WorldWideScience

Sample records for effective potential calculation

  1. Iterative optimized effective potential and exact exchange calculations at finite temperature

    International Nuclear Information System (INIS)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Muller, Richard Partain; Desjarlais, Michael Paul; Lippert, Ross A.; Sears, Mark P.; Wright, Alan Francis

    2006-01-01

    We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

  2. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg

    International Nuclear Information System (INIS)

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP's have been generated which also incorporate the mass--velocity and Darwin relativistic effects into the potential. The ab initio ECP's should facilitate valence electron calculations on molecules containing transition-metal atoms with accuracies approaching all-electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All-electron and valence-electron atomic excitation energies are also compared for the low-lying states of Sc--Hg, and the valence-electron calculations are found to reproduce the all-electron excitation energies (typically within a few tenths of an eV)

  3. Efficient methods for including quantum effects in Monte Carlo calculations of large systems: extension of the displaced points path integral method and other effective potential methods to calculate properties and distributions.

    Science.gov (United States)

    Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G

    2013-01-07

    We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.

  4. Calculating potential of mean force between like-charged nanoparticles: A comprehensive study on salt effects

    International Nuclear Information System (INIS)

    Wu, Yuan-Yan; Wang, Feng-Hua; Tan, Zhi-Jie

    2013-01-01

    Ions are critical to the structure and stability of polyelectrolytes such as nucleic acids. In this work, we systematically calculated the potentials of mean force between two like-charged nanoparticles in salt solutions by Monte Carlo simulations. The pseudo-spring method is employed to calculate the potential of mean force and compared systematically with the inversed-Boltzmann method. An effective attraction is predicted between two like-charged nanoparticles in divalent/trivalent salt solution and such attraction becomes weakened at very high salt concentration. Our analysis reveals that for the system, the configuration of ion-bridging nanoparticles is responsible for the attraction, and the invasion of anions into the inter-nanoparticles region at high salt concentration would induce attraction weakening rather than the charge inversion effect. The present method would be useful for calculating effective interactions during nucleic acid folding.

  5. DWBA (d,N) Calculations Including Dirac Phenomenological Potentials and an Exact Treatment of Finite-range Effects

    Science.gov (United States)

    Hawk, Eric

    2005-04-01

    An algorithm for the inclusion of both Dirac phenomenological potentials and an exact treatment of finite-range effects within the DWBA is presented. The numerical implementation of this algorithm is used to calculate low-energy deuteron stripping cross sections, analyzing powers, and polarizations. These calculations are compared with experimental data where available. The impact of using several commonly employed nuclear potentials (Reid soft-core, Bonn, Argonne v18) for the internal deuteron wave function is also examined.

  6. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    International Nuclear Information System (INIS)

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl 2 , Cl 2 - , Br 2 , Br 2 - , and Xe 2 + . The results show that the average errors introduced by the ECP's are generally only a few percent

  7. Towards a spectroscopically accurate set of potentials for heavy hydride laser cooling candidates: Effective core potential calculations of BaH

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Keith; McLaughlin, Brendan M.; Lane, Ian C., E-mail: i.lane@qub.ac.uk [School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG (United Kingdom)

    2016-04-14

    BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio {sup 2}Σ{sup +} potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46 electron effective core-potential and even-tempered augmented polarized core-valence basis sets (aug-pCVnZ-PP, n = 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy D{sub e} for the X{sup 2}Σ{sup +} state (extrapolated to the CBS limit) is 16 895.12 cm{sup −1} (2.094 eV), which agrees within 0.1% of a revised experimental value of <16 910.6 cm{sup −1}, while the calculated r{sub e} is within 0.03 pm of the experimental result.

  8. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...... to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source....

  9. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals

    International Nuclear Information System (INIS)

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the innermost core electron for third-row (K--Au), fourth-row (Rb--Ag), and fifth-row (Cs--Au) atoms. The outermost core orbitals: corresponding to the ns 2 np 6 configuration for the three rows here: are not replaced by the ECP but are treated on an equal footing with the nd, (n+1)s and (n+1)p valence orbitals. These ECP's have been derived for use in molecular calculations where these outer core orbitals need to be treated explicitly rather than to be replaced by an ECP. The ECP's for the forth and fifth rows also incorporate the mass--velocity and Darwin relativistic effects into the potentials. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3s, 3p, 3d, 4s, 4p), (4s, 4p, 4d, 5s, 5p), and (5s, 5p, 5d, 6s, 6p) ortibals of the three respective rows

  10. Calculation of Rydberg interaction potentials

    International Nuclear Information System (INIS)

    Weber, Sebastian; Büchler, Hans Peter; Tresp, Christoph; Urvoy, Alban; Hofferberth, Sebastian; Menke, Henri; Firstenberg, Ofer

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole–dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source. (tutorial)

  11. Status of effective potential calculations

    CERN Document Server

    Quiros, M.

    1995-01-01

    We review various effective potential methods which have been useful to compute the Higgs mass spectrum and couplings of the minimal supersymmetric standard model. We compare results where all-loop next-to-leading-log corrections are resummed by the renormalization group, with those where just the leading-log corrections are kept. Pole masses are obtained from running masses by addition of convenient self-energy diagrams. Approximate analytical expressions are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log terms. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass of the lightest CP-even Higgs boson mass.

  12. Microscopic optical potential calculations of finite nuclei with extended skyrme forces

    International Nuclear Information System (INIS)

    Yuan Haiji; Ye Weilei; Gao Qin; Shen Qingbiao

    1986-01-01

    Microscopic optical potential calculations in the Hartree-Fock (HF) approximation with Extended Skyrme forces are investigated. The HF equation is derived from the variation principle and the potential formula of spherical nuclei is obtained by two different ways. Then the calculations for symmetrid nuclei 16 O, 40 Ca and asymmetric nucleus 90 Zr with eight sets of Skyrme force parameters are presented. Our results show that the potential form and variating tendency with incident energy are reasonable and there apparently appears a 'wine-bottle-bottom' shape in the intermediate energy region. Furthermore, our calculations reflect shell effects clearly

  13. Effects of neglecting carrier tunneling on electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs

    OpenAIRE

    Hakim, MMA; Haque, A

    2002-01-01

    We investigate the validity of the assumption of neglecting carrier tunneling effects on self-consistent electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs. Comparison between simulated and experimental results shows that for accurate modeling of direct tunneling current, tunneling effects on potential profile need to be considered. The relative error in gate current due to neglecting carrier tunneling is higher at higher gate voltages and increases...

  14. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  15. Density-density functionals and effective potentials in many-body electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, Fernando A.; Kent, Paul R.

    2008-01-01

    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.

  16. Calculation of molecular free energies in classical potentials

    International Nuclear Information System (INIS)

    Farhi, Asaf; Singh, Bipin

    2016-01-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations. (paper)

  17. The Sendai triton calculation with three-nucleon potentials

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    Where can we see the effects of quarks remains a fundamental question in nuclear theory physics. A bold approach is to try to reproduce physical quantities theoretically by utilizing a quark picture with imagination. A conservative but safer approach may be to study the triton as thoroughly as possible using realistic two- and three-nucleon potentials. We are taking the latter approach. In fact, our calculation of the EMC effect, which was one thought to be a realization of the quark-gluon picture of nuclei, suggests that we might not have to make recourse to this picture. The calculation was done for 3 He, while experimental data for 4 He are shown. We hope that an experiment for 3 He is done soon, to check whether our conservative approach actually works for the EMC effect. (orig./WL)

  18. A gradient approximation for calculating Debye temperatures from pairwise interatomic potentials

    International Nuclear Information System (INIS)

    Jackson, D.P.

    1975-09-01

    A simple gradient approximation is given for calculating the effective Debye temperature of a cubic crystal from central pairwise interatomic potentials. For examples of the Morse potential applied to cubic metals the results are in generally good agreement with experiment. (author)

  19. Calculations of nucleus-nucleus microscopic optical potentials at intermediate energies

    International Nuclear Information System (INIS)

    Hanna, K.M.; Kuhtina, I.N.; Lukyanov, K.V.; Lukyanov, V.K.; Zemlyanaya, E.V.; Slowinski, B.

    2006-01-01

    Three types of microscopic nucleus-nucleus optical potentials are constructed using three patterns for their real and imaginary parts. Two of these patterns are the real V H and imaginary W H parts of the potential which reproduces the high-energy amplitude of scattering in the microscopic Glauber-Sitenko theory. Another template VDF is calculated within the standard double-folding model with the exchange term included. For either of the three tested potentials, the contribution of real and imaginary patterns is adjusted by introducing two fitted factors. Correspondingly, using numerical code ECIS, the elastic differential cross-sections were fitted to the experimental data on scattering of the 16,17 O heavy-ions at about hundred Mev/nucleon on various target-nuclei. The relativization effect is also included. The tables of the obtained factors which renormalize the strengths of the real and (or) imaginary parts of the calculated microscopic potentials are given

  20. Results of recent calculations using realistic potentials

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Results of recent calculations for the triton using realistic potentials with strong tensor forces are reviewed, with an emphasis on progress made using the many different calculational schemes. Several test problems are suggested. 49 refs., 5 figs

  1. Potentials for calculating both parity states in p-shell nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1989-01-01

    A Hamiltonian employing a ''physical'' central two-body potential has been used for simultaneous calculation of both normal and non-normal parity states of p-shell nuclei. Normal parity states have been calculated in a full 0/h bar/ω space and non-normal parity states in a full 1/h bar/ω space with the effects of spurious center-of-mass states completely removed. No explicit core is used in any of the shell model calculations. Results are compared with experimental data and previous shell model calculations for the following nuclei: 4 He, /sup 5,6,7,8/Li, 8 Be, /sup 13,14/C, and 13 N. 34 refs., 9 figs., 3 tabs

  2. Superfield approach to calculation of effective potential in supersymmetric field theories

    International Nuclear Information System (INIS)

    Bukhbinder, I.L.; Kuzenko, S.M.; Yarevskaya, Zh.V.

    1993-01-01

    Superfield method of computing effective potential in supersymmetric field theories is suggested. The one-loop effective potential of the Wess-Zumino model is found. The prescription for obtaining multi-loop corrections is described

  3. Effective action calculation in lattice QCD

    International Nuclear Information System (INIS)

    Hoek, J.

    1983-01-01

    A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)

  4. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.

    Science.gov (United States)

    Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S

    1995-03-01

    We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.

  5. Calculation of real optical model potential for heavy ions in the framework of the folding model

    International Nuclear Information System (INIS)

    Goncharov, S.A.; Timofeyuk, N.K.; Kazacha, G.S.

    1987-01-01

    The code for calculation of a real optical model potential in the framework of the folding model is realized. The program of numerical Fourier-Bessel transformation based on Filon's integration rule is used. The accuracy of numerical calculations is ∼ 10 -4 for a distance interval up to a bout (2.5-3) times the size of nuclei. The potentials are calculated for interactions of 3,4 He with nuclei from 9 Be to 27 Al with different effective NN-interactions and densities obtained from electron scattering data. Calculated potentials are similar to phenomenological potentials in Woods-Saxon form. With calculated potentials the available elastic scattering data for the considered nuclei in the energy interval 18-56 MeV are analysed. The needed renormalizations for folding potentials are < or approx. 20%

  6. Calculation of the Huang-Rhys parameter in spherical quantum dots: the optical deformation potential effect

    International Nuclear Information System (INIS)

    Hamma, M; Miranda, R P; Vasilevskiy, M I; Zorkani, I

    2007-01-01

    An accurate calculation of the exciton-phonon interaction matrix elements and Huang-Rhys parameter for nearly spherical nanocrystals (NCs) of polar semiconductor materials is presented. The theoretical approach is based on a continuum lattice dynamics model and the effective mass approximation for electronic states in the NCs. A strong confinement regime is considered for both excitons and optical phonons, taking into account both the Froehlich-type and optical deformation potential (ODP) mechanisms of the exciton-phonon interaction. The effects of exchange electron-hole interaction and possible hexagonal crystal structure of the underlying material are also taken into account. The theory is applied to CdSe and InP quantum dots. It is shown that the ODP mechanism, almost unimportant for CdSe, dominates the exciton-phonon coupling in small InP dots. The effect of the non-diagonal interaction, not included in the Huang-Rhys parameter, is briefly discussed

  7. Substituent effect on redox potential of nitrido technetium complexes with Schiff base ligand. Theoretical calculations

    International Nuclear Information System (INIS)

    Takayama, T.; Sekine, T.; Kudo, H.

    2003-01-01

    Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex. (author)

  8. The superfield method for the calculation of effective potentials applied to chiral superfields: Wess-Zumino and O'Raifeartaigh models

    International Nuclear Information System (INIS)

    Santos, R.P. dos.

    1986-12-01

    The superfield method is applied to the effective potential calculation in supersymmetric models. The Weinberg and Jackiw methods are discussed in the context of supersymmetric field theories, highlighting the greater simplicity obtained when the Feynman super diagrams are used. The chiral superfield propagators are derived and their relations with components field are commented. (L.C.J.A.)

  9. Calculation of baryon chemical potential and strangeness chemical potential in resonance matter

    International Nuclear Information System (INIS)

    Fu Yuanyong; Hu Shouyang; Lu Zhongdao

    2006-01-01

    Based on the high energy heavy-ion collisions statistical model, the baryon chemical potential and strangeness chemical potential are calculated for resonance matter with net baryon density and net strangeness density under given temperature. Furthermore, the relationship between net baryon density, net strangeness density and baryon chemical potential, strangeness chemical potential are analyzed. The results show that baryon chemical potential and strangeness chemical potential increase with net baryon density and net strangeness density increasing, the change of net baryon density affects baryon chemical potential and strangeness chemical potential more strongly than the change of net strangeness density. (authors)

  10. Chemical potential calculations in dense liquids using metadynamics

    Science.gov (United States)

    Perego, C.; Giberti, F.; Parrinello, M.

    2016-10-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  11. Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials

    International Nuclear Information System (INIS)

    Dai Shuangxing; Dunn, Martin L; Park, Harold S

    2010-01-01

    We demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics and molecular statics, to study the piezoelectric properties of ZnO using core-shell interatomic potentials. We accomplish this by reporting the piezoelectric constants for ZnO as calculated using two different classical interatomic core-shell potentials: that originally proposed by Binks and Grimes (1994 Solid State Commun. 89 921-4), and that proposed by Nyberg et al (1996 J. Phys. Chem. 100 9054-63). We demonstrate that the classical core-shell potentials are able to qualitatively reproduce the piezoelectric constants as compared to benchmark ab initio calculations. We further demonstrate that while the presence of the shell is required to capture the electron polarization effects that control the clamped ion part of the piezoelectric constant, the major shortcoming of the classical potentials is a significant underprediction of the clamped ion term as compared to previous ab initio results. However, the present results suggest that overall, these classical core-shell potentials are sufficiently accurate to be utilized for large scale atomistic simulations of the piezoelectric response of ZnO nanostructures.

  12. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    } using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.

  13. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    relative density data at 20 °C. They were subsequently used to estimate N f values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N f values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance

  14. ASYMPT - a program to calculate asymptotics of hyperspherical potential curves and adiabatic potentials

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Puzynin, I.V.; Vinitskij, S.I.

    1997-01-01

    A FORTRAN 77 program is presented which calculates asymptotics of potential curves and adiabatic potentials with an accuracy of O(ρ -2 ) in the framework of the hyperspherical adiabatic (HSA) approach. It is shown that matrix elements of the equivalent operator corresponding to the perturbation ρ -2 have a simple form in the basis of the Coulomb parabolic functions in the body-fixed frame and can be easily computed for high values of total orbital momentum and threshold number. The second-order corrections to the adiabatic curves are obtained as the solutions of the corresponding secular equation. The asymptotic potentials obtained can be used for the calculation of the energy levels and radial wave functions of two-electron systems in the adiabatic and coupled-channel approximations of the HSA approach

  15. Dysfunctional methods and the effective potential

    International Nuclear Information System (INIS)

    Dannenberg, A.; California Univ., Berkeley

    1988-01-01

    The effective potential is a useful and much-studied object. It is known to be both real and convex, but a perturbative calculation often gives a complex and nonconvex result. In this letter we address the apparent conflict between perturbation theory and the convexity of the effective potential. (orig.)

  16. Calculation of the magnetic vector potential in the TJ-II

    International Nuclear Information System (INIS)

    Lopez Fraguas, A.; Lopez Bruna, D.; Romero, J. A.

    2005-01-01

    The properties of the vector magnetic potential and its usefulness to calculate magnetic fluxes in both stationary and time-dependent conditions are p revised in this report. We have adapted to the TJ-II Flexible Heliac efficient numerical expressions to calculate the vector potential, calculating in addition the magnetic flux with this formalism in circumstances whose complexity makes very convenient the use of the vector potential. The result on induced voltages offer theoretical support to the measurements of induced voltage due to the OH coils in the plasma, like the measurements provided by the loop voltage diagnostic installed in the TJ-II, as well as to the cylindrical approximation of the plasma often used to interpret experimental data. (Author) 11 refs

  17. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    Science.gov (United States)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  18. Standard hydrogen electrode and potential of zero charge in density functional calculations

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Björketun, Mårten; Skúlason, Egill

    2011-01-01

    standard hydrogen electrode potential (ASHEP) from the calculated work function. Although conceptually correct, this procedure introduces two sources of errors: (i) the experimental estimate of the ASHEP varies from 4.28 to 4.85 V and, as has been previously shown and is reconfirmed here, (ii...... possess in order for its computed ASHEP to closely match the experimental benchmark. We capture and quantify these three effects by calculating trends in the ASHEP and PZC on eight close-packed transition metals, considering the four most simple and representative water models. Finally, it is also...

  19. Improving the Calculation of The Potential Between Spherical and Deformed Nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Ramadan, Kh.A.

    2000-01-01

    The Heavy Ion (HI) interaction potential between spherical and deformed nuclei is improved by calculating its exchange part using finite range nucleon-nucleon (NN) force. We considered U 238 as a target nucleus and seven projectile nuclei to show the dependence of the HI potential on both the energy and orientation of the deformed target nucleus. The effect of finite range NN force has been found to produce significant changes in the HI potential. The variation of the barrier height V B , its thickness and its position R B due to the use of finite range NN force are significant. Such variation enhance the fusion cross-section at energy values just below the Coulomb barrier by a factor increasing with the mass number of projectile nucleus. (author)

  20. Microscopic nuclear structure calculations with modern meson-exchange potentials

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Muether, H.; Schmid, K.W.; Kuo, T.T.S.

    1990-07-01

    The report presents the results of microscopic nuclear shell-model calculations using three different nucleon-nucleon potentials. These are the phenomenological Reid-Soft-Core potential and the meson-exchange potentials of the Paris and the Bonn groups. It is found that the Bonn potential yields sd-shell matrix elements which are more attractive than those obtained with the Reid or the Paris potentials. The harmonic-oscillator matrix elements of the Bonn potential are also in better agreement with the empirically derived matrix elements of Wildenthal. The implications are discussed. 27 refs., 4 figs., 1 tab

  1. On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres

    International Nuclear Information System (INIS)

    Capitelli, M.; Cappelletti, D.; Colonna, G.; Gorse, C.; Laricchiuta, A.; Liuti, G.; Longo, S.; Pirani, F.

    2007-01-01

    The interaction energy in systems (atom-atom, atom-ion and atom-molecule) involving open-shell species, predicted by a phenomenological method, is used for collision integral calculations. The results are compared with those obtained by different authors by using the complete set of quantum mechanical interaction potentials arizing from the electronic configurations of separate partners. A satisfactory agreement is achieved, implying that the effect of deep potential wells, present in some of the chemical potentials, is cancelled by the effect of strong repulsive potentials

  2. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  3. Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas

    Directory of Open Access Journals (Sweden)

    Sang-Kil Son (손상길

    2014-07-01

    Full Text Available The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers.

  4. High precision electrostatic potential calculations for cylindrically symmetric lenses

    International Nuclear Information System (INIS)

    Edwards, David Jr.

    2007-01-01

    A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10 -10

  5. Effective potentials for twisted fields

    International Nuclear Information System (INIS)

    Banach, R.

    1981-01-01

    Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)

  6. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    Science.gov (United States)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  7. Two-loop calculation of the effective potential for the Wess-Zumino model

    International Nuclear Information System (INIS)

    Fogleman, G.; Starkmann, G.D.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1983-01-01

    The effective potential for the supersymmetric Wess-Zumino model is computed off-shell to two loops. A renormalization procedure which preserves positivity of the kinetic terms in the effective action is implemented. Supersymmetry is not broken to this order. (orig.)

  8. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) SUBPART H RADIONUCLIDES POTENTIAL TO EMIT CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    EARLEY JN

    2008-07-23

    This document provides an update of the status of stacks on the Hanford Site and the potential radionuclide emissions, i.e., emissions that could occur with no control devices in place. This review shows the calculations that determined whether the total effective dose equivalent (TEDE) received by the maximum public receptor as a result of potential emissions from any one of these stacks would exceed 0.1 millirem/year. Such stacks require continuous monitoring of the effluent, or other monitoring, to meet the requirements of Washington Administrative code (WAC) 246-247-035(1)(a)(ii) and WAC 246-247-075(1), -(2), and -(6). This revised update reviews the potential-to-emit (PTE) calculations of 31 stacks for Fluor Hanford, Inc. Of those 31 stacks, 11 have the potential to cause a TEDE greater than 0.1 mrem/year.

  9. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) SUBPART H; RADIONUCLIDES POTENTIAL-TO-EMIT CALCULATIONS

    International Nuclear Information System (INIS)

    EARLEY JN

    2008-01-01

    This document provides an update of the status of stacks on the Hanford Site and the potential radionuclide emissions, i.e., emissions that could occur with no control devices in place. This review shows the calculations that determined whether the total effective dose equivalent (TEDE) received by the maximum public receptor as a result of potential emissions from any one of these stacks would exceed 0.1 millirem/year. Such stacks require continuous monitoring of the effluent, or other monitoring, to meet the requirements of Washington Administrative code (WAC) 246-247-035(1)(a)(ii) and WAC 246-247-075(1), -(2), and -(6). This revised update reviews the potential-to-emit (PTE) calculations of 31 stacks for Fluor Hanford, Inc. Of those 31 stacks, 11 have the potential to cause a TEDE greater than 0.1 mrem/year

  10. Evaluating variability with atomistic simulations: the effect of potential and calculation methodology on the modeling of lattice and elastic constants

    Science.gov (United States)

    Hale, Lucas M.; Trautt, Zachary T.; Becker, Chandler A.

    2018-07-01

    Atomistic simulations using classical interatomic potentials are powerful investigative tools linking atomic structures to dynamic properties and behaviors. It is well known that different interatomic potentials produce different results, thus making it necessary to characterize potentials based on how they predict basic properties. Doing so makes it possible to compare existing interatomic models in order to select those best suited for specific use cases, and to identify any limitations of the models that may lead to unrealistic responses. While the methods for obtaining many of these properties are often thought of as simple calculations, there are many underlying aspects that can lead to variability in the reported property values. For instance, multiple methods may exist for computing the same property and values may be sensitive to certain simulation parameters. Here, we introduce a new high-throughput computational framework that encodes various simulation methodologies as Python calculation scripts. Three distinct methods for evaluating the lattice and elastic constants of bulk crystal structures are implemented and used to evaluate the properties across 120 interatomic potentials, 18 crystal prototypes, and all possible combinations of unique lattice site and elemental model pairings. Analysis of the results reveals which potentials and crystal prototypes are sensitive to the calculation methods and parameters, and it assists with the verification of potentials, methods, and molecular dynamics software. The results, calculation scripts, and computational infrastructure are self-contained and openly available to support researchers in performing meaningful simulations.

  11. Ab initio effective core potentials including relativistic effects. II. Potential energy curves for Xe2, Xe+2, and Xe*2

    International Nuclear Information System (INIS)

    Ermler, W.C.; Lee, Y.S.; Pitzer, K.S.; Winter, N.W.

    1978-01-01

    Potential energy curves for the ground 1 Σ + /sub g/ state of Xe 2 , the first four states of the Xe + 2 ions, and the eight Xe* 2 excimer states corresponding to the addition of a 6ssigma/sub g/ Rydberg electron to these ion cores have been computed using averaged relativistic effective core potentials (AREP) and the self-consistent field approximation for the valence electrons. The calculations were carried out using the LS-coupling scheme with the effects of spin--orbit coupling included in the resulting potential energy curves using an empirical procedure. A comparison of nonrelativistic and averaged relativistic EP's and subsequent molecular calculations indicates that relativistic effects arising from the mass--velocity and Darwin terms are not important for these properties of Xe 2 molecules. Spectroscopic constants for Xe + 2 are in good agreement with all electron CI calculations suggesting that the computed values for Xe* 2 excimers should be reliable. The lifetime for the O/sub u/ + state of the Xe 2 * is computed to be 5.6 nsec which is in the range of the experimentally determined values

  12. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei: systematic investigation of the triaxiality effect on the fission barrier

    Science.gov (United States)

    Chai, Qing-Zhen; Zhao, Wei-Juan; Liu, Min-Liang; Wang, Hua-Lei

    2018-05-01

    Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94–118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional (β 2, γ, β 4) deformation space. Taking the heavier 252Cf nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β 2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112–118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g., the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed. Supported by National Natural Science Foundation of China (11675148, 11505157), the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2017GGJS008), the Foundation and Advanced Technology Research Program of Henan Province (162300410222), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002) and the Physics Research and Development Program of Zhengzhou University (32410017)

  13. Neural network approach for the calculation of potential coefficients in quantum mechanics

    Science.gov (United States)

    Ossandón, Sebastián; Reyes, Camilo; Cumsille, Patricio; Reyes, Carlos M.

    2017-05-01

    A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the direct problem for different parametrizations of the chosen potential function. Then, using the attainable eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was obtained. This relationship was later inverted and refined by training an inverse radial basis neural network, allowing the calculation of the unknown parameters and therefore estimating the potential function. Three numerical examples are presented in order to prove the effectiveness of the method. The results show that the method proposed has the advantage to use less computational resources without a significant accuracy loss.

  14. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  15. Metastable He (n=2) - Ne potential interaction calculation

    International Nuclear Information System (INIS)

    Rahal, H.

    1983-10-01

    Diabatic potential terms corresponding to He (2 1 S)-Ne and He (2 3 S)-Ne interactions are calculated. These potentials reproduce the experimental results thermal metastable atom elastic scattering on Ne target. A model which reduces the interaction to a one-electron problem is proposed: the He excited electron. Its interaction with the He + center is reproduced by a ''l'' dependent potential model with a 1/2 behaviour at short range. The electron interaction facing the Ne is described by a l-dependent pseudopotential reproducing with accuracy the electron elastic scattering on a Ne atom. The importance of the corrective term related to the Ne polarizations by the electron and the He + ion is showed in this work. In the modelling problems, the accuracy cannot be better than 0.1 MeV [fr

  16. The effective nuclear potential

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    An empirical analyses is made of the mean effective internucleon potential required in the shell-model description of nuclei, allowing for the presence of many-body effects as suggested by current theory. A consistent description is found in which the effective two-body interaction acts almost entirely in even states, and the many-body effects are simulated by a repulsive three-body contact interaction. The strength of the two-body interaction is consistent with that expressed by the free scattering matrix of the two-nucleon system, and that of the three-body interaction with the 'rearrangement energy' calculated in the many-body theory. (author). 21 refs, 2 figs, 7 tabs

  17. Inelastic plasmon and inter-band electron-scattering potentials for Si from dielectric matrix calculations

    International Nuclear Information System (INIS)

    Josefsson, T.W.; Smith, A.E.

    1994-01-01

    Inelastic scattering of electrons in a crystalline environment may be represented by a complex non-hermitian potential. Completed generalised expressions for this inelastic electron scattering potential matrix, including virtual inelastic scattering, are derived for outer-shell electron and plasmon excitations. The relationship between these expressions and the general anisotropic dielectric response matrix of the solid is discussed. These generalised expressions necessarily include the off-diagonal terms representing effects due to departure from translational invariance in the interaction. Results are presented for the diagonal back structure dependent inelastic and virtual inelastic scattering potentials for Si, from a calculation of the inverse dielectric matrix in the random phase approximation. Good agreement is found with experiment as a function of incident energies from 10 eV to 100 keV. Anisotropy effects and hence the interaction de localisation represented by the off-diagonal scattering potential terms, are found to be significant below 1 keV. 38 refs., 2 figs

  18. Calculation of parameters of the interaction potential between excited alkali atoms and mercury atoms: The Cs*, Pr*-Hg interaction

    International Nuclear Information System (INIS)

    Glushkov, A.V.

    1994-01-01

    Based on the method of effective potential involving the new polarization interaction potential calculated from polarization diagrams of the perturbation theory in the Thomas-Fermi approximation, the main parameters of the interatomic potentials (equilibrium distances, potential well depth) are evaluated for a system consisting of an alkali atom in the ground and excited states and of a mercury atom. The results of calculations of quasi-molecular terms for the A-Hg system, where A = Na, Cs, Fr, are reported, some of which are obtained for the first time. A comparison is made with available experimental and theoretical data. 29 refs., 2 figs., 1 tab

  19. Interaction and collective effects in classical-equations-of-motion calculations

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1981-01-01

    We discuss results obtained with the classical-equations-of-motion (CEOM) approach, with particular reference to interaction (potential energy) and collective effects in central collisions of equal mass nuclei. The essence of the CEOM approach is the classical calculation of all A = A/sub P/ + A/sub T/ trajectories using a 2-body potential V between all pairs of nucleons; V = V/sub short/ + V/sub long/ has a short range repulsion and a longer range attractive tail. In contrast to hydrodynamics, the CEOM approach is microscopic and includes transparency and nonequilibrium effects

  20. Quark number density and susceptibility calculation with one correction in mean field potential

    International Nuclear Information System (INIS)

    Singh, S. Somorendro

    2016-01-01

    We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)

  1. Nuclear structure approach to the calculation of the imaginary alpha-nucleus optical potential

    International Nuclear Information System (INIS)

    Dermawan, H.; Osterfeld, F.; Madsen, V.A.

    1981-01-01

    A microscopic calculation of the second-order imaginary optical potential for 40 (Ca(α,α) is made for incident energies of 31 and 100 MeV using RPA transition densities for intermediate excited states. The projectile is treated as an elementary particle, and the alpha-nucleon interaction is normalized by fitting 3 - inelastic cross sections with a folded M3Y potential. The use of an optical Green's function for the intermediate propagator is found to be important. Equivalent local potentials are obtained and used to calculate elastic scattering cross sections. Agreement with low-angle experimental data is fair at 31 MeV, but at 100 MeV the calculated cross sections indicate much too little absorption. 9 figures, 1 table

  2. Calculation of radial couplings in the model-potential and pseudopotential approaches: The NaH quasimolecule

    International Nuclear Information System (INIS)

    Mo, O.; Riera, A.; Yaez, M.

    1985-01-01

    We present an extension of the analytical method of Macias and Riera to calculate radial couplings, to include model potentials or (local and nonlocal) pseudopotentials, in the Hamiltonian. As an illustration, energies, couplings, and momentum matrix elements are presented and discussed for the two-effective-electron NaH quasimolecule, as a stringent test case

  3. Calculation of radial couplings in the model-potential and pseudopotential approaches: The NaH quasimolecule

    Energy Technology Data Exchange (ETDEWEB)

    Mo, O.; Riera, A.; Yaez, M.

    1985-06-01

    We present an extension of the analytical method of Macias and Riera to calculate radial couplings, to include model potentials or (local and nonlocal) pseudopotentials, in the Hamiltonian. As an illustration, energies, couplings, and momentum matrix elements are presented and discussed for the two-effective-electron NaH quasimolecule, as a stringent test case.

  4. Monte-Carlo calculations of light nuclei with the Reid potential

    Energy Technology Data Exchange (ETDEWEB)

    Lomnitz-Adler, J. (Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Fisica)

    1981-01-01

    A Monte-Carlo method is developed to calculate the binding energy and density distribution of the /sup 3/H and /sup 4/He nuclei for a variational wave function written as a symmetrized product of correlation operators. The upper bounds obtained with the Reid potential are -6.86 +- .08 and -22.9 +- .5 MeV respectively. The Coulomb interaction in /sup 4/He is ignored. The calculated density distributions have reasonable radii, but they do not show any dip at the center.

  5. Monte-Carlo calculations of light nuclei with the Reid potential

    International Nuclear Information System (INIS)

    Lomnitz-Adler, J.

    1981-01-01

    A Monte-Carlo method is developed to calculate the binding energy and density distribution of the 3 H and 4 He nuclei for a variational wave function written as a symmetrized product of correlation operators. The upper bounds obtained with the Reid potential are -6.86 +- .08 and -22.9 +- .5 MeV respectively. The Coulomb interaction in 4 He is ignored. The calculated density distributions have reasonable radii, but they do not show any dip at the center. (author)

  6. Explicit calculation of indirect global warming potentials for halons using atmospheric models

    Directory of Open Access Journals (Sweden)

    D. J. Wuebbles

    2009-11-01

    Full Text Available The concept of Global Warming Potentials (GWPs has been extensively used in policy consideration as a relative index for comparing the climate impact of an emitted greenhouse gas (GHG, relative to carbon dioxide with equal mass emissions. Ozone depletion due to emission of chlorinated or brominated halocarbons leads to cooling of the climate system in the opposite direction to the direct warming contribution by halocarbons as GHGs. This cooling is a key indirect effect of the halocarbons on climatic radiative forcing, which is accounted for by indirect GWPs. With respect to climate, it is critical to understand net influences considering direct warming and indirect cooling effects especially for Halons due to the greater ozone-depleting efficiency of bromine over chlorine. Until now, the indirect GWPs have been calculated using a parameterized approach based on the concept of Equivalent Effective Stratospheric Chlorine (EESC and the observed ozone depletion over the last few decades. As a step towards obtaining indirect GWPs through a more robust approach, we use atmospheric models to explicitly calculate the indirect GWPs of Halon-1211 and Halon-1301 for a 100-year time horizon. State-of-the-art global chemistry-transport models (CTMs were used as the computational tools to derive more realistic ozone depletion changes caused by an added pulse emission of the two major Halons at the surface. The radiative forcings on climate from the ozone changes have been calculated for indirect GWPs using an atmospheric radiative transfer model (RTM. The simulated temporal variations of global average total column Halons after a pulse perturbation follow an exponential decay with an e-folding time which is consistent with the expected chemical lifetimes of the Halons. Our calculated indirect GWPs for the two Halons are much smaller than those from past studies but are within a single standard deviation of WMO (2007 values and the direct GWP values derived

  7. Quark motional effects on the interquark potential in baryons

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2008-01-01

    We study the heavy-heavy-light quark (QQq) system in a nonrelativistic potential model, and investigate the quark motional effect on the inter-two-quark potential in baryons. We adopt the Hamiltonian with the static three-quark potential which is obtained by the first-principle calculation of lattice QCD, rather than the two-body force in ordinary quark models. Using the renormalization-group inspired variational method in discretized space, we calculate the ground-state energy of QQq systems and the light-quark spatial distribution. We find that the effective string tension between the two heavy quarks is reduced compared to the static three-quark case. This reduction of the effective string tension originates from the geometrical difference between the interquark distance and the flux-tube length, and is conjectured to be a general property for baryons

  8. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  9. Magnetism of hexagonal close-packed nickel calculated by full-potential linearized augmented plane wave method

    International Nuclear Information System (INIS)

    Tian, F.; Tian, H.; Whitmore, L.; Ye, L.Y.

