983-11-01

    galvanising industry, this pressure distribution is created by blowing a thin high-speed air jet onto the coated steel sheet, just after it emerges from the...if that free surface possesses curvature and non-zero surface tension, the internal pressure will differ from that in the jet. In the galvanising

  13. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  14. A discontinuous Galerkin front tracking method for two-phase flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V.-T.; Peraire, J.; Cheong, K.B.; Persson, P.-O.

    2008-12-28

    A Discontinuous Galerkin method for solving hyperbolic systems of conservation laws involving interfaces is presented. The interfaces are represented by a collection of element boundaries and their position is updated using an arbitrary Lagrangian-Eulerian method. The motion of the interfaces and the numerical fluxes are obtained by solving a Riemann problem. As the interface is propagated, a simple and effective remeshing technique based on distance functions regenerates the grid to preserve its quality. Compared to other interface capturing techniques, the proposed approach avoids smearing of the jumps across the interface which leads to an improvement in accuracy. Numerical results are presented for several typical two-dimensional interface problems, including flows with surface tension.

  15. Performing chemical reactions in virtual capillary of surface tension ...

    Indian Academy of Sciences (India)

    We have also successfully carried out some well-known chemical reactions in these fluidic channels to demonstrate the usefulness of these wall-less microchannels. The confined flow path of liquid was achieved on the basis of extreme differences in hydrophobic and hydrophilic characters of the surface. The flow paths ...

  16. Performing chemical reactions in virtual capillary of surface tension ...

    Indian Academy of Sciences (India)

    poly(dimethyl siloxane) elastomers [11,12]. On the other hand, 2D microchannels are generally designed by chemically altering selective regions of a substrate surface. [13]. The fluid flow is induced and controlled in 3D microfluidic channels by several processes like pumping, electro osmosis, capillarity etc., while that in 2D ...

  17. Size Effect in Tension Perpendicular to Grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Clorius, Christian Odin; Hoffmeyer, Preben

    2004-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents a hypothesis where ...

  18. Particle-induced indentation of the alveolar epithelium caused by surface tension forces

    Science.gov (United States)

    Kojic, M.; Tsuda, A.

    2010-01-01

    Physical contact between an inhaled particle and alveolar epithelium at the moment of particle deposition must have substantial effects on subsequent cellular functions of neighboring cells, such as alveolar type-I, type-II pneumocytes, alveolar macrophage, as well as afferent sensory nerve cells, extending their dendrites toward the alveolar septal surface. The forces driving this physical insult are born at the surface of the alveolar air-liquid layer. The role of alveolar surfactant submerging a hydrophilic particle has been suggested by Gehr and Schürch's group (e.g., Respir Physiol 80: 17–32, 1990). In this paper, we extended their studies by developing a further comprehensive and mechanistic analysis. The analysis reveals that the mechanics operating in the particle-tissue interaction phenomena can be explained on the basis of a balance between surface tension force and tissue resistance force; the former tend to move a particle toward alveolar epithelial cell surface, the latter to resist the cell deformation. As a result, the submerged particle deforms the tissue and makes a noticeable indentation, which creates unphysiological stress and strain fields in tissue around the particle. This particle-induced microdeformation could likely trigger adverse mechanotransduction and mechanosensing pathways, as well as potentially enhancing particle uptake by the cells. PMID:20634359

  19. Comparison of the surface tension of 5.25% sodium hypochlorite solution with three new sodium hypochlorite-based endodontic irrigants.

    Science.gov (United States)

    Palazzi, F; Morra, M; Mohammadi, Z; Grandini, S; Giardino, L

    2012-02-01

    To investigate the surface tension characteristics of 5.25% sodium hypochlorite and three recently introduced sodium hypochlorite solutions, which had been modified to reduce their surface tension: Chlor-Xtra, Hypoclean A and Hypoclean B. Freshly produced MilliQ water was used as a reference liquid. All measurements of surface tension were taken by the Wilhelmy plate technique, using a Cahn DCA-322 Dynamic Contact Angle Analyzer at the temperature of 22 °C. A glow-discharge cleaned glass slide was immersed in 5 mL of the test liquid in a beaker cleaned with hot chromic acid, rinsed with MilliQ water and finally air plasma-cleaned in a glow-discharge reactor. The force on the glass slide was recorded continuously by the instrument software as the beaker was raised and withdrawn at the constant speed of 40 micron/s, until at least 1 cm of the glass slide was immersed. The typical accuracy was 0.5 mJ m(-2). For each sample, fifteen measurements were taken, and mean values were calculated. A Kruskal-Wallis anova analysis, followed by Mann-Whitney's U rank sum test for pair-wise comparisons, was used to compare surface tension values. Statistical significance was set at α = 0.05. MilliQ water (72.13 mJ m(-2)) and 5.25% sodium hypochlorite (48.90 mJ m(-2) ) had the highest surface tension values (P surface tension (P surface tension values that were significantly lower (P surface tension and increased contact with dentinal walls, these new irrigants have the potential to penetrate more readily into uninstrumented areas of root canal system as well as allow a more rapid exchange with fresh solution, enabling greater antimicrobial effectiveness and enhanced pulp tissue dissolution ability. © 2011 International Endodontic Journal.

  20. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  1. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion.

    Science.gov (United States)

    Hui, Chung-Yuen; Liu, Tianshu; Salez, Thomas; Raphael, Elie; Jagota, Anand

    2015-03-08

    The surface tension of compliant materials such as gels provides resistance to deformation in addition to and sometimes surpassing that owing to elasticity. This paper studies how surface tension changes the contact mechanics of a small hard sphere indenting a soft elastic substrate. Previous studies have examined the special case where the external load is zero, so contact is driven by adhesion alone. Here, we tackle the much more complicated problem where, in addition to adhesion, deformation is driven by an indentation force. We present an exact solution based on small strain theory. The relation between indentation force (displacement) and contact radius is found to depend on a single dimensionless parameter: ω = σ ( μR ) -2/3 ((9 π /4) W ad ) -1/3 , where σ and μ are the surface tension and shear modulus of the substrate, R is the sphere radius and W ad is the interfacial work of adhesion. Our theory reduces to the Johnson-Kendall-Roberts (JKR) theory and Young-Dupre equation in the limits of small and large ω , respectively, and compares well with existing experimental data. Our results show that, although surface tension can significantly affect the indentation force, the magnitude of the pull-off load in the partial wetting liquid-like limit is reduced only by one-third compared with the JKR limit and the pull-off behaviour is completely determined by ω .

  2. Dynamic surface tension measured with an integrated sensor-actuator using electrolytically generated gas bubbles

    NARCIS (Netherlands)

    Olthuis, Wouter; Volanschi, Alex; Volanschi, A.; Bergveld, Piet

    1998-01-01

    In this paper, a new, simple method to determine dynamic surface tension in aqueous solutions is reported, explained and experimentally verified. By function integration, a small device is obtained. Apart from control and interface electronics no external components or systems are necessary. Instead

  3. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  4. Variant of a volume-of-fluid method for surface tension-dominant two ...

    Indian Academy of Sciences (India)

    The capabilities of the volume-of-fluid method for the calculation of surface tension-dominant two-phase flows are explained. The accurate calculation of the interface remains a problem for the volume-of-fluid method if the density ratios of the fluids in different phases are high. The simulations of bubble growth is performed ...

  5. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A. E.; Caco, Ana I.

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane...

  6. Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures

    DEFF Research Database (Denmark)

    Rolo, Lara I.; Caco, Ana I.; Queimada, Antonio

    2002-01-01

    Surface tension measurements were performed by the Wilhelmy plate method. Measured systems included pure heptane, decane, hexadecane, eicosane, and some of their binary mixtures at temperatures from 293.15 K to 343.15 K with an average absolute deviation of 1.6%. The results were compared...

  7. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion

    Science.gov (United States)

    Hui, Chung-Yuen; Liu, Tianshu; Salez, Thomas; Raphael, Elie; Jagota, Anand

    2015-01-01

    The surface tension of compliant materials such as gels provides resistance to deformation in addition to and sometimes surpassing that owing to elasticity. This paper studies how surface tension changes the contact mechanics of a small hard sphere indenting a soft elastic substrate. Previous studies have examined the special case where the external load is zero, so contact is driven by adhesion alone. Here, we tackle the much more complicated problem where, in addition to adhesion, deformation is driven by an indentation force. We present an exact solution based on small strain theory. The relation between indentation force (displacement) and contact radius is found to depend on a single dimensionless parameter: ω=σ(μR)−2/3((9π/4)Wad)−1/3, where σ and μ are the surface tension and shear modulus of the substrate, R is the sphere radius and Wad is the interfacial work of adhesion. Our theory reduces to the Johnson–Kendall–Roberts (JKR) theory and Young–Dupre equation in the limits of small and large ω, respectively, and compares well with existing experimental data. Our results show that, although surface tension can significantly affect the indentation force, the magnitude of the pull-off load in the partial wetting liquid-like limit is reduced only by one-third compared with the JKR limit and the pull-off behaviour is completely determined by ω. PMID:25792953

  8. Variant of a volume-of-fluid method for surface tension-dominant two ...

    Indian Academy of Sciences (India)

    2013-12-27

    Dec 27, 2013 ... J. Heat Transfer (ASME) 126: 329–338. Brackbill J U, Kothe D B and Zemach C 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100: 335–354. Chakraborty I, Ray B, Biswas G, Durst F, Sharma A and Ghoshdastidar P S 2009 Computational inves- tigation on bubble detachement ...

  9. On the interfacial behavior of ionic liquids: surface tensions and contact angles.

    Science.gov (United States)

    Restolho, José; Mata, José L; Saramago, Benilde

    2009-12-01

    In this work the liquid/vapour and the solid/liquid interfaces of a series of ionic liquids: 1-ethyl-3-methylpyridinium ethyl sulfate, [EMPy][EtSO4], 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM][EtSO4], 1-ethanol-3-methylimidazolium tetrafluoroborate, [C2OHMIM][BF4], 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], and 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF4], were investigated. The surface tension was measured in a wide temperature range, (298-453) K. The contact angles were determined on substrates of different polarities. Both on the polar (glass) and the non-polar substrates ((poly-(tetrafluoroethylene) and poly-(ethylene)), the liquids with maximum and minimum surface tensions lead, respectively, to the highest and the lowest contact angles. The dispersive, gamma(L)(d), and non-dispersive, gamma(L)(nd), components of the liquid surface tension, gamma(L), were calculated from the contact angles on the non-polar substrates using the Fowkes approach. The polarity fraction, gamma(L)(nd)/gamma(L), was compared with the polarity parameter, k, obtained from the fitting of the surface tension vs. temperature data to the Eötvös equation. Good agreement was found for the extreme cases: [OMIM][BF4] exhibits the lowest polarity and [BMIM][BF4], the highest. When compared with the polarity fractions of standard liquids considered as "polar" liquids, the ionic liquids studied may be considered as moderately polar.

  10. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A.E; Caco, Ana I.

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane ...

  11. The interfacial surface tension of a quark-gluon plasma fireball in a ...

    Indian Academy of Sciences (India)

    physics pp. 757–768. The interfacial surface tension of a quark-gluon plasma fireball in a hadronic medium. R RAMANATHAN, K K GUPTA. ∗. , AGAM K JHA and S S SINGH. Department of Physics, University of Delhi, Delhi 110 007, India. *. Department of Physics, Ramjas College, University of Delhi, Delhi 110 007, India.

  12. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

    Science.gov (United States)

    Beltrán-Heredia, Elena; Almendro-Vedia, Víctor G.; Monroy, Francisco; Cao, Francisco J.

    2017-01-01

    Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous

  13. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure.

    Science.gov (United States)

    Beltrán-Heredia, Elena; Almendro-Vedia, Víctor G; Monroy, Francisco; Cao, Francisco J

    2017-01-01

    Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous

  14. Bidirectional Photomodulation of Surface Tension in Langmuir Films.

    Science.gov (United States)

    Cheng, Jinling; Štacko, Peter; Rudolf, Petra; Gengler, Régis Y N; Feringa, Ben L

    2017-01-02

    Switching systems operating in a cooperative manner capable of converting light energy into mechanical motion are of great interest for optical devices, data storage, nanoscale energy converters and molecular sensing. Herein, photoswitchable monolayers were formed at the air-water interface from either a pure bis(thiaxanthylidene)-based photoswitchable amphiphile or from a mixture of the photoswitchable amphiphile with a conventional lipid dipalmitoylphosphatidylcholine (DPPC). Efficient photoisomerization of the anti-folded to syn-folded geometry of the amphiphile's central core induces changes in the surface pressure in either direction, depending on the initial molecular density. Additionally, the switching behavior can be regulated in the presence of DPPC, which influences the packing of the molecules, thereby controlling the transformation upon irradiation. Bis(thiaxanthylidene)-based photoswitchable monolayers provide a promising system to explore cooperativity and amplification of motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. On the Negative Surface Tension of Solutions and on Spontaneous Emulsification.

    Science.gov (United States)

    Kaptay, George

    2017-10-10

    The condition of negative surface tension of a binary regular solution is discussed in this paper using the recently reconfirmed Butler equation (Langmuir 2015, 31, 5796-5804). It is shown that the surface tension becomes negative only for solutions with strong repulsion between the components. This repulsion for negative surface tension should be so strong that this phenomenon appears only within a miscibility gap, that is, in a two-phase region of macroscopic liquid solutions. Thus, for a macroscopic solution, the negative surface tension is possible only in a nonequilibrium state. However, for a nano-solution, negative surface tension is also possible in equilibrium state. It is also shown that nano- and microemulsions can be thermodynamically stable against both coalescence and phase separation. Further, the thermodynamic theory of emulsion stability is developed for a three-component (A-B-C) system with A-rich droplets dispersed in a C-rich matrix, separated by the segregated B-rich layer (the solubility of B is limited in both A and C while the mutual solubility of A and C is neglected). It is shown that when a critical droplet size is achieved by forced emulsification, it is replaced by spontaneous emulsification and the droplet size is reduced further to its equilibrium value. The existence of maximum temperature of emulsion stability is shown. Using low-energy emulsification below this maximum temperature, spontaneous emulsification can appear, which is enhanced with further decrease of temperature. This finding can be applied to interpret the experimental observations on spontaneous emulsification or for the design of stable micro- and nanoemulsions.

  16. Saponins can perturb biologic membranes and reduce the surface tension of aqueous solutions: a correlation?

    Science.gov (United States)

    Böttger, Stefan; Hofmann, Katja; Melzig, Matthias F

    2012-05-01

    Saponins are secondary plant compounds. They have a triterpenoid or steroidal backbone. Sugars are attached to one or more points of this structure, forming chains that can be branched. This appearance leads to amphiphilic properties giving saponins the ability to interact with both lipophilic and hydrophilic structures. The surfactant behavior lets them lower the surface tension in aqueous solutions and form micelles when reaching the critical micelle concentration (cmc). It also lets them interact with biologic membrane layers that usually consist of phospholipids and cholesterol. This action may perturb the membrane and its function leading to membrane perforation or complete lysis. Thus saponins are also known for their cytotoxicity and membranolytic, respectively hemolytic features. In our studies we wanted to answer the question if there is a correlation between the unspecific detergent behavior when lowering the surface tension and the ability to perforate cell membranes and to act cytotoxic. Do saponins showing a considerable reduction in the surface tension also reveal an evident cytotoxicity or/and a marked cell membrane perforation? We tested a variety of saponins with distinct structures. The reduction in the surface tension and the cmc were analyzed on a tensiometer using the Wilhelmy plate method. The general cytotoxicity was determined in a cell model by DNA quantification. The cell membrane toxicity or membrane perforation was explored in a cell model by quantification of the leakage of the intracellular enzyme lactate dehydrogenase (LDH). The experiments revealed a correlation between the membrane toxicity and the reduction in surface tension. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, C.D.; Outcalt, S.L. [National Institute of Standards and Technology, Boulder, CO (United States)

    1997-12-31

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m{sup 3}, and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of {+-}0.02 K, pressures with a precision of {+-}0.1% of full scale, densities with a precision of {+-}0.5 kg/m{sup 3}, surface tensions with a precision of {+-}0.2 mN/m, and compositions with a precision of {+-}0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus.

  18. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    Science.gov (United States)

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin

    2017-07-01

    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  19. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  20. Spreading of oil on water in the surface-tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.; Berg, J.C.

    1987-11-01

    Data which describe the unidirectional spreading of several pure oils and oil-surfactant mixtures on water in the surface-tension regime are reported. Leading-edge position and profiles of velocity, thickness and film tension are given as functions of time. The data are consistent with the numerical similarity solution of Foda and Cox (1980), although the measured dependence of the film tension on the film thickness often differs from the equilibrium relationship. The configuration of the oil film near the spreading origin may be either a coherent multimolecular layer or a multitude of thinning, outward-moving lenses surrounded by monolayer. The pure oils show an acceleration zone connecting the slow-moving inner region to a fast-moving outer region, while the oil-surfactant mixtures show a much more gradual increase in film velocity.

  1. Account for the surface tension in hydraulic modeling of the weir with a sharp threshold

    Directory of Open Access Journals (Sweden)

    Medzveliya Manana Levanovna

    Full Text Available In the process of calculating and simulating water discharge in free channels it is necessary to know the flow features in case of small values of Reynolds and Weber numbers. The article considers the influence of viscosity and surface tension on the coefficient of a weir flow with sharp threshold. In the article the technique of carrying out experiments is stated, the equation is presented, which considers the influence of all factors: pressure over a spillway threshold, threshold height over a course bottom, speed of liquid, liquid density, dynamic viscosity, superficial tension, gravity acceleration, unit discharge, the width of the course. The surface tension and liquid density for the applied liquids changed a little. In the rectangular tray (6000x100x200 spillway with a sharp threshold was established. It is shown that weir flow coefficient depends on Reynolds number (in case Re < ~ 2000 and Webers number. A generalized expression for determining weir flow coefficient considering the influence of the forces of viscosity and surface tension is received.

  2. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.

    Science.gov (United States)

    Suematsu, Nobuhiko J; Sasaki, Tomohiro; Nakata, Satoshi; Kitahata, Hiroyuki

    2014-07-15

    Quantitative information on the parameters associated with self-propelled objects would enhance the potential of this research field; for example, finding a realistic way to develop a functional self-propelled object and quantitative understanding of the mechanism of self-motion. We therefore estimated five main parameters, including the driving force, of a camphor boat as a simple self-propelled object that spontaneously moves on water due to difference in surface tension. The experimental results and mathematical model indicated that the camphor boat generated a driving force of 4.2 μN, which corresponds to a difference in surface tension of 1.1 mN m(-1). The methods used in this study are not restricted to evaluate the parameters of self-motion of a camphor boat, but can be applied to other self-propelled objects driven by difference in surface tension. Thus, our investigation provides a novel method to quantitatively estimate the parameters for self-propelled objects driven by the interfacial tension difference.

  3. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality.

    Science.gov (United States)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius

    2017-11-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of

  4. Dynamic Surface Tension of Heterogemini Surfactants with Quaternary Ammonium Salt and Gluconamide or Sulfobetaine Headgroups.

    Science.gov (United States)

    Yoshimura, Tomokazu; Nyuta, Kanae

    2017-10-01

    Dynamic surface tensions of two types of heterogemini surfactants with nonidentical hydrophilic headgroups consisting of a quaternary ammonium salt (cationic) and a gluconamide (nonionic) or sulfobetaine (zwitterionic) group were measured using the maximum bubble pressure method. For these compounds, effects of alkyl chain length, structure of the hydrophilic groups, and surfactant concentration were investigated using diffusion coefficients and parameter x. The parameter x is related to the difference between the energies of adsorption and desorption of the surfactant. The values of x of heterogemini surfactants increased as the alkyl chain length increased, and they were slightly larger than that for the corresponding monomeric surfactant. This is because of an increase in hydrophobicity caused by two alkyl chains, as well as interactions between two different hydrophilic groups. Adsorption rate of the heterogemini surfactants decreased with increasing alkyl chain length, indicating slow dynamics, and inhibited adsorption to the air/water interface as the chain length increased. However, at higher concentrations, the heterogemini surfactants showed rapid and effective adsorption and increased adsorption rates at higher concentrations. Diffusion coefficients of the heterogemini surfactants decreased with increasing concentrations for all chain lengths, indicating diffusion of the solute molecules to the subsurface and adsorption of the solute from the subsurface to the surface.

