Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)
2008-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators.
Zhou, Linjie; Zhu, Haike; Zhang, Heng; Chen, Jianping
2014-01-27
We study the photoconductive effect of a p-i-p micro-heater integrated in a microring resonator. Due to the surface state absorption (SSA) and two photon absorption (TPA) of optical wave around 1550 nm, free carriers are generated in the silicon waveguide, leading to the modulation of silicon conductivity and thus the current flowing through it. The current-voltage (I-V) response of the p-i-p diode is dependent on the bias voltage and can be divided into ohmic-law regime and space-charge-limited regime. The resonance peak current is more sensitive to optical power in the ohmic-law regime. Such a phenomenon can also be utilized to monitor the optical power in the waveguide.
Integrated silicon optofluidic ring resonator
Testa, G.; Huang, Y.; Sarro, P.M.; Zeni, L.; Bernini, R.
2010-01-01
The feasibility of an integrated silicon optofluidic ring resonator is demonstrated. Liquid core antiresonant reflecting optical waveguides are used to realize a rectangular ring resonator with a multimode interference liquid core coupler between the ring and the bus waveguide. In this configuration
Integrated unaligned resonant modulator tuning
Zortman, William A.; Lentine, Anthony L.
2017-10-03
Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.
Multilayer Integrated Film Bulk Acoustic Resonators
Zhang, Yafei
2013-01-01
Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.
Integrated plasmonic refractometric sensor using Fano resonance
Sherif, S. M.; Zografopoulos, D. C.; Shahada, L. A.; Beccherelli, R.; Swillam, M.
2017-02-01
We propose a plasmonic refractometric sensor that is based on Fano resonances excited in a resonant rectangular cavity coupled to a metal-insulator-metal bus waveguide. The properties of the resonances are controlled by varying the dimensions of the rectangular resonator and the observed Fano profile stems from the multimode interference of resonant cavity modes. We theoretically investigate the device’s performance as a highly sensitive refractometric plasmonic sensor which operates on gases, water and organic solvent solutions with tens of femtoliters of analyte. The sensor is studied in a wide operational range (0.7-2.7 μm) covering the entire near infrared spectral range, and is characterized by large sensitivity, which reaches 1550 nm RIU-1, and sensitivity per unit volume higher than 107 nm (RIU · nl)-1 at the resonant wavelength of 1.55 μm. The proposed plasmonic structure is very promising for integrated sensing applications owing to its small footprint and surprisingly simple layout.
SiO2 Waveguide Resonator Used in an Integrated Optical Gyroscope
YU Huai-Yong; ZHANG Chun-Xi; FENG Li-Shuang; ZHOU Zhen; HONG Ling-Fei
2009-01-01
An integrated optical waveguide resonator based on a SiO2 waveguide is proposed, fabricated and tested. The method of designing the resonator is also presented. The optimal spirting ratio of the coupler is gained by simulating the relationship between the splitting ratio of the key coupler in the resonator and the resonator's finesse w/th resonance depth. The calculated fundamental detection limit of this integrated optical wavegnide resonator is 1.6°/b. Finally, a micro-optical gyroscope system based on the integrated waveguide resonator is built, and the measured resonator's finesse F is close to 70 under fluctuating temperature. To the best of our knowledge, the present F is the best result to date. For the coupler splitting rate the experimental results have fixed errors with the simulation results caused by fabrication processes which can be easily eliminated, implying that the method of design is effective and applicable.
Integrating out resonances in strongly-coupled electroweak scenarios
Rosell, Ignasi; Santos, Joaquin; Sanz-Cillero, Juan Jose
2016-01-01
Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET) is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs) in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.
Split-resonator integrated-post MEMS gyroscope
Bae, Youngsam (Inventor); Hayworth, Ken J. (Inventor); Shcheglov, Kirill V. (Inventor)
2004-01-01
A split-resonator integrated-post vibratory microgyroscope may be fabricated using micro electrical mechanical systems (MEMS) fabrication techniques. The microgyroscope may include two gyroscope sections bonded together, each gyroscope section including resonator petals, electrodes, and an integrated half post. The half posts are aligned and bonded to act as a single post.
Integrated micro ring resonator displacement sensor for scanning probe microscopies
Kiyat, Isa; Kocabas, Coskun; Aydinli, Atilla
2004-03-01
We describe a novel displacement sensor for scanning probe microscopies using an integrated optical micro ring resonator. This device operates by means of monitoring the changes in the transmission spectrum of a high finesse micro ring resonator. Finite element method simulations were carried out to obtain the optimum sensor design and finite difference time domain simulation was used to obtain the transfer characteristics of micro ring resonators. Operation principles and sensitivity calculations are discussed in detail. To achieve high sensitivity, we have studied different types of ring resonator. The highest sensitivity is obtained in a race-track resonator. This new design should provide sensitivities as high as ~10-4 Å-1.
Low-Loss Polymer-Based Ring Resonator for Resonant Integrated Optical Gyroscopes
Guang Qian
2014-01-01
Full Text Available Waveguide ring resonator is the sensing element of resonant integrated optical gyroscope (RIOG. This paper reports a polymer-based ring resonator with a low propagation loss of about 0.476 dB/cm for RIOG. The geometrical parameters of the waveguide and the coupler of the resonator were optimally designed. We also discussed the optical properties and gyroscope performance of the polymer resonator which shows a high quality factor of about 105. The polymer-based RIOG exhibits a limited sensitivity of less than 20 deg/h for the low and medium resolution navigation systems.
DNA integrity of human leukocytes after magnetic resonance imaging.
Szerencsi, Ágnes; Kubinyi, Györgyi; Váliczkó, Éva; Juhász, Péter; Rudas, Gábor; Mester, Ádám; Jánossy, Gábor; Bakos, József; Thuróczy, György
2013-10-01
This study focuses on the effects of high-field (3T) magnetic resonance imaging (MRI) scans on the DNA integrity of human leukocytes in vitro in order to validate the study where genotoxic effects were obtained and published by Lee et al. The scanning protocol and exposure situation were the same as those used under routine clinical brain MRI scan. Peripheral blood samples from healthy non-smoking male donors were exposed to electromagnetic fields (EMF) produced by 3T magnetic resonance imaging equipment for 0, 22, 45, 67, and 89 min during the scanning procedure. Samples of positive control were exposed to ionizing radiation (4 Gy of (60)Co-γ). Single breaks of DNA in leukocytes were detected by single-cell gel electrophoresis (Comet assay). Chromosome breakage, chromosome loss and micronuclei formations were detected by a micronucleus test (MN). Three independent experiments were performed. The data of comet tail DNA%, olive tail moment and micronucleus frequency showed no DNA damages due to MRI exposure. The results of the Comet assay and the micronucleus test indicate that the applied exposure of MRI does not appear to produce breaks in the DNA and has no significant effect on DNA integrity.
Optical Leaky-Wave Antenna Integrated in Ring Resonator
Guclu, Caner; Boyraz, Ozdal; Capolino, Filippo
2014-01-01
A leaky-wave antenna at optical frequencies is designed and integrated with a ring resonator at 1550 nm wavelength. The leaky wave is generated by using periodic perturbations in the integrated dielectric waveguide that excite the -1 spatial harmonic. The antenna consists of a dielectric waveguides with semiconductor corrugations, and it is compatible with CMOS fabrication technology. We show that integrating the leaky wave antenna in an optical ring resonator that is fed by directional couplers, we can improve the electronic control of the radiation through carrier injection into the semiconductor corrugations.
Sokolovski, D; Akhmatskaya, E; Echeverría-Arrondo, C; De Fazio, D
2015-07-28
State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially near a reactive threshold. An ICS is usually obtained by summing partial waves at a given value of energy. For this reason, the knowledge of pole positions and residues in the complex energy plane is not sufficient for a quantitative description of the patterns produced by resonance. Such description is available in terms of the poles of an S-matrix element in the complex plane of the total angular momentum. The approach was recently implemented in a computer code ICS_Regge, available in the public domain [Comput. Phys. Commun., 2014, 185, 2127]. In this paper, we employ the ICS_Regge package to analyse in detail, for the first time, the resonance patterns predicted for integral cross sections (ICSs) of the benchmark F + HD → HF(v' = 3) + D reaction. The v = 0, j = 0, Ω = 0 → v' = 3, j' = 0, 1, 2, and Ω' = 0, 1, 2 transitions are studied for collision energies from 58.54 to 197.54 meV. For these energies, we find several resonances, whose contributions to the ICS vary from symmetric and asymmetric Fano shapes to smooth sinusoidal Regge oscillations. Complex energies of metastable states and Regge pole positions and residues are found by Padé reconstruction of the scattering matrix elements. The accuracy of the ICS_Regge code, relation between complex energies and Regge poles, various types of Regge trajectories, and the origin of the J-shifting approximation are also discussed.
Integrated MEMS/NEMS Resonant Cantilevers for Ultrasensitive Biological Detection
Xinxin Li
2009-01-01
Full Text Available The paper reviews the recent researches implemented in Chinese Academy of Sciences, with achievements on integrated resonant microcantilever sensors. In the resonant cantilevers, the self-sensing elements and resonance exciting elements are both top-down integrated with silicon micromachining techniques. Quite a lot of effort is focused on optimization of the resonance mode and sensing structure for improvement of sensitivity. On the other hand, to enable the micro-cantilevers specifically sensitive to bio/chemical molecules, sensing materials are developed and modified on the cantilever surface with a self-assembled monolayer (SAM based bottom-up construction and surface functionalization. To improve the selectivity of the sensors and depress environmental noise, multiple and localized surface modifications are developed. The achieved volume production capability and satisfactory detecting resolution to trace-level biological antigen of alpha-fetoprotein (AFP give the micro-cantilever sensors a great promise for rapid and high-resoluble detection.
A microwave resonator integrated on a polymer microfluidic chip
Kiss, S. Z.; Rostas, A. M.; Heidinger, L.; Spengler, N.; Meissner, M. V.; MacKinnon, N.; Schleicher, E.; Weber, S.; Korvink, J. G.
2016-09-01
We describe a novel stacked split-ring type microwave (MW) resonator that is integrated into a 10 mm by 10 mm sized microfluidic chip. A straightforward and scalable batch fabrication process renders the chip suitable for single-use applications. The resonator volume can be conveniently loaded with liquid sample via microfluidic channels patterned into the mid layer of the chip. The proposed MW resonator offers an alternative solution for compact in-field measurements, such as low-field magnetic resonance (MR) experiments requiring convenient sample exchange. A microstrip line was used to inductively couple MWs into the resonator. We characterised the proposed resonator topology by electromagnetic (EM) field simulations, a field perturbation method, as well as by return loss measurements. Electron paramagnetic resonance (EPR) spectra at X-band frequencies were recorded, revealing an electron-spin sensitivity of 3.7 ·1011spins ·Hz - 1 / 2G-1 for a single EPR transition. Preliminary time-resolved EPR experiments on light-induced triplet states in pentacene were performed to estimate the MW conversion efficiency of the resonator.
Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control
Guclu, Caner; Capolino, Filippo
2015-01-01
The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...
Integrated Microfluidic Sensor System with Magnetostrictive Resonators
Liang, Cai
2011-12-08
The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.
Non-Hamiltonian perturbations of integrable systems and resonance trapping
Ghil, M.; Wolansky, G.
1992-01-01
This paper studies general, non-Hamiltonian perturbations of integrable systems with two degrees of freedom and derives conditions for temporary and permanent resonance trapping. The analysis involves a noncanonical transformation of variables near the resonant manifold and averaging with respect to the fast phase to investigate oscillatory behavior on the intermediate timescale. The resulting reduced system is Hamiltonian to leading order and permits, after averaging on the intermediate, or libration, timescale, a canonical transformation to action-angle variables in the oscillation zone. The final system so obtained reveals the possible existence of two- and three-dimensional invariant tori in the vicinity of the resonant manifold. An explicit divergence condition for general perturbations to be dissipative on the slow timescale follows from the analysis. An application of this approach to the problem of resonant trapping and escape is outlined for the restricted problem of three bodies subject to dissipative perturbations with a radial symmetry.
Effects of molecular resonances on Rydberg blockade
Derevianko, Andrei; Topcu, Turker; Kroeze, Ronen M; Lukin, Mikhail D
2015-01-01
We study the effect of resonances associated with complex molecular interaction of Rydberg atoms on Rydberg blockade. We show that densely-spaced molecular potentials between doubly-excited atomic pairs become unavoidably resonant with the optical excitation at short interatomic separations. Such molecular resonances limit the coherent control of individual excitations in Rydberg blockade. As an illustration, we compute the molecular interaction potentials of Rb atoms near the $100s$ states asymptote to characterize such detrimental molecular resonances, determine the resonant loss rate to molecules and inhomogeneous light shifts. Techniques to avoid the undesired effect of molecular resonances are discussed.
Relationship between Fermi Resonance and Solvent Effects
JIANG Xiu-Lan; LI Dong-Fei; SUN Cheng-Lin; LI Zhan-Long; YANG Guang; ZHOU Mi; LI Zuo-Wei; GAO Shu-Qin
2011-01-01
We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations. Also, we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures. It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio, etc., on the other hand, the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.%@@ We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations.Also,we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures.It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio,etc.,on the other hand,the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.
Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers
Neder, Verena; Luxembourg, Stefan L.; Polman, Albert
2017-08-01
We demonstrate photovoltaic modules with a bright green color based on silicon heterojunction solar cells integrated with arrays of light scattering dielectric nanoscatterers. Dense arrays of crystalline silicon nanocylinders, 100-120 nm wide, 240 nm tall, and 325 nm pitch, are made onto module cover slides using substrate-conformal soft-imprint lithography. Strong electric and magnetic dipolar Mie resonances with a narrow linewidth (Q ˜ 30) cause strong (35%-40%) specular light scattering on resonance (˜540 nm). The green color is observed over a wide range of angles (8°-75°). As the resonant nanoscatterers are transparent for the major fraction of the incident solar spectrum, the relative loss in short-circuit current is only 10%-11%. The soft-imprinted nanopatterns can be applied on full-size solar modules and integrated with conventional module encapsulation. The dielectric Mie resonances can be controlled by geometry, opening up a road for designing efficient colorful or white building-integrated photovoltaics.
Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators
Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.
2014-01-01
The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.
Effective resonant stability of Mercury
Sansottera, M; Lemaître, A
2015-01-01
Mercury is the unique known planet that is situated in a 3:2 spin-orbit resonance nowadays. Observations and models converge to the same conclusion: the planet is presently deeply trapped in the resonance and situated at the Cassini state $1$, or very close to it. We investigate the complete non-linear stability of this equilibrium, with respect to several physical parameters, in the framework of Birkhoff normal form and Nekhoroshev stability theory. We use the same approach adopted for the 1:1 spin-orbit case with a peculiar attention to the role of Mercury's non negligible eccentricity. The selected parameters are the polar moment of inertia, the Mercury's inclination and eccentricity and the precession rates of the perihelion and node. Our study produces a bound to both the latitudinal and longitudinal librations (of 0.1 radians) for a long but finite time (greatly exceeding the age of the solar system). This is the so-called effective stability time. Our conclusion is that Mercury, placed inside the 3:2 s...
Integrated TiO2 resonators for visible photonics
Choy, Jennifer T; Deotare, Parag B; Burgess, Ian B; Evans, Christopher C; Mazur, Eric; Loncar, Marko
2011-01-01
We demonstrate waveguide-coupled titanium dioxide (TiO2) racetrack resonators with loaded quality factors of 2x10^4 for the visible wavelengths. The structures were fabricated in sputtered TiO2 thin films on oxidized silicon substrates using standard top-down nanofabrication techniques, and passively probed in transmission measurements using a tunable red laser. Devices based on this material could serve as integrated optical elements as well as passive platforms for coupling to visible quantum emitters.
Effective resonant interactions via a driving field
Klimov, A B [Departamento de FIsica, Universidad de Guadalajara, Revolucion 1500, Guadalajara 44420 (Mexico); Sainz, I [Departamento de FIsica, Universidad de Guadalajara, Revolucion 1500, Guadalajara 44420 (Mexico); Saavedra, C [Center for Quantum Optics and Quantum Information, Departamento de FIsica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)
2004-11-01
Effective resonant quantum atom-field interactions are studied. These resonant interactions are induced by the presence of an external classical driving field. An adequate choice for frequencies of the driving field produces nonlinear effective Hamiltonians both for atom-field and for spin-spin interactions. It is shown that the exact numerical evolution for each resonance condition is well described by the corresponding effective Hamiltonian.
Electronically Tunable Fully Integrated Fractional-Order Resonator
Tsirimokou, Georgia
2017-03-20
A fully integrated implementation of a parallel fractional-order resonator which employs together a fractional order capacitor and a fractional-order inductor is proposed in this paper. The design utilizes current-controlled Operational Transconductance Amplifiers as building blocks, designed and fabricated in AMS 0:35m CMOS process, and based on a second-order approximation of a fractional-order differentiator/ integrator magnitude optimized in the range 10Hz–700Hz. An attractive benefit of the proposed scheme is its electronic tuning capability.
Diamond electro-optomechanical resonators integrated in nanophotonic circuits
Rath, P; Diewald, S; Lewes-Malandrakis, G; Brink, D; Heidrich, N; Nebel, C; Pernice, W H P
2014-01-01
Diamond integrated photonic devices are promising candidates for emerging applications in nanophotonics and quantum optics. Here we demonstrate active modulation of diamond nanophotonic circuits by exploiting mechanical degrees of freedom in free-standing diamond electro-optomechanical resonators. We obtain high quality factors up to 9600, allowing us to read out the driven nanomechanical response with integrated optical interferometers with high sensitivity. We are able to excite higher order mechanical modes up to 115 MHz and observe the nanomechanical response also under ambient conditions.
Coupling a thermal atomic vapor to an integrated ring resonator
Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert
2016-01-01
Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom-cavity systems.
Polarization effects in recoil-induced resonances
Lazebnyi, D. B.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.
2017-01-01
The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.
Polarization effects in recoil-induced resonances
Lazebnyi, D. B., E-mail: becks.ddf@gmail.com; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I. [Russian Academy of Sciences, Institute of Laser Physics, Siberian Branch (Russian Federation)
2017-01-15
The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.
Leitner, Peter; Heyn, Martin F.; Kernbichler, Winfried [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, TU Graz, Petersgasse 16, A-8010 Graz (Austria); Ivanov, Ivan B. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, TU Graz, Petersgasse 16, A-8010 Graz (Austria); St. Petersburg State University, Institute of Physics, Ulyanovskaya 1, Petrodvoretz 198504 (Russian Federation); Petersburg Nuclear Physics Institute, 188300 Gatchina, Leningrad Oblast (Russian Federation); Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, TU Graz, Petersgasse 16, A-8010 Graz (Austria); Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology,” Ul. Akademicheskaya 1, 61108 Kharkov (Ukraine)
2014-06-15
In this paper, the impact of momentum and energy conservation of the collision operator in the kinetic description for Resonant Magnetic Perturbations (RMPs) in a tokamak is studied. The particle conserving differential collision operator of Ornstein-Uhlenbeck type is supplemented with integral parts such that energy and momentum are conserved. The application to RMP penetration in a tokamak shows that energy conservation in the electron collision operator is important for the quantitative description of plasma shielding effects at the resonant surface. On the other hand, momentum conservation in the ion collision operator does not significantly change the results.
Spine labeling in axial magnetic resonance imaging via integral kernels.
Miles, Brandon; Ben Ayed, Ismail; Hojjat, Seyed-Parsa; Wang, Michael H; Li, Shuo; Fenster, Aaron; Garvin, Gregory J
2016-12-01
This study investigates a fast integral-kernel algorithm for classifying (labeling) the vertebra and disc structures in axial magnetic resonance images (MRI). The method is based on a hierarchy of feature levels, where pixel classifications via non-linear probability product kernels (PPKs) are followed by classifications of 2D slices, individual 3D structures and groups of 3D structures. The algorithm further embeds geometric priors based on anatomical measurements of the spine. Our classifier requires evaluations of computationally expensive integrals at each pixel, and direct evaluations of such integrals would be prohibitively time consuming. We propose an efficient computation of kernel density estimates and PPK evaluations for large images and arbitrary local window sizes via integral kernels. Our method requires a single user click for a whole 3D MRI volume, runs nearly in real-time, and does not require an intensive external training. Comprehensive evaluations over T1-weighted axial lumbar spine data sets from 32 patients demonstrate a competitive structure classification accuracy of 99%, along with a 2D slice classification accuracy of 88%. To the best of our knowledge, such a structure classification accuracy has not been reached by the existing spine labeling algorithms. Furthermore, we believe our work is the first to use integral kernels in the context of medical images. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
Quantum Effect in Mesoscopic Open Electron Resonator
YAN Zhan-Yuan; ZHANG Xiao-Hong; HAN Ying-Hui
2008-01-01
The open electron resonator is a mesoscopic device that has attracted considerable attention due to its remarkable behavior: conductance oscillations. In this paper, using an improved quantum theory to mesoscopic circuits developed recently by Li and Chen, the mesoscopic electron resonator is quantized based on the fundamental fact that the electric charge takes discrete value. With presentation transformation and unitary transformation, the Schrodinger equation becomes an standard Mathieu equation. Then, the detailed energy spectrum and wave functions in the system are obtained, which will be helpful to the observation of other characters of electron resonator. The average of currents and square of the current are calculated, the results show the existence of the current fluctuation, which causes the noise in the circuits, the influence of inductance to the noise is discussed. With the results achieved, the stability characters of mesoscopic electron resonator are studied firstly, these works would be benefit to the design and control of integrate circuit.
Microfluidics-integrated cascaded double-microring resonators for label-free biosensing
Chen, Yangqing; Yu, Fang; Yang, Chang; Li, Mingyu; Tang, Longhua; Song, Jinyan; He, Jian-Jun
2014-11-01
A highly-sensitive optical waveguide biosensor integrated with microfluidic channels based on silicon-on-insulator (SOI) was investigated in this paper. Experimental results of the label-free detection exhibits this novel biosensor with the superior reliability for quantitative and kinetic measurement of the interaction between biological molecules, dramatically improving the sensitivity due to the Vernier effect induced by cascaded double-microring resonators.
Thermodynamics of the Optical Feshbach Resonance Effect
Blatt, S; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J
2011-01-01
Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the Optical Feshbach Resonance effect in an ultracold gas of bosonic $^{88}$Sr. A systematic measurement of several resonances allows precise determinations of the OFR strength and scaling law, in agreement with coupled-channels theory. Resonant enhancement of the complex scattering length leads to thermodynamic behavior mediated by elastic and inelastic collisions in an otherwise ideal gas. OFR could be used to control atomic interactions with high spatial and time resolution.
Deformation effects in Giant Monopole Resonance
Kvasil, J; Repko, A; Bozik, D; Kleinig, W; Reinhard, P -G
2014-01-01
The isoscalar giant monopole resonance (GMR) in Samarium isotopes (from spherical $^{144}$Sm to deformed $^{148-154}$Sm) is investigated within the Skyrme random-phase-approximation (RPA) for a variety of Skyrme forces. The exact RPA and its separable version (SRPA) are used for spherical and deformed nuclei, respectively. The quadrupole deformation is shown to yield two effects: the GMR broadens and attains a two-peak structure due to the coupling with the quadrupole giant resonance.
Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.
Guo, Hong; Guo, Junpeng
2015-01-15
Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.
Thermal neutron capture and resonance integral cross sections of 45Sc
Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo
2015-11-01
The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.
Thermal neutron capture and resonance integral cross sections of {sup 45}Sc
Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Thi Hien, Nguyen [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Kwangsoo [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shin, Sung-Gyun; Cho, Moo-Hyun [Department of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Manwoo [Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of)
2015-11-01
The thermal neutron cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been measured relative to that of the {sup 197}Au(n,γ){sup 198}Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (G{sub th}) and resonance (G{sub epi}) neutron self-shielding, the γ-ray attenuation (F{sub g}) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been determined relative to the reference values of the {sup 197}Au(n,γ){sup 198}Au reaction, with σ{sub o,Au} = 98.65 ± 0.09 barn and I{sub o,Au} = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σ{sub o,Sc} = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be I{sub o,Sc} = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.
Anomalous effective lagrangians and vector resonance models
Pallante, E.; Petronzio, R.
1993-01-01
Chiral lagrangians including vector resonances have been shown to saturate the finite part of some of the counterterms needed to regularize ordinary one-loop effective lagrangians of pseudoscalar interactions with external currents. The equivalence between different models has been discussed in the
Dynamic nonlinear thermal optical effects in coupled ring resonators
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Integrated structure for a resonant micro-gyroscope and accelerometer
V. Zega
2014-07-01
Full Text Available This paper presents the study of the mechanical behavior of a microstructure designed to detect acceleration and angular velocity simultaneously. The new resonant micro-sensor proposed, fabricated by the ThELMA© surface-micromachining technique, bases detection of two components of external acceleration (one in-plane component and one out-of plane component and two components of angular velocity (roll and yaw on the variation of frequency of several elements set in resonance. The device, despite its small dimensions, provides a differential decoupled detection of four external quantities thanks to the presence of four slender beams resonating in bending and four torsional resonators.
Biological effects of exposure to magnetic resonance imaging: an overview
Formica Domenico
2004-04-01
Full Text Available Abstract The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited.
Zhang, Sheng; Rao, Jia-Yu; Tai, Wen-Si; Wang, Ting; Liu, Fa-Lin
2016-09-01
In this paper, a kind of quasi eighth substrate integrated waveguide resonator (QESIWR) with defected fractal structure (DFS) is proposed firstly. Compared with the eighth substrate integrated waveguide resonator (ESIWR), this kind of resonator has lower resonant frequency (f0), acceptable unloaded quality (Qu) value and almost unchanged electric field distribution. In order to validate the properties of QESIWR, a cascaded quadruplet QESIWRs filter is designed and optimized. By using cross coupling and gap coupling compensation, this filter has two transmission zeros (TZs) at each side of the passband. Meanwhile, in comparison with the conventional ones, its size is cut down over 90 %. The measured results agree well with the simulated ones.
Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters
Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent
2017-06-01
We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.
Fabrication of resonant micro cantilevers with integrated transparent fluidic channel
Khan, Faheem; Schmid, Silvan; Davis, Zachary James
2011-01-01
be visually observed through the transparent fluidic channel. The resonant frequency of the cantilever is changed by the fluid inside the channel, due to the change in mass. The shift in the resonant frequency can be translated into a density of the fluid or into the presence of macro/micro molecules...
Photonic crystal resonator integrated in a microfluidic system
Rodrigues de Sousa Nunes, Pedro André; Mortensen, Niels Asger; Kutter, Jörg Peter
2008-01-01
-free refractive index detection. The resonator was fabricated in a silicon oxynitride platform, to support electro-osmotic flow, and operated at =1.55 m. Different aqueous solutions of ethanol with refractive indices ranging from n1.3330 to 1.3616 were pumped into the column/resonator, and the transmission...
From VHF to UHF CMOS-MEMS Monolithically Integrated Resonators
Teva, Jordi; Berini, Abadal Gabriel; Uranga, A.;
2008-01-01
This paper presents the design, fabrication and characterization of microresonators exhibiting resonance frequencies in the VHF and UHF bands, fabricated using the available layers of the standard and commercial CMOS technology, AMS-0.35mum. The resonators are released in a post-CMOS process...
Blaise, P.
1996-12-18
Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.).
SivaRanjan, Uppala; Ramachandran, Ramesh, E-mail: rramesh@iisermohali.ac.in [Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli, P.O. Box-140306, Mohali, Punjab (India)
2014-02-07
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
SivaRanjan, Uppala; Ramachandran, Ramesh
2014-02-01
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R2) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R2 experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
SivaRanjan, Uppala; Ramachandran, Ramesh
2014-02-07
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R(2)) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R(2) experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
Purcell effect in Hyperbolic Metamaterial Resonators
Slobozhanyuk, Alexey P; Powell, David A; Iorsh, Ivan; Shalin, Alexander S; Segovia, Paulina; Krasavin, Alexey V; Wurtz, Gregory A; Podolskiy, Viktor A; Belov, Pavel A; Zayats, Anatoly V
2015-01-01
The radiation dynamics of optical emitters can be manipulated by properly designed material structures providing high local density of photonic states, a phenomenon often referred to as the Purcell effect. Plasmonic nanorod metamaterials with hyperbolic dispersion of electromagnetic modes are believed to deliver a significant Purcell enhancement with both broadband and non-resonant nature. Here, we have investigated finite-size cavities formed by nanorod metamaterials and shown that the main mechanism of the Purcell effect in these hyperbolic resonators originates from the cavity hyperbolic modes, which in a microscopic description stem from the interacting cylindrical surface plasmon modes of the finite number of nanorods forming the cavity. It is found that emitters polarized perpendicular to the nanorods exhibit strong decay rate enhancement, which is predominantly influenced by the rod length. We demonstrate that this enhancement originates from Fabry-Perot modes of the metamaterial cavity. The Purcell fa...
Integrated high quality factor lithium niobate microdisk resonators
Wang, Cheng; Lin, Zin; Atikian, Haig A; Venkataraman, Vivek; Huang, I-Chun; Stark, Peter; Lončar, Marko
2014-01-01
Lithium Niobate (LN) is an important nonlinear optical material. Here we demonstrate LN microdisk resonators that feature optical quality factor ~ 100,000, realized using robust and scalable fabrication techniques, that operate over a wide wavelength range spanning visible and near infrared. Using our resonators, and leveraging LN's large second order optical nonlinearity, we demonstrate on-chip second harmonic generation with a conversion efficiency of 0.109 W-1.
Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever
Abdulla, S.M.C.; Kauppinen, L.J.; Dijkstra, M.; Boer, de M.J.; Berenschot, E.; Jansen, H.V.; Ridder, de R.M.; Krijnen, G.J.M.
2011-01-01
The principle, fabrication and characterization of a dielectric MEMS cantilever located a few 100 nm above a racetrack ring resonator are presented. After fabrication of the resonators on silicon-on-insulator (SOI) wafers in a foundry process, the cantilevers were integrated by surface micromachinin
Resonant passive–active vibration absorber with integrated force feedback control
Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen
2016-01-01
A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control...... with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia...... realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction....
Chip-integrated optical power limiter based on an all-passive micro-ring resonator
Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang
2014-10-01
Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.
Chip-integrated optical power limiter based on an all-passive micro-ring resonator.
Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang
2014-10-20
Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.
Integrated Analysis of Piezoelectric Resonators as Components of Electronic Systems
2015-09-07
10.1016/S0894-9166(13)60012-9 Huijing He, Jinxi Liu, Jiashi Yang. Thickness-shear and thickness- twist vibrations of an AT-Cut quartz mesa resonator...2013 09/11/2013 09/11/2013 09/11/2013 09/11/2013 09/16/2013 Received Paper Haifeng Zhang, John A. Kosinski, Yuan Xie, and Joseph A. Turner. Drive -Level...Turner,, John A. Kosinski.. Drive level dependence of doubly rotated langasite resonators with different configurations, 2011 International Frequency
Byoun, T. Y.; Block, R. C.; Semler, T. T.
1972-01-01
A series of average transmission and average self-indication ratio measurements were performed in order to investigate the temperature dependence of the resonance self-shielding effect in the unresolved resonance region of depleted uranium and tantalum. The measurements were carried out at 77 K, 295 K and approximately 1000 K with sample thicknesses varying from approximately 0.1 to 1.0 mean free path. The average resonance parameters as well as the temperature dependence were determined by using an analytical model which directly integrates over the resonance parameter distribution functions.
Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever.
Abdulla, S M C; Kauppinen, L J; Dijkstra, M; de Boer, M J; Berenschot, E; Jansen, H V; de Ridder, R M; Krijnen, G J M
2011-08-15
The principle, fabrication and characterization of a dielectric MEMS cantilever located a few 100 nm above a racetrack ring resonator are presented. After fabrication of the resonators on silicon-on-insulator (SOI) wafers in a foundry process, the cantilevers were integrated by surface micromachining techniques. Off-state deflections of the cantilevers have been optimized to appropriately position them near the evanescent field of the resonator. Using electrostatic actuation, moving the cantilevers into this evanescent field, the propagation properties of the ring waveguide are modulated. We demonstrate 122 pm tuning of the resonance wavelength of the optical ring resonator (in the optical C-band) without change of the optical quality factor, on application of 9 V to a 40 µm long cantilever. This compact integrated device can be used for tuning/switching a specific wavelength, with very little energy for operation and negligible cross talk with surrounding devices.
Intercombination Effects in Resonant Energy Transfer
Vaillant, C L; Jones, M P A
2015-01-01
We investigate the effect of intercombination transitions in excitation hopping processes such as those found in F\\"orster resonance energy transfer. Taking strontium Rydberg states as our model system, the breakdown of $LS$-coupling leads to weakly allowed transitions between Rydberg states of different spin quantum number. We show that the long-range interactions between two Rydberg atoms can be affected by these weakly allowed spin transitions, and the effect is greatest when there is a near-degeneracy between the initial state and a state with a different spin quantum number. We also consider a case of four atoms in a spin chain, and show that a spin impurity can resonantly hop along the chain. By engineering the many-body energy levels of the spin-chain, the breakdown of $LS$ coupling due to inter-electronic effects in individual atoms can be mapped onto a spatial separation of the total spin and the total orbital angular momentum along the spin chain.
A fully integrated high-Q Whispering-Gallery Wedge Resonator
Ramiro-Manzano, F; Pavesi, L; Pucker, G; Ghulinyan, M
2012-01-01
Microresonator devices which posses ultra-high quality factors are essential for fundamental investigations and applications. Microsphere and microtoroid resonators support remarkably high Q's at optical frequencies, while planarity constrains preclude their integration into functional lightwave circuits. Conventional semiconductor processing can also be used to realize ultra-high-Q's with planar wedge-resonators. Still, their full integration with side-coupled dielectric waveguides remains an issue. Here we show the full monolithic integration of a wedge-resonator/waveguide vertically-coupled system on a silicon chip. In this approach the cavity and the waveguide lay in different planes. This permits to realize the shallow-angle wedge while the waveguide remains intact, allowing therefore to engineer a coupling of arbitrary strength between these two. The precise size-control and the robustness against post-processing operation due to its monolithic integration makes this system a prominent platform for indu...
Magnetodielectric effect of Mn–Zn ferrite at resonant frequency
Pengfei, Pan; Ning, Zhang, E-mail: zhangning@njnu.edu.cn
2016-10-15
The dielectric properties and the magnetodielectric effect in Mn–Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn–Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect. - Highlights: • Dimensional resonance was measured in dielectric spectrum at f≈1 MHz. • The MD ratio of 4500% was induced by H = 3.5 kOe at resonant frequency. • The magnetostriction effect leads to the large MD effect at resonant frequency.
Radiation Characteristics of 3D Resonant Cavity Antenna with Grid-Oscillator Integrated Inside
L. A. Haralambiev
2014-01-01
Full Text Available A three-dimensional (3D rectangular cavity antenna with an aperture size of 80 mm × 80 mm and a length of 16 mm, integrated with a four-MESFET transistor grid-oscillator, is designed and studied experimentally. It is found that the use of 3D antenna resonant cavity in case of small or medium gain microwave active cavity antenna leads to effective and stable power combining and radiation. The lack of lateral cavity diffraction and radiation helps in producing a directive gain of about 17 dB and radiation aperture efficiency bigger than 75% at a resonance frequency of 8.62 GHz. Good DC to RF oscillator efficiency of 26%, effective isotropic radiated power (EIRP of 5.2 W, and SSB spectral power density of −82 dBc/Hz are found from the measured data. The 3D antenna cavity serves also as a strong metal container for the solid-state oscillator circuitry.
Photo-Detectors Integrated with Resonant Tunneling Diodes
José M. L. Figueiredo
2013-07-01
Full Text Available We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD. Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR region. The resonant tunneling diode photo-detector (RTD-PD can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.
2013-01-01
We report, in this work, on unprecedented levels of parametric amplification in microelectromechanical resonators, operated in air, with integrated piezoelectric actuation and sensing capabilities. The method relies on an analytical/numerical understanding of the influence of geometrical nonlinearities inherent to the bridge-like configuration of the resonators. We provide analytical formulae to predict the performances of the parametric amplifier below the nonlinearity threshold, in terms of...
Effective zero index in locally resonant acoustic material
Zhu, Xue-Feng, E-mail: ernestzhu.nju@gmail.com
2013-10-30
Here in locally resonant acoustic material, it is shown that effective zero refractive index can be constructed by the resonant unit-cells with coherent degenerate monopole–dipole momenta. Due to strong local resonances, the material layers with effective zero refractive index can function as a resonant cavity of high Q factor, where a subtle deviation from the resonant frequency may result in distinct increase of reflection. Full-wave simulations are performed to demonstrate some unusual wave transport properties such as invisibility cloaking, super-reflection, local field enhancement, and wavefronts rotation.
Nielsen, Søren R.K.; Basu, Biswajit
2011-01-01
Control of multi-modal structural vibrations has been an important and challenging problem in flexible structural systems. This paper proposes a new vibration control algorithm for multi-modal structural control. The proposed algorithm combines a pole-placement controller with an integral resonant...... controller. The pole-placement controller is used to achieve a target equivalent modal viscous damping in the system and helps in the suppression of higher modes, which contribute to the vibration response of flexible structures. The integral resonant controller successfully reduces the low frequency...... vibrations e.g. caused by broad-band turbulent wind excitations. Hence, the proposed hybrid controller can effectively suppress complex multi-modal vibrations in flexible systems. Both numerical and experimental studies have been carried out to demonstrate the effectiveness of the proposed algorithm using...
Madani, Abbas; Stolarek, David; Zimmermann, Lars; Ma, Libo; Schmidt, Oliver G
2015-01-01
We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step towards 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO2 nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out of plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. In this vertical transmission scheme, resonant filtering of optical signals at telecommunication wavelengths is demonstrated based on subwavelength thick walled microcavities. Moreover, an array of microtube cavities is prepared and each microtube cavity is integrated with multiple waveguides which opens up interesting perspectives towards parallel and multi-routing through a ...
Resonant passive–active vibration absorber with integrated force feedback control
Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen
2016-01-01
A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the d......A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control...... with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia...... realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction....
Integrated imaging of neuromagnetic reconstructions and morphological magnetic resonance data.
Kullmann, W H; Fuchs, M
1991-01-01
New neuromagnetic imaging methods provide spatial information about the functional electrical properties of complex current distributions in the human brain. For practical use in medical diagnosis a combination of the abstract neuromagnetic imaging results with magnetic resonance (MR) or computed tomography (CT) images of the morphology is required. The biomagnetic images can be overlayed onto three-dimensional morphological images with spatially arbitrary selectable slices, calculated from conventional 2D data. For the current reconstruction the 3D images furthermore provide a priori information about the conductor geometry. A combination of current source density calculations and linear estimation methods for handling the inverse magnetic problem allows quick imaging of impressed current source density in arbitrary volume conductors.
Li, Yu; Feng, Shaoqi; Zhang, Yu; Poon, Andrew W
2013-12-01
We report a sub-bandgap linear-absorption-based photodetector in avalanche mode at 1550 nm in a PN-diode-integrated silicon microring resonator. The photocurrent is primarily generated by the defect-state absorption introduced by the boron and phosphorous ion implantation during the PN diode formation. The responsivity is enhanced by both the cavity effect and the avalanche multiplication. We measure a responsivity of ~72.8 mA/W upon 8 V at cavity resonances in avalanche mode, corresponding to a gain of ~72 relative to the responsivity of ~1.0 mA/W upon 3 V at cavity resonances in normal mode. Our device exhibits a 3 dB bandwidth of ~7 GHz and an open eye diagram at 15 Gbit/s upon 8 V.
Gabriel Vidal-Álvarez
2016-03-01
Full Text Available We present the fabrication and characterization of a suspended microbridge resonator with an embedded nanochannel. The suspended microbridge resonator is electrostatically actuated, capacitively sensed, and monolithically integrated with complementary metal-oxide-semiconductor (CMOS readout circuitry. The device is fabricated using the back end of line (BEOL layers of the AMS 0.35 μm commercial CMOS technology, interconnecting two metal layers with a contact layer. The fabricated device has a 6 fL capacity and has one of the smallest embedded channels so far. It is able to attain a mass sensitivity of 25 ag/Hz using a fully integrable electrical transduction.