    2015-01-01

    The energy dependent on volume of hexagonal close-packed (hcp) nickel with different magnetism is calculated by full-potential linearized augmented plane wave method. Based on the calculation ferromagnetic state is found to be the most stable state. The magnetic moment of hcp Ni is calculated and compared to those calculated by different pseudo-potential methods. Furthermore, it is also compared to that of face-centered cubic (fcc) one with the reason discussed

  10. Effective potentials from complex simulations: a potential-matching algorithm and remarks on coarse-grained potentials

    International Nuclear Information System (INIS)

    Toth, Gergely

    2007-01-01

    The projection of complex interactions onto simple distance-dependent or angle-dependent classical mechanical functions is a long-standing theoretical challenge in the field of computational sciences concerning biomolecules, colloids, aggregates and simple systems as well. The construction of an effective potential may be based on theoretical assumptions, on the application of fitting procedures on experimental data and on the simplification of complex molecular simulations. Recently, a force-matching method was elaborated to project the data of Car-Parrinello ab initio molecular dynamics simulations onto two-particle classical interactions (Izvekov et al 2004 J. Chem. Phys. 120 10896). We have developed a potential-matching algorithm as a practical analogue of this force-matching method. The algorithm requires a large number of configurations (particle positions) and a single value of the potential energy for each configuration. We show the details of the algorithm and the test calculations on simple systems. The test calculation on water showed an example in which a similar structure was obtained for qualitatively different pair interactions. The application of the algorithm on reverse Monte Carlo configurations was tried as well. We detected inconsistencies in a part of our calculations. We found that the coarse graining of potentials cannot be performed perfectly both for the structural and the thermodynamic data. For example, if one applies an inverse method with an input of the pair-correlation function, it provides energetics data for the configurations uniquely. These energetics data can be different from the desired ones obtained by all atom simulations, as occurred in the testing of our potential-matching method

  11. Relation between calculated Lennard-Jones potential and thermal stability of Cu-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, T.; Bian, X.F.; Jiang, J.

    2006-01-01

    Two metallic bulk glasses, Cu 60 Zr 30 Ti 10 and Cu 47 Ti 33 Zr 11 Ni 8 Si 1 , with a diameter of 3 mm were prepared by copper mold casting method. Dilatometric measurement was carried out on the two glassy alloys to obtain information about the average nearest-neighbour distance r 0 and the effective depth of pair potential V 0 . By assuming a Lennard-Jones potential, r 0 and V 0 were calculated to be 0.28 nm and 0.16 eV for Cu 60 Zr 30 Ti 10 and 0.27 nm and 0.13 eV for Cu 47 Ti 33 Zr 11 Ni 8 Si 1 , respectively. It was found that the glassy alloy Cu 60 Zr 30 Ti 10 was more stable than Cu 47 Ti 33 Zr 11 Ni 8 Si 1 against heating from both experiment and calculation

  12. Calculation of high-order virial coefficients for the square-well potential.

    Science.gov (United States)

    Do, Hainam; Feng, Chao; Schultz, Andrew J; Kofke, David A; Wheatley, Richard J

    2016-07-01

    Accurate virial coefficients B_{N}(λ,ɛ) (where ɛ is the well depth) for the three-dimensional square-well and square-step potentials are calculated for orders N=5-9 and well widths λ=1.1-2.0 using a very fast recursive method. The efficiency of the algorithm is enhanced significantly by exploiting permutation symmetry and by storing integrands for reuse during the calculation. For N=9 the storage requirements become sufficiently large that a parallel algorithm is developed. The methodology is general and is applicable to other discrete potentials. The computed coefficients are precise even near the critical temperature, and thus open up possibilities for analysis of criticality of the system, which is currently not accessible by any other means.

  13. Effective potential and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Hochberg, David

    2010-01-01

    The nonequilibrium effective potential is calculated for the Frank model of spontaneous mirror-symmetry breaking in chemistry in which external noise is introduced to account for random environmental effects. The well-mixed limit, corresponding to negligible diffusion, and the case of diffusion in two space dimensions are studied in detail. White noise has a disordering effect in the former case, whereas in the latter case a phase transition occurs for external noise exceeding a critical intensity which racemizes the system.

  14. Electron structure of molecules with very heavy atoms using effective core potentials

    International Nuclear Information System (INIS)

    Pitzer, K.S.

    1982-01-01

    Topics covered include effective potential, Hamiltonian for valence-electron motion, molecular calculations, spin-spin coupling, L-S coupling, numerical results of molecular calculations, and results of configuration-interaction Slater-orbital calculations in L-S coupling

  15. Semiclassical calculations of the imaginary part of the nucleon-nucleus optical potential

    International Nuclear Information System (INIS)

    Hasse, R.W.; Schuck, P.

    1984-03-01

    We calculate for finite nuclei the imaginary part of the nucleus-nucleon optical potential on and off shell by using the local Fermi gas approximation and a finite range two-body exchange force. Results are compared with those obtained by infinite nuclear matter calculations as well as using the local density or Glauber approximation

  16. The tree-alpha Faddeev calculation on 12C bound states with a Pauli correct alpha-alpha potential

    International Nuclear Information System (INIS)

    Kamada, Hiroyuki; Oryu, Shinsho

    1986-01-01

    The three-alpha model of 12 C is investigated by the Faddeev formalism with the UIM alpha-alpha potential, in which the Pauli effect between two-alpha system was taken into account adequately. The potential can reproduce the on- and off-shell effects of the alpha-alpha interaction by the rank-4 separable type for the S-wave, the rank-3 one for the D-wave, and the rank-2 one for the G-wave, in which two of the ranks in the S-wave, and one in the D-wave are prepared to eliminate the Pauli forbidden states. We obtained three even states J π = 0 + , 2 + , 4 + , and two odd states 1 - , 3 - , below the alpha- 8 Be(0 + g.s) threshold energy. The even parity states gain larger binding energies than those which have been obtained by former Faddeev calculation with the rank-1 Kukulin and Neudatchin (KN) potential. On the other hand, for the odd parity states, we obtained smaller binding energies than the former one. It is found that our Faddeev calculation with the UIM potential does not miss any important low-lying levels of 12 C, in which any spurious states do not appear. (author)

  17. Off disk-center potential field calculations using vector magnetograms

    Science.gov (United States)

    Venkatakrishnan, P.; Gary, G. Allen

    1989-01-01

    A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.

  18. Topics in quantum chromodynamics: two loop Feynman gauge calculation of the meson nonsinglet evolution potential and fourier acceleration of the calculation of the fermion propagator in lattice QCD

    International Nuclear Information System (INIS)

    Katz, G.R.

    1986-01-01

    Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration

  19. Calculating properties with the coherent-potential approximation

    International Nuclear Information System (INIS)

    Faulkner, J.S.; Stocks, G.M.

    1980-01-01

    It is demonstrated that the expression that has hitherto been used for calculating the Bloch spectral-density function A/sup B/(E,k) in the Korringa-Kohn-Rostoker coherent-potential-approximation theory of alloys leads to manifestly unphysical results. No manipulation of the expression can eliminate this behavior. We develop an averaged Green's-function formulation and from it derive a new expression for A/sup B/(E,k) which does not contain unphysical features. The earlier expression for A/sup B/(E,k) was suggested as plausible on the basis that it is a spectral decomposition of the Lloyd formula. Expressions for many other properties of alloys have been obtained by manipulations of the Lloyd formula, and it is now clear that all such expressions must be considered suspect. It is shown by numerical and algebraic comparisons that some of the expressions obtained in this way are equivalent to the ones obtained from a Green's function, while others are not. In addition to studying these questions, the averaged Green's-function formulation developed in this paper is shown to furnish an interesting new way to approach many problems in alloy theory. The method is described in such a way that the aspects of the formulation that arise from the single-site approximation can be distinguished from those that depend on a specific choice for the effective scatterer

  20. Invert Effective Thermal Conductivity Calculation

    International Nuclear Information System (INIS)

    M.J. Anderson; H.M. Wade; T.L. Mitchell

    2000-01-01

    The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m · K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations

  1. Relations between effective potentials in different dimensions

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1983-01-01

    Using dimensional regularization, the one-loop approximation for the effective potential (finite temperature) is computed as an analytic function of the number of dimensions. It is shown that a simple relation exists between potentials for different dimensions. This relation reduces to a simple derivative when these numbers differ by two units. The limit of zero temperature is calculated and also the finite temperature corrections are given. (Author) [pt

  2. Effective potential in Lorentz-breaking field theory models

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

    2017-12-15

    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

  3. Effective potential in Lorentz-breaking field theory models

    International Nuclear Information System (INIS)

    Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.

    2017-01-01

    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

  4. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1983-01-01

    In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis

  5. Two-loop effective potential for Wess-Zumino model using superfields

    International Nuclear Information System (INIS)

    Santos, R.P. dos; Srivastava, P.P.

    1989-01-01

    For the case of several interacting chiral superfields the propagators for the unconstrained superfield potentials in the 'shifted' theory, where the supersymmetry is explicity broken, are derived in a compact form. They are used to compute the one-loop effective potential in the general case, while a superfield calculation of the renormalized effective potential to two loops for the Wess-Zumino models is performed. (authors) [pt

  6. Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential

    Science.gov (United States)

    Hrtánková, Jaroslava; Mareš, Jiří

    2018-01-01

    An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.

  7. Comparison of potential models through heavy quark effective theory

    International Nuclear Information System (INIS)

    Amundson, J.F.

    1995-01-01

    I calculate heavy-light decay constants in a nonrelativistic potential model. The resulting estimate of heavy quark symmetry breaking conflicts with similar estimates from lattice QCD. I show that a semirelativistic potential model eliminates the conflict. Using the results of heavy quark effective theory allows me to identify and compensate for shortcomings in the model calculations in addition to isolating the source of the differences in the two models. The results lead to a rule as to where the nonrelativistic quark model gives misleading predictions

  8. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    International Nuclear Information System (INIS)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-01-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  9. Calculation of transient potential rise on the wind turbine struck by lightning.

    Science.gov (United States)

    Xiaoqing, Zhang

    2014-01-01

    A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine.

  10. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  11. Development of a calculation methodology for potential flow over irregular topographies

    International Nuclear Information System (INIS)

    Del Carmen, Alejandra F.; Ferreri, Juan C.; Boutet, Luis I.

    2003-01-01

    Full text: Computer codes for the calculation of potential flow fields over surfaces with irregular topographies have been developed. The flows past multiple simple obstacles and past the neighboring region of the Embalse Nuclear Power Station have been considered. The codes developed allow the calculation of velocities quite near the surface. It, in turn, imposed developing high accuracy techniques. The Boundary Element Method, using a linear approximation on triangular plane elements and an analytical integration methodology has been applied. A particular and quite efficient technique for the calculation of the solid angle at each node vertex was also considered. The results so obtained will be applied to predict the dispersion of passive pollutants coming from discontinuous emissions. (authors)

  12. Hybrid functional calculations of potential hydrogen storage material: Complex dimagnesium iron hydride

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-06-01

    By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  13. Calculations in support of a potential definition of large release

    International Nuclear Information System (INIS)

    Hanson, A.L.; Davis, R.E.; Mubayi, V.

    1994-05-01

    The Nuclear Regulatory Commission has stated a hierarchy of safety goals with the qualitative safety goals as Level I of the hierarchy, backed up by the quantitative health objectives as Level II and the large release guideline as Level III. The large release guideline has been stated in qualitative terms as a magnitude of release of the core inventory whose frequency should not exceed 10 -6 per reactor year. However, the Commission did not provide a quantitative specification of a large release. This report describes various specifications of a large release and focuses, in particular, on an examination of releases which have a potential to lead to one prompt fatality in the mean. The basic information required to set up the calculations was derived from the simplified source terms which were obtained from approximations of the NUREG-1150 source terms. Since the calculation of consequences is affected by a large number of assumptions, a generic site with a (conservatively determined) population density and meteorology was specified. At this site, various emergency responses (including no response) were assumed based on information derived from earlier studies. For each of the emergency response assumptions, a set of calculations were performed with the simplified source terms; these included adjustments to the source terms, such as the timing of the release, the core inventory, and the release fractions of different radionuclides, to arrive at a result of one mean prompt fatality in each case. Each of the source terms, so defined, has the potential to be a candidate for a large release. The calculations show that there are many possible candidate source terms for a large release depending on the characteristics which are felt to be important

  14. Improved effective-potential formalism for composite fields

    International Nuclear Information System (INIS)

    Banks, T.; Raby, S.

    1976-01-01

    We develop an effective-potential formalism for studying dynamical symmetry breaking. The potential that we calculate is single-valued and bounded from below. Our formalism incorporates a stability criterion for deciding whether the broken-symmetry solution to the theory is the physical one. In lowest-order calculations in gauge theories we find that the asymmetric theory will be stable if and only if a composite Goldstone boson can be bound. Our conclusion is that in the weak-coupling approximation there is no dynamical spontaneous breakdown in gauge theories. We then use the renormalization group to argue that, if spontaneous breakdown occurs at all, it must also occur for arbitrarily weak coupling. The renormalization group also provides us with evidence that dynamical symmetry breakdown does not occur in infrared-stable theories

  15. Post-Gaussian Effective Potential of Double sine-Gordon Field

    International Nuclear Information System (INIS)

    Cai Weiran; Lou Senyue

    2005-01-01

    In the framework of the functional integral formalism, we calculate the effective potential of the double sine-Gordon (DsG) model up to the second order with an optimized expansion and the Coleman's normal-ordering prescription. Within the range of convergence, we make a comparison among the classical and the effective potential of the first and second order. The numerical analysis shows that the DsG post-Gaussian EP possesses some fine global properties and makes a substantial and a concordant quantum correction to the features of the classical potential.

  16. Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Zanganeh, V.

    2009-01-01

    In the current study, a simulation technique has been employed to calculate the total potential between two deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for the 48 Ca+ 238 U, 46 Ti+ 46 Ti, and 27 Al+ 70 Ge reactions reveal that considering the density dependent effects in the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.

  17. Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Polarizable Embedding: Role of the Embedding Potential

    DEFF Research Database (Denmark)

    Steinmann, Casper; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2014-01-01

    We present NMR shielding constants obtained through quantum mechanical/molecular mechanical (QM/MM) embedding calculations. Contrary to previous reports, we show that a relatively small QM region is sufficient, provided that a high-quality embedding potential is used. The calculated averaged NMR...... shielding constants of both acrolein and acetone solvated in water are based on a number of snapshots extracted from classical molecular dynamics simulations. We focus on the carbonyl chromophore in both molecules, which shows large solvation effects, and we study the convergence of shielding constants...

  18. Study on the nonlocality effects for generalized optical potentials

    International Nuclear Information System (INIS)

    Gurbanovich, I.S.; Zelenskaya, N.S.

    1981-01-01

    In previous studies the authors have ihown that the generalized optic potential (GOP) of particles interaction is a superposition of local and non local potentials (LP, NLP). On the example of α- particles scattering on the 8 Be nucleus at about 10-15 MeV the GOP nonlocal part is considered. For obtaining NLP the spectral decomposition of the Green function taking into account only contribution of relative motion of two α-particles in S-state is used. The locally-equivalent addition to central potential of α-particles scattering at 8 Be previously calculated is obtained. In a graphical form a total locally-equivalent potential and local GOP part are presented. It is shown that taking into account the nonlocallity effect in a locally energy approximation for precise wave function in S-state widen a potential hole without changing its depth. Such widening corresponds to the general character of behaviour of non local potentials calculated in the microscopic approach [ru

  19. NUMERICAL STUDY ON COOLING EFFECT POTENTIAL FROM VAPORIZER DEVICE OF LPG VEHICLE

    Directory of Open Access Journals (Sweden)

    MUJI SETIYO

    2017-07-01

    Full Text Available Over fuel consumption and increased exhaust gas due to the A/C system have become a serious problem. On the other hand, the LPG-fueled vehicle provides potential cooling from LPG phase changes in the vaporizer. Therefore, this article presents the potential cooling effect calculation from 1998 cm3 spark ignition (SI engine. A numerical study is used to calculate the potential heat absorption of latent and sensible heat transfer during LPG is expanded in the vaporizer. Various LPG compositions are also simulated through the engine speed range from 1000 to 6000 rpm. The result shows that the 1998 cm3 engine capable of generating the potential cooling effect of about 1.0 kW at 1000 rpm and a maximum of up to 1.8 kW at 5600 rpm. The potential cooling effects from the LPG vaporizer contributes about 26% to the A/C system works on eco-driving condition.

  20. Massive calculations of electrostatic potentials and structure maps of biopolymers in a distributed computing environment

    International Nuclear Information System (INIS)

    Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.

    2013-01-01

    Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).

  1. Interaction potentials and their effect on crystal nucleation and symmetry

    International Nuclear Information System (INIS)

    Hsu, C.S.; Rahman, A.

    1979-01-01

    Molecular dynamics technique has been used to study the effect of the interaction potential on crystal nucleation and the symmetry of the nucleated phase. Four systems, namely rubidium, Lennard-Jones, rubidium-truncated, and Lennard-Jones-truncated, have been studied each at reduced density 0.95. Two types of calculations were performed. Firstly, starting from a liquid state, each system was quenched rapidly to a reduced temperature of approx.0.1. The nucleation process for these systems was monitored by studying the time dependence of temperature and the pair correlation function, and the resulting crystalline structure analyzed using among other properties the Voronoi polyhedra. Only in the case of rubidium was a b.c.c. structure nucleated. In the other three cases we obtained a f.c.c. ordering. Secondly, we have studied the effect of changing the interaction potential in a system which has already achieved an ordered state under the action of some other potential. After establishing a b.c.c. structure in a rubidium system, the change in the symmetry of the system was studied when the pair potential was modified to one of the other three forms. The results from both types of calculations are consistent: the rubidium potential leads to a b.c.c. structure while the other three potentials give an f.c.c. structure. Metastable disordered structures were not obtained in any of the calculations. However, the time elapse between the moment when the system is quick-quenched and the moment when nucleation occurs appears to depend upon the potential of interaction

  2. Calculation of self-consistent potentials for substitutionally disordered systems with application to the Ag/sub x/-Pd/sub 1-x/ alloy series

    International Nuclear Information System (INIS)

    Winter, H.; Stocks, G.M.

    1983-01-01

    Previous Korringa-Kohn-Rostoker coherent-potential-approximation electronic-structure calculations for substitutionally random alloys have been based on ad hoc potentials. The lack of procedures suitable to provide self-consistent, parameter-free potentials prevented computations for systems consisting of dissimilar atoms and is also the reason why quantities like, for example, cohesive energies or lattice constants, have not so far been evaluated for systems of similar constituents. We present in full detail a generally applicable scheme devised for calculating the self-consistent electronic structures of substitutionally disordered systems. Its feasibility is demonstrated by presenting the results obtained for the Ag/sub x/Pd/sub 1-x/ alloy series. They are compared with those of former non-self-consistent calculations which use Mattheiss prescription potentials and the α = 1 Slater exchange, whereas the von Barth--Hedin expression is employed in our work. The differences are perceptible and have to be understood as combined self-consistency and exchange-correlation effects. .ID BW2039 .PG 905 909

  3. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    International Nuclear Information System (INIS)

    Li, Y.; Krieger, J.B.; Norman, M.R.; Iafrate, G.J.

    1991-01-01

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP

  4. Effective core potential methods for the lanthanides

    International Nuclear Information System (INIS)

    Cundari, T.R.; Stevens, W.J.

    1993-01-01

    In this paper a complete set of effective core potentials (ECPs) and valence basis sets for the lanthanides (Ce to Lu) are derived. These ECPs are consistent not only within the lanthanide series, but also with the third-row transition metals which bracket them. A 46-electron core was chosen to provide the best compromise between computational savings and chemical accuracy. Thus, the 5s and 5p are included as ''outer'' core while all lower energy atomic orbitals (AOs) are replaced with the ECP. Generator states were chosen from the most chemically relevant +3 and +2 oxidation states. The results of atomic calculations indicate that the greatest error vs highly accurate numerical potential/large, even-tempered basis set calculations results from replacement of the large, even-tempered basis sets with more compact representations. However, the agreement among atomic calculations remains excellent with both basis set sizes, for a variety of spin and oxidation states, with a significant savings in time for the optimized valence basis set. It is expected that the compact representation of the ECPs and valence basis sets will eventually encourage their use by computational chemists to further explore the bonding and reactivity of lanthanide complexes

  5. Semiclassical approach to Regge poles trajectories calculations for nonsingular potentials: Thomas-Fermi type

    International Nuclear Information System (INIS)

    Belov, S M; Avdonina, N B; Felfli, Z; Marletta, M; Msezane, A Z; Naboko, S N

    2004-01-01

    A simple semiclassical approach, based on the investigation of anti-Stokes line topology, is presented for calculating Regge poles for nonsingular (Thomas-Fermi type) potentials, namely potentials with singularities at the origin weaker than order -2. The anti-Stokes lines for Thomas-Fermi potentials have a more complicated structure than those of singular potentials and require careful application of complex analysis. The explicit solution of the Bohr-Sommerfeld quantization condition is used to obtain approximate Regge poles. We introduce and employ three hypotheses to obtain several terms of the Regge pole approximation

  6. Effect of potential attraction term on surface tension of ionic liquids

    Science.gov (United States)

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  7. Gauge invariance and the effective potential: the Abelian Higgs model

    International Nuclear Information System (INIS)

    Ramaswamy, S.

    1995-01-01

    The gauge invariance of the effective potential in the Abelian Higgs model is examined. The Nielsen identities, which ensure gauge independence of the effective potential and other physical quantities, are shown to hold at finite temperature and in the presence of the chemical potential. It is also shown that, as a consequence of the Nielsen identities, the standard order parameter for symmetry breaking, namely the scalar field vacuum expectation value, has a non-zero parametric dependence on the gauge choice employed. These are then verified to one loop at finite temperature. High-temperature symmetry breaking is considered. In the leading high-temperature limit, the potential agrees with the previous calculations. (orig.)

  8. Calculation of the redox potential of the protein azurin and some mutants

    NARCIS (Netherlands)

    van den Bosch, M; Swart, M; Snijders, JG; Berendsen, HJC; Mark, AE; Oostenbrink, C; van Gunsteren, WF; Canters, GW

    Azurin from Pseudomonas aeruginosa is a small 128-residue, copper-containing protein. Its redox potential can be modified by mutating the protein. Free-energy calculations based on classical molecular-dynamics simulations of the protein and from mutants in aqueous solution at different pH values

  9. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor

    KAUST Repository

    Gao, Zhiyuan; Zhou, Jun; Gu, Yudong; Fei, Peng; Hao, Yue; Bao, Gang; Wang, Zhong Lin

    2009-01-01

    We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining

  10. Precipitates/Salts Model Sensitivity Calculation

    International Nuclear Information System (INIS)

    Mariner, P.

    2001-01-01

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO 2 ) on the chemical evolution of water in the drift

  11. Color screening effect in the quark potential model

    International Nuclear Information System (INIS)

    Zhang Zongye; Yu Youwen; Shen Pengnian; Shen Xiaoyan; Dong Yubin

    1993-01-01

    By using the color confinement potential which includes the color screening effect, we studied the baryon spectra and the nucleon-nucleon interaction. The results show that the color screening effect not only improves the baryon spectrum calculation, but also can solve the long-tail problem of the color Van der Waals force. A part of the medium attraction of the nuclear force can be obtained from the color Van der Waals force. (orig.)

  12. Efficient calculation of potential distribution in two-layer earth; Niso kozo daichikei ni okeru denki tansa no tame no koritsuteki den`i keisan shuho

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, M; Okamoto, Y [Chiba Institute of Technology, Chiba (Japan); Endo, M; Noguchi, K [Waseda University, Tokyo (Japan); Teramachi, Y; Akabane, H [University of Industrial Technology, Kanagawa (Japan); Agu, M [Ibaraki University, Ibaraki (Japan)

    1997-05-27

    An efficient calculation method of potential distribution in the presence of an embedded body in multi-layer earth has been proposed by expanding the method of image with a consideration of multiple reflection between the ground surface and each underground boundary. For this method, when solving boundary integral equation with the potential of embedded body surface as only one unknown, i.e., when obtaining discretization equation, ordinary boundary element program developed for analyzing the finite closed region can be used. As an example, numerical calculation was conducted for the two-layer earth. The analysis expression of potential distribution in the case of the certain embedded body in two-layer earth has never published. Accordingly, the calculated results were compared with those by the integral equation method. As a result, it was concluded that the primary potential obtained from the present method agreed well with that obtained from the integral equation method. However, there was a disregarded difference in the secondary potential. For confirming the effectiveness, it was necessary to compare with another numerical calculation method, such as finite element method. 5 refs., 5 figs.

  13. Taming infrared divergences in the effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Elias-Miro, J. [IFAE, Univ. Autonoma de Barcelona (Spain); Universitat Autonoma de Barcelona (Spain). Dept. de Fisica; Espinosa, J.R. [IFAE, Univ. Autonoma de Barcelona (Spain); ICREA, Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Konstandin, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2014-06-15

    The Higgs effective potential in the Standard Model (SM), calculated perturbatively, generically suffers from infrared (IR) divergences when the (field-dependent) tree-level mass of the Goldstone bosons goes to zero. Such divergences can affect both the potential and its first derivative and become worse with increasing loop order. In this paper we show that these IR divergences are spurious, we perform a simple resummation of all IR-problematic terms known (up to three loops) and explain how to extend the resummation to cure all such divergences to any order. The method is of general applicability and would work in scenarios other than the SM. Our discussion has some bearing on a scenario recently proposed as a mechanism for gauge mediation of scale breaking in the ultraviolet, in which it is claimed that the low-energy Higgs potential is non-standard. We argue that all non-decoupling effects from the heavy sector can be absorbed in the renormalization of low-energy parameters leading to a SM-like effective theory.

  14. Taming infrared divergences in the effective potential

    International Nuclear Information System (INIS)

    Elias-Miro, J.; Konstandin, T.

    2014-06-01

    The Higgs effective potential in the Standard Model (SM), calculated perturbatively, generically suffers from infrared (IR) divergences when the (field-dependent) tree-level mass of the Goldstone bosons goes to zero. Such divergences can affect both the potential and its first derivative and become worse with increasing loop order. In this paper we show that these IR divergences are spurious, we perform a simple resummation of all IR-problematic terms known (up to three loops) and explain how to extend the resummation to cure all such divergences to any order. The method is of general applicability and would work in scenarios other than the SM. Our discussion has some bearing on a scenario recently proposed as a mechanism for gauge mediation of scale breaking in the ultraviolet, in which it is claimed that the low-energy Higgs potential is non-standard. We argue that all non-decoupling effects from the heavy sector can be absorbed in the renormalization of low-energy parameters leading to a SM-like effective theory.

  15. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    Science.gov (United States)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  16. Polarization and sidewall effects in a coal fired MHD channel - three-dimensional calculation

    International Nuclear Information System (INIS)

    Ishikawa, M.; Scott, M.H.; Wu, Y.C.L.

    1981-01-01

    The effects of slag polarization of electrodes and the sidewall configuration on generator performance are studied experimentally and analytically. An analysis of the voltage-current characteristics between two generator frames measured during the operation of the TP40-07 experiment is given, along with an examination of nonuniformities of interframe voltage. Experimental data show that the polarization effect reduces about 3% of the overall electrical performance of the 60 deg diagonal conducting channel used in the study. Analytically, the effect of polarization on the local current and potential distributions is examined by solving the three-dimensional electrical potential using a finite element method. A moderate increase in conductivity in the vicinity of the cathode-side frame is found to give a calculated leakage resistance which approximates the value derived experimentally. The polarization effect results in a large change in the potential and current distributions near the frame but has a small effect on the overall electrical performance. Alternate sidewall/electrode configurations are treated analytically

  17. Medication calculation: the potential role of digital game-based learning in nurse education.

    Science.gov (United States)

    Foss, Brynjar; Mordt Ba, Petter; Oftedal, Bjørg F; Løkken, Atle

    2013-12-01

    Medication dose calculation is one of several medication-related activities that are conducted by nurses daily. However, medication calculation skills appear to be an area of global concern, possibly because of low numeracy skills, test anxiety, low self-confidence, and low self-efficacy among student nurses. Various didactic strategies have been developed for student nurses who still lack basic mathematical competence. However, we suggest that the critical nature of these skills demands the investigation of alternative and/or supplementary didactic approaches to improve medication calculation skills and to reduce failure rates. Digital game-based learning is a possible solution because of the following reasons. First, mathematical drills may improve medication calculation skills. Second, games are known to be useful during nursing education. Finally, mathematical drill games appear to improve the attitudes of students toward mathematics. The aim of this article was to discuss common challenges of medication calculation skills in nurse education, and we highlight the potential role of digital game-based learning in this area.

  18. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  19. Neoclassical resonant-plateau transport calculation in an effectively axisymmetrized tandem mirror with finite end plate resistance

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.

    1987-05-01

    Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)

  20. Monte Carlo calculations of triton and 4He nuclei with the Reid potential

    International Nuclear Information System (INIS)

    Lomnitz-Adler, J.; Pandharipande, V.R.; Smith, R.A.

    1981-01-01

    A Monte Carlo method is developed to calculate the binding energy and density distribution of the 3 H and 4 H nuclei for a variational wave function written as a symmetrized product of correlation operators. The upper bounds obtained with the Reid potential are -6.86 +- 0.08 and -22.9 +- 0.5 MeV respectively. The Coulomb interaction in 4 H is ignored. The calculated density distributions have reasonable radii, but they do not show any dip at the center. (orig.)

  1. Non-standard perturbative methods for the effective potential in λφ4 QFT

    International Nuclear Information System (INIS)

    Okopinska, A.

    1986-07-01

    The effective potential in scalar QFT is calculated in the non-standard perturbative methods and compared with the conventional loop expansion. In the space time dimensions 0 and 1 the results are compared with the ''exact'' effective potential obtained numerically. In 4 dimensions we show that λφ 4 theory is non-interacting. (author)

  2. Complex-scaling of screened Coulomb potentials for resonance calculations utilizing the modified Bessel functions

    Science.gov (United States)

    Jiao, Li-Guang; Ho, Yew Kam

    2014-05-01

    The screened Coulomb potential (SCP) has been extensively used in atomic physics, nuclear physics, quantum chemistry and plasma physics. However, an accurate calculation for atomic resonances under SCP is still a challenging task for various methods. Within the complex-scaling computational scheme, we have developed a method utilizing the modified Bessel functions to calculate doubly-excited resonances in two-electron atomic systems with configuration interaction-type basis. To test the validity of our method, we have calculated S- and P-wave resonance states of the helium atom with various screening strengths, and have found good agreement with earlier calculations using different methods. Our present method can be applied to calculate high-lying resonances associated with high excitation thresholds of the He+ ion, and with high-angular-momentum states. The derivation and calculation details of our present investigation together with new results of high-angular-momentum states will be presented at the meeting. Supported by NSC of Taiwan.

  3. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha

    2004-09-22

    Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.

  4. Precipitates/Salts Model Sensitivity Calculation

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.

  5. Semi-analytic calculation of the gravitational wave signal from the electroweak phase transition for general quartic scalar effective potentials

    International Nuclear Information System (INIS)

    Kehayias, John; Profumo, Stefano

    2010-01-01

    Upcoming gravitational wave (GW) detectors might detect a stochastic background of GWs potentially arising from many possible sources, including bubble collisions from a strongly first-order electroweak phase transition. We investigate whether it is possible to connect, via a semi-analytical approximation to the tunneling rate of scalar fields with quartic potentials, the GW signal through detonations with the parameters entering the potential that drives the electroweak phase transition. To this end, we consider a finite temperature effective potential similar in form to the Higgs potential in the Standard Model (SM). In the context of a semi-analytic approximation to the three dimensional Euclidean action, we derive a general approximate form for the tunneling temperature and the relevant GW parameters. We explore the GW signal across the parameter space describing the potential which drives the phase transition. We comment on the potential detectability of a GW signal with future experiments, and physical relevance of the associated potential parameters in the context of theories which have effective potentials similar in form to that of the SM. In particular we consider singlet, triplet, higher dimensional operators, and top-flavor extensions to the Higgs sector of the SM. We find that the addition of a temperature independent cubic term in the potential, arising from a gauge singlet for instance, can greatly enhance the GW power. The other parameters have milder, but potentially noticeable, effects

  6. Determination of a silane intermolecular force field potential model from an ab initio calculation

    International Nuclear Information System (INIS)

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-01-01

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  7. Relativistic quantum mechanic calculation of photoionization cross-section of hydrogenic and non-hydrogenic states using analytical potentials

    International Nuclear Information System (INIS)

    Rodriguez, R.; Gil, J.M.; Rubiano, J.G.; Florido, R.; Martel, P.; Minguez, E.