  5. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    Science.gov (United States)

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  6. Perceiving the affordance of string tension for power strokes in badminton: expertise allows effective use of all string tensions.

    Science.gov (United States)

    Zhu, Qin

    2013-01-01

    Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.

  7. Rapid Guest Exchange and Ultra-Low Surface Tension Solvents Optimize Metal-Organic Framework Activation.

    Science.gov (United States)

    Ma, Jialiu; Kalenak, Andre P; Wong-Foy, Antek G; Matzger, Adam J

    2017-11-13

    Exploratory research into the critical steps in metal-organic framework (MOF) activation involving solvent exchange and solvent evacuation are reported. It is discovered that solvent exchange kinetics are extremely fast, and minutes rather days are appropriate for solvent exchange in many MOFs. It is also demonstrated that choice of a very low surface tension solvent is critical in successfully activating challenging MOFs. MOFs that have failed to be activated previously can achieve predicted surface areas provided that lower surface tension solvents, such as n-hexane and perfluoropentane, are applied. The insights herein aid in the efficient activation of MOFs in both laboratory and industrial settings and provide best practices for avoiding structural collapse. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    ) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is......Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively...

  9. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.

    2017-07-06

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  10. Surface tension of dilute alcohol-aqueous binary fluids: n-Butanol/water, n-Pentanol/water, and n-Hexanol/water solutions

    Science.gov (United States)

    Cheng, Kuok Kong; Park, Chanwoo

    2017-07-01

    Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.

  11. Adhesive contact of a rigid circular cylinder to a soft elastic substrate--the role of surface tension.

    Science.gov (United States)

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2015-05-21

    This article studies the effects of surface tension on the adhesive contact mechanics of a long rigid cylinder on an infinite half space comprising an incompressible elastic material. We present an exact solution based on small strain theory. The relationship between the indentation force and contact width was found to depend on a single dimensionless parameter ω = σ/[4(μR)(2/3)(W(ad)/2π)(1/3'), where R is the cylinder radius, Wad is the interfacial work of adhesion, and σ and μ are the surface tension and shear modulus of the half space, respectively. For small ω the solution reduces to the classical Johnson-Kendall-Roberts (JKR) theory, whereas for large ω the solution reduces to the small slope version of the Young-Dupre equation. The pull-off phenomenon was carefully examined and it was found that the contact width at pull-off reduces to zero when surface tension is larger than a critical value.

  12. Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2015-08-01

    Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.

  13. Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids

    Science.gov (United States)

    Luís, Andreia; Shimizu, Karina; Araújo, João M. M.; Carvalho, Pedro J.; Lopes-da-Silva, José A.; Canongia Lopes, José N.; Rebelo, Luís Paulo N.; Coutinho, João A. P.; Freire, Mara G.; Pereiro, Ana B.

    2017-01-01

    We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ILs composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10 or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature was the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamic simulations it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) on pointing towards the gas-liquid interface, a phenomenon which occurs in ionic liquids with perfluorinated anions. Furthermore, these ionic liquids present the lowest surface entropy reported to date. PMID:27218210

  14. Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification.

    Science.gov (United States)

    Wu, Zongmei; Wu, Jie; Zhang, Ruling; Yuan, Shichao; Lu, Qingliang; Yu, Yueqin

    2018-02-01

    Micelle properties of hydrophobic modified alginate (HM-alginate) in various dispersion media have been studied by surface tension, ζ-potential, and viscosity measurements. Effect of salt on micelle properties showed that the presence of counter ion weakened the repulsive interaction between surfactant ions, decreased the critical micelle concentration (CMC) value of the HM-alginate, reduced the effective volume dimensions of HM-alginate and hence viscosity, which coincide with the corresponding ζ-potential values. Soy oil-in-water emulsions, stabilized solely by HM-alginate, were produced in high speed homogenization conditions and their stability properties were studied by visual inspection, optical microscopy and droplet size measurements. The results showed that emulsions (oil-water ratio was 1:7) containing 15mg/mL HM-alginate presented better stability during 15days storage, which stating clearly that HM-alginate is an effective emulsifier to stabilize oil-in-water emulsions. The herein presented homogeneous method for preparation of emulsion has the potential to be used in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Surface Tension and Viscosity Measurements in Microgravity: Some Results and Fluid Flow Observations during MSL-1

    Science.gov (United States)

    Hyer, Robert W.; Trapaga, G.; Flemings, M. C.

    1999-01-01

    The viscosity of a liquid metal was successfully measured for the first time by a containerless method, the oscillating drop technique. This method also provides a means to obtain a precise, non-contact measurement of the surface tension of the droplet. This technique involves exciting the surface of the molten sample and then measuring the resulting oscillations; the natural frequency of the oscillating sample is determined by its surface tension, and the damping of the oscillations by the viscosity. These measurements were performed in TEMPUS, a microgravity electromagnetic levitator (EML), on the Space Shuttle as a part of the First Microgravity Science Laboratory (MSL-1), which flew in April and July 1997 (STS-83 and STS-94). Some results of the surface tension and viscosity measurements are presented for Pd82Si18. Some observations of the fluid dynamic characteristics (dominant flow patterns, turbulent transition, cavitation, etc.) of levitated droplets are presented and discussed together with magnetohydrodynamic calculations, which were performed to justify these findings.

  16. Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension.

    Science.gov (United States)

    Amrhein, Sven; Bauer, Katharina Christin; Galm, Lara; Hubbuch, Jürgen

    2015-12-01

    The surface hydrophobicity of a protein is an important factor for its interactions in solution and thus the outcome of its production process. Yet most of the methods are not able to evaluate the influence of these hydrophobic interactions under natural conditions. In the present work we have established a high resolution stalagmometric method for surface tension determination on a liquid handling station, which can cope with accuracy as well as high throughput requirements. Surface tensions could be derived with a low sample consumption (800 μL) and a high reproducibility (surface tension was correlated to the hydrophobicity of lysozyme, human lysozyme, BSA, and α-lactalbumin. Differences in proteins' hydrophobic character depending on pH and species could be resolved. Within this work we have developed a pH dependent hydrophobicity ranking, which was found to be in good agreement with literature. For the studied pH range of 3-9 lysozyme from chicken egg white was identified to be the most hydrophilic. α-lactalbumin at pH 3 exhibited the most pronounced hydrophobic character. The stalagmometric method occurred to outclass the widely used spectrophotometric method with bromophenol blue sodium salt as it gave reasonable results without restrictions on pH and protein species. © 2015 Wiley Periodicals, Inc.

  17. Noncontact measurement of high-temperature surface tension and viscosity of bulk metallic glass-forming alloys using the drop oscillation technique

    OpenAIRE

    Mukherjee, S.; Johnson, W. L.; Rhim, W. K.

    2005-01-01

    High-temperature surface tension and viscosities for five bulk metallic glass-forming alloys with widely different glass-forming abilities are measured. The measurements are carried out in a high-vacuum electrostatic levitator using the drop oscillation technique. The surface tension follows proportional mathematical addition of pure components' surface tension except when some of the constituent elements have much lower surface tension. In such cases, there is surface segregation of the low ...

  18. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis.

    Science.gov (United States)

    Xing, Yuan; Nourmohammadzadeh, Mohammad; Elias, Joshua E Mendoza; Chan, Manwai; Chen, Zequn; McGarrigle, James J; Oberholzer, José; Wang, Yong

    2016-10-01

    We present a novel pumpless microfluidic array driven by surface tension for studying the physiology of pancreatic islets of Langerhans. Efficient fluid flow in the array is achieved by surface tension-generated pressure as a result of inlet and outlet size differences. Flow properties are characterized in numerical simulation and further confirmed by experimental measurements. Using this device, we perform a set of biological assays, which include real-time fluorescent imaging and insulin secretion kinetics for both mouse and human islets. Our results demonstrate that this system not only drastically simplifies previously published experimental protocols for islet study by eliminating the need for external pumps/tubing and reducing the volume of solution consumption, but it also achieves a higher analytical spatiotemporal resolution due to efficient flow exchanges and the extremely small volume of solutions required. Overall, the microfluidic platform presented can be used as a potential powerful tool for understanding islet physiology, antidiabetic drug development, and islet transplantation.

  19. Phase-Field Surface Tension Modeling for Two-Phase Navier-Stokes Flow

    Science.gov (United States)

    Jacqmin, David

    1997-08-01

    The phase-field method applied to the multiphase Navier-Stokes equations provides a continuum-surface-tension model that is energetically and, with care, thermodynamically consistent. The phase-field Navier-Stokes equations are the Navier-Stokes equations with continuum-surface-tension forcing derived from the phase-field free energy plus the advective Cahn-Hilliard equation for describing phase convection. This equation system appears to have O(ɛ) convergence to the true multiphase Navier-Stokes equations (ɛ is interface thickness). The talk will discuss the numerical implementation of the equations with special attention paid to convergence of numerical methods in the double limit ɛ arrow 0, h arrow 0. Results will be shown for contact line flow, for interface breakup and coalescence, and for film flow and coating flow instabilities and behavior.

  20. Discrepancies over the onset of surfactant monomer aggregation interpreted by fluorescence, conductivity and surface tension methods

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Carvalho Costa

    1998-06-01

    Full Text Available Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac of polymer-surfactant complexes and the critical micellar concentration (cmc of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS mixtures, solutions containing poly(ethylene oxide-SDS, poly(vinylpyrrolidone-SDS and poly(acrylic acid-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

  1. Modeling surface tension using a ghost fluid technique within a volume of fluid formulation

    Energy Technology Data Exchange (ETDEWEB)

    Francois, M. M. (Marianne M.); Kothe, D. B. (Douglas B.); Cummins, S. J. (Sharen J.)

    2004-01-01

    Ghost fluid methods (GFM) are a viable approach for imposing sharp boundary conditions on interfaces that are arbitrarily embedded within the computational mesh. All GFM to date are formulated with an interface distance function that resides within a level-set (LS) framework. Recently we proposed a technique for reconstructing distance functions from volume fractions. This technique enables the exploitation of GFM within a volume of fluid formulation for modeling an interfacial phenomenon like surface tension. Combining GFM with a volume of fluid (VOF) formulation is attractive because of the VOF method's superior mass conservation and because of the ability of GFM to maintain sharp jump conditions. The continuum surface tension force (CSF) method, however, has the propensity to produce smooth jump. In the following, the combined VOF-GFM and more classical VOF-CSF formulations are compared and contrasted. Static and dynamic numerical results are used to illustrate our findings and support our claims.

  2. Let’s not forget the critical role of surface tension in xylem water relations

    Science.gov (United States)

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  3. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  4. An examination of surface EMG for the assessment of muscle tension dysphonia.

    Science.gov (United States)

    Van Houtte, Evelyne; Claeys, Sofie; D'haeseleer, Evelien; Wuyts, Floris; Van Lierde, Kristiane

    2013-03-01

    Muscle tension dysphonia (MTD) is the pathological condition in which an excessive tension of the (para)laryngeal musculature leads to a disturbed voice. Surface electromyography (sEMG) was used to investigate differences in extralaryngeal muscles' tension in patients with MTD compared with normal speakers. sEMG was examined as a diagnostic tool to differentiate between patients with MTD and controls. Eighteen patients with MTD and 44 normal speakers were included in the study. All subjects were evaluated with videostroboscopy, voice assessment protocol, and sEMG. sEMG was performed on three locations of the anterior neck. Measurements were taken during silence, phonation tasks, and while reading, with comparisons made between both study groups. Patients with MTD did not express higher levels of sEMG during rest, phonation, or reading compared with normal speakers. There were no significant differences in sEMG values between males and females in both study groups. sEMG was not able to detect an increase in muscle tension in patients with MTD. The results of this study do not support the use of sEMG as a diagnostic tool for distinguishing patients with and without MTD. Clinical examination with laryngeal palpation, videostroboscopy, and dysphonia severity index remain the key investigations. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  5. Temperature sensitivity of surface tension-driven flows: Application to time-temperature integration

    Science.gov (United States)

    Thomas, John; Hunter, Lawrence; Boyle, Michael

    2011-11-01

    The effects of time-dependent temperature fluctuations on surface-tension driven fluid flow inside a capillary are modeled using classical hydrodynamics. To begin, we use Newton's second law to derive a non-dimensional equation of motion that describes capillary flow as a function of system geometry, fluid properties, and fluid temperature. We use this model to examine how temperature excursions affect the instantaneous and long-term position and velocity of the fluid front inside the capillary. Next, we examine the combined effects of orientation change and temperature change on fluid movement through the capillary. Using this data, we show how to design a non-powered time-temperature integration device for recording the cumulative temperature exposure history of an asset or local environment. By selecting an appropriate fluid and capillary geometry, we show how such devices can be designed to exhibit arbitrary temperature sensitivities, operate over arbitrary monitoring periods (months to decades), and operate in a manner that does not depend on orientation.

  6. Curvature Dependence of the Liquid-Vapor Surface Tension beyond the Tolman Approximation.

    Science.gov (United States)

    Bruot, Nicolas; Caupin, Frédéric

    2016-02-05

    Surface tension is a macroscopic manifestation of the cohesion of matter, and its value σ_{∞} is readily measured for a flat liquid-vapor interface. For interfaces with a small radius of curvature R, the surface tension might differ from σ_{∞}. The Tolman equation, σ(R)=σ_{∞}/(1+2δ/R), with δ a constant length, is commonly used to describe nanoscale phenomena such as nucleation. Here we report experiments on nucleation of bubbles in ethanol and n-heptane, and their analysis in combination with their counterparts for the nucleation of droplets in supersaturated vapors, and with water data. We show that neither a constant surface tension nor the Tolman equation can consistently describe the data. We also investigate a model including 1/R and 1/R^{2} terms in σ(R). We describe a general procedure to obtain the coefficients of these terms from detailed nucleation experiments. This work explains the conflicting values obtained for the Tolman length in previous analyses, and suggests directions for future work.

  7. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    Science.gov (United States)

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  8. Surface tension of a Yukawa fluid according to mean-field theory

    Science.gov (United States)

    Bossa, Guilherme Volpe; Norris, Joseph; May, Sylvio

    2017-04-01

    Yukawa fluids consist of particles that interact through a repulsive or attractive Yukawa potential. A surface tension arises at the walls of the container that encloses the fluid or at the interface between two coexisting phases. We calculate that surface tension on the level of mean-field theory, thereby either ignoring the particle size (ideal Yukawa fluid) or accounting for a non-vanishing particle size through a nonideal contribution to the free energy, exemplified either on the level of a lattice gas (lattice Yukawa fluid) or based on the Carnahan-Starling equation of state (Carnahan-Starling Yukawa fluid). Our mean-field results, which do not rely on assuming small gradients of the particle concentrations, become exact in the limit of large temperature and large screening length. They are calculated numerically in the general case and analytically in the two limits of small particle concentration and close to the critical point for a phase-separating system. For a sufficiently small particle concentration, our predicted surface tension is accurate whereas for a phase boundary, we expect good agreement with exact calculations in the limit of a large screening length and if the mean-field model employs the Carnahan-Starling equation of state.

  9. Application of Thermodynamic Databases to the Evaluation of Surface Tensions of Molten Alloys, Salt Mixtures and Oxide Mixtures

    OpenAIRE

    Tanaka, Toshihiro; Iida, Takamichi; Hack, Klaus; Hara, Shigeta

    1996-01-01

    The authors discuss the application of thermodynamic solution databases, which have been constructed so far to calculate thermodynamic properties and phase diagrams, to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. In particular, the relationship between the excess Gibbs energy in the bulk phase and that in the "surface phase" which are used in Butler's equation for surface tension was derived for molten ionic solutions as well as molten alloys. In thi...

  10. Liquid-gas asymmetry and the wave-vector-dependent surface tension.

    Science.gov (United States)

    Parry, A O; Rascón, C; Evans, R

    2015-03-01

    Attempts to extend the capillary-wave theory of fluid interfacial fluctuations to microscopic wavelengths, by introducing an effective wave-vector (q)-dependent surface tension σeff(q), have encountered difficulties. There is no consensus as to even the shape of σeff(q). By analyzing a simple density functional model of the liquid-gas interface, we identify different schemes for separating microscopic observables into background and interfacial contributions. In order for the backgrounds of the density-density correlation function and local structure factor to have a consistent and physically meaningful interpretation in terms of weighted bulk gas and liquid contributions, the background of the total structure factor must be characterized by a microscopic q-dependent length ζ(q) not identified previously. The necessity of including the q dependence of ζ(q) is illustrated explicitly in our model and has wider implications; i.e., in typical experimental and simulation studies, an indeterminacy in ζ(q) will always be present, reminiscent of the cutoff used in capillary-wave theory. This leads inevitably to a large uncertainty in the q dependence of σeff(q).

  11. Effect of tension lap splice on the behavior of high strength concrete (HSC beams

    Directory of Open Access Journals (Sweden)

    Ahmed El-Azab

    2014-12-01

    Full Text Available In the recent years, many research efforts have been carried out on the bond strength between normal strength concrete (NSC and reinforcing bars spliced in tension zones in beams. Many codes gave a minimum splice length for tension and compression reinforcement as a factor of the bar diameter depending on many parameters such as concrete strength, steel yield stress, shape of bar end, shape of bar surface and also bar location. Also, codes gave another restriction about the percentage of total reinforcement to be spliced at the same time. Comparatively limited attention has been directed toward the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. HSC has high modulus of elasticity, high density and long-term durability. This research presents an experimental study on the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. It reports the influence of several parameters on bond in splices. The parameters covered are casting position, splice length as a factor of bar diameter, bar diameter and reinforcement ratio. The research involved tests on sixteen simply-supported beams of 1800 mm span, 200 mm width and 400 mm thickness made of HSC. In each beam, the total tensile steel bars were spliced in the constant moment zone. Crack pattern, crack propagation, cracking load, failure load and mi span deflection were recorded and analyzed to study the mentioned parameters effect.

  12. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement...... for surface excess concentration. We found that the measured diffusion coefficient of 1-Octanol, 7.2 ± 0.8 × 10−6 cm2/s, showed excellent agreement with the result from an alternative method, “single microdroplet catching method”, to measure the diffusion coefficient from diffusion-controlled microdroplet...

  13. Parameter Interpretation and Reduction for a Unified Statistical Mechanical Surface Tension Model.

    Science.gov (United States)

    Boyer, Hallie; Wexler, Anthony; Dutcher, Cari S

    2015-09-03

    Surface properties of aqueous solutions are important for environments as diverse as atmospheric aerosols and biocellular membranes. Previously, we developed a surface tension model for both electrolyte and nonelectrolyte aqueous solutions across the entire solute concentration range (Wexler and Dutcher, J. Phys. Chem. Lett. 2013, 4, 1723-1726). The model differentiated between adsorption of solute molecules in the bulk and surface of solution using the statistical mechanics of multilayer sorption solution model of Dutcher et al. (J. Phys. Chem. A 2013, 117, 3198-3213). The parameters in the model had physicochemical interpretations, but remained largely empirical. In the current work, these parameters are related to solute molecular properties in aqueous solutions. For nonelectrolytes, sorption tendencies suggest a strong relation with molecular size and functional group spacing. For electrolytes, surface adsorption of ions follows ion surface-bulk partitioning calculations by Pegram and Record (J. Phys. Chem. B 2007, 111, 5411-5417).

  14. Macroscopic surface tension in a lattice Bhatnagar-Gross-Krook model of two immiscible fluids

    Science.gov (United States)

    Halliday, I.; Thompson, S. P.; Care, C. M.

    1998-01-01

    We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann models of immiscible fluids, may be extended to a two component, two-speed two-dimensional (D2), nine-link (Q9) lattice Bhatnagar-Gross-Krook fluid. For two-dimensional, microcurrent-free planar interfaces between the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the two fluids. Extending our analysis to curved interfaces, we propose a scheme for incorporating the influence of interfacial microcurrents that is based upon general symmetry arguments and is correct to second order in lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second-order influence upon the macroscopic behavior of the model. We find good agreement between our calculations and simulation results based on the microcurrent stream function and surface tension results from the pressure tensor or Laplace law.

  15. Macroscopic Surface Tension in a Lattice Boltzmann BGK Model of Two Immiscible Fluids.

    Science.gov (United States)

    Thompson, S. P.; Halliday, I.; Care, C. M.