Pressure effects in multiple resonant multiphoton transitions
Maïnos, C.; Le Duff, Y.; Castex, M. C.; Boursey, E.
1989-02-01
Although the rotational structure of a multiphoton process generally remains unaltered over a large range of gas pressure, this is not the case when multiple resonances are present. The rotational structure observed through intermediate rotational levels in a multiphoton process depends strongly on the resonance conditions. We show, for the NO molecule, that this structure changes drastically when the resonance conditions are modified by intermolecular collisions.
Resonance decay effect on conserved number fluctuations in a hadron resonance gas model
Mishra, D K; Netrakanti, P K; Mohanty, A K
2016-01-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model
Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.
2016-07-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
{sup 41}K(n, {gamma}){sup 42}K thermal and resonance integral cross section measurements
Ferreira, F.A. Jr.; Maidana, N.L.; Vanin, V.R. [Sao Paulo Univ., SP (Brazil). Lab. do Acelerador Linear; Dias, M.S.; Koskinas, M.F. [IPEN-CNEN, Sao Paulo, SP (Brazil). Lab. de Metrolgia Nuclear; Lopez-Pino, N. [Instituto Superior de Tecnolgias y Ciencias Aplicadas (InSTEC), Habana (Cuba)
2012-07-01
We measured the {sup 41}K thermal neutron absorption and resonance integral cross sections after the irradiation of KNO{sub 3} samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the {sup 42}K decay {beta}{sup -} emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) b and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.
Effect of Systematic Resonance on DBD Device
无
2005-01-01
Abnormal phenomena that discharge performance declines with the increase in the frequency of power supply have been observed in many DBD devices. DBD systematic resonance formed by transformer leakage induction and equivalent capacitance of the dielectric layer is a key factor causing such abnormal phenomena. Therefore, the parameters of a DBD device should be optimized to avoid resonance damage and improve DBD discharge characteristics.
Magnetodielectric effect of Mn-Zn ferrite at resonant frequency
Pengfei, Pan; Ning, Zhang
2016-10-01
The dielectric properties and the magnetodielectric effect in Mn-Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn-Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect.
Zhang, Weifeng; Yao, Jianping
2016-01-01
... difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR) with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits...
Low insertion loss SOI microring resonator integrated with nano-taper couplers
Pu, Minhao; Frandsen, Lars Hagedorn; Ou, Haiyan;
2009-01-01
We demonstrate a microring resonator working at TM mode integrated with nano-taper couplers with 3.6dB total insertion loss. The measured insertion loss of the nano-taper coupler was only 1.3dB for TM mode....
Optimization of an integrated-optical ring-resonator slow-light-based sensor
Uranus, H.P.; Hoekman, M.; Dijkstra, M.; Hoekstra, H.J.W.M.; stoffer, R.
2008-01-01
A 3-D, vectorial, and multimodal model that incorporates realistic losses was developed to study the performance of Si3N4 based integrated-optical ring-resonator slow-light-based refractometric sensor. Efficient optimization of the coupler gap and tolerance analysis were also performed using the mod
Study of an integrated-optical slow light ring-resonator for sensing applications
Uranus, H.P.; Dijkstra, M.; Hoekman, M.; Hoekstra, H.J.W.M.
2008-01-01
Integrated-optical (IO) micro-ring, -disk, and -sphere resonators have been long considered as a good candidate to enhance optical sensor performance. To the best of our knowledge, none of previous reported works has explicitly attributed such (expected) enhancement to slow-light phenomenon, i.e. a
Enhanced light emission from Carbon Nanotubes integrated in silicon micro-resonator
Noury, Adrien; Vivien, Laurent; Izard, Nicolas
2015-01-01
Single-wall carbon nanotube are considered a fascinating nanomaterial for photonic applications and are especially promising for efficient light emitter in the telecommunication wavelength range. Furthermore, their hybrid integration with silicon photonic structures makes them an ideal platform to explore the carbon nanotube instrinsic properties. Here we report on the strong photoluminescence enhancement from carbon nanotubes integrated in silicon ring resonator circuit under two pumping configurations: surface-illuminated pumping at 735 nm and collinear pumping at 1.26 {\\mu}m. Extremely efficient rejection of the non-resonant photoluminescence was obtained. In the collinear approach, an emission efficiency enhancement by a factor of 26 has been demonstrated in comparison with classical pumping scheme. This demonstration pave the way for the development of integrated light source in silicon based on carbon nanotubes.
First experimental results on CMOS Integrated Nickel Electroplated Resonators
Yalcinkaya, Arda Deniz; Hansen, Ole
2004-01-01
This paper presents experimental results on MEMS metallic add-on post-fabrication effects on complementary metal oxide semiconductor (CMOS) transistors. Two versions of add-on processing, that use either e-beam evaporation or magnetron sputtering, are compared through investigation of the electri......This paper presents experimental results on MEMS metallic add-on post-fabrication effects on complementary metal oxide semiconductor (CMOS) transistors. Two versions of add-on processing, that use either e-beam evaporation or magnetron sputtering, are compared through investigation...... of the electrical parameters of n-channel and p-channel transistors. The magnetron sputtering technique is shown to be compatible with standard CMOS electronics without any restriction of the metal types and annealing requirements....
Jiang, Xiu-lan; Sun, Cheng-lin; Zhou, Mi; Li, Dong-fei; Men, Zhi-wei; Li, Zuo-wei; Gao, Shu-qin
2015-03-01
Fermi resonance is a phenomenon of molecular vibrational coupling and energy transfer occurred between different groups of a single molecule or neighboring molecules. Many properties of Fermi resonance under different external fields, the investigation method of Raman spectroscopy as well as the application of Fermi resonance, etc need to be developed and extended further. In this article the research results and development about Fermi resonance obtained by Raman spectral technique were introduced systematically according to our work and the results by other researchers. Especially, the results of the behaviors of intramolecular and intermolecular Fermi resonance of some molecules under some external fields such as molecular field, pressure field and temperature field, etc were investigated and demonstrated in detail according to the Raman spectra obtained by high pressure DAC technique, temperature variation technique as well as the methods we planed originally in our group such as solution concentration variation method and LCOF resonance Raman spectroscopic technique, and some novel properties of Fermi resonance were found firstly. Concretely, (1) Under molecular field. a. The Raman spectra of C5H5 N in CH3 OH and H2O indicates that solvent effect can influence Fermi resonance distinctly; b. The phenomena of the asymmetric movement of the Fermi resonance doublets as well as the fundamental involved is tuned by the Fermi resonance which had not been found by other methods were found firstly by our variation solution concentration method; c. The Fermi resonance properties can be influenced distinctly by the molecular group reorganization induced by the hydrogen bond and anti-hydrogen bond in solution; d. Fermi resonance can occurred between C7 H8 and m-C8H10, and the Fermi resonance properties behave quite differently with the solution concentration; (2) Under pressure field. a. The spectral lines shift towards high wavenumber with increasing pressure, and
Effect of metal coating and residual stress on the resonant frequency of MEMS resonators
Ashok Kumar Pandey; K P Venkatesh; Rudra Pratap
2009-08-01
MEMS resonators are designed for a ﬁxed resonant frequency. Therefore, any shift in the resonant frequency of the ﬁnal fabricated structure can be a denting factor for its suitability towards a desired application. There are numerous factors which alter the designed resonant frequency of the fabricated resonator such as the metal layer deposited on top of the beam and the residual stresses present in the fabricated structure. While the metal coating, which acts as electrode, increases the stiffness and the effective mass of the composite structure, the residual stress increases or decreases the net stiffness if it is a tensile or compressive type respectively. In this paper, we investigate both these cases by taking two different structures, namely, the micro cantilever beam with gold layer deposited on its top surface and the MEMS gyroscope with residual stresses. First, we carry out experiments to characterize both these structures to ﬁnd their resonant frequencies. Later, we analytically model those effects and compare them with the experimentally obtained values. Finally, it is found that the analytical models give an error of less than 10% with respect to the experimental results in both the cases.
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...
Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides
Razi Dehghannasiri
2016-12-01
Full Text Available In this letter, we demonstrate a new design for integrated phononic crystal (PnC resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap. The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.
Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides
Dehghannasiri, Razi; Pourabolghasem, Reza; Eftekhar, Ali Asghar; Adibi, Ali
2016-12-01
In this letter, we demonstrate a new design for integrated phononic crystal (PnC) resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap). The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain) analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.
An effective skin integrity program.
Banks, K; Jones, E S; Law, M S; MacAvoy, S
1993-01-01
Nursing staff development personnel are responsible for increasing the awareness of nursing staff of the problems caused by pressure ulcers and for supplying them with information needed for prevention and treatment. In answer to one hospital's needs, a hospital-wide, nurse-initiated, nurse-managed skin integrity program was developed and instituted. Protocols for treatment were standardized according to the latest concepts in wound healing. Basic components of the program were included in a comprehensive but succinct reference manual available on each nursing unit. Strategies for implementation were carefully planned to include feedback, approval, and support of selected physicians and nurses. Key for an effective, ongoing skin integrity program are the skin integrity clinicians and educated, confident, and enthusiastic staff nurses. Throughout the process of introducing this program, education of various groups of health-care professionals--physicians, staff nurses, skin integrity clinicians--by the Nursing Staff Development Department was pivotal in achieving a relatively smooth implementation of the program. Outcomes have demonstrated the success of this skin integrity program to both patients and staff. Creative planning, diligent research, skillful organization, and credibility of the specialists in the Nursing Staff Development Department were important elements in the development, implementation, and success of this skin integrity program.
Anharmonic effects and double giant dipole resonances
Voronov, V V
2001-01-01
A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence
The effect of integrated reporting on integrated thinking between risk ...
The effect of integrated reporting on integrated thinking between risk, opportunity and strategy and the disclosure of risks and ... Southern African Business Review ... For this purpose, a web-based research questionnaire was sent to high-level ...
ABC Effect in Basic Double-Pionic Fusion --- Observation of a new resonance?
Adlarson, P; Augustyniak, W; Baru, V; Bashkanov, M; Bergmann, F S; Berlowski, M; Bhatt, H; Brinkmann, K -T; Buescher, M; Calen, H; Clement, H; Coderre, D; Czerwinski, E; Doroshkevich, E; Ekstrom, C; Engels, R; Erven, W; Eyrich, W; Fedorets, P; Foehl, K; Fransson, K; Goldenbaum, F; Goslawski, P; Grigoryev, K; Grishina, V; Gullstrom, C -O; Hampe, J; Hanhart, C; Heijkenskj, L; Hejny, V; Hinterberger, F; Hodana, M; Hoistad, B; Jacewicz, M; Janusz, M; Jany, A; Jany, B R; Jarczyk, L; Jaus, J; Johansson, T; Kamys, B; Kemmerling, G; Khakimova, O; Khoukaz, A; Kistryn, S; Klaja, J; Kleines, H; Klos, B; Kren, F; Krzemien, W; Kulessa, P; Kullander, S; Kupsc, A; Lalwani, K; Lorentz, B; Magiera, A; Maier, R; Marciniewski, P; Marianski, B; Mikirtychiants, M; Moskal, P; Morsch, H -P; Nandi, B K; Ohm, H; Passfeld, A; Pauly, C; del Rio, E Perez; Petukhov, Y; Piskunov, N; Plucinski, P; Podkopal, P; Povtoreyko, A; Prasuhn, D; Pricking, A; Pysz, K; Rausmann, T; Redmer, C F; Ritman, J; Roy, A; Ruber, R J M Y; Rudy, Z; Schadmand, S; Schmidt, A; Schroeder, W; Sefzick, T; Serdyuk, V; Shah, N; Siemaszko, M; Siudak, R; Skorodko, T; Skurzok, M; Smyrski, J; Sopov, V; Stassen, R; Stepaniak, J; Sterzenbach, G; Stockhorst, H; Stroeher, H; Szczurek, A; Taeschner, A; Tolba, T; Trzcinski, A; Varma, R; Vlasov, P; Wagner, G J; Weglorz, W; Winnemoeller, A; Wirzba, A; Wolke, M; Wronska, A; Wuestner, P; Wurm, P; Yurev, L; Zabierowski, J; Zielinski, M J; Zipper, W; Zlomanczuk, J; Zupranski, P
2011-01-01
We report on a high-statistics measurement of the basic double pionic fusion reaction $pn \\to d\\pi^0\\pi^0$ over the energy region of the so-called ABC effect, a pronounced low-mass enhancement in the $\\pi\\pi$-invariant mass spectrum. The measurements were performed with the WASA detector setup at COSY. The data reveal the ABC effect to be associated with a Lorentzian shaped energy dependence in the integral cross section. The observables are consistent with a resonance with $I(J^P) =0(3^+)$ in both $pn$ and $\\Delta\\Delta$ systems. Necessary further tests of the resonance interpretation are discussed.
Biological effects of exposure to magnetic resonance imaging: an overview
Formica Domenico; Silvestri Sergio
2004-01-01
Abstract The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to a...
Resonance effects of excitons and electrons. Basics and applications
Geru, Ion [Moldovan Academy of Sciences, Chisinau (Moldova, Republic of). Inst. of Chemistry; Suter, Dieter [Technische Univ. Dortmund (Germany). Fakultaet Physik
2013-08-01
Represents the first book on non-traditional resonance effects of excitons in semiconductors. Explains resonance phenomena of excitons and electrons in solids. Presents the Knight shift at the Bose-Einstein condensation of excitons. This book presents the various types of resonance effects on excitons, biexcitons and the local electronic centers (LEC) in solids, such as paramagnetic and paraelectric resonances on excitons, exciton acoustic resonance at intra- and interband transitions, radio-optical double resonance on excitons, hole-nuclear double resonance on localized biexcitons, ENDOR and acoustic ENDOR on LEC. The criteria for the generation of coherent photons, phonons and magnons by excitons are explained. The interactions of excitons and biexcitons with paramagnetic centers and nuclear spins, the indirect interaction between the PC through a field of excitons as well as the quasienergy spectrum of excitons and spin systems are discussed. It is proved that the interaction of paramagnetic centers with excitons increases the spin relaxation rate of paramagnetic centers in comparison with the case of their interaction with free carriers. The giant magneto-optical effects in semi-magnetic semiconductors are theoretically interpreted. In recent years, a new perspective has been added to these systems and their interactions: they can be used for storing and processing information in the form of quantum bits (qubits), the building blocks of quantum computers. The basics of this emerging technology are explained and examples of demonstration-type quantum computers based on localized spins in solids are discussed.
Bettotti, P; Mancinelli, M; Guider, R; Masi, M; Vanacharla, M Rao; Pavesi, L
2011-04-15
A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency.
ISR effects for resonant Higgs production at future lepton colliders
Greco, Mario; Liu, Zhen
2016-01-01
We study the effects of the initial state radiation on the $s$-channel Higgs boson resonant production at $\\mu^+\\mu^-$ and $e^+e^-$ colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels $h\\rightarrow b\\bar b,\\ WW^*$. Our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.
ISR effects for resonant Higgs production at future lepton colliders
Greco, Mario; Han, Tao; Liu, Zhen
2016-12-01
We study the effects of the initial state radiation on the s-channel Higgs boson resonant production at μ+μ- and e+e- colliders by convoluting with the beam energy spread profile of the collider and the Breit-Wigner resonance profile of the signal. We assess their impact on both the Higgs signal and SM backgrounds for the leading decay channels h → b b bar , WW*. Our study improves the existing analyses of the proposed future resonant Higgs factories and provides further guidance for the accelerator designs with respect to the physical goals.
Resonant Effects in Nanoscale Bowtie Apertures
Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang
2016-01-01
Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing. PMID:27250995
Abanulo, J.C.; Harris, R.D.; Bartlett, P.N.; Wilkinson, J.S.
2000-01-01
An integrated optical surface plasmon resonance sensor combined with electrochemical control is used to monitor the underpotential deposition of a copper monolayer onto a gold film from 1 mM Cu2+ in 0.1 M perchloric acid.
Integration of Resonant Coil for Wireless Power Transfer and Implantable Antenna for Signal Transfer
Dong-Wook Seo
2016-01-01
Full Text Available We propose the integration of the resonant coil for wireless power transfer (WPT and the implantable antenna for physiological signal transfer. The integration allows for a compact biomedical implantable system such as electrocardiogram (ECG recorder and pacemaker. While the resonant coils resonate at the frequency of 13.56 MHz for the WPT, the implantable antenna works in the medical implant communications service (MICS band of 402–405 MHz for wireless communications. They share the narrow substrate area of a bar-type shape; the coil has the current path on the outer part of the substrate and the meandered planar inverted-F antenna (PIFA occupies the inside of the coil. To verify the potentials of the proposed structure, a prototype is fabricated and tested in vitro. The power transfer efficiency (PTE of about 20% is obtained at a distance of 15 mm and the antenna gain of roughly −40 dBi is achieved.
Nonlinear Resonance Islands and Modulational Effects in a Proton Synchrotron
Satogata, Todd Jeffrey [Northwestern Univ., Evanston, IL (United States)
1993-01-01
We examine both one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. We also examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, we examine the effects of two types of modulational perturbations on the stability of these resonance islands: tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three paramders: the strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. These. models are compared to particle tracking with excellent agreement. The tune modulation model is also successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are also examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. We present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking; therefore in this circumstance such a model is inadequate. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and we make suggestions on methods for observing such signals in future experiment.
Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.
Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang
2014-01-24
Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.
Tadesse, Semere Ayalew
2014-01-01
Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct...
Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang
2009-11-01
In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.
Simulation of the superconducting multiturn flux transformer integrated with a coplanar resonator
Yi, H. R.; Zhang, Y.; Klein, N.
2000-06-01
The analysis of the structure of a superconducting multiturn flux transformer integrated with a coplanar resonator for radio-frequency superconducting quantum interference devices is described. Electromagnetic simulations indicate that the loss is dominated by the high loss tangent of the dielectric film used for the separation of the upper and lower superconducting films. The simulated current distribution at its resonant frequency shows that the highest current density is distributed on the multiturn input coil. This current distribution leads to a very high loss when the loss tangent of the dielectric film is high. However, for the same loss tangent of the dielectric film, it is possible to get a reasonably high unloaded quality factor by providing a normal shunt for the multiturn input coil.
Spin Resonance Effect on Pair Production in Rotating Electric Fields
Kim, Chul Min
2016-01-01
We advance a new analytical method for the Dirac equation in two-dimensional, homogeneous, time-dependent electric fields, which expresses the Cauchy problem of the two-component spinor and its derivative as the time-ordered integral of the transition rate of the time-dependent eigenspinors and the time-dependent energy eigenvalues. The in-vacuum at later times evolves from that at the past infinity and continuously make transitions between eigenspinors and between positive and negative frequencies of the time-dependent energy eigenvalues. The production of electron and positron pairs is given by the coefficient of the negative frequency at the future infinity which evolves from the positive frequency at the past infinity. In the adiabatic case when the time scale for the rotation of eigenspinors and energy eigenvalues is much longer than the electron Compton time, we find the spin-resonance effect on the pair production, which is simply determined by the spin rotation, the pair production without the change ...
Multidimensional Purcell effect in an ytterbium-doped ring resonator
Ding, Dapeng; Pereira, Lino M. C.; Bauters, Jared F.; Heck, Martijn J. R.; Welker, Gesa; Vantomme, André; Bowers, John E.; de Dood, Michiel J. A.; Bouwmeester, Dirk
2016-06-01
Rare-earth ions in solids are of particular interest for quantum information storage and processing because of the long coherence times of the 4f states. In the past few years, substantial progress has been made by using ensembles of ions and single ions. However, the weak optical transitions within the 4f manifold pose a great challenge to the optical interaction with a single rare-earth ion on a single-photon level. Here, we demonstrate a ninefold enhanced ion-light interaction (Purcell effect) in an integrated-optics-based, fibre-coupled silicon nitride (Si3N4) ring resonator with implanted ytterbium ions (Yb3+). We unveil the one-, two- and three-dimensional contributions to the Purcell factor as well as the temperature-dependent decoherence and depolarization of the ions. The results indicate that this cavity quantum electrodynamics (QED) system has the potential of interfacing single rare-earth ions with single photons on a chip.
Effective Field Theory Description of Two-Body Resonance States
Balalhabashi, Jaber
2017-01-01
The quantum-mechanical scattering of two particles around a resonance state appears in many areas of physics, for example in cold atoms near narrow, low-lying Feshbach resonances. We construct) an EFT that describes such scattering with contact, derivative interactions. We demonstrate that a careful choice of leading- and next-to-leading-order terms in an effective Lagrangian gives rise to a systematic expansion of the T matrix around the resonance, with controlled error estimates. We compare phase shifts and pole positions with those of a toy model. We are extending our EFT to include Coulomb interactions with the goal of describing nuclear resonances, such as those appearing in the scattering of alpha particles. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-04ER41338.
Guclu, Caner; Boyraz, Ozdal; Capolino, Filippo
2013-01-01
We provide for the first time the detailed study of the radiation performance of an optical leaky wave antenna (OLWA) integrated into a Fabry-P\\'erot resonator. We show that the radiation pattern can be expressed as the one generated by the interference of two leaky waves counter-propagating in the resonator leading to a design procedure for achieving optimized broadside radiation, i.e., normal to the waveguide axis. We thus report a realizable implementation of the OLWA made of semiconductor and dielectric regions. The theoretical modeling is supported by full-wave simulation results, which are found to be in good agreement. We aim to control the radiation intensity in the broadside direction via excess carrier generation in the semiconductor regions. We show that the presence of the resonator can provide an effective way of enhancing the radiation level modulation, which reaches values as high as 13.5 dB, paving the way for novel promising control capabilities that might allow the generation of very fast op...
Fiber-optic integration and efficient detection schemes for optomechanical resonators
Cohen, Justin D.
With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion. Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling
Conformally integrated stent cell resonators for wireless monitoring of peripheral artery disease
Viswanath, Anupam
2013-01-01
This paper presents the design and in vitro evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors, shaped like stent cells, are fabricated from 28-μm thick foils of magnetoelastic Ni-Fe alloy and are conformally integrated with the stent. The typical sensitivity to viscosity is 427 ppm/cP over a 1.1-8.6 cP range. The sensitivity to mass loading is typically 63,000-65000 ppm/mg with resonant frequency showing an 8.1% reduction for an applied mass that is 15% of the unloaded mass of the sensor. © 2013 IEEE.
Parra, Ph.D., Jorge O.
2002-06-10
The objective of the project was to develop an advanced imaging method, including pore scale imaging, to integrate nuclear magnetic resonance (NMR) techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This will be accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging were linked with a balanced petrographical analysis of cores and theoretical modeling.
Parra, Ph.D., Jorge O.
2002-06-10
The objective of the project was to develop an advanced imaging method, including pore scale imaging, to integrate nuclear magnetic resonance (NMR) techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This will be accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging were linked with a balanced petrographical analysis of cores and theoretical modeling.
Weipeng Yang
2017-10-01
Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.
Resonant cancellation of off-resonant effects in a multilevel qubit
Tian, L; Tian, Lin; Lloyd, Seth
2000-01-01
Off-resonant effects are a significant source of error in quantumcomputation. This paper presents a group theoretic proof that off-resonanttransitions to the higher levels of a multilevel qubit can be completelyprevented in principle. This result can be generalized to prevent unwantedtransitions due to qubit-qubit interactions. A simple scheme exploiting dynamicpulse control techniques is presented that can cancel transitions to higherstates to arbitrary accuracy.
Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity
Jiayang Wu
2017-05-01
Full Text Available We propose and experimentally demonstrate the enhancement in the filtering quality (Q factor of an integrated micro-ring resonator (MRR by embedding it in an integrated Fabry-Perot (FP cavity formed by cascaded Sagnac loop reflectors. By utilizing coherent interference within the FP cavity to reshape the transmission spectrum of the MRR, both the Q factor and the extinction ratio (ER can be significantly improved. The device is theoretically analyzed and practically fabricated on a silicon-on-insulator wafer. Experimental results show that up to 11-times improvement in the Q factor, together with an 8-dB increase in the ER, can be achieved via our proposed method. The impact of varying structural parameters on the device performance is also investigated and verified by the measured spectra of the fabricated devices with different structural parameters.
Kampf, Karol; Trnka, Jaroslav
2009-01-01
We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1-- meson self-energy within the Resonance chiral theory in the chiral limit using different methods for the description of spin-one particles, namely the Proca field, antisymmetric tensor field and the first order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting non-renormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections...
Thermal effects on parallel resonance energy of whistler mode wave
Devendraa Siingh; Shubha Singh; R P Singh
2006-02-01
In this short communication, we have evaluated the effect of thermal velocity of the plasma particles on the energy of resonantly interacting energetic electrons with the propagating whistler mode waves as a function of wave frequency and -value for the normal and disturbed magnetospheric conditions. During the disturbed conditions when the magnetosphere is depleted in electron density, the resonance energy of the electron enhances by an order of magnitude at higher latitudes, whereas the effect is small at low latitudes. An attempt is made to explain the enhanced wave activity observed during magnetic storm periods.
Chaos-induced resonant effects and its control
Zambrano, Samuel [Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Casado, Jose M. [Area de Fisica Teorica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla (Spain); Sanjuan, Miguel A.F. [Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)]. E-mail: miguel.sanjuan@urjc.es
2007-07-02
This Letter shows that a suitable chaotic signal can induce resonant effects analogous to those observed in presence of noise in a bistable system under periodic forcing. By constructing groups of chaotic and random perturbations with similar one-time statistics we show that in some cases chaos and noise induce indistinguishable resonant effects. This reinforces the conjecture by which in some situations where noise is supposed to play a key role maybe chaos is the key ingredient. Here we also show that the presence of a chaotic signal as the perturbation leading to a resonance opens new control perspectives based on our ability to stabilize chaos in different periodic orbits. A discussion of the possible implications of these facts is also presented at the end of the Letter.
Yuan Bo; Wen Ji-Hong; Wen Xi-Sen
2013-01-01
A locally resonant sonic material (LRSM) is an elastic matrix containing a periodic arrangement of identical local resonators (LRs),which can reflect strongly near their natural frequencies,where the wavelength in the matrix is still much larger than the structural periodicity.Due to the periodic arrangement,an LRSM can also display a Bragg scattering effect,which is a characteristic of phononic crystals.A specific LRSM which possesses both local resonance and Bragg scattering effects is presented.Via the layered-multiple-scattering theory,the complex band structure and the transmittance of such LRSM are discussed in detail.Through the analysis of the refraction behavior at the boundary of the composite,we find that the transmittance performance of an LRSM for oblique incidence depends on the refraction of its boundary and the transmission behaviors of different wave modes inside the composite.As a result,it is better to use some low-speed materials (compared with the speed of waves in surrounding medium) as the LRSM matrix for designing sound blocking materials in underwater applications,since their acoustic properties are more robust to the incident angle.Finally,a gapcoupled LRSM with a broad sub-wavelength transmission gap is studied,whose acoustic performance is insensitive to the angle of incidence.
Monolithic Integration of GaAs-Based Resonant Tunneling Diode and High Electron Mobility Transistor
无
2007-01-01
The resonant tunneling diode (RTD) is a kind of novel ultra-high speed and ultra-high frequency negative differential resistance nanoelectronic device. Integration of RTD and other three-terminal compound semiconductor devices is one important direction of high speed integrated circuit development. In this paper, monolithic integration technology of RTD and high electron mobility transistor (HEMT) based on GaAs substrate was discussed. A top-RTD and bottom-HEMT material structure was proposed and epitaxyed. Based on wet chemical etching, electron beam lithography,metal lift-off and air bridge technology, RTD and HEMT were fabricated on the same wafer. The peak-to-valley current ratio of RTD is 4 and the peak voltage is 0.5 V. The maximal transconductance is 120 mS/mm for a 0.25 μm gate length depletion mode HEMT. Current levels of two devices are basically suited. The results validate the feasibility of the designed integration process.
Effect of metal coating and residual stress on the resonant frequency of MEMS resonators
Pandey, Ashok Kumar; Venkatesh, KP; Pratap, Rudra
2009-01-01
MEMS resonators are designed for a fixed resonant frequency. Therefore, any shift in the resonant frequency of the final fabricated structure can be a denting factor for its suitability towards a desired application. There are numerous factors which alter the designed resonant frequency of the fabricated resonator such as the metal layer deposited on top of the beam and the residual stresses present in the fabricated structure. While the metal coating, which acts as electrode, increases t...
Shi, Yifei
2013-08-01
Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although \\'relaxed initial conditions,\\' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made \\'invisible\\' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.
Bloemen, Oswald J N; Deeley, Quinton; Sundram, Fred; Daly, Eileen M; Barker, Gareth J; Jones, Derek K; van Amelsvoort, Therese A M J; Schmitz, Nicole; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M
2010-10-01
Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) allows measurement of the microstructural integrity of white matter (a proxy measure of "connectivity"). However, nobody has investigated the microstructural integrity of whole brain white matter in people with Asperger syndrome. We measured the fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) of white matter, using DT-MRI, in 13 adults with Asperger syndrome and 13 controls. The groups did not differ significantly in overall intelligence and age. FA, MD and RD were assessed using whole brain voxel-based techniques. Adults with Asperger syndrome had a significantly lower FA than controls in 13 clusters. These were largely bilateral and included white matter in the internal capsule, frontal, temporal, parietal and occipital lobes, cingulum and corpus callosum. Adults with Asperger syndrome have widespread significant differences from controls in white matter microstructural integrity.
Zordan, Michael D.; Grafton, Meggie M. G.; Leary, James F.
2011-03-01
The rapid detection of foodborne pathogens is of vital importance to keep the food supply rid of contamination. Previously we have demonstrated the design of a hybrid optical device that performs real-time surface plasmon resonance (SPR) and epi-fluorescence imaging. Additionally we have developed a biosensor array chip that is able to specifically detect the presence of two known pathogens. This biosensor detects the presence of the pathogen strains by the selective capture of whole pathogens by peptide ligands functionalized to the spots of the array. We have incorporated this biosensor array into a self contained PDMS microfluidic chip. The enclosure of the biosensor array by a PDMS microfluidic chip allows for a sample to be screened for many strains of pathogens simultaneously in a safe one time use biochip. This disposable optical biochip is inserted into with the hybrid SPR/epi-fluorescence imaging device to form an integrated system for the detection of foodborne pathogens. Using this integrated system, we can selectively detect the presence of E. coli 0157:H7 or S. enterica in a simultaneously in real-time. Additionally, we have modeled the mechanical properties of the microfluidic biochip in order to manipulate the flow conditions to achieve optimal pathogen capture by the biosensor array. We have developed an integrated system that is able to screen a sample for multiple foodborne pathogens simultaneously in a safe, rapid and label-free manner.
Nonlinear resonance in Dufﬁng oscillator with ﬁxed and integrative time-delayed feedbacks
V Ravichandran; V Chinnathambi; S Rajasekar
2012-03-01
We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Dufﬁng oscillator with two types of time-delayed feedbacks, namely, ﬁxed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the time-delayed feedback. Applying the perturbation theory we obtain a nonlinear equation for the amplitude of the periodic response of the system. For a range of values of and , the response amplitude is found to be higher than that of the system in the absence of delayed feedback. The response amplitude is periodic on the parameter with period 2 / where is the angular frequency of the external periodic force. We show the occurrence of multiple branches of the response amplitude curve with and without hysteresis.
Renaudin, Alan; Chabot, Vincent; Grondin, Etienne; Aimez, Vincent; Charette, Paul G
2010-01-07
This article presents a device incorporating surface plasmon resonance (SPR) sensing and surface acoustic wave (SAW) actuation integrated onto a common LiNbO(3) piezoelectric substrate. The device uses Rayleigh-type SAW to provide active microfluidic mixing in the fluid above the SPR sensor. Validation experiments show that SAW-induced microfluidic mixing results in accelerated binding kinetics of an avidin-biotin assay. Results also show that, though SAW action causes a parasitic SPR response due to heat injection into the fluid, a relatively brief relaxation time following the SAW pulses allows the effect to dissipate, without affecting the overall assay response. Since both SPR sensors and SAW transducers can be fabricated simultaneously using low-cost microfabrication methods on a single substrate, the proposed design is well-suited to lab-on-chip applications.
Mode splitting effect in FEMs with oversized Bragg resonators
Peskov, N. Yu.; Sergeev, A. S. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Kaminsky, A. K.; Perelstein, E. A.; Sedykh, S. N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kuzikov, S. V. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Nizhegorodsky State University, Nizhny Novgorod (Russian Federation)
2016-07-15
Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.
Electric field effects on resonance structures in negative ion photodetachment
Slonim, V. Z.; Greene, C. H.
1991-12-01
The photodetachment of negative ions in a static electric field exhibits some new characteristic features and has beer considered in various theortical approaches.1 Most of them, however, neglect the short-range interaction between the escaping electron and the atomic core, and must be modified to describe various resonant effects. Experiments2 have shown very rich resonant structure in a dc-field, which can be attributed to the mixing of different excited states in the negative ion, to competition between elastic and inelastic decay channels, and to tunneling effects induced by the field. It is known that various resonant structures in Photoprocesses can be successfully described within standard multichannel quantum defect theory (MQDT). We present a modified MQDT frame transformation approach to extend the standard method to long-range potentials with nonspherical symmetry. In our treatment both the electron-field and electron-atom interactions are treated nonperturbatively and on an equal footing. The resulting theoretical calculations are compared with experimental data on field-modified H? photodetachment in the vicinity of the n = 2 resonances.
A few words about resonances in the electroweak effective Lagrangian
Rosell, Ignasi [Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, 46115 Alfara del Patriarca, València (Spain); Pich, Antonio; Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Apt. Correus 22085, 46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica and Instituto Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2016-01-22
Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.
GENETIC BASED PLUS INTEGRAL CONTROLLER FOR PMBLDC MOTOR CONTROL USING RESONANT POLE INVERTER
Muruganantham
2012-01-01
Full Text Available Permanent Magnet Brushless DC (PMBLDC motor drives are increasingly popular in industrial applications due to rapid progress of technologies in power electronics and the growing demand for energy saving. The increasing demand of energy saving from society is the external force for the development of PMBLDC motor drives. It is however driven by a hard-switching Pulse Width Modulation (PWM inverter, which has low switching frequency, high switching loss, high Electro-Magnetic Interference (EMI, high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the soft-switching inverters. This study introduces a novel genetic-proportional Plus Integral (PI controller based resonant pole inverter using transformer, which can generate dc link voltage notches during chopping which minimize the drawbacks of soft-switching. Hence all switches work in zero-voltage switching condition. The performance of the genetic-based PI controller is compared with conventional PI controller. The experimental results show that the genetic-based PI controller renders a better transient response than the conventional PI controller resulting in negligible overshoot, smaller settling time and rise time. Moreover the proposed controller provides low torque ripples and high starting torque. Both simulation and experimental results are presented to show the superiority of the proposed GA-PI controller based resonant pole inverter.
Bonizzoni, C; Ghirri, A; Bader, K; van Slageren, J; Perfetti, M; Sorace, L; Lan, Y; Fuhr, O; Ruben, M; Affronte, M
2016-11-14
We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt(2-) = maleonitriledithiolate), [ErPc2](-)TBA(+) (where pc(2-) is the phtalocyaninato and TBA(+) is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.
Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind
2014-07-28
We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.
Breakdown of Effective Field Theory for a Gluon Initiated Resonance
de la Puente, Alejandro
2016-01-01
Gauge invariance dictates that a resonance produced from initial state gluons must be produced through a non-renormalizable operator or a loop process. Should such a resonance be discovered, uncovering the dynamics that give rise to its couplings to gluons will be crucial to understanding the nature of the new state. Here we study how the production of this resonance at high transverse momentum in association with one (or more) jets can be used to directly measure the scale of the operator or the mass of the particles in the loop. We use a 750 GeV diphoton resonance as an example application, and we study how the non-renormalizable operator case can be described by a slowly converging effective field theory (EFT) expansion with operators of dimension five and seven. We show that with O(100) events, one can put strong constraints on the scale of the EFT, particularly in theories with strong coupling. We also compare the EFT analysis to that of a UV completion with vector-like quarks, and outline how the mass o...
Abashian-Booth-Crowe effect in basic double-pionic fusion: a new resonance?
Adlarson, P; Adolph, C; Augustyniak, W; Baru, V; Bashkanov, M; Bednarski, T; Bergmann, F S; Berłowski, M; Bhatt, H; Brinkmann, K-T; Büscher, M; Calén, H; Clement, H; Coderre, D; Czerwiński, E; Doroshkevich, E; Ekström, C; Engels, R; Erven, W; Eyrich, W; Fedorets, P; Föhl, K; Fransson, K; Goldenbaum, F; Goslawski, P; Grigoryev, K; Grishina, V; Gullström, C-O; Hampe, J; Hanhart, C; Heijkenskjöld, L; Hejny, V; Hinterberger, F; Hodana, M; Höistad, B; Jacewicz, M; Janusz, M; Jany, A; Jany, B R; Jarczyk, L; Johansson, T; Kamys, B; Kemmerling, G; Khakimova, O; Khoukaz, A; Kistryn, S; Klaja, J; Kleines, H; Kłos, B; Kren, F; Krzemień, W; Kulessa, P; Kullander, S; Kupść, A; Lalwani, K; Lorentz, B; Magiera, A; Maier, R; Marciniewski, P; Mariański, B; Mikirtychiants, M; Moskal, P; Morsch, H-P; Nandi, B K; Niedźwiecki, S; Ohm, H; Passfeld, A; Pauly, C; del Rio, E Perez; Petukhov, Y; Piskunov, N; Pluciński, P; Podkopał, P; Povtoreyko, A; Prasuhn, D; Pricking, A; Pysz, K; Rausmann, T; Redmer, C F; Ritman, J; Roy, A; Ruber, R J M Y; Rudy, Z; Sawant, S; Schadmand, S; Schmidt, A; Schroeder, W; Sefzick, T; Serdyuk, V; Shah, N; Siemaszko, M; Siudak, R; Skorodko, T; Skurzok, M; Smyrski, J; Sopov, V; Stassen, R; Stepaniak, J; Sterzenbach, G; Stockhorst, H; Ströher, H; Szczurek, A; Täschner, A; Tolba, T; Trzciński, A; Varma, R; Vlasov, P; Wagner, G J; Węglorz, W; Winnemöller, A; Wirzba, A; Wolke, M; Wrońska, A; Wüstner, P; Wurm, P; Yuan, X; Yurev, L; Zabierowski, J; Zheng, C; Zieliński, M J; Zipper, W; Złomańczuk, J; Zuprański, P
2011-06-17
We report on an exclusive and kinematically complete high-statistics measurement of the basic double-pionic fusion reaction pn→dπ(0)π(0) over the full energy region of the ABC effect, a pronounced low-mass enhancement in the ππ-invariant mass spectrum. The measurements, which cover also the transition region to the conventional t-channel ΔΔ process, were performed with the upgraded WASA detector setup at COSY. The data reveal the Abashian-Booth-Crowe effect to be uniquely correlated with a Lorentzian energy dependence in the integral cross section. The observables are consistent with a narrow resonance with m=2.37 GeV, Γ≈70 MeV and I(J(P))=0(3(+)) in both pn and ΔΔ systems. Necessary further tests of the resonance interpretation are discussed.
Abashian-Booth-Crowe Effect in Basic Double-Pionic Fusion: A New Resonance?