    2005-01-01

    Photoionization process is a subject of special importance in many areas of physics. Numerical methods must be used in order to obtain photoionization cross-sections for non-hydrogenic levels. The atomic data required to calculate them is huge so self-consistent calculations increase computing time considerably. Analytical potentials are a useful alternative because they avoid the iterative procedures typical in self-consistent models. In this work, we present a relativistic quantum calculation of photoionization cross-sections for isolated ions based on an analytical potential to obtain the required atomic data, which is valid both for hydrogenic and non-hydrogenic ions. Comparisons between our results and others obtained using either widely used analytical expressions for the cross-sections or more sophisticated calculations are done

  8. PRODUCTION POTENTIAL AND AGRICULTURAL EFFECTIVENESS IN EUROPEAN UNION COUNTRIES

    Directory of Open Access Journals (Sweden)

    Agnieszka Baer-Nawrocka

    2013-09-01

    Full Text Available The aim of the paper was to assess the relation between agricultural production factors and effectiveness in European Union’s agriculture. For each country two synthetic coefficients were calculated using TOPSIS method. The first one characterises production factors relations, the latter one displays effectiveness of production factors. The objective of the research was to verify the correlation between these indices. The analysis proved that in many analysed countries the agricultural potential is correlated positively with the agricultural effectiveness

  9. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one...... systems). For symmetric bilayers we demonstrate that both approaches give essentially the same potential profiles, provided that simulations are long enough (a production run of at least 100 ns is required) and that fluctuations of the center of mass of a bilayer are properly accounted for. In contrast...

  10. GIS-technologies application for calculation of potential soil loss of Marha River basin (Republic of Saha)

    Science.gov (United States)

    Shynbergenov, Y.; Maltsev, K.; Sihanova, N.

    2018-01-01

    In the article the presentation of estimation methods of potential soil loss in the conditions of Siberia with application of geographical information systems is resulted. For the reference area of the Marha river basin, which is a part of the Lena river catchment, there was created a specialized geographic information database of potential soil erosion, with scale of 1: 1,000,000. Digital elevation model “GMTED2010” and the hydroset layer corresponding to the scale of 1: 1,000,000 are taken to calculate the soil loss values. The formation of the geobase data is considered in detail being constructed on the basis of the multiplicative structure which reflects the main parameters of the relief (slope steepness, exposition, slope length, erosion potential of the relief), soil, climatic characteristics and modern types of land cover. At the quantitative level with sufficiently high degree of spatial detail results were obtained for calculating the potential erosion of soils. The average value of potential soil loss in the basin without taking into account the factor of land cover types, was 12.6 t/ha/yr. The calculations carried out, taking into account the types of land cover obtained from remote sensing data from outer space resulted in an appreciable reduction of the soil loss values (0.04 t/ha/yr.).

  11. Orbital correlation effects. II. Potential curve and ionization potential of boron hydride

    International Nuclear Information System (INIS)

    Mehler, E.L.; Van der Vele, G.A.; Nieuwpoort, W.C.

    1975-01-01

    With the help of the independent pair-potential approximation (IPPA) the valence-shell correlation effects in BH have been calculated at nine internuclear separations. The results are compared with several other methods, including the coupled electron pair approximation (CEPA) and a full configuration interaction expansion. The stability of the IPPA against a unitary transformation of the occupied orbitals has also been investigated, and it is shown that the IPPA is nearly invariant against such transformations. The Dunham procedure has been applied to the results, and the spectroscopic constants obtained from the various approximations are compared. It is furthermore demonstrated that many of the defects present in the Hartree--Fock part of the potential curve and arising from the use of medium-quality basis sets can be eliminated by combining the correlation results with Hartree--Fock results from good-quality basis sets and reapplying the Dunham procedure. Finally the IPPA has been applied to BH + , and the first vertical ionization potential of BH was determined

  12. ORBITALES. A program for the calculation of wave functions with an analytical central potential

    International Nuclear Information System (INIS)

    Yunta Carretero; Rodriguez Mayquez, E.

    1974-01-01

    In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs

  13. Analysis of Wind Data, Calculation of Energy Yield Potential, and Micrositing Application with WAsP

    Directory of Open Access Journals (Sweden)

    Fatih Topaloğlu

    2018-01-01

    Full Text Available The parameters required for building a wind power plant have been calculated using the fuzzy logic method by means of Wind Atlas Analysis and Application Program (WAsP in this study. Overall objectives of the program include analysis of raw data, evaluation of wind and climate, construction of a wind atlas, and estimation of wind power potential. With the analysis performed in the application, the average wind velocity, average power density, energy potential from micrositing, capacity factor, unit cost price, and period of redemption have been calculated, which are needed by the project developer during the decision-making stage and intended to be used as the input unit in the fuzzy logic-based system designed. It is aimed at processing the parameters calculated by the designed fuzzy logic-based decision-making system at the rule base and generating a compatibility factor that will allow for making the final decision in building wind power plants.

  14. The K + - Nucleus Microscopic Optical Potential and Calculations of the Corresponding Differential Elastic and Total Reaction Cross Sections

    International Nuclear Information System (INIS)

    Zemlyanaya, E.V.; Lukyanov, K.V.; Lukyanov, V.K.; Hanna, K.M.

    2009-01-01

    The microscopic optical potential (OP) is calculated for the K+-meson scattering on the 12 C and 40 Ca nuclei at intermediate energies. This potential has no free parameters and based on the known kaon-nucleon amplitude and nuclear density distribution functions. Then, the Klein-Gordon equation is written in the form of the relativistic Schrodinger equation where terms quadratic in the potential was estimated can be neglected. The latter equations adapted to the considered task and solved numerically. The effect of revitalization is shown to play a significant role. A good agreement with the experimental data on differential elastic cross sections is obtained. However, to explain the data on total reaction cross sections the additional surface term of OP was introduced to account for influence of the peripheral nuclear reaction channels

  15. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  16. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    International Nuclear Information System (INIS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-01-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band

  17. Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers

    Energy Technology Data Exchange (ETDEWEB)

    Loukusa, Henri, E-mail: henri.loukusa@vtt.fi; Ikonen, Timo; Valtavirta, Ville; Tulkki, Ville

    2016-12-01

    The elemental and chemical composition of nuclear fuel pellets are key factors influencing the material properties of the pellets. The oxidation state of the fuel is one of the most important chemical properties influencing the material properties of the fuel, and it can only be determined with the knowledge of the chemical composition. A measure of the oxidation state is the oxygen chemical potential of the fuel. It can be buffered by redox pairs, such as the well-known Mo/MoO{sub 2} pair. In this work, the elemental composition of the fuel is obtained from a burnup calculation and the temperature and pressure calculated with a fuel performance code. An estimate of the oxygen potential of fuel is calculated with Gibbs energy minimization. The results are compared against experimental data from the literature. The significance of the UMoO{sub 6} compound and its buffering effect on the oxygen potential is emphasized. - Highlights: • A Gibbs energy minimization routine has been developed for nuclear fuel modeling. • The initial stoichiometry affects the development of the oxygen potential of fuel. • UMoO{sub 6} is found to buffer the oxygen potential of nuclear fuel.

  18. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    International Nuclear Information System (INIS)

    Abu-Assy, M.K.; Soliman, M.S.

    2016-01-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  19. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Assy, M.K. [Physics Department, Faculty of Science, Suez-Canal University, Ismailia 41522 (Egypt); Soliman, M.S., E-mail: Mahmoud_einstien2@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, El-Arish (Egypt)

    2016-10-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  20. Calculation of electrical potentials on the surface of a realistic head model by finite differences

    International Nuclear Information System (INIS)

    Lemieux, L.; McBride, A.; Hand, J.W.

    1996-01-01

    We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)

  1. Effective potential for non-convex potentials

    International Nuclear Information System (INIS)

    Fujimoto, Y.; O'Raifeartaigh, L.; Parravicini, G.

    1983-01-01

    It is shown that the well-known relationship between the effective potential GAMMA and the vacuum graphs μ of scalar QFT follows directly from the translational invariance of the measure, and that it holds for all values of the fields phi if, and only if, the classical potential is convex. In the non-convex case μ appears to become complex for some values of phi, but it is shown that the complexity is only apparent and is due to the failure of the loop expansion. The effective potential actually remains real and well-defined for all phi, and reduces to μ in the neighbourhood of the classical minima. A number of examples are considered, notably potentials which are spontaneously broken. In particular the mechanism by which a spontaneous breakdown may be generated by radiative corrections is re-investigated and some new insights obtained. Finally, it is shown that the renormalization group equations for the parameters may be obtained by inspection from the effective potential, and among the examples considered are SU(n) fields and supermultiplets. In particular, it is shown that for supermultiplets the effective potential is not only real but positive. (orig.)

  2. DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells

    Science.gov (United States)

    El Mahdy, A. M.; Halim, Shimaa Abdel; Taha, H. O.

    2018-05-01

    Density functional theory (DFT) and time-dependent DFT calculations have been employed to model metallotetraphenylporphyrin dyes and metallotetraphenylporphyrin -fullerene complexes in order to investigate the geometries, electronic structures, the density of states, non-linear optical properties (NLO), IR-vis spectra, molecular electrostatic potential contours, and electrophilicity. To calculate the excited states of the tetraphenyl porphyrin analogs, time-dependent density functional theory (TD-DFT) are used. Their UV-vis spectra were also obtained and a comparison with available experimental and theoretical results is included. The results reveal that the metal and the tertiary butyl groups of the dyes are electron donors, and the tetraphenylporphyrin rings are electron acceptors. The HOMOs of the dyes fall within the (TiO2)60 and Ti38O76 band gaps and support the issue of typical interfacial electron transfer reaction. The resulting potential drop of Mn-TPP-C60 increased by ca. 3.50% under the effect of the tertiary butyl groups. The increase in the potential drop indicates that the tertiary butyl complexes could be a better choice for the strong operation of the molecular rectifiers. The introduction of metal atom and tertiary butyl groups to the tetraphenyl porphyrin moiety leads to a stronger response to the external electric field and induces higher photo-to-current conversion efficiency. This also shifts the absorption in the dyes and makes them potential candidates for harvesting light in the entire visible and near IR region for photovoltaic applications.

  3. Effects of Al substitution in Nd2Fe17 studied by first-principles calculations

    International Nuclear Information System (INIS)

    Huang, M.; Ching, W.Y.

    1994-01-01

    We have studied the effect of Al substitution in Nd 2 Fe 17 compound by means of first-principles calculations. We first obtain the site-decomposed potentials for Fe from self-consistent calculation on Y 2 Fe 17 and the atomiclike potentials in the crystalline environment for Al and Nd. Calculations are carried out for a single Al substituting one Fe at four different Fe sites (6c), (9d), (18f ), and (18h), two Al substituting two Fe (18h), and four Al substituting three Fe (18h) and one Fe (18f ). Our results show that the Al moment is oppositely polarized to Fe. The average moment per Fe atom actually increases for Al substituting Fe (18h) and Fe (18f ) is about the same for Al substituting Fe (6c), and is drastically reduced when replacing Fe (9d). Experimentally, Al is shown to be excluded from the (9d) sites because of the small Wigner--Seitz volume. When two Fe atoms are replaced by two Al atoms, the total moment is only slightly less than when only one Fe atom is replaced, and the M s per Fe site actually increases, in agreement with the Moessbauer data. These results are analyzed in terms of the local atomic geometry and the charge transfer effect from the neighboring Fe to Al

  4. Tunable redox potential of nonmetal doped monolayer MoS{sub 2}: First principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S. [Center for Coordination Bond Engineering, China Jiliang University (China); Li, C., E-mail: canli1983@gmail.com [Center for Coordination Bond Engineering, China Jiliang University (China); School of Materials Science and Engineering, China Jiliang University (China); Zhao, Y.F.; Gong, Y.Y.; Niu, L.Y.; Liu, X.J. [Center for Coordination Bond Engineering, China Jiliang University (China)

    2016-10-30

    Graphical abstract: Both E{sub CBM} and E{sub VBM} values are affected by the chemical valences of dopants, which also affect the redox potentials of specimens. Compared to the pristine monolayer MoS{sub 2}, the nonmetal ions with odd chemical valences [monovalent (H{sup +}, F{sup –}, Cl{sup –}, Br{sup –} and I{sup –}), trivalent (N{sup 3–}, P{sup 3–} and As{sup 3–}) and pentavalence (B{sup 5–})] enhance the oxidation potential and reduce the reduction potential of specimens, but the nonmetal ions with even chemical valences [divalent (O{sup 2–}, Se{sup 2–} and Te{sup 2–}) and quadravalent (C{sup 4–} and Si{sup 4–})] have the opposite effects on the redox potentials. Display Omitted - Highlights: • The newly formed chemical bonds affect the electronic distribution around the dopants and the nearby Mo atoms. • Compared to pristine monolayer MoS{sub 2}, the nonmetal ions with odd (even) chemical valences enhance (reduce) the oxidation potential and reduce (enhance) the reduction potential of specimens. • The lone pair electrons in nonmetal ions with odd chemical valences extra interact with the Mo ions which reduces the E{sub CBM} and E{sub VBM} values of specimens. - Abstract: Doping is an effective method to alter the electronic behavior of materials by forming new chemical bonds and bringing bond relaxation. With this aid of first principle calculations, the crystal configuration and electronic properties of monolayer MoS{sub 2} have been modulated by the nonmetal (NM) dopants (H, B, C, N, O, F, Si, P, Cl, As, Se, Br, Te and I), and the thermodynamic stability depending on the preparation conditions (Mo-rich and S-rich conditions) were discussed. Results shown that, the NM dopants substituted preferentially for S under Mo-rich condition, the electronic distribution around the dopants and the nearby Mo atoms are changed by the new formed Mo-NM bonds and bands relaxation. Compared to pristine monolayer MoS{sub 2}, the NM ions with odd

  5. Derivation of potential model for LiAlO2 by simple and effective optimization of model parameters

    International Nuclear Information System (INIS)

    Tsuchihira, H.; Oda, T.; Tanaka, S.

    2009-01-01

    Interatomic potentials of LiAlO 2 were constructed by a simple and effective method. In this method, the model function consists of multiple inverse polynomial functions with an exponential truncation function, and parameters in the potential model can be optimized as a solution of simultaneous linear equations. Potential energies obtained by ab initio calculation are used as fitting targets for model parameter optimization. Lattice constants, elastic properties, defect-formation energy, thermal expansions and the melting point were calculated under the constructed potential models. The results showed good agreement with experimental values and ab initio calculation results, which underscores the validity of the presented method.

  6. Calculated ionisation potentials determine the oxidation of vanillin precursors by lignin peroxidase.

    Science.gov (United States)

    ten Have, R; Rietjens, I M; Hartmans, S; Swarts, H J; Field, J A

    1998-07-03

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was calculated and compared to their experimental conversion by LiP, defining a relative IP threshold of approximately 9.0 eV. Based on this threshold value only the O-acetyl esters and glucosides of isoeugenol and coniferyl alcohol would be potential LiP substrates. Both O-acetyl esters were tested and were shown to be converted to O-acetyl vanillin in molar yields of 51.8 and 2.3%, respectively.

  7. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    Energy Technology Data Exchange (ETDEWEB)

    Bross, David H.; Parmar, Payal; Peterson, Kirk A., E-mail: kipeters@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)

    2015-11-14

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.

  8. Effective operators in nuclear-structure calculations

    International Nuclear Information System (INIS)

    Barrett, Bruce R

    2005-01-01

    A brief review of the history of the use of many-body perturbation theory to determine effective operators for shell-model calculations, i.e., for calculations in truncated model spaces, is given, starting with the ground-breaking work of Arima and Horie for electromagnetic moments. The problems encountered in utilizing this approach are discussed. New methods based on unitary-transformation approaches are introduced and analyzed. The old problems persist, but the new methods allow us to obtain a better insight into the nature of the physics involved in these processes

  9. Chiral effective potential in N = {1/2} non-commutative Wess-Zumino model

    International Nuclear Information System (INIS)

    Banin, A.T.; Buchbinder, I.L.; Pletnev, N.G.

    2004-01-01

    We study a structure of holomorphic quantum contributions to the effective action for N = {1/2} noncommutative Wess-Zumino model. Using the symbol operator techniques we present the one-loop chiral effective potential in a form of integral over proper time of the appropriate heat kernel. We prove that this kernel can be exactly found. As a result we obtain the exact integral representation of the one-loop effective potential. Also we study the expansion of the effective potential in a series in powers of the chiral superfield φ and derivative D 2 φ and construct a procedure for systematic calculation of the coefficients in the series. We show that all terms in the series without derivatives can be summed up in an explicit form. (author)

  10. Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential

    International Nuclear Information System (INIS)

    Bahar, M. K.

    2014-01-01

    In order to examine the plasma screening and velocity-dependent potential effects on the hydrogen atom, the Schrödinger equation including a more general exponential cosine screened Coulomb and velocity-dependent potential is solved numerically in the framework asymptotic iteration method. The more general exponential cosine screened Coulomb potential is used to model Debye and quantum plasma for the specific values of the parameters in its structure. However, in order to examine effects of velocity-dependent potential on energy values of hydrogen atom in Debye and quantum plasma, the isotropic form factor of velocity-dependent potential is given as harmonic oscillator type, ρ(r)=ρ o r 2 . Then, the energies of s and p states are calculated numerically without any approximation. In order to investigate thoroughly plasma screening effects and contribution of velocity-dependent potential on energy values of hydrogen atom, the corresponding calculations are carried out by using different values of parameters of more general exponential cosine screened Coulomb potential and isotropic dependence, results of which are discussed

  11. Radion effective potential in the brane-world

    International Nuclear Information System (INIS)

    Garriga, Jaume; Pujolas, Oriol; Tanaka, Takahiro

    2001-01-01

    We show that in brane-world scenarios with warped extra dimensions, the Casimir force due to bulk matter fields may be sufficient to stabilize the radion field phi. In particular, we calculate one loop effective potential for phi induced by bulk gravitons and other possible massless bulk fields in the Randall-Sundrum background. This potential has a local extremum, which can be a maximum or a minimum depending on the detailed bulk matter content. If the parameters of the background are chosen so that the hierarchy problem is solved geometrically, then the radion mass induced by Casimir corrections is hierarchically smaller than the TeV. Hence, in this important case, we must invoke an alternative mechanism (classical or nonperturbative) which gives the radion a sizable mass, to make it compatible with observations

  12. Radion effective potential in the brane-world

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume E-mail: garriga@ifae.es; Pujolas, Oriol; Tanaka, Takahiro

    2001-07-02

    We show that in brane-world scenarios with warped extra dimensions, the Casimir force due to bulk matter fields may be sufficient to stabilize the radion field phi. In particular, we calculate one loop effective potential for phi induced by bulk gravitons and other possible massless bulk fields in the Randall-Sundrum background. This potential has a local extremum, which can be a maximum or a minimum depending on the detailed bulk matter content. If the parameters of the background are chosen so that the hierarchy problem is solved geometrically, then the radion mass induced by Casimir corrections is hierarchically smaller than the TeV. Hence, in this important case, we must invoke an alternative mechanism (classical or nonperturbative) which gives the radion a sizable mass, to make it compatible with observations.

  13. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    Science.gov (United States)

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  14. Calculation of the magnetic vector potential in the TJ-II; Calculo del Potencial Magnetico Vector en el TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fraguas, A.; Lopez Bruna, D.; Romero, J. A.

    2005-07-01

    The properties of the vector magnetic potential and its usefulness to calculate magnetic fluxes in both stationary and time-dependent conditions are p revised in this report. We have adapted to the TJ-II Flexible Heliac efficient numerical expressions to calculate the vector potential, calculating in addition the magnetic flux with this formalism in circumstances whose complexity makes very convenient the use of the vector potential. The result on induced voltages offer theoretical support to the measurements of induced voltage due to the OH coils in the plasma, like the measurements provided by the loop voltage diagnostic installed in the TJ-II, as well as to the cylindrical approximation of the plasma often used to interpret experimental data. (Author) 11 refs.

  15. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  16. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence...... for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...

  17. Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, Robert [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)

    2014-05-14

    A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.

  18. Effective source approach to self-force calculations

    International Nuclear Information System (INIS)

    Vega, Ian; Wardell, Barry; Diener, Peter

    2011-01-01

    Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended 'effective source' for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.

  19. Multi-instantons and exact results II: specific cases, higher-order effects, and numerical calculations

    International Nuclear Information System (INIS)

    Zinn-Justin, Jean; Jentschura, Ulrich D.

    2004-01-01

    In this second part of the treatment of instantons in quantum mechanics, the focus is on specific calculations related to a number of quantum mechanical potentials with degenerate minima. We calculate the leading multi-instanton contributions to the partition function, using the formalism introduced in the first part of the treatise [Ann. Phys. (N. Y.) (previous issue) (2004)]. The following potentials are considered: (i) asymmetric potentials with degenerate minima, (ii) the periodic cosine potential, (iii) anharmonic oscillators with radial symmetry, and (iv) a specific potential which bears an analogy with the Fokker-Planck equation. The latter potential has the peculiar property that the perturbation series for the ground-state energy vanishes to all orders and is thus formally convergent (the ground-state energy, however, is non-zero and positive). For the potentials (ii), (iii), and (iv), we calculate the perturbative B-function as well as the instanton A-function to fourth order in g. We also consider the double-well potential in detail, and present some higher-order analytic as well as numerical calculations to verify explicitly the related conjectures up to the order of three instantons. Strategies analogous to those outlined here could result in new conjectures for problems where our present understanding is more limited

  20. Bounces and the calculation of quantum tunneling effects

    International Nuclear Information System (INIS)

    Liang, J.; Mueller-Kirsten, H.J.W.

    1992-01-01

    The imaginary part of the energy of the metastable ground state for the inverted double-well potential is calculated by using the path-integral method. The tunneling process is dominated by bounces. It is shown that the evaluation of the determinant of the second variation of the action at the bounce can be avoided, and that the imaginary part of the energy results directly from characteristic properties of the bounce itself, namely, the antisymmetry of its first time derivative under time reversal. The imaginary part of the result is in exact agreement with that of the well-known WKB calculation of Bender and Wu

  1. Spectroscopic calculation of the excited electronic states with spin orbit effect of the molecule NaCs

    International Nuclear Information System (INIS)

    Bleik, S.; Korek, M.; Allouche, A.R.

    2004-01-01

    Full text.The existence of new experimental data on the alkali dimers has stimulated theoretical approaches, necessary to provide predictions accurate enough to be useful for interpretation and evenly for guidance of experiments. With the aim of improving the accuracy of predictions we will perform a theoretical study of the electronic structure of the molecule NaCs using a method mainly in the way by which core-valence effects are taken into account. To investigate the electronic structure of NaCs we will use the package CIPSI (Configuration Interaction by Perturbation of a multiconfiguration wave function Selected Interactively) of the Laboratoire de Physique Quantique (Toulouse, France). The atoms Na and Cs will be treated through non-empirical effective one electron core potentials of Durand and Barthelat type. Molecular orbitals for NaCs will be derived from Self Consistent field Calculations (SCF) and full valence Configuration Interaction (IC) calculations. A core-core interaction more elaborated than the usual approximation 1/R will be taken into account as the sum of an exponential repulsive term plus a long range dispersion term approximated by the well known London formula. Potential energy calculations will be performed for different molecular states, for numerous values of the inter-nuclear distance R in a wide range. Spectroscopic constants have been derived for the bound states with regular shape. A ro vibrational study have been performed for the ground states with a calculation of the rotational and centrifugal distortion constants. A calculation for the transition dipole moment and matrix elements have been done for the bound states

  2. Comparative study of in situ methods for potential and actual evapotranspiration determination and their calculation by simulation model

    International Nuclear Information System (INIS)

    Kolev, B.

    2006-01-01

    Four in situ methods for potential and actual evapotranspiration determining were compared: neutron gauge, tensiometers, gypsum blocks and lysimeters. The actual and potential evapotranspiration were calculated by water balance equation and by using a simulation model for their determination. The aim of this study was mainly pointed on calculations of water use efficiency and transpiration coefficient in potential production situation. This makes possible to choose the best way for water consumption optimization for a given crop. The final results find with the best of the methods could be used for applying the principles of sustainable agricultural production in random object of Bulgarian agricultural area

  3. A comparison of estimated and calculated effective porosity

    Science.gov (United States)

    Stephens, Daniel B.; Hsu, Kuo-Chin; Prieksat, Mark A.; Ankeny, Mark D.; Blandford, Neil; Roth, Tracy L.; Kelsey, James A.; Whitworth, Julia R.

    Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil-water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil-water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50-90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de

  4. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  5. Intense laser field effects on a Woods-Saxon potential quantum well

    Science.gov (United States)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  6. Effective potentials for supersymmetric three-scale hierarchies

    International Nuclear Information System (INIS)

    Polchinski, J.

    1983-01-01

    We consider the effective potential in models in which supersymmetry breaks at a scale μ but the Goldstone fermion couples only to fields of mass M>>μ. We show that all large perturbative logarithms are removed by taking the renormalization point to be O(M). This makes it possible to calculate the effective potential at large X in those inverted-hierarchy models where the Goldstone fermion couples only to superheavy fields. A general formula for the one-loop logarithm in these models is given. We illustrate the results with an SU(n) example in which the direction as well as the magnitude of the gauge symmetry breaking is undetermined at the tree level. For this example a large perturbative hierarchy does not form and the unbroken subgroup is always SU(n-1) x U(1). In an appendix we show that O'Raifeartaigh models with just one undetermined scalar field always have a decoupled Goldstone fermion when the undetermined field is large, but that this need not be true in more general inverted-hierarchy models

  7. Nucleus--nucleus potential

    International Nuclear Information System (INIS)

    Jaqaman, H.R.

    1977-01-01

    The nucleus--nucleus interaction is studied within the framework of the generator coordinate method that permits an easy incorporation of the full effects of antisymmetrization. It is found that the interaction, as far as the elastic scattering problem is concerned, can be described by a simple effective potential that is equivalent to the original many-body (and hence non-local) problem. The potential is obtained by dividing the wavefunction into a long-range part and a short-range part and requiring the former to satisfy a Schroedinger equation. This enables avoiding dealing with the troublesome short-range part of the wavefunction and provides a direct link with the optical model so that the potential obtained here is equivalent to the real part of the optical potential (the imaginary part is not investigated). The effective potential is found to consist of three parts: an interaction term between the nucleons belonging to different nuclei, a kinetic energy term due to the change in the intrinsic kinetic energy of the system as a result of the antisymmetrization, and finally an l-dependent part. The kinetic energy term is found to be very repulsive and effectively gives a hard core, and is calculated for the α--α and 16 O-- 16 O cases. The full potential is calculated for the α--α case for the S, D, and G partial waves and then used to calculate the corresponding phase shifts that are then compared with experimental results and other microscopic calculations. Finally, some recent results and analyses of fusion and deep inelastic reactions are reviewed that seem to indicate the presence of a hard core in the nucleus--nucleus potential. Such a hard core is present in the potential obtained in the sudden approximation

  8. Statistical analysis of simulation calculation of sputtering for two interaction potentials

    International Nuclear Information System (INIS)

    Shao Qiyun

    1992-01-01

    The effects of the interaction potentials (Moliere potential and Universal potential) are presented on computer simulation results of sputtering via Monte Carlo simulation based on the binary collision approximation. By means of Wilcoxon two-Sample paired sign rank test, the statistically significant difference for the above results is obtained

  9. Ab initio calculation of intermolecular potentials for dimer Cl_2-Cl_2 and prediction of second virial coefficients

    International Nuclear Information System (INIS)

    Nguyen Thanh Duoc; Nguyen Thi Ai Nhung; Tran Duong; Pham Van Tat

    2015-01-01

    The results presented in this paper are the ab initio intermolecular potentials and the second virial coefficient, B_2 (T) of the dimer Cl_2-Cl_2. These ab initio potentials were proposed by the quantum chemical calculations at high level of theory CCSD(T) with basis sets of Dunning valence correlation-consistent aug-cc-pVmZ (m = 2, 3); these results were extrapolated to complete basis set limit aug-cc-pV23Z. The ab initio energies of complete basis set limit aug-cc-pV23Z resulted from the exponential extrapolation were used to construct the 5-site pair potential functions. The second virial coefficients for this dimer were predicted from those with four-dimensional integration. The second virial coefficients were also corrected to first-order quantum effects. The results turn out to be in good agreement with experimental data, if available, or with those from empirical correlation. The quality of ab initio 5-site potentials proved the reliability for prediction of molecular thermodynamic properties. (author)

  10. 4He binding energy calculation including full tensor-force effects

    Science.gov (United States)

    Fonseca, A. C.

    1989-09-01

    The four-body equations of Alt, Grassberger, and Sandhas are solved in the version where the (2)+(2) subamplitudes are treated exactly by convolution, using one-term separable Yamaguchy nucleon-nucleon potentials in the 1S0 and 3S1-3D1 channels. The resulting jp=1/2+ and (3/2+ three-body subamplitudes are represented in a separable form using the energy-dependent pole expansion. Converged bound-state results are calculated for the first time using the full interaction, and are compared with those obtained from a simplified treatment of the tensor force. The Tjon line that correlates three-nucleon and four-nucleon binding energies is shown using different nucleon-nucleon potentials. In all calculations the Coulomb force has been neglected.

  11. On calculation of the electrostatic potential of a phosphatidylinositol phosphate-containing phosphatidylcholine lipid membrane accounting for membrane dynamics.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3P embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continuum solvent models require an accurate representation of the electrostatic potential of the phosphoinositol phosphate-containing membrane. We computed and analyzed the electrostatic potentials of snapshots taken at regular intervals from molecular dynamics simulations of the bilayer. We observe considerable variation in the electrostatic potential of the bilayer both along a single simulation and between simulations performed with the GAFF or CHARMM c36 force fields. However, we find that the choice of GAFF or CHARMM c36 parameters has little effect on the electrostatic potential of a given configuration of the bilayer with a PtdIns(3P embedded in it. From our results, we propose a remedian averaging method for calculating the electrostatic potential of a membrane system that is suitable for simulations of protein-membrane binding with a continuum solvent model.

  12. Development of calculation system for decontamination effect, CDE

    International Nuclear Information System (INIS)

    Satoh, Daiki; Kojima, Kensuke; Oizumi, Akito; Matsuda, Norihiro; Kugo, Teruhiko; Sakamoto, Yukio; Endo, Akira; Okajima, Shigeaki

    2012-08-01

    Large amount of radionuclides had been discharged to environment in the accident of the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant caused by the 2011 off the Pacific coast of Tohoku Earthquake. The radionuclides deposited on the ground elevate dose rates in large area around the Fukushima site. For the reduction of the dose rate and recovery of the environment, decontamination based on a rational plan is an important and urgent subject. A computer software, named CDE (Calculation system for Decontamination Effect), has been developed to support planning the decontamination. CDE calculates the dose rates before the decontamination by using a database of dose contributions by radioactive cesium. The decontamination factor is utilized in the prediction of the dose rates after the decontamination, and dose rate reduction factor is evaluated to express the decontamination effect. The results are visualized on the image of a target zone with color map. In this paper, the overview of the software and the dose calculation method are reported. The comparison with the calculation results by a three-dimensional radiation transport code PHITS is also presented. In addition, the source code of the dose calculation program and user's manual of CDE are attached as appendices. (author)

  13. Methods for calculations of potential and producible associated with marine energies: case studies in the Channel - Atlantic

    International Nuclear Information System (INIS)

    Ledoux, Sebastien; Chotard, David; Mazeiraud, Vincent; Garcia, Nicolas; Saillard, Thibault; Mensencal, Yvon; Mouslim, Hakim

    2015-01-01

    Faced with the development of Marine Renewable Energy (MRE) in recent years and demand from regional public authorities to evaluate the energy potential of their coastal domains, it was necessary to design an integrated tool for determining, at the scale of a site and then a region, first the gross resource per energy type and then its technical potential followed by its technico-economic potential. In response to this need, Artelia mobilised its experts in maritime and river hydraulics and in energy with the aim of developing a tool dedicated to calculating MRE production capacities. With this operational objective in mind, ARTELIA undertook R and D actions in order to determine the state of the art in calculation methods and in tools already developed and in use in other European countries spearheading this activity, especially the United Kingdom (Atlas of UK Marine Renewable Energy Resources, ABPmer,) and the United States (in particular the work of the EPRI (Electric Power Research Institute)). The tool was then developed and applied successively in the framework of calculating the MRE potential of the coastal domain of the Poitou-Charentes region (client: Poitou-Charentes regional council), then through study assessments performed on the marine current power potential of Lower Normandy (client: DREAL Basse-Normandie) and on the MRE potential of the Aquitaine coast (client: Aquitaine regional council - GIP Littoral Aquitain). The tool allows for the assessment of the resources, technical and techno-economic potentials It has been applied to the following topics: marine current power (offshore and in estuaries and rivers), wave power (offshore, near-shore and coastal) and wind power (offshore and floating turbines). This article provides a brief summary of the various aspects of the tool implemented, illustrated through a few examples drawn from the studies referred to above. (authors)

  14. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  15. Potential dependence of the effective attraction in doped C60

    International Nuclear Information System (INIS)

    Goff, W.E.; Phillips, P.

    1992-01-01

    In an effort to explain superconductivity in the alkali-doped C 60 , Chakravarty and Kivelson have proposed that there is a net effective electron attraction due to intramolecular Coulomb forces. The calculation makes use of a Hubbard model in which long-range interactions are absent. The authors show that this result strongly depends on the form of the electron-electron interaction and that for potentials with long-range interactions, e.g. an Ohno potential that interpolates between an on site energy and 1/r at large distances, they do not find an effective attraction. Reasonable screening does not significantly modify this result. This indicates that the electronic mechanism in the proposed form cannot be the primary source of an attractive interaction

  16. Theoretical calculations of electron-impact and radiative processes in atoms

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1975-01-01

    Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated

  17. The boomerang effect in electron-hydrogen molecule scattering as determined by time-dependent calculations

    Science.gov (United States)

    Ben-Asher, Anael; Moiseyev, Nimrod

    2017-05-01

    The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.

  18. Incorporating partial shining effects in proton pencil-beam dose calculation

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Lii Mingfwu; Sahoo, Narayan; Zhu, Ron X; Gillin, Michael; Mohan, Radhe

    2008-01-01

    A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose

  19. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  20. Shielding requirements for constant-potential diagnostic x-ray beams determined by a Monte Carlo calculation

    International Nuclear Information System (INIS)

    Simpkin, D.J.