    1997-08-01

    We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann models of immisible fluids, may be extended to a two component, two-speed D2Q9 lattice Bhatnagar Gross Krook fluid. For two-dimensional, microcurrent-free planar interfaces between the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the two fluids. Extending our analysis to curved interfaces we propose a scheme for incorporating the influence of interfacial microcurrents which is based upon general symmetry arguments and is correct to second order in lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second order influence upon the macroscopic behaviour of the model. We find good agreement between our calculations and simulation results based on the microcurrent stream function and surface tension results from the pressure tensor or Laplace law.

  16. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension

    Science.gov (United States)

    Durand, O.; Jaouen, S.; Soulard, L.; Heuzé, O.; Colombet, L.

    2017-10-01

    We compare, at similar scales, the processes of microjetting and ejecta production from shocked roughened metal surfaces by using atomistic and continuous approaches. The atomistic approach is based on very large scale molecular dynamics (MD) simulations with systems containing up to 700 × 106 atoms. The continuous approach is based on Eulerian hydrodynamics simulations with adaptive mesh refinement; the simulations take into account the effects of viscosity and surface tension, and the equation of state is calculated from the MD simulations. The microjetting is generated by shock-loading above its fusion point a three-dimensional tin crystal with an initial sinusoidal free surface perturbation, the crystal being set in contact with a vacuum. Several samples with homothetic wavelengths and amplitudes of defect are simulated in order to investigate the influence of viscosity and surface tension of the metal. The simulations show that the hydrodynamic code reproduces with very good agreement the profiles, calculated from the MD simulations, of the ejected mass and velocity along the jet. Both codes also exhibit a similar fragmentation phenomenology of the metallic liquid sheets ejected, although the fragmentation seed is different. We show in particular, that it depends on the mesh size in the continuous approach.

  17. Relationships between plasma lipids, proteins, surface tension and post-dive bubbles.

    Science.gov (United States)

    Schellart, Nico A M; Rozložník, Miroslav; Balestra, Costantino

    2015-01-01

    Decompression sickness (DCS) in divers is caused by bubbles of inert gas. When DCS occurs, most bubbles can be found in the venous circulation: venous gas emboli (VGE). Bubbles are thought to be stabilized by low molecular weight surfactant reducing the plasma-air surface tension (γ). Proteins may play a role as well. We studied the interrelations between these substances, γ and VGE, measured before and after a dry dive simulation. VGE of 63 dive simulations (21-msw/40-minute profile) of 52 divers was examined 40, 80, 120 and 160 minutes after surfacing (precordial Doppler method) and albumin, total protein, triglycerides, total cholesterol and free fatty acids were determined pre- and post-exposure. To manipulate blood plasma composition, half of the subjects obtained a fat-rich breakfast, while the other half got a fat-poor breakfast pre-dive. Eleven subjects obtained both. VGE scores measured with the precordial Doppler method were transformed to the logarithm of Kisman Integrated Severity Scores. With statistical analysis, including (partial) correlations, it could not be established whether γ as well as VGE scores are related to albumin, total protein or total cholesterol. With triglycerides and fatty acids correlations were also lacking, despite the fact that these compounds varied substantially. The same holds true for the paired differences between the two exposures of the 11 subjects. Moreover, no correlation between surface tension and VGE could be shown. From these findings and some theoretical considerations it seems likely that proteins lower surface tension rather than lipids. Since the findings are not in concordance with the classical surfactant hypothesis, reconsideration seems necessary.

  18. Surface free energy of the human skin and its critical surface tension of wetting in the skin/surfactant aqueous solution/air system.

    Science.gov (United States)

    Krawczyk, J

    2015-05-01

    The purpose of these studies was to determine the surface free energy of the human skin and its critical surface tension of wetting in the skin--surfactant aqueous solution--air system in relation to different types of surfactants. The surface free energy of the skin and its components was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the forearm skin surface. Next, taking into account the measured values of the contact angle of aqueous solutions of SDDS, CTAB, TX-100 and TX-114 on the skin surface and data of their surface tension, the critical surface tension of the skin wetting was determined. We can classify the skin surface as low-energetic one. The critical surface tension of the skin wetting depends on the type of surfactant. It is possible to determine the critical surface tension of the human skin wetting on the basis of the values of the contact angle of aqueous solutions of surfactants and their surface tension. In this respect, nonionic surfactants seem to be the most appropriate. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation.

    Science.gov (United States)

    Ben M'barek, Kalthoum; Ajjaji, Dalila; Chorlay, Aymeric; Vanni, Stefano; Forêt, Lionel; Thiam, Abdou Rachid

    2017-06-19

    Cells convert excess energy into neutral lipids that are made in the endoplasmic reticulum (ER) bilayer. The lipids are then packaged into spherical or budded lipid droplets (LDs) covered by a phospholipid monolayer containing proteins. LDs play a key role in cellular energy metabolism and homeostasis. A key unanswered question in the life of LDs is how they bud off from the ER. Here, we tackle this question by studying the budding of artificial LDs from model membranes. We find that the bilayer phospholipid composition and surface tension are key parameters of LD budding. Phospholipids have differential LD budding aptitudes, and those inducing budding decrease the bilayer tension. We observe that decreasing tension favors the egress of neutral lipids from the bilayer and LD budding. In cells, budding conditions favor the formation of small LDs. Our discovery reveals the importance of altering ER physical chemistry for controlled cellular LD formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of texture on shear band formation in plane strain tension/compression and bending

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2007-01-01

    model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet......In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain...... is characterized in terms of an elastic-viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation...

  1. Effects of Thermal Tension Transients on the Muscle Crossbridge

    Science.gov (United States)

    Greene, Peter R.

    2016-09-01

    The transverse thermal fluctuations of the myosin molecule are significant. This paper explores the contribution of lateral myosin bending to the developed crossbridge force and power stroke. The equipartition theorem is used to calculate the mode amplitudes for myosin bending. Crossbridge axial force Fx and power stroke Δx are developed by transverse in-plane fluctuations along the y- and z-axes. Practical applications include the effects of temperature on the flexibility of the myosin molecule stiffness and tension, relevant to man-made fabrication of synthetic muscle using micromachines and nanowires. Scaling laws for the S2 bending amplitude depend on filament length, mode number, and stiffness, as n-2,L2, and (EI)-1. This paper quantifies the effects of thermal motion on the mechanics of miniature molecular motors, including the muscle crossbridge.

  2. Microscale distribution and dynamic surface tension of pulmonary surfactant normalize the recruitment of asymmetric bifurcating airways.

    Science.gov (United States)

    Yamaguchi, Eiichiro; Nolan, Liam P; Gaver, Donald P

    2017-05-01

    We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury. Copyright © 2017 the American Physiological Society.

  3. Database of Pb - free soldering materials, surface tension and density, experiment vs. Modeling

    Directory of Open Access Journals (Sweden)

    Z Moser

    2006-01-01

    Full Text Available Experimental studies of surface tension and density by the maximum bubble pressure method and dilatometric technique were undertaken and the accumulated data for liquid pure components, binary, ternary and multicomponent alloys were used to create the SURDAT data base for Pb-free soldering materials. The data base enabled, also to compare the experimental results with those obtained by the Butler’s model and with the existing literature data. This comparison has been extended by including the experimental data of Sn-Ag-Cu-Sb alloys.

  4. Random laser from engineered nanostructures obtained by surface tension driven lithography

    CERN Document Server

    Ghofraniha, N; Di Maria, F; Barbarella, G; Gigli, G; Conti, C

    2013-01-01

    The random laser emission from the functionalized thienyl-S,S-dioxide quinquethiophene (T5OCx) in confined patterns with different shapes is demonstrated. Functional patterning of the light emitter organic material in well defined features is obtained by spontaneous molecular self-assembly guided by surface tension driven (STD) lithography. Such controlled supramolecular nano-aggregates act as scattering centers allowing the fabrication of one-component organic lasers with no external resonator and with desired shape and efficiency. Atomic force microscopy shows that different geometric pattern with different supramolecular organization obtained by the lithographic process tailors the coherent emission properties by controlling the distribution and the size of the random scatterers.

  5. Tearing-off method based on single carbon nanocoil for liquid surface tension measurement

    Science.gov (United States)

    Wang, Peng; Pan, Lujun; Deng, Chenghao; Li, Chengwei

    2016-11-01

    A single carbon nanocoil (CNC) is used as a highly sensitive mechanical sensor to measure the surface tension coefficient of deionized water and alcohol in the tearing-off method. The error can be constrained to within 3.8%. Conversely, the elastic spring constant of a CNC can be accurately measured using a liquid, and the error is constrained to within 3.2%. Compared with traditional methods, the CNC is used as a ring and a sensor at the same time, which may simplify the measurement device and reduce error, also all measurements can be performed under a very low liquid dosage owing to the small size of the CNC.

  6. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2007-01-01

    Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus

  7. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  8. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    Science.gov (United States)

    Müller, Hanna; End, Caroline; Renner, Marcus; Helmke, Burkhard M; Gassler, Nikolaus; Weiss, Christel; Hartl, Dominik; Griese, Matthias; Hafner, Mathias; Poustka, Annemarie; Mollenhauer, Jan; Poeschl, Johannes

    2007-01-01

    Background Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease. PMID:17908325

  9. Nuclear and hadron matter equation of state within the induced surface tension approach

    Science.gov (United States)

    Sagun, V. V.; Bugaev, K. A.; Ivanytskyi, A. I.; Oliinychenko, D. R.; Mishustin, I. N.

    2017-12-01

    We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard core repulsion. The suggested equation of state explicitly contains the surface tension which is induced by particle interaction. At high densities such a surface tension vanishes and in this way it switches the excluded volume treatment of hard core repulsion to its eigen volume treatment. The great advantage of the developed model is that the number of equations to be solved is two and it does not depend on the number of independent hard-core radii. Using the suggested equation of state we obtained a high quality fit of the hadron multiplicities measured at AGS, SPS, RHIC and ALICE energies and studied the properties of the nuclear matter phase diagram. It is shown the developed equation of state is softer than the gas of hard spheres and remains causal up to the several normal nuclear densities. Therefore, it could be applied to the neutron star interior modeling.

  10. Automated operation of immiscible filtration assisted by surface tension (IFAST) arrays for streamlined analyte isolation.

    Science.gov (United States)

    Berry, Scott M; Regehr, Keil J; Casavant, Benjamin P; Beebe, David J

    2013-06-01

    The purification of analytes is an important prerequisite for many analytical processes. Although automated infrastructure has dramatically increased throughput for many of these processes, the upstream analyte purification throughput has lagged behind, partially due to the complexity of conventional isolation processes. Here, we demonstrate automated operation of arrays of a new sample preparation technology--immiscible filtration assisted by surface tension (IFAST). IFAST uses surface tension to position an immiscible liquid barrier between a biological sample and downstream buffer. Paramagnetic particles are used to capture analytes of interest and draw them across the immiscible barrier, thus resulting in purification in a single step. Furthermore, the planarity of the IFAST design enables facile and simultaneous operation of multiple IFAST devices. To demonstrate the application of automation to IFAST, we successfully perform an array of 48 IFAST-based assays to detect the presence of a specific antibody. This assay array uses only a commercial automated liquid handler to load the devices and a custom-built magnet actuator to operate the assays. Automated operation of the IFAST devices resulted in more repeatable results relative to manual operation.

  11. Standard practice for fracture testing with surface-crack tension specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers the design, preparation, and testing of surface-crack tension (SCT) specimens. It relates specifically to testing under continuously increasing force and excludes cyclic and sustained loadings. The quantity determined is the residual strength of a specimen having a semielliptical or circular-segment fatigue crack in one surface. This value depends on the crack dimensions and the specimen thickness as well as the characteristics of the material. 1.2 Metallic materials that can be tested are not limited by strength, thickness, or toughness. However, tests of thick specimens of tough materials may require a tension test machine of extremely high capacity. The applicability of this practice to nonmetallic materials has not been determined. 1.3 This practice is limited to specimens having a uniform rectangular cross section in the test section. The test section width and length must be large with respect to the crack length. Crack depth and length should be chosen to suit the ultimate pu...

  12. Rotating Molten Metallic Drops and Related Phenomena: A New Approach to the Surface Tension Measurement

    Science.gov (United States)

    Rhim, Won-Kyu; Ishikawa, Takehiko

    2000-01-01

    Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.

  13. Model for the Surface Tension of Dilute and Concentrated Binary Aqueous Mixtures as a Function of Composition and Temperature.

    Science.gov (United States)

    Shardt, Nadia; Elliott, Janet A W

    2017-10-17

    Surface tension dictates fluid behavior, and predicting its magnitude is vital in many applications. Equations have previously been derived to describe how the surface tension of pure liquids changes with temperature, and other models have been derived to describe how the surface tension of mixtures changes with liquid-phase composition. However, the simultaneous dependence of surface tension on temperature and composition for liquid mixtures has been less studied. Past approaches have required extensive experimental data to which models have been fit, yielding a distinct set of fitting parameters at each temperature or composition. Herein, we propose a model that requires only three fitting procedures to predict surface tension as a function of temperature and composition. We achieve this by analyzing and extending the Shereshefsky (J. Colloid Interface Sci. 1967, 24 (3), 317-322), Li et al. (Fluid Phase Equilib. 2000, 175, 185-196), and Connors-Wright (Anal. Chem. 1989, 61 (3), 194-198) models to high temperatures for 15 aqueous systems. The best extensions of the Shereshefsky, Li et al., and Connors-Wright models achieve average relative deviations of 2.11%, 1.20%, and 0.62%, respectively, over all systems. We thus recommend the extended Connors-Wright model for predicting the surface tension of aqueous mixtures at different temperatures with the tabulated coefficients herein. An additional outcome of this study is the previously unreported equivalence of the Li et al. and Connors-Wright models in describing experimental data of surface tension as a function of composition at a single temperature.

  14. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  15. Solving the functional Schroedinger equation: Yang-Mills string tension and surface critical scaling

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Paul E-mail: p.r.w.mansfield@durham.ac.uk

    2004-04-01

    Motivated by a heuristic model of the Yang-Mills vacuum that accurately describes the string-tension in three dimensions we develop a systematic method for solving the functional equation in a derivative expansion. This is applied to the Landau-Ginzburg theory that describes surface critical scaling in the Ising model. A Renormalisation Group analysis of the solution yields the value {eta} = 1.003 for the anomalous dimension of the correlation function of surface spins which compares well with the exact result of unity implied by Onsager's solution. We give the expansion of the corresponding {beta}-function to 17th order (which receives contributions from up to 17-loops in conventional perturbation theory). (author)

  16. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  17. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  18. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  19. Surface tension and buoyancy-driven flow in a non-isothermal liquid bridge

    Science.gov (United States)

    Zhang, Yiqiang; Alexander, J. I. D.

    1992-01-01

    The Navier-Stokes-Boussinesq equations governing the transport of momentum, mass and heat in a nonisothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream-function formulation together with a nonorthogonal coordinate transformation. The equations are discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the ADI method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; both use the force balance normal to the free surface as the distinguished boundary condition. The first scheme involves successive approximation by the direct solution of the distinguished boundary condition. The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises when the boundary condition for force balance normal to the surface is not satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven flow.

  20. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  1. Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896.

    Science.gov (United States)

    Bakhshi, Nafiseh; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2017-06-01

    Currently, screening of microbial biosurfactants (BSs) is based on their equilibrium surface tension values obtained using static surface tension measurement. However, a good surfactant should not only have a low equilibrium surface tension, but its dynamic surface tension (DST) should also decrease rapidly with time. In this study, screening of BSs produced by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic) was performed based on their DST values measured by Wilhelmy plate tensiometry. The relationship between DST and structural and functional properties (anti-adhesive activity) of the BSs was investigated. The results showed that the changes in the yield, productivity and structure of the BSs were growth medium and incubation time dependent (psurface tension values. However, differences among the structure/yield of the BSs were observed through the measurement of their DST. The considerable dependence of DST on the concentration and composition of the BS proteins was observed (p<0.05). Moreover, the anti-adhesive activity of the BS was found to be positively correlated with its DST. The results suggest that the DST measurement could serve as an efficient method for the clever screening of BSs producer/production condition, and consequently, for the investigation of probiotic features of bacteria, since the anti-adhesive activity is an important criterion of probiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    Science.gov (United States)

    Ollila, O. H. Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state. PMID:22995496

  3. On the Existence of Solutions to the Muskat Problem with Surface Tension

    Science.gov (United States)

    Tofts, Spencer

    2017-12-01

    We consider the Muskat Problem with surface tension in two dimensions over the real line, with H s initial data and allowing the two fluids to have different constant densities and viscosities. We take the angle between the interface and the horizontal, and derive an evolution equation for it. Via energy methods, it has been shown that a unique solution {θ} exists locally and can be continued while {||θ||s} remains bounded and the arc chord condition holds. We prove that when both fluids have the same viscosity and the initial data is sufficiently small, the energy estimate is dominated by second-order dissipative terms. As a result, the energy is non-increasing, and that the resulting solution {θ} exists globally in time.

  4. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.

  5. New correlations between viscosity and surface tension for saturated normal fluids

    CERN Document Server

    Zheng, Mengmeng; Mulero, A

    2016-01-01

    New correlations between viscosity and surface tension are proposed and checked for saturated normal fluids. The proposed correlations contain three or four adjustable coefficients for every fluid. They were obtained by fitting 200 data points, ranging from the triple point to a point very near to the critical one. Forty substances were considered, including simple fluids (such as rare gases), simple hydrocarbons, refrigerants, and some other substances such as carbon dioxide and water. Two correlation models with three adjustable coefficients were checked, and the results showed that the one based on the modified Pelofsky expression gives the better overall results. A new 4-coefficient correlation is then proposed which clearly improves the results, giving the lowest overall deviations for 32 out of the 40 substances considered and absolute average deviations below 10% for all of them.

  6. Improved Correlation for Viscosity from Surface Tension Data for Saturated Normal Fluids

    CERN Document Server

    Tian, Jianxiang

    2016-01-01

    Several correlations between viscosity and surface tension for saturated normal fluids have been proposed in the literature. Usually, they include three or four adjustable coefficients for every fluid and give generally good results. In this paper we propose a new and improved four-coefficient correlation which was obtained by fitting data ranging from the triple point to a point very near to the critical one. Fifty four substances were considered, including simple fluids (such as rare gases), simple hydrocarbons, refrigerants, and some other substances such as carbon dioxide, water or ethanol. The new correlation clearly improves the results obtained with those previously available since it gives absolute average deviations below1% for 40 substances and below 2.1% for 10 substances more.

  7. Modeling of a Curvilinear Planar Crack with a Curvature-Dependent Surface Tension

    KAUST Repository

    Zemlyanova, A. Y.

    2012-01-01

    An approach to modeling fracture incorporating interfacial mechanics is applied to the example of a curvilinear plane strain crack. The classical Neumann boundary condition is augmented with curvature-dependent surface tension. It is shown that the considered model eliminates the integrable crack-tip stress and strain singularities of order 1/2 present in the classical linear fracture mechanics solutions, and also leads to the sharp crack opening that is consistent with empirical observations. Unlike for the case of a straight crack, for a general curvilinear crack some components of the stresses and the derivatives of the displacements may still possess weaker singularities of a logarithmic type. Generalizations of the present study that lead to complete removal of all crack-tip singularities, including logarithmic, are the subject of a future paper. © 2012 Society for Industrial and Applied Mathematics.

  8. An accessible micro-capillary electrophoresis device using surface-tension-driven flow.

    Science.gov (United States)

    Mohanty, Swomitra K; Warrick, Jay; Gorski, Jack; Beebe, David J

    2009-05-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) [G. M. Walker et al., Lab. Chip. 2002, 2, 131-134] injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom) [A. K. Agarwal et al., J. Micromech. Microeng. 2006, 16, 332-340; S. K. Mohanty et al., Electrophoresis 2006, 27, 3772-3778]. Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users.

  9. The Effects of Orchestration on Musicians' and Nonmusicians' Perception of Musical Tension

    Science.gov (United States)

    Silvey, Brian A.