Adlarson, P.; Adolph, C.; Augustyniak, W.; Baru, V.; Bashkanov, M.; Bednarski, T.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Brinkmann, K.-T.; Büscher, M.; Calén, H.; Clement, H.; Coderre, D.; Czerwiński, E.; Doroshkevich, E.; Ekström, C.; Engels, R.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goslawski, P.; Grigoryev, K.; Grishina, V.; Gullström, C.-O.; Hampe, J.; Hanhart, C.; Heijkenskjöld, L.; Hejny, V.; Hinterberger, F.; Hodana, M.; Höistad, B.; Jacewicz, M.; Janusz, M.; Jany, A.; Jany, B. R.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khakimova, O.; Khoukaz, A.; Kistryn, S.; Klaja, J.; Kleines, H.; Kłos, B.; Kren, F.; Krzemień, W.; Kulessa, P.; Kullander, S.; Kupść, A.; Lalwani, K.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Mikirtychiants, M.; Moskal, P.; Morsch, H.-P.; Nandi, B. K.; Niedźwiecki, S.; Ohm, H.; Passfeld, A.; Pauly, C.; Perez Del Rio, E.; Petukhov, Y.; Piskunov, N.; Pluciński, P.; Podkopał, P.; Povtoreyko, A.; Prasuhn, D.; Pricking, A.; Pysz, K.; Rausmann, T.; Redmer, C. F.; Ritman, J.; Roy, A.; Ruber, R. J. M. Y.; Rudy, Z.; Sawant, S.; Schadmand, S.; Schmidt, A.; Schroeder, W.; Sefzick, T.; Serdyuk, V.; Shah, N.; Siemaszko, M.; Siudak, R.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Täschner, A.; Tolba, T.; Trzciński, A.; Varma, R.; Vlasov, P.; Wagner, G. J.; Węglorz, W.; Winnemöller, A.; Wirzba, A.; Wolke, M.; Wrońska, A.; Wüstner, P.; Wurm, P.; Yuan, X.; Yurev, L.; Zabierowski, J.; Zheng, C.; Zieliński, M. J.; Zipper, W.; Złomańczuk, J.; Żuprański, P.
2011-06-01
We report on an exclusive and kinematically complete high-statistics measurement of the basic double-pionic fusion reaction pn→dπ0π0 over the full energy region of the ABC effect, a pronounced low-mass enhancement in the ππ-invariant mass spectrum. The measurements, which cover also the transition region to the conventional t-channel ΔΔ process, were performed with the upgraded WASA detector setup at COSY. The data reveal the Abashian-Booth-Crowe effect to be uniquely correlated with a Lorentzian energy dependence in the integral cross section. The observables are consistent with a narrow resonance with m=2.37GeV, Γ≈70MeV and I(JP)=0(3+) in both pn and ΔΔ systems. Necessary further tests of the resonance interpretation are discussed.
Mehdizadeh, Emad
Today micro- and nano-electromechanical (MEMS and NEMS) resonant sensors are integral to numerous industrial, environmental, and biomedical applications. Traditionally capacitive and piezoelectric have been the primary options for transduction of high frequency resonant structures. When direct contact with the surrounding environment is needed, however, capacitive resonators are not suitable candidates due to their low Qs and vulnerability to contaminants. Recent developments in the field of high frequency thermally actuated MEMS resonators with piezoresistive detection have enabled a great deal of opportunities for realization of more robust, reliable and sensitive sensing platforms. Such monolithic structures can be conveniently implemented at micro and nanoscale without any fabrication challenges or the need for material integration. Self-sustained oscillation capability and design flexibility for sensory applications are among other unique properties that thermal-piezoresistive transduction offers. The objective of the present research is to explore the untapped potentials of thermal-piezoresistive transduction for expanding the horizons of the field of N/MEMS resonant sensors. Moreover, a new class of piezoelectric MEMS resonant structures capable of operating in liquid media is developed and its potential as a direct real-time chemical and biological sensor is investigated. Low-cost batch fabrication of nanoelectromechanical devices and controllable feature size reduction of such will be among other topics being addressed in the current study. In particular, the crystalline structure of silicon will be exploited to realize nanowires with smooth surface and any length and cross-sectional dimensions using only conventional microfabrication processes.
Effect of resonant-frequency mismatch on attractors.
Wang, Xingang; Lai, Ying-Cheng; Lai, Choy Heng
2006-06-01
Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as controlling chaos and inducing chaos. Of physical interest is the effect of small frequency mismatch on the attractors of the underlying dynamical systems. By utilizing a prototype of nonlinear oscillators, the periodically forced Duffing oscillator and its variant, we find a phenomenon: resonant-frequency mismatch can result in attractors that are nonchaotic but are apparently strange in the sense that they possess a negative Lyapunov exponent but its information dimension measured using finite numerics assumes a fractional value. We call such attractors pseudo-strange. The transition to pesudo-strange attractors as a system parameter changes can be understood analytically by regarding the system as nonstationary and using the Melnikov function. Our results imply that pseudo-strange attractors are common in nonstationary dynamical systems.
Purcell effect of asymmetric dipole source distributions in nanowire resonators
Filonenko, Konstantin; Duggen, Lars; Adam, Jost;
Metal nanowire resonators allow subwavelength mode confinement and thereby the strong Purcell effect. Recent progress in fabrication of plasmonic nanowire lasers requires reliable approaches in studying resonators, where metal nanowire is an essential constitutive element. A semi-analytic study......, capable of treating finite-length axially-symmetric nanowire configurations, was reported in. In some nanolaser configurations, however, one needs to treat asymmetric source distributions, e.g. the single quantum dot placed at some distance from the nanowire axis. We investigate the Purcell effect...... of the asymmetric source distributions in proximity to the metal nanowire in two configurations: a metal cylinder truncated by the PEC plates and finite metal cylinder in free-space. In order to evaluate Purcell factor the mode eigenvalues are precalculated using Comsol Multiphysics radio frequency module. We...
Purcell effect of asymmetric dipole source distributions in nanowire resonators
Filonenko, Konstantin; Duggen, Lars; Adam, Jost;
2015-01-01
Metal nanowire resonators allow subwavelength mode confinement and thereby the strong Purcell effect. Recent progress in fabrication of plasmonic nanowire lasers requires reliable approaches in studying resonators, where metal nanowire is an essential constitutive element. A semi-analytic study......, capable of treating finite-length axially-symmetric nanowire configurations, was reported in. In some nanolaser configurations, however, one needs to treat asymmetric source distributions, e.g. the single quantum dot placed at some distance from the nanowire axis. We investigate the Purcell effect...... of the asymmetric source distributions in proximity to the metal nanowire in two configurations: a metal cylinder truncated by the PEC plates and finite metal cylinder in free-space. In order to evaluate Purcell factor the mode eigenvalues are precalculated using Comsol Multiphysics radio frequency module. We...
A Faraday effect position sensor for interventional magnetic resonance imaging.
Bock, M; Umathum, R; Sikora, J; Brenner, S; Aguor, E N; Semmler, W
2006-02-21
An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m(-1) gradient field, a localization uncertainty of 1.5 cm could be achieved.
Integrated Lymphography using Fluorescence Imaging and Magnetic Resonance Imaging in Intact Mice
Yusuke Inoue
2011-09-01
Full Text Available We assessed lymph drainage in living mice by an integrated imaging method using fluorescence imaging (FLI and magnetic resonance imaging (MRI. Mice were subcutaneously injected with quantum dots and gadofluorine 8 into the right rear footpad. They were fixed on a transparent flat plate and underwent FLI and MRI successively. Small markers were attached to the mouse surface for spatial coregistration, and image fusion of FLIs and MRIs was performed. Two-dimensional fluorescence reflectance imaging was used for FLI. FLI and MRI provided generally consistent results and demonstrated lymphatic flow to the popliteal, sacral, and iliac lymph nodes in most mice and to the renal, inguinal, and lumbar-aortic lymph nodes in some mice. On the fusion images, the locations of the lymph nodes in the mouse trunk were in good agreement between FLI and MRI, indicating successful spatial registration even for the deep structures. The popliteal node tended to be visualized a little farther caudally in FLI than in MRI, presumably because the overlying tissues were thicker in the cranial portion. Integrated FLI/MRI lymphography with image fusion appears to be a useful tool for analysis of the murine lymphatic system.
Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division
2015-02-24
This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements
ABC Effect in Double-Pionic Fusion - a New Resonance?
Pricking, A.; Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Skorodko, T.; Wagner, G. J.
2012-12-01
ABC effect, an intriguing low-mass enhancement in the ππ invariant mass spectrum — known since more than 50 years from inclusive measurements of double-pionic fusion reactions — is reexamined. To this end exclusive and kinematically complete high-statistics experiments of the fusion reactions to d, 3He and 4He have been carried out with WASA at COSY. These measurements cover the full energy region, where the ABC effect has been observed previously. They also complement the systematic measurements of nucleon-nucleon induced two-pion production. An isospin decomposition of all three basic double-pionic fusion reactions leading to the deuteron uniquely shows that solely the isoscalar reaction part exhibits the ABC effect tightly correlated with a narrow resonance structure in the total cross section. The peak energy of the resonance structure is about 90 MeV below the nominal ΔΔ threshold of 2 mΔ and its width of only 70 MeV is much less than the 2 ГΔ expected from the conventional t-channel ΔΔ process. Based on angular distributions the quantum numbers I(JP) = 0(3+) have been assigned. In the double-pionic fusion reaction dd→4Heπ0π0 again the ABC effect is observed to be correlated with the appearance of a resonance-like structure in the total cross section at the same excess energy. From this we conclude that this resonance structure obviously is strong enough to survive even in nuclei.
Electrically integrated SU-8 clamped graphene drum resonators for strain engineering
Lee, Sunwoo; Chen, Changyao; Deshpande, Vikram V.; Lee, Gwan-Hyoung; Lee, Ilkyu; Lekas, Michael; Gondarenko, Alexander; Yu, Young-Jun; Shepard, Kenneth; Kim, Philip; Hone, James
2013-04-01
Graphene mechanical resonators are the ultimate two-dimensional nanoelectromechanical systems (NEMS) with applications in sensing and signal processing. While initial devices have shown promising results, an ideal graphene NEMS resonator should be strain engineered, clamped at the edge without trapping gas underneath, and electrically integratable. In this Letter, we demonstrate fabrication and direct electrical measurement of circular SU-8 polymer-clamped chemical vapor deposition graphene drum resonators. The clamping increases device yield and responsivity, while providing a cleaner resonance spectrum from eliminated edge modes. Furthermore, the clamping induces a large strain in the resonator, increasing its resonant frequency.
Endo, A.; Van der Werf, P.; Janssen, R.M.J.; De Visser, P.J.; Klapwijk, T.M.; Baselmans, J.J.A.; Ferrari, L.; Baryshev, A.M.; Yates, S.J.C.
2012-01-01
An integrated filterbank (IFB) in combination with microwave kinetic inductance detectors (MKIDs), both based on superconducting resonators, could be used to make broadband submillimeter imaging spectrographs that are compact and flexible. In order to investigate the possibility of adopting an IFB
Detection of Moving Targets Using Soliton Resonance Effect
Kulikov, Igor K.; Zak, Michail
2013-01-01
The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.
Super Efimov effect of resonantly interacting fermions in two dimensions.
Nishida, Yusuke; Moroz, Sergej; Son, Dam Thanh
2013-06-07
We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a p-wave resonance. We show that three such fermions form an infinite tower of bound states of orbital angular momentum ℓ=±1 and their binding energies obey a universal doubly exponential scaling E(3)((n))∝exp(-2e(3πn/4+θ)) at large n. This "super Efimov effect" is found by a renormalization group analysis and confirmed by solving the bound state problem. We also provide an indication that there are ℓ=±2 four-body resonances associated with every three-body bound state at E(4)((n))∝exp(-2e(3πn/4+θ-0.188)). These universal few-body states may be observed in ultracold atom experiments and should be taken into account in future many-body studies of the system.
Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson
2002-09-20
The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the
Gómez Camacho, A.
2016-07-01
CDCC calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 28Si and 58Ni at energies around the Coulomb barrier are presented. Special emphasis is given to account for the effect of couplings from 6Li resonance states l = 2, J π = 3+, 2+, 1+. Similarly, the effect produced by non-resonant state couplings is studied. The convergent calculations are carried out with global α-target and d-target interactions. The calculated elastic scattering angular distributions are in general in good agreement with the measurements for the systems considered in this work. It is found that the calculations with only resonance states are very similar to that with all couplings (resonance+non-resonance). So, the absence of these states have a strong effect on elastic scattering (non-resonance states calculation). It is shown that the effects increase as the collision energy increases. An interpretation of the strength of the different effects is given in terms of the polarization potentials that emerge from the different couplings.
Jiawei eWANG
2015-04-01
Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.
Effect of multiple time-delay on vibrational resonance.
Jeevarathinam, C; Rajasekar, S; Sanjuán, M A F
2013-03-01
We report our investigation on the effect of multiple time-delay on vibrational resonance in a single Duffing oscillator and in a system of n Duffing oscillators coupled unidirectionally and driven by both a low- and a high-frequency periodic force. For the single oscillator, we obtain analytical expressions for the response amplitude Q and the amplitude g of the high-frequency force at which resonance occurs. The regions in parameter space of enhanced Q at resonance, as compared to the case in absence of time-delay, show a bands-like structure. For the two-coupled oscillators, we explain all the features of variation of Q with the control parameter g. For the system of n-coupled oscillators with a single time-delay coupling, the response amplitudes of the oscillators are shown to be independent of the time-delay. In the case of a multi time-delayed coupling, undamped signal propagation takes place for coupling strength (δ) above a certain critical value (denoted as δu). Moreover, the response amplitude approaches a limiting value QL with the oscillator number i. We obtain analytical expressions for both δu and QL.
Double resonant wideband Purcell effect in wire metamaterials
Mirmoosa, M. S.; Kosulnikov, S. Yu; Simovski, C. R.
2016-09-01
In this paper, we theoretically show that a broadband resonant enhancement of emission may occur for infrared sources located in a polaritonic wire medium. The reason for this enhancement is the overlapping of two topological transitions of the wave dispersion in the medium. The first topological transition has been revealed as an effect inherent to polaritonic wire media at a certain frequency in the mid-infrared range. This work uncovers another topological transition for such wire media which holds at a higher frequency but still in the mid infrared. We show that the first transition frequency can be shifted towards the second one by variation of the design parameters. This shift enables a broadband resonant Purcell factor. We compare the results obtained for two orientations of a subwavelength electric dipole embedded into the wire medium—that along the optical axis and that perpendicular to it—and report on the resonant isotropic radiation enhancement. Also, we reveal the enhancement of radiation to the free space from a finite sample of the wire medium.
Partial volume effects in dynamic contrast magnetic resonance renal studies
Gutierrez, D. Rodriguez, E-mail: drodriguez@biotronics3d.co [CVSSP, Faculty of Engineering and Physical Sciences, University of Surrey (United Kingdom); Wells, K., E-mail: k.wells@surrey.ac.u [CVSSP, Faculty of Engineering and Physical Sciences, University of Surrey (United Kingdom); Diaz Montesdeoca, O., E-mail: o.diaz.montesdeoca@gmail.co [EUITT, Universidad de Las Palmas de Gran Canaria (Spain); Moran Santana, A. [EUITT, Universidad de Las Palmas de Gran Canaria (Spain); Mendichovszky, I.A., E-mail: iosifm@hotmail.co [Radiology and Physics Unit, UCL Institute of Child Health, London WC1N 1EH (United Kingdom); Gordon, I., E-mail: i.gordon@ich.ucl.ac.u [Radiology and Physics Unit, UCL Institute of Child Health, London WC1N 1EH (United Kingdom)
2010-08-15
This is the first study of partial volume effect in quantifying renal function on dynamic contrast enhanced magnetic resonance imaging. Dynamic image data were acquired for a cohort of 10 healthy volunteers. Following respiratory motion correction, each voxel location was assigned a mixing vector representing the 'overspilling' contributions of each tissue due to the convolution action of the imaging system's point spread function. This was used to recover the true intensities associated with each constituent tissue. Thus, non-renal contributions from liver, spleen and other surrounding tissues could be eliminated from the observed time-intensity curves derived from a typical renal cortical region of interest. This analysis produced a change in the early slope of the renal curve, which subsequently resulted in an enhanced glomerular filtration rate estimate. This effect was consistently observed in a Rutland-Patlak analysis of the time-intensity data: the volunteer cohort produced a partial volume effect corrected mean enhancement of 36% in relative glomerular filtration rate with a mean improvement of 7% in r{sup 2} fitting of the Rutland-Patlak model compared to the same analysis undertaken without partial volume effect correction. This analysis strongly supports the notion that dynamic contrast enhanced magnetic resonance imaging of kidneys is substantially affected by the partial volume effect, and that this is a significant obfuscating factor in subsequent glomerular filtration rate estimation.
Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate
Antonino Parisi
2008-11-01
Full Text Available The surface plasmon resonance (SPR technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window of different solutions with refractive indexes in the range of interest (1.3ÃƒÂ·1.5 for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.
Meier, Robert Ch; Höfflin, Jens; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G.
2014-04-01
We present an integrated microfluidic device for on-chip nuclear magnetic resonance (NMR) studies of microscopic samples. The devices are fabricated by means of a MEMS compatible process, which joins the automatic wirebond winding of solenoidal microcoils and the manufacturing of a complex microfluidic network using dry-photoresist lamination. The wafer-scale cleanroom process is potentially capable of mass fabrication. Since the non-invasive NMR analysis technique is rather insensitive, particularly when microscopic sample volumes are to be investigated, we also focus on the optimization of the wirebonded microcoil for this purpose. The on-chip measurement of NMR signals from a 20 nl sample are evaluated for imaging analysis of microparticles, as well as for spectroscopy. Whereas the latter revealed that the sensitivity of the MEMS microcoil is comparable with hand-wound devices and achieves a full-width-half-maximum linewidth of 8 Hz, the imaging experiment demonstrated 10 μm isotropic spatial resolution within an experiment time of 38 min for a 3D image with a field of view of 1 mm × 1 mm × 0.5 mm (500 000 voxels).
Multimode Analysis of the Dynamics and Integrity of Electrically Actuated MEMS Resonators
Serge Bruno Yamgoué
2014-01-01
technique to reduce the partial integro-differential equation governing the dynamics of the microbeam to a system of coupled ordinary differential equations which describe the interactions of the linear mode shapes of the microbeam. Analytical solutions are derived and their stability is studied for the simplest reduced-order model which takes into account only the first linear mode in the Galerkin procedure. We further investigate the influence of the first few higher modes on the Galerkin procedure, and hence its convergence, by analysing the boundaries between pull-in and pull-in-free vibrations domains in the space of actuation parameters. These are determined for the various multimode combinations using direct numerical time integration. Our results show that unsafe domains form V-like shapes for actuation frequencies close to the superharmonic, fundamental, and subharmonic resonances. They also reveal that the single first-mode reduced model usually considered underestimates the left branches and overestimates the right branches of these boundaries.
Thermal neutron capture cross sections resonance integrals and g-factors
Mughabghab, S F
2003-01-01
The thermal radiative capture cross sections and resonance integrals of elements and isotopes with atomic numbers from 1 to 83 (as well as sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U) have been re-evaluated by taking into consideration all known pertinent data published since 1979. This work has been undertaken as part of an IAEA co-ordinated research project on 'Prompt capture gamma-ray activation analysis'. Westcott g-factors for radiative capture cross sections at a temperature of 300K were computed by utilizing the INTER code and ENDF-B/VI (Release 8) library files. The temperature dependence of the Westcott g-factor is illustrated for sup 1 sup 1 sup 3 Cd, sup 1 sup 2 sup 4 Xe and sup 1 sup 5 sup 7 Gd at temperatures of 150, 294 and 400K. Comparisons have also been made of the newly evaluated capture cross sections of sup 6 Li, sup 7 Li, sup 1 sup 2 C and sup 2 sup 0 sup 7 Pb with those determined by the k sub 0 method.
Zhao, Jinkui, E-mail: zhaoj@ornl.gov; Hamilton, William A.; Robertson, J. L.; Crow, Lowell [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lee, Sung-Woo; Kang, Yoon W. [Research Accelerator Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2015-09-14
The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.
Li, Quanshui; Hu, Jianling; Wang, Ziya; Wang, Fengping; Bao, Yongjun
2014-07-01
The resonant, near-resonant, and off-resonant plasmon coupling effects for the bonding modes in asymmetric dimers are illustrated by two types of configuration, one formed by a gold nanoparticle and a TiO2-Ag core-shell nanoparticle and the other formed by two TiO2-Ag core-shell nanoparticles with suitable sizes. The redshift and blueshift behaviours of the coupled bonding modes with decreasing gap are found under longitudinal and transverse polarization of light for these dimers in the resonant situation, respectively. Under the near-resonant situation, the redshift behaviours of the coupled bonding modes still remain under longitudinal polarization, whereas the two separated modes of monomers after coupling under transverse polarization exhibit no obvious peak-shift behaviours, and the one on the lower frequency side shows an apparent attenuation in the strength. Under the off-resonant situation, the redshift behaviours not only occur in the coupled modes under longitudinal polarization, but also occur in two separated modes under transverse polarization.
On the integral Joule-Thomson effect
Maytal, B.-Z.; Shavit, A.
In this paper, the integral inversion curve concept is developed, involving the locus of all points with a vanishing integral Joule-Thomson (J-T) effect ΔTh and isothermal enthalpy change. The structure of the ΔhT surface over the plane of ( pr,T r) is explored. The maximum isothermal J-T effect ΔhT is related to the normal boiling temperature of the gas. The correlation of the integral effect based on real gas data with a low acentric factor is compared with Van der Waals' equation of state closed form predictions. The maximum integral isenthalpic J-T effect ΔTh which does not undergo a phase change during the expansion, is studied via Van der Waals' equation of state.
Homogenized boundary conditions and resonance effects in Faraday cages
Hewett, D. P.; Hewitt, I. J.
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Homogenized boundary conditions and resonance effects in Faraday cages.
Hewett, D P; Hewitt, I J
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater
Tang, Jialei; Song, Jiangxin; Fang, Zhiwei; Wang, Min; Liao, Yang; Qiao, Lingling; Cheng, Ya
2014-01-01
We report on fabrication of a microtoroid resonator of high-quality (high-Q) factor integrated with an on-chip microheater. Both the microresonator and microheater are fabricated using femtosecond laser three-dimensional (3D) micromachining. The microheater, which is located about 200 micron away from the microresonator, has a footprint size of 200 micron by 400 micron. Tuning of the resonant wavelength in the microresonator has been achieved by varying the voltage applied on the microheater. The drifting of the resonant wavelength shows a linear dependence on the square of the voltage applied on the microheater. We found that the response time of the microresonator is less than 10 secs which is significantly shorter than the time required for reaching a thermal equilibrium on conventional heating instruments such as an external electric heater.
TECHNOLOGY INTEGRATION EFFECTS ON TEACHERS’ ACHIEVEMENT
Naji SALEH
2015-04-01
Full Text Available This article investigates the effects of technology integration on teachers’ achievement. The previous literature in this regard was reviewed and a sample of teachers was chosen from 7-9 grade teachers. The sample consisted of 50 teachers males and females with different years of experience and different number of training courses. The questionnaire included paragraphs about the effect of technology integration on their achievement in school and in teaching. The results showed a great effect of technology integration on teachers’ achievement. The results also showed no differences attributed to teacher’s gender and that there were differences attributed to teacher’s years of experience and number of training courses. The article shows the aspects in which the achievement of teachers was influenced by technology integration.
Evaluation of thermal effects on the beam quality of disk laser with unstable resonator
Shayganmanesh, Mahdi; Beirami, Reza
2017-01-01
In this paper thermal effects of the disk active medium and associated effects on the beam quality of laser are investigated. Using Collins integral and iterative method, transverse mode of an unstable resonator including a Yb:YAG active medium in disk geometry is calculated. After that the beam quality of the laser is calculated based on the generalized beam characterization method. Thermal lensing of the disk is calculated based on the OPD (Optical Path Difference) concept. Five factors influencing the OPD including temperature gradient, disk thermal expansion, photo-elastic effect, electronic lens and disk deformation are considered in our calculations. The calculations show that the effect of disk deformation factor on the quality of laser beam in the resonator is strong. However the total effect of all the thermal factors on the internal beam quality is fewer. Also it is shown that thermal effects degrade the output power, beam profile and beam quality of the output laser beam severely. As well the magnitude of each of affecting factors is evaluated distinctly.
A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure
Sen Ren
2013-12-01
Full Text Available A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.
Paolo Bardella; Chow, Weng W.; Ivo Montrosset
2016-01-01
In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR) lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR) at a ...
Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson
2002-09-20
The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the
Modeling and resonance issues of wind farm integration with related facts applications
Auddy, Soubhik
This thesis deals with electromechanical oscillations, torsional oscillations and resonance issues in power systems fed by conventional steam-turbine generators and emerging wind turbine generators. Solutions to several of these problems are proposed using Flexible AC Transmission Systems (FACTS) Controllers. Inter-area oscillations are investigated in the IEEE 39 bus system and are damped by a novel Static VAR Compensator (SVC) control signal utilizing a weighted sum of remote generator speeds derived from bus voltage angles. The weights are calculated from participation factor analysis using commercial software Dynamic Security Assessment (DSA) Power Tools and are validated by EMTDC/PSCAD simulations. Subsynchronous resonance (SSR) in steam-turbine generators has been traditionally damped with SVC using either local signals or signals derived from a combination of local signals. This thesis proposes a novel SVC controller based on remote generator speed for alleviating SSR. This controller is shown from EMTDC/PSCAD simulations to be much more effective than the previously reported controllers for the IEEE First SSR Benchmark system. The efficacy is demonstrated for all the four critical series compensation levels. With the worldwide growth of renewable energy, large wind farms are likely to be connected to series compensated networks for evacuation of bulk power. This may lead to the potential of SSR in the wind turbine generators. For the first time, a detailed electromagnetic transient study using EMTDC/PSCAD has been conducted in this thesis to demonstrate that subsynchronous resonance can be a cause of concern in series compensated wind farms at realistic levels of power flow and series compensation levels. Novel controllers for two FACTS devices - a Static VAR Compensator (SVC) and a Thyristor Controlled Series Capacitor (TCSC) - are proposed to mitigate SSR under all realistic compensation levels in a modified IEEE First Benchmark system. It is further
Chattaraj, Swarnabha
2016-01-01
We present an analysis of the optical response of a class of on-chip integrated nano-photonic systems comprising all-dielectric building block based multifunctional light manipulating units (LMU) integrated with quantum dot (QD) light sources. The multiple functions (such as focusing excitation light, QD emission rate enhancement, photon guidance, and lossless propagation) are simultaneously realized using the collective Mie resonances of dipole and higher order multipole modes of the dielectric building blocks (DBBs) constituting a single structural unit, the LMU. Using analytical formulation based on Mie theory we demonstrate enhancement of the excitation light simultaneously with the guiding and propagation of the emitted light from a QD emitter integrated with the DBB based LMU. The QD-DBB integrated structures can serve as the basic element for building nano-optical active circuits for optical information processing in both classical and quantum realms.
Cao, Mingjing; Wang, Pengyang; Kou, Yu; Wang, Jing; Liu, Jing; Li, Yanhui; Li, Jiayang; Wang, Liming; Chen, Chunying
2015-11-18
The combination of therapy and diagnosis has been emerging as a promising strategy for cancer treatment. To realize chemotherapy, photothermal therapy, and magnetic resonance imaging (MRI) in one system, we have synthesized a new magnetic nanoparticle (Gd@SiO2-DOX/ICG-PDC) integrating doxorubicin (DOX), indocyanine green (ICG), and gadolinium(III)-chelated silica nanospheres (Gd@SiO2) with a poly(diallyldimethylammonium chloride) (PDC) coating. PDC coating serves as a polymer layer to protect from quick release of drugs from the nanocarriers and increase cellular uptake. The DOX release from Gd@SiO2-DOX/ICG-PDC depends on pH and temperature. The process will be accelerated in the acidic condition than in a neutral pH 7.4. Meanwhile, upon laser irradiation, the photothermal effects promote DOX release and improve the therapeutic efficacy compared to either DOX-loaded Gd@SiO2 or ICG-loaded Gd@SiO2. Moreover, MRI results show that the Gd@SiO2-PDC nanoparticles are safe T1-type MRI contrast agents for imaging. The Gd@SiO2-PDC nanoparticles loaded with DOX and ICG can thus act as a promising theranostic platform for multimodal cancer treatment.
Paolo Bardella
2016-01-01
Full Text Available In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35 GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ digital signal up to 80 GHz . Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.
Dynamical resonance in F+H2 chemical reaction and rotational excitation effect
YANG XueMing; XIE DaiQian; ZHANG DongHui
2007-01-01
Reaction resonance is a frontier topic in chemical dynamics research, and it is also essential to the understanding of mechanisms of elementary chemical reactions. This short article describes an important development in the frontier of research. Experimental evidence of reaction resonance has been detected in a full quantum state resolved reactive scattering study of the F+H2 reaction. Highly accurate full quantum scattering theoretical modeling shows that the reaction resonance is caused by two Feshbach resonance states. Further studies show that quantum interference is present between the two resonance states for the forward scattering product. This study is a significant step forward in our understanding of chemical reaction resonance in the benchmark F+H2 system. Further experimental studies on the effect of H2 rotational excitation on dynamical resonance have been carried out. Dynamical resonance in the F+H2 (j = 1) reaction has also been observed.
Kim, N Y; Dhakal, R; Adhikari, K K; Kim, E S; Wang, C
2015-05-15
A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Effect of oxygen plasma on nanomechanical silicon nitride resonators
Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan
2017-08-01
Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.
Enhancement of Seebeck Coefficients by Resonant Tunneling Effect
Daqiq, Reza
2017-10-01
The Seebeck coefficients in an MgO-based double-barrier magnetic tunnel junction (DBMTJ) with a semiconductor (e.g., Ge) spacer are studied using non-equilibrium Green's function formalism in the linear response regime. The DBMTJ results show a magnitude enhancement compared with a single-barrier MTJ (SBMTJ) at the specific thicknesses of the semiconductor spacer due to the resonant tunneling effect through the DBMTJ structure. With an increase of the average temperature of the junctions, the Seebeck coefficients also increase and they are at a maximum in the anti-parallel configuration of the magnetizations. Therefore, it is possible to achieve large Seebeck coefficients using a DBMTJ compared with a conventional SBMTJ structure.
Investigation, design, and integration of insert gradient coils in magnetic resonance imaging
Feldman, Rebecca E.
Diffusion-weighted magnetic resonance imaging utilizes the magnetic gradients of the system to de-phase protons undergoing diffusion with respect to the overall magnetization. Areas of the image with reduced signal when compared to an un-weighted image represent where protons have undergone diffusion. The stronger the gradient applied during diffusion-weighting, the larger the signal loss due to diffusion, and the larger the b-value differentiating the diffusion coefficients. However, the maximum gradient strength during image acquisition is limited by both the original strength of the signal and peripheral nerve stimulation. Nerve stimulation is induced because the changing magnetic fields of the gradient pulse sequence induce electric fields that cause stimulation. The stimulation threshold can be measured either in terms of the pulse sequence parameters of maximum gradient strength and slew rate, or in terms of the induced electric field and the duration of the electric field pulse. A finite-difference simulation was used to approximate the electric field induced inside a visible man model. The effect of varying the size, resolution, and position of the model inside the simulation was investigated with the wire pattern from a customized head/neck gradient coil. For accurate simulations, it was most important to ensure that the resolution of the model was sufficient to capture the air cavities of the sinus and trachea. The peripheral nerve stimulation thresholds of a planar gradient coil were determined from human experiments. While the electrical stimulation threshold parameters did not vary significantly from previous studies, the minimum gradient change and slew rate required to cause stimulation were significantly higher for the planar gradient than for reported thresholds of cylindrically designed gradient systems. Several non-cylindrical localized gradient designs were investigated for diffusion-weighted contrast as a fourth gradient, in addition to the
Controlling metamaterial resonances via dielectric and aspect ratio effects
Chiam, Sher-Yi; Zhang, Weili; Bettiol, Andrew A
2010-01-01
We study ways to enhance the sensitivity and dynamic tuning range of the fundamental inductor-capacitor (LC) resonance in split ring resonators (SRRs) by controlling the aspect ratio of the SRRs and their substrate thickness. We conclude that both factors can significantly affect the LC resonance. We show that metafilms consisting of low height SRRs on a thin substrate are most sensitive to changes in their dielectric environment and thus show excellent potential for sensing applications.
Effect of size on the chaotic behavior of nano resonators
Alemansour, Hamed; Miandoab, Ehsan Maani; Pishkenari, Hossein Nejat
2017-03-01
Present study is devoted to investigate the size effect on chaotic behavior of a micro-electro-mechanical resonator under external electrostatic excitation. Using Galerkin's decomposition method, approximating the actuation force with a new effective lumped model, and neglecting higher order terms in the Taylor-series expansion, a simplified model of the main system is developed. By utilizing the Melnikov's method and based on the new form of the electrostatic force, an expression in terms of the system parameters is developed which can be used to rapidly estimate the chaotic region of the simplified system. Based on the analysis of the simple proposed model, it is shown that the effect of size on chaotic region varies significantly depending on bias voltage. By considering the size effect, it is demonstrated that chaotic vibration initiates at much higher constant voltages than predicted by classical theories; and, in high constant voltages, it is shown that strain gradient theory predicts occurrence of chaos at much lower amplitudes.
Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen
2017-04-01
This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from ‑100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was ‑0.967 kHz hPa‑1, namely ‑0.69 ppm hPa‑1, which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than ±0.35%, while that of the existing sensor was ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of ±0.015 °C and power of 20 mW.
ZHANG Hui; ZHANG Shu-Yi; FAN Li
2009-01-01
A model of high-overtone bulk acoustic resonators is used to study the effects of thickness deviation of elastic plates on resonance frequency spectra in planar multi-layered systems. The resonance frequency shifts induced by the thickness deviations of the elastic plates periodically vary with the resonance order, which depends on the acoustic impedance ratios of the elastic plates to piezoelectric patches. Additionally, the center lines of the frequency shift oscillations Hnearly change with the orders of the resonance modes, and their slopes are sensitive to the thickness deviations of the plates, which can be used to quantitatively evaluate the thickness deviations.
Jiang, Xianxin; Tang, Longhua; Song, Jinyan; Li, Mingyu; He, Jian-Jun
2014-03-01
Optical waveguide biosensors based on silicon-on-insulator (SOI) have been extensively investigated owing to its various advantages and many potential applications. In this article, we demonstrate a novel highly sensitive biosensor based on cascaded Mach-Zehnder interferometer (MZI) and ring resonator with the Vernier effect using wavelength interrogation. The experimental results show that the sensitivity reached 1,960 nm/RIU and 19,100 nm/RIU for sensors based on MZI alone and cascaded MZI-ring with Vernier effect, respectively. A biosensing application was also demonstrated by monitoring the interaction between goat and antigoat immunoglobulin G (IgG) pairs. This integrated high sensitivity biosensor has great potential for medical diagnostic applications.
Resonant magnetic perturbation effect on tearing mode dynamics
Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.
2010-03-01
The effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics is experimentally studied in the EXTRAP T2R device. EXTRAP T2R is equipped with a set of sensor coils and active coils connected by a digital controller allowing a feedback control of the magnetic instabilities. The recently upgraded feedback algorithm allows the suppression of all the error field harmonics but keeping a selected harmonic to the desired amplitude, therefore opening the possibility of a clear study of the RMP effect on the corresponding TM. The paper shows that the RMP produces two typical effects: (1) a weak oscillation in the TM amplitude and a modulation in the TM velocity or (2) a strong modulation in the TM amplitude and phase jumps. Moreover, the locking mechanism of a TM to a RMP is studied in detail. It is shown that before the locking, the TM dynamics is characterized by velocity modulation followed by phase jumps. Experimental results are reasonably explained by simulations obtained with a model.
Measurement and modelling of enhanced absorption Hanle effect resonances in {sup 85}Rb
Vilardi, Andrea; Tabarelli, Davide; Botti, Laura; Bertoldi, Andrea; Ricci, Leonardo [Dipartimento di Fisica, Universita di Trento, I-38100 Trento-Povo (Italy)], E-mail: andrea.bertoldi@institutoptique.fr
2009-03-14
We report on a detailed measurement of the enhanced absorption Hanle effect resonances in {sup 85}Rb. The effect was analysed with an experimental setup allowing for the control of each magnetic field component within 1 mG. The characterization deals with the dependence of resonances, observed under different magnetic field conditions, on the frequency, intensity and polarization of the exciting radiation field. An analytic model that precisely describes the resonance behaviour is discussed.
Xu, Haiyun; Zhang, Handi; Zhang, Jie; Huang, Qingjun; Shen, Zhiwei; Wu, Renhua
2016-12-01
Proton magnetic resonance spectroscopy ((1)H-MRS) has been widely applied in human studies. There is now a large literature describing findings of brain MRS studies with mental disorder patients including schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. However, the findings are mixed and cannot be reconciled by any of the existing interpretations. Here we proposed the new theory of neuron-glia integrity to explain the findings of brain (1)H-MRS stuies. It proposed the neurochemical correlates of neuron-astrocyte integrity and axon-myelin integrity on the basis of update of neurobiological knowledge about neuron-glia communication and of experimental MRS evidence for impairments in neuron-glia integrity from the authors and the other investigators. Following the neuron-glia integrity theories, this review collected evidence showing that glutamate/glutamine change is a good marker for impaired neuron-astrocyte integrity and that changes in N-acetylaspartate and lipid precursors reflect impaired myelination. Moreover, this new theory enables us to explain the differences between MRS findings in neuropsychiatric and neurodegenerative disorders. Copyright Â© 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The border population effects of EU integration
Brakman, Steven; Garretsen, Harry; van Marrewijk, Charles; Oumer, Abdella
2012-01-01
Border cities or regions are in theory more affected by the EU integration process than more central locations as it more drastically influences their transaction costs and market potential. We find a positive empirical effect of EU enlargement as measured by the growth in population share along the
Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits
Pernice, W H P; Tang, H X
2014-01-01
Tight confinement of light in photonic cavities provides an efficient template for the realization of high optical intensity with strong field gradients. Here we present such a nanoscale resonator device based on a one-dimensional photonic crystal slot cavity. Our design allows for realizing highly localized optical modes with theoretically predicted Q factors in excess of 106. The design is demonstrated experimentally both in a high-contrast refractive index system (silicon), as well as in medium refractive index contrast devices made from aluminum nitride. We achieve extinction ratio of 21dB in critically coupled resonators using an on-chip readout platform with loaded Q factors up to 33,000. Our approach holds promise for realizing ultra-small opto-mechanical resonators for high-frequency operation and sensing applications.
Sascha Geidel
2016-09-01
Full Text Available While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.
Surface effects on ferromagnetic resonance in magnetic nanocubes
Bastardis, R.; Vernay, F.; Garanin, D.-A.; Kachkachi, H.
2017-01-01
We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state leading to an eigenvalue problem or solved using a symplectic technique. For box-shaped clusters, the numerical results are favorably compared to those of the finite-size linear spin-wave theory. Our numerical method allows us to disentangle the contributions of the core and surface spins to the spectral weight and absorbed power. In regard to the recent developments in synthesis and characterization of assemblies of well defined nano-elements, we study the effects of free boundaries and surface anisotropy on the spin-wave spectrum in iron nanocubes and give orders of magnitude of the expected spin-wave resonances. For an 8~\\text{nm} iron nanocube, we show that the absorbed power spectrum should exhibit a low-energy peak around 10 GHz, typical of the uniform mode, followed by other low-energy features that couple to the uniform mode but with a stronger contribution from the surface. There are also high-frequency exchange-mode peaks around 60 GHz.
Counterintuitive dispersion effect near surface plasmon resonances in Otto structures
Wang, Lin; Wang, Li-Gang; Ye, Lin-Hua; Al-Amri, M.; Zhu, Shi-Yao; Zubairy, M. Suhail
2016-07-01
In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.
The effects of Kelvin-Helmholtz instability on resonance absorption layers in coronal loops
Karpen, Judith T.; Dahlburg, Russell B.; Davila, Joseph M.