    1989-01-01

    A Monte Carlo calculation has been performed to determine the transmission of broad constant-potential x-ray beams through Pb, concrete, gypsum wallboard, steel and plate glass. The EGS4 code system was used with a simple broad-beam geometric model to generate exposure transmission curves for published 70, 100, 120 and 140-kVcp x-ray spectra. These curves are compared to measured three-phase generated x-ray transmission data in the literature and found to be reasonable. For calculation ease the data are fit to an equation previously shown to describe such curves quite well. These calculated transmission data are then used to create three-phase shielding tables for Pb and concrete, as well as other materials not available in Report No. 49 of the NCRP

  1. Shielding requirements for constant-potential diagnostic x-ray beams determined by a Monte Carlo calculation.

    Science.gov (United States)

    Simpkin, D J

    1989-02-01

    A Monte Carlo calculation has been performed to determine the transmission of broad constant-potential x-ray beams through Pb, concrete, gypsum wallboard, steel and plate glass. The EGS4 code system was used with a simple broad-beam geometric model to generate exposure transmission curves for published 70, 100, 120 and 140-kVcp x-ray spectra. These curves are compared to measured three-phase generated x-ray transmission data in the literature and found to be reasonable. For calculation ease the data are fit to an equation previously shown to describe such curves quite well. These calculated transmission data are then used to create three-phase shielding tables for Pb and concrete, as well as other materials not available in Report No. 49 of the NCRP.

  2. Embedding Fragment ab Initio Model Potentials in CASSCF/CASPT2 Calculations of Doped Solids: Implementation and Applications.

    Science.gov (United States)

    Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A

    2008-04-01

    In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.

  3. Exact effective action for (1+1)-dimensional fermions in an Abelian background at finite temperature and chemical potential

    International Nuclear Information System (INIS)

    Maciel, Soraya G.; Perez, Silvana

    2008-01-01

    In this paper we study the effects of a nonzero chemical potential in (1+1)-dimensional quantum field models at finite temperature. We particularly consider massless fermions in an Abelian gauge field background and calculate the effective action by evaluating the n-point functions. We find that the structure of the amplitudes corresponds to a generalization of the structure noted earlier in a calculation without a chemical potential (the associated integrals carry the dependence on the chemical potential). Our calculation shows that the chiral anomaly is unaffected by the presence of a chemical potential at finite temperature. However, unlike in the absence of a chemical potential, odd point functions do not vanish. We trace this to the fact that in the presence of a chemical potential the generalized charge conjugation symmetry of the theory allows for such amplitudes. In fact, we find that all the even point functions are even functions of μ, while the odd point functions are odd functions of μ which is consistent with this generalized charge conjugation symmetry. We show that the origin of the structure of the amplitudes is best seen from a formulation of the theory in terms of left- and right-handed spinors. The calculations are also much simpler in this formulation and it clarifies many other aspects of the theory.

  4. Calculation of the poloidal ambipolar field in a stellarator and its effect on transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1984-01-01

    The portion Phi 1 of the ambipolar potential Phi which produces an electric field in the flux surfaces of a stellarator is self-consistently calculated, and its effect on stellarator transport at low collisionality is considered. The effect is small in a parameter delta/sub h/, which is proportional to the square root of the ripple amplitude, epsilon/sub h/. However, since delta/sub h/ can be an appreciable fraction of 1 for realistic parameters, the effect of Phi 1 on transport can also be appreciable. Whether the effect is harmful or beneficial to confinement depends on the degree of pressure anisotropy and on the sign of p/sub perpendicular/-p/sub parallel/

  5. Molecular dynamics calculations of defect energetics in β-SiC

    International Nuclear Information System (INIS)

    Huang, H.; El-Azab, A.; Ghoniem, N.

    1993-01-01

    The Molecular Dynamics (MD) method is used to calculate defect energetics in β-silicon carbide. Many-body interaction effects in this covalent material are accounted for by using a hybrid of two-body and three-body potentials. Calculated bulk properties of β-SiC based on this potential are in agreement with experimental data to within 17%. A micro-crystal is constructed to represent the computational cell and external forces are applied to the micro-crystal so that it behaves as a part of an infinite medium. The potential energy for the unperturbed computational cell is first calculated. The cell is then set at a defect configuration and relaxed, and the potential energy of the relaxed cell is calculated. The difference between the potential energy of the unperturbed cell and that of the defect-containing cell is used to calculate the formation and binding energies of point defects, defect clusters and helium-vacancy clusters in SiC

  6. Effect size estimates: current use, calculations, and interpretation.

    Science.gov (United States)

    Fritz, Catherine O; Morris, Peter E; Richler, Jennifer J

    2012-02-01

    The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis.

  7. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  8. Effect of hemodialysis on intraocular lens power calculation.

    Science.gov (United States)

    Çalışkan, Sinan; Çelikay, Osman; Biçer, Tolga; Aylı, Mehmet Deniz; Gürdal, Canan

    2016-01-01

    To evaluate changes in ocular biometric parameters after hemodialysis (HD) in patients with end-stage renal disease (ESRD). Forty eyes of 40 patients undergoing HD were included in this cross-sectional study. Keratometry (K) readings, white-to-white (WTW) distance, central corneal thickness (CCT), anterior chamber depth (ACD), pupil diameter, lens thickness (LT), axial length (AL), and intraocular lens (IOL) power calculation were measured with Lenstar LS 900 (Haag Streit AG, Koeniz, Switzerland) before and after hemodialysis. Intraocular pressure (IOP) was measured with a non-contact tonometer (Tonopachy NT-530P, Nidek Co., LTD, Tokyo, Japan). Main outcomes were changes in biometric parameters after HD. Reliability of the measurements (intraclass correlation coefficients (ICCs)) and the effect size (Cohen's d) were also calculated. Mean difference in AL before and after HD was -0.041 ± 0.022 mm with ICCs > 0.90 (p  0.90 (p = 0.041 and Cohen's d = 0.20). Hemodialysis had no significant effect on K readings, WTW distance, CCT, ACD, LT, or IOP. Axial length and pupil diameter increase after HD with small effect size, while HD does not significantly affect IOL power calculations.

  9. CSRtrack Faster Calculation of 3-D CSR Effects

    CERN Document Server

    Dohlus, Martin

    2004-01-01

    CSRtrack is a new code for the simulation of Coherent Synchrotron radiation effects on the beam dynamics of linear accelerators. It incorporates the physics of our previous code, TraFiC4, and adds new algorithms for the calculation of the CSR fields. A one-dimensional projected method allows quick estimates and a greens function method allows 3D calculations about ten times faster than with the `direct' method. The tracking code is written in standard FORTRAN77 and has its own parser for comfortable input of calculation parameters and geometry. Phase space input and the analysis of the traced particle distribution is done with MATLAB interface programs.

  10. Calculated ionisation potentials to determine the oxidation of vanillin precursors by lignin peroxidase.

    OpenAIRE

    Have, ten, R.; Rietjens, I.M.C.M.; Hartmans, S.; Swarts, H.J.; Field, J.A.

    1998-01-01

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was calculated and compared to their experimental conversion by LiP, defining a relative IP threshold of approximately 9.0 eV. Based on this threshold value only the O-acetyl esters and glucosides of isoeugeno...

  11. General theory for calculating disorder-averaged Green's function correlators within the coherent potential approximation

    Science.gov (United States)

    Zhou, Chenyi; Guo, Hong

    2017-01-01

    We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.

  12. Potential Indoor Worker Exposure From Handling Area Leakage: Dose Calculation Methodology and Example Consequence Analysis

    International Nuclear Information System (INIS)

    Nes, Razvan; Benke, Roland R.

    2008-01-01

    The U.S. Department of Energy (DOE) is currently considering design options for preclosure facilities in a license application for a geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The Center for Nuclear Waste Regulatory Analyses (CNWRA) developed the PCSA Tool Version 3.0.0 software for the U.S. Nuclear Regulatory Commission (NRC) to aid in the regulatory review of a potential DOE license application. The objective of this paper is to demonstrate PCSA Tool modeling capabilities (i.e., a generic two-compartment, mass-balance model) for estimating radionuclide concentrations in air and radiological dose consequences to indoor workers in a control room from potential leakage of radioactively contaminated air from an adjacent handling area. The presented model computes internal and external worker doses from inhalation and submersion in a finite cloud of contaminated air in the control room and augments previous capabilities for assessing indoor worker dose. As a complement to the example event sequence frequency analysis in the companion paper, example consequence calculations are presented in this paper for the postulated event sequence. In conclusion: this paper presents a model for estimating radiological doses to indoor workers for the leakage of airborne radioactive material from handling areas. Sensitivity of model results to changes in various input parameters was investigated via illustrative example calculations. Indoor worker dose estimates were strongly dependent on the duration of worker exposure and the handling-area leakage flow rate. In contrast, doses were not very sensitive to handling-area exhaust ventilation flow rates. For the presented example, inhalation was the dominant radiological dose pathway. The two companion papers demonstrate independent analysis capabilities of the regulator for performing confirmatory calculations of frequency and consequence, which assist the assessment of worker

  13. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  14. Effective Permittivity for FDTD Calculation of Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    James B. Cole

    2012-03-01

    Full Text Available We present a new effective permittivity (EP model to accurately calculate surface plasmons (SPs using the finite-difference time-domain (FDTD method. The computational representation of physical structures with curved interfaces causes inherent errors in FDTD calculations, especially when the numerical grid is coarse. Conventional EP models improve the errors, but they are not effective for SPs because the SP resonance condition determined by the original permittivity is changed by the interpolated EP values. We perform FDTD simulations using the proposed model for an infinitely-long silver cylinder and gold sphere, and the results are compared with Mie theory. Our model gives better accuracy than the conventional staircase and EP models for SPs.

  15. Causality and relativistic effects in intranuclear cascade calculations

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Donangelo, R.J.; Nazareth, R.A.M.S.

    1983-01-01

    Relativistic effects in high energy nuclear collisions, when non-invariance of simultaneity is taken into account, are studied. It is shown that the time ordering of nucleon-nucleon collisions is quite different for different observers, giving in some cases non-invariant final results for intranuclear cascade (INC) calculations. In particular, an example of such a case is shown, in which the INC simulation, depending on the reference frame, presents a kind of density instability caused by a specific time ordering of collision events. A new INC calculation, using a causality preserving scheme, which minimizes this kind of relativistic effect is proposed. It is verified that the causality preserving INC prescription essentially recovers the relativistic invariance. (Author) [pt

  16. First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx

    International Nuclear Information System (INIS)

    Dridi, Z.; Bouhafs, B.; Ruterana, P.; Aourag, H.

    2002-01-01

    First-principles calculations have been used to study the effect of vacancies on the structural and electronic properties in substoichiometric TiC x and TiN x . The effect of vacancies on equilibrium volumes, bulk moduli, electronic band structures and density of states of the substoichiometric phases was studied using a full-potential linear augmented plane-wave method. A model structure of eight-atom supercells with ordered vacancies within the carbon and nitrogen sublattices is used. We find that the lattice parameters of the studied stoichiometries in both TiC x and TiN x are smaller than that of ideal stoichiometric TiC and TiN. Our results for the variation of the lattice parameters and the bulk moduli for TiC x are found to be in good agreement with experiment. The variation of the energy gaps with the atomic concentration ratio shows that these compounds present the same trends. Results for TiC x are compared to a recent full-potential calculation with relaxed 16-atom supercells

  17. Angle-resolved effective potentials for disk-shaped molecules

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  18. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    International Nuclear Information System (INIS)

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-01-01

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  19. Microscopic calculations of λ single particle energies

    International Nuclear Information System (INIS)

    Usmani, Q. N.

    1998-01-01

    Λ binding energy data for total baryon number A ≤ 208 and for Λ angular momenta ell Λ ≤ 3 are analyzed in terms of phenomenological (but generally consistent with meson-exchange) ΛN and ΛNN potentials. The Fermi-Hypernetted-Chain technique is used to calculate the expectation values for the Λ binding to nuclear matter. Accurate effective ΛN and ΛNN potentials are obtained which are folded with the core nucleus nucleon densities to calculate the Λ single particle potential U Λ (r). We use a dispersive ΛNN potential but also include an explicit ρ dependence to allow for reduced repulsion in the surface, and the best fits have a large ρ dependence giving consistency with the variational Monte Carlo calculations for Λ 5 He. The exchange fraction of the ΛN space-exchange potential is found to be 0.2-0.3 corresponding to m Λ * ≅ (0.74-0.82)m Λ . Charge symmetry breaking is found to be significant for heavy hypernuclei with a large neutron excess, with a strength consistent with that obtained from the A = 4 hypernuclei

  20. Choice of single-particle potential and the convergence of the effective interaction

    International Nuclear Information System (INIS)

    Hjorth-Jensen, M.; Osnes, E.; Muether, H.; Schmid, K.W.

    1990-02-01

    The convergence of the expansion for the effective interaction is studied considering as example the shell model for the nuclei 18 O and 18 F. In this work the effective interaction is computed through third order in the Brueckner G matrix, using both a harmonic-oscillator (HO) basis and a Brueckner-Hartree-Fock (BHF) basis. The significant differences in the convergence behavior of the effective interaction in these two cases are reported. The results indicate that the choice of the BHF single-particle potential facilitates the convergence of the effective interaction in low-orders of the expansion, whereas the HO results exhibit a non-convergent behavior. The implications for the HO approach are discussed. All calculations have been performed considering a modern version of the Bonn one-boson-exchange potential for the nucleon-nucleon interaction. 23 refs., 4 figs., 2 tabs

  1. On effective Kähler potential in N=2, d=3 SQED

    Directory of Open Access Journals (Sweden)

    I.L. Buchbinder

    2015-11-01

    Full Text Available We compute the two-loop effective Kähler potential in three-dimensional N=2 supersymmetric electrodynamics with Chern–Simons kinetic term for the gauge superfield. The effective action is constructed on the base of background field method with one parametric family of gauges. In such an approach, the quadratic part of quantum action mixes the gauge and matter quantum superfields yielding the complications in the computations of the loop supergraphs. To avoid this obstacle and preserve dependence on the gauge parameter we make a non-local change of quantum matter superfields after which the propagator is diagonalized, however the new vertices have appeared. We fix the suitable background and develop the efficient procedure of calculating the two-loop supergraphs with the new vertices. We compute the divergent and finite parts of the superfield effective action, find the two-loop effective Kähler potential and show that it does not depend on the gauge parameter.

  2. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  3. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation

    International Nuclear Information System (INIS)

    Ngo, H.; Ngo, C.

    1980-04-01

    We have calculated the interaction potential between two heavy ions using the energy density formalism and Fermi distributions for the nuclear densities. The experimental fusion barriers are rather well reproduced. The conditions for the observation of fusion between two heavy ions is discussed. As far as the nuclear part of the interaction potential is concerned, the proximity scaling is investigated in details. It is found that the proximity theorem is satisfied to a good extent. However, as far as the neutron excess is concerned, a disagreement with the proximity potential is observed

  4. Generalized Bloch Theorem for Complex Periodic Potentials - A Powerful Application to Quantum Transport Calculations

    International Nuclear Information System (INIS)

    Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T

    2007-01-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data

  5. Effectiveness of personalized and interactive health risk calculators: a randomized trial.

    Science.gov (United States)

    Harle, Christopher A; Downs, Julie S; Padman, Rema

    2012-01-01

    Risk calculators are popular websites that provide individualized disease risk assessments to the public. Little is known about their effect on risk perceptions and health behavior. This study sought to test whether risk calculator features-namely, personalized estimates of one's disease risk and feedback about the effects of risk-mitigating behaviors-improve risk perceptions and motivate healthy behavior. A web-based experimental study using simple randomization was conducted to compare the effects of 3 prediabetes risk communication websites. Setting The study was conducted in the context of ongoing health promotion activities sponsored by a university's human resources office. Patients Participants were adult university employees. Intervention The control website presented nonindividualized risk information. The personalized noninteractive website presented individualized risk calculations. The personalized interactive website presented individualized risk calculations and feedback about the effects of hypothetical risk-mitigating behaviors. Measurements Pre- and postintervention risk perceptions were measured in absolute and relative terms. Health behavior was measured by assessing participant interest in follow-up preventive health services. On average, risk perceptions decreased by 2%. There was no general effect of personalization or interactivity in aligning subjective risk perceptions with objective risk calculations or in increasing healthy behaviors. However, participants who previously overestimated their risk reduced their perceptions by 16%. This was a significantly larger change than the 2% increase by participants who underestimated their risk. Limitations Results may not generalize to different populations, different diseases, or longer-term outcomes. Compared to nonpersonalized information, individualized risk calculators had little positive effect on prediabetes risk perception accuracy or health behavior. Risk perception accuracy was improved in

  6. Improved effective potential by nonlinear canonical transformations

    International Nuclear Information System (INIS)

    Ritschel, U.

    1990-01-01

    We generalize the familiar gaussian-effective-potential formalism to a class of non-gaussian trial states. With the help of exact nonlinear canonical transformations, expectation values can be calculated analytically and in closed form. A detailed description of our method, particularly for quadratic and cubic transformations, and of the related renormalization procedure is given. Applications to φ 4 -models in various dimensionalities are treated. We find the expected critical behaviour in two space-time dimensions. In three and four dimensions we observe instabilities which go back the incompleteness of the gaussian-based renormalization. In the appendices it is shown that the quadratic transformation leads to a coherent state in a certain limiting case, and the generalization to systems at finite temperature is performed. (orig.)

  7. Three recent TDHF calculations

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1981-05-01

    Three applications of TDHF are discussed. First, vibrational spectra of a post grazing collision 40 Ca nucleus is examined and found to contain many high energy components, qualitatively consistent with recent Orsay experiments. Second, the fusion cross section in energy and angular momentum are calculated for 16 O + 24 Mg to exhibit the parameters of the low l window for this system. A sensitivity of the fusion cross section to the effective two body potential is discussed. Last, a preliminary analysis of 86 Kr + 139 La at E/sub lab/ = 505 MeV calculated in the frozen approximation is displayed, compared to experiment and discussed

  8. Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field

    International Nuclear Information System (INIS)

    Jasinschi, R.S.; Smith, A.W.

    1984-01-01

    The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt

  9. Generator coordinate calculations of 4He and 16O nuclei with Skyrme-like forces and square-well construction potential

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Christov, C.V.

    1984-11-01

    The generator coordinate method with a square-well construction potential and Skyrme-like interactions is applied to calculate characteristics of 4 He and 16 O nuclei. The corresponding nucleon momentum distributions have a high momentum component, which differs from the results obtained with a harmonic oscillator potential. (author)

  10. AB INITIO calculations of magneto-optical effects

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Oppeneer, P. M.

    2002-01-01

    Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. LTRACK: Beam-transport calculation including wakefield effects

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Cooper, R.K.

    1988-01-01

    LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described

  12. Realistic shell-model calculations for Sn isotopes

    International Nuclear Information System (INIS)

    Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.

    1997-01-01

    We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)

  13. Calculation code of heterogeneity effects for analysis of small sample reactivity worth

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Mukaiyama, Takehiko; Maeda, Akio.

    1988-03-01

    The discrepancy between experimental and calculated central reactivity worths has been one of the most significant interests for the analysis of fast reactor critical experiment. Two effects have been pointed out so as to be taken into account in the calculation as the possible cause of the discrepancy; one is the local heterogeneity effect which is associated with the measurement geometry, the other is the heterogeneity effect on the distribution of the intracell adjoint flux. In order to evaluate these effects in the analysis of FCA actinide sample reactivity worth the calculation code based on the collision probability method was developed. The code can handle the sample size effect which is one of the local heterogeneity effects and also the intracell adjoint heterogeneity effect. (author)

  14. Theoretical study of non reactive collisions between alkaline atoms and hydrogen or deuterium molecules. Calculations and analysis of the potential surfaces. Application to the fine structure transitions of the Rubidium

    International Nuclear Information System (INIS)

    Rossi, F.N.

    1986-10-01

    The adiabatic potential lines are first obtained through the use of a pseudo-potential, depending on the electronic orbital moment. A perturbative method is then used to generate the potential surfaces, according to the potential lines. A quantum calculation in the thermal energy domain is realized, for the cross-sections concerning the structure transitions of the Rubidium, induced by the collision with hydrogen or deuterium molecules. This allowed the interpretation of the experimentally observed isotopic effect [fr

  15. Calculations of polarizabilities and hyperpolarizabilities for the Be+ ion

    International Nuclear Information System (INIS)

    Tang Liyan; Zhang Junyi; Mitroy, J.; Yan Zongchao; Shi Tingyun; Babb, James F.

    2009-01-01

    The polarizabilities and hyperpolarizabilities of the Be + ion in the 2 2 S state and the 2 2 P state are determined. Calculations are performed using two independent methods: (i) variationally determined wave functions using Hylleraas basis set expansions and (ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be + ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-L Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.

  16. Potential calculation of rural settlements consolidation: a case study of Tianchang City in Anhui Province

    Science.gov (United States)

    Zhao, Xiaofeng; Huang, Xianjin; Li, Li; Fan, Jing

    2011-02-01

    Rural settlements consolidation plays an important role for improving the rural residential habitation, and increasing the intensive land use. This paper aims to analyze the current situation, features and problems of rural settlements, and calculate the theoretical and realistic potential of rural settlements consolidation in Tianchang City, in order to provide references for new round of land use planning. Methods of field survey, hierarchy analysis, land targets per capita, modified coefficient on limited conditions and GIS is employed. The results indicate that: (1) The total area of rural settlements was 15,496.31hm2 in 2005, and the area of rural settlements per capita was 332.66m2, far more than standard of 150m2. (2) The comprehensive modified coefficient in 15 towns is from 0.47 to 0.96, which indicates the ability and possibility of the realization of theoretical potential. (3) The theoretical potential is 9,746.09 hm2 and the realistic potential is 7,124.94hm2 from 2005 to 2020. (4) The spatial distribution between rate of theoretical potential and realistic potential is incompletely consistent.

  17. Calculations of wavefunctions and energies of electron system in Coulomb potential by variational method without a basis set

    International Nuclear Information System (INIS)

    Bykov, V.P.; Gerasimov, A.V.

    1992-08-01

    A new variational method without a basis set for calculation of the eigenvalues and eigenfunctions of Hamiltonians is suggested. The expansion of this method for the Coulomb potentials is given. Calculation of the energy and charge distribution in the two-electron system for different values of the nuclear charge Z is made. It is shown that at small Z the Coulomb forces disintegrate the electron cloud into two clots. (author). 3 refs, 4 figs, 1 tab

  18. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Effective exchange potentials for electronically inelastic scattering

    International Nuclear Information System (INIS)

    Schwenke, D.W.; Staszewska, G.; Truhlar, D.G.

    1983-01-01

    We propose new methods for solving the electron scattering close coupling equations employing equivalent local exchange potentials in place of the continuum-multiconfiguration-Hartree--Fock-type exchange kernels. The local exchange potentials are Hermitian. They have the correct symmetry for any symmetries of excited electronic states included in the close coupling expansion, and they have the same limit at very high energy as previously employed exchange potentials. Comparison of numerical calculations employing the new exchange potentials with the results obtained with the standard nonlocal exchange kernels shows that the new exchange potentials are more accurate than the local exchange approximations previously available for electronically inelastic scattering. We anticipate that the new approximations will be most useful for intermediate-energy electronically inelastic electron--molecule scattering

  20. Global nuclear-structure calculations

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1990-01-01

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε 2 and ε 4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential

  1. Effective connectivity reveals strategy differences in an expert calculator.

    Directory of Open Access Journals (Sweden)

    Ludovico Minati

    Full Text Available Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of "cortical hubs" supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material.

  2. Improved effective potential in curved spacetime and quantum matter--higher derivative gravity theory

    International Nuclear Information System (INIS)

    Elizalde, E.; Odintsov, S.D.; Romeo, A.

    1995-01-01

    We develop a general formalism to study the renormalization-group- (RG-)improved effective potential for renormalizable gauge theories, including matter-R 2 -gravity, in curved spacetime. The result is given up to quadratic terms in curvature, and one-loop effective potentials may be easily obtained from it. As an example, we consider scalar QED, where dimensional transmutation in curved space and the phase structure of the potential (in particular, curvature-induced phase transitions) are discussed. For scalar QED with higher-derivative quantum gravity (QG), we examine the influence of QG on dimensional transmutation and calculate QG corrections to the scalar-to-vector mass ratio. The phase structure of the RG-improved effective potential is also studied in this case, and the values of the induced Newton and cosmological coupling constants at the critical point are estimated. The stability of the running scalar coupling in the Yukawa theory with conformally invariant higher-derivative QG, and in the standard model with the same addition, is numerically analyzed. We show that, in these models, QG tends to make the scalar sector less unstable

  3. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius

    Science.gov (United States)

    Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.

    1996-01-01

    Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius. SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius. This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs

  4. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    Science.gov (United States)

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  5. Dynamic polarization potentials in heavy ion scattering

    International Nuclear Information System (INIS)

    Wolf, R.

    1984-01-01

    In this thesis the polarization potential is calculated which is caused by several collective, strongly coupled states. In the framework of the considered model space the calculation of the polarization potential was exact, i.e. no approximations were made. For this purpose the Green function of the system had to be calculated. This led to a nonlocal polarization potential. For the better interpretation possibility and for the easier use in coupled-channel or optical-model calculations from the nonlocal potentials also equivalent potentials were constructed. The properties of the local and nonlocal potentials as shape, angular momentum, and energy dependence were discussed. Furthermore parametrizations were given, how polarization effects can be regarded in a simple way in optical-model or coupled-channel calculations. The calculations were performed for the systems 12 C+ 12 C and 16 O+ 16 O. To meet as realistic results as possible, parameters for the unperturbed potential were looked for which describe as many data as possible, like angular distributions, excitation functions, and alignment of the main channels. As unperturbed potential both folding potentials and phenomenological potentials were applied in order to study the differences in the polarization potential in the application of deep and flat potentials. (orig./HSI) [de

  6. CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states

    Science.gov (United States)

    Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui

    2017-12-01

    Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)

  7. Calculating Cluster Masses via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Lindley, Ashley; Landry, D.; Bonamente, M.; Joy, M.; Bulbul, E.; Carlstrom, J. E.; Culverhouse, T. L.; Gralla, M.; Greer, C.; Hawkins, D.; Lamb, J. W.; Leitch, E. M.; Marrone, D. P.; Miller, A.; Mroczkowski, T.; Muchovej, S.; Plagge, T.; Woody, D.

    2012-05-01

    Accurate measurements of the total mass of galaxy clusters are key for measuring the cluster mass function and therefore investigating the evolution of the universe. We apply two new methods to measure cluster masses for five galaxy clusters contained within the Brightest Cluster Sample (BCS), an X-ray luminous statistically complete sample of 35 clusters at z=0.15-0.30. These methods distinctively use only observations of the Sunyaev-Zel'dovich (SZ) effect, for which the brightness is redshift independent. At the low redshifts of the BCS, X-ray observations can easily be used to determine cluster masses, providing convenient calibrators for our SZ mass calculations. These clusters have been observed with the Sunyaev-Zel'dovich Array (SZA), an interferometer that is part of the Combined Array for Research in Millimeter-wave Astronomy (CARMA) that has been optimized for accurate measurement of the SZ effect in clusters of galaxies at 30 GHz. One method implements a scaling relation that relates the integrated pressure, Y, as determined by the SZ observations to the mass of the cluster calculated via optical weak lensing. The second method makes use of the Virial theorem to determine the mass given the integrated pressure of the cluster. We find that masses calculated utilizing these methods within a radius r500 are consistent with X-ray masses, calculated by manipulating the surface brightness and temperature data within the same radius, thus concluding that these are viable methods for the determination of cluster masses via the SZ effect. We present preliminary results of our analysis for five galaxy clusters.

  8. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Tohjoh, Masayuki; Endo, Tomohiro; Watanabe, Masato; Yamamoto, Akio

    2006-01-01

    As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors. The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underestimated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can predict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up calculations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of error propagation on the Monte Carlo burn-up calculations of 8 x 8 BWR fuel assembly are low up to 60 GWd/t

  9. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shtabovenko, Vladyslav

    2017-05-22

    This thesis deals with the applications of nonrelativistic Effective Field Theories to electromagnetic and strong interactions. The main results of this work are divided into three parts. In the first part, we use potential Nonrelativistic Quantum Electrodynamics (pNRQED), an EFT of QED at energies much below m{sub e}α (with m{sub e} being the electron mass and α the fine-structure constant), to develop a consistent description of electromagnetic van der Waals forces between two hydrogen atoms at a separation R much larger than the Bohr radius. We consider the interactions at short (R<<1/m{sub e}α{sup 2}), long (R>>1/m{sub e}α{sup 2}) and intermediate (R∝1/m{sub e}α{sup 2}) distances and identify the relevant dynamical scales that characterize each of the three regimes. For each regime we construct a suitable van der Waals EFT, that provides the simplest description of the low-energy dynamics. In this framework, van der Waals potentials naturally arise from the matching coefficients of the corresponding EFTs. They can be computed in a systematic way, order by order in the relevant expansion parameters, as is done in this work. Furthermore, the potentials receive contributions from radiative corrections and have to be renormalized. The development of a consistent EFT framework to treat electromagnetic van der Waals interactions between hydrogen atoms and the renormalization of the corresponding van der Waals potentials are the novel features of this study. In the second part, we study relativistic O(α{sup 0}{sub s}υ{sup 2}) (with α{sub s} being the strong coupling constant) corrections to the exclusive electromagnetic production of the heavy quarkonium χ {sub cJ} and a hard photon in the framework of nonrelativistic Quantum Chromodynamics (NRQCD), an EFT of QCD that takes full advantage of the nonrelativistic nature of charmonia and bottomonia and exploits wide separation of the relevant dynamical scales. These scales are m{sub Q} >> m{sub Q}υ >> m{sub Q

  10. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    International Nuclear Information System (INIS)

    Shtabovenko, Vladyslav

    2017-01-01

    This thesis deals with the applications of nonrelativistic Effective Field Theories to electromagnetic and strong interactions. The main results of this work are divided into three parts. In the first part, we use potential Nonrelativistic Quantum Electrodynamics (pNRQED), an EFT of QED at energies much below m e α (with m e being the electron mass and α the fine-structure constant), to develop a consistent description of electromagnetic van der Waals forces between two hydrogen atoms at a separation R much larger than the Bohr radius. We consider the interactions at short (R<<1/m e α 2 ), long (R>>1/m e α 2 ) and intermediate (R∝1/m e α 2 ) distances and identify the relevant dynamical scales that characterize each of the three regimes. For each regime we construct a suitable van der Waals EFT, that provides the simplest description of the low-energy dynamics. In this framework, van der Waals potentials naturally arise from the matching coefficients of the corresponding EFTs. They can be computed in a systematic way, order by order in the relevant expansion parameters, as is done in this work. Furthermore, the potentials receive contributions from radiative corrections and have to be renormalized. The development of a consistent EFT framework to treat electromagnetic van der Waals interactions between hydrogen atoms and the renormalization of the corresponding van der Waals potentials are the novel features of this study. In the second part, we study relativistic O(α 0 s υ 2 ) (with α s being the strong coupling constant) corrections to the exclusive electromagnetic production of the heavy quarkonium χ cJ and a hard photon in the framework of nonrelativistic Quantum Chromodynamics (NRQCD), an EFT of QCD that takes full advantage of the nonrelativistic nature of charmonia and bottomonia and exploits wide separation of the relevant dynamical scales. These scales are m Q >> m Q υ >> m Q υ 2 , where m Q is the heavy quark mass and υ is the relative

  11. Sample size calculations for case-control studies

    Science.gov (United States)

    This R package can be used to calculate the required samples size for unconditional multivariate analyses of unmatched case-control studies. The sample sizes are for a scalar exposure effect, such as binary, ordinal or continuous exposures. The sample sizes can also be computed for scalar interaction effects. The analyses account for the effects of potential confounder variables that are also included in the multivariate logistic model.

  12. Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Sakr, A.M.; Amin, E.H.

    2011-01-01

    Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.

  13. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor

    KAUST Repository

    Gao, Zhiyuan

    2009-01-01

    We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining conditions including stretching, compressing, twisting, and their combination, a piezoelectric potential is created throughout the nanowire to modulatealternate the transport property of the metal-ZnO nanowire contacts, resulting in a switch between symmetric and asymmetric contacts at the two ends, or even turning an Ohmic contact type into a diode. The commonly observed natural rectifying behavior of the as-fabricated ZnO nanowire can be attributed to the strain that was unpurposely created in the nanowire during device fabrication and material handling. This work provides further evidence on piezopotential governed electronic transport and devices, e.g., piezotronics.

  14. Effective pair potentials for spherical nanoparticles

    International Nuclear Information System (INIS)

    Van Zon, Ramses

    2009-01-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure

  15. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  16. Electrostatic interaction between Interball-2 and the ambient plasma. 1. Determination of the spacecraft potential from current calculations

    Directory of Open Access Journals (Sweden)

    M. Bouhram

    2002-03-01

    Full Text Available The Interball-2 spacecraft travels at altitudes extending up to 20 000 km, and becomes positively charged due to the low-plasma densities encountered and the photoemission on its sunlit surface. Therefore, a knowledge of the spacecraft potential Fs is required for correcting accurately thermal ion measurements on Interball-2. The determination of Fs  is based on the balance of currents between escaping photoelectrons and incoming plasma electrons. A three-dimensional model of the potential structure surrounding Interball-2, including a realistic geometry and neglecting the space-charge densities, is used to find, through particle simulations, current-voltage relations of impacting plasma electrons Ie (Fs and escaping photoelectrons Iph (Fs . The inferred relations are compared to analytic relationships in order to quantify the effects of the spacecraft geometry, the ambient magnetic field B0 and the electron temperature Te . We found that the complex geometry has a weak effect on the inferred currents, while the presence of B0 tends to decrease their values. Providing that the photoemission saturation current density Jph0 is known, a relation between Fs and the plasma density Ne can be derived by using the current balance. Since Jph0 is critical to this process, simultaneous measurements of Ne from Z-mode observations in the plasmapause, and data on the potential difference Fs  - Fp  between the spacecraft and an electric probe (p are used in order to reverse the process. A value Jph0 ~ = 32 µAm-2 is estimated, close to laboratory tests, but less than typical measurements in space. Using this value, Ne and Fs  can be derived systematically from electric field measurements without any additional calculation. These values are needed for correcting the distributions of low-energy ions measured by the Hyperboloid experiment on Interball-2. The effects of the potential structure on ion trajectories reaching Hyperboloid are discussed

  17. Software Tools for Measuring and Calculating Electromagnetic Shielding Effectiveness

    National Research Council Canada - National Science Library

    Tesny, Neal

    2005-01-01

    The evaluation and the analysis of high-altitude electromagnetic pulse response of shielded enclosures require the availability of software tools able to acquire data and calculate shielding effectiveness...