    2011-01-01

    The purpose of this study was to examine the effects of orchestration on musicians' and nonmusicians' (N = 40) perception of musical tension. Participants were asked to register their perceptions of tension using the Continuous Response Digital Interface dial while listening to three orchestrations (full orchestra, brass quintet, and solo piano)…

  10. Fine Tuning of Tissues' Viscosity and Surface Tension through Contractility Suggests a New Role for α-Catenin

    Science.gov (United States)

    Stirbat, Tomita Vasilica; Mgharbel, Abbas; Bodennec, Selena; Ferri, Karine; Mertani, Hichem C.; Rieu, Jean-Paul; Delanoë-Ayari, Hélène

    2013-01-01

    What governs tissue organization and movement? If molecular and genetic approaches are able to give some answers on these issues, more and more works are now giving a real importance to mechanics as a key component eventually triggering further signaling events. We chose embryonic cell aggregates as model systems for tissue organization and movement in order to investigate the origin of some mechanical constraints arising from cells organization. Steinberg et al. proposed a long time ago an analogy between liquids and tissues and showed that indeed tissues possess a measurable tissue surface tension and viscosity. We question here the molecular origin of these parameters and give a quantitative measurement of adhesion versus contractility in the framework of the differential interfacial tension hypothesis. Accompanying surface tension measurements by angle measurements (at vertexes of cell-cell contacts) at the cell/medium interface, we are able to extract the full parameters of this model: cortical tensions and adhesion energy. We show that a tunable surface tension and viscosity can be achieved easily through the control of cell-cell contractility compared to cell-medium one. Moreover we show that -catenin is crucial for this regulation to occur: these molecules appear as a catalyser for the remodeling of the actin cytoskeleton underneath cell-cell contact, enabling a differential contractility between the cell-medium and cell-cell interface to take place. PMID:23390488

  11. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    Science.gov (United States)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  12. A method for the determination of the surface tension of cellulosic fibres in their natural state and its relation with chemical composition

    NARCIS (Netherlands)

    Hazendonk, van J.M.; Putten, van der I.C.; Keurentjes, J.T.F.

    1995-01-01

    The surface tensions of several natural cellulosic fibres like flax, hemp, kenaf and cotton and a synthetic cellulosic fibre have been determined using the so-called floating test. This method determines the liquid surface tension δF at which fibres placed on a liquid surface remain just floating.

  13. Simulation of Two-Fluid Flows by the Least-Squares Finite Element Method Using a Continuum Surface Tension Model

    Science.gov (United States)

    Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan

    1996-01-01

    In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.

  14. Effects of post mortem temperature on rigor tension, shortening and ...

    African Journals Online (AJOL)

    Fully developed rigor mortis in muscle is characterised by maximum loss of extensibility. The course of post mortem changes in ostrich muscle was studied by following isometric tension, shortening and change in pH during the first 24 h post mortem within muscle strips from the muscularis gastrocnemius, pars interna at ...

  15. Liquid gallium-lead mixture phase diagram, surface tension near the critical mixing point, and prewetting transition.

    Science.gov (United States)

    Osman, S M; Grosdidier, B; Ali, I; Abdellah, A Ben

    2013-06-01

    Quite recently, we reported a semianalytical equation of state (EOS) for the Ga-Pb alloy [Phys. Rev. B 78, 024205 (2008)], which was based on the first-order perturbation theory of fluid mixtures, within the simplified random phase approximation, in conjunction with the Grosdidier et al. model pair potentials for Ga-Ga and Pb-Pb with a suitable nonadditive pair potential between Ga-Pb unlike pairs. In the present work, we employ the present EOS to calculate the Ga-Pb phase diagram along the immiscibility gap region. The accuracy of the EOS is tested by consulting the empirical binodal curve. A statistical-mechanical-based theory for the surface tension is employed to obtain an analytical expression for the alloy surface tension. We calculated the surface tension along the bimodal curve and at extreme conditions of temperatures and pressures. The surface tension exhibits reasonably well the prewetting transition of Pb atoms at the surface of the Ga-rich liquid alloy and could qualitatively explain the prewetting phenomena occurring in the Ga-rich side of the phase diagram. The predicted prewetting line and wetting temperature qualitatively agree with the empirical measurements.

  16. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension.

    Science.gov (United States)

    Wang, Hongxia; Zhou, Hua; Yang, Weidong; Zhao, Yan; Fang, Jian; Lin, Tong

    2015-10-21

    Thin porous materials that can spontaneously transport oil fluids just in a single direction have great potential for making energy-saving functional membranes. However, there is little data for the preparation and functionalities of this smart material. Here, we report a novel method to prepare one-way oil-transport fabrics and their application in detecting liquid surface tension. This functional fabric was prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate. Upon one-sided UV irradiation, the coated fabric shows a one-way transport feature that allows oil fluid transport automatically from the unirradiated side to the UV-irradiated surface, but it stops fluid transport in the opposite direction. The fabric still maintains high superhydrophobicity after UV treatment. The one-way fluid transport takes place only for the oil fluids with a specific surface tension value, and the fluid selectivity is dependent on the UV treatment time. Changing the UV irradiation time from 6 to 30 h broadened the one-way transport for fluids with surface tension from around 22.3 mN/m to a range of 22.3-56.7 mN/m. We further proved that this selective one-way oil transport can be used to estimate the surface tension of a liquid simply by observing its transport feature on a series of fabrics with different one-way oil-transport selectivities. To our knowledge, this is the first example to use one-way fluid-transport materials for testing the liquid surface tension. It may open up further theoretical studies and the development of novel fluid sensors.

  17. Investigating the effects of strap tension during non-invasive ventilation mask application: a combined biomechanical and biomarker approach

    Directory of Open Access Journals (Sweden)

    Worsley PR

    2016-11-01

    Full Text Available Peter R Worsley, George Prudden, George Gower, Dan L Bader Southampton General Hospital, Clinical Academic Facility, Faculty of Health Sciences, University of Southampton, Southampton, UK Abstract: Non-invasive ventilation is commonly used for respiratory support. However, in some cases, mask application can cause pressure ulcers to specific features of the face, resulting in pain and reduced quality of life for the individual. This study investigated the effects of mask strap tension on the biomechanical and biomarker responses at the skin interface. Healthy participants (n=13 were recruited and assigned two different masks in a random order, which were fitted with three strap conditions representing increments of 5 mm to increase tension. Masks were worn for 10 minutes at each tension followed by a 10-minute refractory period. Assessment at the device–skin interface included measurements of pressures at the nose and cheeks, temperature and humidity, a selection of inflammatory cytokine concentrations collected from sebum and scores of comfort. The results indicated significantly higher interface pressures at the bridge of the nose compared to the cheeks for both masks (p<0.05, with nasal interface pressures significantly increasing with elevated strap tension (p<0.05. One inflammatory cytokine, IL-1α, increased following mask application at the highest tension, with median increases from baselines ranging from 21 to 33%. The other cytokines revealed a less consistent trend with strap tension. The participants reported statistically greater discomfort during elevated strap tension. Temperature and humidity values under the mask were elevated from ambient conditions, although no differences were observed between mask type or strap tension. The bony prominence on the bridge of the nose represented a vulnerable area of skin during respiratory mask application. This study has shown that mask strap tension has a significant effect on the

  18. Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium.

    Science.gov (United States)

    Jiang, Lifang; Shen, Chong; Long, Xuwei; Zhang, Guoliang; Meng, Qin

    2014-12-01

    Biosurfactant rhamnolipids have been claimed to show biological activities of inhibiting the proliferation of cancer cells. In this study, the cytotoxicity of rhamnolipids was examined on four cancer cells (HepG2, Caco-2, Hela, MCF-7 cells) and two normal cells (HK-2 cell, primary hepatocyte). Interestingly, both cancer cells and normal cells exhibited similar sensitivities to the addition of rhamnolipids in culture medium, and the cytotoxicity was largely attenuated by the presence of fetal bovine serum (FBS) in culture medium. In correlation of the mono-/di-rhamnolipid cytotoxicity with the surface tension of culture medium, it was found that rhamnolipids triggered cytotoxicity whenever the surface tension of culture medium decreased below 41 mN/m irrespective of the FBS content in culture medium, cell line, or rhamnolipid congener. Similarly, each chemical surfactant (Tween-80, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate) could cause cytotoxicity on HepG2 cells whenever its addition made the surface tension under 41 mN/m in culture medium with or without the presence of FBS. It seems that rhamnolipids, like chemical surfactants, exhibited cytotoxicity by reducing the surface tension of culture medium rather than by changing its specific molecular structure, which had no selection on tumor cells. This study could offer helps to correct the misleading biological activity of rhamnolipids and to avoid the possible large wastes of time and expenses on developing the applications in antitumor drugs.

  19. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    Science.gov (United States)

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  20. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods.

    Science.gov (United States)

    Pishkar, Leila; Taheri, Saba; Makarem, Somayeh; Alizadeh Zeinabad, Hojjat; Rahimi, Arash; Saboury, Ali Akbar; Falahati, Mojtaba

    2017-02-01

    In this study, a novel method to probe molecular interactions and binding of human hemoglobin (Hb) with nanodiamond (ND) was introduced based on the surface tension measurement. This method complements conventional techniques, which are basically done by zeta potential and dynamic light scattering (DLS) measurements, near and far circular dichroism (CD) spectroscopy, intrinsic and extrinsic fluorescence spectroscopy. Addition of ND to Hb solution increased the surface tension value of Hb-ND complex relative to those of Hb and ND molecules. The zeta potential values reveled that Hb and ND provide identical charge distribution at pH 7.5. DLS measurements demonstrated that Hb, ND, and ND-Hb complex have hydrodynamic radiuses of 98.37 ± 4.57, 122.07 ± 7.88 nm and 62.27 ± 3.70 at pH of 7.5 respectively. Far and near UV-CD results indicated the loss of α-helix structure and conformational changes of Hb, respectively. Intrinsic fluorescence data demonstrated that the fluorescence quenching of Hb by ND was the result of the static quenching. The hydrophobic interaction plays a pivotal role in the interaction of ND with Hb. Fluorescence intensity changes over time revealed conformational change of Hb continues after the mixing of the components (Hb-ND) till 15 min, which is indicative of the denaturation of the Hb relative to the protein control. Extrinsic fluorescence data showed a considerable enhancement of the ANS fluorescence intensity of Hb-ND system relative to the Hb till 60 nM of ND, likely persuaded by greater exposure of nonpolar residues of Hb hydrophobic pocket. The remarkable decrease in T m value of Hb in Hb-ND complex exhibits interaction of Hb with ND conducts to conformational changes of Hb. This study offers consequential discrimination into the interaction of ND with proteins, which may be of significance for further appeal of these nanoparticles in biotechnology prosecution.

  1. Synchronous Measuring Techniques in Parallel to MRE: Study of Pressure, Pre-Tension, and Surface Dynamics

    Science.gov (United States)

    Brinker, Spencer Thomas

    The contents of this dissertation include investigations in Magnetic Resonance Elastography (MRE) using a preclinical 9.4 Tesla small animal Magnetic Resonance Imaging (MRI) system along with synthetic materials that mimic the mechanical properties of soft human tissue. MRE is used for studying the mechanical behavior of soft tissue particularly applicable to medical applications. Wave motion induced by a mechanical driver is measured with MRI to acquire internal displacement fields over time and space within a material media. Complex shear modulus of the media is calculated from the response of mechanical wave transmission through the material. Changes in soft tissue stiffness is associated with disease progression and thus, is why assessing tissue mechanical properties with MRE has powerful diagnostic potential due to the noninvasive procedure of MRI. The experiments performed in this dissertation used elastic phantoms and specimens to observe the influence of pre-stress on MRE derived mechanical properties while additional mechanical measurements from other related material testing methods were synchronously collected alongside MRI scanning. An organ simulating phantom was used to explore changes in MRE stiffness in response to gas and liquid cyclic pressure loading. MRE stiffness increased with pressure and hysteresis was observed in cyclic pressure loading. The results suggest MRE is applicable to pressure related disease assessment. In addition, an interconnected porosity pressure phantom was constructed for future porous media investigations. A custom system was also built to demonstrate concurrent tensile testing during MRE for investigating homogeneous soft material media undergoing pre-tension. Stiffness increased with uniaxial tensile stress and strain. The tension and stiffness relationship explored can be related to the stress analysis of voluntary muscle. The results also offer prospective experimental strategies for community wide standards on MRE

  2. Surface tension of different sized single-component droplets, according to macroscopic data obtained using the lattice gas model and the critical droplet size during phase formation

    Science.gov (United States)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2017-10-01

    Size dependences of the surface tension of spherical single-component droplets are calculated using equations of the lattice gas model for 19 compounds. Parameters of the model are found from experimental data on the surface tension of these compounds for a macroscopic planar surface. The chosen low-molecular compounds satisfy the law of corresponding states. To improve agreement with the experimental data, Lennard-Jones potential parameters are varied within 10% deviations. The surface tensions of different sized equilibrium droplets are calculated at elevated and lowered temperatures. It is found that the surface tension of droplets grows monotonically as the droplet size increases from zero to its bulk value. The droplet size R 0 corresponding to zero surface tension corresponds to the critical size of the emergence of a new phase. The critical droplet sizes in the new phase of the considered compounds are estimated for the first time.

  3. Interference fit effect on holed single plates loaded with tension-tension stresses

    Directory of Open Access Journals (Sweden)

    D. Croccolo

    2012-07-01

    Full Text Available This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numerical investigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation with a commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress since a residual and compressive stress field is generated by the pin insertion.

  4. Using 3-D dense packing models to predict surface tension change due to protein adsorption

    Science.gov (United States)

    Lampe, Joshua W.; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2010-01-01

    Protein adsorption modeling primarily focuses on the role of the complexities and differences in the role of the protein constituents. However, experimental evidence suggests that adsorption of human blood-borne protein molecules of widely varying size and purpose is more similar than different. A model, which treats proteins as hard, non-interacting spheres, explains the observed regularity of human blood borne protein adsorption as a result of the dominant role of the solvent in the adsorption process. Here we independently evaluate the efficacy of this model, and adjust the model to a dependence on molecular volume as opposed to molecular weight. In addition, we explore the role of adsorption-induced conformation or orientation changes, and demonstrate that volume invariant changes are well represented by this model and changes that include changes in the molecular volume are not. By focusing on molecular volume, the model can be applied to non-spherical molecules such as fibrinogen and accurately captures differences between BSA, multi-layer, and HSA, monolayer, adsorption. These findings confirm the importance of the solvent in protein adsorption, elucidate the importance of molecular volume on surface tension change, and suggest that this model is generally applicable. PMID:22514360

  5. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation

    Science.gov (United States)

    Nozière, Barbara; Baduel, Christine; Jaffrezo, Jean-Luc

    2014-01-01

    The activation of aerosol particles into cloud droplets in the Earth’s atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult’s term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now. PMID:24566451

  6. Theory of melt polyelectrolyte blends and block copolymers: phase behavior, surface tension, and microphase periodicity.

    Science.gov (United States)

    Sing, Charles E; Zwanikken, Jos W; Olvera de la Cruz, Monica

    2015-01-21

    Polymer mixtures such as blends or block copolymers are of great interest in energy applications and functional materials, and often, one or more of these species contain charges. The traditional fashion in which such materials are studied uses Self-Consistent Field Theory (SCFT) methods that incorporate electrostatics using Poisson-Boltzmann (PB) theory. We adapt a new and rigorous approach that does not rely on the mean-field assumptions inherent in the PB theory and instead uses Liquid State (LS) integral equation theory to articulate charge correlations that are completely neglected in PB. We use this theory to calculate phase diagrams for both blends and block copolyelectrolytes using SCFT-LS and demonstrate how their phase behavior is highly dependent on chain length, charge fraction, charge size, and the strength of Coulombic interactions. Beyond providing phase behavior of blends and block copolyelectrolytes, we can use this theory to investigate the interfacial properties such as surface tension and block copolyelectrolyte lamellar spacing. Lamellar spacing provides a way to directly compare the SCFT-LS theory to the results of experiments. SCFT-LS will provide conceptual and mathematical clarification of the role of charge correlations in these systems and aid in the design of materials based on charge polymers.

  7. Synthesis, surface tension, optical and dielectric properties of bismuth oxide thin film

    Directory of Open Access Journals (Sweden)

    Tezel Fatma Meydanerİ

    2017-03-01

    Full Text Available Bismuth oxide thin film was deposited by chemical bath deposition (CBD technique onto a glass substrate. The grain size (D, dislocation density (δ and number of crystallites per unit area (N, i.e. structural properties of the thin film were determined as 16 nm, 39.06× 10–4 line/nm2, 31.25 × 10–3 1/nm2, respectively. Optical transmittance properties of the thin film were investigated by using a UV-Vis spectrophotometer. The optical band gap (Eg for direct transitions, optical transmission (T %, reflectivity (R %, absorption, refractive index (nr, extinction coefficient (k, dielectric constant (∊ of the thin film were found to be 3.77 eV, 25.23 %, 32.25 %, 0.59, 3.62, 0.04 and 2.80, respectively. The thickness of the film was measured by AFM, and was found to be 128 nm. Contact angles of various liquids on the oxide thin film were determined by Zisman method, and surface tension was calculated to be 31.95 mN/m.

  8. HIV viral RNA extraction in wax immiscible filtration assisted by surface tension (IFAST) devices.

    Science.gov (United States)

    Berry, Scott M; LaVanway, Alex J; Pezzi, Hannah M; Guckenberger, David J; Anderson, Meghan A; Loeb, Jennifer M; Beebe, David J

    2014-05-01

    The monitoring of viral load is critical for proper management of antiretroviral therapy for HIV-positive patients. Unfortunately, in the developing world, significant economic and geographical barriers exist, limiting access to this test. The complexity of current viral load assays makes them expensive and their access limited to advanced facilities. We attempted to address these limitations by replacing conventional RNA extraction, one of the essential processes in viral load quantitation, with a simplified technique known as immiscible filtration assisted by surface tension (IFAST). Furthermore, these devices were produced via the embossing of wax, enabling local populations to produce and dispose of their own devices with minimal training or infrastructure, potentially reducing the total assay cost. In addition, IFAST can be used to reduce cold chain dependence during transportation. Viral RNA extracted from raw samples stored at 37°C for 1 week exhibited nearly complete degradation. However, IFAST-purified RNA could be stored at 37°C for 1 week without significant loss. These data suggest that RNA isolated at the point of care (eg, in a rural clinic) via IFAST could be shipped to a central laboratory for quantitative RT-PCR without a cold chain. Using this technology, we have demonstrated accurate and repeatable measurements of viral load on samples with as low as 50 copies per milliliter of sample. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  10. The utilization of round window membrane surface tension in facilitating slim electrodes insertion during cochlear implantation.

    Science.gov (United States)

    Nada, Ihab; Abdelhamid, Ahmed Nabil; Negm, Ahmed

    2017-06-24

    This is a prospective randomized study aimed to evaluate the round window membrane (RWM) surface tension in facilitating slim electrodes insertion during cochlear implantation. A total number of (118) children were included in this study (118 implantations). Mean age was 36.72 months (range from 18 to 60 months). This study was conducted from January 2015 to September 2016 at a cochlear implant centre in a tertiary referral hospital. Slit incision in the anterosuperior quadrant of the RWM was done in 70 cases, While RWM cruciate incision was done in 48 cases. Of the 48 patients who underwent RWM cruciate incision, 13 cases had no problem, while in 35 cases, we faced difficult insertion. When slit incision of the RWM was done (70 cases), 68 cases showed smooth insertion, meanwhile, we faced increased operative time due to flopping of the electrode in 2 cases only. Moreover, residual low-frequency hearing preservation was more achieved when slit incision of the RWM was done. Tensile strength of the round window membrane after slit incision of the RWM offers support to slim electrodes during introduction, decreasing incidence of kinking and floppiness, hence shortening the maneuver time and minimizing the number of trials. This facilitates easy smooth slim electrodes introduction, decreasing intracochlear trauma. Moreover, slit incision of the RWM may offer better residual hearing preservations than cruciate incision of the RWM during slim electrodes introduction.

  11. Physicians' perspectives of managing tensions around dimensions of effective communication in the emergency department.

    Science.gov (United States)

    Dean, Marleah; Oetzel, John G

    2014-01-01

    The purpose of this study was to explore emergency department (ED) physicians' perspectives of guidelines for effective communication. More specifically, the ways in which physicians manage the tensions among effective communication dimensions framed by relational dialectics theory are examined. This study used in-depth interviews with 17 ED physicians and 70 hours of observations to identify five dimensions of effective communication: efficiency, clarity/accuracy, relevance, comprehension, and rapport. Two communication tensions resulted from these dimensions: efficiency versus rapport and efficiency versus comprehension. In almost all instances, physicians chose efficient communication at the expense of comprehension or rapport. In addition, there was a tension between patient and physician perspectives of clarity and relevance that physicians tended to resolve by emphasizing what was relevant and clear from their own perspective. Implications for managing tensions in terms of efficiency and a physician-centered approach are discussed.