1994-01-01
One of the long-standing uncertainties in the wave-resonance theory of coronal heating is the stability of the resonance layer. The wave motions in the resonance layer produce highly localized shear flows which vary sinusoidally in time with the resonance period. This configuration is potentially susceptible to the Kelvin-Helmholtz instability (KHI), which can enhance small-scale structure and turbulent broadening of shear layers on relatively rapid ideal timescales. We have investigated numerically the response of a characteristic velocity profile, derived from resonance absorption models, to finite fluid perturbations comparable to photospheric fluctuations. We find that the KHI primarily should affect long (approximately greater than 6 x 10(exp 4) km) loops where higher velocity flows (M approximately greater than 0.2) exist in resonance layers of order 100 km wide. There, the Kelvin-Helmholtz growth time is comparable to or less than the resonance quarter-period, and the potentially stabilizing magnetic effects are not felt until the instability is well past the linear growth stage. Not only is the resonance layer broadened by the KHI, but also the convective energy transport out of the resonance layer is increased, thus adding to the efficiency of the wave-resonance heating process. In shorter loops, e.g., those in bright points and compact flares, the stabilization due to the magnetic field and the high resonance frequency inhibit the growth of the Kelvin-Helmholtz instability beyond a minimal level.
Mercury's capture into the 3/2 spin-orbit resonance including the effect of core-mantle friction
Correia, Alexandre C M; 10.1016/j.icarus.2008.12.034
2009-01-01
The rotation of Mercury is presently captured in a 3/2 spin-orbit resonance with the orbital mean motion. The capture mechanism is well understood as the result of tidal interactions with the Sun combined with planetary perturbations. However, it is now almost certain that Mercury has a liquid core, which should induce a contribution of viscous friction at the core-mantle boundary to the spin evolution. This last effect greatly increases the chances of capture in all spin-orbit resonances, being 100% for the 2/1 resonance, and thus preventing the planet from evolving to the presently observed configuration. Here we show that for a given resonance, as the chaotic evolution of Mercury's orbit can drive its eccentricity to very low values during the planet's history, any previous capture can be destabilized whenever the eccentricity becomes lower than a critical value. In our numerical integrations of 1000 orbits of Mercury over 4 Gyr, the spin ends 99.8% of the time captured in a spin-orbit resonance, in partic...
The resonant scattering integral; application to the analysis of elastic proton scattering
Smith, Philip B.
1958-01-01
A relationship is presented which permits a determination of the quantity Γ2/Γ, where Γ and Γ are the particle (proton) and total widths, respectively, of an isolated resonance of which the total spin and channel spin mixing parameter are known. The analysis depends upon observation at a zero of the
O.J.N. Bloemen; Q. Deeley; F. Sundram; E.M. Daly; G.J. Barker; D.K. Jones; T.A.M.J. van Amelsvoort; N. Schmitz; D. Robertson; K.C. Murphy; D.G.M. Murphy
2010-01-01
Background: Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging (DT-
Integrating teacher education effectiveness research into educational effectiveness models
Scheerens, Jaap; Blömeke, Sigrid
2016-01-01
The purpose of this article is to review and to connect research about teacher education effectiveness and school effectiveness to arrive at an integrative conceptualization that has the potential of improving empirical research in both fields. Teacher education effectiveness addresses effects of te
Integrating teacher education effectiveness research into educational effectiveness models
Scheerens, Jaap; Blömeke, Sigrid
2016-01-01
The purpose of this article is to review and to connect research about teacher education effectiveness and school effectiveness to arrive at an integrative conceptualization that has the potential of improving empirical research in both fields. Teacher education effectiveness addresses effects of
Effects of external fields, dimension and polarization on the resonance fluorescence of quantum dots
Vaseghi, B., E-mail: vaseghi@mail.yu.ac.ir; Razavi, S.M.
2017-02-01
In this paper simultaneous effects of external electric and magnetic fields, dimension and polarization on the resonance fluorescence spectrum and photon statistics of a spherical quantum dot with parabolic confinement are investigated. With special attention to the optical scattering processes resonance fluorescence spectrum and second-order correlation function are calculated and plotted for different external parameters. Our results show the occurrence of resonance fluorescence similar to atomic systems and considerable effects of external fields, quantum confinement and light polarization on the resonance fluorescence spectrum and second-order correlation function in the quantum dot systems. The existence of Mollow triplets and photon antibunching are strongly depend on these external agents.
Effects of external fields, dimension and polarization on the resonance fluorescence of quantum dots
Vaseghi, B.; Razavi, S. M.
2017-02-01
In this paper simultaneous effects of external electric and magnetic fields, dimension and polarization on the resonance fluorescence spectrum and photon statistics of a spherical quantum dot with parabolic confinement are investigated. With special attention to the optical scattering processes resonance fluorescence spectrum and second-order correlation function are calculated and plotted for different external parameters. Our results show the occurrence of resonance fluorescence similar to atomic systems and considerable effects of external fields, quantum confinement and light polarization on the resonance fluorescence spectrum and second-order correlation function in the quantum dot systems. The existence of Mollow triplets and photon antibunching are strongly depend on these external agents.
Geometry effects on cooling in a standing wave cylindrical thermoacousic resonator
Mohd-Ghazali, Normah; Ghazali, Ahmad Dairobi; Ali, Irwan Shah; Rahman, Muhammad Aminullah A.
2012-06-01
Numerous reports have established the refrigeration applications of thermoacoustic cooling without compressors and refrigerants. Significant cooling effects can be obtained in a thermoacoustic resonator fitted with a heat exchanging stack and operated at resonance frequency. Past studies, however, have hardly referred to the fundamental relationship between resonant frequency and the resonator geometry. This paper reports the thermoacoustic cooling effects at resonance obtained by changing the diameter of the resonator while holding the length constant and vice versa. Experiments were completed at atmospheric pressure with air as the working fluid using a number of pvc tubes having parallel plate stack from Mylar. The temperature difference measured across the stack showed that a volume increase in the working fluid in general increases the temperature gradient for the quarter-and half-wavelength resonators. Doubling the diameter from 30 mm to 60 mm produced the highest temperature difference due to the greater number of stack plates resulting in a higher overall thermoacaoustic cooling. Increasing the resonator length only produced a small increase in temperature gradient since the resonant frequency at operation is only slightly changed. Investigation on the aspect ratio exhibits no influence on the temperature difference across the stack. This study have shown that the resonator length and diameter do affect the temperature difference across the thermoacoustic stack, and further research should be done to consider the contribution of the stack mass on the overall desired thermoacoustic cooling.
Eckle, H.-P.; Johannesson, H.; Stafford, C. A.
2001-07-02
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
Eckle, H P; Johannesson, H; Stafford, C A
2001-07-02
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A; Passaro, Vittorio M N
2016-01-15
In this Letter, we present a theoretical investigation of integrated racetrack Brillouin lasers based on germanium waveguides that are buried in silicon nitride and operate at a wavelength of 4 μm. General design equations in a steady-state regime have been carried out to determine the threshold power and the emitted Stokes power as a function of the resonance mismatch and coupling factor. The pulling effect as induced by the Brillouin gain dispersion and the pushing effects originated by SPM and XPM effects have been accurately investigated to predict the lasing frequency.
Effects of radiation damping on photorecombination of C4 + ions for the KLL resonance
Li, Chuan-Ying; Wu, Yong; Qu, Yi-Zhi; Wang, Jian-Guo
2016-10-01
A numerical method based on Zabaydullin and Dubau's work [O. Zabaydullin and J. Dubau, J. Phys. B: At. Mol. Opt. Phys. 45, 115002 (2012), 10.1088/0953-4075/45/11/115002] has been developed to calculate the Cauchy principal value integral in scattering matrices and obtain photorecombination (PR) cross sections of low-lying resonances according to Davies and Seaton's theory [J. Phys. B 2, 757 (1969), 10.1088/0022-3700/2/7/304], in which radiation damping is included. The Dirac R -matrix method is employed to secure the dipole matrix. Using this method, PR cross sections of C4 + for the KLL resonance are acquired, and compared with available experimental measurements and other close-coupling theoretical results. It is shown that our damped cross sections reproduce the experimental data and are in agreement with other theoretical results. Meanwhile, radiation damping can reduce the PR cross section for the 1 s 2 p22P resonance (corresponding to two levels [(1s2p1 /2) 12 p3 /2] 1 /2 and [1s (2p3/22)2] 3 /2 by three orders of magnitude. The unresolved and underestimated resonances 1 s 2 p24P , 1 s 2 s 2 p 4P , and 1 s 2 p22P in the undamped Breit-Pauli R -matrix calculations [H. L. Zhang et al., J. Phys. B: At. Mol. Opt. Phys. 32, 1459 (1999), 10.1088/0953-4075/32/6/010] are corrected. Besides, dielectronic recombination cross sections of C4 + for the KLL resonance are also presented for comparison using the relativistic configuration-interaction (RCI) method implemented in flexible atomic code (fac), which show radiation damping has pronounced influences on 1 s 2 p22P due to much larger radiative rates compared with autoionization rates. Furthermore, radiative and autoionization rates for the intermediate states [(1s2p1 /2) 12 p3 /2] 1 /2 and [1s (2p3/22)2] 3 /2 of the He-like ions with 6 ≤Z ≤83 are calculated using fac, scaling laws of which are checked. Autoionization rates comply with the Zeff0 scaling law for Z ≥32 , which is caused by relativistic effects.
Jiao Chong-Qing; Zhu Hong-Zhao
2013-01-01
The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies.In this paper,the influence of coated wall loss on the suppression of the resonance effect is investigated.For this purpose,an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material.The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide.Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.
Batra, Prag; Bandt, S Kathleen; Leuthardt, Eric C
2016-01-01
Awake craniotomy is currently the gold standard for aggressive tumor resections in eloquent cortex. However, a significant subset of patients is unable to tolerate this procedure, particularly the very young or old or those with psychiatric comorbidities, cardiopulmonary comorbidities, or obesity, among other conditions. In these cases, typical alternative procedures include biopsy alone or subtotal resection, both of which are associated with diminished surgical outcomes. Here, we report the successful use of a preoperatively obtained resting state functional connectivity magnetic resonance imaging (MRI) integrated with intraoperative neuronavigation software in order to perform functional cortical mapping in the setting of an aborted awake craniotomy due to loss of airway. Resting state functional connectivity MRI integrated with intraoperative neuronavigation software can provide an alternative option for functional cortical mapping in the setting of an aborted awake craniotomy.
Resonances and permittivity dispersion effects in ITO nanorod arrays
Li, Shi-Qiang; Ketterson, John B; Chang, Robert P H
2014-01-01
In the nanophotonics community, there is an active discussion regarding the origin of the selective absorption/scattering of light by the resonances with nanorod arrays. Here we report a study of the resonances in ordered indium-tin-oxide (ITO) nanorod arrays from the perspective of waveguides. We discover that with only 2.4% geometrical coverage, the micron-length nanorod arrays strongly interact with light across an extra-wide band from visible to mid-infrared resulting in less than 10% transmission at the first order destructive interference. Simulations show excellent agreement with our experimental observation. Near-field profile obtained from simulation reveals the electric field is mainly localized on the surfaces of the nanorods at all the resonances. Theoretical analysis is then applied to explain the resonances and it was found that the resonances in the visible are different from those in the infrared. The former resonances are the result of the interference between guided wave and wave propagated ...
Weifeng Zhang
2016-11-01
Full Text Available Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ∼30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.
Zhang, Weifeng; Yao, Jianping
2016-11-01
Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR) with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs) and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ˜30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.
Taylor, Matthew J; Godlewska, Beata R; Norbury, Ray; Selvaraj, Sudhakar; Near, Jamie; Cowen, Philip J
2012-11-01
Increasing interest surrounds potential neuroprotective or neurotrophic actions of antidepressants. While growing evidence points to important early clinical and neuropsychological effects of antidepressants, the time-course of any effect on neuronal integrity is unclear. This study used magnetic resonance spectroscopy to assess effects of short-term treatment with escitalopram on N-acetyl-aspartate (NAA), a marker of neuronal integrity. Thirty-nine participants with major depression were randomly assigned to receive either 10 mg escitalopram or placebo daily in a double-blind, parallel group design. On the seventh day of treatment, PRESS data were obtained from a 30×30×20 mm voxel placed in medial frontal cortex. Age and gender-matched healthy controls who received no treatment were also scanned. Levels of NAA were significantly higher in patients treated with escitalopram than in either placebo-treated patients (p<0.01) or healthy controls (p<0.01). Our findings are consistent with the proposition that antidepressant treatment in depressed patients can produce early changes in neuronal integrity.
B. Mardiana
2012-01-01
Full Text Available Problem statement: Metal interconnects have become significant limitation on the scaling of CMOS technologies in electronics integrated circuit. Silicon photonics has offers great potential to overcome this critical bottleneck due to the advantages of optical interconnects. Silicon-based optical micro-ring resonator is promising basic element of future electronic-photonic integrated circuits because of its wide applications on photonic devices such as modulator, switch and sensor. Approach: This study highlights the study of the free carrier injection effect on the active SOI micro-ring resonator. The effect of the free carrier injection on micro-ring resonator is evaluated by varying the p+ and n+ doping position. Device performances are predicted using numerical modeling software 2D SILVACO as well as Finite Difference Time Domain (FDTD simulation software, RSOFT. Results: The results show that the refractive index change increases as the p+ and n+ doping position become closer to the rib waveguide. A shift in resonant wavelength of around 2 and 3 nm was is predicted at 0.9V drive forward voltage for 0.5 and 1.0 Î¼m gap distance between p+ and n+ doping regions and the sidewall of the rib waveguide. It is also shown that 10 and 9.2 dB maximum change of the output response obtained through the output of the transmission spectrum of the device with gap 0.5 and 1.0 Î¼m. Conclusion: The closer distance between p+ and n+ doping regions and the rib waveguide has optimal shift of resonance wavelength and better extinction ratio of transmission spectrum.
The pillar of an effective integrated medicine
Maya S.P. Huijberts
2012-08-01
Full Text Available During the last decade, the need of an effective integrated medicine has been discussed because the patient is not simply a human body but possesses a cognitive capacity and, if appropriately stimulated, an intrinsic capacity of restoring health. The problem is that among several complementary medical approaches only two or three are qualified owing to an extensive biological and clinical experimentation. Conventional medicine has made remarkable progresses and although occasionally we have bad surprises as rofecoxib, it has a good quality of scientific effectiveness; but, as it will be discussed, at least for one complementary treatment, the claim that they represent “a new name for snake oil” is no longer acceptable. We would like to briefly present the outstanding biological and clinical progress of oxygen-ozonetherapy already used in many countries. Thanks mainly to our studies... [J Exp Integr Med 2012; 2(4: 281-282
Tao, Qian; Milles, Julien; van Huls van Taxis, Carine; Reiber, Johan H. C.; Zeppenfeld, Katja; van der Geest, Rob J.
2012-02-01
Catheter ablation is an important option to treat ventricular tachycardias (VT). Scar-related VT is among the most difficult to treat, because myocardial scar, which is the underlying arrhythmogenic substrate, is patient-specific and often highly complex. The scar image from preprocedural late gadolinium enhancement magnetic resonance imaging (LGE- MRI) can provide high-resolution substrate information and, if integrated at the early stage of the procedure, can largely facilitate the procedure with image guidance. In clinical practice, however, early MRI integration is difficult because available integration tools rely on matching the MRI surface mesh and electroanatomical mapping (EAM) points, which is only possible after extensive EAM has been performed. In this paper, we propose to use a priori information on patient posture and a multi-sequence MRI integration framework to achieve accurate MRI integration that can be accomplished at an early stage of the procedure. From the MRI sequences, the left ventricular (LV) geometry, myocardial scar characteristics, and an anatomical landmark indicating the origin of the left main coronary artery are obtained preprocedurally using image processing techniques. Thereby the integration can be realized at the beginning of the procedure after acquiring a single mapping point. The integration method has been evaluated postprocedurally in terms of LV shape match and actual scar match. Compared to the iterative closest point (ICP) method that uses high-intensity mapping (225+/-49 points), our method using one mapping point reached a mean point-to-surface distance of 5.09+/-1.09 mm (vs. 3.85+/-0.60 mm, p<0.05), and scar correlation of -0.51+/-0.14 (vs. -0.50+/-0.14, p=NS).
Dabidian, Nima; Khanikaev, Alexander B; Tatar, Kaya; Trendafilov, Simeon; Mousavi, S Hossein; Magnuson, Carl; Ruoff, Rodney S; Shvets, Gennady
2014-01-01
Plasmonic metasurfaces represent a promising platform for enhancing light-matter interaction. Active control of the optical response of metasurfaces is desirable for applications such as beam-steering, modulators and switches, biochemical sensors, and compact optoelectronic devices. Here we use a plasmonic metasurface with two Fano resonances to enhance the interaction of infrared light with electrically controllable single layer graphene. It is experimentally shown that the narrow spectral width of these resonances, combined with strong light/graphene coupling, enables reflectivity modulation by nearly an order of magnitude leading to a modulation depth as large as 90%. . Numerical simulations demonstrate the possibility of strong active modulation of the phase of the reflected light while keeping the reflectivity nearly constant, thereby paving the way to tunable infrared lensing and beam steering
MEMS switch integrated radio frequency coils and arrays for magnetic resonance imaging
Bulumulla, S. B.; Park, K. J.; Fiveland, E.; Iannotti, J.; Robb, F.
2017-02-01
Surface coils are widely used in magnetic resonance imaging and spectroscopy. While smaller diameter coils produce higher signal to noise ratio (SNR) closer to the coil, imaging larger fields of view or greater distance into the sample requires a larger overall size array or, in the case of a channel count limited system, larger diameter coils. In this work, we consider reconfiguring the geometry of coils and coil arrays such that the same coil or coil array may be used in multiple field of view imaging. A custom designed microelectromechanical systems switch, compatible with magnetic resonance imaging, is used to switch in/out conductive sections and components to reconfigure coils. The switch does not degrade the SNR and can be opened/closed in 10 μ s, leading to rapid reconfiguration. Results from a single coil, configurable between small/large configurations, and a two-coil phased array, configurable between spine/torso modes, are presented.
SEGMENTATION OF MAGNETIC RESONANCE BRAIN TUMOR USING INTEGRATED FUZZY K-MEANS CLUSTERING
P.Pedda Sadhu Naik; T.Venu Gopal
2016-01-01
Segmentation is a process of partitioning the image into several objects. It plays a vital role in many fields such as satellite, remote sensing, object identification, face tracking and most importantly in medical field. In radiology, magnetic resonance imaging (MRI) is used to investigate the human body processes and functions of organisms. In hospitals, this technique has been using widely for medical diagnosis, to find the disease stage and follow-up without exposure to ionizi...
Effect of off-frequency sampling in magnetic resonance elastography.
Johnson, Curtis L; Chen, Danchin D; Olivero, William C; Sutton, Bradley P; Georgiadis, John G
2012-02-01
In magnetic resonance elastography (MRE), shear waves at a certain frequency are encoded through bipolar gradients that switch polarity at a controlled encoding frequency and are offset in time to capture wave propagation using a controlled sampling frequency. In brain MRE, there is a possibility that the mechanical actuation frequency is different from the vibration frequency, leading to a mismatch with encoding and sampling frequencies. This mismatch can occur in brain MRE from causes both extrinsic and intrinsic to the brain, such as scanner bed vibrations or active damping in the head. The purpose of this work was to investigate how frequency mismatch can affect MRE shear stiffness measurements. Experiments were performed on a dual-medium agarose gel phantom, and the results were compared with numerical simulations to quantify these effects. It is known that off-frequency encoding alone results in a scaling of wave amplitude, and it is shown here that off-frequency sampling can result in two main effects: (1) errors in the overall shear stiffness estimate of the material on the global scale and (2) local variations appearing as stiffer and softer structures in the material. For small differences in frequency, it was found that measured global stiffness of the brain could theoretically vary by up to 12.5% relative to actual stiffness with local variations of up to 3.7% of the mean stiffness. It was demonstrated that performing MRE experiments at a frequency other than that of tissue vibration can lead to artifacts in the MRE stiffness images, and this mismatch could explain some of the large-scale scatter of stiffness data or lack of repeatability reported in the brain MRE literature.
Wang, Qingyun; Zhang, Honghui; Chen, Guanrong
2012-12-01
We study the effect of heterogeneous neuron and information transmission delay on stochastic resonance of scale-free neuronal networks. For this purpose, we introduce the heterogeneity to the specified neuron with the highest degree. It is shown that in the absence of delay, an intermediate noise level can optimally assist spike firings of collective neurons so as to achieve stochastic resonance on scale-free neuronal networks for small and intermediate αh, which plays a heterogeneous role. Maxima of stochastic resonance measure are enhanced as αh increases, which implies that the heterogeneity can improve stochastic resonance. However, as αh is beyond a certain large value, no obvious stochastic resonance can be observed. If the information transmission delay is introduced to neuronal networks, stochastic resonance is dramatically affected. In particular, the tuned information transmission delay can induce multiple stochastic resonance, which can be manifested as well-expressed maximum in the measure for stochastic resonance, appearing every multiple of one half of the subthreshold stimulus period. Furthermore, we can observe that stochastic resonance at odd multiple of one half of the subthreshold stimulus period is subharmonic, as opposed to the case of even multiple of one half of the subthreshold stimulus period. More interestingly, multiple stochastic resonance can also be improved by the suitable heterogeneous neuron. Presented results can provide good insights into the understanding of the heterogeneous neuron and information transmission delay on realistic neuronal networks.
Wang, Qingyun; Zhang, Honghui; Chen, Guanrong
2012-12-01
We study the effect of heterogeneous neuron and information transmission delay on stochastic resonance of scale-free neuronal networks. For this purpose, we introduce the heterogeneity to the specified neuron with the highest degree. It is shown that in the absence of delay, an intermediate noise level can optimally assist spike firings of collective neurons so as to achieve stochastic resonance on scale-free neuronal networks for small and intermediate α(h), which plays a heterogeneous role. Maxima of stochastic resonance measure are enhanced as α(h) increases, which implies that the heterogeneity can improve stochastic resonance. However, as α(h) is beyond a certain large value, no obvious stochastic resonance can be observed. If the information transmission delay is introduced to neuronal networks, stochastic resonance is dramatically affected. In particular, the tuned information transmission delay can induce multiple stochastic resonance, which can be manifested as well-expressed maximum in the measure for stochastic resonance, appearing every multiple of one half of the subthreshold stimulus period. Furthermore, we can observe that stochastic resonance at odd multiple of one half of the subthreshold stimulus period is subharmonic, as opposed to the case of even multiple of one half of the subthreshold stimulus period. More interestingly, multiple stochastic resonance can also be improved by the suitable heterogeneous neuron. Presented results can provide good insights into the understanding of the heterogeneous neuron and information transmission delay on realistic neuronal networks.
Thermal-neutron cross sections and resonance integrals of 138Ba and 141Pr using Am-Be neutron source
Panikkath, Priyada; Mohanakrishnan, P.
2016-09-01
The thermal-neutron capture cross sections and resonance integrals of 138Ba(n, γ)139Ba and 141Pr(n, γ)142Pr were measured by activation method using an isotopic Am-Be neutron source. The estimations were with respect to that of 55Mn(n, γ)56Mn and 197Au(n, γ)198Au reference monitors. The measured thermal-capture cross section of 138 Ba with respect to 55 Mn is 0.410±0.023 b and with respect to 197 Au is 0.386±0.019 b. The measured thermal-capture cross section of 141 Pr with respect to 55 Mn is 11.36±1.29 b and with respect to 197 Au is 10.43±1.14 b. The resonance integrals for 138 Ba are 0.380±0.033 b (55 Mn) and 0.364±0.027 b (197 Au) and for 141 Pr are 21.05±2.88 b (55 Mn) and 15.27±1.87 b (197 Au). The comparison between the present measurements and various reported values are discussed. The cross sections corresponding to the selected isotopes are measured using an Am-Be source facility for the first time.
All-optical control of microfiber resonator by graphene's photothermal effect
Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Xu, Yiping; Zhang, Fanlu; Xi, Teli; Ren, Liyong; Zhao, Jianlin
2016-04-01
We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%-90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.
Zhang, Menglun; Cui, Weiwei; Chen, Xuejiao; Wang, Chao; Pang, Wei; Duan, Xuexin; Zhang, Daihua; Zhang, Hao
2015-02-01
Although digital microfluidics has shown great potential in a wide range of applications, a lab-on-a-chip with integrated digital droplet actuators and powerful biochemical sensors is still lacking. To address the demand, a fully integrated chip with electrowetting-on-dielectric (EWOD) and a film bulk acoustic resonator (FBAR) sensor is introduced, where an EWOD actuator manipulates digital droplets and the FBAR sensor detects the presence of substances in the droplets, respectively. The piezoelectric layer of the FBAR sensor and the dielectric layer of the EWOD share the same aluminum nitride (AlN) thin film, which is a key factor to achieve the full integration of the two completely different devices. The liquid droplets are reliably managed by the EWOD actuator to sit on or move off the FBAR sensor precisely. Sessile drop experiments and limit of detection (LOD) experiments are carried out to characterize the EWOD actuator and the FBAR sensor, respectively. Taking advantage of the digital droplet operation, a ‘dry sensing mode’ of the FBAR sensor in the lab-on-a-chip microsystem is proposed, which has a much higher signal to noise ratio than the conventional ‘wet sensing mode’. Hg2+ droplets with various concentrations are transported and sensed to demonstrate the capability of the integrated system. The EWOD-FBAR chip is expected to play an important role in many complex lab-on-a-chip applications.
Eckle, H. -P.; Johannesson, H.; Stafford, C. A.
2000-01-01
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo re...
Magnetic hysteresis effects in superconducting coplanar microwave resonators
Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)
2013-07-01
We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.
Possible resonance effect of axionic dark matter in Josephson junctions.
Beck, Christian
2013-12-06
We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11 meV and a local galactic axionic dark-matter density of 0.05 GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.
The effect of a gamma ray flare on Schumann resonances
A. P. Nickolaenko
2012-09-01
Full Text Available We describe the ionospheric modification by the SGR 1806-20 gamma flare (27 December 2004 seen in the global electromagnetic (Schumann resonance. The gamma rays lowered the ionosphere over the dayside of the globe and modified the Schumann resonance spectra. We present the extremely low frequency (ELF data monitored at the Moshiri observatory, Japan (44.365° N, 142.24° E. Records are compared with the expected modifications, which facilitate detection of the simultaneous abrupt change in the dynamic resonance pattern of the experimental record. The gamma flare modified the current of the global electric circuit and thus caused the "parametric" ELF transient. Model results are compared with observations enabling evaluation of changes in the global electric circuit.
Effect of geometry in frequency response modeling of nanomechanical resonators
Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.; Hattel, J. H.; Alaca, B. Erdem
2016-06-01
The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The results provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.
Cyclotron resonance effects on stochastic acceleration of light ionospheric ions
Singh, N.; Schunk, R. W.; Sojka, J. J.
1982-01-01
The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.
Vertically Integrated Multiple Nanowire Field Effect Transistor.
Lee, Byung-Hyun; Kang, Min-Ho; Ahn, Dae-Chul; Park, Jun-Young; Bang, Tewook; Jeon, Seung-Bae; Hur, Jae; Lee, Dongil; Choi, Yang-Kyu
2015-12-09
A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires reported ever is demonstrated on a bulk silicon substrate without use of wet etching. The driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowires, thus showing good feasibility of three-dimensional integration-based high performance transistor. The developed fabrication process, which is simple and reproducible, is used to create multiple stiction-free and uniformly sized nanowires with the aid of the one-route all-dry etching process (ORADEP). Furthermore, the proposed FET is revamped to create nonvolatile memory with the adoption of a charge trapping layer for enhanced practicality. Thus, this research suggests an ultimate design for the end-of-the-roadmap devices to overcome the limits of scaling.
Acute effects of stochastic resonance whole body vibration.
Elfering, Achim; Zahno, Jasmine; Taeymans, Jan; Blasimann, Angela; Radlinger, Lorenz
2013-01-01
To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m(2)). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover, muscle relaxation after verum SR-WBV was higher than after sham SR-WBV (P < 0.05). Verum SR-WBV stimulated musculoskeletal activity in young healthy individuals while cardiovascular activation was low. Training of
Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator
Srinivasan, Kartik; Rakher, Matthew T; Davanco, Marcelo; Aksyuk, Vladimir
2010-01-01
Sensitive transduction of the motion of a microscale cantilever is central to many applications in mass, force, magnetic resonance, and displacement sensing. Reducing cantilever size to nanoscale dimensions can improve the bandwidth and sensitivity of techniques like atomic force microscopy, but current optical transduction methods suffer when the cantilever is small compared to the achievable spot size. Here, we demonstrate sensitive optical transduction in a monolithic cavity-optomechanical system in which a sub-picogram silicon cantilever with a sharp probe tip is separated from a microdisk optical resonator by a nanoscale gap. High quality factor (Q ~ 10^5) microdisk optical modes transduce the cantilever's MHz frequency thermally-driven vibrations with a displacement sensitivity of ~ 4.4x10^-16 m\\sqrt[2]{Hz} and bandwidth > 1 GHz, and a dynamic range > 10^6 is estimated for a 1 s measurement. Optically-induced stiffening due to the strong optomechanical interaction is observed, and engineering of probe d...
Coronal heating by resonant absorption: The effects of chromospheric coupling
Belien, A. J. C.; Martens, P. C. H.; Keppens, R.
1999-01-01
We present the first 2.5 dimensional numerical model calculations of the nonlinear wave dynamics and heating by resonant absorption in coronal loops with thermal structuring of the transition region and higher chromosphere. The numerical calculations were done with the Versatile Advection Code. The
Resonance Effects in Mixed Hydrogen-Deuterium Crystals
Powell, B. M.; Nielsen, Mourits
1975-01-01
Neutron scattering measurements of the impurity induced resonance mode caused by orthodeuterium as a substitutional impurity in solid h.c.p. parahydrogen are found to be in qualitative agreement with simple mass defect theory predictions. The samples studied contained 11-, 10-, and 6 at.% deuteri...
Effect of the third π ∗ resonance on the angular distributions for electron-pyrimidine scattering
Mašín, Zdeněk; Gorfinkiel, Jimena D.
2016-07-01
We present a detailed analysis of the effect of the well known third π∗ resonance on the angular behaviour of the elastic cross section in electron scattering from pyrimidine. This resonance, occurring approximately at 4.7 eV, is of mixed shape and core-excited character. Experimental and theoretical results show the presence of a peak/dip behaviour in this energy range, that is absent for other resonances. Our investigations show that the cause of the peak/dip is an interference of background p-wave to p-wave scattering amplitudes with the amplitudes for resonant scattering. The equivalent resonance in pyrazine shows the same behaviour and the effect is therefore likely to appear in other benzene-like molecules. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Effects of time delay on stochastic resonance of the stock prices in financial system
Li, Jiang-Cheng [Department of Physics, Yunnan University, Kunming, 650091 (China); Li, Chun [Department of Computer Science, Puer Teachers' College, Puer 665000 (China); Mei, Dong-Cheng, E-mail: meidch@ynu.edu.cn [Department of Physics, Yunnan University, Kunming, 650091 (China)
2014-06-13
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value.
Revisiting surface-integral formulations for one-nucleon transfers to bound and resonance states
Escher, J E; Arbanas, G; Elster, Ch; Eremenko, V; Hlophe, L; Nunes, F M
2014-01-01
One-nucleon transfer reactions, in particular (d,p) reactions, have played a central role in nuclear structure studies for many decades. Present theoretical descriptions of the underlying reaction mechanisms are insufficient for addressing the challenges and opportunities that are opening up with new radioactive beam facilities. We investigate a theoretical approach that was proposed recently to address shortcomings in the description of transfers to resonance states. The method builds on ideas from the very successful R-matrix theory; in particular it uses a similar separation of the parameter space into interior and exterior regions, and introduces a parameterization that can be related to physical observables, which, in principle, makes it possible to extract meaningful spectroscopic information from experiments. We carry out calculations, for a selection of isotopes and energies, to test the usefulness of the new approach.
Power Take-Off with Integrated Resonator for Energy Extraction from Linear Motions
2014-01-01
The invention relates to a magnetic gear for converting linear motion into rotational motion and vice versa. The present invention converts slow linear irregular oscillating motion of wave energy devices into torque on a high speed shaft for powering a generator while making the wave energy device...... of sea or ocean waves into useful energy, such as electricity. The invention relates to the control and operation of a magnetic gear based motor/generator system. The invention provides a high force density electric powered linear actuator....... resonate with the waves. The invention relates to the field of energy-harvesting from energy sources, where the energy-harvesting requires the extraction of energy from slow and often irregular reciprocating motion of bodies. The present invention relates to a wave power apparatus for converting power...
Optical Switching in Silicon Nanowaveguide Ring Resonators Based on Kerr Effect and TPA Effect
LI Chun-Fei; DOU Na
2009-01-01
We analyze theoretically the 1 × 2 low-power all-optical switching in silicon nanowaveguide ring resonators (RR) based on the Kerr effect and two-photon absorption (TPA), and give a comparison between both the all-optical switches. The calculation shows that the switching power of the TPA-RR switch is 3 orders smaller than that of the Kerr-RR switch. The switching time for both the switches is about 100ps.
Turco, S; Janssen, A J E M; Lavini, C; de la Rosette, J J; Wijkstra, H; Mischi, M
2014-01-01
Prostate cancer (PCa) diagnosis and treatment is still limited due to the lack of reliable imaging methods for cancer localization. Based on the fundamental role played by angiogenesis in cancer growth and development, several dynamic contrast enhanced (DCE) imaging methods have been developed to probe tumor angiogenic vasculature. In DCE magnetic resonance imaging (MRI), pharmacokinetic modeling allows estimating quantitative parameters related to the physiology underlying tumor angiogenesis. In particular, novel magnetic resonance dispersion imaging (MRDI) enables quantitative assessment of the microvascular architecture and leakage, by describing the intravascular dispersion kinetics of an extravascular contrast agent with a dispersion model. According to this model, the tissue contrast concentration at each voxel is given by the convolution between the intravascular concentration, described as a Brownian motion process according to the convective-dispersion equation, with the interstitium impulse response, represented by a mono-exponential decay, and describing the contrast leakage in the extravascular space. In this work, an improved formulation of the MRDI method is obtained by providing an analytical solution for the convolution integral present in the dispersion model. The performance of the proposed method was evaluated by means of dedicated simulations in terms of estimation accuracy, precision, and computation time. Moreover, a preliminary clinical validation was carried out in five patients with proven PCa. The proposed method allows for a reduction by about 40% of computation time without any significant change in estimation accuracy and precision, and in the clinical performance.
Wang, Shumin; Duyn, Jeff H
2006-06-21
We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.
Post irradiation effects (PIE) in integrated circuits
Shaw, D. C.; Lowry, L.; Barnes, C.; Zakharia, M.; Agarwal, S.; Rax, B.
1991-01-01
Post-irradiation effects (PIE) ranging from normal recovery to catastrophic failure have been observed in integrated circuits during the PIE period. Data presented show failure due to rebound after a 10 krad(Si) dose. In particular, five device types are investigated with varying PIE response. Special attention has been given to the HI1-507A analog multiplexer because its PIE response is extreme. X-ray diffraction has been uniquely employed to measure physical stress in the HI1-507A metallization. An attempt has been made to show a relationship between stress relaxation and radiation effects. All data presented support the current MIL-STD Method 1019.4 but demonstrate the importance of performing PIE measurements, even when mission doses are as low as 10 krad(Si).
Unconventional Fano effect and off-resonance field enhancement in plasmonic coated spheres
Arruda, Tiago J; Pinheiro, Felipe A
2013-01-01
We investigate light scattering by coated spheres composed of a dispersive plasmonic core and a dielectric shell. By writing the absorption cross-section in terms of the internal electromagnetic fields, we demonstrate it is an observable sensitive to interferences that ultimately lead to the Fano effect. Specially, we show that unconventional Fano resonances, recently discovered for homogeneous spheres with large dielectric permittivities, can also occur for metallic spheres coated with single dielectric layers. These resonances arise from the interference between two electromagnetic modes with the same multipole moment inside the shell and not from interactions between various plasmon modes of different layers of the particle. In contrast to the case of homogeneous spheres, unconventional Fano resonances in coated spheres exist even in the Rayleigh limit. These resonances can induce an off-resonance field enhancement, which is approximately one order of magnitude larger than the one achieved with conventiona...
Resonance of a Metal Drop under the Effect of Amplitude-Modulated High Frequency Magnetic Field
Guo, Jiahong; Lei, Zuosheng; Zhu, Hongda; Zhang, Lijie; Magnetic Hydrodynamics(Siamm) Team; Magnetic Mechanics; Engineering(Smse) Team
2016-11-01
The resonance of a sessile and a levitated drop under the effect of high frequency amplitude-modulated magnetic field (AMMF) is investigated experimentally and numerically. It is a new method to excite resonance of a metal drop, which is different from the case in the presence of a low-frequency magnetic field. The transient contour of the drop is obtained in the experiment and the simulation. The numerical results agree with the experimental results fairly well. At a given frequency and magnetic flux density of the high frequency AMMF, the edge deformations of the drop with an azimuthal wave numbers were excited. A stability diagram of the shape oscillation of the drop and its resonance frequency spectrum are obtained by analysis of the experimental and the numerical data. The results show that the resonance of the drop has a typical character of parametric resonance. The National Natural Science Foundation of China (No. 51274237 and 11372174).
Castriota-Scanderbeg, Alessandro; Hagberg, Gisela E; Cerasa, Antonio; Committeri, Giorgia; Galati, Gaspare; Patria, Fabiana; Pitzalis, Sabrina; Caltagirone, Carlo; Frackowiak, Richard
2005-04-01
We set out to investigate how the expertise of a sommelier is embodied in neural circuitry by comparing brain activity elicited by wine tasting with that found in naive drinkers of wine. We used fMRI to study 7 sommeliers and 7 age- and sex-matched control subjects to test the hypothesis that any difference in brain activity would reflect a learned ability to integrate information from gustatory and olfactory senses with past experience. A group analysis showed activation of a cerebral network involving the left insula and adjoining orbito-frontal cortex in sommeliers. Both these areas have been implicated in gustatory/olfactory integration in primates. In addition, activation was found bilaterally in the dorsolateral prefrontal cortex, which is implicated in high-level cognitive processes such as working memory and selection of behavioral strategies. Naive individuals activated the primary gustatory cortex and brain areas, including the amygdala, implicated in emotional processing.
Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions
Gaafar, Mahmoud; Shukrinov, Yury
2013-08-01
The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave’s amplitude variation on the current-voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation on the width of the parametric resonance region.
A CMOS-MEMS arrayed resonant-gate field effect transistor (RGFET) oscillator
Chin, Chi-Hang; Li, Ming-Huang; Chen, Chao-Yu; Wang, Yu-Lin; Li, Sheng-Shian
2015-11-01
A high-frequency CMOS-MEMS arrayed resonant-gate field effect transistor (RGFET) fabricated by a standard 0.35 μm 2-poly-4-metal CMOS-MEMS platform is implemented to enable a Pierce-type oscillator. The proposed arrayed RGFET exhibits low motional impedance of only 5 kΩ under a purely capacitive transduction and decent power handling capability. With such features, the implemented oscillator shows impressive phase noise of -117 dBc Hz-1 at the far-from-carrier offset (1 MHz). In this work, we design a clamped-clamped beam (CCB) arrayed resonator utilizing a high-velocity mechanical coupling scheme to serve as the resonant-gate array. To achieve a functional arrayed RGFET, a corresponding FET array is directly placed underneath the resonant gate array to convert the motional current on the resonant-gate array into a voltage output with a tunable transconductance gain. To understand the behavior of the proposed device, an equivalent circuit model consisting of the resonant unit and FET is also provided. To verify the effects of the post-CMOS process on device performance, a conventional MOS I D current measurement is carried out. Finally, a CMOS-MEMS arrayed RGFET oscillator is realized by utilizing a Pierce oscillator architecture, showing decent phase noise performance that benefits from the array design to alleviate the nonlinear effect of the resonant gate.