  18. Preliminary Analysis For Wolsong Par Effects Using ISACC Calculations

    International Nuclear Information System (INIS)

    Song, Yong Mann; Kim, Dong Ha

    2012-01-01

    In the paper, hydrogen control effects using PARs only are analyzed for severe SBO station blackout (SBO) sequences beyond the design basis accidents in WS-1 which are of CANDU6 type reactor. As a computational tool, the latest version of ISAAC4.3 (Integrated Severe Accident Analysis Code for CANDU), which is a fully integrated and lumped severe accident computer code, is used to simulate hydrogen generation and transport inside the reactor building (R/B) before its failure. For the performance of hydrogen removal, the depletion rate equation of K-PAR developed in Korea is applied. In a CANDU reactor, three areas are identified as sources of hydrogen under severe accidents: fuel-coolant interactions in intact channels, suspended fuel or debris interactions in-calandria tank and debris interactions in-calandria vault. The first two origins provide source for the late ('late' terminology is used because it takes more than one day before calandria tank failure) potential hydrogen combustion before calandria tank failure and all the three origins would provide source for the very late potential hydrogen combustion occurring at or after calaria tank failure. If the hydrogen mitigation system fails, the AICC (adiabatic isochoric complete combustion) burning of highly flammable hydrogen may cause Wolsong R/B failure. So hydrogen induced failure possibility is evaluated, using preliminary ISAAC calculations, under several SBO conditions with and without PAR for both late and very late accident periods

  19. Sensitivity testing of the model set-up used for calculation of photochemical ozone creation potentials (POCP) under European conditions

    Energy Technology Data Exchange (ETDEWEB)

    Altenstedt, J.; Pleijel, K.

    1998-02-01

    Photochemical Ozone Creation Potentials (POCP) is a method to rank VOC, relative to other VOC, according to their ability to produce ground level ozone. To obtain POCP values valid under European conditions, a critical analysis of the POCP concept has been performed using the IVL photochemical trajectory model. The critical analysis has concentrated on three VOC (ethene, n-butane and o-xylene) and has analysed the effect on their POCP values when different model parameters were varied. The three species were chosen because of their different degradation mechanisms in the atmosphere and thus their different abilities to produce ozone. The model parameters which have been tested include background emissions, initial concentrations, dry deposition velocities, the features of the added point source and meteorological parameters. The critical analysis shows that the background emissions of NO{sub x} and VOC have a critical impact on the POCP values. The hour of the day for the point source emission also shows a large influence on the POCP values. Other model parameters which have been studied have not shown such large influence on the POCP values. Based on the critical analysis a model set-up for calculation of POCP is defined. The variations in POCP values due to changes in the background emissions of NO{sub x} and VOC are so large that they can not be disregarded in the calculation of POCP. It is recommended to calculate POCP ranges based on the extremes in POCP values instead of calculating site specific POCP values. Four individual emission scenarios which produced the extremes in POCP values in the analysis have been selected for future calculation of POCP ranges. The scenarios are constructed based on the emissions in Europe and the resulting POCP ranges are thus intended to be applicable within Europe 67 refs, 61 figs, 16 tabs

  20. The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.

    Science.gov (United States)

    Sawyer, Jemima E R; Hennebry, James E; Revill, Alexander; Brown, Angus M

    2017-06-01

    The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential. Copyright © 2017 the American Physiological Society.

  1. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  2. Calculation of the binding energy per nucleon and the quasi-particle interation in nuclear matter under consideration of relativistic medium effects

    International Nuclear Information System (INIS)

    Hippchen, T.

    1985-12-01

    In a first part, nuclear matter calculations have been performed in the Dirac-Brueckner approach using a) a nucleon-nucleon potential of one-boson-exchange (OBE) type and b) a more realistic interaction in which the fictitious σ-exchange of the OBE-model is replaced by explicit 2π- and πρ-exchange diagrams. Both potential models yield the correct empirical binding energy and saturation density. It turns out that the total sum of relativistic effects caused by the emplicit 2 π- and πρ-exchanges is comparable to those due to σ-exchange. In a second part, the nuclear quasiparticle interaction, i.e. the Landau parameters, have been calculated in the central (F), isospin (F'), spin (G) and spin-isospin (G') channel, in an analogous way. Compared to nonrelativistic calculations (including conventional medium corrections like Pauli and dispersion effects), a strong improvement has been found, especially in the F- and G-channel. Finally, the influence of A 1 -exchange is studied, in NN scattering and in nuclear matter. It turns out that, after a suitable and necessary readjustment of some meson parameters, its role is negligibly small. (orig.)

  3. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    Science.gov (United States)

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics

  4. Resonance integral analytical calculation considering shadowing effect

    International Nuclear Information System (INIS)

    Monteiro, M.A.M.; Martinez, A.S.

    1990-01-01

    It is presented a method for the Resonance Integral Calculation in the fuel and moderator regions, including the shadowing effect. This effect appears due to the presence of several fuel rods in a infinite moderator region. The method is based on the approximations to the J (ξ, β) function and theirs partial derivatives in relation to β. The dependence of the Resonance Integral in the J (ξ, β) comes from the rational approximation to the neutron escape probability. The final results were obtained in a very simple and fast way, and they show the good accuracy of the method. (author)

  5. Use of PRIM code to analyze potential radiation-induced genetic and somatic effects to man from Jackpile-Paguate mines

    International Nuclear Information System (INIS)

    Momeni, M.H.

    1983-01-01

    Potential radiation-induced effects from inhalation and ingestion of land external exposure to radioactive materials at the Jackpile-Paguate uranium mine complex near Paguate, New Mexico, were analyzed. The Uranium Dispersion and Dosimetry (UDAD) computer code developed at Argonne National Laboratory was used to calculate the dose rates and the time-integrated doses to tissues at risk as a function of age and time for the population within 80 km of the mines. The ANL computer code Potential Radiation-Induced Biological Effects on Man (PRIM) then was used to calculate the potential radiation-induced somatic and genetic effects among the same population on the basis of absolute and relative risk models as a function of duration of exposure and age at time of exposure. The analyses were based on the recommendations in BEIR II and WASH-1400 and the lifetable method. The death rates were calculated for radiation exposure from the mines and for naturally induced effects for 19 age cohorts, 20 time intervals, and for each sex. The results indicated that under present conditions of the radiation environment at the mines, the number of potential fatal radiation-induced neoplasms that could occur among the regional population over the next 85 years would be 95 using the absolute risk model, and 243 using the relative risk model. Over the same period, there would be less than two radiation-induced genetic effects (dominant and multifactorials). After decommissioning f the mine site, these risks would decrease to less than 1 and less than 3 potential radiation-induced deaths under the relative and absolute risk models, respectively, and 0.001 genetic disorders. Because of various sources of error, the uncertainty in these predicted risks could be a factor of five

  6. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  7. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  8. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    International Nuclear Information System (INIS)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-01-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method

  9. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    Science.gov (United States)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  10. The effect of an interactive e-drug calculations package on nursing students' drug calculation ability and self-efficacy.

    Science.gov (United States)

    McMullan, Miriam; Jones, Ray; Lea, Susan

    2011-06-01

    Nurses need to be competent and confident in performing drug calculations to ensure patient safety. The purpose of this study is to compare an interactive e-drug calculations package, developed using Cognitive Load Theory as its theoretical framework, with traditional handout learning support on nursing students' drug calculation ability, self-efficacy and support material satisfaction. A cluster randomised controlled trial comparing the e-package with traditional handout learning support was conducted with a September cohort (n=137) and a February cohort (n=92) of second year diploma nursing students. Students from each cohort were geographically dispersed over 3 or 4 independent sites. Students from each cohort were invited to participate, halfway through their second year, before and after a 12 week clinical practice placement. During their placement the intervention group received the e-drug calculations package while the control group received traditional 'handout' support material. Drug calculation ability and self-efficacy tests were given to the participants pre- and post-intervention. Participants were given the support material satisfaction scale post-intervention. Students in both cohorts randomised to e-learning were more able to perform drug calculations than those receiving the handout (September: mean 48.4% versus 34.7%, p=0.027; February: mean 47.6% versus 38.3%, p=0.024). February cohort students using the e-package were more confident in performing drug calculations than those students using handouts (self-efficacy mean 56.7% versus 45.8%, p=0.022). There was no difference in improved self-efficacy between intervention and control for students in the September cohort. Students who used the package were more satisfied with its use than the students who used the handout (mean 29.6 versus 26.5, p=0.001), particularly with regard to the package enhancing their learning (p=0.023), being an effective way to learn (p=0.005), providing practice and

  11. Low-energy neutron-proton analyzing power and the new Bonn potential and Paris potential predictions

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Roberts, M.L.; Felsher, P.D.; Chen, Z.M.; Walter, R.L.; Mertens, G.; Slaus, I.

    1988-01-01

    Instrumental asymmetries recently observed by Haeberli and co-workers, limit the accuracy of neutron-proton analyzing power A/sub y/(θ) data. These instrumental effects are discussed and calculated for previously published n-p A/sub y/(θ) data at 16.9 MeV. To enable these calculations, the analyzing power for the 2 H(d-arrow-right,n) 3 He reaction was measured at small angles. Additional n-p A/sub y/(θ) data at extreme backward angles, obtained via proton recoil detection, are also reported for this energy in this paper. The composite data set is compared to calculations based on the new Bonn NN potential, the Paris NN potential, and to the recent NN phase-shift solution of Arndt. In addition, a detailed comparison between A/sub y/(θ) calculated from the new Bonn and the Paris potentials between 10 and 50 MeV is shown to reveal unexpectedly large relative differences. The experimental data in this energy range are better described by the Paris potential than by the new Bonn potential

  12. Ground-state inversion method applied to calculation of molecular photoionization cross-sections by atomic extrapolation: Interference effects at low energies

    International Nuclear Information System (INIS)

    Hilton, P.R.; Nordholm, S.; Hush, N.S.

    1980-01-01

    The ground-state inversion method, which we have previously developed for the calculation of atomic cross-sections, is applied to the calculation of molecular photoionization cross-sections. These are obtained as a weighted sum of atomic subshell cross-sections plus multi-centre interference terms. The atomic cross-sections are calculated directly for the atomic functions which when summed over centre and symmetry yield the molecular orbital wave function. The use of the ground-state inversion method for this allows the effect of the molecular environment on the atomic cross-sections to be calculated. Multi-centre terms are estimated on the basis of an effective plane-wave expression for this contribution to the total cross-section. Finally the method is applied to the range of photon energies from 0 to 44 eV where atomic extrapolation procedures have not previously been tested. Results obtained for H 2 , N 2 and CO show good agreement with experiment, particularly when interference effects and effects of the molecular environment on the atomic cross-sections are included. The accuracy is very much better than that of previous plane-wave and orthogonalized plane-wave methods, and can stand comparison with that of recent more sophisticated approaches. It is a feature of the method that calculation of cross-sections either of atoms or of large molecules requires very little computer time, provided that good quality wave functions are available, and it is then of considerable potential practical interest for photoelectorn spectroscopy. (orig.)

  13. I. Nuclear and neutron matter calculations with isobars. II. A model calculation of Fermi liquid parameters for liquid 3He

    International Nuclear Information System (INIS)

    Ainsworth, T.L.

    1983-01-01

    The Δ(1232) plays an important role in determining the properties of nuclear and neutron matter. The effects of the Δ resonance are incorporated explicitly by using a coupled channel formalism. A method for constraining a lowest order variational calculation, appropriate when nucleon internal degrees of freedom are made explicity, is presented. Different N-N potentials were calculated and fit to phase shift data and deuteron properties. The potentials were constructed to test the relative importance of the Δ resonance on nuclear properties. The symmetry energy and incompressibility of nuclear matter are generally reproduced by this calculation. Neutron matter results lead to appealing neutron star models. Fermi liquid parameters for 3 He are calculated with a model that includes both direct and induced terms. A convenient form of the direct interaction is obtained in terms of the parameters. The form of the direct interaction ensures that the forward scattering sum rule (Pauli principle) is obeyed. The parameters are adjusted to fit the experimentally determined F 0 /sup s/, F 0 /sup a/, and F 1 /sup s/ Landau parameters. Higher order Landau parameters are calculated by the self-consistent solution of the equations; comparison to experiment is good. The model also leads to a preferred value for the effective mass of 3 He. Of the three parameters only one shows any dependence on pressure. An exact sum rule is derived relating this parameter to a specific summation of Landau parameters

  14. Effect of latitude on the potential for formation of photochemical smog

    Energy Technology Data Exchange (ETDEWEB)

    Neiboer, H [Central Laboratorium TNO, Delft, Netherlands; Carter, W P.L.; Lloyd, A C; Pitts, Jr, J N

    1976-01-01

    The effect of latitude on the potential for the formation of photochemical smog has been assessed. Calculations suggest that at the summer solstice, the integrated sunlight intensity at Rotterdam or Fairbanks (Alaska) is very similar to that in Los Angeles. Computations carried out, assuming the same pollutant emission inventory for the three locations, showed that ozone and PAN dosages depend more on the integrated light intensity than on the nature of the light intensity distribution with time. Therefore, if factors such as emissions and meteorological conditions are equal, the potential for significant photochemical smog formation during the summer months is similar for Los Angeles (34/sup 0/N) and northern cities such as Rotterdam (52/sup 0/N) and Nome or Fairbanks, Alaska (65/sup 0/N).

  15. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  16. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    is obtained from an ad hoc potential based on a Dirac-Slater atomic calculation for the ground-state configuration and with full Slater exchange in the atomic as well as in the crystal potential. The selection of this best potential is justified by comparing the calculated band structure to Fermi...... of states. The present work includes a crude estimate of this surface density of states, which is derived from the bulk band structure by narrowing the d bands according to an effective number of neighbors per surface atom. Estimates of surface relaxation effects are also included.......The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...

  17. Calculation of total cross sections for electron and positron scattering on sodium and potassium

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Zhou, Y.

    1993-02-01

    Total cross sections for electron and positron scattering on sodium and potassium are calculated at various energies and compared with experiment. The method use is the coupled-channels-optical method with the equivalent-local polarisation potential, which takes all channels into account. For electrons the calculations are checked by comparison with coupled-channels-optical calculations using a detailed polarisation potential that makes only one approximation, that of weak coupling in the ionisation space. The polarisation potential for positrons includes effects of ionisation and positronium formation. 13 refs., 2 tabs

  18. On thermal vibration effects in diffusion model calculations of blocking dips

    International Nuclear Information System (INIS)

    Fuschini, E.; Ugozzoni, A.

    1983-01-01

    In the framework of the diffusion model, a method for calculating blocking dips is suggested that takes into account thermal vibrations of the crystal lattice. Results of calculations of the diffusion factor and the transverse energy distribution taking into accoUnt scattering of the channeled particles at thermal vibrations of lattice nuclei, are presented. Calculations are performed for α-particles with the energy of 2.12 MeV at 300 K scattered by Al crystal. It is shown that calculations performed according to the above method prove the necessity of taking into account effects of multiple scattering under blocking conditions

  19. Configuration space Faddeev calculations

    International Nuclear Information System (INIS)

    Payne, G.L.; Klink, W.H.; Polyzou, W.N.

    1989-01-01

    The detailed study of few-body systems provides one of the most effective means for studying nuclear physics at subnucleon distance scales. For few-body systems the model equations can be solved numerically with errors less than the experimental uncertainties. We have used such systems to investigate the size of relativistic effects, the role of meson-exchange currents, and the importance of quark degrees of freedom in the nucleus. Complete calculations for momentum-dependent potentials have been performed, and the properties of the three-body bound state for these potentials have been studied. Few-body calculations of the electromagnetic form factors of the deuteron and pion have been carried out using a front-form formulation of relativistic quantum mechanics. The decomposition of the operators transforming convariantly under the Poincare group into kinematical and dynamical parts has been studies. New ways for constructing interactions between particles, as well as interactions which lead to the production of particles, have been constructed in the context of a relativistic quantum mechanics. To compute scattering amplitudes in a nonperturbative way, classes of operators have been generated out of which the phase operator may be constructed. Finally, we have worked out procedures for computing Clebsch-Gordan and Racah coefficients on a computer, as well as giving procedures for dealing with the multiplicity problem

  20. Effective-medium calculations for hydrogen in Ni, Pd, and Pt

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Stoltze, Per; Jacobsen, Karsten Wedel

    1990-01-01

    The effective-medium theory is applied to a study of the energetics of the hydrides of Ni, Pd, and Pt, stressing the properties of PdHθ for 0≤θ≤1. The calculated heat of solution and the heat of hydride formation for the three systems agree very well with experiment. We determine the favored...... structure for PdHθ by calculating the total energy and lattice expansion of different configurations. Vibrational frequencies and diffusion barriers of H in Pd are also treated. A simple and transparent physical picture of the hydrogen-metal interaction is developed. From the calculated energetics we make...... a model calculation of the phase diagram of hydrogen in palladium in qualitative agreement with experiment. On this basis we propose a new explanation of the peculiarities of the Pd-H system....

  1. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  2. The Calculation of Single-Nucleon Energies of Nuclei by Considering Two-Body Effective Interaction, n(k,ρ, and a Hartree-Fock Inspired Scheme

    Directory of Open Access Journals (Sweden)

    H. Mariji

    2016-01-01

    Full Text Available The nucleon single-particle energies (SPEs of the selected nuclei, that is, O16, Ca40, and Ni56, are obtained by using the diagonal matrix elements of two-body effective interaction, which generated through the lowest-order constrained variational (LOCV calculations for the symmetric nuclear matter with the Aυ18 phenomenological nucleon-nucleon potential. The SPEs at the major levels of nuclei are calculated by employing a Hartree-Fock inspired scheme in the spherical harmonic oscillator basis. In the scheme, the correlation influences are taken into account by imposing the nucleon effective mass factor on the radial wave functions of the major levels. Replacing the density-dependent one-body momentum distribution functions of nucleons, n(k,ρ, with the Heaviside functions, the role of n(k,ρ in the nucleon SPEs at the major levels of the selected closed shell nuclei is investigated. The best fit of spin-orbit splitting is taken into account when correcting the major levels of the nuclei by using the parameterized Wood-Saxon potential and the Aυ18 density-dependent mean field potential which is constructed by the LOCV method. Considering the point-like protons in the spherical Coulomb potential well, the single-proton energies are corrected. The results show the importance of including n(k,ρ, instead of the Heaviside functions, in the calculation of nucleon SPEs at the different levels, particularly the valence levels, of the closed shell nuclei.

  3. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    Science.gov (United States)

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  4. Effect of core configuration on the burnup calculations of MTR research reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Amin, E.H.; Sakr, A.M.

    2014-01-01

    Highlights: • 3D burn-up calculations of MTR-type research reactor were performed. Examination of the effect of control rod pattern on power density and neutron flux distributions is presented. • The calculations are performed using the MTR P C package and the programs (WIMS and CITVAP). • An empirical formula was generated for every fuel element type, to correlate irradiation to burn-up. - Abstract: In the present paper, three-dimensional burn-up calculations were performed using different patterns of control rods, in order to examine their effect on power density and neutron flux distributions through out the entire core and hence on the local burn-up distribution. These different cores burn-up calculations are carried out for an operating cycle equivalent to 15 Full Power Days (FPDs), with a power rating of 22 MW. Calculations were performed using an example of a typical research reactor of MTR-type using the internationally known computer codes’ package “MTR P C system”, using the cell calculation transport code WIMS-D4 with 12 energy groups and the core calculation diffusion code CITVAP with 5 energy groups. A depletion study was done and the effects on the research reactor fuel (U-235) were performed. The burn-up percentage (B.U.%) curves for every fuel element type were drawn versus irradiation (MWD/TE). Then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Charts of power density and neutron flux distribution for each core were plotted at different sections of each fuel element of the reactor core. Then a complete discussion and analysis of these curves are performed with comparison between the different core configurations, illustrating the effect of insertion or extraction of either of the four control rods directly on the neutron flux and consequently on the power distribution and burn-up. A detailed study of fuel burn-up gives detailed insight on the different B.U.% calculations

  5. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  6. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  7. Effective calculation algorithm for nuclear chains of arbitrary length and branching

    International Nuclear Information System (INIS)

    Chirkov, V.A.; Mishanin, B.V.

    1994-01-01

    An effective algorithm for calculation of the isotope concentration in the spent nuclear fuel when it is kept in storage, is presented. Using the superposition principle and representing the transfer function in a rather compact form it becomes possible achieve high calculation speed and a moderate computer code size. The algorithm is applied for the calculation of activity, energy release and toxicity of heavy nuclides and products of their decay when the fuel is kept in storage. (authors). 1 ref., 4 tabs

  8. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, G.A.

    1996-09-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth`s surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository.

  9. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    International Nuclear Information System (INIS)

    Valentine, G.A.

    1996-01-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth's surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository

  10. Calculation of intermolecular potentials for H2−H2 and H2−O2 dimers ab initio and prediction of second virial coefficients

    International Nuclear Information System (INIS)

    Pham Van, Tat; Deiters, Ulrich K.

    2015-01-01

    Highlights: • We construct the angular orientations of dimers H 2 −H 2 and H 2 −O 2 . • We calculate the ab initio intermolecular interaction energies for all built orientations. • Extrapolating the interaction energies to the complete basis set limit aug-cc-pV23Z. • We develop two 5-site ab initio intermolecular potentials of dimers H 2 −H 2 , H 2 −O 2 . • Calculating the virial coefficients of dimer H 2 −H 2 and H 2 −O 2 . - Abstract: The intermolecular interaction potentials of the dimers H 2 −H 2 and H 2 −O 2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller–Plesset perturbation theory (at levels 2–4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen–oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations

  11. The tachyon potential in string theory

    International Nuclear Information System (INIS)

    Banks, T.

    1991-01-01

    We argue that the tachyon potential in string theory is exactly given by the unstable quadratic mass term calculated perturbatively around the critical string. The argument is given in terms of the sigma model formulation. The same result follows from the exact Wilson renormalization group equations. The discrepancy with previous calculations of the tachyon potential is explained by the fact that other authors worked near the tachyon mass shell where it is impossible to distinguish a potential from derivative terms in the effective action. (orig.)

  12. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  13. Faddeev calculations for the A=5,6 Lambda-Lambda hypernuclei

    OpenAIRE

    Filikhin, I. N.; Gal, A.; Suslov, V. M.

    2003-01-01

    Faddev calculations are reported for Lambda-Lambda-5H, Lambda-Lambda-5He and Lambda-Lambda-6He in terms of two Lambda hyperons plus the respective nuclear clusters, using Lambda-Lambda central potentials considered in past non-Faddeev calculations of Lambda-Lambda-6He. The convergence with respect to the partial-wave expansion is studied, and comparison is made with some of these Lambda-Lambda hypernuclear calculations. The Lambda-Lambda Xi-N mixing effect is briefly discussed.

  14. Applications of potential theory computations to transonic aeroelasticity

    Science.gov (United States)

    Edwards, J. W.

    1986-01-01

    Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.

  15. Perturbative calculation of quasinormal modes of AdS Schwarzschild black holes

    International Nuclear Information System (INIS)

    Musiri, Suphot; Ness, Scott; Siopsis, George

    2006-01-01

    We calculate analytically quasinormal modes of AdS Schwarzschild black holes including first-order corrections. We consider massive scalar, gravitational and electromagnetic perturbations. Our results are in good agreement with numerical calculations. In the case of electromagnetic perturbations, ours is the first calculation to provide an analytic expression for quasinormal frequencies, because the effective potential vanishes at zeroth order. We show that the first-order correction is logarithmic

  16. Molecular potentials and relaxation dynamics

    International Nuclear Information System (INIS)

    Karo, A.M.

    1981-01-01

    The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. Recent calculations of the X 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the X 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, higly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate. In the method of computer molecular dynamics, the force acting on each particle is the resultant of all interactions with other atoms in the neighborhood and is obtained as the derivative of an effective many-body potential. Exploiting the pseudopotential approach, in obtaining the appropriate potentials may be very fruitful in the future. In the molecular dynamics example considered here, the conventional sum-of-pairwise-interatomic-potentials (SPP) approximation is used with the potentials derived either from experimental spectroscopic data or from Hartree-Fock calculations. The problem is the collisional de-excitation of vibrationally excited molecular hydrogen at an Fe surface. The calculations have been carried out for an initial vibrotational state v = 8, J = 1 and a translational temperature corresponding to a gas temperature of 500 0 K. Different angles of approach and different initial random impact points on the surface have been selected. For any given collision with the wall, the molecule may pick up or lose vibrotatonal and translational energy

  17. Effective Dose Calculation Program (EDCP) for the usage of NORM-added consumer product.

    Science.gov (United States)

    Yoo, Do Hyeon; Lee, Jaekook; Min, Chul Hee

    2018-04-09

    The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress. The results show that the annual effective dose calculated with EDCP was almost identical to that calculated using the reference mathematical algorithm in most of the assessment cases. With the assumption of the gamma energy of 1 MeV and activity of 1 MBq, the annual effective doses of pillow, waist supporter, sleeping mattress, and eye-patch determined using the reference algorithm were 3.444 mSv year -1 , 2.770 mSv year -1 , 4.629 mSv year -1 , and 3.567 mSv year -1 , respectively, while those calculated using EDCP were 3.561 mSv year -1 , 2.630 mSv year -1 , 4.740 mSv year -1 , and 3.780 mSv year -1 , respectively. The differences in the annual effective doses were less than 5%, despite the different calculation methods employed. The EDCP can therefore be effectively used for radiation protection management in the context of the usage of NORM-added consumer products. Additionally, EDCP can be used by members of the public through the GUI for various studies in the field of radiation protection, thus facilitating easy access to the program. Copyright © 2018. Published by Elsevier Ltd.

  18. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  19. The ratio of ICRP103 to ICRP60 calculated effective doses from CT: Monte Carlo calculations with the ADELAIDE voxel paediatric model and comparisons with published values

    International Nuclear Information System (INIS)

    Caon, Martin

    2013-01-01

    The ADELAIDE voxel model of paediatric anatomy was used with the EGSnrc Monte Carlo code to compare effective dose from computed tomography (CT) calculated with both the ICRP103 and ICRP60 definitions which are different in their tissue weighting factors and in the included tissues. The new tissue weighting factors resulted in a lower effective dose for pelvis CT (than if calculated using ICRP60 tissue weighting factors), by 6.5 % but higher effective doses for all other examinations. ICRP103 calculated effective dose for CT abdomen + pelvis was higher by 4.6 %, for CT abdomen (by 9.5 %), for CT chest + abdomen + pelvis (by 6 %), for CT chest + abdomen (by 9.6 %), for CT chest (by 10.1 %) and for cardiac CT (by 11.5 %). These values, along with published values of effective dose from CT that were calculated for both sets of tissue weighting factors were used to determine single values for the ratio ICRP103:ICRP60 calculated effective doses from CT, for seven CT examinations. The following values for ICRP103:ICRP60 are suggested for use to convert ICRP60 calculated effective dose to ICRP103 calculated effective dose for the following CT examinations: Pelvis CT, 0.75; for abdomen CT, abdomen + pelvis CT, chest + abdomen + pelvis CT, 1.00; for chest + abdomen CT, and for chest CT. 1.15; for cardiac CT 1.25.

  20. On the properties of nuclear matter with an excess of neutrons, spin-up neutrons and spin-up protons using effective nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Hassan, M.Y.; Ramadan, S.

    1978-01-01

    The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)

  1. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    Science.gov (United States)

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  2. Anharmonic effective pair potentials of gold under high pressure and high temperature

    CERN Document Server

    Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W

    2002-01-01

    In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.

  3. Perceived and calculated health risks: do the impacts differ

    International Nuclear Information System (INIS)

    Payne, B.A.; Williams, R.G.

    1986-01-01

    In many cases of radioactive and hazardous waste management, some members of the general public perceive that human health risks associated with the wastes are higher than the calculated risks. Calculated risks are projections that have been derived from models, and it is these risks that are usually used as the basis for waste management. However, for various reasons, the calculated risks are often considered by the public as too low or inappropriate. The reasons that calculated risks are not perceived as accurate and the factors that affect these perceptions are explored in this paper. Also discussed are the impacts related to the perceived and calculated health risks: what they are, and if and how they differ. The kinds of potential impacts examined are health effects, land value changes, and social, transportation, and economic effects. The paper concludes with a discussion of the implications of incorporating these different risk perspectives in decisions on waste management

  4. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  5. On the use of a Hamiltonian with projected potential for the calculation of scattering wave functions : Methods and general properties

    International Nuclear Information System (INIS)

    Colle, R.; Simonucci, S.

    1996-01-01

    The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed

  6. Effective potential for heavy quark antiquark bound system

    Energy Technology Data Exchange (ETDEWEB)

    Barik, B K; Deo, B B

    1985-12-01

    A heavy quark antiquark potential is suggested connecting asymptotic freedom and quark confinement in a unified way. The ..cap alpha../sub g/(q/sup 2/) calculated using Borel summation technique with three loop agrees with the two loop ..beta..-function up to g/sup 2//4..pi.. -- 1.1 but changes appreciably after g/sup 2//4..pi.. = 1.5. The potential so derived satisfactorily explains the c overlined c and b overlined b spectrum. 13 refs., 4 figures, 3 tables.

  7. Reaction rate calculations via transmission coefficients

    International Nuclear Information System (INIS)

    Feit, M.D.; Alder, B.J.

    1985-01-01

    The transmission coefficient of a wavepacket traversing a potential barrier can be determined by steady state calculations carried out in imaginary time instead of by real time dynamical calculations. The general argument is verified for the Eckart barrier potential by a comparison of transmission coefficients calculated from real and imaginary time solutions of the Schroedinger equation. The correspondence demonstrated here allows a formulation for the reaction rate that avoids difficulties due to both rare events and explicitly time dependent calculations. 5 refs., 2 figs

  8. EFFDOS - a FORTRAN-77-code for the calculation of the effective dose equivalent

    International Nuclear Information System (INIS)

    Baer, M.; Honcu, S.; Huebschmann, W.

    1984-01-01

    The FORTRAN-77-code EFFDOS calculates the effective dose equivalent according to ICRP 26 due to the longterm emission of radionuclides into the atmosphere for the following exposure pathways: inhalation, ingestion, γ-ground irradiation (γ-irradiation by radionuclides deposited on the ground) and β- or γ-submersion (irradiation by the passing radioactive cloud). For calculating the effective dose equivalent at a single spot it is necessary to put in the diffusion factor and - if need be - the washout factor; otherwise EFFDOS calculates the input data for the computer codes ISOLA III and WOLGA-1, which then are enabled to compute the atmospheric diffusion, ground deposition and local dose equivalent distribution for the requested exposure pathway. Atmospheric diffusion, deposition and radionuclide transfer are calculated according to the ''Allgemeine Berechnungsgrundlage ....'' recommended by the German Fed. Ministry of Interior. A sample calculated is added. (orig.) [de

  9. Resonating group calculation for a three particle system

    International Nuclear Information System (INIS)

    Kumar, Kiran; Jain, A.K.

    1979-01-01

    The elastic scattering of a projectile comprising of a loosely bound pair of particles by a target has been investigated in the Resonating Group Method (RGM). An effective interaction between the projectile and the target has also been derived in terms of the individual particle-target interaction. Phenomenological potentials are employed to describe, with reasonable accuracy, the antisymmetrized particle-target wavefunctions. This simplifies the analysis from an N-particle calculation to a three body RGM calculation. Results obtained for d-α scattering are compared with a full six nucleon calculation as well as with experiment. Results on 6 Li scattering on 40 Ca are discussed. (auth.)

  10. Field calculations. Part I: Choice of variables and methods

    International Nuclear Information System (INIS)

    Turner, L.R.

    1981-01-01

    Magnetostatic calculations can involve (in order of increasing complexity) conductors only, material with constant or infinite permeability, or material with variable permeability. We consider here only the most general case, calculations involving ferritic material with variable permeability. Variables suitable for magnetostatic calculations are the magnetic field, the magnetic vector potential, and the magnetic scalar potential. For two-dimensional calculations the potentials, which each have only one component, have advantages over the field, which has two components. Because it is a single-valued variable, the vector potential is perhaps the best variable for two-dimensional calculations. In three dimensions, both the field and the vector potential have three components; the scalar potential, with only one component,provides a much smaller system of equations to be solved. However the scalar potential is not single-valued. To circumvent this problem, a calculation with two scalar potentials can be performed. The scalar potential whose source is the conductors can be calculated directly by the Biot-Savart law, and the scalar potential whose source is the magnetized material is single valued. However in some situations, the fields from the two potentials nearly cancel; and the numerical accuracy is lost. The 3-D magnetostatic program TOSCA employs a single total scalar potential; the program GFUN uses the magnetic field as its variable

  11. Calculation of the valence charge density and binding energy in a simple metal according to the neutral atom method: the Hartree-Fock ionic potential

    International Nuclear Information System (INIS)

    Dagens, L.

    1975-01-01

    The neutral atom method is generalized in order to deal with a Hartree-Fock nonlocal ionic potential. It is used to test the following metal potential, based upon a theoretical analysis due to Hedin and Lundquist. The true HF potential is used to describe the ionic part and a simple local density scheme (the Gaspar-Kohn-Sham approximation) is used for the valence part. The method is first applied to the calculation of the rigid neutral atom valence density of a few simple metals and the corresponding form factor n(q). The choice of the ionic potential (HF or GKS) is found to have a small but significant effect as far as n(q) is concerned. A comparison with experiment is made for Al and Be, using the available X-rays structure factor measurements. Good agreement is obtained for Al with the recent results of Raccah and Heinrich. No agreement is obtained with the Be results of Brown, although the general behavior of the observed and theoretical n(g) as function of g (reciprocal vector length) are found to be quite similar. The binding energy is calculated for Li, Be, Na, Mg and Al, using the Nozieres-Pines formula for the valence-valence correlation energy. The agreement with observed values is improved considerably when the present (HF+GKS) scheme is used, instead of the HFS completely local density scheme used in a previous work. The remaining discrepancies may be ascribed to the inaccuracy of the NP formula and to the neglect of the whole valence-core correlation energy [fr

  12. Three-dimensional calculations of charge neutralization by neutral gas release

    International Nuclear Information System (INIS)

    Mandell, M.J.; Jongeward, G.A.; Katz, I.