  12. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J

    1994-01-01

    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... any of the measured values. Oxygen therapy before epidural blockade increased median subcutaneous oxygen tension from 60 to 71 mmHg (P oxygen tension with oxygen therapy was 30 (15-55) min...... without epidural blockade and 15 (10-20) min with blockade (P oxygen tension with or without oxygen therapy after elective uncomplicated major abdominal surgery....

  13. Investigations of the surface tension of coal ash slags under gasification conditions; Untersuchungen zur Oberflaechenspannung von Kohleschlacken unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Tobias

    2011-10-26

    In the context of CO{sub 2}-emission-induced global warming, greenhouse gases resulting from the production of electricity in coal-fired power plants gain increasing attention. One possible way to reduce such emissions is to gasify coal instead of burning it. The corresponding process is referred to as Integrated Gasification Combined Cycle and allows for the separation of CO{sub 2} before converting a synthesis gas into electrical energy. However, further improvements in efficiency and availability of this plant technology are needed to render the alternative generation of electricity sensible from an economic point of view. One corresponding approach introduces hot gas cleaning facilities to the gasification plant which guarantee a removal of slag particles from the synthesis gas at high temperatures. The development of such filters depends on the availability of data on the material properties of the coal ash slags to be withdrawn. In this respect, the surface tension is a relevant characteristic. Currently, the surface tension of real coal ash slags as well as of synthetic model systems was measured successfully by means of the sessile drop and the maximum bubble pressure method. With regard to the sessile drop technique, those experiments were conducted in a gasification-like atmosphere at temperatures of up to 1500 C. Furthermore, the pressure inside the experimental vessel was raised to 10 bar in order to allow for deriving the influence of this variable on the surface tension. In contrast, maximum bubble pressure trials were realised at atmospheric pressure while the gas atmosphere assured inert conditions. For performing sessile drop measurements, a corresponding apparatus was set up and is described in detail in this thesis. Three computer algorithms were employed to calculate surface tensions out of the photos of sessile drops and their individual performance was evaluated. A very good agreement between two of the codes was found while the third one

  14. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    Science.gov (United States)

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  15. Applicability of the Gibbs Adsorption Isotherm to the analysis of experimental surface-tension data for ionic and nonionic surfactants.

    Science.gov (United States)

    Martínez-Balbuena, L; Arteaga-Jiménez, Araceli; Hernández-Zapata, Ernesto; Márquez-Beltrán, César

    2017-09-01

    The Gibbs Adsorption Isotherm equation is a two-dimensional analogous of the Gibbs-Duhem equation, and it is one of the cornerstones of interface science. It is also widely used to estimate the surface excess concentration (SEC) for surfactants and other compounds in aqueous solution, from surface tension measurements. However, in recent publications some authors have cast doubt on this method. In the present work, we review some of the best available surface tension experimental data, and compare estimations of the SEC, using the Gibbs isotherm method (GIM), to direct measurements reported in the literature. This is done for both nonionic and ionic surfactants, with and without added salt. Our review leads to the conclusion that the GIM has a very solid agreement with experiments, and that it does estimate accurately the SEC for surfactant concentrations smaller than the critical micellar concentration (CMC). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nanomechanical properties of lipid bilayer: asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer.

    Science.gov (United States)

    Maftouni, Negin; Amininasab, Mehriar; Ejtehadi, Mohammad Reza; Kowsari, Farshad; Dastvan, Reza

    2013-02-14

    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5-microsecond [corrected] coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment of lateral pressure in each monolayer. Our simulations reveal that the insertion of CTX A3 into one monolayer results in an asymmetrical change in the lateral pressure and corresponding spatial distribution of surface tension of the individual bilayer leaflets. The relative variation in the surface tension of the two monolayers as a result of a change in the contribution of the various intermolecular forces may potentially be expressed morphologically.

  17. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products

    CERN Document Server

    Li, Zhi; Sareen, Neha; McNeill, V Faye

    2011-01-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(\\pm2) dyn/cm in pure water and 62(\\pm1) dyn/cm in AS solutions. Surface t...

  18. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion.

    Science.gov (United States)

    Yan, J H; Zhang, X B; Zhao, J; Liu, G F; Cai, H G; Pan, Q M

    2015-08-04

    The highly agile and efficient water-surface locomotion of the water strider has stimulated substantial interest in biomimetic research. In this paper, we propose a new miniature surface tension-driven robot inspired by the water strider. A key feature of this robot is that its actuating leg possesses an ellipse-like spatial trajectory similar to that of a water strider by using a cam-link mechanism. Simplified models are presented to discuss the leg-water interactions as well as critical conditions for a leg penetrating the water surface, and simulations are performed on the robot's dynamic properties. The final fabricated robot weighs about 3.9 g, and can freely and stably walk on water at different gaits. The maximum forward and turning speeds of the robot are measured as 16 cm s(-1) and 23°/s, respectively. Furthermore, a similarity analysis with Bond number and Weber number demonstrates that the locomotion of this robot is quite analogous to that of a real water strider: the surface tension force dominates the lifting force and plays a major role in the propulsion force. This miniature surface tension-driven robot might have potential applications in many areas such as water quality monitoring and aquatic search and rescue.

  19. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  20. Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery

    Science.gov (United States)

    Koch, Kevin; Dew, Beautia; Corcoran, Timothy E.; Przybycien, Todd M.; Tilton, Robert D.; Garoff, Stephen

    2011-01-01

    Surface tension gradient driven, or “Marangoni,” flow can be used to move exogenous fluid, either surfactant dispersions or drug carrying formulations, through the lung. In this paper, we investigate the spreading of aqueous solutions of water-soluble surfactants over entangled, aqueous mucin solutions that mimic the airway surface liquid of the lung. We measure the movement of the formulation by incorporating dyes into the formulation while we measure surface flows of the mucin solution subphase using tracer particles. Surface tension forces and/or Marangoni stresses initiate a convective spreading flow over this rheologically complex subphase. As expected, when the concentration of surfactant is reduced until its surface tension is above that of the mucin solution, the convective spreading does not occur. The convective spreading front moves ahead of the drop containing the formulation. Convective spreading ends with the solution confined to a well-defined static area which must be governed by a surface tension balance. Further motion of the spread solution progresses by much slower diffusive processes. Spreading behaviors are qualitatively similar for formulations based on anionic, cationic, or nonionic surfactants, containing either hydrophilic or hydrophobic dyes, on mucin as well as on other entangled aqueous polymer solution subphases. This independence of qualitative spreading behaviors from the chemistry of the surfactant and subphase indicates that there is little chemical interaction between the formulation and the subphase during the spreading process. The spreading and final solution distributions are controlled by capillary and hydrodynamic phenomena and not by specific chemical interactions among the components of the system. It is suggested that capillary forces and Marangoni flows driven by soluble surfactants may thereby enhance the uniformity of drug delivery to diseased lungs. PMID:21250745

  1. Surface tension of decane binary and ternary mixtures with eicosane, docosane, and tetracosane

    DEFF Research Database (Denmark)

    Queimada, Antonio; Cao, A.I.; Marrucho, I.M.

    2005-01-01

    A tensiometer operating on the Wilhelmy plate method was employed to measure liquid-vapor interfacial tensions of three binary mixtures and one ternary mixture of decane with eicosane, docosane, and tetracosane. Tensions of binary mixtures n-C10H22 + n-C20H42, n-C10H22 + n-C22H46, and n-C10H22 + n...

  2. Effects of Singing Bowl Sound Meditation on Mood, Tension, and Well-being: An Observational Study.

    Science.gov (United States)

    Goldsby, Tamara L; Goldsby, Michael E; McWalters, Mary; Mills, Paul J

    2016-09-30

    Poor mood and elevated anxiety are linked to increased incidence of disease. This study examined the effects of sound meditation, specifically Tibetan singing bowl meditation, on mood, anxiety, pain, and spiritual well-being. Sixty-two women and men (mean age 49.7 years) participated. As compared with pre-meditation, following the sound meditation participants reported significantly less tension, anger, fatigue, and depressed mood (all Ps meditation experienced a significantly greater reduction in tension compared with participants experienced in this meditation (P meditation may be a feasible low-cost low technology intervention for reducing feelings of tension, anxiety, and depression, and increasing spiritual well-being. This meditation type may be especially useful in decreasing tension in individuals who have not previously practiced this form of meditation. © The Author(s) 2016.

  3. Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air-water interface.

    Science.gov (United States)

    Onaizi, Sagheer A

    2018-03-01

    The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.

  4. Influence of nitrogen, oxygen, air and alveolar gas upon surface tension of lung surfactant.

    Science.gov (United States)

    Wildeboer-Venema, F

    1984-10-01

    Surface tension (s.t.) of lung surfactant (l.s.) was measured at 37 degrees C in a closed box, filled with completely humidified gas (mixtures) such as room air, O2, N2, or alveolar gas. The film was compressed to 20% of the original area and expanded, with cycling times of 10 to 20 sec. Switching from one gas mixture to another nearly always caused a fall of s.t., but in general only temporarily. Only a gas phase containing CO2, like alveolar gas, caused a permanent fall of s.t. and a rise after its withdrawal. This was not due to a direct influence of CO2, but rather to the induced change of hypophase pH; the reaction of s.t. at end-expansion (gamma max) decreased and that at end-compression (gamma min) disappeared with a buffered hypophase. By using buffered or unbuffered hypophases, we were able to create pH values in a wide range and relate them to s.t. and CO2 concentration. With pH 5.5, the mean values of s.t. at end-compression and end-expansion were 20.2 and 51.2 mN/m, respectively. They reached the significantly higher values of 25.3 and 55.4 mN/m with pH = 8.5. With 5.6% CO2 in the atmosphere, which is comparable to alveolar gas, gamma min and gamma max had mean values of 22.9 and 52.8 mN/m, respectively. Such values correspond with a pH in the range of 6.7 to 7.1, which is supposed to be the range of pH of the pulmonary interstitium.

  5. Influence of Zinc on the Surface Tension, Density and Molar Volume of (Ag-Sneut +Zn Liquid Alloys

    Directory of Open Access Journals (Sweden)

    Gąsior W.

    2016-03-01

    Full Text Available The dilatometric and maximum bubble pressure methods were applied for the measurements of the density and surface tension of liquid (Ag-Sneut +Zn lead-free solders. The experiments were carried out in the temperature range from 515 to 1223 K for the alloys of the zinc concentration equaling 0.01, 0.02, 0.04, 0.05, 0.1 and 0.2 of the mole fraction. It was found that the temperature dependence of both the density and the surface tension could be thought as linear, so they were interpreted by straight line equations. The experimental data of the molar volume of the investigated alloys were described by the polynomial dependent on the composition and temperature.

  6. Rheologic Profile, Specific Gravity, Surface Tension, and pH of Fifteen Over-the-Counter Preparations.

    Science.gov (United States)

    Al-Achi, Antoine; Baghat, Tushar; Chukwubeze, Onah; Dembla, Ishwin

    2007-01-01

    Knowledge of the physical characteristics of commercially available over-the-counter preparations can aid the compounding pharmacist in preparing medication. In this study, 15 over-the-counter products were studied with regard to their specific gravity, surface tension, pH, and rheologic profile. The specific gravities of all the products were greater than 1, with the exceptions of Nivea Lotion and rubbing alcohol, which were less than 1. The majority of the products had an acidic pH. With the exception of two products, Citrucel and Chloraseptic, all products demonstrated a surface tension value less than that of water (72.8 dynes/cm). Chloraseptic had the lowest Newtonian viscosity (1.27 cPs), whereas Vicks DayQuil had the highest (098.86 cPs). Citrucel exhibited dilatant-type flow; Suave Shampoo, herbal shampoo, Tangerine Tickle Herbal Shampoo, and Metamucil pseudoplastic flow; the remaining non-Newtonian formulations, plastic flow profiles.

  7. Cell-to-cell heterogeneity in cortical tension specifies curvature of contact surfaces in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Fujita, Masashi; Onami, Shuichi

    2012-01-01

    In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P₁ blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P₁. However, the higher pressure in AB is intriguing because AB has a larger volume than P₁. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P₁ is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos.

  8. Cell-to-cell heterogeneity in cortical tension specifies curvature of contact surfaces in Caenorhabditis elegans embryos.

    Directory of Open Access Journals (Sweden)

    Masashi Fujita

    Full Text Available In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P₁ blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P₁. However, the higher pressure in AB is intriguing because AB has a larger volume than P₁. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P₁ is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos.

  9. Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension: Low surface energy and high roughness

    Science.gov (United States)

    Singh, Arun K.; Singh, Jayant K.

    2017-09-01

    In this study, we have developed super-repellent surface on cotton fabric via a facile and eco-friendly strategy using zirconia particles with water-soluble siloxane emulsion. The coated fabric using zirconia-siloxane (ZS) coating showed super-repellency of liquids with surface tension >47.7 mN/m, like water, mixtures of isopropyl alcohol with deionized water (2% and 5%, v/v), and ethylene glycol with contact angle of 158°, 155°, 153° and 152°, respectively. Furthermore, the coated fabric displays low sliding angle, anti-wetting, self-cleaning, support for aquatic floating devices and as a filtration material for rapid and continuous oil-water separation.

  10. Surface Tension and Viscosity of SCN and SCN-acetone Alloys at Melting Points and Higher Temperatures Using Surface Light Scattering Spectrometer

    Science.gov (United States)

    Tin, Padetha; deGroh, Henry C., III.

    2003-01-01

    Succinonitrile has been and is being used extensively in NASA's Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE). Succinonitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. Using the Surface Light Scattering technique we have determined non invasively, the surface tension and viscosity of SCN and SCN-Acetone Alloys at different temperatures. This relatively new and unique technique has several advantages over the classical methods such as, it is non invasive, has good accuracy and measures the surface tension and viscosity simultaneously. The accuracy of interfacial energy values obtained from this technique is better than 2% and viscosity about 10 %. Succinonitrile and succinonitrile-acetone alloys are well-established model materials with several essential physical properties accurately known - except the liquid/vapor surface tension at different elevated temperatures. We will be presenting the experimentally determined liquid/vapor surface energy and liquid viscosity of succinonitrile and succinonitrile-acetone alloys in the temperature range from their melting point to around 100 C using this non-invasive technique. We will also discuss about the measurement technique and new developments of the Surface Light Scattering Spectrometer.

  11. Classical nucleation theory with a radius-dependent surface tension: a two-dimensional lattice-gas automata model.

    Science.gov (United States)

    Hickey, Joseph; L'Heureux, Ivan

    2013-02-01

    The constant surface tension assumption of the Classical Nucleation Theory (CNT) is known to be flawed. In order to probe beyond this limitation, we consider a microscopic, two-dimensional Lattice-Gas Automata (LGA) model of nucleation in a supersaturated system, with model input parameters E(ss) (solid particle-to-solid particle bonding energy), E(sw) (solid particle-to-water bonding energy), η (next-to-nearest-neighbor bonding coefficient in solid phase), and C(in) (initial solute concentration). The LGA method has the advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system's concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the equilibrium concentration. The "Mean First-Passage Time" technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation data are evaluated using a modification to the CNT that incorporates a two-dimensional radius-dependent surface tension term. The Tolman parameter, δ, which controls the radius dependence of the surface tension, decreases (increases) as a function of the magnitude of E(ss) (E(sw)), at fixed values of η and E(sw) (E(ss)). On the other hand, δ increases as η increases while E(ss) and E(sw) are held constant. The constant surface tension term of the CNT, Σ(0), increases (decreases) with increasing magnitudes of E(ss) (E(sw)) at fixed values of E(sw) (E(ss)) and increases as η is increased. Σ(0) increases linearly as a function of the change in energy during an attachment or detachment reaction, |ΔE|, however, with a slope less than that predicted for a crystal that is uniformly packed at maximum density. These results indicate an increase in the radius-dependent surface tension, Σ, with respect to increasing magnitude of the difference between E(ss) and E(sw).

  12. Hydraulic Performance Modifications of a Zeolite Membrane after an Alkaline Treatment: Contribution of Polar and Apolar Surface Tension Components

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2015-01-01

    Full Text Available Hydraulic permeability measurements are performed on low cut-off Na-mordenite (MOR-type zeolites membranes after a mild alkaline treatment. A decrease of the hydraulic permeability is systematically observed. Contact angle measurements are carried out (with three polar liquids on Na-mordenite films seeded onto alumina plates (flat membranes. A decrease of the contact angles is observed after the alkaline treatment for the three liquids. According to the theory of Lifshitz-van der Waals interactions in condensated state, surface modifications are investigated and a variation of the polar component of the material surface tension is observed. After the alkaline treatment, the electron-donor contribution (mainly due to the two remaining lone electron pairs of the oxygen atoms present in the zeolite extra frameworks decreases and an increase of the electron-receptor contribution is observed and quantified. The contribution of the polar component to the surface tension is attributed to the presence of surface defaults, which increase the surface hydrophilicity. The estimated modifications of the surface interaction energy between the solvent (water and the Na-mordenite active layer are in good agreement with the decrease of the hydraulic permeability observed after a mild alkaline treatment.

  13. A multiphase three-dimensional multi-relaxation time (MRT) lattice Boltzmann model with surface tension adjustment

    Science.gov (United States)

    Ammar, Sami; Pernaudat, Guillaume; Trépanier, Jean-Yves

    2017-08-01

    The interdependence of surface tension and density ratio is a weakness of pseudo-potential based lattice Boltzmann models (LB). In this paper, we propose a 3D multi-relaxation time (MRT) model for multiphase flows at large density ratios. The proposed model is capable of adjusting the surface tension independently of the density ratio. We also present the 3D macroscopic equations recovered by the proposed forcing scheme. A high order of isotropy for the interaction force is used to reduce the amplitude of spurious currents. The proposed 3D-MRT model is validated by verifying Laplace's law and by analyzing its thermodynamic consistency and the oscillation period of a deformed droplet. The model is then applied to the simulation of the impact of a droplet on a dry surface. Impact dynamics are determined and the maximum spread factor calculated for different Reynolds and Weber numbers. The numerical results are in agreement with data published in the literature. The influence of surface wettability on the spread factor is also investigated. Finally, our 3D-MRT model is applied to the simulation of the impact of a droplet on a wet surface. The propagation of transverse waves is observed on the liquid surface.

  14. Effects of different femoral tunnel positions on tension changes in anterolateral ligament reconstruction.

    Science.gov (United States)

    Katakura, Mai; Koga, Hideyuki; Nakamura, Kaori; Sekiya, Ichiro; Muneta, Takeshi

    2017-04-01

    Several kinds of anterolateral ligament (ALL) reconstructions to augment intra-articular anterior cruciate ligament reconstruction to better control anterolateral rotational instability (ALRI) have been reported. However, the optimal femoral attachment site for ALL reconstruction is still unclear. The purpose of this study was to investigate the effects of different femoral attachment sites on the tension changes through knee motions in different situations in order to determine a recommended femoral attachment site for ALL reconstruction. Six fresh-frozen cadaveric knees were included. ALL reconstructions were performed with three different femoral attachment sites (F1: 2 mm anterior and 2 mm distal to the lateral epicondyle, F2: 4 mm posterior and 8 mm proximal to the lateral epicondyle and F3: position for the lateral extra-articular tenodesis). The graft tension changes were measured by a graft tensioning system during knee flexion-extension and manual maximum internal/external tibial rotation in the following situations: (1) intact, (2) ALL cut, (3) ALL and ACL cut and (4) ALL cut and ACL reconstructed. Effects of the different femoral attachment sites, the route superficial or deep to the LCL, and the situations of (1) to (4) were calculated via repeated-measures analysis of variance. The tension of F1 was higher in flexion and lower in extension, whereas the tension of F2 and F3 was higher in extension and lower in flexion. F2 showed the smallest tension change. Situations of (1) to (4) did not affect tension changes. The graft tension became higher with internal rotation and lower with external rotation regardless of femoral attachment sites or situations. With F2-4 mm posterior and 8 mm proximal to the lateral epicondyle-the reconstructed ALL had the least tension change with only a slight increase in tension as the knee extended. This result indicates that F2 is recommended for ALL reconstruction to better control ALRI, which will help determine the

  15. Application of the maximum bubble pressure technique for dynamic surface tension studies of surfactant solutions using the Sugden two-capillary method.