Research on magnetic integrated for zero-current quasi-resonant buck converter%零电流准谐振Buck变换器的磁集成研究
陈正一; 杨玉岗; 李洪珠
2011-01-01
Taking Buck converter as an example,the resonant inductor and resonant capacitor were introduced, which constituted the resonant switch with the converter power switch. Through the resonance,the waveform of current through the power switch became sinusoidal,which created zero-current switching condition for power switch. In this paper, the discrete resonant inductor and filter inductor were integrated to integration magnetic, and the principle of integration Buck converter works was described. The integration of circuit was simulated by Saber software, and the effect of coupling coefficient of the resonant inductor and filter inductor on the resonant frequency and output voltage was analyzed. The loosely coupled and tightly coupled integration approach Was applied to design a ZCS Buck converter,and the zero-current turn-on and zero-current turn-off of power switch was achieved, and was authenticated by saber.%以零电流准谐振Buck变换器为例,引入谐振电感和谐振电容与变换器中的功率开关管组成谐振开关.通过谐振,使流过功率开关管的电流呈正弦波形,为功率开关管创造了零电流开关条件.对分立的谐振电感和滤波电感进行磁集成,阐述集成后Buck变换器工作原理.用Saber软件对集成后的电路进行仿真.分析谐振电感和滤波电感的耦合系数对谐振频率和输出电压的影响.最后采用松耦合和紧耦合两种集成方法设计了一台零电流准谐振Buck变换器,通过Saber软件仿真验证功率开关管实现了零电流开通和零电流关断.
Gómez Rodríguez, Rafael Ángel
2014-01-01
To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.
Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions
Gaafar, Mahmoud, E-mail: futech_ma7moudgaafer@yahoo.com [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Department of Physics, Faculty of Science, Menoufya University (Egypt); Shukrinov, Yury [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden (Germany)
2013-08-15
Highlights: ► We investigated the effect of microwave irradiation on the phase dynamics of IJJs. ► A remarkable changing of the wavelength of LPW at parametric resonance is shown. ► Appearance of an additional parametric resonance before Shapiro step is observed. -- Abstract: The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave’s amplitude variation on the current–voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation on the width of the parametric resonance region.
Yao, Xiaojun; Müller, Berndt
2016-01-01
We study the dynamical screening effect in the QED plasma on the $\\alpha$-$\\alpha$ scattering at the $^8$Be resonance. Dynamical screening leads to an imaginary part of the potential which results in a thermal width for the resonance and dominates over the previously considered static screening effect. As a result, both the resonance energy and width increase with the plasma temperature. Furthermore, dynamical screening can have a huge impact on the $\\alpha$-$\\alpha$ thermal nuclear scattering rate. For example, when the temperature is around $10$ keV, the rate is suppressed by a factor of about $900$. We expect similar thermal suppressions of nuclear reaction rates to occur in nuclear reactions dominated by an above threshold resonance with a thermal energy. Dynamical screening effects on nuclear reactions can be relevant to cosmology and astrophysics.
Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Shaopeng; Han, Jing
2016-07-01
We experimentally demonstrate ultra-low pump power wavelength conversion based on four-wave mixing in a silicon racetrack-shaped microring resonator. When the pump and signal are located at the resonance wavelengths, wavelength conversion with a pump power of only 1 mW can be realized in this microring resonator because of the resonant enhancement of the device. However, saturation of the conversion efficiency occurs because of the shift of the resonance peak, which is caused by the change of the effective refractive index induced by a combination of thermal and free carrier dispersion effects, and it is demonstrated that the thermal effect is the leading-order factor for the change of the refractive index. The maximum conversion efficiency of -21 dB is obtained when the pump power is less than 12 mW. This ultra-low-power on-chip wavelength convertor based on a silicon microring resonator can find important potential applications in highly integrated optical circuits for all-optical signal processing.
Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael
2002-01-29
The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.
Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T
2002-01-01
Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.
Zakharchenko, K V; Kuznetsov, M B; Chistyakov, A A; Karavanskij, V A
2001-01-01
One studies the effect of resonance radiation-free transfer of electronic excitation between silicon nanocrystals and iodine molecules sorbed in pores. The experiment procedure includes laser-induced luminescence and laser desorption mass spectrometry. One analyzes photoluminescence spectra prior to and upon iodine sorption. Excitation of iodine through the mechanism of resonance transfer is determined to result in desorption of the iodine sorbed molecules with relatively high kinetic energies (3-1 eV). One evaluated the peculiar distance of resonance transfer the approximate value of which was equal to 2 nm
Nonuniform three-phase power lines: resonance effects due to conductor transposition
Brandao Faria, J.A.; Guerreiro das Neves, M.V. [Instituto Superior Tecnico, Lisbon (Portugal). Centro de Electrotecnia Teorica e Medidas Electricas
2004-02-01
This paper is concerned with nonuniform power line modelling. It deals with the resonance effects produced by conductor transposition in long overhead three-phase lines. A frequency- domain analysis is conducted showing that the modal propagation parameters characterising the transmission line structure exhibit a repetitive resonant behaviour for frequencies such that the overall transposition cycle length gets close to an integer multiple of one half wavelength. Consideration of these resonance phenomena is of major importance and should be taken into account in a variety of situations, for example, in power line carrier communications and line transient studies. (author)
Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
Červenka, Milan; Bednařík, Michal
2017-06-01
Acoustic streaming in 2D rectangular resonant channels filled with a fluid with a spatial temperature distribution is studied within this work. An inertial force is assumed for driving the acoustic field; the temperature inhomogeneity is introduced by resonator walls with prescribed temperature distribution. The method of successive approximations is employed to derive linear equations for calculation of primary acoustic and time-averaged secondary fields including the streaming velocity. The model equations have a standard form which allows their numerical integration using a universal solver; in this case, COMSOL Multiphysics was employed. The numerical results show that fluid temperature variations in the direction perpendicular to the resonator axis influence strongly the streaming field if the ratio of the channel width and the viscous boundary layer thickness is big enough; the streaming in the Rayleigh vortices can be supported as well as opposed, which can ultimately lead to the appearance of additional vortices.
Rizzuto, Lucia; Marino, Jamir; Noto, Antonio; Spagnolo, Salvatore; Passante, Roberto
2016-01-01
We study the resonance interaction between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated (symmetric or antisymmetric) state and interacting with the scalar field in the vacuum state. Because the two atoms are in a correlated state, the interaction is a second-order effect in the atom-field coupling. We separate the contributions of vacuum fluctuations and radiation reaction to the resonance energy shift of the system, and show that only radiation reaction contributes, while Unruh thermal fluctuations do not affect the resonant interatomic interaction. We also find that beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system, non-thermal effects in the radiation reaction correction change the distance-dependence of the resonance interaction. Finally, we generalize our model to the case of atoms interacting with the electromagnetic field, and shown that new features appear in the ...
Resonance effects of transition radiation emitted from thin foil stacks using electron beam
Awata, Takaaki; Yajima, Kazuaki; Tanaka, Takashi [Kyoto Univ. (Japan). Faculty of Engineering] [and others
1997-03-01
Transition Radiation(TR) X rays are expected to be a high brilliant X-ray source because the interference among TR X rays emitted from many thin foils placed periodically in vacuum can increase their intensity and make them quasi-monochromatic. In order to study the interference (resonance) effects of TR, we measured the energy spectra of TR for several sets of thin-foil stacks at various emission angles. It was found that the resonance effects of TR are classified into intrafoil and interfoil resonances and the intensity of TR X rays increases nonlinearly with increasing foil number, attributing to the interfoil resonance. It became evident that the brilliance of TR is as high as that of SR. (author)
The effect of integrated reporting on integrated thinking between risk ...
iSouthern African Business Review Volume 20 2016. The effect of ... its business model and strategy to respond to its external environment and the risks and opportunities it ...... Harvard Business School Research Working. Paper, 11–100.
Optical back-action in silicon nanowire resonators: bolometric versus radiation pressure effects
Gil-Santos, E.; Ramos, D.; Pini, V.; Llorens, J.; Fernández-Regúlez, M.; Calleja, M.; Tamayo, J.; San Paulo, A.
2013-03-01
We study optical back-action effects associated with confined electromagnetic modes in silicon nanowire resonators interacting with a laser beam used for interferometric read-out of the nanowire vibrations. Our analysis describes the resonance frequency shift produced in the nanowires by two different mechanisms: the temperature dependence of the nanowire's Young's modulus and the effect of radiation pressure. We find different regimes in which each effect dominates depending on the nanowire morphology and dimensions, resulting in either positive or negative frequency shifts. Our results also show that in some cases bolometric and radiation pressure effects can have opposite contributions so that their overall effect is greatly reduced. We conclude that Si nanowire resonators can be engineered for harnessing back-action effects for either optimizing frequency stability or exploiting dynamic phenomena such as parametric amplification.
Effect of three-pion unitarity on resonance poles from heavy meson decays
Satoshi X. Nakamura
2011-10-01
We study the final state interaction in 3-pion decay of meson resonances at the Excited Baryon Analysis Center (EBAC) of JLab. We apply the dynamical coupled-channels formulation which has been extensively used by EBAC to extract N* information. The formulation satisfies the 3-pion unitarity condition which has been missed in the existing works with the isobar models. We report the effect of the 3-pion unitarity on the meson resonance pole positions and Dalitz plot.
José G. Vargas-Hernández
Full Text Available Aims / objectives: This paper aims to analyze organizational management integrity capacity system as an improvement concept for enhancing leadership integrity effectiveness in a university setting. It departs from the analysis of the current organizational culture, values, virtues, managerial capabilities and attitudes to assume any organizational task. This paper aims also to propose a strategic modelfor the institutionalization of an organizational management integrity system. Study design: Cross-sectional study. Place and Duration of Study: University Center for Economic and ManagerialSciences, University of Guadalajara. The study is conducted for one academic year during the term 2011-2012. Methodology: The research methods used are the analytical based in the literature review and interpretative of the main findings to provide a synthetic model.Results and conclusion: The outcomes of the research on the application of organizational management integrity capacity systems may demonstrate that the drama of leadership effectiveness is centered on dysfunctional organizational integrity culture and leadership. This chapter provides a sound strategies and institutionalization for organizational integrity capacity philosophy focused on leadership integrity effectiveness that empowers management professionals to act with integrity and supported by an organizational integrity culture. Implications: The results provide the basis to develop strategies for an organizational integrity leadership framed by an organizational integrity culture, sustained by a code of conduct, regulation policies and overall the development and institutionalization of an organizational integrity capacity system which can positively influence the behavior of key stakeholders and actors.
Hug, William F.; Bhartia, Rohit; Taspin, Alexandre; Lane, Arthur; Conrad, Pamela; Sijapati, Kripa; Reid, Ray D.
2005-11-01
Laser induced native fluorescence (LINF) is the most sensitive method of detection of biological material including microorganisms, virus', and cellular residues. LINF is also a sensitive method of detection for many non-biological materials as well. The specificity with which these materials can be classified depends on the excitation wavelength and the number and location of observation wavelengths. Higher levels of specificity can be obtained using Raman spectroscopy but a much lower levels of sensitivity. Raman spectroscopy has traditionally been employed in the IR to avoid fluorescence. Fluorescence rarely occurs at wavelength below about 270nm. Therefore, when excitation occurs at a wavelength below 250nm, no fluorescence background occurs within the Raman fingerprint region for biological materials. When excitation occurs within electronic resonance bands of the biological target materials, Raman signal enhancement over one million typically occurs. Raman sensitivity within several hundred times fluorescence are possible in the deep UV where most biological materials have strong absorption. Since the Raman and fluorescence emissions occur at different wavelength, both spectra can be observed simultaneously, thereby providing a sensor with unique sensitivity and specificity capability. We will present data on our integrated, deep ultraviolet, LINF/Raman instruments that are being developed for several applications including life detection on Mars as well as biochemical warfare agents on Earth. We will demonstrate the ability to discriminate organic materials based on LINF alone. Together with UV resonance Raman, higher levels of specificity will be demonstrated. In addition, these instruments are being developed as on-line chemical sensors for industrial and municipal waste streams and product quality applications.
Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M
2012-12-01
Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.
Resonance effects in electron-impact ionization of helium
Fang, Yanghua; Bartschat, Klaus
2001-07-01
We have extended our recent work on electron-impact ionization and ionization-excitation of helium (Fang Y and Bartschat K 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L19) to investigate resonance structures in the ejected-electron-residual-ion interaction. The calculations were performed using a second-order perturbative model for a `fast' incident projectile together with a convergent R-matrix with pseudo-states close-coupling model for the initial bound state and the scattering of a `slow' ejected electron in the field of the ion. The agreement with previous calculations by Marchalant et al using a similar model is satisfactory and confirms the importance of the `two-step' mechanism in these processes. However, significant discrepancies remain with experimental data by Lower and Weigold and, to a lesser extent, by McDonald and Crowe.
李慧丽; 黄文韬
2011-01-01
利用同胚变换,把p∶-q共振系统的高次奇点化为初等奇点,通过研究初等奇点的性质来研究高次奇点的性质,并运用计算机代数系统求出初等奇点的前20个奇点量,从而得到1∶-2系统在原点邻域可积的必要条件,并证明这些条件的充分性.%In this article,integrability of the degenerate resonant singular point of a p∶-q resonant system are studied.Firstly,by means of a homeomorphous transformation,the degenerate resonant singular point of the p∶-q resonant system is transformed into the elementary singular point.Hence the problem is transformed into the study of elementary singular point.The top 20 singular point values are given by using Compute Algebra Mathematica.Then the necessary conditions for the integrability are worked out.At last,the sufficiency of these conditions is proved.
Measuring the integrated Sachs-Wolfe effect
Dupé, F.-X.; Rassat, A.; Starck, J.-L.; Fadili, M. J.
2011-10-01
Context. One of the main challenges of modern cosmology is to understand the nature of the mysterious dark energy that causes the cosmic acceleration. The integrated Sachs-Wolfe (ISW) effect is sensitive to dark energy, and if detected in a universe where modified gravity and curvature are excluded, presents an independent signature of dark energy. The ISW effect occurs on large scales where cosmic variance is high and where owing to the Galactic confusion we lack large amounts of data in the CMB as well as large-scale structure maps. Moreover, existing methods in the literature often make strong assumptions about the statistics of the underlying fields or estimators. Together these effects can severely limit signal extraction. Aims: We aim to define an optimal statistical method for detecting the ISW effect that can handle large areas of missing data and minimise the number of underlying assumptions made about the data and estimators. Methods: We first review current detections (and non-detections) of the ISW effect, comparing statistical subtleties between existing methods, and identifying several limitations. We propose a novel method to detect and measure the ISW signal. This method assumes only that the primordial CMB field is Gaussian. It is based on a sparse inpainting method to reconstruct missing data and uses a bootstrap technique to avoid assumptions about the statistics of the estimator. It is a complete method, which uses three complementary statistical methods. Results: We apply our method to Euclid-like simulations and show we can expect a ~7σ model-independent detection of the ISW signal with WMAP7-like data, even when considering missing data. Other tests return ~5σ detection levels for a Euclid-like survey. We find that detection levels are independent from whether the galaxy field is normally or lognormally distributed. We apply our method to the 2 Micron All Sky Survey (2MASS) and WMAP7 CMB data and find detections in the 1.0-1.2σ range, as
Modeling and understanding of effects of randomness in arrays of resonant meta-atoms
Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka
2013-01-01
In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...
Pisarev, P. V.; Anoshkin, A. N.; Pan'kov, A. A.
2016-10-01
The present work formulates the physical and mathematical models capable to forecast acoustic properties of resonance cells in sound absorbing structures. Distribution of acoustic pressure inside the duct and on sidewall cell was found, loss factor of output acoustic pressure wave was calculated for variety of geometric forms of cell's chamber and neck for monochromatic wave in 100-600Hz frequency range. Analysis of the acoustic pressure fields revealed that cell neck geometry strongly influences on cell resonant frequency and on outlet acoustic pressure loss factor. The effectiveness of the proposed by the authors biconical design of the resonant cell was proved, which increased acoustic radiation at the resonance frequency resulting significant increase of loss ratio of wave acoustic pressure at duct outlet.
Resonant and nonresonant magnetoelectric effects in multilayer composites at microwave frequencies
Petrov, V. M.; Bichurin, M. I.; Kiliba, Yu. V.; Srinivasan, G.
2002-03-01
A phenomenological theory is presented on the effect of an external electric field on magnetic and magnetoelectric (ME) susceptibilities of ferroelectric/ferromagnetic composites, such as lithium ferrite lead zirconate titanate (PZT), at microwave frequencies. Expressions have been obtained relating the magnetic susceptibility tensor components of the composite (symmetry point group 3m and 4mm) to ME coupling constants. Estimates of linear and bilinear ME susceptibilities at high frequencies are given and are extended to include ferromagnetic resonance (FMR) conditions [1]. Both magnetic and ME susceptibilities reveal a resonance in the electric field dependence. Three methods for measurements of ME susceptibility at microwave frequencies are considered: electric dipole transitions, resonance ME effects at ferromagnetic resonance and off-resonance method. Using the theory and experimental data on ferromagnetic resonance line shift in external electric field, the ME constants for lithium ferrite-PZT multilayer composite are determined. The theory is useful for measurements of ME constants and for the design and analysis of electrically controlled high frequency magnetic devices. - work supported by a grant from the National Science Foundation (DMR-0072144) 1. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001).
Victoria L Morgan
Full Text Available BACKGROUND: The capabilities of magnetic resonance imaging (MRI to measure structural and functional connectivity in the human brain have motivated growing interest in characterizing the relationship between these measures in the distributed neural networks of the brain. In this study, we attempted an integration of structural and functional analyses of the human language circuits, including Wernicke's (WA, Broca's (BA and supplementary motor area (SMA, using a combination of blood oxygen level dependent (BOLD and diffusion tensor MRI. METHODOLOGY/PRINCIPAL FINDINGS: Functional connectivity was measured by low frequency inter-regional correlations of BOLD MRI signals acquired in a resting steady-state, and structural connectivity was measured by using adaptive fiber tracking with diffusion tensor MRI data. The results showed that different language pathways exhibited different structural and functional connectivity, indicating varying levels of inter-dependence in processing across regions. Along the path between BA and SMA, the fibers tracked generally formed a single bundle and the mean radius of the bundle was positively correlated with functional connectivity. However, fractional anisotropy was found not to be correlated with functional connectivity along paths connecting either BA and SMA or BA and WA. CONCLUSIONS/SIGNIFICANCE: These findings suggest that structure-function relations in the human language circuits may involve a number of confounding factors that need to be addressed. Nevertheless, the insights gained from this work offers a useful guidance for continued studies that may provide a non-invasive means to evaluate brain network integrity in vivo for use in diagnosing and determining disease progression and recovery.
Xu, Hao-jie
2017-02-01
The effects of volume corrections and resonance decays (the resulting correlations between positive charges and negative charges) on cumulants of net-proton distributions and net-charge distributions are investigated by using a Monte Carlo hadron resonance gas (MCHRG) model. The required volume distributions are generated by a Monte Carlo Glauber (MC-Glb) model. Except the variances of net-charge distributions, the MCHRG model with more realistic simulations of volume corrections, resonance decays and acceptance cuts can reasonably explain the data of cumulants of net-proton distributions and net-charge distributions reported by the STAR collaboration. The MCHRG calculations indicate that both the volume corrections and resonance decays make the cumulant products of net-charge distributions deviate from the Skellam expectations: the deviations of Sσ and κσ2 are dominated by the former effect while the deviations of ω are dominated by the latter one.
CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE
D. V. Koliesnikov
2011-01-01
Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.
Cross, Nathan E; Lagopoulos, Jim; Duffy, Shantel L; Cockayne, Nicole L; Hickie, Ian B; Lewis, Simon J G; Naismith, Sharon L
2013-10-01
The hippocampus and thalamus assume a significant role in the overnight consolidation of memories, a process that is negatively impacted by sleep disruption. Emerging evidence suggests that disturbances of sleep in older people may co-occur with underlying neurobiological changes. This study sought to assess glial and neuronal integrity in these regions in relation to subjective sleep disturbance in a healthy older sample. Forty-three healthy older people (mean age = 70, SD = 5.0) were assessed clinically and medically and screened for cognitive and depressive symptoms, as well as sleep disturbance. Single voxel hippocampal and thalamus metabolite ratios of N-acetyl aspartate (NAA) and myo-inositol (mI) with total creatine (Cr + PCr) were measured using magnetic resonance spectroscopy at 3-Tesla. Higher hippocampal mI/Cr + PCr ratios were significantly correlated with poorer self-reported sleep quality (r = .42, p < .01) and less sleep efficiency (r = -0.42, p < .01) as recorded by the Pittsburgh Sleep Quality Index (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989). No other significant correlations were observed within the hippocampus or within the thalamus. These results indicate that in healthy older people, subjective sleep disturbance may be associated with glial alterations in the hippocampus. Future research is now needed to examine these associations with respect to objective sleep measures and overnight memory consolidation.
Magnetic resonance imaging in infantile spasms: effects of hormonal therapy.
Konishi, Y; Yasujima, M; Kuriyama, M; Konishi, K; Hayakawa, K; Fujii, Y; Ishii, Y; Sudo, M
1992-01-01
Magnetic resonance imaging (MRI) was performed on five patients with infantile spasms who were treated with relatively low doses of adrenocorticotrophic hormone (ACTH) to study the extent of brain shrinkage induced by ACTH therapy. MRI prior to ACTH therapy revealed periventricular hyperintensity (PVH) areas and poor myelination in four patients. In one case, MRI performed 2 days after initiation of ACTH therapy also showed PVH and poor myelination. Brain shrinkage was observed 2 weeks after initiation of ACTH therapy. The most impressive follow-up finding upon MRI was the decrease in PVH found in four patients. The differentiation between myelinated white matter and surrounding cortex became poorer in three cases. Cortical atrophy progressed in all patients but ventricular dilation progressed in only one patient. At the end of ACTH therapy, ventricular dilation progressed in all cases. These findings suggest that loss of water not only from periventricular white matter but also from cortex is the main etiological factor of brain shrinkage induced by ACTH.
Threm, Daniela; Jahns, Sabrina; Nazirizadeh, Yousef; Ziegler, Martin; Hansen, Mirko; Kohlstedt, Hermann; Adam, Jost; Gerken, Martina
2013-05-01
Guided mode resonance biosensors are of emerging interest as they allow integration on chip with fabrication on mass scale. The guided mode resonances (GMRs), observed in the transmission or reflection spectrum, are sensitive to refractive index changes in the vicinity of the photonic crystal (PhC) surface. Standard measurement setups utilize a collecting lens, focusing the extracted light intensity onto a single-point photo detector. In order to achieve highly miniaturized devices, we consider the integration of planar emitting and detector structures, such as organic light emitting diodes (OLEDs) and organic photo detectors (OPDs), together with the PhC based biosensors, on a single chip. This approach, however, consequently leads to a broadband, multi-angular light excitation as well as to a broadband and multi-angular contribution to the OPD photon count. While GMR effects in PhC slabs with directional light sources have been widely studied, this lens-less scenario requires a deep understanding regarding the broadband and the angular influence of both incident and reflected or transmitted light. We performed finite-difference time-domain (FDTD) calculations for GMR effects in two-dimensional (2D) PhC slabs. We study the effects for broadband emission in the visible spectrum, together with an angular incident beam divergence of up to 80°. We verified the simulated results by performing angle-resolved spectral measurements with a light emitting diode (LED) in a macroscopic, lens-less setup. We further utilize this numerical setup to provide a deeper understanding of the modal behaviour of our proposed OLED and OPD-based integrated biosensor concept.
Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects
Raza, Søren; Stenger, Nicolas; Wubs, Martijn; Mortensen, N Asger
2013-01-01
We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS). As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius-Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects....
Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects
Pankin, Alexei Y.; Kritz, Arnold H.
2011-07-19
Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.
Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator
YAO Ai-Yun; HOU Wei; LI Hui-Qing; BI Yong; LIN Xue-Chun; GENG Ai-Cong; KONG Yu-Peng; CUI Da-Fu; XU Zu-Yan
2005-01-01
@@ We report a new way, i.e. double-end-pumping, to extend the stability range of a laser resonator, in advantage of making the thermal loading be effectively divided between the ends of the laser crystal to reduce the thermal effect, thus to extend the stability range.
Parra, Jorge O.; Hackert, Chris L.; Ni, Qingwen; Collier, Hughbert A.
2000-09-22
This report contains eight sections. Some individual subsections contain lists of references as well as figures and conclusions when appropriate. The first section includes the introduction and summary of the first-year project efforts. The next section describes the results of the project tasks: (1) implementation of theoretical relations between effect dispersion and the stochastic medium, (2) imaging analyses using core and well log data, (3) construction of dispersion and attenuation models at the core and borehole scales in poroelastic media, (4) petrophysics and a catalog of core and well log data from Siberia Ridge field, (5) acoustic/geotechnical measurements and CT imaging of core samples from Florida carbonates, and (6) development of an algorithm to predict pore size distribution from NMR core data. The last section includes a summary of accomplishments, technology transfer activities and follow-on work for Phase II.
Radiation reaction effect on laser driven auto-resonant particle acceleration
Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.
2015-12-01
The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.
Radiation reaction effect on laser driven auto-resonant particle acceleration
Sagar, Vikram; Sengupta, Sudip; Kaw, P. K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2015-12-15
The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.
Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect
Lattuca, M.; Marino, J.; Noto, A.; Passante, R.; Rizzuto, L.; Spagnolo, S.; Zhou, W.
2017-08-01
We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerated atoms, prepared in a correlated Bell-type state, and interacting with the electromagnetic field in the vacuum state, separating vacuum fluctuations and radiation reaction contributions, both in the free-space and in the presence of a perfectly reflecting plate. We show that nonthermal effects of acceleration manifest in the resonance interaction, yielding a change of the distance dependence of the resonance interaction energy. This suggests that the equivalence between temperature and acceleration does not apply to all radiative properties of accelerated atoms. To further explore this aspect, we evaluate the resonance interaction between two atoms in non inertial motion in the coaccelerated (Rindler) frame and show that in this case the assumption of an Unruh temperature for the field is not required for a complete equivalence of locally inertial and coaccelerated points of views.
Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.
Wang, Xiaolei; Jiang, Houqiang; Chen, Junxue; Wang, Pei; Lu, Yonghua; Ming, Hai
2011-09-26
In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.
Rouben, D.C
1997-11-28
A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.) 70 refs.
Ken, S.; Vieillevigne, L.; Cohen-Jonathan, E.M.; Laprie, A. [Departement de radiotherapie, institut Claudius-Regaud, 31 - Toulouse (France); Ken, S.; Franceries, X.; Lotterie, J.A.; Lubrano, V.; Catalaa, I.; Celsis, P.; Berry, I.; Laprie, A. [Inserm UMR 825 Imagerie cerebrale et handicaps neurologiques, 31 - Toulouse (France); Lotterie, J.A.; Lubrano, V.; Berry, I. [Departement de biophysique, centre hospitalier universitaire de Rangueil, 31 - Toulouse (France); Catalaa, I. [Departement de radiologie, centre hospitalier universitaire de Purpan, 31 - Toulouse (France)
2010-10-15
Based on a clinic trial, the authors report the definition of a new reliable and reproducible method to delimit and integrate targets to the treatment plan which are specific to magnetic resonance spectrometry imagery for the radiotherapy of glioblastomas, in order to perform a treatment by intensity-modulated conformational radiotherapy (IMRT). A weighted conventional MRI has been performed before radiotherapy. The importation of anatomic-metabolic images into the dose planning system comprises two steps: normalization on the whole volume of magnetic resonance spectrometry imagery, and segmentation of target volumes specific to spectrometry anomalies. This integration of target volumes is thus facilitated. Short communication
Kankainen, A.; Woods, P.J.; Doherty, D.T.; Estrade, A.; Lotay, G. [University of Edinburgh, Edinburgh (United Kingdom); Nunes, F.; Schatz, H.; Brown, B.A.; Browne, J.; Meisel, Z.; Zegers, R. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Michigan State University, JINA Center for the Evolution of the Elements, East Lansing, MI (United States); Langer, C.; Montes, F.; Pereira, J.; Stevens, J. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, JINA Center for the Evolution of the Elements, East Lansing, MI (United States); Bader, V.; Gade, A.; Stroberg, R.; Scott, M. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Baugher, T.; Bazin, D.; Kontos, A.; Noji, S.; Recchia, F.; Weisshaar, D. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Perdikakis, G. [Michigan State University, JINA Center for the Evolution of the Elements, East Lansing, MI (United States); Central Michigan University, Mount Pleasant, MI (United States); Redpath, T.; Wimmer, K. [Central Michigan University, Mount Pleasant, MI (United States); Seweryniak, D. [Argonne National Laboratory, Argonne, IL (United States)
2016-01-15
Measurements of angle-integrated cross sections to discrete states in {sup 27}Si have been performed studying the {sup 26}Al(d, n) reaction in inverse kinematics by tagging states by their characteristic γ-decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the {sup 26}Al(p, γ){sup 27}Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment. (orig.)
Effects of Dielectric Substrates and Ground Planes on Resonance Frequency of Archimedean Spirals.
Hooker, Jerris W; Ramaswamy, Vijaykumar; Arora, Rajendra K; Edison, Arthur S; Brey, William W
2016-04-01
Superconducting self-resonant spiral structures are of current interest for applications both in metamaterials and as probe coils for nuclear magnetic resonance (NMR) spectroscopy for high-sensitivity chemical analysis. Accurate spiral models are available in the literature for behavior of a spiral below and up to self-resonance. However, knowledge of the higher modes is also important. We present the relationships between the spiral parameters and the multiple mode frequencies of single sided spirals on dielectric substrates as modeled by method of moments simulation. In the absence of a ground plane, we find that the mode frequency has a linear though not necessarily harmonic dependence on the mode number. The effect of a thick substrate can be approximated by an effective dielectric constant. But when the thickness is less than 20% of the spiral trace width (router - rinner) this approximation is no longer accurate. We have developed a simple empirical formula to predict the higher modes.
Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement.
Boeck, Robi; Jaeger, Nicolas A; Rouger, Nicolas; Chrostowski, Lukas
2010-11-22
Silicon-on-insulator racetrack resonators can be used as multiplexers in wavelength division multiplexing applications. The free spectral range should be comparable to the span of the C-band so that a maximum number of channels can be multiplexed. However, the free spectral range is inversely proportional to the length of the resonator and, therefore, bending losses can become non-negligible. A viable alternative to increase the free spectral range is to use the Vernier effect. In this work, we present the theory of series-coupled racetrack resonators exhibiting the Vernier effect. We demonstrate the experimental performance of the device using silicon-on-insulator strip waveguides. The extended free spectral range is 36 nm and the interstitial peak suppression is from 9 dB to 17 dB.
ABC effect and resonance structure in the double-pionic fusion to 3He
Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Coderre, D.; Czerwiński, E.; Demmich, K.; Doroshkevich, E.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goslawski, P.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Hauenstein, F.; Heijkenskjöld, L.; Hejny, V.; Höistad, B.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khan, F. A.; Khoukaz, A.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Mikirtychiants, M.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Ozerianska, I.; Perez del Rio, E.; Piskunov, N. M.; Podkopał, P.; Prasuhn, D.; Pricking, A.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Sawant, S.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Siudak, R.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Täschner, A.; Trzciński, A.; Varma, R.; Wagner, G. J.; Wolke, M.; Wrońska, A.; Wüstner, P.; Wurm, P.; Yamamoto, A.; Yurev, L.; Zabierowski, J.; Zieliński, M. J.; Zink, A.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; WASA-at-COSY Collaboration
2015-01-01
Exclusive and kinematically complete measurements of the double pionic fusion to 3He have been performed in the energy region of the so-called ABC effect, which denotes a pronounced low-mass enhancement in the π π -invariant mass spectrum. The experiments were carried out with the WASA detector setup at COSY (the cooler synchrotron at Forschungszentrum Jülich). Similar to the observations in the basic p n →d π0π0 reaction and in the d d →4He π0π0 reaction, the data reveal a correlation between the ABC effect and a resonance-like energy dependence in the total cross section. Differential cross sections are well described by the hypothesis of d* resonance formation during the reaction process in addition to the conventional t -channel Δ Δ mechanism. The deduced d* resonance width can be understood from collision broadening due to Fermi motion of the nucleons in initial and final nuclei.
ABC Effect and Resonance Structure in the Double-Pionic Fusion to $^3$He
Adlarson, P; Bardan, W; Bashkanov, M; Bergmann, F S; Berłowski, M; Bhatt, H; Bondar, A; Büscher, M; Calén, H; Ciepał, I; Clement, H; Coderre, D; Czerwiński, E; Demmich, K; Doroshkevich, E; Engels, R; Erven, A; Erven, W; Eyrich, W; Fedorets, P; Föhl, K; Fransson, K; Goldenbaum, F; Goslawski, P; Goswami, A; Grigoryev, K; Gullström, C --O; Hauenstein, F; Heijkenskjöld, L; Hejny, V; Höistad, B; Hüsken, N; Jarczyk, L; Johansson, T; Kamys, B; Kemmerling, G; Khan, F A; Khoukaz, A; Kirillov, D A; Kistryn, S; Kleines, H; Kłos, B; Krzemień, W; Kulessa, P; Kupść, A; Kuzmin, A; Lalwani, K; Lersch, D; Lorentz, B; Magiera, A; Maier, R; Marciniewski, P; Mariański, B; Mikirtychiants, M; Morsch, H -P; Moskal, P; Ohm, H; Ozerianska, I; del Rio, E Perez; Piskunov, N M; Podkopał, P; Prasuhn, D; Pricking, A; Pszczel, D; Pysz, K; Pyszniak, A; Ritman, J; Roy, A; Rudy, Z; Sawant, S; Schadmand, S; Sefzick, T; Serdyuk, V; Shwartz, B; Siudak, R; Skorodko, T; Skurzok, M; Smyrski, J; Sopov, V; Stassen, R; Stepaniak, J; Stephan, E; Sterzenbach, G; Stockhorst, H; Ströher, H; Szczurek, A; Täschner, A; Trzciński, A; Varma, R; Wagner, G J; Wolke, M; Wrońska, A; Wüstner, P; Wurm, P; Yamamoto, A; Yurev, L; Zabierowski, J; Zieliński, M J; Zink, A; Złomańczuk, J; Żuprański, P; Żurek, M
2014-01-01
Exclusive and kinematically complete measurements of the double pionic fusion to $^3$He have been performed in the energy region of the so-called ABC effect, which denotes a pronounced low-mass enhancement in the $\\pi\\pi$-invariant mass spectrum. The experiments were carried out with the WASA detector setup at COSY. Similar to the observations in the basic $pn \\to d \\pi^0\\pi^0$ reaction and in the $dd \\to ^4$He$\\pi^0\\pi^0$ reaction, the data reveal a correlation between the ABC effect and a resonance-like energy dependence in the total cross section. Differential cross sections are well described by the hypothesis of $d^*$ resonance formation during the reaction process in addition to the conventional $t$-channel $\\Delta\\Delta$ mechanism. The deduced $d^*$ resonance width can be understood from collision broadening due to Fermi motion of the nucleons in initial and final nuclei.
Pastor, P
2013-01-01
Within the framework of the circular restricted three body problem we investigate the motion of a dust particle captured into a mean motion resonance with a planet under the action of non-gravitational effects. From equations of motion in a near-canonical form averaged resonant equations are derived. The averaged resonant equations describe secular variations of the particle orbit in the mean motion resonance. The secular variations of the particle orbit caused by the non-gravitational effects can depend on the orientation of the orbit in space. The averaged resonant equations are derived with this dependence taken into account. We also present an alternative way how the averaged resonant equations can be derived. We applied derived theory for the case when non-gravitational effects are the Poynting-Robertson effect, radial stellar wind and interstellar wind. Obtained analytical and numerical results are in excellent agreement in the Solar system. We found that types of orbits correspond to libration centers ...
Electrically actuated MEMS resonators: Effects of fringing field and nonlinear viscoelasticity
Farokhi, Hamed; Ghayesh, Mergen H.
2017-10-01
This paper studies the nonlinear electromechanical response of a MEMS resonator numerically. A nonlinear continuous multi-physics model of the MEMS resonator is developed taking into account the effects of fringing field, size, residual axial load, and viscoelasticity. Moreover, both longitudinal and transverse motions are accounted for in the system modelling and simulations. The equations of motion of the MEMS resonator are obtained employing Hamilton's principle together with the modified version of the couple stress based theory (to account for size effects) and the Kelvin-Voigt model (to account for nonlinear energy dissipation). The Meijs-Fokkema electrostatic load formula is used to reliably model the fringing field effects. The continuous multi-physics model, consisting of geometrical, electrical, and viscos nonlinearities is discretised via a weighted-residual method, yielding a set of nonlinearly coupled ordinary differential equations (ODEs). The resultant set of ODEs is solved numerically when the microresonator is actuated by a biased DC voltage and an AC voltage. The results of the numerical simulations are presented in the form of DC voltage-deflection, DC voltage-natural frequency, and AC frequency-displacement diagrams. The effects of fringing field, residual axial load, small-scale, and nonlinear energy dissipation are highlighted. It is shown that fringing field effects are significant on both static and dynamic electromechanical responses of the MEMS resonator.
Resonant communicators, effective communicators. Communicator’s flow and credibility
Irene García-Ureta, Ph.D
2012-01-01
Full Text Available Communication studies have been integrating the latest developments in cognitive sciences and acknowledging the importance of understanding the subjective processes involved in communication. This article argues that communication studies should also take into account the psychology of the communicator. This article presents the theoretical basis and the results of a training programme designed for audiovisual communicators. The programme is based on the theories of self-efficacy and flow and seeks to improve students’ communication competencies through the use of presentation techniques and psychological skills to tackle communication apprehension. The programme involves an active methodology that is based on modelling, visualisation, immediate feedback and positive reinforcement. A repeated-measures ANOVA shows that the programme successfully decreases the level of communication apprehension, improves the perceived self-efficacy, improves the psychological state needed to perform better in front of the cameras (flow, and improves students’ communication skills. A path analysis proved that the perceived self-efficacy and anxiety levels predict the level of flow during the communication act. At the end of the training programme, those who experienced higher levels of flow and enjoyment during the communication task achieved higher quality levels in their communication exercise. It is concluded that the concepts of self-efficacy and flow facilitate advancing in the understanding of the factors that determine a communicator’s credibility and ability to connect with the audience.
Pauli blocking effect on Efimov states near a Feshbach resonance.
MacNeill, David James; Zhou, Fei
2011-04-08
In this Letter we study the effect of Pauli blocking on Efimov states in a quantum Fermi gas and illustrate that the universal Efimov potential is altered at large distances. We obtain the universal spectrum flow of Efimov trimers when the Fermi density is varied and further consider the effect of scattering of trimers by the Fermi sea. We argue that the universal flow is robust against fluctuating particle-hole pairs that result in an infrared catastrophe in impurity problems.
Hutchinson, Ryan C; Costa, Daniel N; Lotan, Yair
2016-07-01
Prostate magnetic resonance imaging (MRI) is a maturing imaging modality that has been used to improve detection and staging of prostate cancer. The goal of this review is to evaluate the economic effect of the use of MRI and MRI fusion in the diagnosis of prostate cancer. A literature review was used to identify articles regarding efficacy and cost of MRI and MRI-guided biopsies. There are currently a limited number of studies evaluating cost of incorporating MRI into clinical practice. These studies are primarily models projecting cost estimates based on meta-analyses of the literature. There is considerable variance in the effectiveness of MRI-guided biopsies, both cognitive and fusion, based on user experience, type of MRI (3T vs. 1.5T), use of endorectal coil and type of scoring system for abnormalities such that there is still potential for improvement in accuracy. There is also variability in assumed costs of incorporating MRI into clinical practice. The addition of MRI to the diagnostic algorithm for prostate cancer has caused a shift in how we understand the disease and in what tumors are found on initial and repeat biopsies. Further risk stratification may allow more men to pursue noncurative therapy, which in and of itself is cost-effective in properly selected men. As prostate cancer care comes under increasing scrutiny on a national level, there is pressure on providers to be more accurate in their diagnoses. This in turn can lead to additional testing including Multiparametric MRI, which adds upfront cost. Whether the additional cost of prostate MRI is warranted in detection of prostate cancer is an area of intense research. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of Effective Astrophysical S factor for Non-Resonant Reactions
Ueda, M; Pato, M P; Hussein, M S
2003-01-01
We derived analytic formulas of the effective S astrophysical S factor,S^eff for a non-resonant reaction of charged particles using a Taylor expension of the astrophysical S factor and a uniform approximation.The formulas will be able to generate generate more accurate approximation to S^eff than previous ones.