    1993-01-01

    There have been numerous observations of high rocket or spacecraft potentials, both positive and negative, and both naturally and artificially induced, being neutralized during thruster firings. Two current studies, CHARGE-2B (positive polarity) and SPEAR3 (negative polarity), attempt a more systematic exploration of this phenomenon. The authors present here calculations performed in support of the SPEAR-3 program. (1) Conventional phenomenology of breakdown is applied to the three-dimensional system formed by the electrostatic potential and plume density fields. Using real cross sections, they calculate the paths along which the nozzle plume can support breakdown. This leads to a recommendation that the higher flow rate on SPEAR-3 be 2 g/s of argon, equal to the CHARGE-2B flow rate. (2) In a laboratory chamber, conditions (pressure of ∼ 2 x 10 - 5 torr) favor breakdown of the positive (electron-collecting) sheath for SPEAR-3 geometry. Three-dimensional calculations illustrate the evolution of the space charge and potential structure during the breakdown process. These calculations demonstrate the ability to apply accepted phenomenology to real systems with three dimensional electrostatic potential fields, space charge fields, and neutral density fields, including magnetic field effects and real cross-section data

  13. A computational framework for automation of point defect calculations

    International Nuclear Information System (INIS)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    2017-01-01

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  14. Chemical binding effects in resonance - potential interference scattering for harmonic crystals

    International Nuclear Information System (INIS)

    Kuwaifi, A.; Summerfield, G.C.

    1991-01-01

    The neutron scattering cross section which is the quantity directly measured in experiments is given by the absolute square of the scattering amplitude. For energies near a resonance, this yields three terms: potential, resonant and interference. In this paper we deal with the interference neutron scattering cross section which is written in terms of a three-point correlation function. This function is calculated for the ideal gas and harmonic crystal models. For short collision times, the interference result for harmonic crystals is the same as the ideal gas but it has an effective temperature. This is the same effective temperature as was previously found for absorption and pure resonant processes. Therefore, the interference scattering cross section can be treated in the same way as resonant scattering and absorption are treated using an ideal gas result with the usual effective temperature. (author)

  15. New composite index based on midlatency auditory evoked potential and electroencephalographic parameters to optimize correlation with propofol effect site concentration - Comparison with bispectral index and solitary used fast extracting auditory evoked potential index

    NARCIS (Netherlands)

    Vereecke, HEM; Vasquez, PM; Jensen, EW; Thas, O; Vandenbroecke, R; Mortier, EP; Struys, MMRF

    Background: This study investigates the accuracy of a composite index, the A-Line (R) auditory evoked potentials index version 1.6 (AAI(1.6); Danmeter A/S, Odense, Denmark), as a measure of cerebral anesthetic drug effect in a model for predicting a calculated effect site concentration of propofol

  16. QED effects in high-Z atoms; three-body potentials

    International Nuclear Information System (INIS)

    Zygelman, B.

    1983-01-01

    Electromagnetic three-body potentials were first studied by Primakoff and Holstein. Later, Chamugan and Schweber rederived these potentials and pointed out that they might be important in highly relativistic systems, however, their formulation was basically nonrelativistic. Mittleman, in a series of papers, constructed configuration space equations that included three-body potentials. His derivation started from first principles i.e. QED, and the resulting three-body potentials are more general than the Primakoff-Holstein potentials. In this thesis the contribution to the binding energy of a simple high-Z ion from the three-body potentials is calculated. In addition, the nature and structure of these potentials in greater detail are studied. Some ambiguities that arise when the transition from Fock to configuration space is made are studied in detail

  17. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  18. User effects on the transient system code calculations. Final report

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.

    1995-01-01

    Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them

  19. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [CEPT Univ., Ahmedabad (India); Rawal, Rajan [CEPT Univ., Ahmedabad (India)

    2017-08-09

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  20. The effect of interatomic potential in molecular dynamics simulation of low energy ion implantation

    International Nuclear Information System (INIS)

    Chan, H.Y.; Nordlund, K.; Peltola, J.; Gossmann, H.-J.L.; Ma, N.L.; Srinivasan, M.P.; Benistant, F.; Chan, Lap

    2005-01-01

    Being able to accurately predict dopant profiles at sub-keV implant energies is critical for the microelectronic industry. Molecular Dynamics (MD), with its capability to account for multiple interactions as energy lowers, is an increasingly popular simulation method. We report our work on sub-keV implantation using MD and investigate the effect of different interatomic potentials on the range profiles. As an approximation, only pair potentials are considered in this work. Density Functional Theory (DFT) is used to calculate the pair potentials for a wide range of dopants (B, C, N, F, Si, P, Ga, Ge, As, In and Sb) in single crystalline silicon. A commonly used repulsive potential is also included in the study. Importance of the repulsive and attractive regions of the potential has been investigated with different elements and we show that a potential depicting the right attractive forces is especially important for heavy elements at low energies

  1. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  2. Effect of the potential well on low temperature pressure broadening in CO-He

    Science.gov (United States)

    Palma, A.; Green, S.

    1986-01-01

    Previously reported low-temperature pressure-broadening calculations (Green, 1985) for CO-He interacting via an SCF-CI potential are compared with new calculations in which the attractive part of the potential is either reduced by half or eliminated entirely. Results demonstrate that the attractive well is responsible for low-temperature enhancement of pressure-broadening cross sections and suggest that agreement with recent experimental values at 4 K (Messer and DeLucia, 1984) can be obtained by a modest reduction, probably within the expected uncertainty, in the attractive part of the SCF-CI potential.

  3. Influence of the potential well and the potential barrier on the density distribution of confined-model fluids

    CERN Document Server

    Lee, B H; Lee, C H; Seong Baek Seok

    2000-01-01

    A density functional perturbative approximation, which is based on the density functional expansion of the one-particle direct correlation function of model fluids with respect to the bulk density, has been employed to investigate the influence of the potential well and the potential barrier on the density behavior of confined-model fluids. The mean spherical approximation has been used to calculate the two-particle direct correlation function of the model fluids. At lower densities, the density distributions are strongly affected by the barrier height and the well depth of the model potential, the contribution from the short-range repulsive part being especially important. However, the effects of the barrier height and the well depth of the model potential decrease with increasing bulk density. The calculated results also show that in the region where the effect of the wall-fluid interaction is relatively weak, the square-barrier part of the model potential leads to a nonuniformity in the density distributio...

  4. Variationally-optimized muffin-tin potentials for band calculations

    International Nuclear Information System (INIS)

    Pant, M.M.

    1979-09-01

    A method is suggested to determine the best local periodic crystal potential V(r) by minimizing the Hartree-Fock expectation value of the energy. The explicit form of the integral equation for the local exchange potential is obtained for the special case of the Muffin-tin aproximation. (author)

  5. Calculation of coulomb correlation potential in a turbulent non-ideal plasma with reduced degrees of freedom

    International Nuclear Information System (INIS)

    Dwivedi, C.B.; Bhattacharjee, M.

    1998-01-01

    A simple but reasonable physical model has been developed to find out the correlation potential in a turbulent non-ideal plasma. It is assumed that the turbulent plasma state comprises of weakly interacting pseudo particles i.e. nonlinear coherent structures like solitons with random distribution in space and time. The calculation is based on the lowest order binary interacting model of the nonlinear normal modes (pseudo particles) of the weakly correlated plasmas. Its implication in the phase transition of the correlated Coulomb gas is discussed. (author)

  6. Technique of calculating the total effectiveness of capital investments and basic funds in the gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Shamis, L V

    1978-01-01

    An examination is made of the method of calculating and using the indicators for total effectiveness of capital investments of the gas industry. Fundamentals of the calculations assume modeling the effectiveness of reproduction of the basic production funds of the sector. An example is given of calculating the long-term coefficient for total effectiveness.

  7. An effective potential for heavy quark antiquark bound system

    International Nuclear Information System (INIS)

    Barik, B.K.; Deo, B.B.

    1985-01-01

    A heavy quark antiquark potential is suggested connecting asymptotic freedom and quark confinement in a unified way. The α g (q 2 ) calculated using Borel summation technique with three loop agrees with the two loop β-function up to g 2 /4π ∼ 1.1 but changes appreciably after g 2 /4π = 1.5. The potential so derived satisfactorily explains the c overlined c and b overlined b spectrum. (author)

  8. Finite-Temperature Higgs Potentials

    International Nuclear Information System (INIS)

    Dolgopolov, M.V.; Gurskaya, A.V.; Rykova, E.N.

    2016-01-01

    In the present article we consider the short description of the “Finite-Temperature Higgs Potentials” program for calculating loop integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions. Here we collect the analytic forms of the relevant loop integrals for our work in reconstruction of the effective Higgs potential parameters in extended models (MSSM, NMSSM and etc.)

  9. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    International Nuclear Information System (INIS)

    Sugioka, Yuji; Takayanagi, Toshiyuki

    2012-01-01

    Highlights: ► Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. ► Temperature effects can be reasonably reproduced with the present model. ► All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H 2 O and CF 3 Cl, for which several previous studies are available from both the experimental and theoretical sides.

  10. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Yuji [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2012-09-11

    Highlights: Black-Right-Pointing-Pointer Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. Black-Right-Pointing-Pointer Temperature effects can be reasonably reproduced with the present model. Black-Right-Pointing-Pointer All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H{sub 2}O and CF{sub 3}Cl, for which several previous studies are available from both the experimental and theoretical sides.

  11. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    Science.gov (United States)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  12. Pade approximants and the calculation of effective interactions

    International Nuclear Information System (INIS)

    Schucan, T.H.

    1975-01-01

    It is known that the series expansion of the effective interaction in nuclei diverges in practical applications due to the occurrence of low lying collective states. An approximation scheme which can be used to overcome the difficulties connected with this divergence is reviewed and it is shown that a continued fraction expansion can be used to calculate the eigenstate that has the larger overlap with the model space. An extension of this method is obtained by using Pade approximants (P.A.) which are then applied to the effective interaction, and to related matrices and matrix elements. Mathematical properties of the P.A. are discussed in light of these applications. 7 figures

  13. Calculation of vibrational spectra for dioxouranium monochloride monomer and dimers

    Science.gov (United States)

    Umreiko, D. S.; Shundalau, M. B.; Zazhogin, A. P.; Komyak, A. I.

    2010-09-01

    Structural models were built and spectral characteristics were calculated based on ab initio calculations for the monomer and dimers of dioxouranium monochoride UO2Cl. The calculations were carried out in the effective core potential LANL2DZ approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). The monomer UO2Cl was found to possess an equilibrium planar (close to T-shaped) configuration with C2v symmetry. The obtained spectral characteristics were analyzed and compared with experimental data. The adequacy of the proposed models and the qualitative agreement between calculation and experiment were demonstrated.

  14. The problem of resonance self-shielding effect in neutron multigroup calculations

    International Nuclear Information System (INIS)

    Wang Qingming; Huang Jinghua

    1991-01-01

    It is not allowed to neglect the resonance self-shielding effect in hybrid blanket and fast reactor neutron designs. The authors discussed the importance as well as the method of considering the resonance self-shielding effect in hybrid blanket and fast reactor neutron multigroup calculations

  15. Tuning the Electronic Properties, Effective Mass and Carrier Mobility of MoS2 Monolayer by Strain Engineering: First-Principle Calculations

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Hieu, Nguyen V.; Thu, Tran V.; Hung, Nguyen M.; Ilyasov, Victor V.; Poklonski, Nikolai A.; Nguyen, Chuong V.

    2018-01-01

    In this paper, we studied the electronic properties, effective masses, and carrier mobility of monolayer MoS_2 using density functional theory calculations. The carrier mobility was considered by means of ab initio calculations using the Boltzmann transport equation coupled with deformation potential theory. The effects of mechanical biaxial strain on the electronic properties, effective mass, and carrier mobility of monolayer MoS_2 were also investigated. It is demonstrated that the electronic properties, such as band structure and density of state, of monolayer MoS_2 are very sensitive to biaxial strain, leading to a direct-indirect transition in semiconductor monolayer MoS_2. Moreover, we found that the carrier mobility and effective mass can be enhanced significantly by biaxial strain and by lowering temperature. The electron mobility increases over 12 times with a biaxial strain of 10%, while the carrier mobility gradually decreases with increasing temperature. These results are very useful for the future nanotechnology, and they make monolayer MoS_2 a promising candidate for application in nanoelectronic and optoelectronic devices.

  16. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  17. Calculation of electromagnetic observables in few-body systems

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1986-10-01

    An introduction to the calculation of electromagnetic observables in few-body systems is given by studying two examples in the trinucleon system: (1) the elastic electron scattering charge form factor in configuration space and momentum space and (2) the two-body photodisintegration of 3 H leading to a neutron-deuteron final state in a separable potential formalism. In the discussion of charge form factor calculations, a number of related topics are touched upon: the relation of structure in Psi to the properties of simple NN forces, the Faddeev and Schroedinger solution to the harmonic oscillator problem, the Rosenbluth formula for electron scattering from a spin-1/2 nuclear target (e.g., the proton or 3 H), and the charge density operator. Formulae for 3 He and 3 H charge form factors in a central force approximation are given in configuration and momentum space. The physics of these form factors is discussed in light of results from realistic nucleon-nucleon potential model calculations, including the effects of two-pion-exchange three-body force models. Topics covered are the rms charge densities, and the Coulomb energy of 3 He. In the discussion of the 3 H photodisintegration, the Siegert form of the electric dipole operator (in the long wave length limit) is derived as are the separable potential equations which describe the off-shell transition amplitudes which connect nucleon-plus-corrected-pair states. Expressions for the Born amplitudes required to complete the two-body photodisintegration amplitude calculation are given. Numerical results for a model central force problem are discussed and compared with an approximate calculation. Comparisons with 3 H(γ,n)d and 3 He(γ,p)d data are made, and the significant features of the exact theoretical calculation are outlined. 61 refs., 26 figs

  18. Unfolding and effective bandstructure calculations as discrete real- and reciprocal-space operations

    Energy Technology Data Exchange (ETDEWEB)

    Boykin, Timothy B., E-mail: boykin@ece.uah.edu [Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ajoy, Arvind [School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 (United States); Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard [Network for Computational Nanotechnology, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2016-06-15

    In recent years, alloy electronic structure calculations based on supercell Brillouin zone unfolding have become popular. There are a number of formulations of the method which on the surface might appear different. Here we show that a discrete real-space description, based on discrete Fourier transforms, is fully general. Furthermore, such an approach can more easily show the effects of alloy scattering. We present such a method for treating the random alloy problem. This treatment features straightforward mathematics and a transparent physical interpretation of the calculated effective (i.e., approximate) energy bands.

  19. Effect of Pu-rich agglomerate in MOX fuel on a lattice calculation

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Yamamoto, Toru; Namekawa, Masakazu

    2007-01-01

    The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17x17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small. (author)

  20. Coupled channel calculations of K-shell ionization in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Greiner, W.; Soff, G.

    1986-07-01

    We report theoretical results on K-shell ionization for a variety of asymmetric collision systems. The calculated ionization rates are compared with experimental data. The coupled channel formalism underlying these calculations is presented. It is based on a set of relativistic target centred states, taking a screened potential of Dirac-Fock-Slater type into account. We discuss the effects of different matrix elements, e.g. continuum-continuum couplings. The binding effect is inherently contained in our approach and described in a dynamical way. (orig.)

  1. Effects of tropospheric aerosols on radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.

    1994-08-01

    The surface fluxes in the wavelength range 175 to 735nm have been calculated for an atmosphere which contains a uniformly mixed aerosol layer of thickness 1km at the earth's surface. Two different aerosol types were considered, a rural aerosol, and an urban aerosol. The visibility range for the aerosol layers was 95 to 15 km. Surface flux ratios (15km/95km) were in agreement with previously published results for the rural aerosol layer to within about 2%. The surface flux ratios vary from 7 to 14% for the rural aerosol layer and from 13 to 23% for the urban aerosol layer over the wavelength range. A tropospheric radiative forcing of about 1.3% of the total tropospheric flux was determined for the 95km to 15km visibility change in the rural aerosol layer, indicating the potential of tropospheric feedback effects on the surface flux changes. This effect was found to be negligible for the urban aerosol layer. Stratospheric layer heating rate changes due to visibility changes in either the rural or urban aerosol layer were found to be negligible

  2. Modeling ambipolar potential formation due to ICRF heating effects on electrons

    International Nuclear Information System (INIS)

    Johnson, J.W.; Callen, J.D.; Hershkowitz, N.

    1985-08-01

    A mechanism for the potential bump observed near the region of ICRF heating in the endplugs of the Phaedrus tandem mirror experiment is investigated by numerical simulation of electron orbits in a simple mirror geometry. Given initial magnetic and ambipolar potential wells that trap the electrons, the ''near field'' parallel electric field E-tilde/sub z/e/sup -iωt/, which is localized near and due to the ICRF heating, tends to eject electrons from the region where E-tilde/sub z/ is nonzero. This depletion of the local electron population causes a local increase in the ambipolar potential. The rate at which the electrons are ejected, (dn/dt), is calculated from the electron orbit computation for a given potential well depth. The rate at which passing particles ''fill in'' the potential well can also be calculated. An estimate of how large the bump in the ambipolar potential becomes is obtained by finding the well depth at which (dn/dt) approximately equals the ''filling'' rate. For Phaedrus parameters (n 0 approx. = 4.0 x 10 12 cm -3 , T/sub e/ = 20 eV, E-tilde/sub z/ approx. = 1.0 V/cm) the electron pumping rate balances the ''filling'' rate at a potential well depth of approximately 40 V, consistent with experimental results

  3. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    Science.gov (United States)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  4. Volume 1: Calculating potential to emit releases and doses for FEMP's and NOCs; FINAL

    International Nuclear Information System (INIS)

    HILL, J.S.

    1999-01-01

    The purpose of this document is to provide Hanford Site facilities a handbook for estimating potential emissions and the subsequent offsite doses. General guidelines and information are provided to assist personnel in estimating emissions for use with U.S. Department of Energy (DOE) facility effluent monitoring plans (FEMPs) and regulatory notices of construction (NOCs), per 40 Code of Federal Regulations (CFR) Part 61, Subpart H, and Washington Administrative Code (WAC) Chapter 246-247 requirements. This document replaces Unit Dose Calculation Methods and Summary of Facility Effluent Monitoring Plan Determinations (WHC-EP-0498). Meteorological data from 1983 through 1996, 13-year data set, was used to develop the unit dose factors provided by this document, with the exception of two meteorological stations. Meteorological stations 23 and 24, located at Gable Mountain and the 100-F Area, only have data from 1986 through 1996, 10-year data set. The scope of this document includes the following: Estimating emissions and resulting effective dose equivalents (EDE) to a facility's nearest offsite receptor (NOR) for use with NOCs under 40 CFR Part 61, Subpart H, requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with NOCs under the WAC Chapter 246-247 requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with FEMPs and FEMP determinations under DOE Orders 5400.1 and 5400.5 requirements

  5. Correction for adiabatic effects in lethe calculated instantaneous gas consumption of scuba dives

    NARCIS (Netherlands)

    Schellart, Nico A. M.; Le Péchon, Jean-Claude

    2015-01-01

    Introduction: In scuba-diving practice, instantaneous gas consumption is generally calculated from the fall in cylinder pressure without considering the effects of water temperature (heat transfer) and adiabatic processes. We aimed to develop a simple but precise method for calculating the

  6. User effects on the thermal-hydraulic transient system code calculations

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.; Staedtke, H.

    1993-01-01

    In the paper, the results of the investigations on the user effects for the thermalhydraulic transient system codes will be presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects will be discussed in detail and general recommendations and conclusions will be presented to control and limit them. (orig.)

  7. Use of JANAF Tables in Equilibrium Calculations and Partition Function Calculations for an Undergraduate Physical Chemistry Course

    Science.gov (United States)

    Cleary, David A.

    2014-01-01

    The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.

  8. A new approach to the electron self energy calculation

    International Nuclear Information System (INIS)

    Persson, H.; Lindgren, I.; Salomonson, S.

    1993-01-01

    We present a new practical way to calculate the first order self energy in any model potential (local or non-local). The main idea is to introduce a new straightforward way of renormalization to avoid the usual potential expansion implying a large number of diagrams in higher order QED effects. The renormalization procedure is based on defining the divergent mass term in coordinate space and decomposing it into a divergent sum over finite partial wave contributions. The unrenormalized bound self energy is equally decomposed into a partial wave (l) sum. For each partial wave the difference is taken and the sum becomes convergent. The comparably rapid asymptotic behaviour of the method is l -3 . The method is applied to lithium-like uranium, and the self energy in a Coulomb field, the finite nucleus effect and the screened self energy is calculated to an accuracy of at least one tenth of an eV. (orig.)

  9. Accurate orbital-dependent correlation and exchange-correlation potentials from non-iterative ab initio dft calculations

    Science.gov (United States)

    Grabowski, Ireneusz; Lotrich, Victor

    2005-08-01

    A new approximate non-iterative procedure to obtain accurate correlation and exchange-correlation potentials of Kohn-Sham (KS) density functional theory (DFT) is presented. By carrying out only one step of the correlated optimized effective potential (OEP) iterations following the standard iterative exchange-only OEP, one can recover accurate correlation potentials corresponding to the orbital-dependent second-order many-body perturbation theory [MBPT(2)] energy functional that are hardly discernible from those obtained by the more expensive, fully iterative procedure. This new 'one-step' OEP-MBPT(2) algorithm reflects the non-iterative, perturbative algorithm of standard, canonical MBPT(2) of ab initio wave function theory, while it allows the correlation potentials to readjust and include the majority of the MBPT(2) correlation effect. It is also flexible in the treatment of exchange and the Hartree-Fock orbitals may be used in lieu of the exchange-only OEP orbitals, when the correlation or exchange-correlation potential is of interest.

  10. Calculation and analysis of whiplash effect in multi-DOF system

    Science.gov (United States)

    Chen, Gong; Qi, Qunfu; Yang, Hongmei; Li, Ling

    2017-04-01

    The response of structural vibration depends on the degree of freedomss, mass, stiffness, external effect of the structure. Natural frequency of structure is its inherent property, also it is related to its own factors, but not related to the external factors. Firstly the nature and characteristics of resonance effect and whiplash effect are analyzed. Secondly whiplash effect of multi-degree freedomss system is analyzed, then orthogonality in main models is used to verify the results of calculation. Then the improvements of whiplash effect are proposed, also the improved models are analyzed. Finally the conclusions are made.

  11. Abs-initio, Predictive Calculations for Optoelectronic and Advanced Materials Research

    Science.gov (United States)

    Bagayoko, Diola

    2010-10-01

    Most density functional theory (DFT) calculations find band gaps that are 30-50 percent smaller than the experimental ones. Some explanations of this serious underestimation by theory include self-interaction and the derivative discontinuity of the exchange correlation energy. Several approaches have been developed in the search for a solution to this problem. Most of them entail some modification of DFT potentials. The Green function and screened Coulomb approximation (GWA) is a non-DFT formalism that has led to some improvements. Despite these efforts, the underestimation problem has mostly persisted in the literature. Using the Rayleigh theorem, we describe a basis set and variational effect inherently associated with calculations that employ a linear combination of atomic orbitals (LCAO) in a variational approach of the Rayleigh-Ritz type. This description concomitantly shows a source of large underestimation errors in calculated band gaps, i.e., an often dramatic lowering of some unoccupied energies on account of the Rayleigh theorem as opposed to a physical interaction. We present the Bagayoko, Zhao, and Williams (BZW) method [Phys. Rev. B 60, 1563 (1999); PRB 74, 245214 (2006); and J. Appl. Phys. 103, 096101 (2008)] that systematically avoids this effect and leads (a) to DFT and LDA calculated band gaps of semiconductors in agreement with experiment and (b) theoretical predictions of band gaps that are confirmed by experiment. Unlike most calculations, BZW computations solve, self-consistently, a system of two coupled equations. DFT-BZW calculated effective masses and optical properties (dielectric functions) also agree with measurements. We illustrate ten years of success of the BZW method with its results for GaN, C, Si, 3C-SIC, 4H-SiC, ZnO, AlAs, Ge, ZnSe, w-InN, c-InN, InAs, CdS, AlN and nanostructures. We conclude with potential applications of the BZW method in optoelectronic and advanced materials research.

  12. Low energy 16O+208Pb elastic scattering: an attempt to analyze the microscopic effective potential

    International Nuclear Information System (INIS)

    Mau, N.V.; Ferrero, J.L.; Pacheco, J.C.; Bilwes, B.

    1991-03-01

    Elastic scattering of 16 O on 208 Pb is studied at 96, 104, 129.5, 192, 216.6 and 312.6 MeV. The 16 O+ 208 Pb potential is calculated first in the closure approximation model and compared to semi-phenomenological potentials. Then detailed contributions to the polarization real potential and to the imaginary potential due to the coupling of the elastic channels to the inelastic channels are calculated. The results are compared to the authors' model potential and used to test the main assumptions of the model. From that comparison a qualitative interpretation of the success of the model is proposed. At last the elastic scattering cross sections are calculated and compared to the data. (author) 41 refs., 6 figs., 5 tabs

  13. Calculation of direct antiretroviral treatment costs and potential cost savings by using generics in the German HIV ClinSurv cohort.

    Directory of Open Access Journals (Sweden)

    Matthias Stoll

    Full Text Available UNLABELLED: BACKGROUND/AIM OF THE STUDY: The study aimed to determine the cost impacts of antiretroviral drugs by analysing a long-term follow-up of direct costs for combined antiretroviral therapy, cART, -regimens in the nationwide long-term observational multi-centre German HIV ClinSurv Cohort. The second aim was to develop potential cost saving strategies by modelling different treatment scenarios. METHODS: Antiretroviral regimens (ART from 10,190 HIV-infected patients from 11 participating ClinSurv study centres have been investigated since 1996. Biannual data cART-initiation, cART-changes, surrogate markers, clinical events and the Centre of Disease Control- (CDC-stage of HIV disease are reported. Treatment duration was calculated on a daily basis via the documented dates for the beginning and end of each antiretroviral drug treatment. Prices were calculated for each individual regimen based on actual office sales prices of the branded pharmaceuticals distributed by the license holder including German taxes. RESULTS: During the 13-year follow-up period, 21,387,427 treatment days were covered. Cumulative direct costs for antiretroviral drugs of €812,877,356 were determined according to an average of €42.08 per day (€7.52 to € 217.70. Since cART is widely used in Germany, the costs for an entire regimen increased by 13.5%. Regimens are more expensive in the advanced stages of HIV disease. The potential for cost savings was calculated using non-nucleotide-reverse-transcriptase-inhibitor, NNRTI, more frequently instead of ritonavir-boosted protease inhibitor, PI/r, in first line therapy. This calculation revealed cumulative savings of 10.9% to 19.8% of daily treatment costs (50% and 90% substitution of PI/r, respectively. Substituting certain branded drugs by generic drugs showed potential cost savings of between 1.6% and 31.8%. CONCLUSIONS: Analysis of the data of this nationwide study reflects disease-specific health services research

  14. Calculation of direct antiretroviral treatment costs and potential cost savings by using generics in the German HIV ClinSurv cohort.

    Science.gov (United States)

    Stoll, Matthias; Kollan, Christian; Bergmann, Frank; Bogner, Johannes; Faetkenheuer, Gerd; Fritzsche, Carlos; Hoeper, Kirsten; Horst, Heinz-August; van Lunzen, Jan; Plettenberg, Andreas; Reuter, Stefan; Rockstroh, Jürgen; Stellbrink, Hans-Jürgen; Hamouda, Osamah; Bartmeyer, Barbara

    2011-01-01

    BACKGROUND/AIM OF THE STUDY: The study aimed to determine the cost impacts of antiretroviral drugs by analysing a long-term follow-up of direct costs for combined antiretroviral therapy, cART, -regimens in the nationwide long-term observational multi-centre German HIV ClinSurv Cohort. The second aim was to develop potential cost saving strategies by modelling different treatment scenarios. Antiretroviral regimens (ART) from 10,190 HIV-infected patients from 11 participating ClinSurv study centres have been investigated since 1996. Biannual data cART-initiation, cART-changes, surrogate markers, clinical events and the Centre of Disease Control- (CDC)-stage of HIV disease are reported. Treatment duration was calculated on a daily basis via the documented dates for the beginning and end of each antiretroviral drug treatment. Prices were calculated for each individual regimen based on actual office sales prices of the branded pharmaceuticals distributed by the license holder including German taxes. During the 13-year follow-up period, 21,387,427 treatment days were covered. Cumulative direct costs for antiretroviral drugs of €812,877,356 were determined according to an average of €42.08 per day (€7.52 to € 217.70). Since cART is widely used in Germany, the costs for an entire regimen increased by 13.5%. Regimens are more expensive in the advanced stages of HIV disease. The potential for cost savings was calculated using non-nucleotide-reverse-transcriptase-inhibitor, NNRTI, more frequently instead of ritonavir-boosted protease inhibitor, PI/r, in first line therapy. This calculation revealed cumulative savings of 10.9% to 19.8% of daily treatment costs (50% and 90% substitution of PI/r, respectively). Substituting certain branded drugs by generic drugs showed potential cost savings of between 1.6% and 31.8%. Analysis of the data of this nationwide study reflects disease-specific health services research and will give insights into the cost impacts of

  15. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    Directory of Open Access Journals (Sweden)

    Hwang Sungmin

    2017-01-01

    Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  16. Hair 2010 Documentation: Calculating risk indicators related to agricultural use of pesticides within the European Union

    NARCIS (Netherlands)

    Kruijne, R.; Deneer, J.W.; Lahr, J.; Vlaming, J.

    2011-01-01

    The HAIR instrument calculates risk indicators related to the agricultural use of pesticides in EU Member States. HAIR combines databases and models for calculating potential environmental environmental effects expressed by the exposure toxicity ratio.

  17. Calculating the potential for within-flight transmission of influenza A (H1N1

    Directory of Open Access Journals (Sweden)

    Blower Sally

    2009-12-01

    Full Text Available Abstract Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1. However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one

  18. Internal rotation potential and structure of six fluorine substituted nitrobenzenes studied by microwave spectroscopy supported by quantum chemical calculations

    DEFF Research Database (Denmark)

    Larsen, Niels Wessel; Nielsen, Ole Vesterlund

    2014-01-01

    the potential minima in the non-planar molecules were 125.5, 74.9, 98.4 and 163 cm-1 respectively. Parameters for structural relaxation during the internal rotation were calculated by the B3LYP method using aug-cc-pVDZ basis and by the MP2(full) method using aug-cc-pVTZ basis. Using these relaxation parameters...

  19. The Potential Cost-Effectiveness of Amblyopia Screening Programs

    Science.gov (United States)

    Rein, David B.; Wittenborn, John S.; Zhang, Xinzhi; Song, Michael; Saaddine, Jinan B.

    2013-01-01

    Background To estimate the incremental cost-effectiveness of amblyopia screening at preschool and kindergarten, we compared the costs and benefits of 3 amblyopia screening scenarios to no screening and to each other: (1) acuity/stereopsis (A/S) screening at kindergarten, (2) A/S screening at preschool and kindergarten, and (3) photoscreening at preschool and A/S screening at kindergarten. Methods We programmed a probabilistic microsimulation model of amblyopia natural history and response to treatment with screening costs and outcomes estimated from 2 state programs. We calculated the probability that no screening and each of the 3 interventions were most cost-effective per incremental quality-adjusted life year (QALY) gained and case avoided. Results Assuming a minimal 0.01 utility loss from monocular vision loss, no screening was most cost-effective with a willingness to pay (WTP) of less than $16,000 per QALY gained. A/S screening at kindergarten alone was most cost-effective between a WTP of $17,000 and $21,000. A/S screening at preschool and kindergarten was most cost-effective between a WTP of $22,000 and $75,000, and photoscreening at preschool and A/S screening at kindergarten was most cost-effective at a WTP greater than $75,000. Cost-effectiveness substantially improved when assuming a greater utility loss. All scenarios were cost-effective when assuming a WTP of $10,500 per case of amblyopia cured. Conclusions All 3 screening interventions evaluated are likely to be considered cost-effective relative to many other potential public health programs. The choice of screening option depends on budgetary resources and the value placed on monocular vision loss prevention by funding agencies. PMID:21877675

  20. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  1. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  2. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  3. Third version of a program for calculating the static interaction potential between an electron and a diatomic molecule

    International Nuclear Information System (INIS)

    Raseev, G.

    1980-01-01

    This program calculates the one-centre expansion of a two-centre wave function of a diatomic molecule and also the multipole expansion of its static interaction with a point charge. It is an extension to some classes of open-shell targets of the previous versions and it provides both the wave function and the potential in a form suitable for use in an electron-molecule scattering program. (orig./HSI)

  4. On the calculation of the energies of dissociation, cohesion, vacancy formation, electron attachment, and the ionization potential of small metallic clusters containing a monovacancy

    Science.gov (United States)

    Pogosov, V. V.; Reva, V. I.

    2017-09-01

    In terms of the model of stable jellium, self-consistent calculations of spatial distributions of electrons and potentials, as well as of energies of dissociation, cohesion, vacancy formation, electron attachment, and ionization potentials of solid clusters of Mg N , Li N (with N ≤ 254 ) and of clusters containing a vacancy ( N ≥ 12) have been performed. The contribution of a monovacancy to the energy of the cluster and size dependences of its characteristics and of asymptotics have been discussed. Calculations have been performed using a SKIT-3 cluster at Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine (Rpeak = 7.4 Tflops).

  5. Calculation of HNO2 concentration from redox potential in HNO3-H2O system as an aid to understanding the cathodic reaction of nitric acid corrosion

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Whillock, G.O.H.

    2002-01-01

    Nitrous acid affects the corrosion of metals such as stainless steels in nitric acid. However nitrous acid is not particularly stable in nitric acid and the analytical methods available are quite involved. Accordingly, the calculation of nitrous acid concentration from redox potential was tested in the HNO 3 -H 2 O system as a convenient in situ analysis method. The calculation process is based on Nernst's equation and the required thermodynamic data were obtained from published values. The available thermodynamic data allow calculation of nitrous acid concentration from 273K to 373K for 0%-100% HNO 3 . The redox potential was 8 kmol·m -3 HNO 3 under NO bubbling and the nitrous acid concentration was determined by a Colourimetric method. The calculated data were compared with the measured data and a good agreement was found. It was found that the corrosion potential of stainless steel is influenced by nitrous acid concentration in nitric acid solution. The calculation process is useful for in-situ analysis of nitrous acid species in HNO 3 -H 2 O system and understanding the behavior of the cathodic reaction associated with nitric acid corrosion. (author)

  6. Delayed Neutron Fraction (beta-effective) Calculation for VVER 440 Reactor

    International Nuclear Information System (INIS)

    Hascik, J.; Michalek, S.; Farkas, G.; Slugen, V.