    Science.gov (United States)

    Fainerman, V B; Mys, V D; Makievski, A V; Miller, R

    2006-12-01

    Exact knowledge of the dead time as part of the bubble lifetime in the maximum bubble pressure method is an important prerequisite for accurate dynamic surface tension measurements. The duration of the dead time depends essentially on the capillary geometry and affects significantly the measured surface tensions of concentrated surfactant solutions. Increase of the dead time leads to a significant surface tension decrease of a freshly formed bubble surface due to the significantly higher residual adsorption of the surfactant molecules. It is shown that correct dynamic surface tensions are obtained with the experimental procedure of Sugden's method only when in addition to the fixed frequency of bubble formation, also the dead time values for the two capillaries are kept constant.

  16. Capillary meniscus dynamometry—method for determining the surface tension of drops and bubbles with isotropic and anisotropic surface stress distributions.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Alexandrov, Nikola A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Pelan, Eddie G

    2015-02-15

    The stresses acting in interfacial adsorption layers with surface shear elasticity are, in general, anisotropic and non-uniform. If a pendant drop or buoyant bubble is covered with such elastic layer, the components of surface tension acting along the "meridians" and "parallels", σ(s) and σ(φ), can be different and, then, the conventional drop shape analysis (DSA) is inapplicable. Here, a method for determining σ(s) and σ(φ) is developed for axisymmetric menisci. This method, called 'capillary meniscus dynamometry' (CMD), is based on processing data for the digitized drop/bubble profile and capillary pressure. The principle of the CMD procedure for data processing is essentially different from that of DSA. Applying the tangential and normal surface stress balance equations, σ(s) and σ(φ) are determined in each interfacial point without using any rheological model. The computational procedure is fast and could be used in real time, during a given process. The method is applied to determine σ(s) and σ(φ) for bubbles and drops formed on the tip of a capillary immersed in solutions of the protein HFBII hydrophobin. Upon a surface compression, meridional wrinkles appear on the bubble surface below the bubble "equator", where the azimuthal tension σ(φ) takes negative values. The CMD method allows one to determine the local tensions acting in anisotropic interfacial layers (films, membranes), like those formed from proteins, polymers, asphaltenes and phospholipids. The CMD is applicable also to fluid interfaces (e.g. surfactant solutions), for which it gives the same surface tension as the conventional methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. EFFECT OF KAYAK ERGOMETER ELASTIC TENSION ON UPPER LIMB EMG ACTIVITY AND 3D KINEMATICS

    Directory of Open Access Journals (Sweden)

    Neil Fleming

    2012-09-01

    Full Text Available Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10 performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p < 0.001, no significant differences were detected in assessed force variables during the stroke cycle. In contrast, increasing tension induced significantly higher Anterior Deltoid (AD activity in the latter stages (70 to 90% of the cycle (p < 0.05. No significant differences were observed across tension levels for Triceps Brachii or Latissimus Dorsi. Kinematic analysis revealed that overhead arm movements accounted for 39 ± 16% of the cycle. Elbow angle at stroke cycle onset was 144 ± 10°; maximal elbow angle (151 ± 7° occurred at 78 ± 10% into the cycle. All kinematic markers moved to a more anterior position as tension increased. No significant change in wrist marker elevation was observed, while elbow and shoulder marker elevations significantly increased across tension levels (p < 0.05. In conclusion, data suggested that kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces

  18. Oscillating drop/bubble tensiometry: effect of viscous forces on the measurement of interfacial tension.

    Science.gov (United States)

    Freer, E M; Wong, H; Radke, C J

    2005-02-01

    The oscillating drop/bubble technique is increasingly popular for measuring the interfacial dilatational properties of surfactant/polymer-laden fluid/fluid interfaces. A caveat of this technique, however, is that viscous forces are important at higher oscillation frequencies or fluid viscosities; these can affect determination of the interfacial tension. Here, we experimentally quantify the effect of viscous forces on the interfacial-tension measurement by oscillating 100 and 200 cSt poly(dimethylsiloxane) (PDMS) droplets in water at small amplitudes and frequencies ranging between 0.01 and 1 Hz. Due to viscous forces, the measured interfacial tension oscillates sinusoidally with the same frequency as the oscillation of the drop volume. The tension oscillation precedes that of the drop volume, and the amplitude varies linearly with Capillary number, Ca=DeltamuomegaDeltaV/gammaa(2), where Deltamu=mu(D)-mu is the difference between the bulk Newtonian viscosities of the drop and surrounding continuous fluid, omega is the oscillation frequency of the drop, DeltaV is the amplitude of volume oscillation, gamma is the equilibrium interfacial tension between the PDMS drop and water, and a is the radius of the capillary. A simplified model of a freely suspended spherical oscillating-drop well explains these observations. Viscous forces distort the drop shape at Ca>0.002, although this criterion is apparatus dependent.

  19. MIGRAIN AND TENSION TYPE HEADACHE IN CHILDREN: THE APPROACH TO EFFECTIVE TREATMENT. PART 1

    Directory of Open Access Journals (Sweden)

    A. V. Sergeev

    2012-01-01

    Full Text Available Headache is one of the most common complaints of children and adolescents. The most often causes of cephalgia in children are primary headaches (mainly migraine and tension-type headache. Recently there has been a significant increase in prevalence of primary headaches, which can be due to the changes of children’s way of life. The lack of the strict recommendations on symptomatic and preventive treatment of primary headaches in children in Russia often leads to erroneous indications. Inappropriate treatment can result in migraine and tension-type headache course aggravation with the formation of chronic daily headache, development of medicine-induced headache and other undesirable side-effects. The literature review covers the questions of therapy of the main forms of primary headaches in children: migraines and tension-type headaches. In the first part of the article the issues of diagnostics, algorithm of treatment and non-medicinal methods of treatment of headaches are discussed.

  20. THE EFFECTS OF VARIED TENSIONS OF KINESIOLOGY TAPING ON QUADRICEPS STRENGTH AND LOWER LIMB FUNCTION.

    Science.gov (United States)

    de Jesus, Julio Fernandes; Franco, Yuri Rafael Dos Santos; Nannini, Stella Bispo; Nakaoka, Gustavo Bezerra; Dos Reis, Amir Curcio; Bryk, Flavio Fernandes

    2017-02-01

    Kinesiology Taping (KT) may promote changes in muscle strength and motor performance, topics of great interest in the sports-medicine sciences. These characteristics are purported to be associated with the tension generated by the KT on the skin. However, the most suitable tension for the attainment of these strength and performance effects has not yet been confirmed. The purpose of the present study was to analyze the effects of different tensions of KT on the isometric contraction of the quadriceps and lower limb function of healthy individuals over a period of seven days. Blind, randomized, clinical trial. One hundred and thirty healthy individuals were distributed into the following five groups: control (without KT); KT0 (KT without tension); KT50; KT75 and KT100 (approximately 50%, 75% and 100% tension applied to the tape, respectively). Assessments of isometric quadriceps strength were conducted using a hand held dynamometer. Lower limb function was assessed through Single Hop Test for Distance, with five measurement periods: baseline; immediately after KT application; three days after KT; five days after KT; and 72h after KT removal (follow-up). There were no statistically significant differences ( p  > 0.05) at any of the studied periods on participants' quadriceps strength nor in the function of the lower dominant limb, based on comparisons between the control group and the experimental groups. KT applied with different tensions did not produce modulations, in short or long-term, on quadriceps' strength or lower limb function of healthy individuals. Therefore, this type of KT application, when seeking these objectives, should be reconsidered. 1b.

  1. THE EFFECTS OF VARIED TENSIONS OF KINESIOLOGY TAPING ON QUADRICEPS STRENGTH AND LOWER LIMB FUNCTION

    Science.gov (United States)

    Franco, Yuri Rafael dos Santos; Nannini, Stella Bispo; Nakaoka, Gustavo Bezerra; dos Reis, Amir Curcio; Bryk, Flavio Fernandes

    2017-01-01

    Background Kinesiology Taping (KT) may promote changes in muscle strength and motor performance, topics of great interest in the sports-medicine sciences. These characteristics are purported to be associated with the tension generated by the KT on the skin. However, the most suitable tension for the attainment of these strength and performance effects has not yet been confirmed. Hypothesis/Purpose The purpose of the present study was to analyze the effects of different tensions of KT on the isometric contraction of the quadriceps and lower limb function of healthy individuals over a period of seven days. Study Design Blind, randomized, clinical trial. Methods One hundred and thirty healthy individuals were distributed into the following five groups: control (without KT); KT0 (KT without tension); KT50; KT75 and KT100 (approximately 50%, 75% and 100% tension applied to the tape, respectively). Assessments of isometric quadriceps strength were conducted using a hand held dynamometer. Lower limb function was assessed through Single Hop Test for Distance, with five measurement periods: baseline; immediately after KT application; three days after KT; five days after KT; and 72h after KT removal (follow-up). Results There were no statistically significant differences (p > 0.05) at any of the studied periods on participants’ quadriceps strength nor in the function of the lower dominant limb, based on comparisons between the control group and the experimental groups. Conclusion KT applied with different tensions did not produce modulations, in short or long-term, on quadriceps’ strength or lower limb function of healthy individuals. Therefore, this type of KT application, when seeking these objectives, should be reconsidered. Level of Evidence 1b PMID:28217419

  2. Effect of radioprotective sulphydryl compounds on the oxygen tension in the spleen of mice

    NARCIS (Netherlands)

    Meer, C. van der; Valkenburg, P.W.; Remmelts, M.

    1961-01-01

    In a previous paper the mechanism of the radioprotective action of the biologically active amines histamine, epinephrine, tryptamine and β-phenylethylamine was investigated. In studying the effect of these compounds on the oxygen tension in the spleen and bone marrow of unanæsthetized mice strong

  3. Effect of chromatographic separation on ASP system interface tension and the countermeasures

    Directory of Open Access Journals (Sweden)

    Jiawei REN

    2016-06-01

    Full Text Available Because of the existing chromatographic separation phenomenon, ASP flooding changes original nature of the system. Therefore, in laboratory ultra-low interfacial tension ASP system is preferred for sand packs flow experiment to research on the effect of chromatographic separation on ASP system interface tension. The two parameters of "breakthrough time" and "output difference" are used to describe the degree of chromatographic separation, and the produced fluid interfacial tensions at the outlet end at 120 min is measured. The research shows that there exists chromatographic separation between three chemicals of ASP system, with first polymer breakthrough and finally surfactant breakthrough; there is most serious chromatographic separation between surfactant and polymer, while minimum chromatographic separation between alkali and polymer; chromatographic separation makes ASP interfacial tension increase from 10-3 magnitude to 10-2 magnitude, affecting flooding effect of ASP system. Thus, reducing the loss of surfactant in the formation will be the main measure to reduce the degree of chromatographic separation. Using sophorolipid as sacrificial agent to replace part of the surfactant injected into formation before ASP system can effectively reduce the impact of chromatography separation and more effectively improve the ultimate recovery ratio.

  4. The effect of post-tensioning force magnitude and eccentricity on the natural bending frequency of cracked post-tensioned concrete beams

    Science.gov (United States)

    Noble, D.; Nogal, M.; O'Connor, A. J.; Pakrashi, V.

    2015-07-01

    The effect of prestress force magnitude on the dynamic properties of uncracked prestressed concrete structures is something that has been widely debated among researchers to date. The effect of pre- and post-tensioning force magnitude on the natural bending frequencies of cracked prestressed concrete structures is something that is more established, and widely agreed upon. This paper describes the results of dynamic impact testing on damaged post- tensioned concrete beams. The natural bending frequency of the cracked beams were determined through experimental modal analysis. Dynamic impact response signals were obtained at different levels of post-tensioning force for the cracked beams. The Fast Fourier Transform was implemented and a peak picking algorithm was subsequently used to determine the natural bending frequencies of the beams. The relationship between prestressing force and natural frequency for both the cracked and uncracked beam sections was determined. The results for the cracked beams were compared to the results for the same uncracked beam sections. A marked difference in vibration behaviour was observed for the cracked beams between the nonfully prestressed and the fully prestressed case. Conclusions from the study are drawn and have profound implications in the fields of system identification and structural health monitoring in pre- and post-tensioned concrete structures.

  5. The Influence of Surface Tension Gradients on Surfactant Tracer Measurement of Air-Water Interfacial Area in Porous Media

    Science.gov (United States)

    Costanza-Robinson, M. S.; Estabrook, B. D.; Henry, E. J.

    2009-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer, such as delivery of oxygen to roots and volatilization of methane from landfills. Despite this importance, significant method-dependence is observed among techniques used to determine AI in porous media. In this work, possible low bias in conventional aqueous interfacial-partitioning tracer methodology (IPT) was examined by comparison of IPT-AI estimates with more direct estimates obtained using synchrotron X-ray microtomographic (µCT) imaging. Sodium dodecyl benzene sulfonate and pentafluorobenzoate were used as interfacial and nonreactive tracers, respectively, to measure AI at three water saturations (Sw) in a natural fine sand. IPT-AI exhibited expected trends, with higher areas associated with drier conditions, but the magnitude of AI was as much as 50% lower than those measured by µCT. IPT-AI values for the driest system agreed most closely with microtomography data. Real-time system mass measurements revealed that upon introduction of the surfactant tracer, system Sw decreased by 15-30%; the driest system exhibited the least drainage. This drainage is consistent with a reduction in capillarity caused by the lower surface tension of the surfactant solution as compared to the surfactant-free resident fluid. Drainage in the direction of flow would lead to earlier breakthrough of the surfactant tracer and a lower AI-estimate. In fact, the magnitude of drainage and magnitude of AI-underestimation relative to µCT were qualitatively correlated. Although this effect was expected, its magnitude and potential influence on AI was previously unknown and was larger than anticipated.

  6. Size Effect Of Glulam Beams In Tension Perpendicular To Grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Odin Clorius, Christian; Damkilde, Lars

    2007-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents the hypothesis that...

  7. Measurement of effective alveolar carbon dioxide tension during spontaneous breathing in normal subjects and patients with chronic airways obstruction.

    OpenAIRE

    Jordanoglou, J.; Koulouris, N; Kyroussis, D.; Rapakoulias, P.; Vassalos, P.; Madianos, J.

    1995-01-01

    BACKGROUND--The measurement of effective alveolar carbon dioxide tension (PA-CO2eff) is still a matter of debate. It has, however, become common practice to use arterial instead of alveolar CO2 tension for computing alveolar oxygen tension (PAO2) and physiological dead space, not only in normal subjects but also in patients. The purpose of this study was to estimate alveolar CO2 tension during spontaneous breathing with a new bedside technique which is simple and non-invasive, and to compare ...

  8. A study of the adsorption of the amphiphilic penicillins cloxacillin and dicloxacillin onto human serum albumin using surface tension isotherms

    Science.gov (United States)

    Barbosa, Silvia; Leis, David; Taboada, Pablo; Attwood, David; Mosquera, Victor

    The interaction of human serum albumin (HSA) with two structurally similar anionic amphiphilic penicillins, cloxacillin and dicloxacillin, at 25°C has been examined by surface tension measurements under conditions at which the HSA molecule was positively (pH 4.5) or negatively charged (pH 7.4). Measurements were at fixed HSA concentrations (0.0125 and 0.125% w/v) and at drug concentrations over a range including, where possible, the critical micelle concentration (cmc). Interaction between anionic drugs and positively charged HSA at pH 7.4 resulted in an increase of the cmc of each drug as a consequence of its removal from solution by adsorption. Limited data for cloxacillin at pH 4.5 indicated an apparent decrease of the cmc in the presence of HSA suggesting a facilitation of the aggregation by association with the protein. Changes in the surface tension-log (drug concentration) plots in the presence of HSA have been discussed in terms of the adsorption of drug at the air-solution and protein-solution interfaces. Standard free energy changes associated with the micellization of both drugs and their adsorption at the air-solution interface have been calculated and compared.

  9. The Effect of String Tension Variation on the Perceived Pitch of a Classical Guitar

    Directory of Open Access Journals (Sweden)

    Wanda Jadwiga Lewis

    2014-09-01

    Full Text Available Actual motion of a vibrating guitar string is a superposition of many possible shapes (modes in which it could vibrate. Each of these modes has a corresponding frequency, and the lowest frequency is associated with a shape idealised as a single wave, referred to as the fundamental mode. The other contributing modes, each with their own progressively higher frequency, are referred to as overtones, or harmonics. By attaching a string to a medium (a soundboard capable of a response to the vibrating string, sound waves are generated. The sound heard is dominated by the fundamental mode, ‘coloured’ by contributions from the overtones, as explained by the classical theory of vibration. The classical theory, however, assumes that the string tension remains constant during vibration, and this cannot be strictly true; when considering just the fundamental mode, string tension will reach two maximum changes, as it oscillates up and down. These changes, occurring twice during the fundamental period match the frequency of the octave higher, 1st overtone. It is therefore plausible to think that the changing tension effect, through increased force on the bridge and, therefore, greater soundboard deflection, could be amplifying the colouring effect of (at least the 1st overtone.In this paper, we examine the possible influence of string tension variation on tonal response of a classical guitar. We use a perturbation model based on the classical result for a string in general vibration in conjunction with a novel method of assessment of plucking force that incorporates the engineering concept of geometric stiffness, to assess the magnitude of the normal force exerted by the string on the bridge. The results of our model show that the effect of tension variation is significantly smaller than that due to the installed initial static tension, and affects predominantly the force contribution arising from the fundamental mode. We, therefore, conclude that string

  10. Size effect of glulam beams in tension perpendicular to grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Clorius, Christian Odin; Damkilde, Lars

    2007-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents the hypothesis...... that the lower strength is caused by stress concentrations. The stress concentrations arise from the anisotropic structure of wood, and are therefore deterministic. The hypothesis is substantiated through extensive FEM-calculations and experiments. A reasonable agreement between ultimate stresses determined...

  11. Effect of Kayak Ergometer Elastic Tension on Upper Limb EMG Activity and 3D Kinematics.

    Science.gov (United States)

    Fleming, Neil; Donne, Bernard; Fletcher, David

    2012-01-01

    Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces. Key pointsKayak ergometer elastic tension significantly alters Anterior Deltoid recruitment patterns.Kayakers maintain optimal arm kinematics despite changing external forces via altered shoulder muscle recruitment.Overhead arm movements account for a high proportion of the kayak stroke cycle.

  12. The Cloud Condensation Nuclei (CCN properties of 2-methyltetrols and C3-C6 polyols from osmolality and surface tension measurements

    Directory of Open Access Journals (Sweden)

    S. Ekström

    2009-02-01

    Full Text Available A significant fraction of the organic material in aerosols is made of highly soluble compounds such as sugars (mono- and polysaccharides and polyols such as the 2-methyltetrols, methylerythritol and methyltreitol. Because of their high solubility these compounds are considered as potentially efficient CCN material. For the 2-methyltetrols, this would have important implications for cloud formation at global scale because they are thought to be produced by the atmospheric oxidation of isoprene. To investigate this question, the complete Köhler curves for C3-C6 polyols and the 2-methyltetrols have been determined experimentally from osmolality and surface tension measurements. Contrary to what was expected, none of these compounds displayed a higher CCN efficiency than organic acids. Their Raoult terms show that this limited CCN efficiency is due to their absence of dissociation in water, this in spite of slight surface-tension effects for the 2-methyltetrols. Thus, compounds such as saccharides and polyols would not contribute more to cloud formation than other organic compounds studied so far. In particular, the presence of 2-methyltetrols in aerosols would not particularly enhance cloud formation in the atmosphere, in contrary to recently suggested.

  13. Solving the functional Schrödinger equation: Yang-Mills string tension and surface critical scaling

    Science.gov (United States)

    Mansfield, Paul

    2004-04-01

    Motivated by a heuristic model of the Yang-Mills vacuum that accurately describes the string-tension in three dimensions we develop a systematic method for solving the functional Schrödinger equation in a derivative expansion. This is applied to the Landau-Ginzburg theory that describes surface critical scaling in the Ising model. A Renormalisation Group analysis of the solution yields the value eta = 1.003 for the anomalous dimension of the correlation function of surface spins which compares well with the exact result of unity implied by Onsager's solution. We give the expansion of the corresponding beta-function to 17-th order (which receives contributions from up to 17-loops in conventional perturbation theory).

  14. A Simple Size Effect Model for Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Pedersen, M. U.; Clorius, Christian Odin; Damkilde, Lars

    2003-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is, an explanation relying on the increased probability of encountering a strength reducing flaw when the volume of th...... on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling, using the orthotropic stiffness characteristics in the transverse plane of wood....