Rafaelsen, Søren R; Sørensen, Torben; Jakobsen, Anders
2008-01-01
OBJECTIVE: To evaluate the effect of experience on preoperative staging of rectal cancer using magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS). MATERIAL AND METHODS: From January 2002 to May 2006, 134 consecutive patients with biopsy-proven rectal cancer were examined with a 1....... In addition to this supervision, the person responsible for staging should be trained through a defined training programme....
Iton, L.E.
1977-01-01
Unusual spin resonance observations made on a sample of rare earth ion-exchanged Y-zeolite have been attributed to the presence of a ferromagnetic impurity, and are qualitatively explained in terms of existing theories on nonlinear behavior in ferromagnetic resonance at high power. The effects included foldover and bistable response below 136 K, due to classical, anisotropy-based nonlinearity; above 136 K, apparent subsidiary absorption--the Suhl instability driven by coupling of low-frequency spin wave modes to the main resonance--predominated. Modification of the surface anisotropy is suggested to account for the complete suppression of the low-temperature effects when the zeolity sample was cooled in air, the high-temperature effects persisting after this cooling but with a loss of orientational anisotropy. Brief room temperature evacuation of the sample was sufficient to regenerate the original effects. Some details of the resonance behavior are very similar to recently published observations from magnetite impurities; those were there attributed to field-induced transitions. The limitations under which a field-dependent Verwey transition could be used to rationalize such observations have been schematically expounded, and the importance of the microwave field again appears to be the dominating factor.
Zhukovsky, Sergei V.; Babicheva, Viktoriia; Uskov, Alexander
2014-01-01
effects in the formation of plasmonic resonance is diminished. We also show that 5-20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon...
Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects
Raza, Søren; Yan, Wei; Stenger, Nicolas; Wubs, Martijn; Mortensen, N. Asger
2013-01-01
We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate ...
Reggiani, N; Colonia, J H; De Holanda, P C
1998-01-01
Taking into account the stringent limits from helioseismology observations on possible matter density fluctuations described by magnetohydrodynamics theory, we find the corresponding time variations of solar neutrino survival probability due to the resonant spin-flavor precession phenomenon with amplitude of order O(10%). We discuss the physics potential of high statistics real time experiments, like as Superkamiokande, to observe the effects of such magnetohydrodynamics fluctuations on their data. We conclude that these observations could be thought as a test of the resonant spin-flavor precession solution to the solar neutrino anomaly.
Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene
Cotting, J. E.; Hoskins, L. C.; Levan, M. E.
1982-08-01
The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.
Thickness Effects in the Resonance of Metasurfaces made of SRRs ans C-SRRs
Pulido-Mancera, L M; Araque, J L
2013-01-01
Different periodical Frequency Selective Surfaces(FSS) whose unit cell are the Split Ring Resonators (SRR) or related geometries and their corresponding complementary screens were studied. This kind of FSS, sometimes called metasurfaces, have the advantage of avoiding secondary grating lobes because of the small electrical size of the unit cell. The main aim of this paper is to investigate the effects of the metal thickness for these FSSs. It was found that the quality factor decrease for unconnected elements (strips) and increase for connected elements (slots). Besides, as the thickness increases, the resonance frequency decrease for the case of unconnected elements while increases for connected elements.
Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.;
2012-01-01
Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited....... A study of the effect on transmission of different combinations of available transmission and reflection diffraction orders show optimum total transmission when only the fundamental reflection order and higher transmission diffraction orders are available. The optimum taper angle is shown...
祁丰; 姚鹏鹏; 辛厚文
2000-01-01
A three-variable model, which was proposed to account for the stochastic resonance (SR) in Belousov-Zhabotinsky (B-Z) reaction in a continuous-flow stirred-tank reactor, is investigated when the control parameter kr, the flow rate, is modulated by noise near supercritical Hopf bifurcation point. Using the computer simulation, noise-induced oscillations are observed, and the signal-to-noise ratio (SNR) goes through a maximum with the increment of noise intensity, which means occurrence of stochastic resonance. in addition, we have also investigated the effects of correlation time of colored noise and the duration time of white noise on the system’s dynamics.
无
2000-01-01
A three-variable model, which was proposed to account for the stochastic resonance (SR) in Belousov-Zhabotinsky (B-Z) reaction in a continuous-flow stirred-tank reactor, is investigated when the control parameter kf , the flow rate, is modulated by noise near supercritical Hopf bifurcation point. Using the computer simulation, noise-induced oscillations are observed, and the signal-to-noise ratio (SNR) goes through a maximum with the increment of noise intensity, which means occurrence of stochastic resonance. In addition, we have also investigated the effects of correlation time of colored noise and the duration time of white noise on the system's dynamics.
Tunable Micro- and Nanomechanical Resonators
Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang
2015-01-01
Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294
Tunable Micro- and Nanomechanical Resonators
Wen-Ming Zhang
2015-10-01
Full Text Available Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators.
Finite-temperature effects on a triatomic Efimov resonance in ultracold cesium
Huang, B.; Sidorenkov, L. A.; Grimm, R.
2015-06-01
We report a thorough investigation of finite-temperature effects on three-body recombination near a triatomic Efimov resonance in an ultracold gas of cesium atoms. Our measurements cover a wide range from a near-ideal realization of the zero-temperature limit to a strongly temperature-dominated regime. The experimental results are analyzed within a recently introduced theoretical model based on a universal zero-range theory. The temperature-induced shift of the resonance reveals a contribution that points to an energy dependence of the three-body parameter. We interpret this contribution in terms of the finite range of the van der Waals interaction in real atomic systems and we quantify it in an empirical way based on length scale arguments. A universal character of the corresponding resonance shift is suggested by observations related to other Efimov resonances and the comparison with a theoretical finite-temperature approach that explicitly takes the van der Waals interaction into account. Our findings are of importance for the precise determination of Efimov resonance positions from experiments at finite temperatures.
Composite Resonances effects on EWPT and Higgs diphoton decay rate
Hernández, A E Cárcamo; Zerwekh, Alfonso R
2015-01-01
In scenarios of strongly coupled electroweak symmetry breaking, heavy composite particles of different spin and parity may arise and cause observable effects on signals that appear at loop levels. The recently observed process of Higgs to $\\gamma \\gamma$ at the LHC is one of such signals. We study the new constraints that are imposed on composite models from $H\\to \\gamma\\gamma$, together with the existing constraints from the high precision electroweak tests. We use an effective chiral Lagrangian to describe the effective theory that contains the Standard Model spectrum and the extra composites below the electroweak scale. Considering the effective theory cutoff at $\\Lambda = 4\\pi v \\sim 3 $ TeV, consistency with the $T$ and $S$ parameters and the newly observed $H\\to \\gamma\\gamma$ can be found for a rather restricted range of masses of vector and axial-vector composites from $1.5$ TeV to $1.7$ TeV and $1.8$ TeV to $1.9$ TeV, respectively, and only provided a non-standard kinetic mixing between the $W^{3}$ an...
The Effect of Incoherent Population Pumping on Squeezing in Resonance Fluorescence
CHEN Zhaoyang; ZHANG Jingtao; XU Zhizhan
2000-01-01
The effect of incoherent population pumping on the steady-state population inversion and the quadrature squeezing spectra produced in the resonance fluorescence of a two-level atom is investigated. In the presence of incoherent population pumping, the steady-state population inversion is increased for small frequency detuning but is not changed for large frequency detuning. For resonant excitation at low intensities, the weak incoherent pumping degrades the degree of the squeezing and shifts the position of the maximum squeezing; for off-resonant excitation at strong intensities, the weak incoherent pumping hardly changes the squeezing spectra. But when the incoherent pumping is strong the squeezing may be completely destroyed for both cases.
Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Nikitin, Sergei; Wang, Zheng; Gillis, David
2015-08-01
We examine the use of multiwavelength ultraviolet (UV) resonance-Raman signatures to identify the effects of growth phase and growth medium on gram-positive and gram-negative bacteria. Escherichia coli (E. coli), Citrobacter koseri (C. koseri), Citrobacter braakii (C. braakii), and Bacillus cereus (B. cereus) were grown to logarithmic and stationary phases in nutrient broth and brain heart infusion broth. Resonance Raman spectra of bacteria were obtained at multiple wavelengths between 220 and 260 nm; a range that encompasses the resonance frequencies of cellular constituents. We find that spectra of the same bacterial species exhibit differences due to both growth condition and growth phase, but the larger differences reflect changes due to growth phase. The differences in the Raman spectra correlate with genetic differences among the species. Using a Pearson correlation based algorithm, we achieve successful identification of these bacteria in 83% of the cases.
Feng, Xi; Li, Hu; Yuxia, Tang
2016-07-01
Under total reflection conditions, it typically seems as though light waves will be reflected completely on the interface; in actuality, the waves can penetrate the medium as evanescent waves. In this paper, we present a twinned lattice photonic crystal with a unit cell composed of AB layers and their mirror. We assume that the refractive index n 0 of the input and output end is equal to n B and larger than n A . We first demonstrate the dependence of band structure on the incidence angle and normalized wavelength, in which the resonant tunneling bands are exposed. We then draw a comparison of bands between ABBA and AB. To conclude, we discuss the resonant tunneling effect in the twinned lattice photonic crystal under the total reflection conditions. As incidence angle increases, the resonant tunneling band ultimately vanishes completely.
Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition
Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Gillis, David; Nikitin, Sergei; Wang, Zheng
2012-06-01
We will examine the use of multi-wavelength UV resonance-Raman signatures to identify the effects of growth phase on different types of bacteria. Gram positive and gram-negative species, Escherichia coli, Bacillus cereus, Citrobacter koseri and Citrobacter braakii were grown to logarithmic and stationary phases in different culture media. Raman spectra of bacteria were obtained by sequential illumination of samples between 220 and 260 nm; a range which encompasses the resonance frequencies of cellular components. In addition to the information contained in the single spectrum, this two-dimensional signature contains information reflecting variations in resonance cross sections with illumination wavelength. Results of our algorithms in identifying the differences between these germs are discussed. Preliminary results indicate that growth affects the Raman signature, but not to an extent that would negate identification of the species.
Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared.
Troia, Benedetto; Khokhar, Ali Z; Nedeljkovic, Milos; Penades, Jordi Soler; Passaro, Vittorio M N; Mashanovich, Goran Z
2014-10-06
In this paper we report the experimental demonstration of racetrack resonators in silicon-on-insulator technology platform operating in the mid-infrared wavelength range of 3.7-3.8 μm. Insertion loss lower than 1 dB and extinction ratio up to 30 dB were measured for single resonators. The experimental characterization of directional couplers and bending losses in silicon rib waveguides are also reported. Furthermore, we present the design and fabrication of cascade-coupled racetrack resonators based on the Vernier effect. Experimental spectra of Vernier architectures were demonstrated for the first time in the mid-infrared with insertion loss lower than 1 dB and maximum interstitial peak suppression of 10 dB.
Effect of atomic diffusion on the Raman-Ramsey CPT resonances
Kuchina, Elena; Novikova, Irina
2015-01-01
We experimentally investigated the characteristics of two-photon transmission resonances in Rb vapor cells with different amount of buffer gas under the conditions of steady-state coherent population trapping (CPT) and pulsed Raman-Ramsey (RR-) CPT interrogation scheme. We particularly focused on the influence of the Rb atoms diffusing in and out of the laser beam. We showed that this effect modifies the shape of both CPT and Raman-Ramsey resonances, as well as their projected performance for CPT clock applications. In particular we found that at moderate buffer gas pressures RR-CPT did not improved the projected atomic clock stability compare to the regular steady-state CPT resonance.
Observation of orbital resonance Hall effect in (TMTSF)2ClO4.
Kobayashi, Kaya; Satsukawa, H; Yamada, J; Terashima, T; Uji, S
2014-03-21
We report the observation of a Hall effect driven by orbital resonance in the quasi-1-dimensional (q1D) organic conductor (TMTSF)2ClO4. Although a conventional Hall effect is not expected in this class of materials due to their reduced dimensionality, we observed a prominent Hall response at certain orientations of the magnetic field B corresponding to lattice vectors of the constituent molecular chains, known as the magic angles (MAs). We show that this Hall effect can be understood as the response of conducting planes generated by an effective locking of the orbital motion of the charge carriers to the MA driven by an electron-trajectory resonance. This phenomenon supports a class of theories describing the rich behavior of MA phenomena in q1D materials based on altered dimensionality. Furthermore, we observed that the effective carrier density of the conducting planes is exponentially suppressed in large B, which indicates possible density wave formation.
From resonantly interacting fermions with effective range to neutron matter
Lacroix, Denis
2016-01-01
A density functional theory is proposed for strongly interacting fermions with arbitrary large negative scattering length. The functional has only two parameters that are directly fixed to reproduce the universal properties of unitary gas: the so-called "Bertsch parameter" $\\xi_0$ and a parameter $\\eta_e$ related to the possible influence of the effective range $r_e$ at infinite scattering length $a$. Using most recent quantum Monte-Carlo (QMC) estimates of these two parameters, it is shown that the functional properly reproduces the experimental measurements of interacting Fermi systems not only at unitarity but also away from this limit over a wide range of $(ak_F)^{-1}$ values. The functional is applied to obtain an expression of the Tan's contact parameter including the effect of $r_e$. Application is finally made to neutron matter. It is shown that most recent QMC results are well reproduced.
Radiation Reaction Effect on Laser Driven Auto-Resonant Particle Acceleration
Sagar, Vikram; Kaw, P K
2015-01-01
The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear as well as circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region the two significant effects on particle dynamics are seen viz., (1) saturation in energy gain by the initially resonant particle, (2) net energy gain by a initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the optimum choice of parameters this scheme can be efficiently used to produce electrons with energies in the range of hundreds of TeV. The quantum corrections to the Landu-Lifshitz equation of motion have also been taken into account. The difference in the energy gain...
Lan, Jun; Li, Yifeng; Yu, Huiyang; Li, Baoshun; Liu, Xiaozhou
2017-04-01
We theoretically investigate the nonlinear effects of acoustic wave propagation and dispersion in a cylindrical pipe with periodically arranged Helmholtz resonators. By using the classical perturbation method in nonlinear acoustics and considering a nonlinear response up to the third-order at the fundamental frequency, the expressions of the nonlinear impedance ZNHR of the Helmholtz resonator and effective nonlinear bulk modulus Bneff of the composite structure are derived. In order to confirm the nonlinear properties of the acoustic metamaterial, the transmission spectra have been studied by means of the acoustic transmission line method. Moreover, we calculate the effective acoustic impedance and dispersion relation of the system using the acoustic impedance theory and Bloch theory, respectively. It is found that with the increment of the incident acoustic pressure level, owing to the nonlinearity of the Helmholtz resonators, the resonant frequency ω0 shifts toward the lower frequency side and the forbidden bandgap of the transmission spectrum is shown to be broadened. The perturbation method employed in this paper extends the general analytical framework for a nonlinear acoustic metamaterial.
Behavioral and Biological Effects of Resonant Electromagnetic Absorption in Rats.
1976-11-01
C) -c C) C) C) tj~ C) C) -c C -C C C’: k ~ ~f jt~ - 39 - anesthetized wits Nembuta] mg/kg). !he LCOF temperature probe1 0 " ] a,, 7 : t. ’on.. enI...Animals with and wit ,.hout Ground Effects", to be submitted for publication to IEEEr Trcznsac -ions or IMior’clave Theory and T,,chriques. 2. 0. P. G... B17 ... .- .- 20 Value for various regions of the leg * aValue for various regions of the arm 10 Ci a U 6 *\\ , c0 0.3 0.6 0.9 1.5 3.0 2 Cross
Yim, Munhyuk; Kim, Dong-Hyun; Chai, Dongkyu; Yoon, Giwan
2004-05-01
In this article, we present the thermal annealing effects of the W/SiO2 multilayer reflectors in ZnO-based film bulk acoustic resonator (FBAR) devices with cobalt (Co) electrodes in comparison with those with aluminum (Al) electrodes. Various thermal annealing conditions have been implemented on the W/SiO2 multilayer reflectors formed on p-type (100) silicon substrates. The resonance characteristics could be significantly improved due to the thermal annealing and were observed to depend strongly on the annealing conditions applied to the reflectors. Particularly, the FBAR devices with the W/SiO2 multilayer reflectors annealed at 400 °C/30 min have shown superior resonance characteristics in terms of return loss and quality factor. In addition, the use of Co electrodes has resulted in the further improvement of the resonance characteristics as compared with the Al electrodes. As a result, the combined use of both the thermal annealing and Co electrodes seems very useful to more effectively improve the resonance characteristics of the FBAR devices with the W/SiO2 multilayer reflectors. .
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan
2016-10-03
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.
Role of light scalar resonances in strongly interacting chiral effective Lagrangians
Abdel-Rehim, Abdou M.
We studied the role of a putative nonet of light scalar mesons in the isospin violating decay eta → 3pi. The framework is a non-linear chiral effective Lagrangian. The contributions from the scalars is found to enhance the result for the decay width by 15% at leading order. Due to cancellations among different scalar contributions, their effect is less than expected. A preliminary discussion of the related process eta' → 3pi is given. We apply the K-matrix unitarization method to the case of strongly coupled Higgs sector of the electro-weak theory. The complex pole position of the scattering amplitude of the Goldstone bosons are evaluated for the whole range of bare Higgs masses. We compare the unitarized amplitude obtained from the K-matrix to the Breit-Wigner shape for narrow resonances. We apply the same technique to study the effect of final state interactions in the gluon fusion process. Finally, the K-matrix unitarization is used to study the properties of the scalar resonances sigma(550) and f 0(980) in the framework of non-linear chiral Lagrangian. The physical mass and width of these resonances are determined from the pole position of the I = 0, J = 0 partial wave of the pipi scattering amplitude. It is found that, to a great extent, the results are very similar to those obtained in the framework of linear chiral Lagrangian unitarized by the K-matrix method or the nonlinear chiral Lagrangian approximately unitarized by a modified Breit-Wigner resonance shape. A discussion of the effect of sigma(550) and f0(980) in the I = 1, J = 1 and I = 2, J = 0 partial waves, where the rho(770) vector resonance dominates, is given.
Laser phase noise effects on the dynamics of optomechanical resonators
Phelps, Gregory A
2010-01-01
We investigate theoretically the influence of laser phase noise on the cooling and heating of a generic cavity optomechanical system. We derive the back-action damping and heating rates and the mechanical frequency shift of the radiation pressure-driven oscillating mirror, and derive the minimum phonon occupation number for small laser linewidths. We find that in practice laser phase noise does not pose serious limitations to ground state cooling. We then consider the effects of laser phase noise in a parametric cavity driving scheme that minimizes the back-action heating of one of the quadratures of the mechanical oscillator motion. Laser linewidths narrow compared to the decay rate of the cavity field will not pose any problems in an experimental setting, but broader linewidths limit the practicality of this back-action evasion method.
The Modulation of Ionospheric Alfven Resonator on Heating HF Waves and the Doppler Effect
NiBin-bin; ZhaoZheng-yu; XieShu-guo
2003-01-01
The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature varia-tions on the Alfven resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfven resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi-quadratic relation with the Alfven field, which directly inspires the formation of cross-spectrum between ULF waves and HF waves and results in spectral peaks at some gyro-frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high-speed flyer and the drifting electrons and the frequency shift from the phase vari-ation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.
Signal modulating noise effect in bistable stochastic resonance systems and its analog simulation
XIAO Fang-hong; YAN Gui-rong; XIE Shi-cheng
2006-01-01
The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.
Effect of temperature on electrical resonance in leopard frog saccular hair cells.
Smotherman, M S; Narins, P M
1998-01-01
Leopard frog saccular hair cells exhibit an electrical resonance in response to a depolarizing stimulus that has been proposed to contribute to the tuning properties of the frog sacculus by acting as an electrical band-pass filter. With the whole cell patch-clamp technique, we have investigated the effect of temperature on electrical resonances in isolated saccular hair cells, and we have described the effects of temperature on the currents and channel kinetics underlying electrical resonance. A hair cell's onset resonant frequency in response to a constant depolarizing current pulse increases linearly with temperature at a rate of 11 Hz/1 degrees C, exhibiting a mean Q10 of 1.7 between 15 and 35 degrees C. However, offset resonant frequencies continue to double every 10 degrees C, exhibiting a mean Q10 of 2.1. If steady-state voltage during the stimulus is held constant, all oscillatory frequencies increase with a mean Q10 of 2.1. The average level of steady-state depolarization during a +150-pA depolarizing current pulse decreases with increasing temperature (-6 mV from 15 to 25 degrees C). This temperature-dependent reduction of the steady-state membrane potential causes a shift in the voltage-dependent channel kinetics to slower rates, thus reducing the apparent Q10 for onset resonant frequencies. The peak outward tail current and net steady-state outward current, which is the sum of a voltage-dependent inward calcium current (ICa) and an outward calcium-dependent potassium current (IK(Ca)), increase with temperature, exhibiting a mean Q10 of 1.7 between 15 and 25 degrees C. The activation rate (T1/2) of the outward current exhibits a mean Q10 of 2.3 between 15 and 25 degrees C, while the deactivation rate (taurel) exhibits a mean Q10 of 2.9 over the same temperature range. These results support previous models of the molecular determination of resonant frequency, which have proposed that a combination of IK(Ca) channel kinetics and the overall magnitude of the
Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions
Gaafar, Mahmoud; Shukrinov, Yury
2012-01-01
The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave's amplitude variation on the current-voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation...
Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces.
Soboleva, I V; Moskalenko, V V; Fedyanin, A A
2012-03-23
The Goos-Hänchen effect and Fano resonance are studied in photonic crystals that are considered Fourier counterparts in wave-vector-coordinate space. The Goos-Hänchen effect, which is enhanced by the excitation of Bloch surface electromagnetic waves, is visualized using far-field microscopy and measured at the surface of photonic crystals by angular spectroscopy. The maximal Goos-Hänchen shift is observed to be 66 μm.
Positron and electron scattering by glycine and alanine: Shape resonances and methylation effect
Nunes, Fernanda B.; Bettega, Márcio H. F.; Sanchez, Sergio d'Almeida
2016-12-01
We report integral cross sections (ICSs) for both positron and electron scattering by glycine and alanine amino acids. These molecules differ only by a methyl group. We computed the scattering cross sections using the Schwinger multichannel method for both glycine and alanine in different levels of approximation for both projectiles. The alanine ICSs are greater in magnitude than the glycine ICSs for both positron and electron scattering, probably due to the larger size of the molecule. In electron scattering calculations, we found two resonances for each molecule. Glycine presents one at 1.8 eV, and another centered at around 8.5 eV, in the static-exchange plus polarization (SEP) approximation. The ICS for alanine shows one resonance at 2.5 eV and another at around 9.5 eV, also in SEP approximation. The results are in good agreement with most of the data present in the literature. The comparison of the electron scattering ICSs for both molecules indicates that the methylation of glycine destabilizes the resonances, shifting them to higher energies.
On the tilting of protostellar disks by resonant tidal effects
Lubow, S H
2000-01-01
We consider the dynamics of a protostellar disk surrounding a star in acircular-orbit binary system. Our aim is to determine whether, if the disk isinitially tilted with respect to the plane of the binary orbit, the inclinationof the system will increase or decrease with time. The problem is formulated inthe binary frame in which the tidal potential of the companion star is static.We consider a steady, flat disk that is aligned with the binary plane andinvestigate its linear stability with respect to tilting or warpingperturbations. The dynamics is controlled by the competing effects of the m=0and m=2 azimuthal Fourier components of the tidal potential. In the presence ofdissipation, the m=0 component causes alignment of the system, while the m=2component has the opposite tendency. We find that disks that are sufficientlylarge, in particular those that extend to their tidal truncation radii, aregenerally stable and will therefore tend to alignment with the binary plane ona time-scale comparable to that found ...
Learning word meanings: overnight integration and study modality effects.
Frauke van der Ven
Full Text Available According to the complementary learning systems (CLS account of word learning, novel words are rapidly acquired (learning system 1, but slowly integrated into the mental lexicon (learning system 2. This two-step learning process has been shown to apply to novel word forms. In this study, we investigated whether novel word meanings are also gradually integrated after acquisition by measuring the extent to which newly learned words were able to prime semantically related words at two different time points. In addition, we investigated whether modality at study modulates this integration process. Sixty-four adult participants studied novel words together with written or spoken definitions. These words did not prime semantically related words directly following study, but did so after a 24-hour delay. This significant increase in the magnitude of the priming effect suggests that semantic integration occurs over time. Overall, words that were studied with a written definition showed larger priming effects, suggesting greater integration for the written study modality. Although the process of integration, reflected as an increase in the priming effect over time, did not significantly differ between study modalities, words studied with a written definition showed the most prominent positive effect after a 24-hour delay. Our data suggest that semantic integration requires time, and that studying in written format benefits semantic integration more than studying in spoken format. These findings are discussed in light of the CLS theory of word learning.
Learning word meanings: overnight integration and study modality effects.
van der Ven, Frauke; Takashima, Atsuko; Segers, Eliane; Verhoeven, Ludo
2015-01-01
According to the complementary learning systems (CLS) account of word learning, novel words are rapidly acquired (learning system 1), but slowly integrated into the mental lexicon (learning system 2). This two-step learning process has been shown to apply to novel word forms. In this study, we investigated whether novel word meanings are also gradually integrated after acquisition by measuring the extent to which newly learned words were able to prime semantically related words at two different time points. In addition, we investigated whether modality at study modulates this integration process. Sixty-four adult participants studied novel words together with written or spoken definitions. These words did not prime semantically related words directly following study, but did so after a 24-hour delay. This significant increase in the magnitude of the priming effect suggests that semantic integration occurs over time. Overall, words that were studied with a written definition showed larger priming effects, suggesting greater integration for the written study modality. Although the process of integration, reflected as an increase in the priming effect over time, did not significantly differ between study modalities, words studied with a written definition showed the most prominent positive effect after a 24-hour delay. Our data suggest that semantic integration requires time, and that studying in written format benefits semantic integration more than studying in spoken format. These findings are discussed in light of the CLS theory of word learning.
Assessing the Effectiveness of Integrity Tests: A Review.
Coyne, Iain; Bartram, Dave
2002-01-01
Applied a structured framework to the research literature to assess the general effectiveness of integrity tests as used to assess "honesty" in preemployment screening. In terms of acceptability, research has indicated that integrity tests are viewed neither positively nor negatively, but considerable debate remains about false positive rates and…
Zhang, Yunshun; Zheng, Rencheng; Shimono, Keisuke; Kaizuka, Tsutomu; Nakano, Kimihiko
2016-10-17
The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance. The energy harvester was miniaturized with a bistable cantilever structure, and the on-road noise was measured for the implementation of a vibrator in an experimental setting. A validation experiment revealed that the harvesting system was optimized to capture power that was approximately 12 times that captured under only on-road noise excitation and 50 times that captured under only the periodic gravity force. Moreover, the investigation of up-sweep excitations with increasing rotational frequency confirmed that stochastic resonance is effective in optimizing the performance of the energy harvester, with a certain bandwidth of vehicle speeds. An actual-vehicle experiment validates that the prototype harvester using stochastic resonance is capable of improving power generation performance for practical tire application.
Noise-induced transitions and resonant effects in nonlinear systems
Zaikin, Alexei
2003-02-01
Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich
Influence of the FID and off-resonance effects in dense MRI.
Haraldsson, Henrik; Sigfridsson, Andreas; Sakuma, Hajime; Engvall, Jan; Ebbers, Tino
2011-04-01
Accurate functional measurement in cardiovascular diseases is important as inaccuracy may compromise diagnostic decisions. Cardiac function can be assessed using displacement encoding with stimulated echoes, resulting in three signal components. The free induction decay (FID), arising from spins undergoing T(1) -relaxation, is not displacement encoded and impairs the displacement acquired. Techniques for suppressing the FID exist; however, a residual will remain. The effect of the residual is difficult to distinguish and investigate in vitro and in vivo. In this work, the influence of the FID as well as of off-resonance effects is evaluated by altering the phase of the FID in relation to the stimulated echo. The results show that the FID and off-resonance effects can impair the accuracy of the displacement measurement acquired. The influence of the FID can be avoided by using an encoded reference. We therefore recommend the assessment of this influence of the FID for each displacement encoding with stimulated echoes protocol.
Negative refraction realized by band folding effect in resonator-based acoustic metamaterials
Liu, Jiao; Hou, Zhilin, E-mail: phzlhou@scut.edu.cn; Fu, Xiujun
2015-09-25
We show in the paper that a two-dimensional acoustic metamaterial with isotropic negative refraction band at subwavelength scale can be constructed simply by arranging only one kind of Helmholtz resonators into honeycomb-like lattice. To understand the phenomenon, the mechanism for double negative metamaterial is investigated. We point out that double negative metamaterials can be obtained only when the phase accumulating over their constructive unit cell becomes greater than π but smaller than 2π. Based on the understanding, we attribute the negative refraction phenomenon in our suggested structure as a result of the band folding effect. - Highlights: • Negative-refraction structure by only one kind of resonators is suggested. • Directional and isotropic negative band at subwavelength scale are obtained. • The mechanism is understood as the band folding effect. • The influences of the wall friction and thermoviscous diffusive effect are checked.
Flavour effects in Resonant Leptogenesis from semi-classical and Kadanoff-Baym approaches
Dev, P S Bhupal; Pilaftsis, Apostolos; Teresi, Daniele
2015-01-01
Flavour effects play an important role in the statistical evolution of particle number densities in several particle physics phenomena. We present a fully flavour-covariant formalism for transport phenomena, in order to consistently capture all flavour effects in the system. We explicitly study the scenario of Resonant Leptogenesis (RL), and show that flavour covariance requires one to consider generically off-diagonal number densities, rank-4 rate tensors in flavour space, and non-trivial generalization of the discrete symmetries C, P and T. The flavour-covariant transport equations, obtained in our semi-classical framework, describe the effects of three relevant physical phenomena: coherent heavy-neutrino oscillations, quantum decoherence in the charged-lepton sector, and resonant CP violation due to heavy-neutrino mixing. We show quantitatively that the final asymmetry is enhanced by up to an order of magnitude, for electroweak-scale heavy neutrinos, as compared to that obtained from flavour-diagonal or pa...
Barbour, Josiah B; Karty, Joel M
2004-02-06
Density functional theory was employed to calculate the acidities and hydride abstraction enthalpies of propene (3) and propane (4), along with their vinylogues (5 and 6, respectively). The same reaction enthalpies were calculated for the propene vinylogues in which the terminal vinyl group was rotated perpendicular to the rest of the conjugated system (7). The contribution by resonance and inductive effects toward the acidity and hydride abstraction enthalpy of each vinylogue of 5 (n = 1-3) was computed and extrapolated to n = 0 (the parent propene system). The resonance energies of the allyl cation and anion were determined to be about 20-22 and 17-18 kcal/mol, respectively. Comparisons are made to resonance energies calculated using other methodologies.
Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal
Holod, I.; Lin, Z.; Taimourzadeh, S.; Nazikian, R.; Spong, D.; Wingen, A.
2017-01-01
Vacuum resonant magnetic perturbations (RMP) applied to otherwise axisymmetric tokamak plasmas produce in general a combination of non-resonant effects that preserve closed flux surfaces (kink response) and resonant effects that introduce magnetic islands and/or stochasticity (tearing response). The effect of the plasma kink response on the linear stability and nonlinear transport of edge turbulence is studied using the gyrokinetic toroidal code GTC for a DIII-D plasma with applied n = 2 vacuum RMP. GTC simulations use the 3D equilibrium of DIII-D discharge 158103 (Nazikian et al 2015 Phys. Rev. Lett. 114 105002), which is provided by nonlinear ideal MHD VMEC equilibrium solver in order to include the effect of the plasma kink response to the external field but to exclude island formation at rational surfaces. Analysis using the GTC simulation results reveal no increase of growth rates for the electrostatic drift wave instability and for the electromagnetic kinetic-ballooning mode in the presence of the plasma kink response to the RMP. Furthermore, nonlinear electrostatic simulations show that the effect of the 3D equilibrium on zonal flow damping is very weak and found to be insufficient to modify turbulent transport in the electrostatic turbulence.
Effects of spatial and selective attention on basic multisensory integration
Gondan, Matthias; Blurton, Steven Paul; Hughes, F.;
2011-01-01
When participants respond to auditory and visual stimuli, responses to audiovisual stimuli are substantially faster than to unimodal stimuli (redundant signals effect, RSE). In such tasks, the RSE is usually higher than probability summation predicts, suggestive of specific integration mechanisms...
Exploring cost-effective maize integrated weed management ...
Exploring cost-effective maize integrated weed management approaches under intensive farming systems. ... Log in or Register to get access to full text downloads. ... Kamuliand Iganga districts with one hand-hoe weeding (1hh) as the control.
Effective theory for neutral resonances and a statistical dissection of the ATLAS diboson excess
Fichet, Sylvain; von Gersdorff, Gero
2015-12-01
We classify the complete set of dimension-5 operators relevant for the resonant production of a singlet of spin 0 or 2 linearly coupled to the Standard Model (SM). We compute the decay width of such states as a function of the effective couplings, and provide the matching to various well-motivated New Physics scenarios. We then investigate the possibility that one of these neutral resonances be at the origin of the excess in diboson production recently reported by the ATLAS collaboration. We perform a shape analysis of the excess under full consideration of the systematic uncertainties to extract the width Γtot of the hypothetical resonance, finding it to be in the range 26 GeV Z, ZZ reported by ATLAS follow a joint trivariate Poisson distribution, which opens the possibility of a thorough likelihood analysis of the event rates. The background systematic uncertainties are also included in our analysis. We show that the data do not require WZ production and could thus in principle be explained by neutral resonances. We then use both the information on the width and the cross section, which prove to be highly complementary, to test the effective Lagrangians of singlet resonances. Regarding specific models, we find that neither scalars coupled via the Higgs-portal nor the Randall-Sundrum (RS) radion can explain the ATLAS anomaly. The RS graviton with all matter on the infrared (IR) brane can in principle fit the observed excess, while the RS model with matter propagating in the bulk requires the presence of IR brane kinetic terms for the gauge fields.
Effective theory for neutral resonances and a statistical dissection of the ATLAS diboson excess
Fichet, Sylvain; Gersdorff, Gero von [ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica,Rua Dr. Bento Teobaldo Ferraz, 271, São Paulo, São Paulo State University (Brazil)
2015-12-15
We classify the complete set of dimension-5 operators relevant for the resonant production of a singlet of spin 0 or 2 linearly coupled to the Standard Model (SM). We compute the decay width of such states as a function of the effective couplings, and provide the matching to various well-motivated New Physics scenarios. We then investigate the possibility that one of these neutral resonances be at the origin of the excess in diboson production recently reported by the ATLAS collaboration. We perform a shape analysis of the excess under full consideration of the systematic uncertainties to extract the width Γ{sub tot} of the hypothetical resonance, finding it to be in the range 26 GeV <Γ{sub tot}< 144 GeV at 95% C.L. We then point out that the three overlapping selections WW, WZ, ZZ reported by ATLAS follow a joint trivariate Poisson distribution, which opens the possibility of a thorough likelihood analysis of the event rates. The background systematic uncertainties are also included in our analysis. We show that the data do not require W Z production and could thus in principle be explained by neutral resonances. We then use both the information on the width and the cross section, which prove to be highly complementary, to test the effective Lagrangians of singlet resonances. Regarding specific models, we find that neither scalars coupled via the Higgs-portal nor the Randall-Sundrum (RS) radion can explain the ATLAS anomaly. The RS graviton with all matter on the infrared (IR) brane can in principle fit the observed excess, while the RS model with matter propagating in the bulk requires the presence of IR brane kinetic terms for the gauge fields.
Salleh, Tuan Salwani; Zakaria, Effandi
2016-01-01
The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…
无
2008-01-01
New shielding material has become an alternative to traditional metal to shield boxes from electromagnetic interferences. This article introduces the theory of transmission line method to study the shield boxes made of a new sort of material, and then expands the fundamental formulas to deal with the cases of multiple holes and polarization with arbitrary angle. By means of genetic algorithms with the aid of a three dimensional simulation tool, the damping of electromagnetic resonances in enclosures is researched.The computation indicates that under resonant frequency, electromagnetic resonance results in low, even negative shielding coefficient; whereas, for the same areas, shielding effectiveness of a single hole is worse than that of multiple holes. Shielding coefficient varies when polarization angle increases, and the coupled field through the rectangular aperture with the long side parallel to the thin wire is much weaker than that with the long side vertical to the thin wire. By using the metallic-loss dielectric layer of optimized calculation on the internal surface of the cavity, the best result of resonance suppression has been realized with the same thickness of coating. Finally, according to the calculation result, suggestions for shielding are proposed.
Finite-temperature effects on a triatomic Efimov resonance in ultracold cesium
Huang, Bo; Grimm, Rudolf
2015-01-01
We report a thorough investigation of finite-temperature effects on three-body recombination near a triatomic Efimov resonance in an ultracold gas of cesium atoms. Our measurements cover a wide range from a near-ideal realization of the zero-temperature limit to a strongly temperature-dominated regime. The experimental results are analyzed within a recently introduced theoretical model based on a universal zero-range theory. The temperature-induced shift of the resonance reveals a contribution that points to an energy-dependence of the three-body parameter. We interpret this contribution in terms of the finite range of the van der Waals interaction in real atomic systems and we quantify it in an empirical way based on length scale arguments. A universal character of the corresponding resonance shift is suggested by observations related to other Efimov resonances and the comparison with a theoretical finite-temperature approach that explicitly takes the van der Waals interaction into account. Our findings are ...
Hamiltonian effective field theory study of the $\\mathbf{N^*(1440)}$ resonance in lattice QCD
Liu, Zhan-Wei; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-01-01
We examine the phase shifts and inelasticities associated with the $N^*(1440)$ Roper resonance and connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian effective field theory. We explore three hypotheses for the structure of the Roper resonance. In the first scenario, the Roper is postulated to have a triquark-like bare or core component with a mass exceeding the resonance mass. This component mixes with attractive virtual meson-baryon contributions, including the $\\pi N$, $\\pi\\Delta$, and $\\sigma N$ channels, to reproduce the observed pole position. In the second hypothesis, the Roper resonance is dynamically generated purely from the meson-baryon channels. However, given the presence of a bare state associated with the ground state nucleon, we proceed to consider a third scenario incorporating the presence of this low-lying basis state. All three hypotheses are able to describe the scattering data well. However, the first hypothesis predicts a low-lying st...
Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation
Han Yan
2017-01-01
Full Text Available In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and the flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of the resonator.
Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation.
Yan, Han; Zhang, Wen-Ming; Jiang, Hui-Ming; Hu, Kai-Ming
2017-01-08
In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and the flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of the resonator.
Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation
Yan, Han; Zhang, Wen-Ming; Jiang, Hui-Ming; Hu, Kai-Ming
2017-01-01
In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and the flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of the resonator. PMID:28075344
Integrating Participatory Elements into an Effectiveness Evaluation
Wallace, Tanner LeBaron
2008-01-01
This article describes an effectiveness evaluation of an intensive case management intervention coordinated by a non-profit organization in a midsize Midwest City. As an effectiveness evaluation, the primary evaluation question was causal in nature; the key task of the evaluative study was to establish and probe connections between the…
InP tunable ring resonator filters
Tauke-Pedretti, A.; Vawter, G. A.; Skogen, E. J.; Peake, G.; Overberg, M.; Alford, C.; Torres, D.; Cajas, F.
2013-03-01
Optical channelizing filters with narrow linewidth are of interest for optical processing of microwave signals. Fabrication tolerances make it difficult to place exactly the optical resonance frequency within the microwave spectrum as is required for many applications. Therefore, efficient tuning of the filter resonance is essential. In this paper we present a tunable ring resonator filter with an integrated semiconductor optical amplifier (SOA) fabricated on an InP based photonic integrated circuit (PIC) platform. The ring resonance is tuned over 37 GHz with just 0.2 mA of current injection into a passive phase section. The use of current injection is often more efficient than thermal tuning using heaters making them useful for low-power applications. The single active ring resonator has an electrical FWHM of 1.5 GHz and shows greater than 16 dB of extinction between on and off resonance. The effects of SOA internal ring gain and induced passive loss on extinction and linewidth will be shown. Agreement between experimentally demonstrated devices and simulations are shown. The integration of the active and passive regions is done using quantum well intermixing and the resonators utilize buried heterostructure waveguides. The fabrication process of these filters is compatible with the monolithic integration of DBR lasers and high speed modulators enabling single chip highly functional PICs for the channelizing of RF signals.