    2008-01-01

    Effective delayed neutron fraction (β eff ) is the main parameter in reactor dynamics. In the paper, its possible determination methods are summarized and a β eff calculation for a VVER 440 power reactor as well as for training reactor VR1 using stochastic transport Monte Carlo method based code MCNP5 is made. The uncertainties in determination of basic delayed neutron parameters lead to the unwished conservatism in the reactor control system design and operation. Therefore, the exact determination of the β eff value is the main requirement in the field of reactor dynamics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of experiments and measurements what do you mean differences between different calculation approaches and experimental results. In consequence of difficulties in β eff experimental measurement, this value in exact state is determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. An accurate estimate of β eff is essential for converting reactivity, as measured in dollars, to an absolute reactivity and/or to an absolute k eff . In the past, k eff has been traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum-weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. The summary of the possible β eff determination methods can be found in this work and also a calculation of β eff first for the training reactor VR1 in one operation state and then for VVER 440 power reactor in two different operation states are made using the prompt method, by MCNP5 code.(author)

  7. The effect of rock electrical parameters on the calculation of reservoir saturation

    International Nuclear Information System (INIS)

    Li, Xiongyan; Qin, Ruibao; Liu, Chuncheng; Mao, Zhiqiang

    2013-01-01

    The error in calculating a reservoir saturation caused by the error in the cementation exponent, m, and the saturation exponent, n, should be analysed. In addition, the influence of m and n on the reservoir saturation should be discussed. Based on the Archie formula, the effect of variables m and n on the reservoir saturation is analysed, while the formula for the error in calculating the reservoir saturation, caused by the error in m and n, is deduced, and the main factors affecting the error in reservoir saturation are illustrated. According to the physical meaning of m and n, it can be interpreted that they are two independent parameters, i.e., there is no connection between m and n. When m and n have the same error, the impact of the variables on the calculation of the reservoir saturation should be compared. Therefore, when the errors of m and n are respectively equal to 0.2, 0.4 and 0.6, the distribution range of the errors in calculating the reservoir saturation is analysed. However, in most cases, the error of m and n is about 0.2. When the error of m is 0.2, the error in calculating the reservoir saturation ranges from 0% to 35%. Meanwhile, when the error in n is 0.2, the error in calculating the reservoir saturation is almost always below 5%. On the basis of loose sandstone, medium sandstone, tight sandstone, conglomerate, tuff, breccia, basalt, andesite, dacite and rhyolite, this paper first analyses the distribution range and change amplitude of m and n. Second, the impact of m and n on the calculation of reservoir saturation is elaborated upon. With regard to each lithology, the distribution range and change amplitude of m are greater than those of n. Therefore, compared with n, the effect of m on the reservoir saturation is stronger. The influence of m and n on the reservoir saturation is determined, and the error in calculating the reservoir saturation caused by the error of m and n is calculated. This is theoretically and practically significant for

  8. Model potential for electron scattering from rubidium

    Energy Technology Data Exchange (ETDEWEB)

    Gien, T.E. (Memorial Univ. of Newfoundland, St. John' s, NF (Canada). Dept. of Physics)

    1992-11-28

    An analytic model potential for the e[sup -]-Rb[sup +] system is generated from experimental data, using an iteration method. The potential obtained can reproduce rather accurately the energy levels of rubidium. We employed it in the calculation of elastic differential cross sections for electron (and positron) scatterings from rubidium in the conventional Glauber approximation. The differential cross sections calculated in the model potential approach are compared to those in the frozen-core approach, employing either the Clementi-Roetti or the Szasz-McGinn wavefunctions. The core correlation and polarization effects are found to significantly affect the cross section results. (author).

  9. Model potential for electron scattering from rubidium

    International Nuclear Information System (INIS)

    Gien, T.E.

    1992-01-01

    An analytic model potential for the e - -Rb + system is generated from experimental data, using an iteration method. The potential obtained can reproduce rather accurately the energy levels of rubidium. We employed it in the calculation of elastic differential cross sections for electron (and positron) scatterings from rubidium in the conventional Glauber approximation. The differential cross sections calculated in the model potential approach are compared to those in the frozen-core approach, employing either the Clementi-Roetti or the Szasz-McGinn wavefunctions. The core correlation and polarization effects are found to significantly affect the cross section results. (author)

  10. Monte carlo calculation of the neutron effective dose rate at the outer surface of the biological shield of HTR-10 reactor

    International Nuclear Information System (INIS)

    Remetti, Romolo; Andreoli, Giulio; Keshishian, Silvina

    2012-01-01

    Highlights: ► We deal with HTR-10, that is a helium-cooled graphite-moderated pebble bed reactor. ► We carried out Monte Carlo simulation of the core by MCNP5. ► Extensive use of MCNP5 variance reduction methods has been done. ► We calculated the trend of neutron flux within the biological shield. ► We calculated neutron effective dose at the outer surface of biological shield. - Abstract: Research on experimental reactors, such as HTR-10, provide useful data about potentialities of very high temperature gas-cooled reactors (VHTR). The latter is today rated as one of the six nuclear reactor types involved in the Generation-IV International Forum (GIF) Initiative. In this study, the MCNP5 code has been employed to evaluate the neutron radiation trend vs. the biological shield's thickness and to calculate the neutron effective dose rate at the outer surface. The reactor's geometry has been completely modeled by means of lattices and universes provided by MCNP, even though some approximations were required. Monte Carlo calculations have been performed by means of a simple PC and, as a consequence, in order to obtain acceptable run times, it was made an extensive recourse to variance reduction methods.

  11. Calculated fission properties of the heaviest elements

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-09-01

    A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab

  12. Polarizable atomistic calculation of site energy disorder in amorphous Alq3.

    Science.gov (United States)

    Nagata, Yuki

    2010-02-01

    A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.

  13. Unruh effect in a real scalar field with the Higgs potential on a dynamically variable background space-time

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Shingo [Naresuan University, The Institute for Fundamental Study ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand)

    2015-09-15

    It is predicted that an accelerating electron performs a Brownian motion in the inertial frame. This Brownian motion in the inertial frame has its roots in the interaction with the thermal excitation given by the Unruh effect in the accelerating frame. If such a prediction is possible, correspondingly we propose a prediction in this study that the thermal radiation is emitted in the inertial frame from an electron heated due to the Unruh effect in the accelerating frame. The point in our prediction is, although the Unruh effect is limited in the accelerating frame, as well as that the Brownian motion rooted in the Unruh effect appears in the inertial frame, the heat of the particle appears in the inertial frame. Based on such a prediction in this paper, we investigate phenomena in the neighborhood of an accelerating electron in the inertial frame. The model we consider is the four-dimensional Klein-Gordon real scalar field model with the Higgs potential term at the finite temperature identified with the Unruh temperature on the de Sitter space-time. We calculate the one-loop effective potential in the inertial frame with the corrections by the thermal radiation rooted in the Unruh effect in the accelerating frame. In this calculation, we take into account that the background space-time is deformed due to the field theory's corrected one-loop effective potential. Based on such an analysis, we illustrate the restoration of the spontaneous symmetry breaking and the dynamical variation of the background space-time, and we examine the accelerating particle's world-line and the amount of the energy corresponding to the change of the acceleration. (orig.)

  14. Unruh effect in a real scalar field with the Higgs potential on a dynamically variable background space-time

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2015-01-01

    It is predicted that an accelerating electron performs a Brownian motion in the inertial frame. This Brownian motion in the inertial frame has its roots in the interaction with the thermal excitation given by the Unruh effect in the accelerating frame. If such a prediction is possible, correspondingly we propose a prediction in this study that the thermal radiation is emitted in the inertial frame from an electron heated due to the Unruh effect in the accelerating frame. The point in our prediction is, although the Unruh effect is limited in the accelerating frame, as well as that the Brownian motion rooted in the Unruh effect appears in the inertial frame, the heat of the particle appears in the inertial frame. Based on such a prediction in this paper, we investigate phenomena in the neighborhood of an accelerating electron in the inertial frame. The model we consider is the four-dimensional Klein-Gordon real scalar field model with the Higgs potential term at the finite temperature identified with the Unruh temperature on the de Sitter space-time. We calculate the one-loop effective potential in the inertial frame with the corrections by the thermal radiation rooted in the Unruh effect in the accelerating frame. In this calculation, we take into account that the background space-time is deformed due to the field theory's corrected one-loop effective potential. Based on such an analysis, we illustrate the restoration of the spontaneous symmetry breaking and the dynamical variation of the background space-time, and we examine the accelerating particle's world-line and the amount of the energy corresponding to the change of the acceleration. (orig.)

  15. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  16. Calculated K-effectives using ENDF/B-V data for U + Pu solution critical experiments

    International Nuclear Information System (INIS)

    Primm, R.T. III; Mincey, J.F.

    1981-01-01

    Effective multiplication factors for 12 critical experiments have been calculated using multigroup cross sections derived from the ENDF/B-V library. All 12 experiments contained mixed plutonium and uranium nitrate solutions. The range of hydrogen-to-fissile plutonium atom ratios spanned by these experiments was 200 to 2200. A comparison with K-effectives calculated with ENDF/B-IV data is presented

  17. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  18. Calculation of a hydrogen molecule in the adiabatic approximation

    International Nuclear Information System (INIS)

    Vukajlovich, F.R.; Mogilevskij, O.A.; Ponomarev, L.I.

    1979-01-01

    The adiabatic approximation js used for calculating the energy levels of a hydrogen molecule, i.e. of the simplest four-body system with a Coulomb interaction. The aim of this paper is the investigation of the possible use of the adiabatic method in the molecular problems. The most effective regions of its application are discussed. An infinite system of integro-differential equations is constructed, which describes the hydrogen molecule in the adiabatic approximation with the effective potentials taking into account the corrections to the nuclear motion. The energy of the first three vibrational states of the hydrogen molecule is calculated and compared with the experimental data. The convergence of the method is discussed

  19. Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1982-10-01

    The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was 0 C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain

  20. Edge effects in four-point direct current potential drop measurements on metal plates

    International Nuclear Information System (INIS)

    Lu, Y; Bowler, N; Bowler, J R; Huang, Y

    2009-01-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  1. Edge effects in four-point direct current potential drop measurements on metal plates

    Science.gov (United States)

    Lu, Y.; Bowler, N.; Bowler, J. R.; Huang, Y.

    2009-07-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  2. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  3. Potentials of surfaces in space

    International Nuclear Information System (INIS)

    Whipple, E.C.

    1981-01-01

    The potential of a body in space is determined by a balance between various charging currents such as the transfer of charge from plasma particles, photoemission, and secondary electron emission. These processes are evaluated for bodies in the solar system and in interstellar space under the headings; an overview of charging, survey of early work on charging, charging processes, effects of non-isotropic plasmas and magnetic and electric fields, calculation of surface potentials, differential charging, potential barriers and discharge processes, measurements of potential, potential modification and control on spacecraft, and astrophysical applications. (U.K.)

  4. IRIS core criticality calculations

    International Nuclear Information System (INIS)

    Jecmenica, R.; Trontl, K.; Pevec, D.; Grgic, D.

    2003-01-01

    Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)

  5. Influence of differentiation of potential parameters for each excited level of the target nucleus on neutron inelastic cross section calculations

    International Nuclear Information System (INIS)

    Cabezas, R.; Lubian, J.; Moreno, E.

    1992-01-01

    In this paper scattering of neutron in medium mass nuclei (48 < a < 64) at low energies (1-5 Mev) is analyzed. The Hauser-Feshbach-Moldauer formalism and the coupled channel method is used in a combined way. In both cases, the deformed optical potential in the frame of the harmonic vibrational models is considered of integral and total cross section and angular distribution enphasized. It's shown that the use of different set parameters has a mose influence at low energies and represented a contribution of 10% of the calculated cross section with the same potential

  6. First-principles supercell calculations of small polarons with proper account for long-range polarization effects

    Science.gov (United States)

    Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias

    2018-03-01

    We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.

  7. Standard Model Effective Potential from Trace Anomalies

    Directory of Open Access Journals (Sweden)

    Renata Jora

    2018-01-01

    Full Text Available By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We find that this kind of potential may describe well the known phenomenology of the Higgs boson.

  8. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  9. Potential of mean force for electrical conductivity of dense plasmas

    Science.gov (United States)

    Starrett, C. E.

    2017-12-01

    The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. Current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. We present a new way to define this potential, drawing on ideas from classical fluid theory to define a potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.

  10. Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    International Nuclear Information System (INIS)

    Martin, Stephen P.

    2003-01-01

    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the standard model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices, which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs boson mass over a wide range of renormalization scales is found to be of the order of a few hundred MeV or less, and is significantly improved over previous approximations

  11. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  12. A method for calculating effective lifetime risk of radiation-induced cancer from screening mammography

    International Nuclear Information System (INIS)

    Ali, R.M.; England, A.; McEntee, M.F.; Hogg, P.

    2015-01-01

    Purpose: To propose a method for evaluating the effective lifetime risk of radiation-induced cancer from screening mammography and to present initial data for the UK National Breast Screening Programme. Material and methods: The imaging was undertaken using a Hologic Selenia full field digital mammographic unit. The proposed method utilises an ATOM phantom containing thermoluminescent dosimeters and a perspex-polyethylene breast phantom to measure organ doses during a standard four view screening mammogram. Effective dose was calculated and effective risk was modelled for a range of client ages. The total lifetime effective risk was then calculated for the UK national screening programme. Calculation of effective risk includes the radiation dose to examined and contralateral breasts in addition to other body organs; this is an advantage over the mean glandular dose. Results: The contralateral breast, thyroid, thymus, brain, lung, salivary glands, and bone marrow all receive more than 1 μGy radiation dose during screening mammography. A major difference exists for total effective lifetime risk of radiation-induced cancer between clients with average and high breast cancer risk. Differences are attributed to the commencement age of screening and time interval between screens. Conclusion: This study proposes a method to evaluate effective lifetime risk of radiation-induced cancer from screening mammography in order to compare different mammography screening programmes. - Highlights: • We proposed a method for the calculation of radiation-induced cancer from screening mammography. • We measured the radiation absorbed dose of different organs during screening mammography. • There are major differences between mammography screening programme categories with regard to radiation effective risk.

  13. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor

    International Nuclear Information System (INIS)

    Hellmann, Robert

    2009-01-01

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  14. Calculated k-effectives for light water reactor typical, U + Pu nitrate solution critical experiments

    International Nuclear Information System (INIS)

    Primm, R.T. III; Mincey, J.F.

    1982-01-01

    The Department of Energy's Consolidated Fuel Reprocessing Program has as a goal the design of nuclear fuel reprocessing equipment. In order to validate computer codes used for criticality analyses in the design of such equipment, k-effectives have been calculated for several U + Pu nitrate solution critical experiments. As of January 1981, descriptions of 45 unpoisoned, U + Pu solution experiments were available in the open literature. Twelve of these experiments were performed with solutions which have physical characteristics typical of dissolved, light water reactor fuel. This paper contains a discussion of these twelve experiments, a review of the calculational procedure used to determine k-effectives, and the results of the calculations

  15. Molecular potentials and relaxation dynamics

    International Nuclear Information System (INIS)

    Karo, A.M.

    1981-01-01

    The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. As an example, recent calculations of the chi 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the chi 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, highly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate

  16. Theoretical studies of H2--H2 collisions. IV. Ab initio calculations of anisotropic transport phenomena in para-hydrogen gas

    International Nuclear Information System (INIS)

    Koehler, W.E.; Schaefer, J.

    1983-01-01

    The temperature dependence of the effective Waldmann--Snider cross sections determining the Senftleben--Beenakker effects of viscosity and heat conductivity has been studied for pH 2 gas between 10 and 200 K. From ab initio nonspherical potentials of H 2 --H 2 , scattering matrices have been determined in close-coupling calculations. From these, the elements of the scattering amplitude matrix have been obtained and used as input quantities for the evaluation of the various Waldmann--Snider collision integrals. The results of these first ab initio numerical calculations of anisotropic transport coefficients show excellent agreement of calculated and measured effective cross sections, especially for the most recent improved version of the interaction potential. In addition, it has been shown that the polarization production cross sections are quite sensitive to the potential anisotropy

  17. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1993-01-01

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  18. Test of a q-fractional V{sup (N-q)} Hartree-Fock potential for the calculation of double photoionization cross sections of neon

    Energy Technology Data Exchange (ETDEWEB)

    Kilin, V.A. [Tomsk Polytechnic University, Tomsk (Russian Federation); Lazarev, D.V.; Lazarev, Dm.A.; Zelichenko, V.M. [Tomsk Pedagogic University, Tomsk (Russian Federation); Amusia, M. Ya. [A.F. Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Schartner, K.-H. [I Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany); Ehresmann, A.; Schmoranzer, H. [Fachbereich Physik, Universitaet Kaiserslautern, Kaiserslautern (Germany)

    2001-10-28

    The approach of a parametric V{sup (N-q)} Hartree-Fock potential with fractional q is developed and applied for the first time for the calculation of the double photoionization cross sections of Ne. A minimum of the squared difference between the length-form and velocity-form cross sections is used as a criterion for calculating the values of q. It is found that the minimization procedure leads to a practically exact equality of the length-form and velocity-form cross sections for the Ne III 2s{sup 2}2p{sup 4}[{sup 3}P,{sup 1}D,{sup 1}S], 2s{sup 1}2p{sup 5}[{sup 3}P,{sup 1}P] and 2s{sup 0}2p{sup 6}[{sup 1}S] states in the exciting-photon energy region from the double-ionization threshold up to 325 eV, if q is considered as a function of the exciting-photon energy. The calculated V{sup (N-q)} cross sections are in better agreement with the experimental data than those for the V{sup (N-1)} and V{sup (N-2)} potentials. (author)

  19. First and second collision source for mitigating ray effects in discrete ordinate calculations

    International Nuclear Information System (INIS)

    Gomes, L.T.; Stevens, P.N.

    1991-01-01

    This work revisits the problem of ray effects in discrete ordinates calculations that frequently occurs in two- and three-dimensional systems which contain isolated sources within a highly absorbing medium. The effectiveness of using a first collision source or a second collision source are analyzed as possible remedies to mitigate this problem. The first collision and second collision sources are generated by three-dimensional Monte Carlo calculations that enables its application to a variety of source configurations, and the results can be coupled to a two- or three-dimensional discrete ordinates transport code. (author)

  20. Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms

    International Nuclear Information System (INIS)

    Guo, Y.; Whitehead, M.A.

    1988-01-01

    The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, and Bogdanovic's Fermi-hole parameters [Phys. Rev. A 14, 1 (1976)], and Vosko, Wilk, and Nusair's correlation correction [Can. J. Phys. 58, 1200 (1980)], are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered

  1. Taming the Goldstone contributions to the effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P.

    2014-07-01

    The standard perturbative effective potential suffers from two related problems of principle involving the field-dependent Goldstone boson squared mass, G. First, in general G can be negative, and it actually is negative in the Standard Model; this leads to imaginary contributions to the effective potential that are not associated with a physical instability, and therefore spurious. Second, in the limit that G approaches zero, the effective potential minimization condition is logarithmically divergent already at two-loop order, and has increasingly severe power-law singularities at higher loop orders. I resolve both issues by resumming the Goldstone boson contributions to the effective potential. For the resulting resummed effective potential, the minimum value and the minimization condition that gives the vacuum expectation value are obtained in forms that do not involve G at all.

  2. Derivative expansions of renormaliztion group effective potentials for φ4 field theories

    International Nuclear Information System (INIS)

    Shepard, J.R.; McNeil, J.A.

    1995-01-01

    We approximate an exact Renormalization Group (RG) equation for the flow of the effective action of φ 4 field theories by including next-to-leading order (NLO) terms in a derivative expansion. This level of approximation allows us to treat effects of wavefunction renormalization which are beyond the scope of the leading order (LO) formulation. We compare calculations based on a open-quote latticized close quotes version of our RG equation in 3 Euclidean dimensions directly with Monte Carlo (MC) results and find excellent overall agreement as well as substantial improvement over LO calculations. We solve the continuum form of our equation to find the Wilson fixed point and determine the critical exponent η (0.046). We also find the critical exponents ν (0.666) and ω (0.735). These latter two are in much improved agreement with open-quote world's bestclose quotes values com- pared to those obtained at LO (where no prediction for η is possible). We also find that the open-quote universal potential close-quote determined via MC methods by Tsypin can be understood quantitatively using our NLO RG equations. Careful analysis shows that ambiguities which plague open-quote smooth cutoffclose quotes formulations do not arise with our RG equations

  3. Cooling of interstellar formaldehyde by collision with helium: an accurate quantum mechanical calculation

    International Nuclear Information System (INIS)

    Garrison, B.J.

    1975-08-01

    In order to test a collisional pumping model as a mechanism for cooling the 6 cm and 2 cm doublets of interstellar formaldehyde, a quantum mechanical scattering calculation is performed. To obtain the intermolecular interaction between H 2 CO( 1 A 1 ) and He( 1 S) two calculations are performed, a Hartree-Fock (HF) potential surface and a configuration interaction (CI) surface. A basis set of better than ''triple zeta plus polarization'' quality is used to compute the HF portion of the potential energy surface. This portion is highly anisotropic and has a slight attraction arising from induction effects at intermolecular separations around 9 a.u. The HF surface is modified through a series of CI calculations. Correlation is found to have little effect in the strongly anisotropic repulsive region of the interaction potential but dominates the well and long-range regions. The maximum well depth is attained for in-plane approaches of He and lies in the range 35-40 0 K for arbitrary theta at center of mass separation of 7.5 a.u. The entire surface is fit to a spherical harmonic expansion to facilitate scattering applications. (auth)

  4. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  5. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  6. Potentials and limitations of hazard indices for the determination of risk potentials of disposed toxic wastes

    International Nuclear Information System (INIS)

    Kirchner, Gerald

    1989-01-01

    Hazard indices are often used for the determination of risk potentials arising from the geological disposal of toxic wastes. They are based on simplified models for the calculation of potential health effects caused by the wastes. The attractiveness of hazard indices lies in their simplicity which nevertheless results in reliable data on necessary isolation times and the most toxic nuclides of a waste. They also make possible comparisons of the potential risks of different wastes. After a discussion of the processes that control the behavior of toxic wastes in the environment after a failure of the geological barriers, a new hazard index is presented. Originally developed for nuclear wastes, it is the first which involves the joint consideration of the composition of a waste, the probability for transport of waste nuclides to man, their toxicity, and the time-dependent changes of the risk potentials which are caused by radioactive buildup and decay processes after the waste has entered the biosphere. The new hazard index makes possible the calculation of risk potentials at a given time of release and time period of concern thereafter. Sample calculations for different nuclear wastes show the importance of the model improvements on resulting time-dependent risk potentials. Applicability of the new hazard index to non-nuclear wastes is described. Potentials and limitations of comparative risk assessments using hazard indices are discussed. (author)

  7. Effective hamiltonian calculations using incomplete model spaces

    International Nuclear Information System (INIS)

    Koch, S.; Mukherjee, D.

    1987-01-01

    It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations

  8. Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling

    Science.gov (United States)

    Cao, L.; Elliot, W.

    2017-12-01

    Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates

  9. The GMD Method for Inductance Calculation Applied to Conductors with Skin Effect

    Directory of Open Access Journals (Sweden)

    H. A. Aebischer

    2017-09-01

    Full Text Available The GMD method (geometric mean distance to calculate inductance offers undoubted advantages over other methods. But so far it seemed to be limited to the case where the current is uniformly distributed over the cross section of the conductor, i.e. to DC (direct current. In this paper, the definition of the GMD is extended to include cases of nonuniform distribution observed at higher frequencies as the result of skin effect. An exact relation between the GMD and the internal inductance per unit length for infinitely long conductors of circularly symmetric cross section is derived. It enables much simpler derivations of Maxwell’s analytical expressions for the GMD of circular and annular disks than were known before. Its salient application, however, is the derivation of exact expressions for the GMD of infinitely long round wires and tubular conductors with skin effect. These expressions are then used to verify the consistency of the extended definition of the GMD. Further, approximate formulae for the GMD of round wires with skin effect based on elementary functions are discussed. Total inductances calculated with the help of the derived formulae for the GMD with and without skin effect are compared to measurement results from the literature. For conductors of square cross section, an analytical approximation for the GMD with skin effect based on elementary functions is presented. It is shown that it allows to calculate the total inductance of such conductors for frequencies from DC up to 25 GHz to a precision of better than 1 %.

  10. Final disposal room structural response calculations

    International Nuclear Information System (INIS)

    Stone, C.M.

    1997-08-01

    Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations

  11. Neutron flux shape effects in large fast reactor safety calculations

    International Nuclear Information System (INIS)

    Galati, A.; Loizzo, P.; Musco, A.

    1978-01-01

    Three classes of accidents in a large fast reactor were studied by the two-dimensional core dynamics code NADYP-2. A Modified version of the code, including a point kinetics module, allowed comparison between 2D and 0D power, reactivity and temperature histories. A strong shape effect was evidenced by these calculations in the boiling phase of LOF accidents as well as in the accident generated by control rod removal. Some future possibilities of by passing the consequences of this effect are indicated

  12. An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation

    International Nuclear Information System (INIS)

    Kim, Jung-Ha; Hill, Robin; Kuncic, Zdenka

    2012-01-01

    The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc/BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc/BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT/AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations. (note)

  13. Calculations of the ground state of 16O

    International Nuclear Information System (INIS)

    Pieper, S.C.

    1989-01-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: specification of the Hamiltonian, and calculation of the ground states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependences. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At present, reliable solutions of the Faddeev equations for the A = 3 nuclei with such interactions are routine. Recently, Carlson has made an essentially exact GFMC calculation of the He ground state using just a two-nucleon interaction, and there are reliable variational calculations for more complete potential models. Nuclear matter calculations can also be made with reasonable reliability. However, there have been very few calculations of nuclei with A > 5 using realistic interactions, and none with a modern three-nucleon interaction. In the present paper I present a new technique for variational calculations for such nuclei and apply it to the ground state of 16 O. 15 refs., 2 figs., 3 tabs

  14. HEU benchmark calculations and LEU preliminary calculations for IRR-1

    International Nuclear Information System (INIS)

    Caner, M.; Shapira, M.; Bettan, M.; Nagler, A.; Gilat, J.

    2004-01-01

    We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)

  15. Superfield tadpole method for SUSY effective potential

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1983-01-01

    Superfield formulation of Weinberg's tadpole method to compute the effective potential in supersymmetric theories is illustrated by considering the general renormalizable action involving only chiral scalar superfields. Unconstrained superfield potentials are introduced to simplify the ''effective'' superfield propagator which is derived in a compact form. (orig.)

  16. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  17. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  18. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    Science.gov (United States)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  19. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non

  20. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Science.gov (United States)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  1. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    Science.gov (United States)

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  2. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  3. Quantum-mechanical calculation of H on Ni(001) using a model potential based on first-principles calculations

    DEFF Research Database (Denmark)

    Mattsson, T.R.; Wahnström, G.; Bengtsson, L.

    1997-01-01

    First-principles density-functional calculations of hydrogen adsorption on the Ni (001) surface have been performed in order to get a better understanding of adsorption and diffusion of hydrogen on metal surfaces. We find good agreement with experiments for the adsorption energy, binding distance...

  4. A refined method for calculating equivalent effective stratospheric chlorine

    Science.gov (United States)

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick

    2018-01-01

    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from

  5. Application of the perturbation theory for sensitivity calculations in thermalhydraulics reactor calculations

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1986-01-01

    The sensitivity of non linear responses associated with physical quantities governed by non linear differential systems can be studied using perturbation theory. The equivalence and formal differences between the differential and GPT formalisms are shown and both are used for sensitivity calculations of transient problems in a typical PWR coolant channel. The results obtained are encouraging with respect to the potential of the method for thermalhydraulics calculations normally performed for reactor design and safety analysis. (Author) [pt

  6. PV potential and potential PV rent in European regions

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.; Thorn, Paul

    2013-01-01

    The paper provides a GIS based model for assessing the potentials of photovoltaic electricity in Europe by NUTS 2 regions. The location specific energy potential per PV-­‐panel area is estimated based on observations of solar irradiation, conversion efficiency, levelised costs and the social value...... of PV-­‐electricity. Combined with the potential density of PV-­‐panel area based on land cover and environental restrictions, the PV energy potential and the potential PV ressource rent is calculated. These calculations enbable the model to estimate the regional patterns at NUTS 2 level...

  7. A single quark effective potential model

    International Nuclear Information System (INIS)

    Bodmann, B.E.J.; Vasconcellos, C.A.Z.

    1994-01-01

    In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)

  8. An assessment of methods of calculating Doppler effects in plutonium fuelled sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Reddell, G.

    1979-01-01

    After a survey of the requirements, an assessment of UK methods and data is made on the basis of the following work. First, the analysis of the SEFOR Doppler experiments, carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code and whole reactor diffusion theory calculations of the neutron flux. Second, the analysis of some Japanese FCA central sample perturbation measurements of structural material Doppler effects. Third, an assessment of the accuracy of Doppler predictions in a sodium voided core using results from Zebra 5 and BIZET, and theoretical studies of additional effects relevant to power reactors and not covered by the above analyses, including the following, the calculation of Doppler effects at high temperature, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. The importance of crystalline binding effects in the fuel are discussed as is the importance of reactor material boundaries in the calculation of resonance shielding effects. Some suggestions for further Doppler studies are made. (U.K.)

  9. Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation

    DEFF Research Database (Denmark)

    Bak, Börge; Jansen, Peter; Stafast, Herbert

    1975-01-01

    The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes...

  10. Evaluation and validation of criticality codes for fuel dissolver calculations

    International Nuclear Information System (INIS)

    Santamarina, A.; Smith, H.J.; Whitesides, G.E.

    1991-01-01

    During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P IC method developed to treat this latter effect permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism to account for 238 U resonance mutual self-shielding in the pellet-fissile liquor interaction. The benchmark exercise has resolved a potentially dangerous inadequacy in dissolver calculations. (author)

  11. The zonal tidal effect on the variation in the rotation rate of the Earth with a fluid core II. Numerical calculation and comparisons

    Science.gov (United States)

    Zhang, Han-Wei; Zheng, Yong; Du, Lan; Pan, Guan-Song

    The tidal variation in Earth rotation rate is a periodical response to solar-lunar tide generating potential (TGP). Some theoretical formulae are given here based on Doodson development of TGP including the variations in Earth rotation rate, LOD and UT1. Finally the zonal tidal effect on the variation in the fluid core Earth rotation rate is calculated according to the formula deduced by Xi Qinwen (1995). The calculation shows that the results in this paper are well consistent with the ones in IERS (96), which indicates the correctness of the theoretical formula we deduced. It is also shown that the effects from the high frequency parts are relatively small, within the observing precision so far; relatively large effects due to the lower parts, which should be able to be seperated from the observed data, are actually difficult to make because of the influence from some non-tidal factors as well as short time span data.

  12. X particle effect for 6Li reaction rates calculations

    International Nuclear Information System (INIS)

    Kocak, G.; Balantekin, A. B.

    2009-01-01

    The inferred primordial 6 L i-7 L i abundances are different from standard big bang nucleosynthesis results, 6 L i is 1000 times larger and 7 L i is 3 times smaller than the big bang prediction. In big bang nucleosynthesis, negatively charged massive X particles a possible solution to explain this primordial Li abundances problem [1]. In this study, we consider only X particle effect for nuclear reactions to obtain S-factor and reaction rates for Li. All S-factors calculated within the Optical Model framework for d(α,γ)6 L i system. We showed that the enhancement effect of massive negatively charged X particle for 6 L i system reaction rate.(author)

  13. Evaluating the potential economic effectiveness of scientific research in the area of geological exploration for oil and gas

    Energy Technology Data Exchange (ETDEWEB)

    Vaynbaum, S Ya

    1979-01-01

    The category of ''potential effect'' is inherent to scientific developments in oil geology. This effect is associated with a quantity of labor in the sphere of scientific research which is embodied in the extracted information and stored until its complete use in production. The potential effect can be predicted. It is an indicator of economic effectiveness of scientific research. Distribution of the coefficient of creativity (innovation) for scientific research for geological exploration is suggested. The system of calculating the economic effect contains real stimuli for increasing economic efficiency. The most important of them are: establishment of the most promising trends for geological exploration which guarantee maximum increase in hydrocarbon reserves; decrease in net cost which will guarantee the obtaining of great profit; conducting of research on a higher level, in a large quantity of stages of work. This results in an increase in the percentage of participation of science in the production process, and this means, an increase in its economic effectiveness.

  14. An Effective Method to Accurately Calculate the Phase Space Factors for β"-β"- Decay

    International Nuclear Information System (INIS)

    Horoi, Mihai; Neacsu, Andrei

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  15. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry, E-mail: zzhong@anl.gov, E-mail: alby@anl.gov, E-mail: gohar@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, IL (United States)

    2011-07-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β{sub eff} has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β{sub eff} was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β{sub eff}, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have

  16. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    International Nuclear Information System (INIS)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β_e_f_f has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β_e_f_f was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β_e_f_f, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have been

  17. Hyperspherical effective interaction for nonlocal potentials

    International Nuclear Information System (INIS)

    Barnea, N.; Leidemann, W.; Orlandini, G.

    2010-01-01

    The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state properties of 4 He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the binding energies of the six-body nuclei 6 He and 6 Li with the JISP16 nuclear force. Again an excellent convergence is observed.

  18. Calculation of the hyperfine interaction using an effective-operator form of many-body theory

    International Nuclear Information System (INIS)

    Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.

    1975-01-01

    The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given

  19. The effect of magnetic field models on cosmic ray cutoff calculations

    International Nuclear Information System (INIS)

    Pfitzer, K.A.

    1979-01-01

    The inaccuracies in the 1974 Olson-Pfitzer model appeared to be the probable cause for discrepancies between the observed and calculated cosmic ray cutoff values. An improved version of the Olson-Pfitzer model is now available which includes the effects of the tilt of the earth's dipole axis and which has removed most of the problems encountered in the earlier model. The paper demonstrates that when this new accurate magnetic field model is used, the calculated and observed cutoff values agree with the experimental error without the need for invoking anomalous diffusion mechanisms. This tilt-dependent model also permits a study of cutoffs versus the tilt of the dipole axis

  20. Configuration interaction calculations and excitation rates of X-ray and EUV transitions in sulfurlike manganese

    Energy Technology Data Exchange (ETDEWEB)

    El-Maaref, A.A., E-mail: ahmed.maaref@azhar.edu.eg; Saddeek, Y.B.; Abou halaka, M.M.