  15. The effect of differing ambient oxygen tensions on wound infection.

    Science.gov (United States)

    Hunt, T K; Linsey, M; Grislis, H; Sonne, M; Jawetz, E

    1975-01-01

    Wound infections were studied in rabbits using two standard inocula (approximately equal to 10-4 and approximately equal to 10-6) of Pseudomonas aeruginosa injected into subcutaneous wound dead space made by implantation of standard wire mesh cylinders. The inoculation was done on the fourth day after implantation of the cylinders in animals kept from the day of implantation in atmospheres of 12%, 21%, or 45% oxygen content. Samples of wound fluid (0.2 ml) were removed for quantitative culture just before inoculation and 3, 7, 14, and 21 days later. No positive cultures resulted from samples taken before inoculation. One uninoculated wound served as a control in each animal. None of these control wounds became infected. Culture counts were significantly highest in the anoxic group and lowest in the hyperoxic group. Established infections were significantly lowest in the hyperoxics and highest in the hypoxics. The percent of wounds showing a significant culture count showed a similar trend. The mechanisms of this effect is not known, but a possible mechanism lies in the relative inability of leucocytes to kill this bacterium under hypoxic conditions.

  16. Political Skill as Neutralizer of Felt Accountability-Job Tension Effects on Job Performance Ratings: A Longitudinal Investigation

    Science.gov (United States)

    Hochwarter, Wayne A.; Ferris, Gerald R.; Gavin, Mark B.; Perrewe, Pamela L.; Hall, Angela T.; Frink, Dwight D.

    2007-01-01

    This study examined the effects of felt accountability, political skill, and job tension on job performance ratings. Specifically, we hypothesized that felt accountability would lead to higher (lower) job performance ratings when coupled with high (low) levels of political skill, and that these relationships would be mediated by job tension. Data…

  17. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation.

    Science.gov (United States)

    Krens, S F Gabriel; Veldhuis, Jim H; Barone, Vanessa; Čapek, Daniel; Maître, Jean-Léon; Brodland, G Wayne; Heisenberg, Carl-Philipp

    2017-05-15

    The segregation of different cell types into distinct tissues is a fundamental process in metazoan development. Differences in cell adhesion and cortex tension are commonly thought to drive cell sorting by regulating tissue surface tension (TST). However, the role that differential TST plays in cell segregation within the developing embryo is as yet unclear. Here, we have analyzed the role of differential TST for germ layer progenitor cell segregation during zebrafish gastrulation. Contrary to previous observations that differential TST drives germ layer progenitor cell segregation in vitro , we show that germ layers display indistinguishable TST within the gastrulating embryo, arguing against differential TST driving germ layer progenitor cell segregation in vivo We further show that the osmolarity of the interstitial fluid (IF) is an important factor that influences germ layer TST in vivo , and that lower osmolarity of the IF compared with standard cell culture medium can explain why germ layers display differential TST in culture but not in vivo Finally, we show that directed migration of mesendoderm progenitors is required for germ layer progenitor cell segregation and germ layer formation. © 2017. Published by The Company of Biologists Ltd.

  18. Bacterial deposition to fluoridated and non-fluoridated polyurethane coatings with different elastic modulus and surface tension in a parallel plate and a stagnation point flow chamber

    NARCIS (Netherlands)

    Bakker, D.P.; Huijs, F.M.; Vries, J. de; Klijnstra, J.W.; Busscher, H.J.; Mei, H.C. van der

    2003-01-01

    Deposition of three marine bacterial strains with different cell surface hydrophobicities from artificial seawater to polyurethane coatings on glass with different surface tensions and elastic modulus was studied in situ in a parallel plate (PP) and stagnation point (SP) flow chamber. Different

  19. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...... burning. The aim was to determine the accuracy and precision of tcPCO2 at reduced electrode temperature....

  20. EFFECT OF KAYAK ERGOMETER ELASTIC TENSION ON UPPER LIMB EMG ACTIVITY AND 3D KINEMATICS

    OpenAIRE

    Neil Fleming; Bernard Donne; David Fletcher

    2012-01-01

    Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-e...

  1. Tensile transmission across the lumbar fasciae in unembalmed cadavers: effects of tension to various muscular attachments.

    Science.gov (United States)

    Barker, Priscilla J; Briggs, Christopher A; Bogeski, Goce

    2004-01-15

    Traction was applied to muscles attaching to the posterior and middle layers of lumbar fascia (PLF, MLF). Effects on fasciae were determined via tensile force measures and movement of markers. To document tensile transmission to the PLF and MLF when traction was applied to latissimus dorsi (LD), gluteus maximus (GM), external and internal oblique (EO, IO), and transversus abdominis (TrA) in unembalmed cadavers. A previous study on embalmed cadavers applied traction to muscle attachments while monitoring fascial movement but did not test TrA or the MLF. The PLF and MLF were dissected then marked on eight unembalmed cadavers. A strain gauge was inserted through fascia at L3; 10N traction was applied to each muscle attachment while photographs and tension measures were taken. Movement of fascial markers was detected photographically. Fascial widths were also measured. Tension was clearly transmitted to fascial vertebral attachments. Tensile forces and fascial areas affected were highest for traction on LD and TrA in the PLF and for TrA in the MLF. Movement of PLF markers from tension on LD and TrA occurred bilaterally between T12 and S1. Effects from other muscles were variably bilateral, with those from GM and IO occurring below L3 and those from EO occurring above L3. Tensile forces were relatively high in the MLF and its width was less than half that of the PLF. Low levels of tension are effectively transmitted between TrA and the MLF or PLF. Via them, TrA may influence intersegmental movement.

  2. Surface tension, density, and speed of sound for the ternary mixture {l_brace}diethyl carbonate + p-xylene + decane{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Mosteiro, Laura; Casas, Lidia M. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Legido, Jose L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain)], E-mail: xllegido@uvigo.es

    2009-05-15

    This paper reports the results of a new experimental study of thermophysical properties for the ternary mixture of {l_brace}diethyl carbonate + p-xylene + decane{r_brace}. Surface tension has been measured at 298.15 K and, density and speed of sound have been measured in the temperature range T = (288.15 to 308.15) K. Excess molar volumes, excess isentropic compressibilities, and surface tension deviations, have been calculated from experimental data. Surface tension deviations have been correlated with Cibulka equation and Nagata and Tamura equation was used for the other excess properties. Good accuracy has been obtained. These excess magnitudes are discussed qualitatively in terms of the nature and type of intermolecular interactions of the components involved.

  3. Tension Headache

    Science.gov (United States)

    ... your head Tenderness on your scalp, neck and shoulder muscles Tension headaches are divided into two main categories — ... that monitor and give you feedback on body functions such as muscle tension, heart rate and blood pressure. You then ...

  4. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli.

    Science.gov (United States)

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2015-02-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. Copyright © 2015 the American Physiological Society.

  5. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics

    2009-07-01

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  6. Effect of massage therapy on pain, anxiety, relaxation, and tension after colorectal surgery: A randomized study.

    Science.gov (United States)

    Dreyer, Nikol E; Cutshall, Susanne M; Huebner, Marianne; Foss, Diane M; Lovely, Jenna K; Bauer, Brent A; Cima, Robert R

    2015-08-01

    The purpose of this randomized controlled trial was to evaluate the effect of postoperative massage in patients undergoing abdominal colorectal surgery. One hundred twenty-seven patients were randomized to receive a 20-min massage (n = 61) or social visit and relaxation session (no massage; n = 66) on postoperative days 2 and 3. Vital signs and psychological well-being (pain, tension, anxiety, satisfaction with care, relaxation) were assessed before and after each intervention. The study results indicated that postoperative massage significantly improved the patients' perception of pain, tension, and anxiety, but overall satisfaction was unchanged. In conclusion, massage may be beneficial during postoperative recovery for patients undergoing abdominal colorectal surgery. Further studies are warranted to optimize timing and duration and to determine other benefits in this clinical setting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. MIGRAINE AND TENSION-TYPE HEADACHE IN CHILDREN: THE APPROACH TO EFFECTIVE TREATMENT. PART 2

    Directory of Open Access Journals (Sweden)

    A. V. Sergeev

    2012-01-01

    Full Text Available Pediatric neurologists often have to prescribe drugs off-label in children, according to individual approach to every patient and weighing possible benefits and risk of side-effects. Multidisciplinary approach to migraine and tension-type headache treatment in children, including correction of comorbid psychiatric and somatic disorders, is a critical point in decrease of frequency and severity of headaches and normalization of everyday children’s activity. In the second part of the article the authors discuss the problems of symptomatic (episodic drugs taking in order to arrest a headache attack and preventive (regular prolonged drug taking directed on decrease of frequency and severity of headaches medical treatment of migraine and tension-type headaches in pediatric practice.

  8. Effect of Tension and Curvature of Skin on Insertion Characteristics of Microneedle Array

    Science.gov (United States)

    Tachikawa, Hiroto; Takano, Naoki; Nishiyabu, Kazuaki; Miki, Norihisa; Ami, Yoshimichi

    Recent MEMS (micro electro mechanical system) fabrication techniques have made it possible to produce painless microneedles precisely enough to be inserted into epidermis layer penetrating the stratum corneum of human skin. This paper presents a testing procedure to evaluate the insertion characteristics of microneedle array using cultured human skin considering the tension and the curvature. First, the biaxial strain applied to the cultured human skin was measured by optical technique with image processing. It was found that almost constant strain could be successfully given within a certain area and that error factors in the experiment except the thickness variation of the cultured skin were negligible. Next, using a microneedle square array for brain machine interface (BMI) application, the effects of biaxial tension and the curvature on insertion characteristics were discussed. Within the above mentioned area with high strain, the needles were successfully inserted.

  9. Effectiveness of direct vs indirect technique myofascial release in the management of tension-type headache.

    Science.gov (United States)

    Ajimsha, M S

    2011-10-01

    Tension-type headache (TTH) is essentially defined as bilateral headache of a pressing or tightening quality without a known medical cause. Myofascial release (MFR) is currently being applied for patients with TTH but its efficacy has not been evaluated formally. To investigate whether direct technique myofascial release (DT-MFR) reduces the frequency of headache more effectively than the indirect technique myofascial release (IDT-MFR) in comparison to a Control Group receiving slow soft stroking. Randomized, controlled, single blinded trial. The clinical wing of Myofascial Therapy and Research Foundation, Kerala, India. 63 patients with episodic or chronic tension-type headache. DT-MFR, IDT-MFR or Control. The techniques were administered by certified myofascial release practitioners and consisted of 24 sessions per patient over 12 weeks. Difference in numbers of days with headache between Weeks 1-4 (i.e. 4 weeks prior to start of Intervention) and Weeks 17-20, following 12 weeks of Intervention between Weeks 5-16 as recorded by participants in headache diaries. The number of days with headache per 4 weeks decreased by 7.1 (2.6) [mean (SD)] days in the DT-MFR group compared with 6.7 (1.8) days in the IDT-MFR group and 1.6 (0.5) days in the control group, (P Myofascial Release is more effective than the Control Intervention for tension headache. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Consequences of Anisotropic Permeability and Surface Tension for Magmatic Segregation in Deforming Mantle Rock

    Science.gov (United States)

    Taylor-West, J.; Katz, R. F.

    2014-12-01

    The mechanics of partially molten regions of the mantle are not well understood--in part due to the inaccessibility of these regions to observation. However it is widely agreed that experiments performed on synthetic mantle rocks [e.g KZK10] act as a reasonable test of theoretical models of magma dynamics. One robust feature of experiments on partially molten mantle rocks deformed under strain is the emergence of high-porosity bands at an angle of between 15° and 20° to the shear plane. A number of theoretical approaches have been made to reproduce the formation of these low angle bands in models. The most recent approaches, for example by Takei and Katz [TK13], have involved the inclusion of anisotropic viscosity in diffusion creep arising from the grain-scale redistribution of melt as formulated in a theoretical model by Takei and Holtzman [TH09]. It is reasonable to assume that this melt-preferred orientation (MPO) that leads to anisotropy in viscosity may also lead to anisotropy in permeability. However, the effect of anisotropic permeability remains unexplored. We investigate its impact on the dynamics of partially molten rock, and specifically on its role in low-angle band formation in deformation under simple shear. We work with the continuum model of two-phase-flow as formulated by McKenzie [M84] with the addition of anisotropic permeability. There are some apparent inconsistencies in this model. Firstly, the model predicts continued segregation of melt into bands of 100% porosity, while experiments report maximum porosities in the region of 30%. Secondly, linear stability analyses find maximal growth-rates for porosity perturbations that vary on arbitrarily small length-scales. We study how the inclusion of surface forces into the model could regulate these effects. REFERENCES: KZK10 = King, Zimmerman, & Kohlstedt (2010), J Pet, 10.1093/petrology/egp062. TK13 = Takei & Katz (2013), JFM, 10.1017/jfm.2013.482. TH09 = Takei & Holtzman (2009a), JGR, 10

  11. A new corresponding state-based correlation for the surface tension of organic fatty acids

    Science.gov (United States)

    Zhang, Cuihua; Tian, Jianxiang; Zheng, Mengmeng; Yi, Huili; Zhang, Laibin; Liu, Shuzhen

    2018-01-01

    In this paper, we proposed a new corresponding state-based correlation for organic fatty (aliphatic, carboxylic and polyfunctional) acids. By using the recently published surface tension data of the 99 acids [A. Mulero and I. Cachadiña, J. Phys. Chem. Ref. Data 45 (2016) 033105] and comparing with the recently published other corresponding state correlations, we found that this correlation reproduces the lowest absolute average deviation (AAD) values for 82 acids out of the 99 acids. It can reproduce the surface tension data with AAD less than 10% for 89 out of the 99 acids.

  12. Attempt to evaluate the dispersive and polar components of the surface tensions of multicomponent solutions, using Kaelble's method

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, E.

    1981-10-01

    Kaelble's technique has been used to evaluate the dispersive and polar components of the surface tensions of 2 multicomponent organic solvent systems, one binary and the other tertiary. This was done by calibrating a number of common polymer films with primary standard contact liquids; these films then were used as substrates against which the mixed solvents were calibrated. Although a secondary calibration, the total surface tensions (dispersive plus polar) compare well with values obtained on a Du Nouy tensiometer. Details are given on the use of this evaluation. 11 references.

  13. Surface tension induced convection in encapsulated liquid metals in microgravity: Apollo--Soyuz test project experiment No. MA-041. [Pb/Pb--0. 05 at. % Au liquid diffusion couple

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.E.; Adair, H.L.; Uelhoff, W.

    1976-12-01

    One objective of the Apollo--Soyuz Test Project (ASTP) was to conduct scientific experiments in a gravity-free environment to permit the study of melting and solidification processes as well as liquid processes in space. It has been shown by Skylab experiments that surface driven convection caused by temperature gradients (Marangoni effect) is negligibly small. This experiment was designed to determine the extent of surface tension induced convection caused by a steplike compositional variation in a liquid metal. This report describes preliminary results obtained for ASTP Experiment No. MA-041 entitled ''Surface Tension Induced Convection in Encapsulated Liquid Metal in Microgravity.'' The liquid diffusion couple comprised Pb/Pb--0.05 at. percent Au.

  14. Skin tension related to tension reduction sutures.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon; Kim, Kyung Yong; Han, Seung Ho; Hwang, Se Jin

    2015-01-01

    The aim of this study was to compare the skin tension of several fascial/subcutaneous tensile reduction sutures. Six upper limbs and 8 lower limbs of 4 fresh cadavers were used. At the deltoid area (10 cm below the palpable acromion) and lateral thigh (midpoint from the palpable greater trochanter to the lateral border of the patella), and within a 3 × 6-cm fusiform area of skin, subcutaneous tissue defects were created. At the midpoint of the defect, a no. 5 silk suture was passed through the dermis at a 5-mm margin of the defect, and the defect was approximated. The initial tension to approximate the margins was measured using a tensiometer.The tension needed to approximate skin without any tension reduction suture (S) was 6.5 ± 4.6 N (Newton). The tensions needed to approximate superficial fascia (SF) and deep fascia (DF) were 7.8 ± 3.4 N and 10.3 ± 5.1 N, respectively. The tension needed to approximate the skin after approximating the SF was 4.1 ± 3.4 N. The tension needed to approximate the skin after approximating the DF was 4.9 ± 4.0 N. The tension reduction effect of approximating the SF was 38.8 ± 16.4% (2.4 ± 1.5 N, P = 0.000 [ANOVA, Scheffé]). The tension reduction effect of approximating the DF was 25.2% ± 21.9% (1.5 ± 1.4 N, P = 0.001 [ANOVA, Scheffé]). The reason for this is thought to be that the SF is located closely to the skin unlike the DF. The results of this study might be a basis for tension reduction sutures.

  15. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    Science.gov (United States)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.

    2016-04-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.

  16. Efeitos de surfatantes sobre a tensão superficial e a área de molhamento de soluções de glyphosate sobre folhas de tiririca Effects of surfactants on surface tension and foliar wetting solutions of glyphosate over purple nutsedge leaves

    Directory of Open Access Journals (Sweden)

    Cristiane G. de Mendonça

    1999-12-01

    Full Text Available Com o objetivo de avaliar a eficiência da agregação de surfatantes ao herbicida glyphosate analisou-se a tensão superficial de diferentes soluções de pulverização contendo o hebicida e o surfatante, e a área de molhamento destas soluções nas folhas de Cyperus rotundus L.. Foram desenvolvidos métodos para avaliação da tensão superficial e da área de molhamento. Para analisar a tensão fez-se pesagens das gotas formadas na extremidade de uma bureta, com os seguintes tratamentos combinados de forma fatorial (3 x 5 x 11: 3 surfatantes (Extravon, Aterbane e Silwet L-77, 5 concentrações do herbicida, produto comercial Roundup (0; 1; 2; 3,5 e 5 % e 11 concentrações de cada surfatantes (0; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1; 2 e 3,5 %, num total de 165 tratamentos. Para avaliar a área de molhamento nas folhas de tiririca aplicou-se gotas de 0,48 .l. Os dados foram ajustados pelo modelo de Mitscherlich e, observou-se que para o surfatante Extravon que a eficiência decrescia gradativamente a medida em que aumentava a concentração do herbicida; para o Aterbane a eficiência foi reduzida apenas em baixas concentrações; já o surfatante Silwet L-77 apresentou eficiência bem superior aos demais e sua eficiência foi pouco alterada com a adição herbicida. Houve uma correlação positiva entre área de molhamento e tensão superficial. Concluiu-se, ainda, que não basta um surfatante reduzir a tensão superficial da água destilada, para que possa ser recomendado seu uso agrícola, assim, o surfatante deve ser submetido a testes preliminares com os defensivos em que serão conjugados para posterior recomendação.This research was undertaken to develop methods to evaluate the surface tension and foliar wetting of surfactant added in herbicide. It used three surfactants (Extravon, Aterbane and Silwet, five concentration of herbicide and eleven surfactant concentrations each. Surface tension and foliar wetting were evaluated by

  17. Vertical-cavity surface-emitting laser chip bonding by surface-tension-driven self-assembly for optoelectronic heterogeneous integration

    Science.gov (United States)

    Ito, Yuka; Fukushima, Takafumi; Kino, Hisashi; Lee, Kang-Wook; Choki, Koji; Tanaka, Tetsu; Koyanagi, Mitsumasa

    2015-03-01

    Twelve-channel vertical-cavity surface-emitting laser (12-ch VCSEL) chips are heterogeneously self-assembled on Si and glass wafers using water surface tension as a driving force. The VCSEL chips have a high length-to-width aspect ratio, that is, 3 mm long and 0.35 mm wide. The VCSEL chips are precisely self-assembled with alignment accuracies within 2 µm even when they are manually placed on liquid droplets provided on the host substrate. After the self-assembly of the VCSEL chips and the subsequent thermal compression, the chips successfully emit 850 nm light and exhibit no degradation of their current-voltage (I-V) characteristics.

  18. Effect of crack curvature on stress intensity factors for ASTM standard compact tension specimens

    Science.gov (United States)

    Alam, J.; Mendelson, A.

    1983-01-01

    The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For the higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts. The SIF is assumed to reflect the average stress environment near the crack edge.

  19. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.