Matthias C. Krantz
2013-05-01
Full Text Available Resonant bending-mode magnetoelectric (ME coefficients of magnetostrictive-piezoelectric multilayer cantilevers are calculated analytically using a model developed for arbitrary multilayers on a substrate. Without quality factor effects the ME coefficient maxima in the four-dimensional parameter space of layer numbers, layer sequences, piezoelectric volume fractions, and substrate thicknesses are found to be essentially constant for nonzero substrate thickness. Global maxima occur for bilayers without substrates. Vanishing magnetoelectric response regions result from voltage cancellation in piezoelectric layers or absence of bending-mode excitation. They are determined by the neutral plane position in the multilayer stack. With Q-factor effects dominated by viscous air damping ME coefficients strongly increase with cantilever thickness primarily due to increasing resonance frequencies. The results yield a layer specific prediction of ME coefficients, resonance frequencies, and Q-factors in arbitrary multilayers and thus distinction of linear-coupling and Q-factor effects from exchange interaction, interface, or nonlinear ME effects.
Lin, Na; Barone, Vincenzo; Cappelli, Chiara; Zhao, Xian; Ruud, Kenneth; Santoro, Fabrizio
2013-07-01
We simulate the resonance Raman spectra of trans-stilbene using a recently developed time-independent method that allows computations of the full two-dimensional spectrum as a function of the incident and scattered frequencies, including both the Franck-Condon and the Herzberg-Teller contributions. The potential energy surfaces (PESs) of the ground and resonant states are described in the harmonic approximation using density functional theory PBE0/6-31+G(d,p) calculations in gas phase and in cyclohexane. The simulated spectra are in good agreement with the experimental data [J. Chem. Phys. 83, 5000 (1985)] measured at four different excitation wavelengths, and allow us to unambiguously assign the main experimental bands. We perform an extensive comparison of the performance of four different vertical or adiabatic models for the PES of the resonant state, dissecting the effects of nuclear displacements and Duschinsky mixings on the spectra.
Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect.
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Chang, Houchen; Pearson, John E.; Wu, Mingzhong; Ketterson, John B.; Hoffmann, Axel
2015-11-06
We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y3Fe5O12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc current through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. We find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.
Stagg, Charlotte J; Johansen-Berg, Heidi
2013-01-01
Transcranial direct-current stimulation (tDCS) is showing increasing promise as an adjunct therapy in stroke rehabilitation. However questions still remain concerning its mechanisms of action, which currently limit its potential. Magnetic resonance (MR) techniques are increasingly being applied to understand the neural effects of tDCS. Here, we review the MR evidence supporting the use of tDCS to aid recovery after stroke and discuss the important open questions that remain.
Charlotte J Stagg
2013-12-01
Full Text Available Transcranial direct current stimulation (tDCS is showing increasing promise as an adjunct therapy in stroke rehabilitation. However questions still remain concerning its mechanisms of action, which currently limit its potential. Magnetic Resonance (MR techniques are increasingly being applied to understand the neural effects of tDCS. Here, we review the MR evidence supporting the use of tDCS to aid recovery after stroke and discuss the important open questions that remain.
ABC Effect in Double-Pionic Fusion – a New Resonance?
Skorodko T.
2012-12-01
Full Text Available ABC effect, an intriguing low-mass enhancement in the ππ invariant mass spectrum — known since more than 50 years from inclusive measurements of double-pionic fusion reactions — is reexamined. To this end exclusive and kinematically complete high-statistics experiments of the fusion reactions to d, 3He and 4He have been carried out with WASA at COSY. These measurements cover the full energy region, where the ABC effect has been observed previously. They also complement the systematic measurements of nucleon-nucleon induced two-pion production. An isospin decomposition of all three basic double-pionic fusion reactions leading to the deuteron uniquely shows that solely the isoscalar reaction part exhibits the ABC effect tightly correlated with a narrow resonance structure in the total cross section. The peak energy of the resonance structure is about 90 MeV below the nominal ΔΔ threshold of 2 mΔ and its width of only 70 MeV is much less than the 2 ГΔ expected from the conventional t-channel ΔΔ process. Based on angular distributions the quantum numbers I(JP = 0(3+ have been assigned. In the double-pionic fusion reaction dd→4Heπ0π0 again the ABC effect is observed to be correlated with the appearance of a resonance-like structure in the total cross section at the same excess energy. From this we conclude that this resonance structure obviously is strong enough to survive even in nuclei.
Quasi-Resonance Effects Observed in The 1994 Northridge Earthquake, and Others
Fischer, Edward G.; Thomas P. Fischer
1998-01-01
Sine-beat phenomena have been found in the 1994 Northridge earthquake records, and they are capable of producing time-history responses and damaging quasi-resonance effects in structures. Linear, single DOF (degree of freedom) oscillators, in lieu of nonlinear, multiple DOF systems, have been found adequate to discuss the failures of tall circuit breakers during the 1971 San Fernando and the 1989 Loma Prieta quakes in California. The use of sine-beat excitation for seismic-shaking-table tests...
Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO
Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others
1997-04-01
The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.
Diode-laser frequency stabilization based on the resonant Faraday effect
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.
Mayer, Michael
2015-03-09
The scope of the thesis is the development of a method for improvement of efficient integrated management systems for high reliability organizations (HRO). A comprehensive analysis of severe accident prevention is performed. Severe accident management, mitigation measures and business continuity management are not included. High reliability organizations are complex and potentially dynamic organization forms that can be inherently dangerous like nuclear power plants, offshore platforms, chemical facilities, large ships or large aircrafts. A recursive generic management system model (RGM) was development based on the following factors: systemic and cybernetic Asepcts; integration of different management fields, high decision quality, integration of efficient methods of safety and risk analysis, integration of human reliability aspects, effectiveness evaluation and improvement.
The Dilution Effect and Information Integration in Perceptual Decision Making.
Jared M Hotaling
Full Text Available In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies, may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.
The Dilution Effect and Information Integration in Perceptual Decision Making
Hotaling, Jared M.; Cohen, Andrew L.; Shiffrin, Richard M.; Busemeyer, Jerome R.
2015-01-01
In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323
Spaceflight Effect on White Matter Structural Integrity
Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.
2017-01-01
Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.
Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects.
Raza, Søren; Yan, Wei; Stenger, Nicolas; Wubs, Martijn; Mortensen, N Asger
2013-11-04
We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius-Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects. We find that the substrate-based calculations show a similar-sized blueshift as calculations based on a sphere in a homogeneous environment, and that they both agree qualitatively with the EELS measurements.
Chou Chau, Yuan-Fong
2013-06-01
In this work, we numerically investigate the surface plasmon resonance (SPR) effects on a pair of rotational silver nanorod/nanoshell dimer with a finite height of 1000 nm by means of finite element method with three dimensional calculation. The rotational angles of the silver nanorod/nanoshell dimer are chosen θ=0°, θ=25°, θ=45° and θ=90°, respectively. The proposed structure exhibits a red-shifted localized SPR that can tuned over an extended wavelength range by varying the dielectric constant in metal nanoshell and the rotational angle of the silver nanorod/nanoshell dimer. The tunable optical properties on SPR phenomena are attributed to the rotational effect and a larger effective size of dielectric constant that is filled with a higher refractive medium of finite height of metal nanorod/nanoshell. This unique property of a pair of rotational nanorod/nanoshell dimer is highly attractive for serving as resonant center to hold and probe smaller nanostructures, such as biomolecules or quantum dots. Such structures also show significant promise for applications in nano-switch devices, sensing, and surface-enhanced spectroscopy, due to their strong and tunable plasmon resonances.
Effective grating theory for resonance domain surface-relief diffraction gratings.
Golub, Michael A; Friesem, Asher A
2005-06-01
An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.
Brewster effect in metafilms composed of bi-anisotropic split-ring resonators
Tamayama, Yasuhiro
2015-01-01
The Brewster effect is extended to single-layer metafilms. In contrast to bulk media, the Brewster effect in metafilms can be realized by tailoring the radiation pattern of a distribution of meta-atoms rather than the effective medium parameters. A metafilm composed of bi-anisotropic split-ring resonators is designed based on the theory, and its characteristics are numerically analyzed. The simulation demonstrates that there exists a condition for which the polarization of the reflected wave becomes independent of the incident polarization at a particular angle of incidence.
Extrinsic spin Hall effect induced by resonant skew scattering in graphene.
Ferreira, Aires; Rappoport, Tatiana G; Cazalilla, Miguel A; Castro Neto, A H
2014-02-14
We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents are within the reach of the current state of the art in device fabrication. The spin Hall effect is robust with respect to thermal fluctuations and disorder averaging.
Effective Knowledge Integration in Emergency Response Organizations
Gudi, Arvind
2009-01-01
Natural and man-made disasters have gained attention at all levels of policy-making in recent years. Emergency management tasks are inherently complex and unpredictable, and often require coordination among multiple organizations across different levels and locations. Effectively managing various knowledge areas and the organizations involved has…
Integrating Technology: Effective Tools for Collaboration.
Glandon, Shan
This book uses planning forms and examples to help media specialists and teachers focus on ways to effectively and purposefully add technology. The 22 collaborations connect with standards-based education in language arts, math, science, and social studies. Ideas for whole-class projects are also included. Each unit example begins with a completed…
Sensing (un)binding events via surface plasmons: effects of resonator geometry
Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael
2016-04-01
The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations
Jia-bing HU; Wei ZHANG; Hong-sheng WANG; Yi-kang HE; Lie XU
2009-01-01
This paper proposes a current control scheme for a grid-connected pulse width modulator (PWM) voltage source converter (GC-VSC) under imbalanced and distorted supply voltage conditions. The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral (PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω, respectively. The experimental results, with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system, validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.
Van Do, Nguyen; Khue, Pham Duc; Thanh, Kim Tien; Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Kye, Yong-Uk; Cho, Moo-Hyun
2017-10-01
We measured the thermal neutron cross-section (σ0) and resonance integral (I0) of the 152Sm(n,γ)153Sm reaction relative to that of the 197Au(n,γ)198Au reaction. Sm and Au foils with and without a cadmium cover of 0.5 mm were irradiated with moderated pulsed neutrons produced from the electron linac. The induced activities of the reaction products were determined via high energy resolution HPGe detector. The present results: σ0,Sm =212±8 b and I0,Sm =3.02±0.19 kb are consistent with most of the existing reference data.
On ageing effects in analogue integrated circuits
Salfelder, Felix (Dipl. Math.)
2016-01-01
The behaviour of electronic circuits is influenced by ageing effects. Modelling the behaviour of circuits is a standard approach for the design of faster, smaller, more reliable and more robust systems. In this thesis, we propose a formalization of robustness that is derived from a failure model, which is based purely on the behavioural specification of a system. For a given specification, simulation can reveal if a system does not comply with a specification, and thus provide a failure model...
Euroasian Integration Process and Effective Institutional Mechanism Creation Problems
Olga M. Mesheriakova
2014-06-01
Full Text Available In the present article "Euroasian Integration Process and Effective Institutional Mechanism Creation Problems" author investigates the problem of effective and balanced decision-making mechanism in the integration communities creation. Process of the Customs union creation on the Euroasian space began relatively long ago. Creation of such union was started by the Russian Federation and the Republic of Belarus in the 1995. The same year Republic of Kazakhstan joined an integration process. A little later Kyrgyzstan and Tajikistan joined the Customs union – in 1996 and in 1999 respectively. Author on the basis of careful study of the decision-making mechanisms in the Customs union, CIS, EurAsEC and EU, carries out the comparative analysis of the specified mechanisms. Author conducts detailed analytics, gives opinions of jurists, state and public figures, proves own opinions. On the basis of the comparative research conducted by the author the criteria of legal mechanism of decision-making in the integration process efficiency are researched and discussed, what allows to speak about the integration of the legal system. At the end of the article author draws a conclusion that coordination of sovereign desires of states in the integration community represents difficult and many-sided process which has to be based on the balanced decision-making mechanism, which is a main criterion of the institutional mechanism of integration efficiency.
Accelerated nuclear quantum effects sampling with open path integrals
Mazzola, Guglielmo
2016-01-01
We numericaly demonstrate that, in double well models, the autocorrelation time of open path integral Monte Carlo simulations can be much smaller compared to standard ones using ring polymers. We also provide an intuitive explanation based on the role of instantons as transition states of the path integral pseudodynamics. Therefore we propose that, in all cases when the ground state approximation to the finite temperature partition function holds, open path integral simulations can be used to accelerate the sampling in realistic simulations aimed to explore nuclear quantum effects.
Speech-specificity of two audiovisual integration effects
Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias
2010-01-01
Seeing the talker’s articulatory mouth movements can influence the auditory speech percept both in speech identification and detection tasks. Here we show that these audiovisual integration effects also occur for sine wave speech (SWS), which is an impoverished speech signal that naïve observers...... often fail to perceive as speech. While audiovisual integration in the identification task only occurred when observers were informed of the speech-like nature of SWS, integration occurred in the detection task both for informed and naïve observers. This shows that both speech-specific and general...
Finite volume effects in pion-kaon scattering and reconstruction of the kappa(800) resonance
Döring, M
2011-01-01
Simulating the kappa(800) on the lattice is a challenging task that starts to become feasible due to the rapid progress in recent-years lattice QCD calculations. As the resonance is broad, special attention to finite-volume effects has to be paid, because no sharp resonance signal as from avoided level crossing can be expected. In the present article, we investigate the finite volume effects in the framework of unitarized chiral perturbation theory using next-to-leading order terms. After a fit to meson-meson partial wave data, lattice levels for piK scattering are predicted. In addition, levels are shown for the quantum numbers in which the sigma(600), f_0(980), a_0(980), phi(1020), K*(892), and rho(770) appear, as well as the repulsive channels. Methods to extract the kappa(800) signal from the lattice spectrum are presented. Using pseudo-data, we estimate the precision that lattice data should have to allow for a clear-cut extraction of this resonance. To put the results into context, in particular the req...
Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation
Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.
2012-03-01
Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.
In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.
Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji
2015-04-07
Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.
Selective effects of noise by stochastic multi-resonance in coupled cells system
2008-01-01
By investigating a stochastic model for intracellular calcium oscillations proposed by Hfer,we have analyzed the transmission behavior of calcium signaling in a one-dimensional two-way coupled hepatocytes system.It is shown that when the first cell is subjected to the external noise,the output signal-to-noise ratio(SNR) in the cell exhibits two maxima as a function of external noise intensity,indicating the occurrence of stochastic bi-resonance(SBR).It is more important that when cells are coupled together,the resonant behavior in the 1st cell propagates along the chain with different features through the coupling effect.The cells whose locations are comparatively close to or far from the 1st cell can show SBR,while the cells located in the middle position can display stochastic multi-resonance(SMR).Fur-thermore,the number of cells that can show SMR increases with coupling strength enhancing.These results indicate that the cells system may make an effective choice in response to external signaling induced by noise,through the mechanism of SMR by adjusting coupling strength.
Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-02-26
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Non-equilibrium many-body effects in driven nonlinear resonator arrays
Grujic, T; Angelakis, D G; Jaksch, D
2012-01-01
We study the non-equilibrium behavior of optically driven dissipative coupled resonator arrays. Assuming each resonator is coupled with a two-level system via a Jaynes-Cummings interaction, we calculate the many-body steady state behavior of the system under coherent pumping and dissipation. We propose and analyze the many-body phases using experimentally accessible quantities such as the total excitation number, the emitted photon spectra and photon coherence functions for different parameter regimes. In parallel, we also compare and contrast the expected behavior of this system assuming the local nonlinearity in the cavities is generated by a generic Kerr effect rather than a Jaynes-Cummings interaction. We find that the behavior of the experimentally accessible observables produced by the two models differs for realistic regimes of interactions even when the corresponding nonlinearities are of similar strength. We analyze in detail the extra features available in the Jaynes-Cummings-Hubbard (JCH) model ori...
Spatial Damping of Propagating Kink Waves Due to Resonant Absorption: Effect of Background Flow
Soler, Roberto; Goossens, Marcel
2011-01-01
Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the perpendicular direction to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and ...
Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling
Garbacz, P.; Buckingham, A. D.
2016-11-01
It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.
Effect of flow on the acoustic resonances of an open-ended duct
Ingard, U.; Singhal, V. K.
1975-01-01
The effect of flow on the acoustic resonances of an open-ended, hard-walled duct is analyzed. The flow produces acoustic losses both in the interior of the duct and at the ends. Unless the duct is very long, typically 100 times the diameter, the losses at the ends dominate. At flow Mach numbers in excess of 0.4 the losses are so large that axial duct resonances are almost completely suppressed. The plane-wave Green's function for the duct with flow is expressed in terms of the (experimentally determined) pressure reflection coefficients at the ends of the duct, and the flow dependence of the complex eigenfrequencies of the duct is obtained. Some observations concerning the noise produced by the flow in the duct are also reported.
Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)
2015-05-07
This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.
Nikolopoulos, G M
2012-01-01
We study the effects of field fluctuations on the total yields of Auger electrons, obtained in the excitation of neutral atoms to a core-excited state by means of short-wavelength free-electron-laser pulses. Beginning with a self-contained analysis of the statistical properties of fluctuating free-electron-laser pulses, we analyse separately and in detail the cases of single and double Auger resonances, focusing on fundamental phenomena such as power broadening and ac Stark (Autler-Townes) splitting. In certain cases, field fluctuations are shown to influence dramatically the frequency response of the resonances, whereas in other cases the signal obtained may convey information about the bandwidth of the radiation as well as the dipole moment between Auger states.
The Effect Of IFRS Adoption On Global Market Integration
Francis Cai; Hannah Wong
2010-01-01
This paper examines the effect of the adoption of international financial accounting standards (IFRS) on global capital market integration, measure by correlation matrix of the stock market index returns. We investigate a sample of countries that have adopted IFRS as their accounting standards for listed companies. Our results are consistent with the suggestion that these markets will have a higher degree of integration among them after their IFRS adoption as compared to the period before th...
Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors
Baek, W. P.; Song, C. H.; Kim, Y. S. and others
2005-02-15
The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.
Park, Chul-Soon; Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong
2015-02-16
We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes.
Park, Chul-Soon; Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong
2015-01-01
We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes. PMID:25683162
The puzzle of magnetic resonance effect on the magnetic compass of migratory birds
Kavokin, K V
2008-01-01
Experiments on the effect of radio-frequency (RF) magnetic fields on the magnetic compass orientation of migratory birds are analyzed using the theory of magnetic resonance. The results of these experiments were earlier interpreted within the radical-pair model of magnetoreception. However, the consistent analysis shows that the amplitudes of the RF fields used are far too small to noticeably influence electron spins in organic radicals. Other possible agents that could mediate the birds' response to the RF fields are discussed, but apparently no known physical system can be responsible for this effect.
Frequency resonance effect of neurons under low-frequency weak magnetic field
Azanza, María J.; del Moral, A.; Pérez Bruzón, R. N.
2007-03-01
We report on the frequency resonance effect observed in single neurons of mollusc Helix brain under low-frequency B=1 mT magnetic fields of frequency f M=0.1-80 Hz. The dependence of the firing frequency f with f M decreases as a Lorentzian, centered about the spontaneous, f0 one ("window effect"). An explanation is provided based on the superdiamagnetism and Ca 2+ coulomb explosion model, supplemented by the Ca 2+ kinetics towards the Ca 2+-dependent K + channels, opening them. The Ca 2+ ion diffusion time is obtained.
Miller, D.A.B.; Feuer, M.D.; Chang, T.Y.; Shunk, S.C.; Henry, J.E.; Burrows, D.J.; Chemla, D.S.
1989-03-01
The authors propose and demonstrate the integration of a photodiode, a quantum-confined Stark effect quantum well optical modulator and a metal-semiconductor field-effect transistor (MESFET), to make a field-effect transistor self-electrooptic effect device. This integration allows optical inputs and outputs on the surface of a GaAs-integrated circuit chip, compatible with standard MESFET processing. As an illustration of feasibility, the authors demonstrate optical signal amplification with a single MESFET.
Chesnais, Céline; Boutin, Claude; Hans, Stéphane
2012-10-01
This work is devoted to the study of the wave propagation in infinite two-dimensional structures made up of the periodic repetition of frames. Such materials are highly anisotropic and, because of lack of bracing, can present a large contrast between the shear and compression deformabilities. Moreover, when the thickness to length ratio of the frame elements is small, these elements can resonate in bending at low frequencies when compressional waves propagate in the structure. The frame size being small compared to the wavelength of the compressional waves, the homogenization method of periodic discrete media is extended to situations with local resonance, and it is applied to identify the macroscopic behavior at the leading order. In particular, the local resonance in bending leads to an effective mass different from the real mass and to the generalization of the Newtonian mechanics at the macroscopic scale. Consequently, compressional waves become dispersive and frequency bandgaps occur. The physical origin of these phenomena at the microscopic scale is also presented. Finally, a method is proposed for the design of such materials.
Portable organic gas detection sensor based on the effect of guided-mode resonance
Guo, Liang; Wang, Qi; Huang, Yuanshen; Zhang, Dawei
2017-01-01
A novel organic gas detection sensor based on the effect of guided-mode resonance is proposed in this paper. The sensor is designed to operate in the visible light band. It contains four main sections: a light source, a miniature gas chamber composed of a guided-mode resonant filter, a diffraction grating, and a CCD image sensor. When bunched visible light is irradiated vertically to the gas chamber, it passes through the gas chamber and diffraction grating, and is then received by the CCD sensor. The optical signal received by the CCD sensor is then reduced to the spectrum using a specific algorithm. When organic gases are injected into the gas chamber, there is a shift in the wavelength of resonant reflection, and the magnitude of this shift is proportional to the refractive index of the gas. The large variation in the refractive indexes of industrially important organic gases means that their characteristic peak wavelengths can be easily identified. As a result, this system can quickly detect organic gases. To verify the feasibility of this technique, we use finite difference time domain solutions to simulate the results. The sensitivity of this type of sensor can reach wavelength differences of 0.001 nm, which means that the sensor has high potential for application in portable, high-precision detection systems.
Effective theory for neutral resonances and a statistical dissection of the ATLAS diboson excess
Fichet, Sylvain
2015-01-01
We classify the complete set of dimension-5 operators relevant for the resonant production of a singlet of spin 0 or 2 linearly coupled to the Standard Model (SM). We compute the decay width of such states as a function of the effective couplings, and provide the matching to various well-motivated New Physics scenarios. We then investigate the possibility that one of these neutral resonances be at the origin of the excess in diboson production recently reported by the ATLAS collaboration. We perform a shape analysis of the excess under full consideration of the systematic uncertainties to extract the width $\\Gamma_{\\rm tot}$ of the hypothetical resonance, finding it to be in the range 26 GeV $<\\Gamma_{\\rm tot}<$ 144 GeV at 95\\% C.L. We then point out that the three overlapping selections $WW$, $WZ$, $ZZ$ reported by ATLAS follow a joint trivariate Poisson distribution, which opens the possibility of a thorough likelihood analysis of the event rates. The background systematic uncertainties are also inclu...
Effective theory for neutral resonances and a statistical dissection of the ATLAS diboson excess
Fichet, Sylvain
2015-01-01
We classify the complete set of dimension-5 operators relevant for the resonant production of a singlet of spin 0 or 2 linearly coupled to the Standard Model (SM). We compute the decay width of such states as a function of the effective couplings, and provide the matching to various well-motivated New Physics scenarios. We then investigate the possibility that one of these neutral resonances be at the origin of the excess in diboson production recently reported by the ATLAS collaboration. We perform a shape analysis of the excess under full consideration of the systematic uncertainties to extract the width $\\Gamma_{\\rm tot}$ of the hypothetical resonance, finding it to be in the range 26 GeV $<\\Gamma_{\\rm tot}<$ 144 GeV at 95\\% C.L. We then point out that the three overlapping selections $WW$, $WZ$, $ZZ$ reported by ATLAS follow a joint trivariate Poisson distribution, which opens the possibility of a thorough likelihood analysis of the event rates. The background systematic uncertainties are also inclu...
On the logistics effects of integrated product and package design
Bramklev, Caroline; Hansen, Claus Thorp
2007-01-01
obtaining error-free deliveries, saving costs and avoiding quality problems. Thus, the authors of this paper see a challenge in developing the theory and methodology for Integrated Product and Package Design. In this paper we take a first step in this direction. Firstly, we have carried out a broad review...... of literature, which shows that there is a need for research into Integrated Product and Package Design. Secondly, we have analysed three cases from industrial practice, which show that a conscious and integrated design of product and package has positive logistics effects, whereas neglecting this issue might...... result in higher costs and quality problems. On the basis of these cases we have made an initial cross-case analysis, which indicates that it is possible to develop the terminology and methodology for Integrated Product and Package Design....
On the logistics effects of integrated product and package design
Bramklev, Caroline; Hansen, Claus Thorp
2007-01-01
of literature, which shows that there is a need for research into Integrated Product and Package Design. Secondly, we have analysed three cases from industrial practice, which show that a conscious and integrated design of product and package has positive logistics effects, whereas neglecting this issue might......If engineering designers consciously design product and package in an integrated manner, there is a great potential for industrial global enterprises to develop and product mechanical products, such as exhaust extraction systems, car washer machines and fuel handling systems while simultaneously...... obtaining error-free deliveries, saving costs and avoiding quality problems. Thus, the authors of this paper see a challenge in developing the theory and methodology for Integrated Product and Package Design. In this paper we take a first step in this direction. Firstly, we have carried out a broad review...
Xiao, M; Martin, I; Yablonovitch, E; Jiang, H W
2004-07-22
The ability to manipulate and monitor a single-electron spin using electron spin resonance is a long-sought goal. Such control would be invaluable for nanoscopic spin electronics, quantum information processing using individual electron spin qubits and magnetic resonance imaging of single molecules. There have been several examples of magnetic resonance detection of a single-electron spin in solids. Spin resonance of a nitrogen-vacancy defect centre in diamond has been detected optically, and spin precession of a localized electron spin on a surface was detected using scanning tunnelling microscopy. Spins in semiconductors are particularly attractive for study because of their very long decoherence times. Here we demonstrate electrical sensing of the magnetic resonance spin-flips of a single electron paramagnetic spin centre, formed by a defect in the gate oxide of a standard silicon transistor. The spin orientation is converted to electric charge, which we measure as a change in the source/drain channel current. Our set-up may facilitate the direct study of the physics of spin decoherence, and has the practical advantage of being composed of test transistors in a conventional, commercial, silicon integrated circuit. It is well known from the rich literature of magnetic resonance studies that there sometimes exist structural paramagnetic defects near the Si/SiO2 interface. For a small transistor, there might be only one isolated trap state that is within a tunnelling distance of the channel, and that has a charging energy close to the Fermi level.
Emerek, Ruth
2004-01-01
Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...
Wu, Chen-Hao; Hwang, Tzung-Jeng; Chen, Pin-Jane; Chou, Tai-Li; Hsu, Yung-Chin; Liu, Chih-Min; Wang, Hsiao-Lan; Chen, Chung-Ming; Hua, Mau-Sun; Hwu, Hai-Gwo; Tseng, Wen-Yih Isaac
2014-12-30
Recent studies suggest that structural and functional alterations of the language network are associated with auditory verbal hallucinations (AVHs) in schizophrenia. However, the ways in which the underlying structure and function of the network are altered and how these alterations are related to each other remain unclear. To elucidate this, we used diffusion spectrum imaging (DSI) to reconstruct the dorsal and ventral pathways and employed functional magnetic resonance imaging (fMRI) in a semantic task to obtain information about the functional activation in the corresponding regions in 18 patients with schizophrenia and 18 matched controls. The results demonstrated decreased structural integrity in the left ventral, right ventral and right dorsal tracts, and decreased functional lateralization of the dorsal pathway in schizophrenia. There was a positive correlation between the microstructural integrity of the right dorsal pathway and the functional lateralization of the dorsal pathway in patients with schizophrenia. Additionally, both functional lateralization of the dorsal pathway and microstructural integrity of the right dorsal pathway were negatively correlated with the scores of the delusion/hallucination symptom dimension. Our results suggest that impaired structural integrity of the right dorsal pathway is related to the reduction of functional lateralization of the dorsal pathway, and these alterations may aggravate AVHs in schizophrenia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wolf, Richard; Breunig, Ingo; Zappe, Hans; Buse, Karsten
2017-02-01
Whispering-gallery resonators (WGRs) are most promising for nonlinear-optical frequency-conversion due to their intensity enhancement by small mode volumes and high Q-factors. This has been shown frequently by millimeter-sized diamond-blade cut and polished bulk WGRs. For reproducible batch fabrication, however, the integration of WGRs into lithium-niobate-on-insulator (LNOI) substrates became of great interest. Here we report on integrated WGRs made by batch processes like lithography and reactive-ion etching. Since the Q-factor of integrated WGRs is limited by scattering losses, we focused on developing a polishing process for the waveguide sidewalls that allowed us to enhance the unloaded Q-factors already to more than 106 with room for further improvements. Furthermore we employ a coupling scheme with two waveguide chips, one comprising a linear coupling waveguide and one with the integrated WGR. By adjusting the distance between the coupling waveguide and the WGR, we can reproducibly and stably tune the coupling-efficiency between 0 and 95 %.
Avdikos, Antonios; Karkabounas, Spyridon; Metsios, Apostolos; Kostoula, Olga; Havelas, Konstantinos; Binolis, Jayne; Verginadis, Ioannis; Hatziaivazis, George; Simos, Ioannis; Evangelou, Angelos
2007-01-01
In the present study, the effects of a resonant low intensity static electromagnetic field (EMF), causing no thermal effects, on Wistar rats have been investigated. Sarcoma cell lines were isolated from leiomyosarcoma tumors induced in Wistar rats by the subcutaneous (s.c) injection of 3,4-benzopyrene. Furthermore, smooth muscle cells (SMC) were isolated from the aorta of Wistar rats and cultivated. Either leiomyosarcoma cells (LSC) or SMC were used to record a number of characteristic resonant radiofrequencies, in order to determine the specific electromagnetic fingerprint spectrum for each cell line. These spectra were used to compose an appropriate algorithm, which transforms the recorded radiofrequencies to emitted ones. The isolated LSC were cultured and then exposed to a resonant low intensity radiofrequency EMF (RF-EMF), at frequencies between 10 kHz to 120 kHz of the radiowave spectrum. The exposure lasted 45 consecutive minutes daily, for two consecutive days. Three months old female Wistar rats were inoculated with exposed and non-exposed to EMF LSC (4 x 10(6) LCS for animal). Inoculated with non-exposed to EMF cells animals were then randomly separated into three Groups. The first Group was sham exposed to the resonant EMF (control Group-CG), the second Group after the inoculation of LSC and appearance of a palpable tumor mass, was exposed to a non-resonant EMF radiation pattern, for 5 h per day till death of all animals (experimental control Group-ECG). The third Group of animals after inoculation of LSC and the appearance of a palpable tumor mass, was exposed to the resonant EMF radiation for 5 h per day, for a maximum of 60 days (experimental Group-I, EG-I). A fourth Group of animals was inoculated with LSC exposed to EMF irradiation and were not further exposed to irradiation (experimental Group-II, EG-II). Tumor induction was 100% in all Groups studied and all tumors were histologically identified as leiomyosarcomas. In the case of the EG-I, a
Size effects on insect hovering aerodynamics: an integrated computational study
Liu, H [Graduate School of Engineering, Chiba University, Chiba, 263-8522 (Japan); Aono, H [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI48109 (United States)], E-mail: hliu@faculty.chiba-u.jp, E-mail: aonoh@umich.edu
2009-03-01
Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10{sup 4}) to O(10{sup 1}) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.
Creep and shrinkage effects on integral abutment bridges
Munuswamy, Sivakumar
Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the
Zhukovsky, Sergei V.; Babicheva, Viktoriia E.; Uskov, Alexander V.; Protsenko, Igor E.; Lavrinenko, Andrei V.
2014-09-01
We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step between the semiconductor layer and an adjacent transparent conductive oxide layer. We show that the presence of refractive index mismatch between media surrounding the nanoparticles disrupts the formation of a narrow absorption peak associated with the Rayleigh anomaly, so the role of collective lattice effects in the formation of plasmonic resonance is diminished. We also show that 5-20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon-based photodetectors and photovoltaic devices. The results may provide clues to designing an experiment where the contributions of surface and volume photoelectric effects to the overall photocurrent would be defined.
Zero-Range Effective Field Theory for Resonant Wino Dark Matter
Johnson, Evan; Braaten, Eric; Zhang, Hong
2017-01-01
The most dramatic ``Sommerfeld enhancements'' of neutral-wino-pair annihilation occur when the wino mass is tuned to near critical values where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. If the wino mass is near a critical value, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The parameters of the zero-range effective field theory can be determined by matching wino scattering amplitudes calculated by solving the Schrödinger equation for a nonrelativistic effective field theory in which the winos interact nonperturbatively through a potential due to the exchange of weak gauge bosons. The power of the zero-range effective field theory is illustrated by calculating the rate for formation of the bound state in the collision of two neutral winos through the emission of two soft photons. Supported in part by DOE grant DE-FG02-05ER15715.
Ziener, Christian Herbert
2008-07-01
The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)
Comparison of anomalous Doppler resonance effects with molybdenum and graphite limiters on HT-7.
Wang, Y M; Gao, X; Ling, B L; Liu, Y; Zhang, S B; Han, X; Ti, A; Li, E Z
2012-03-01
The material of limiter in HT-7 tokamak was changed from graphite to molybdenum in the last experimental campaign. The pitch angle scattering of runaway electrons due to anomalous Doppler resonance effects was observed. The experimental results agree very well with the stable boundary condition expected from the linear resistive theory but only agree with that from the nonlinear evolutionary of runaway-electron distribution theory in low electric field region. The current carried by runaway electrons is the same under different limiter conditions.
Novel piezoelectric effect and surface plasmon resonance-based elements for MEMS applications.
Ponelyte, Sigita; Palevicius, Arvydas
2014-04-17
This paper covers research on novel thin films with periodical microstructure--optical elements, exhibiting a combination of piezoelectric and surface plasmon resonance effects. The research results showed that incorporation of Ag nanoparticles in novel piezoelectric--plasmonic elements shift a dominating peak in the visible light spectrum. This optical window is essential in the design of optical elements for sensing systems. Novel optical elements can be tunable under defined bias and change its main grating parameters (depth and width) influencing the response of diffraction efficiencies. These elements allow opening new avenues in the design of more sensitive and multifunctional microdevices.
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes
Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 México, D.F. (Mexico); Moura, C.A., E-mail: celio.moura@ufabc.edu.br [Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Rua Santa Adélia, 166, 09210-170 Santo André, SP (Brazil); Parada, A., E-mail: alexander.parada00@usc.edu.co [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 México, D.F. (Mexico)
2015-05-11
Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.
Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow
Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi
1992-01-01
The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.
One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect
Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)
2013-02-01
We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.
DONG Yu-Bing; FENG Qing-Guo
2002-01-01
Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.
Effects of resonator input power on Kerr lens mode-locked lasers
S Kazempour; A Keshavarz; G Honarasa
2015-07-01
Using the ABCD matrix method, the common stability region between the sagittal and tangential planes of a four-mirror Kerr lens mode-locked (KLM) laser cavity is obtained for different ranges of input power. In addition, the effect of the input power on the Kerr lens sensitivity is investigated. Optimal input power and position for highest Kerr lens sensitivity in the stability region are presented and self-starting regime has been achieved. Results show that the resonator input power has a great influence on designing the KLM lasers which can be used in fabricating an optimal femtosecond laser.
Quasi-Resonance Effects Observed in The 1994 Northridge Earthquake, and Others
Edward G. Fischer
1998-01-01
Full Text Available Sine-beat phenomena have been found in the 1994 Northridge earthquake records, and they are capable of producing time-history responses and damaging quasi-resonance effects in structures. Linear, single DOF (degree of freedom oscillators, in lieu of nonlinear, multiple DOF systems, have been found adequate to discuss the failures of tall circuit breakers during the 1971 San Fernando and the 1989 Loma Prieta quakes in California. The use of sine-beat excitation for seismic-shaking-table tests of equipment continues to be a conservative simulation of earthquakes.
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes
O.G. Miranda
2015-05-01
Full Text Available Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.
Time resolved measurements of the biased disk effect at an Electron Cyclotron Resonance Ion Source
K. E. Stiebing
1999-12-01
Full Text Available First results are reported from time resolved measurements of ion currents extracted from the Frankfurt 14 GHz Electron Cyclotron Resonance Ion Source with pulsed biased-disk voltage. It was found that the ion currents react promptly to changes of the bias. From the experimental results it is concluded that the biased disk effect is mainly due to improvements of the extraction conditions for the source and/or an enhanced transport of ions into the extraction area. By pulsing the disk voltage, short current pulses of highly charged ions can be generated with amplitudes significantly higher than the currents obtained in continuous mode.
Chan Cheuk F
2009-07-01
Full Text Available Abstract Background There is recent evidence suggesting that rosiglitazone increases death from cardiovascular causes. We investigated the direct effect of this drug on atheroma using 3D carotid cardiovascular magnetic resonance. Results A randomized, placebo-controlled, double-blind study was performed to evaluate the effect of rosiglitazone treatment on carotid atherosclerosis in subjects with type 2 diabetes and coexisting vascular disease or hypertension. The primary endpoint of the study was the change from baseline to 52 weeks of carotid arterial wall volume, reflecting plaque burden, as measured by carotid cardiovascular magnetic resonance. Rosiglitazone or placebo was allocated to 28 and 29 patients respectively. Patients were managed to have equivalent glycemic control over the study period, but in fact the rosiglitazone group lowered their HbA1c by 0.88% relative to placebo (P 3 and in the rosiglitazone group was 1354 ± 532 mm3. After 52 weeks, the respective volumes were 1134 ± 523 mm3 and 1348 ± 531 mm3. These changes (-12.1 mm3 and -5.7 mm3 in the placebo and rosiglitazone groups, respectively were not statistically significant between groups (P = 0.57. Conclusion Treatment with rosiglitazone over 1 year had no effect on progression of carotid atheroma in patients with type 2 diabetes mellitus compared to placebo.
Effects of Spatial and Selective Attention on Basic Multisensory Integration
Gondan, Matthias; Blurton, Steven P.; Hughes, Flavia; Greenlee, Mark W.
2011-01-01
When participants respond to auditory and visual stimuli, responses to audiovisual stimuli are substantially faster than to unimodal stimuli (redundant signals effect, RSE). In such tasks, the RSE is usually higher than probability summation predicts, suggestive of specific integration mechanisms underlying the RSE. We investigated the role of…
Integrating Professional Development across the Curriculum: An Effectiveness Study
Ciarocco, Natalie J.; Dinella, Lisa M.; Hatchard, Christine J.; Valosin, Jayde
2016-01-01
The current study empirically tested the effectiveness of a modular approach to integrating professional development across an undergraduate psychology curriculum. Researchers conducted a two-group, between-subjects experiment on 269 undergraduate psychology students assessing perceptions of professional preparedness and learning. Analysis…
An Integrated Model for Effective Knowledge Management in Chinese Organizations
An, Xiaomi; Deng, Hepu; Wang, Yiwen; Chao, Lemen
2013-01-01
Purpose: The purpose of this paper is to provide organizations in the Chinese cultural context with a conceptual model for an integrated adoption of existing knowledge management (KM) methods and to improve the effectiveness of their KM activities. Design/methodology/approaches: A comparative analysis is conducted between China and the western…
Information Technology Integrated into Classroom Teaching and Its Effects
Yeh, Chao-Chi; Chang, Dian-Fu; Chang, Li-Yun
2011-01-01
IT (information technology) has grown in popularity from increased use in different areas in the world. However, school teaching has usually been found to be a little late in following this step. The purpose of this study was to explore the effects of IT when integrated into classroom teaching at primary and secondary schools in Taiwan. The data…
Effects of Spatial and Selective Attention on Basic Multisensory Integration
Gondan, Matthias; Blurton, Steven P.; Hughes, Flavia; Greenlee, Mark W.