    2005-01-01

    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface

  20. The effect of low-level laser irradiation on muscle tension and hardness compared among three wavelengths

    Science.gov (United States)

    Kogure, Shinichi

    2013-01-01

    Background and Aims: It has been reported that low-level laser irradiation (LLLI) can influence muscle tissue by retarding attenuation of muscle tension. Since the efficacy of LLLI on the effects of muscle contraction remains unclear, we examined in an in vivo animal model whether LLLI affects both muscle tension and muscle hardness in a wavelength-dependent manner, using the rat gastrocnemius muscle. Material and Methods: Forty Sprague-Dawley adult rats were used. Under pentobarbital sodium anesthesia, their gastrocnemius muscle and tibial nerve were exteriorized. Diode LLLI systems delivering 3 wavelengths (405, 532, and 808 nm; 100 mW output) were used. Ten sets of tetanus (tetanic contractions) were delivered to the tibial nerve followed by a brief rest or LLLI for 15 s and an additional 7 sets of tetanus with an inter-stimulus interval of 5 min. The muscle tension and muscle hardness were measured with a tension transducer and hardness meter, respectively. Results: 405 nm LLLI did not influence either muscle tension or hardness. 532 nm LLLI significantly improved the maintenance of muscle tension compared with the 808 nm group (Phardness compared with the other groups (P<0.05). Conclusion: We conclude that LLLI has wavelength-dependent effects on the gastrocnemius muscle and LLLI at appropriate wavelengths and dosimetry offers potential in the treatment to relieve muscle tension or stiffness. PMID:24204094

  1. Distribution of residual stresses in near-surface layer of carbon steel at monotonic tension loading

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2008-01-01

    Full Text Available The task of our research was to investigate the character of distribution, magnitude and sign of residual stresses in cross-section of a sample in micro-yield, yield and strain hardening stages of monotonic deformation. The analysis of the obtained experimental data shows the peculiarity of micro-plastic flow near a free surface of a solid body and its rather significant influence on the general character and kinetics of macroscopic deformation of metals.

  2. The effect of a nonanatomic repair of the meniscal horn attachment on meniscal tension: a biomechanical study.

    Science.gov (United States)

    Stärke, Christian; Kopf, Sebastian; Gröbel, Karl-Heinz; Becker, Roland

    2010-03-01

    The purpose of this biomechanical study was to investigate the potential effect of a nonanatomic repair of the meniscal horn attachment on the resultant circumferential tension in a large animal model and to show that the circumferential tension of the meniscus affects the local stress of the cartilage. All investigations were done in the medial compartment of porcine knees. First, the anterior horn attachment of the meniscus was mechanically separated from the surrounding tibial bone and fitted with a force transducer (n = 8). The femorotibial joint was loaded in compression at different flexion angles, and the resultant tension at the horn attachment was recorded. The measurements were done with the horn attachment at its anatomic position and repeated with the horn attachment being displaced medially or laterally by 3 mm. In the second part the local deformation of the cartilage under a femorotibial compressive load was measured at different levels of meniscal hoop tension (n = 5). A nonanatomic position of the horn attachment had a significant effect on the resultant tension (P horn attachment 3 mm medially decreased the tension at the horn attachment by 49% to 73%, depending on flexion angle and femorotibial load. The opposite placement resulted in a relative increase in the tension by 28% to 68%. Lower levels of meniscal hoop tension caused increased deformation of the cartilage (P horn attachment strongly affects conversion of femorotibial loads into circumferential tension. There is a narrow window for a functionally sufficient repair of meniscal root tears. Although clinical inferences are limited because the specimens used were from a different species, there seems to be only a narrow window for a mechanically sufficient repair of root tears. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    Science.gov (United States)

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  4. Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor.

    Science.gov (United States)

    Saini, Sunil; Wick, Timothy M

    2004-01-01

    Cartilage is exposed to low oxygen tension in vivo, suggesting culture in a low-oxygen environment as a strategy to enhance matrix deposition in tissue-engineered cartilage in vitro. To assess the effects of oxygen tension on cartilage matrix accumulation, porous polylactic acid constructs were dynamically seeded in a concentric cylinder bioreactor with bovine chondrocytes and cultured for 3 weeks at either 20 or 5% oxygen tension. Robust chondrocyte proliferation and matrix deposition were achieved. After 22 days in culture, constructs from bioreactors operated at either 20 or 5% oxygen saturation had similar chondrocyte densities and collagen content. During the first 12 days of culture, the matrix glycosaminoglycan (GAG) deposition rate was 19.5 x 10(-9) mg/cell per day at 5% oxygen tension and 65% greater than the matrix GAG deposition rate at 20% oxygen tension. After 22 days of bioreactor culture, constructs at 5% oxygen contained 4.5 +/- 0.3 mg of GAG per construct, nearly double the 2.5 +/- 0.2 mg of GAG per construct at 20% oxygen tension. These data demonstrate that culture in bioreactors at low oxygen tension favors the production and retention of GAG within cartilage matrix without adversely affecting chondrocyte proliferation or collagen deposition. Bioreactor studies such as these can identify conditions that enhance matrix accumulation and construct development for cartilage tissue engineering.

  5. The effect of rigid taping with tension on mechanical displacement of the skin and change in pain perception.

    Science.gov (United States)

    Chen, Shu-Mei; Lo, Sing Kai; Cook, Jill

    2017-07-14

    To investigate the effect of rigid taping that induces mechanical displacement of the skin on pain perception. Single group experiment design with repeated measures. Twenty-three active healthy volunteers (12 men and 11 women) participated in the study. All participants received three different taping procedures: no tape, taping with tension, and taping without tension. The order of three taping conditions was randomised. Skin displacement was measured during taping with tension. A pressure algometer was used to measure the level of pain perception once before taping, and again after each taping condition, in one testing session. The participants were blind to the values of their pressure pain threshold (PPT) during the experimental period. The mean±SD skin displacement in the condition of taping with tension was 2.58±0.49cm. There were significant differences in PPT between taping with tension and taping without tension (mean difference (mean diff)±standard error (SE) 36.43±4.22kPa, p=0.000) and no tape (mean diff±SE 44.31±3.13kPa, p=0.000). No significant difference in PPT between no tape and taping without tension was found (mean diff±SE 7.88±2.83kPa, p=0.067). Taping with tension increases the threshold of pressure pain perception. Therefore, stretch and compression caused by rigid taping with tension could disturb the nociceptive signal transmission and alter pain perception. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Treatment of General Tension: Subjective and Physiological Effects of Progressive Relaxation.

    Science.gov (United States)

    Borkovec, T. D.; And Others

    1978-01-01

    Presence or absence of tension release significantly influenced the number of relaxation cycles necessary to produce reports of deep relaxation, frequency of practice, and successfulness of eliminating daily tension at follow-up. Subject's ability to reduce physiological activity by a procedure contributed to reductions in subjective tension.…

  7. Effectiveness of Physical Therapy in Patients with Tension-type Headache: Literature Review.

    Science.gov (United States)

    Espí-López, Gemma Victoria; Arnal-Gómez, Anna; Arbós-Berenguer, Teresa; González, Ángel Arturo López; Vicente-Herrero, Teófila

    2014-01-01

    Tension-type headache (TTH) is a disease with a great incidence on quality of life and with a significant socioeconomic impact. The aim of this review is to determine the effectiveness of physical therapy by using manual therapy (MT) for the relief of TTH. A review was done identifying randomized controlled trials through searches in MEDLINE, PEDro, Cochrane and CINAHL (January 2002 - April 2012). English-language studies, with adult patients and number of subjects not under 11, diagnosed with episodic tension-type headache (ETTH) and chronic tension-type headache (CTTH) were included. Initial search was undertaken with the words Effectiveness, Tension-type headache, and Manual therapy (39 studies). In addition, a search which included terms related to treatments such as physiotherapy, physical therapy, spinal manipulation was performed (25 studies). From the two searches 9 studies met the inclusion criteria and were analysed finding statistically significant results: 1) myofascial release, cervical traction, neck muscles trigger points in cervical thoracic muscles and stretching; 2) Superficial heat and massage, connective tissue manipulation and vertebral Cyriax mobilization; 3) cervical or thoracic spinal manipulation and cervical chin-occipital manual traction; 4) massage, progressive relaxation and gentle stretching, program of active exercises of shoulder, neck and pericranial muscles; 5) massage, passive rhythmic mobilization techniques, cervical, thoracic and lumbopelvic postural correction and cranio-cervical exercises; 6) progressive muscular relaxation combined with joint mobilization, functional, muscle energy, and strain/counterstrain techniques, and cranial osteopathic treatment; 7) massage focused on relieving myofascial trigger point activity; 8) pressure release and muscle energy in suboccipital muscles; 9) combination of mobilizations of the cervical and thoracic spine, exercises and postural correction. All studies used a combination of different

  8. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    Science.gov (United States)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the

  9. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  10. Indomethacin lowers optic nerve oxygen tension and reduces the effect of carbonic anhydrase inhibition and carbon dioxide breathing

    DEFF Research Database (Denmark)

    Pedersen, D B; Eysteinsson, T; Stefánsson, E

    2004-01-01

    Prostaglandins are important in blood flow regulation. Carbon dioxide (CO(2)) breathing and carbonic anhydrase inhibition increase the oxygen tension in the retina and optic nerve. To study the mechanism of this effect and the role of cyclo-oxygenase in the regulation of optic nerve oxygen tension...... (ONPO(2)), the authors investigated how indomethacin affects ONPO(2) and the ONPO(2) increases caused by CO(2) breathing and carbonic anhydrase inhibition in the pig....

  11. Effects of rhythmical muscle tension at 0.1Hz on cardiovascular resonance and the baroreflex.

    Science.gov (United States)

    Lehrer, Paul; Vaschillo, Evgeny; Trost, Zina; France, Christopher R

    2009-04-01

    This paper reports analysis of data from a previous study examining cardiovascular effects of rhythmical skeletal muscle tension (RSMT) at 0.1Hz. Our analysis examined whether 0.1Hz RSMT stimulates resonance properties of the cardiovascular system provided by baroreflex (BR) activity. Thirty-seven study participants tensed their large skeletal muscles, with and without crossing their legs, for 3-min periods at a rate of six tension/relaxation cycles/min. Tensing periods were preceded and followed by 3-min rest periods. RSMT elicited high-amplitude 0.1Hz oscillations in the cardiovascular system. We found increases in spectral power of ECG R-R interbeat interval (RRI), systolic blood pressure (SBP) and pulse transit time (PTT) at this frequency. The increases in SBP and PTT oscillations were greater than those in RRI. Only in SBP and PTT did total variability (standard deviation) increase. The phase angle between RRI and SBP oscillations was approximately 45 degrees . Although alpha low-frequency baroreflex gain was attenuated by RSMT, it was not significantly changed at 0.1Hz, consistent with BR-induced resonance effects. Our results are consistent with previous observations that 0.1Hz RSMT is effective in treating vasovagal reactions and indicate that the pathway is through resonance characteristics of the BR system. Implications for resonance applications for resonance in the sympathetically mediated vascular tone baroreflex closed loop are discussed.

  12. Precise, contactless measurements of the surface tension of picolitre aerosol droplets† †Electronic supplementary information (ESI) available: Parametrizations used to infer concentration, density, viscosity, and surface tension from refractive index for sodium chloride and glutaric acid; description of the semi-analytical T-matrix calculations; Fig. S1 and S2. See DOI: 10.1039/c5sc03184b Click here for additional data file.

    Science.gov (United States)

    Bzdek, Bryan R.; Power, Rory M.; Simpson, Stephen H.; Royall, C. Patrick

    2016-01-01

    The surface composition and surface tension of aqueous droplets can influence key aerosol characteristics and processes including the critical supersaturation required for activation to form cloud droplets in the atmosphere. Despite its fundamental importance, surface tension measurements on droplets represent a considerable challenge owing to their small volumes. In this work, we utilize holographic optical tweezers to study the damped surface oscillations of a suspended droplet (surface tension and viscosity of droplets containing only 1–4 pL of material. An advantage of performing the measurement in aerosol is that supersaturated solute states (common in atmospheric aerosol) may be accessed. For pairs of droplets starting at their equilibrium surface composition, surface tensions and viscosities are consistent with bulk equilibrium values, indicating that droplet surfaces respond to changes in surface area on microsecond timescales and suggesting that equilibrium values can be assumed for growing atmospheric droplets. Furthermore, droplet surfaces are shown to be rapidly modified by trace species thereby altering their surface tension. This equilibration of droplet surface tension to the local environmental conditions is illustrated for unknown contaminants in laboratory air and also for droplets exposed to gas passing through a water–ethanol solution. This approach enables precise measurements of surface tension and viscosity over long time periods, properties that currently are poorly constrained. PMID:28758004

  13. Investigation of wettability to evaluate the morphology and surface tension wood filler

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available In this paper, we propose a new scheme of a highly efficient line for preparing safflower grains for processing consisting of an air-sieve separator, a magnetic separator, an ovary, a puppet, and a stone picker. The new after vortex separator is a vibroseparator for separating the products close in physical properties, grinding Machine with a duo-aspirator, a photoseparator and a device for moisture-thermal treatment. Advantages of the proposed line for preparation of safflower grain for processing are that an additional plant in front of the photocarerator of the grinding machine and duo-espirator allows the crest to separate and remove or refine the shell of the seed in the form of a shell layer for more efficient subsequent spectral point analysis, which determines the grain composition for the purpose of sorting it On the basis of chemical composition and color in the photo separator, and sequential placement after the stone separator of a vibro separator for separation of products close in physical properties, a grinding machine with a duo-aspirator, a photoseparator and a device for moisture-thermal treatment, provides an intensification of the technological process of efficient separation of safflower from impurities and its preparation for further processing and Due to the rational layout of equipment.A highly efficient photocell separator is also provided, the advantages of which are that the installation of a storage and vibrating feeder in relation to the slanting tray from the back side and the execution of a smooth curved transition to the vibrating feeder in the upper part of the pitcher allows improving the separation of grain products by reducing the amplitude of grain oscillations, Caused by a rebound from the surface of the tray during the loading of the sorted material from the vibrating feeder.

  14. Effect of oxygen tension on bioenergetics and proteostasis in young and old myoblast precursor cells

    Directory of Open Access Journals (Sweden)

    M. Konigsberg

    2013-01-01

    Full Text Available In the majority of studies using primary cultures of myoblasts, the cells are maintained at ambient oxygen tension (21% O2, despite the fact that physiological O2 at the tissue level in vivo is much lower (~1–5% O2. We hypothesized that the cellular response in presence of high oxygen concentration might be particularly important in studies comparing energetic function or oxidative stress in cells isolated from young versus old animals. To test this, we asked whether oxygen tension plays a role in mitochondrial bioenergetics (oxygen consumption, glycolysis and fatty acid oxidation or oxidative damage to proteins (protein disulfides, carbonyls and aggregates in myoblast precursor cells (MPCs isolated from young (3–4 m and old (29–30 m C57BL/6 mice. MPCs were grown under physiological (3% or ambient (21% O2 for two weeks prior to exposure to an acute oxidative insult (H2O2. Our results show significantly higher basal mitochondrial respiration in young versus old MPCs, an increase in basal respiration in young MPCs maintained at 3% O2 compared to cells maintained at 21% O2, and a shift toward glycolytic metabolism in old MPCs grown at 21% O2. H2O2 treatment significantly reduced respiration in old MPCs grown at 3% O2 but did not further repress respiration at 21% O2 in old MPCs. Oxidative damage to protein was higher in cells maintained at 21% O2 and increased in response to H2O2 in old MPCs. These data underscore the importance of understanding the effect of ambient oxygen tension in cell culture studies, in particular studies measuring oxidative damage and mitochondrial function.

  15. A model for monomer and micellar concentrations in surfactant solutions: application to conductivity, NMR, diffusion, and surface tension data.

    Science.gov (United States)

    Al-Soufi, Wajih; Piñeiro, Lucas; Novo, Mercedes

    2012-03-15

    An empirical model for the concentrations of monomeric and micellized surfactants in solution is presented as a consistent approach for the quantitative analysis of data obtained with different experimental techniques from surfactant solutions. The concentration model provides an objective definition of the critical micelle concentration (cmc) and yields precise and well defined values of derived physical parameters. The use of a general concentration model eliminates subjective graphical procedures, reduces methodological differences, and thus allows one to compare directly the results of different techniques or to perform global fits. The application and validity of the model are demonstrated with electrical conductivity, surface tension, NMR chemical shift, and self-diffusion coefficient data for the surfactants SDS, CTAB, DTAB, and LAS. In all cases, the derived models yield excellent fits of the data. It is also shown that there is no need to assume the existence of different premicellar species in order to explain the chemical shifts and self-diffusion coefficients of SDS as claimed recently by some authors. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    Science.gov (United States)

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diametersoil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results highlight the possibilities in high volume application for lignin biomacromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of BAK-free travoprost treatment for 3 years in patients with normal tension glaucoma.

    Science.gov (United States)

    Inoue, Kenji; Iwasa, Mayumi; Wakakura, Masato; Tomita, Goji

    2012-01-01

    The purpose of this study was to evaluate the effects of benzalkonium (BAK)-free travoprost monotherapy administered for 3 years on intraocular pressure and visual field performance. The intraocular pressure of 76 patients with normal tension glaucoma was monitored every 1-3 months. A Humphrey visual field test was performed every 6 months after treatment and compared with the results before treatment. Visual field performance was also evaluated by trend and event analysis. Thirty cases discontinued within 3 years. Mean intraocular pressure after 3 years of travoprost treatment (14.1 ± 2.4 mmHg) was significantly lower than that before treatment (16.8 ± 2.6 mmHg, P trend analysis and five patients (13.9%) by event analysis. Treatment was discontinued in six cases (7.9%) due to the appearance of adverse reactions. BAK-free travoprost monotherapy was effective in reducing intraocular pressure for at least 3 years; however, visual field performance worsened in 2.8%-13.9% of patients with normal tension glaucoma.

  18. Determining and Optimizing Effective Factors in Laser Irradiation on Skin Tensional Strength using a Hybrid DOE and DEA Approach

    Directory of Open Access Journals (Sweden)

    Mehdi Bashiri

    2010-03-01

    Full Text Available Introduction: We investigated the characteristic of a suitable irradiation on skin's tensional strength using design of experiments (DOE. The experiments in this research are designed in two phases and data envelopment analysis (DEA is used for performance measurement of each phase. Material and Methods: Samples were provided from pleura as surface tissue made of collagen and elastin fibers. In each experiment, the sample was stretched before and after irradiation. Variation of the sample length was measured. Then force-length data were plotted and the slope of the fitted line was calculated. Variation in these slopes was used as a criterion to determine tissue strength variation after laser irradiation. Furthermore, the output oriented DEA model by variable return to scale was used to examine performance of the designed experiments for each phase. Results: Results of the first phase experiments showed that the main effect of time duration was significant; but this was not the case for beam radius. Regarding polarization, only its interaction effect with time duration was significant. Results of the second phase indicated that laser irradiation with parallel polarization for 10 seconds caused a greater increase in tensional strength. Resultant efficiencies of applying DEA showed that the first phase experiments were more efficient. Discussion and Conclusions: This research has combined DEA and DOE to investigate the effects of laser on skin elasticity. Comparing the results of the two phases indicates that it is more efficient to use the experimental design of phase 1 in our experiment. So for similar future studies, we suggest using more levels for experiments of phase 1 instead of doing the experimental design in two phases.

  19. Seawater Dynamic Surface Tension: A case for bubble sorption as a primary mechanism in the formation of particulate marine organic aerosol (Invited)

    Science.gov (United States)

    Long, M. S.; Keene, W. C.; Henderson, G. R.; Kieber, D. J.; Maben, J. R.; Kinsey, J. D.; Quinn, P.; Bates, T. S.

    2013-12-01

    Much attention has been given to size-resolved particulate fluxes of marine organic material (OM) into the atmosphere. Observations of ambient and artificially generated aerosol produced in seawater consistently show a size-dependent enrichment of OM relative to background seawater concentrations. Proposed mechanisms leading to particle enrichment have generally focused on the formation and scavenging of micelle-like exopolymers and interactions of bubble surfaces at the sea-surface microlayer. Previous work hypothesized that organic enrichment is controlled by adsorption processes at bubble surfaces within wave-generated bubble plumes. Here we present observations of dynamic surface tension of seawater supporting this hypothesis. In seawater samples taken from the surface and at 5m depth, interfacial surface tension was depressed by up to several dyn/cm within 0.2 to 0.5 s. These observations demonstrate that bubble surface area was saturated by surfactant material very quickly relative to bubble lifetimes beneath breaking