2011-01-01
When participants respond to auditory and visual stimuli, responses to audiovisual stimuli are substantially faster than to unimodal stimuli (redundant signals effect, RSE). In such tasks, the RSE is usually higher than probability summation predicts, suggestive of specific integration mechanisms underlying the RSE. We investigated the role of…
Le, Kelvin; Li, Xiaosong; Figueroa, Daniel; Towner, Rheal A.; Garteiser, Philippe; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.
2011-12-01
Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy.
Zhang, Huiming; Xie, Yang; Ji, Tongyu
2007-06-01
The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1
Effects of the van der Waals Force on the Dynamics Performance for a Micro Resonant Pressure Sensor
Lizhong Xu
2016-01-01
Full Text Available The micro resonant pressure sensor outputs the frequency signals where the distortion does not take place in a long distance transmission. As the dimensions of the sensor decrease, the effects of the van der Waals forces should be considered. Here, a coupled dynamic model of the micro resonant pressure sensor is proposed and its coupled dynamic equation is given in which the van der Waals force is considered. By the equation, the effects of the van der Waals force on the natural frequencies and vibration amplitudes of the micro resonant pressure sensor are investigated. Results show that the natural frequency and the vibrating amplitudes of the micro resonant pressure sensor are affected significantly by van der Waals force for a small clearance between the film and the base plate, a small initial tension stress of the film, and some other conditions.
Zhou, Hao-Miao; Liu, Hui; Zhou, Yun; Hu, Wen-Wen
2016-12-01
Based on the tri-layer symmetrical magnetoelectric laminates, a equivalent circuit for the nonlinear resonance converse magnetoelectric coupling effect is established. Because the nonlinear thermo-magneto-mechanical constitutive equations of magnetostrictive material were introduced, a converse magnetoelectric coefficient model was derived from the equivalent circuit, which can describe the influence of bias electric field, bias magnetic field and ambient temperature on the resonance converse magnetoelectric coupling effect. Especially, the model can well predict the modulation effect of bias electric field/voltage on the magnetism of magnetoelectric composite or the converse magnetoelectric coefficient, which is absolutely vital in applications. Both of the converse magnetoelectric coefficient and the resonance frequency predicted by the model have good agreements with the existing experimental results in qualitatively and quantitatively, and the validity of the model is confirmed. On this basis, according to the model, the nonlinear trends of the resonance converse magnetoelectric effect under different bias voltages, bias magnetic fields and ambient temperatures are predicted. From the results, it can be found that the bias voltage can effectively modulate the curve of the resonance converse magnetoelectric coefficient versus bias magnetic field, and then change the corresponding optimal bias magnetic field of the maximum converse magnetoelectric coefficient; with the increasing volume ratio of piezoelectric layers, the modulation effect of bias voltage becomes more obvious; under different bias magnetic fields, the modulation effect of bias voltage on the converse magnetoelectric effect has nonvolatility in a wide temperature region.
Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.
2013-03-01
Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.
Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang
2016-07-01
We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement.
Sajti, Sz., E-mail: sajti.szilard@wigner.mta.hu; Tanczikó, F.; Deák, L.; Nagy, D.L.; Bottyán, L.
2015-01-01
General expressions of the electron yield in {sup 57}Fe integral conversion electron Mössbauer spectroscopy were derived depending on the glancing angle of the γ photons, on the source polarization and on the isotopic abundance of the source and the absorber (blackness effects) using an exponential escape function of the electrons originating from all Mössbauer-resonance-related processes. The present approach provides a firm theoretical basis to determine the alignment and direction of magnetization in the absorber. The intensity formulae were justified by least squares fits of α-{sup 57}Fe spectral intensities measured in linearly and elliptically polarized source and absorber geometries. The fits reproduce the experimentally set angles with high accuracy. Limits of the current approach and its relation to other, less complete treatments in the literature are discussed.
Dong, Shuxiang; Cheng, J. R.; Li, Jiefang; Viehland, Dwight D.
2003-01-01
We have found that laminate composites consisting of longitudinally magnetized magnetostrictive Terfenol-D and longitudinally poled piezoelectric Pb(Zr,Ti)O-3 layers have dramatically enhanced magnetoelectric effects when driven near resonance. The maximum induced magnetoelectric voltage at resonance was similar to10 Vp/Oe, which is similar to10(2) times higher than previous reports at subresonant frequencies. (C) 2003 American Institute of Physics.
Chang-Wan Kim; Mai Duc Dai; Kilho Eom
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on...
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Loures, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio
2015-01-01
Starting from the infinite-dimensional Ikeda map, we derive an extended temporal Lugiato-Lefever equation that may account for the effects of the conjugate electromagnetic fields (also called `negative frequency fields'). In the presence of nonlinearity in a ring cavity, these fields lead to new forms of modulational instability and resonant radiations. Numerical simulations based on the new extended Lugiato-Lefever model show that the negative-frequency resonant radiations emitted by ultrash...
Milián, Carles; Taki, Majid; Yulin, Alexey V; Skryabin, Dmitry V
2015-01-01
The influence of Raman scattering and higher order dispersions on solitons and frequency comb generation in silica microring resonators is investigated. The Raman effect introduces a threshold value in the resonator quality factor above which the frequency locked solitons can not exist and, instead, a rich dynamics characterized by generation of self-frequency shift- ing solitons and dispersive waves is observed. A mechanism of broadening of the Cherenkov radiation through Hopf instability of the frequency locked solitons is also reported.
Zanotto, S.; Lange, C.; Maag, T.; Pitanti, A.; Miseikis, V.; Coletti, C.; Degl'Innocenti, R.; Baldacci, L.; Huber, R.; Tredicucci, A.
2016-09-01
In this paper we investigate the effect of a static magnetic field and of optical pumping on the transmittance of a hybrid graphene-split ring resonator metasurface. A significant modulation of the transmitted spectra is obtained, both by optical pumping, and by a combination of optical pumping and magnetostatic biasing. The transmittance modulation features spectral fingerprints that are characteristic of a non-trivial interplay between the bare graphene response and the split ring resonance.
Resonance Radiation and Excited Atoms
Mitchell, Allan C. G.; Zemansky, Mark W.
2009-06-01
1. Introduction; 2. Physical and chemical effects connected with resonance radiation; 3. Absorption lines and measurements of the lifetime of the resonance state; 4. Collision processes involving excited atoms; 5. The polarization of resonance radiation; Appendix; Index.
Effect of thermoelastic damping on silicon, GaAs, diamond and SiC micromechanical resonators
Garuma Abdisa Denu
2017-05-01
Full Text Available The effect of thermoelastic damping as a main dissipation mechanism in single crystalline silicon, GaAs, diamond, SiC and SiO2 micromechanical resonators are studied. Numerical simulation is performed to compare quality factors of the given materials. Results using Zener’s well-known approximation and recent developments of Lifshitz and Roukes models were used to model thermoelasticity effects. In the later model, the effect of thermal diffusion length is taken into account for determination of thermoelastic damping. Our results show that larger discrepancy is obtained between the two models for SiO2. The difference is pronounced when beam aspect ratio (L/w is smaller. Such progresses will find potential applications in optimal design of high quality factor micrometer- and nanometer-scale electromechanical systems.
ABC Effect and Resonance Structure in the Double-Pionic Fusion to 3He
Pricking A.
2012-12-01
Full Text Available Historically the double-pionic fusion to 3He is the reaction, where the ABC effect (low-mass enhancement of the ππ-invariant mass spectrum was observed for the first time more than 50 years ago. Meanwhile exclusive and kinematically complete high-statistics measurements with WASA at COSY revealed a strict correlation between the ABC effect and a narrow resonance structure with I(JP = 0(3+ in the total cross section of the most basic double-pionic fusion, the pn → dπ0π0 reaction. In order to investigate the situation in the double-pionic fusion to 3He the energy dependence of the ABC effect in the fusion to 3He has been measured by fixed energy measurements of the type pd →3Heππ as well as by quasifree and coherent measurements of the type dd →3He n ππ.
Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Philipp, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)
2015-09-15
A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.
Organizational effectiveness: toward an integrated model for schools of nursing.
Baker, C M; Reising, D L; Johnson, D R; Stewart, R L; Baker, S D
1997-01-01
Assessing the quality of academic institutions involves much more than the opinions of peers or experts. Examination of the organizational effectiveness of schools of nursing has been neglected. Current emphasis on assessing educational outcomes has diverted attention from the construct, organizational effectiveness, and more comprehensive theory-driven approaches to evaluation. This review of the organizational effectiveness literature focuses on the major assessment models: goal attainment, human relations, open systems, internal processes, culture, and life cycle. Attention is given to the influence of organizational maturation on an integrated model of organizational effectiveness. Selected macrolevel studies of schools of nursing are examined, and an agenda for nursing research is proposed.
M.M Ashraful.Alam
2013-01-01
Full Text Available The Hartmann tube, can use for flow-control, is a device which generates high intensity sound through the shock wave oscillations, are created by the interaction of the supersonic jet. In this study, two-phase flow simulations are carried out to characterize the effect of non-equilibrium condensation on the unsteady flowfield of the Hartmann resonance tube. This present numerical work provides a new insight on the flow dynamics and acoustics of the resonance tube – including the shock nature, the tube gas heating, and the effect of non-equilibrium condensation on the flow structure. A TVD numerical method is applied to the Reynolds and Favre-averaged Navier-Stokes equations, and droplet growth equation of liquid phase production. The simulations are performed over a range of nozzle pressure ratios. The numerically simulated flow structure of under-expanded supersonic jets is compared with experimental data. Moreover, the predicted frequency of end wall pressure fluctuations is compared with the experimental results.
Influence of non-resonant effects on the dynamics of quantum logic gates at room temperature
Berman, G. P.; Bishop, A. R.; Doolen, G. D.; López, G. V.; Tsifrinovich, V. I.
2001-01-01
We study numerically the influence of non-resonant effects on the dynamics of a single- π-pulse quantum CONTROL-NOT (CN) gate in a macroscopic ensemble of four-spin molecules at room temperature. The four nuclear spins in each molecule represent a four-qubit register. The qubits are “labeled” by the characteristic frequencies, ωk, ( k=0-3) due to the Zeeman interaction of the nuclear spins with the magnetic field. The qubits interact with each other through an Ising interaction of strength J. The paper examines the feasibility of implementing a single-pulse quantum CN gate in an ensemble of quantum molecules at room temperature. We determine a parameter region, ωk and J, in which a single-pulse quantum CN gate can be implemented at room temperature. We also show that there exist characteristic critical values of parameters, Δ ωcr≡| ωk‧ - ωk| cr and Jcr, such that for JJcr and Δ ωk≡| ωk‧ - ωk|<Δ ωcr, non-resonant effects are sufficient to destroy the dynamics required for quantum logic operations.
Anderson, Aaron; Johnson, Curtis; Holtrop, Joseph; McGarry, Mathew; Paulsen, Keith; Sutton, Bradley; van Houten, Elijah; Georgiadis, John
2015-03-01
Neurodegenerative diseases affect the microstructure of the brain and thus have a significant effect on the tissue mechanical properties. In vivo techniques, like magnetic resonance elastography (MRE), have shown promise as a contrast technique for disease detection. MRE is a non-invasive technique for measuring the viscoelastic mechanical properties of biological tissue by applying a low-amplitude shear wave, capturing the wave patterns with specialized magnetic resonance imaging techniques, and employing an isotropic nonlinear inversion (NLI) material property reconstruction. When distinctly different shear wave patterns are applied, NLI reconstructs differences in the real component of the shear modulus of ~ 2 [ kPa ] within well ordered white matter (WM). The difference is significant due to the human brain only having a range of real shear modulus from 0 [ kPa ] (cerebral spinal fluid) to ~ 5 [ kPa ] (white matter). The focus of this investigation is to quantify the effect of propagation direction on the reconstructed material properties and examine their relationship to the underlying microstructure in a well ordered, WM regions of the brain (corpus callosum).
Effects of hybrid synapses on the vibrational resonance in small-world neuronal networks.
Yu, Haitao; Wang, Jiang; Sun, Jianbing; Yu, Haifeng
2012-09-01
We investigate the effect of vibrational resonance in small-world neuronal networks with hybrid chemical and electrical synapses. It is shown that, irrespective of the probability of chemical synapses, an optimal amplitude of high-frequency component of the signal can optimize the dynamical response of neuron populations to the low-frequency component, which encodes the information. This effect of vibrational resonance of neuronal systems depends extensively on the network structure and parameters, which determine the ability of neuronal networks to enhance the outreach of localized subthreshold low-frequency signal. In particular, chemical synaptic coupling is more efficient than the electrical coupling for the transmission of local input signal due to its selective coupling. Moreover, there exists an optimal small-world topology characterized by an optimal value of rewiring probability, warranting the largest peak value of the system response. Considering that two-frequency signals are ubiquity in brain dynamics, we expect the presented results could have important implications for signal processing in neuronal systems.
Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho
2016-01-01
We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.
Highly sensitive surface plasmon resonance chemical sensor based on Goos-Hanchen effects
Yin, Xiaobo; Hesselink, Lambertus
2006-08-01
The resonance enhanced Goos-Hanchen shifts at attenuated total internal reflection enables the possibility for highly sensitive surface plasmon resonance sensor. The observed giant displacements result from the singular phase retardation at the resonance where the phase is continuous but changes dramatically. The phenomenon is proposed for chemical sensing and the superior sensitivity is demonstrated.
Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping
2013-10-01
A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.
Li Yongkun
2011-01-01
Full Text Available Abstract In this paper, by making use of the coincidence degree theory of Mawhin, the existence of the nontrivial solution for the boundary value problem with Riemann-Stieltjes Δ-integral conditions on time scales at resonance x Δ Δ ( t = f ( t , x ( t , x Δ ( t + e ( t , a . e . t ∈ [ 0 , T ] T , x Δ ( 0 = 0 , x ( T = ∫ 0 T x σ ( s Δ g ( s is established, where f : [ 0 , T ] T × ℝ × ℝ → ℝ satisfies the Carathéodory conditions and e : [ 0 , T ] T → ℝ is a continuous function and g : [ 0 , T ] T → ℝ is an increasing function with ∫ 0 T Δ g ( s = 1 . An example is given to illustrate the main results.
Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator
He Hui-Jing; Yang Jia-Shi; Zhang Wei-Ping; Wang Ji
2013-01-01
We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator.Mindlin's two-dimensional equations for piezoelectric plates are employed.Electrically forced vibration solutions are obtained for three cases:pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear,flexure,and face shear.Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined.Results show that near the thickness-shear resonance,admittance assumes maxima,and that for certain values of the length/thickness ratio,the coupling to flexure causes severe admittance drops,while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.
Koike, Masafumi; Ota, Toshihiko; Saito, Masako; Sato, Joe
2016-08-01
Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.
Koike, Masafumi; Saito, Masako; Sato, Joe
2016-01-01
Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.
Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping
2016-09-21
The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device.
Zhukovsky, Sergei V; Uskov, Alexander V; Protsenko, Igor E; Lavrinenko, Andrei V
2013-01-01
We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step between the semiconductor layer and an adjacent transparent conductive oxide layer. We show that the presence of refracti...
Maiorova, A V; Volotka, A V; Zaytsev, V A; Plunien, G; Stoehlker, T
2011-01-01
Parity nonconservation (PNC) effect in recombination of a polarized electron with a heavy H-like ion in case of resonance with a doubly excited state of the corresponding He-like ion is studied. It is assumed that photons of the energy corresponding to the one-photon decay of the doubly excited state into the $2^1S_0$ or the $2^3P_0$ state are detected at a given angle with respect to the incident electron momentum. Calculations are performed for heliumlike thorium ($Z = 90$) and gadolinium ($Z = 64$), where the $2^1S_0$ and $2^3P_0$ levels are near to cross and, therefore, the PNC effect is strongly enhanced.
Space charge effect on parametric resonances of ion cloud in a linear Paul trap
Mandal, P; De Munshi, D; Dutta, T; Mukherjee, M
2013-01-01
The effect of the presence of a finite number of ions on their parametric resonances inside a Paul trap has been investigated both experimentally and theoretically. The Coulomb coupling among the charged particles results in two distinct phenomena: one is the frequency shift of the trapped ion oscillators and second is the collective oscillation of the trapped ion cloud. We observe both in a linear trap configuration. It is found that the strength and the secular frequency of individual ion-oscillation decrease while the strength of the collective oscillation increases with increasing number of trapped ions. The observation has been modeled by considering the space charge potential as an effective dc potential inside the trap. It describes the observations well within the experimental uncertainties.
Frequency resonance effect of neurons under low-frequency weak magnetic field
Azanza, Maria J. [Laboratorio de Magnetobiologia, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain)]. E-mail: mjazanza@unizar.es; Moral, A. del [Laboratorio de Magnetismo de Solidos, DFMC and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain); Perez Bruzon, R.N. [Laboratorio de Magnetobiologia, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain)
2007-03-15
We report on the frequency resonance effect observed in single neurons of mollusc Helix brain under low-frequency B=1 mT magnetic fields of frequency f{sub M} =0.1-80 Hz. The dependence of the firing frequency f with f{sub M} decreases as a Lorentzian, centered about the spontaneous, f {sub 0} one ('window effect'). An explanation is provided based on the superdiamagnetism and Ca{sup 2+} coulomb explosion model, supplemented by the Ca{sup 2+} kinetics towards the Ca{sup 2+}-dependent K{sup +} channels, opening them. The Ca{sup 2+} ion diffusion time is obtained.
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav
2007-01-01
Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...
Kumar, A K Rhine; Dang, N Dinh
2015-01-01
Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C \\textbf{90}, 044308 (2014)], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei $^{97}$Tc, $^{120}$Sn, $^{179}$Au, and $^{208}$Pb, and corroborate with the...
Effect of resonant magnetic perturbations on ELMs in connected double null plasmas in MAST
Kirk, A.; Liu, Yueqiang; Chapman, I. T.; Harrison, J.; Nardon, E.; Scannell, R.; Thornton, A. J.; the MAST Team
2013-04-01
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n = 3 to connected double null plasmas in the MAST tokamak produces up to a factor of 9 increase in edge-localized mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. The effect of the RMPs is found to be scenario dependent. In one scenario the mitigation is only due to a large density pump out event and if the density is recovered by gas puffing a return to type-I ELMs is observed. In another scenario sustained ELM mitigation can be achieved irrespective of the amount of fuelling. Despite a large scan of parameters complete ELM suppression has not been achieved. The results are compared with modelling performed using either the vacuum approximation or including the plasma response. The requirement for a resonant condition, that is an optimum alignment of the perturbation with the plasma, is confirmed by performing a scan in the pitch angle of the applied field.
Repeatable Shape Memory Effect and Mechanical Resonance of TiNiCu-Coated Magnetic Ribbons
Ishii, O; Miyahara, Y; Kambe, S; Kutsuzawa, N [Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Ishida, A, E-mail: oishii@yz.yamagata-u.ac.jp [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)
2011-01-01
This paper describes a new bimorph-type actuator composed of a shape-memory-alloy coated magnetic ribbon. A high magnetostrictive amorphous ribbon (Metglas 2605SC, 37 mmx6 mmx0.025 mm) coated with a 1.0 {mu}m thick sputter-deposited Ti{sub 48.5}Ni{sub 33.5}Cu{sub 18} film exhibited a repeatable shape memory effect in the temperature range from 10 deg. C to 70 deg. C; reverse martensitic transformation upon heating bent the ribbon and martensitic transformation upon cooling flattened it. Simultaneous application of AC and DC magnetic fields excited the longitudinal mechanical vibration which can be monitored wirelessly with a pickup coil. The resonance frequency was proportional to the displacement of the ribbon within an accuracy of 0.76%. Consequently, it is confirmed that a TiNiCu-coated magnetic ribbon actuator with high positioning resolution can be realized by monitoring its resonance frequency and feeding back it to the heating and/or cooling power control algorithms.
Sigma(770) Resonance and the Breaking of Scale and Chiral Symmetry in Effective QCD
Svec, M
2002-01-01
CERN measurements of pi(-)p->pi(-)pi(+)n on polarized target at 17.2 GeV/c enable experimental determination of partial wave production amplitudes below 1080 MeV. The measured S-wave transversity amplitudes provide evidence for a narrow scalar resonance sigma(770). The assumption of analyticity of production amplitudes in dipion mass allows to determine S-wave helicity amplitudes S_0 and S_1. The amplitude S_1 is related to pi(-)pi(+)->pi(-)pi(+) scattering. There are four "down" solutions (1, 1bar), (2, 1bar), (1, 2bar) and (2, 2bar) selected by unitarity in pipi scattering. Ellis-Lanik relation between the mass m_sigma and partial width Gamma(sigma->pi(-)pi(+)) derived from an effective QCD theory with broken scale and chiral symmetry selects solutions (1, 1bar) and (1, 2bar) and imparts the sigma(770) resonance with a dilaton-gluonium interpretation. Weinberg's mended symmetry selects solutions (1, 1bar) and (2, 1bar). The combin ed solution (1, 1bar) has m_sigma=769 +/- 13 MeV and Gamma_sigma=154 +/- 22 M...
Tian, S Y; Zou, L; Quan, X; Zhang, Y; Xue, F S; Ye, T H
2010-06-01
To assess the effects of midazolam on explicit and implicit memories, 12 volunteers were randomly divided into the two groups: one with an Observer's Assessment of Alertness/Sedation score of 3 (mild sedation) and one with a score of 1 (deep sedation). Blood oxygen-level-dependent functional magnetic resonance imaging was measured before and during an auditory stimulus, then with midazolam sedation, and then during a second auditory stimulus with continuous midazolam sedation. After 4 h, explicit and implicit memories were assessed. There was no evidence of explicit memory at the two levels of midazolam sedation. Implicit memory was retained at a mild level of midazolam sedation but absent at a deep level of midazolam sedation. At a mild level of midazolam sedation, activation of all brain areas by auditory stimulus (as measured by functional magnetic resonance imaging) was uninhibited. However, a deep level of midazolam sedation depressed activation of the superior temporal gyrus by auditory stimulus. We conclude that midazolam does not abolish implicit memory at a mild sedation level, but can abolish both explicit and implicit memories at a deep sedation level. The superior temporal gyrus may be one of the target areas.
Electron spin resonance studies of the effects of sterilization on poly(ethylene glycol) hydrogels.
Kanjickal, Deenu; Lopina, Stephanie; Evancho-Chapman, Mary Michelle; Schmidt, Steven; Inbaraj, Johnson J; Cardon, Thomas B; Lorigan, Gary A
2009-02-01
The effects of several sterilization procedures on a poly(ethylene glycol) (PEG) hydrogel have been examined by electron spin resonance (ESR) spectroscopy. The crosslinked polyurethanes were synthesized by reacting PEG with a tri-functional isocyanate. The free radical concentration of unsterilized, ethylene oxide (EtO), hydrogen peroxide (H(2)O(2)), and gamma sterilized hydrogels were monitored over time. Free radical presence was observed for all the treatments, unsterilized and sterilized PEG hydrogels. The unsterilized and the EtO sterilized samples elicited similar levels of free radical intensity whereas, the H(2)O(2) and gamma sterilized samples had a significantly higher free radical concentration. The spectra reveal overlapping resonances of a peroxy and a triphenylmethyl radical. The concentration of the free radicals increase for all the treatments over time except for the gamma sterilized sample. The increase is significantly higher in the H(2)O(2) sterilized sample. A tentative model is proposed to explain the reaction pathway leading to the production of the free radicals. The observed increases in the free radical concentrations of the EtO and hydrogen peroxide sterilized hydrogels over a five-month-period make it difficult to predict properties that are affected by free radical concentrations. In that light, gamma sterilization, that does not induce a change in free radical concentrations over a five month period, could be the sterilization method of choice for PEG hydrogels that could potentially be stored for undetermined periods of time prior to application.
Dynamical generation of hadronic resonances in effective models with derivative interactions
Wolkanowski, Thomas
2016-01-01
Light scalar mesons can be understood as dynamically generated resonances. They arise as 'companion poles' in the propagators of quark-antiquark seed states when accounting for hadronic loop contributions to the self-energies of the latter. Such a mechanism may explain the overpopulation in the scalar sector - there exist more resonances with total spin $J=0$ than can be described within a quark model. Along this line, we study an effective Lagrangian approach where the isovector state $a_{0}(1450)$ couples via both non-derivative and derivative interactions to pseudoscalar mesons. It is demonstrated that the propagator has two poles: a companion pole corresponding to $a_{0}(980)$ and a pole of the seed state $a_{0}(1450)$. The positions of these poles are in quantitative agreement with experimental data. Besides that, we investigate similar models for the isodoublet state $K_{0}^{\\ast}(1430)$ by performing a fit to $\\pi K$ phase shift data in the $I=1/2,$ $J=0$ channel. We show that, in order to fit the data...
Effect of resonant magnetic perturbations on ELMs in connected double null plasmas in MAST
Kirk, A; Chapman, I T; Harrison, J; Nardon, E; Scannell, R; Thornton, A J
2013-01-01
The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=3 to connected double null plasmas in the MAST tokamak produces up to a factor of 9 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. The effect of the RMPs is found to be scenario dependent. In one scenario the mitigation is only due to a large density pump out event and if the density is recovered by gas puffing a return to type I ELMs is observed. In another scenario sustained ELM mitigation can be achieved irrespective of the amount of fuelling. Despite a large scan of parameters complete ELM suppression has not been achieved. The results have been compared to modelling performed using either the vacuum approximation or including the plasma response. The requirement for a resonant condition, that is an optimum align...
Yogitha, Bali; Nagarathna, R; John, Ebnezar; Nagendra, Hr
2010-01-01
Studies have shown that conventional treatment methods with drugs, physiotherapy and exercises for common neck pain (CNP) may be inadequate. Yoga techniques have been found to be effective complimentary therapies in chronic low back pain and also for stress reduction in other diseases. The aim of the study was to examine the complimentary role of a yogic relaxation called mind sound resonance technique (MSRT) in non-surgical management of CNP. In this randomized controlled study, 60 patients with CNP were assigned to two groups (yoga, n=30) and (control, n=30). The yoga group received yogic MSRT for 20 minutes in supine position after the conventional physiotherapy program for 30 minutes using pre-recorded audio CD and the control group had non-guided supine rest for 20 minutes (after physiotherapy), for 10 days. MSRT provides deep relaxation for both mind and body by introspective experience of the sound resonance in the whole body while repeating the syllables A, U, M and Om and a long chant (Mahamrityunjaya mantra) several times in a meaningful sequence. Both the groups had pre and post assessments using visual pain analog scale, tenderness scoring key, neck disability score (NDS) questionnaire, goniometric measurement of cervical spinal flexibility, and state and trait anxiety inventory-Y1 (STAI-Y1). Mann-Whitney U test showed significant difference between groups in pain (Prelaxation through MSRT adds significant complimentary benefits to conventional physiotherapy for CNP by reducing pain, tenderness, disability and state anxiety and providing improved flexibility.
Heuberer, Philipp R; Smolen, Daniel; Pauzenberger, Leo; Plachel, Fabian; Salem, Sylvia; Laky, Brenda; Kriegleder, Bernhard; Anderl, Werner
2017-05-01
The number of arthroscopic rotator cuff surgeries is consistently increasing. Although generally considered successful, the reported number of retears after rotator cuff repair is substantial. Short-term clinical outcomes are reported to be rarely impaired by tendon retears, whereas to our knowledge, there is no study documenting long-term clinical outcomes and tendon integrity after arthroscopic rotator cuff repair. To investigate longitudinal long-term repair integrity and clinical outcomes after arthroscopic rotator cuff reconstruction. Case series; Level of evidence, 4. Thirty patients who underwent arthroscopic rotator cuff repair with suture anchors for a full-tendon full-thickness tear of the supraspinatus or a partial-tendon full-thickness tear of the infraspinatus were included. Two and 10 years after initial arthroscopic surgery, tendon integrity was analyzed using magnetic resonance imaging (MRI). The University of California, Los Angeles (UCLA) score and Constant score as well as subjective questions regarding satisfaction with the procedure and return to normal activity were used to evaluate short- and long-term outcomes. At the early MRI follow-up, 42% of patients showed a full-thickness rerupture, while 25% had a partial rerupture, and 33% of tendons remained intact. The 10-year MRI follow-up (129 ± 11 months) showed 50% with a total rerupture, while the other half of the tendons were partially reruptured (25%) or intact (25%). The UCLA and Constant scores significantly improved from preoperatively (UCLA total: 50.6% ± 20.2%; Constant total: 44.7 ± 10.5 points) to 2 years (UCLA total: 91.4% ± 16.0% [ P integrity important goals of future research efforts.
Resonance of a rectangular microstrip patch on a uniaxial substrate
Wong, Kin-Lu; Row, Jeen-Sheen; Kuo, Chih-Wen; Huang, Kuang-Chih
1993-04-01
Effects of uniaxial anisotropy in the substrate on the complex resonant frequency of the microstrip patch antenna are investigated in terms of an integral equation formulation. The complex resonant frequency of the microstrip patch antenna is calculated by using Galerkin's method in solving the integral equation. The sinusoidal functions are selected as the basis functions, which show fast numerical convergence. Numerical results also indicate that both the resonant frequency and the half-power bandwidth are increased due to the positive uniaxial anisotropy and, on the other hand, decreased due to the negative uniaxial anisotropy.
Effectiveness of Two Water Conservation Policies: An Integrated Modeling Approach
Das, Biswa R.; Willis, David B.; Johnson, Jeffrey W.
2010-01-01
Agriculture in the Texas High Plains depends entirely on the Ogallala Aquifer. Texas enacted water conservation legislation to address declining reserves in the aquifer. We developed an integrated regional water policy model that links a hydrology model with an economic optimization model to estimate policy impacts with respect to economic cost and water conservation. Testing the effectiveness of two policies, a groundwater extraction tax and extraction quotas, we observe that neither signifi...
Effectiveness of Two Water Conservation Policies: An Integrated Modeling Approach
Das, Biswa R.; Willis, David B.; Johnson, Jeffrey W.
2010-01-01
Agriculture in the Texas High Plains depends entirely on the Ogallala Aquifer. Texas enacted water conservation legislation to address declining reserves in the aquifer. We developed an integrated regional water policy model that links a hydrology model with an economic optimization model to estimate policy impacts with respect to economic cost and water conservation. Testing the effectiveness of two policies, a groundwater extraction tax and extraction quotas, we observe that neither signifi...
Advances in organic field-effect transistors and integrated circuits
WANG Hong; JI ZhuoYu; LIU Ming; SHANG LiWei; LIU Ge; LIU XingHua; LIU Jiang; PENG YingQuan
2009-01-01
Organic field-effect transistors (OFETs) have received significant research interest because of their promising applications in low cast, lager area, plastic circuits, and tremendous progress has been made in materials, device performance, OFETs based circuits in recent years.In this article we intro-duce the advances in organic semiconductor materials, OFETs based integrating techniques, and in particular highlight the recent progress.Finally, the prospects and problems of OFETs are discussed.
Major Achievements and Prospect of the ATLAS Integral Effect Tests
2012-01-01
A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line ...
Integrating Individual-Based Indices of Contaminant Effects
Christopher L. Rowe
2001-01-01
Full Text Available Habitat contamination can alter numerous biological processes in individual organisms. Examining multiple individual-level responses in an integrative fashion is necessary to understand how individual health or fitness reflects environmental contamination. Here we provide an example of such an integrated perspective based upon recent studies of an amphibian (the bullfrog, Rana catesbeiana that experiences several, disparate changes when larval development occurs in a trace element�contaminated habitat. First, we present an overview of studies focused on specific responses of individuals collected from, or transplanted into, a habitat contaminated by coal combustion residues (CCR. These studies have reported morphological, behavioral, and physiological modifications to individuals chronically interacting with sediments in the CCR-contaminated site. Morphological abnormalities in the oral and tail regions in contaminant-exposed individuals influenced other properties such as grazing, growth, and swimming performance. Behavioral changes in swimming activities and responses to stimuli appear to influence predation risk in the contaminant-exposed population. Significant changes in bioenergetics in the contaminated habitat, evident as abnormally high energetic expenditures for survival (maintenance costs, may ultimately influence production pathways (growth, energy storage in individuals. We then present a conceptual model to examine how interactions among the affected systems (morphological, behavioral, physiological may ultimately bring about more severe effects than would be predicted if the responses were considered in isolation. A complex interplay among simultaneously occurring biological changes emerges in which multiple, sublethal effects ultimately can translate into reductions in larval or juvenile survival, and thus reduced recruitment of juveniles into the population. In systems where individuals are exposed to low concentrations of
Advances in organic field-effect transistors and integrated circuits
无
2009-01-01
Organic field-effect transistors (OFETs) have received significant research interest because of their promising applications in low cast, lager area, plastic circuits, and tremendous progress has been made in materials, device performance, OFETs based circuits in recent years. In this article we introduce the advances in organic semiconductor materials, OFETs based integrating techniques, and in particular highlight the recent progress. Finally, the prospects and problems of OFETs are discussed.
Hwang, R N; Toppel, B J; Henryson, H II
1980-10-01
Motivated by a need for an economical yet rigorous tool which can address the computation of the structural material Doppler effect, an extremely efficient improved RABANL capability has been developed utilizing the fact that the Doppler broadened line shape functions become essentially identical to the natural line shape functions or Lorentzian limits beyond about 100 Doppler widths from the resonance energy, or when the natural width exceeds about 200 Doppler widths. The computational efficiency has been further enhanced by preprocessing or screening a significant number of selected resonances during library preparation into composition and temperature independent smooth background cross sections. The resonances which are suitable for such pre-processing are those which are either very broad or those which are very weak. The former contribute very little to the Doppler effect and their self-shielding effect can readily be averaged into slowly varying background cross section data, while the latter contribute very little to either the Doppler or to self-shielding effects. To illustrate the accuracy and efficiency of the improved RABANL algorithms and resonance screening techniques, calculations have been performed for two systems, the first with a composition typical of the STF converter region and the second typical of an LMFBR core composition. Excellent agreement has been found for RABANL compared to the reference Monte Carlo solution obtained using the code VIM, and improved results have also been obtained for the narrow resonance approximation in the ultra-fine-group option of MC/sup 2/-2.
Market, Country and World Effects on Regional Equity Market Integration
Chee Wooi Hooy
2014-08-01
Full Text Available This study explores the fundamental driving forces of regional equity market integration in a trading bloc. The determinant factors are categorized into market attribute, economic fundamentals and world information. Our sample consists of 26 equity markets of ive regional trading blocs, namely AFTA, CER, EFTA, EU and NAFTA over the period of January 1999 to August 2005. We measure market integration based on pricing errors as proposed by Korajczyk (1996 and Levine and Zervos (1998. Using panel regressions, our results show that equity integration in these trading blocs is driven internally, where only individual-market volatility and economic fundamentals play a signiicant role in the process. Intra-bloc trade is found to enhance regional equity market integration, supporting the notion that regional convergence extends beyond the trade sector that is promoted in the trade agreements. We also document regime shifting effects during stock market crises, where most of these markets became strongly integrated after a regional crisis, but integration was signiicantly weakened during a crisis that affected the world markets. Also, the level of equity market integration differs across trading blocs, where the blocs with a smaller number of country members are relatively more integrated. ";} // -->activate javascript
Measurement of the thermo-optical effect of integrated waveguides
Kremmel, Johannes; Lamprecht, Tobias; Michler, Markus
2016-05-01
Thermo-optical switches are widely used in integrated optics and various types of integrated optical structures have been reported in literature. These structures include, but are not limited to Mach-Zehnder-Interferometer (MZI) switches and digital optical switches. The thermo-optical effect depends on the refractive index, the polarizability and the density of a material. The polarizability effect can often be neglected and the change of refractive index is dominated by a density change due to the thermal expansion of the material. We report herein a new method to measure the thermo-optical effect of waveguides directly, using integrated MZIs fabricated in polymer waveguide technology. Common methods rely on macroscopic samples, but the properties can differ significantly for micro-structured waveguides. Using a floodlight halogen rod lamp and metal-shields, we realized a radiation heater with a trapezoidal-shaped heating pattern. While the heating occurred from the bottom side, a thermocouple was placed on top of the sample. By dynamically measuring the temperature and the corresponding output-power of the MZI, the temperature difference between constructive and destructive interference can be determined. Multiple measurements of different sample MZIs exhibit an average thermo-optical coefficient (TOC) of 1.6 ∗ 10-4 1/K .
Major Achievements and Prospect of the ATLAS Integral Effect Tests
Ki-Yong Choi
2012-01-01
Full Text Available A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation, has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe. Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line break tests, and steam line break tests. These tests contributed toward an understanding of the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing validation data for evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Major discoveries and lessons found in the past integral effect tests are summarized in this paper. As the demand for integral effect tests is on the rise due to the active national nuclear R&D program in Korea, the future prospects of the application of the ATLAS facility are also discussed.
Ulrich, R. K.; Henney, C. J.; Schimpf, S.; Fossat, E.; Gelly, B.; Grec, G.; Loudagh, S.; Schmider, F.-X; Palle, P.; Regulo, C.
1993-01-01
It has been known since the work by Claverie et al. (1982) that integrated-sunlight velocities measured with the resonance scattering technique show variations with time scales of weeks to months. The cause can be understood in terms of the effects of solar activity as was pointed out by Edmunds & Gough (1983) and Andersen & Maltby (1983). The latter authors included a model calculation based on sunspot areas which showed good promise of being able to quantitatively reproduce the observed velocity shifts. We discuss in this paper a new modeling effort based on daily magnetograms obtained at the 150-ft tower on Mt. Wilson. This type of database is more quantitative than sunspot area. Similar maps of magnetically sensitive quantities will be measured on a continuous time base as part of several planned helioseismology experiments (from space with the Solar Oscillations Imagery/Michelson Doppler Imager (SOI/MDI) experiment on the Solar and Heliospheric Observatory (SOHO), see Scherrer et al. (1991) or with ground-based networks, see Hill & Leibacher (1991)). We discuss the correlations between various magnetically sensitive quantities and develop a new model for the effects of magnetic field on line profiles and surface brightness. From these correlations we integrate the line profile changes over the solar surface using observed magnetic field strengths measured at lambda 5250.2. The final output is a new model for the effects of magnetic fields on integrated sunlight velocities which we compare with daily offset velocities derived from the International Research on the Interior of the Sun (IRIS)-T instrument at the Observatorio del Teide.
Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)
2014-09-01
The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen
2013-05-01
The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.
Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile
2014-09-01
The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.
Tohka, Jussi
2014-11-28
Quantitative analysis of magnetic resonance (MR) brain images are facilitated by the development of automated segmentation algorithms. A single image voxel may contain of several types of tissues due to the finite spatial resolution of the imaging device. This phenomenon, termed partial volume effect (PVE), complicates the segmentation process, and, due to the complexity of human brain anatomy, the PVE is an important factor for accurate brain structure quantification. Partial volume estimation refers to a generalized segmentation task where the amount of each tissue type within each voxel is solved. This review aims to provide a systematic, tutorial-like overview and categorization of methods for partial volume estimation in brain MRI. The review concentrates on the statistically based approaches for partial volume estimation and also explains differences to other, similar image segmentation approaches.
Grejs, Anders Morten; Gjedsted, Jakob; Pedersen, Michael;
2016-01-01
The aim of this randomized porcine study was to compare surface targeted temperature management (TTM) to endovascular TTM evaluated by cerebral diffusion-weighted magnetic resonance imaging (MRI): apparent diffusion coefficient (ADC), and by intracerebral/intramuscular microdialysis. It is well...... known that alteration in the temperature affects ADC, but the relationship between cerebral ADC values and the cooling method per se has not been established. Eighteen anesthetized 60-kg female swine were hemodynamically and intracerebrally monitored and subsequently subjected to a baseline MRI...... a significantly lower median ADC than endovascular cooling: 714 (634; 804) × 10(-6) mm(2)/s versus 866 (828; 927) × 10(-6) mm(2)/s, (p edema and these low values could not be explained solely by the temperature effect per se...