    2017-02-15

    Highlights: • Fine-structure calculations of sulfurlike Mn have been performed using configuration interaction technique, CI. • The relativistic effects, Breit-Pauli Hameltonian, have been correlated to the CI calculations. • Excitation rates by electron impact of the Mn X ion have been evaluated up to ionization potential. - Abstract: Fine-structure calculations of energies and transition parameters have been performed using the configuration interaction technique (CI) as implemented in CIV3 code for sulfurlike manganese, Mn X. The calculations are executed in an intermediate coupling scheme using the Breit-Pauli Hamiltonian. As well as, energy levels and oscillator strengths are calculated using LANL code, where the calculations by LANL have been used to estimate the accuracy of the present CI calculations. The calculated energy levels, oscillator strengths, and lifetimes are in reasonable agreement with the published experimental and theoretical values. Electron impact excitation rates of the transitions emit soft X-ray and extreme ultraviolet (EUV) wavelengths have been evaluated. The level population densities are calculated using the collisional radiative model (CRM), as well. The collisional excitation rates and collision strengths have been calculated in the electron temperature range ≤ the ionization potential, ∼1–250 eV.

  1. Tunneling in a self-consistent dynamic image potential

    International Nuclear Information System (INIS)

    Rudberg, B.G.R.; Jonson, M.

    1991-01-01

    We have calculated the self-consistent effective potential for an electron tunneling through a square barrier while interacting with surface plasmons. This potential reduces to the classical image potential in the static limit. In the opposite limit, when the ''velocity'' of the tunneling electron is large, it reduces to the unperturbed square-barrier potential. For a wide variety of parameters the dynamic effects on the transmission coefficient T=|t 2 | can, for instance, be related to the Buettiker-Landauer traversal time for tunneling, given by τ BL =ℎ|d lnt/dV|

  2. On the contribution of external cost calculations to energy system governance: The case of a potential large-scale nuclear accident

    International Nuclear Information System (INIS)

    Laes, Erik; Meskens, Gaston; Sluijs, Jeroen P. van der

    2011-01-01

    The contribution of nuclear power to a sustainable energy future is a contested issue. This paper presents a critical review of an attempt to objectify this debate through the calculation of the external costs of a potential large-scale nuclear accident in the ExternE project. A careful dissection of the ExternE approach resulted in a list of 30 calculation steps and assumptions, from which the 6 most contentious ones were selected through a stakeholder internet survey. The policy robustness and relevance of these key assumptions were then assessed in a workshop using the concept of a 'pedigree of knowledge'. Overall, the workshop outcomes revealed the stakeholder and expert panel's scepticism about the assumptions made: generally these were considered not very plausible, subjected to disagreement, and to a large extent inspired by contextual factors. Such criticism indicates a limited validity and useability of the calculated nuclear accident externality as a trustworthy sustainability indicator. Furthermore, it is our contention that the ExternE project could benefit greatly - in terms of gaining public trust - from employing highly visible procedures of extended peer review such as the pedigree assessment applied to our specific case of the external costs of a potential large-scale nuclear accident. - Highlights: → Six most contentious assumptions were selected through a stakeholder internet survey. → Policy robustness of these assumptions was assessed in a pedigree assessment workshop. → Assumptions were considered implausible, controversial, and inspired by contextual factors. → This indicates a limited validity and useability as a trustworthy sustainability indicator.

  3. A covariant technique for the calculation of the one-loop effective action

    International Nuclear Information System (INIS)

    Avramidi, I.G.

    1991-01-01

    We develop a manifestly covariant technique for a heat kernel calculation in the presence of arbitrary background fields in a curved space. The four lowest-order coefficients of the Schwinger-De Witt asymptotic expansion are explicitly computed. We also calculate the heat kernel asymptotic expansion up to terms of third order in rapidly varying background fields (curvatures). This approximate series is summed and covariant nonlocal expressions for the heat kernel, ξ-function and one-loop effective action are obtained. Other related problems are discussed. (orig.)

  4. Consideration of the environmental effects on fatigue behavior of austenitic components. Calculation methods and practical application

    International Nuclear Information System (INIS)

    Seichter, Johannes; Reese, Sven H.; Klucke, Dietmar

    2012-01-01

    During the last years environmental effects on the fatigue behavior of nuclear power plant components has worldwide been discussed controversial with respect to the transferability of laboratory data on real components. A publication from Argonne National Laboratory on experimental results concerning environmental effects (air and LWR coolant) on fatigue of austenitic steels included a proposal on calculation methods concerning the lifetime reduction due to environmental effects. This calculation method, i.e. multiplication of the usage factor by a F(en), has been included into the ASME Code, Section III, Division I, as Code Case N-792 (fatigue evaluations including environmental effects). The presented contribution evaluates the practical application of this calculation procedure and demonstrates the determination of the usage factor of an austenitic component under environmental exposure.

  5. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  6. CEPA calculations on open-shell molecules. Pt. 11

    International Nuclear Information System (INIS)

    Staemmler, V.

    1990-01-01

    Ab initio calculations at SCF and CEPA levels using large Gaussian basis sets have been performed for the two lowest electronic states, X 2 Σ + and A 2 Π, of HeAr + . Spin-orbit coupling (SOC) effects have been added using a semiempirical treatment. The resulting potential curves for the three states X, A 1 , and A 2 have been used to evaluate molecular constants such as vibrational intervals ΔG(υ+1/2) and rotational constants B υ as well as - by means of a Dunham expansion - equilibrium constants such as R e , ω e , B e etc. Comparison with the experimental data from UV emission spectroscopy shows that the calculated potential curves are slightly too shallow and have too large equilibrium distances: D e =242 cm -1 and R e =2.66 A compared to the experimental values of 262 cm -1 and 2.585 A, respectively, for the X 2 Σ + ground state. However, the ab initio calculations yield more bound vibrational levels than observed experimentally and allow for a more complete Dunham analysis, in particular for the A 2 state. The experimental value of 154 cm -1 for the dissociation energy D e of this state is certainly too low; our best estimate is 180±5 cm -1 . For the A 1 state our calculations are predictions since this state has not yet been observed experimentally. (orig.)

  7. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  8. An assessment by calorimetric calculations of the potential thermal benefit of warming and humidification of insufflated carbon dioxide.

    Science.gov (United States)

    Roth, Jonathan V; Sea, Stephanie

    2014-06-01

    Heat transfer from a patient to warm and humidify insufflated carbon dioxide (CO2) during laparoscopic surgery may contribute to perioperative hypothermia. The magnitude of this effect was calculated using calorimetric calculations. Warming to 37°C and humidifying to 100%, each 100 L of insufflated CO2 would prevent a heat transfer of 3220 calories, which would result in a decrease of temperature by 0.06°C in a 70 kg patient after total body distribution of heat. We conclude that the thermal benefit of warming and humidifying insufflated CO2 is minor, particularly in comparison with other effective and inexpensive perioperative technologies, some of which are not always used out could easily be used. The decision to use heating and humidification of insufflated CO2 should be based on its other risks, benefits, and costs.

  9. Comprehensive calculations of 4p and 4d lifetimes for the Cu sequence

    International Nuclear Information System (INIS)

    Curtis, L.J.; Theodosiou, C.E.

    1989-01-01

    Computed lifetimes for the 4p 2 P/sub 1/2/, 4p 2 P/sub 3/2/, 4d 2 D/sub 3/2/, and 4d 2 D/sub 5/2/ levels in the copper isoelectronic sequence are presented for atomic numbers Z = 29--92. These calculations agree well with recent high-precision lifetime measurements, conflict with the isoelectronic trend of single-configuration Dirac-Fock calculations, and agree at lower Z with the multiplet values of multiconfiguration Hartree-Fock calculations using experimental transition energies. Our calculations involve the inclusion of experimental energy-level data and the use of a Hartree-Slater potential to represent the ionic core. It is found that the core-polarization effects are significant and must be included to obtain agreement with experiment, at least for the lower members of the isoelectronic sequence. As part of the study, we have combined semiempirical parametrizations of the existing database with Dirac-Fock calculations to produce a set of values for the ionization potentials and the 4p and 4d excitation energies for all stable ions in this sequence

  10. Attention effects at auditory periphery derived from human scalp potentials: displacement measure of potentials.

    Science.gov (United States)

    Ikeda, Kazunari; Hayashi, Akiko; Sekiguchi, Takahiro; Era, Shukichi

    2006-10-01

    It is known in humans that electrophysiological measures such as the auditory brainstem response (ABR) are difficult to identify the attention effect at the auditory periphery, whereas the centrifugal effect has been detected by measuring otoacoustic emissions. This research developed a measure responsive to the shift of human scalp potentials within a brief post-stimulus period (13 ms), that is, displacement percentage, and applied it to an experiment to retrieve the peripheral attention effect. In the present experimental paradigm, tone pips were exposed to the left ear whereas the other ear was masked by white noise. Twelve participants each conducted two conditions of either ignoring or attending to the tone pips. Relative to averaged scalp potentials in the ignoring condition, the shift of the potentials was found within early component range during the attentive condition, and displacement percentage then revealed a significant magnitude difference between the two conditions. These results suggest that, using a measure representing the potential shift itself, the peripheral effect of attention can be detected from human scalp potentials.

  11. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  12. A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, Katherine A., E-mail: k.rothwell@ncl.ac.uk; Cooke, Martin P., E-mail: martin.cooke@ncl.ac.uk

    2015-11-01

    To meet the requirements of regulation and to provide realistic remedial targets there is a need for the background concentration of potentially toxic elements (PTEs) in soils to be considered when assessing contaminated land. In England, normal background concentrations (NBCs) have been published for several priority contaminants for a number of spatial domains however updated regulatory guidance places the responsibility on Local Authorities to set NBCs for their jurisdiction. Due to the unique geochemical nature of urban areas, Local Authorities need to define NBC values specific to their area, which the national data is unable to provide. This study aims to calculate NBC levels for Gateshead, an urban Metropolitan Borough in the North East of England, using freely available data. The ‘median + 2MAD’, boxplot upper whisker and English NBC (according to the method adopted by the British Geological Survey) methods were compared for test PTEs lead, arsenic and cadmium. Due to the lack of systematically collected data for Gateshead in the national soil chemistry database, the use of site investigation (SI) data collected during the planning process was investigated. 12,087 SI soil chemistry data points were incorporated into a database and 27 comparison samples were taken from undisturbed locations across Gateshead. The SI data gave high resolution coverage of the area and Mann–Whitney tests confirmed statistical similarity for the undisturbed comparison samples and the SI data. SI data was successfully used to calculate NBCs for Gateshead and the median + 2MAD method was selected as most appropriate by the Local Authority according to the precautionary principle as it consistently provided the most conservative NBC values. The use of this data set provides a freely available, high resolution source of data that can be used for a range of environmental applications. - Highlights: • The use of site investigation data is proposed for land contamination studies

  13. Some calculated contributions to the electric field gradient in nontransition metals

    International Nuclear Information System (INIS)

    Lodge, K.W.

    1978-01-01

    The electric field gradient (EFG) at a nucleus in the metals Be, Mg, Zn, Cd, In and Ga (both alpha and beta forms) has been calculated. Model potential theory has been used to represent the conduction electron distribution external to the ion core at whose nucleus the EFG is calculated. For the metals Be and Mg the local conduction electron effects have been obtained by orthogonalising the model wavefunctions to the occupied core states. The effect of the nuclear electric quadrupole moment (EQM) perturbing the conduction electrons has also been considered and the effect of self-consistently obtaining conduction electron and distorted core electron states has been discussed. The conduction electrons external to the core are found to produce an EFG which partly screens the ionic contribution. A large contribution is obtained from the orthogonalisation terms, substantially improving the agreement with experiment for Mg. The effect of including the nuclear EQM perturbation of the conduction electrons is found to be of the order of 10% of the calculated total EFG for Be and Mg. (author)

  14. Small portable speed calculator

    Science.gov (United States)

    Burch, J. L.; Billions, J. C.

    1973-01-01

    Calculator is adapted stopwatch calibrated for fast accurate measurement of speeds. Single assembled unit is rugged, self-contained, and relatively inexpensive to manufacture. Potential market includes automobile-speed enforcement, railroads, and field-test facilities.

  15. Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach

    Science.gov (United States)

    Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon

    2017-12-01

    Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.

  16. The inclusion of shadowing effect in the reaction-rates calculation

    International Nuclear Information System (INIS)

    Monteiro, M.A.M.

    1990-03-01

    A method for the Resonance Integral calculation in the fuel and moderator regions is presented including the Shadowing effect. This effect appears due to the presence of several fuel rods in a infinite moderator region. The method is based on the approximations to the J (ζ, β) function and theirs partial derivatives in relation to β. The dependence of the Resonance Integral in the J (ζ, β) comes from the rational approximation to the neutron escape probability. The final results are obtained in a very simple and fast way, and show the good accuracy of the method. (author)

  17. Calculation of the level density parameter using semi-classical approach

    International Nuclear Information System (INIS)

    Canbula, B.; Babacan, H.

    2011-01-01

    The level density parameters (level density parameter a and energy shift δ) for back-shifted Fermi gas model have been determined for 1136 nuclei for which complete level scheme is available. Level density parameter is calculated by using the semi-classical single particle level density, which can be obtained analytically through spherical harmonic oscillator potential. This method also enables us to analyze the Coulomb potential's effect on the level density parameter. The dependence of this parameter on energy has been also investigated. Another parameter, δ, is determined by fitting of the experimental level scheme and the average resonance spacings for 289 nuclei. Only level scheme is used for optimization procedure for remaining 847 nuclei. Level densities for some nuclei have been calculated by using these parameter values. Obtained results have been compared with the experimental level scheme and the resonance spacing data.

  18. Calculation methods for single-sided natural ventilation - simplified or detailed?

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Plesner, Christoffer; Leprince, Valérie

    2016-01-01

    A great energy saving potential lies within increased use of natural ventilation, not only during summer and midseason periods, where it is mainly used today, but also during winter periods, where the outdoor air holds a great cooling potential for ventilative cooling if draft problems can...... be handled. This paper presents a newly developed simplified calculation method for single-sided natural ventilation, which is proposed for the revised standard FprEN 16798-7 (earlier EN 15242:2007) for design of ventilative cooling. The aim for predicting ventilative cooling is to find the most suitable......, while maintaining an acceptable correlation with measurements on average and the authors consider the simplified calculation method well suited for the use in standards such as FprEN 16798-7 for the ventilative cooling effects from single-sided natural ventilation The comparison of different design...

  19. Experimental tests and calculation methods for missile crashing effects on a reactor containment

    International Nuclear Information System (INIS)

    Goldstein, S.; Berriaud, C.; Labrot, R.

    1975-01-01

    In the analysis of missile crashing on a reactor containment there are two main effects to be taken into account: the overall behaviour of the building; the local perforation. The overall behaviour of the building is easily calculated when the applied force as a function of time is known. Two calculation examples are presented. The local perforation is a much more difficult problem and experimental work is necessary. The report presents a series of perforation tests of concrete plates by cylindrical missiles with a flat nose. The aim of these tests is to extrapolate for the lower speeds the existing experimental correlations and to check the calculation methods. The calculations are made with the PASTEL code (Finite elements, implicit integration), with elastoplasticity of the reinforcing steel bars and the concrete. Various plastification and fracturation laws are tested. (Auth.)

  20. Experimental tests and calculation methods for missile crashing effects on a reactor containment

    International Nuclear Information System (INIS)

    Goldstein, S.; Berriaud, C.

    1975-01-01

    In the analysis of missile crashing on a reactor containment there are two main effects to be taken into account: the overall behavior of the building; the local perforation. The overall behavior of the building is easily calculated when the applied force as a function of time is known. Two calculation examples are presented. The local perforation is a much more difficult problem and experimental work is necessary. The report presents a series of perforation tests of concrete plates by cylindrical missiles with a flat nose. The aim of these tests is to extrapolate for the lower speeds the existing experimental correlations (Petry, HN-NDRC, BRL...) and to check the calculation methods. The calculations are made with the PASTEL Code (Finite elements, implicit integration), with elastoplasticity of the reinforcing steel bars and the concrete. Various plastification and fracturation laws will be tested

  1. Effectiveness of a computer based medication calculation education and testing programme for nurses.

    Science.gov (United States)

    Sherriff, Karen; Burston, Sarah; Wallis, Marianne

    2012-01-01

    The aim of the study was to evaluate the effect of an on-line, medication calculation education and testing programme. The outcome measures were medication calculation proficiency and self efficacy. This quasi-experimental study involved the administration of questionnaires before and after nurses completed annual medication calculation testing. The study was conducted in two hospitals in south-east Queensland, Australia, which provide a variety of clinical services including obstetrics, paediatrics, ambulatory, mental health, acute and critical care and community services. Participants were registered nurses (RNs) and enrolled nurses with a medication endorsement (EN(Med)) working as clinicians (n=107). Data pertaining to success rate, number of test attempts, self-efficacy, medication calculation error rates and nurses' satisfaction with the programme were collected. Medication calculation scores at first test attempt showed improvement following one year of access to the programme. Two of the self-efficacy subscales improved over time and nurses reported satisfaction with the online programme. Results of this study may facilitate the continuation and expansion of medication calculation and administration education to improve nursing knowledge, inform practise and directly improve patient safety. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. On the nuclear shell effects appeared in (p,t) analyzing power calculations

    International Nuclear Information System (INIS)

    Kubo, Ken-ichi

    1980-01-01

    Origin of shell effects found in two-step (p, d, t) calculation, which play an important role for understanding the observed 'anomalous' (p, t) analyzing powers, is clarified based on the selections for transferred angular momenta. (author)

  3. Comparison of the effect of soft-core potentials and Coulombic potentials on bremsstrahlung during laser matter interaction

    Science.gov (United States)

    Pandit, Rishi R.; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Ramunno, Lora; Ackad, Edward

    2018-04-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, from both phonons and ions, they emit bremsstrahlung radiation. Here, we compare a theory of bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and Coulombic potentials. A new scaling for the radiation cross-section and the radiated power via bremsstrahlung is derived for a soft-core potential (which depends on the potential depth) and compared with the Coulomb potential. Calculations using the new scaling are performed for electrons in vacuum ultraviolet, infrared and mid-infrared laser pulses. The radiation cross-section and the radiation power via bremsstrahlung are found to increase rapidly with increases in the potential depth of up to around 200 eV and then become mostly saturated for larger depths while remaining constant for the Coulomb potential. In both cases, the radiation cross-section and the radiation power of bremsstrahlung decrease with increases in the laser wavelength. The ratio of the scattering amplitude for the soft-core potential and that for the Coulombic potential decreases exponentially with an increase in momentum transfer. The bremsstrahlung emission by electrons in plasmas may provide a broadband light source for diagnostics.

  4. Comparison between phase shift derived and exactly calculated nucleon--nucleon interaction matrix elements

    International Nuclear Information System (INIS)

    Gregersen, A.W.

    1977-01-01

    A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels

  5. Phase-shift calculation using continuum-discretized states

    International Nuclear Information System (INIS)

    Suzuki, Y.; Horiuchi, W.; Arai, K.

    2009-01-01

    We present a method for calculating scattering phase shifts which utilizes continuum-discretized states obtained in a bound-state type calculation. The wrong asymptotic behavior of the discretized state is remedied by means of the Green's function formalism. Test examples confirm the accuracy of the method. The α+n scattering is described using realistic nucleon-nucleon potentials. The 3/2 - and 1/2 - phase shifts obtained in a single-channel calculation are too small in comparison with experiment. The 1/2 + phase shifts are in reasonable agreement with experiment, and gain contributions both from the tensor and central components of the nucleon-nucleon potential.

  6. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  7. Ab initio calculations of partial molar properties in the single-site approximation

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate...

  8. Drop Calculations of HLW Canister and Pu Can-in-Canister

    International Nuclear Information System (INIS)

    Sreten Mastilovic

    2001-01-01

    The objective of this calculation is to determine the structural response of the standard high-level waste (HLW) canister and the canister containing the cans of immobilized plutonium (Pu) (''can-in-canister'' [CIC] throughout this document) subjected to drop DBEs (design basis events) during the handling operation. The evaluated DBE in the former case is 7-m (23-ft) vertical (flat-bottom) drop. In the latter case, two 2-ft (0.61-m) corner (oblique) drops are evaluated in addition to the 7-m vertical drop. These Pu CIC calculations are performed at three different temperatures: room temperature (RT) (20 C), T = 200 F = 93.3 C , and T = 400 F = 204 C ; in addition to these the calculation characterized by the highest maximum stress intensity is performed at T = 750 F = 399 C as well. The scope of the HLW canister calculation is limited to reporting the calculation results in terms of: stress intensity and effective plastic strain in the canister, directional residual strains at the canister outer surface, and change of canister dimensions. The scope of Pu CIC calculation is limited to reporting the calculation results in terms of stress intensity, and effective plastic strain in the canister. The information provided by the sketches from Reference 26 (Attachments 5.3,5.5,5.8, and 5.9) is that of the potential CIC design considered in this calculation, and all obtained results are valid for this design only. This calculation is associated with the Plutonium Immobilization Project and is performed by the Waste Package Design Section in accordance with Reference 24. It should be noted that the 9-m vertical drop DBE, included in Reference 24, is not included in the objective of this calculation since it did not become a waste acceptance requirement. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document

  9. Three-body calculations at Los Alamos

    International Nuclear Information System (INIS)

    Friar, J.L.

    1986-01-01

    This work was motivated by four goals: (1) by working in configuration space, where intuition is greatest, investigate graphically those trinucleon properties which are determined by specific features of wave functions; (2) produce benchmark calculations against which new techniques and numerical methods can be measured; (3) investigate the effect of the Coulomb interaction between the two protons in 3 He and in the p-d system; (4) systematically investigate the various trinucleon observables. Configuration space is particularly well-suited for investigating the Coulomb problem. The singularity and discontinuity problems associated with the Coulomb (momentum space) t-matrix are transformed into boundary condition problems in configuration space. One simply adds the Coulomb potential to the strong interaction. In order to produce accurate numerical solutions powerful techniques were adopted which have not frequently been used in nuclear physics. These spline methods together with collocation techniques combine the power of Gaussian quadrature procedures with the flexibility and strength of finite element approaches to solving partial differential equations. The union of these methods allows one to calculate wavefunctions at the same qualitative level of accuracy as the eigenvalues. Observables can therefore be calculated with considerable confidence. 30 refs., 6 figs

  10. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.

    1991-03-01

    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  11. Effect of fluid-to-structure heat transfer on the structural damage potential to a liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hakim, S.J.; Abramson, P.B.

    1979-01-01

    Deterministic calculations simulating a hypothetical accident in a liquid-metal fast breeder reactor that leads to a hydrodynamic disassembly of the core have been carried out to estimate the system's damage potential due to the vapor-pressure-driven expansion of molten core material and its dependency on the heat transfer to the remaining structure. These calculations ignored the effect on the work potential of sodium left in the core during the disassembly. Results indicate that steel cladding in the upper axial blankets and fission gas plenum acts as a thermodynamic energy sink that could reduce the total thermodynamic work energy by between one and two orders of magnitude, provided little or no sodium is present in the core at the time of interaction. These results have been found to be insensitive to the rate of heat transferred from the molten fuel to the molten steel that comprises the molten core material

  12. Heavy-heavy-light quark potential in SU(3) lattice QCD

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo; Iida, Hideaki

    2008-01-01

    We perform the first study for the heavy-heavy-light quark (QQq) potential in SU(3) quenched lattice QCD with the Coulomb gauge. The calculations are done with the standard gauge and O(a)-improved Wilson fermion action on the 16 4 lattice at β=6.0. We calculate the energy of QQq systems as the function of the distance R between the two heavy quarks, and find that the QQq potential is well described with a Coulomb plus linear potential form up to the intermediate distance R≤0.8 fm. Compared to the static three-quark case, the effective string tension between the heavy quarks is significantly reduced by the finite-mass valence quark effect. This reduction is considered to be a general property for baryons

  13. Calculations on the effect of pellet filling on the rewetting of overheated nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Pearson, K.G.; Loveless, J.

    1977-03-01

    Numerical solutions of the rewetting equations are presented which show the effect of filler material and gas gap on the rate of rewetting of an overheated fuel pin. It is shown that taking the presence of the fuel into account can lead to a large reduction in the calculated rewetting speed compared with a calculation which neglects the presence of fuel. The effect is most marked in conditions where rewetting speeds tend to be already low, such as at high pin temperatures and low ambient pressure. A comparison is made between the predictions of the present method and experimental data obtained on zircaloy and stainless steel pins filled with magnesia and with boron nitride. In all cases filling the pins produced a large reduction in rewetting speed and the agreement between the calculated and measured effect was encouraging. It is concluded that the presence of the UO 2 pellet filling should be taken into account when calculating rewetting speeds in safety assessments. (author)

  14. CCSD(T) calculations of stabilities and properties of confined systems

    Energy Technology Data Exchange (ETDEWEB)

    Holka, F.; Urban, M. [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava (Slovakia); Melicherčík, M.; Neogrády, P. [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Paldus, J. [Department of Applied Mathematics, University of Waterloo, N2L 3G1, Ontario (Canada)

    2015-01-22

    We analyze energies, electron affinities and polarizabilities of small anions exposed to an external confinement. The second electron in free O{sup 2−} and S{sup 2−} anions is unbound. We investigate the stabilizing effect of the spherical harmonic-oscillator confining potential ω. on these anions employing the Hartree-Fock stability analysis as introduced by Čížek and Paldus. With increasing strength of the external harmonic-oscillator confinement potential ω the broken symmetry (BS) solutions are systematically eliminated. For ω larger than 0.1 all BS solutions for O{sup 2−} disappear. For ω larger than 0.13 the CCSD(T) energy of O{sup 2−} becomes more negative than the energy of the singly charged O{sup −} anion. We relate the harmonic-oscillator confining potential to a crystalline environment in which the O{sup 2−} and S{sup 2−} anions are stable. We also present a model allowing calculations of the in-crystal polarizabilities of anions. The model is based on CCSD(T) calculations of static polarizabilities of selected anions exposed to the spherical harmonic-oscillator confining potential ω This artificial confinement potential ω is then related to the ionic radii of the cation in representative crystal lattices. We investigate the polarizability of O{sup 2−} and S{sup 2−} anions in MgO, MgS, CaO, CaS, SrO, SrS, BaO and BaS crystals. We compare our results with alternative models for in-crystal polarizabilities. External confinement also stabilizes the uracil anion U{sup −}, as is shown by calculations with a stepwise micro-hydration of U{sup −}. Upon hydration is the CCSD(T) adiabatic electron affinity (AEA) of uracil enhanced by about 250 up to 570 meV in comparison with AEA of the isolated molecule, depending on the geometry of the hydrated uracil anion complex. We tried to find an analogy of the stabilization effect of the external confinement on the otherwise unstable anions. In uracil and its anion is the external

  15. The nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Green, A.M.

    1978-01-01

    The first part of this talk is based on the one presented at the Tokyo conference last September and can be found in ref( 1 ). This coveres such topics as the Paris and Stonybrook potentials, the new values of the NN coupling constants and also our understanding of the NNω coupling constant. The second part reviews recent developments concerning the Paris potential, the application of the MIT bag model to the NN interaction, the effect of crossed pion processes and vertex form factors. Comments made about the possible future trends of NN potential calculations. The current status of the D-state probability of the deuteron is discussed. (orig./AH) [de

  16. Microscopic theory for nucleon-nucleus optical potential in intermediate energies

    International Nuclear Information System (INIS)

    He Guozhu; Cai Chonghai

    1984-01-01

    Based on the scattering theory of KMT and FGH we calculate the nucleon-nucleus optical potentials of 4 He, 16 O and 40 Ca from the Paris N-N potential given by M. Lacombe et al. The real part Vsub(R)(r) of our optential has the form of Woods-Saxon when the kinetic energy E of the incident nucleon is low. The depth of Vsub(R)(r) will decrease as E increases, and it turns into positive in the interior of nucleus when E approx.= 300 MeV. The repulsive effect in the interior of nucleus increases rapidly as E increases even more, butthere always exists some attractive effect at the surface of nucleus. Therefore, Vsub(R)(r) has generally the wine-bottle bottom shape. We also calculate the quatity Jv/N = (4π/N)∫sub(0)sub(infinity)Vsub(R)(r)r 2 dr. Our results are basically in acordance with those of M.Jaminon et al's relativistic Hatree calculation as well as the experimental results. In this work we also calculate the imaginary part of optical potential and its variation with the kinetic energy of the incident nucleon

  17. Three dimensions transport calculations for PWR core

    International Nuclear Information System (INIS)

    Richebois, E.

    2000-01-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  18. Practical calculation of amplitudes for electron-impact ionization

    International Nuclear Information System (INIS)

    McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.

    2001-01-01

    An integral expression that is formally valid only for short-range potentials is applied to the problem of calculating the amplitude for electron-impact ionization. It is found that this expression provides a practical and accurate path to the calculation of singly differential cross sections for electron-impact ionization. Calculations are presented for the Temkin-Poet and collinear models for ionization of hydrogen by electron impact. An extension of the finite-element approach using the discrete-variable representation, appropriate for potentials with discontinuous derivatives like the Temkin-Poet interaction, is also presented

  19. Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations

    International Nuclear Information System (INIS)

    Willaime, F.; Fu, C.C.; Marinica, M.C.; Dalla Torre, J.

    2005-01-01

    The stability and mobility of self-interstitials and small interstitial clusters, I n , in α-Fe is investigated by means of calculations performed in the framework of the density functional theory using the SIESTA code. The mono-, di- and tri-interstitials are shown to be made of (parallel) dumbbells and to migrate by nearest-neighbor translation-rotation jumps, according to Johnson's mechanism. The orientation of the dumbbells becomes energetically more favourable for I 5 and larger clusters. The performance of a semi-empirical potential recently developed for Fe, including ab initio self-interstitial data in the fitted properties, is evaluated over the present results. The superiority over previous semi-empirical potentials is confirmed. Finally the impact of the present results on the formation mechanism of loops, observed experimentally in α-Fe is discussed

  20. The effects of some parameters on the calculated 1H NMR relaxation times of cell water

    International Nuclear Information System (INIS)

    Koivula, A.; Suominen, K.; Kiviniitty, K.

    1976-01-01

    The effect of some parameters on the longitudinal and transverse relaxation times is calculated and a comparison between the calculated relaxation times with the results of different measurements is made. (M.S.)

  1. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  2. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  3. Two-loop Higgs mass calculations beyond the MSSM with SARAH and SPheno

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, Kilian [Physikalisches Institut, Universitaet Bonn (Germany); Staub, Florian [Theory Division, CERN, Geneva (Switzerland); Goodsell, Mark [LPTHE, UPMC Univ. Paris 06 (France)

    2015-07-01

    We present a recent extension to the Mathematica package SARAH which allows for Higgs mass calculations at the two-loop level in a wide range of supersymmetric models beyond the MSSM. These calculations are based on the effective potential approach. For the numerical evaluation Fortran code for SPheno is generated by SARAH. This allows to predict the Higgs mass in more complicated SUSY theories with a similar precision as most state-of-the-art spectrum generators do for the MSSM.

  4. A method to calculate fission-fragment yields Y(Z,N) versus proton and neutron number in the Brownian shape-motion model. Application to calculations of U and Pu charge yields

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Ichikawa, Takatoshi [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2015-12-15

    We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q{sub 2}), neck d, left nascent fragment spheroidal deformation ε{sub f1}, right nascent fragment deformation ε{sub f2} and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the ''compound-system'' model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition. (orig.)

  5. Calculation of the well depth parameter to the nuclear potential

    International Nuclear Information System (INIS)

    Kim, Y.U.; Kim, Y.J.

    1984-01-01

    Well depth parameter S or range correction factor S-1 is computed for several nuclear potentials such as square, Gaussian, exponential and Yukawa wells. A simple central force is assumed for nuclear potential between nucleons. We adopted only two parameters for potentials and attempted to clarify the fundamental nature of the nuclear forces that bind a proton and a neutron into a deuteron. Results thus obtained were used for an estimate of first order correction to simple square well model. (Author)

  6. A methodology for calculating photovoltaic field output and effect of solar tracking strategy

    International Nuclear Information System (INIS)

    Hu, Yeguang; Yao, Yingxue

    2016-01-01

    Highlights: • A new methodology for calculating PV field output is proposed. • The reduction of diffuse radiation and albedo due to shading is considered. • The shadow behavior is accurately analyzed at a cell level. • Several simplified measures are taken to reduce the calculation work. • The field outputs with different solar tracking strategies are compared. - Abstract: This paper proposes an effective methodology for calculating the photovoltaic field output. A combination of two methods is first presented for optical performance calculation: point projection method for direction radiation, and Monte Carlo ray-tracing method for both diffuse radiation and albedo radiation. Based on the optical calculation, an accurate output of the photovoltaic field can be obtained through a cell-level simulation of PV system. Several simplified measures are taken to reduce the large amount of calculation work. The proposed methodology has been validated for accurate and fast calculation of field output. With the help of the developed code, this paper deals with the performance comparison between four typical tracking strategies. Through the comparative analysis, the field output is proved to be related to the tracking strategy. For a regular photovoltaic field, the equatorial and elevation-rolling tracking show the superior performance in annual field output to the azimuth-elevation and rolling-elevation tracking. A reasonable explanation for this difference has been presented in this paper.

  7. Calculating Debye potentials from data on I or H

    International Nuclear Information System (INIS)

    Torrence, R.J.

    1982-01-01

    Using the formalism of Cohen and Kegeles equations are obtained for arbitrary spin radiation field Debye potentials in Reissner-Nordstrom geometries, and a formal series solution is presented. For the case of integer spin the series is modified to what appears to be am more natural form. In the particular case of vanishing spin it is shown that in some important cases the modified series converges to a solution of the Debye potential equation, which is the scalar wave equation, and is simply related to characteristic initial data given on either H or I. (author)

  8. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  9. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  10. Temperature corrections, supersymmetric effective potentials and inflation

    International Nuclear Information System (INIS)

    Binetruy, P.; Gaillard, M.K.; California Univ., Berkeley

    1985-01-01

    We calculate the one-loop temperature corrections to general potentials in N=1 supergravity, and study the conditions under which a new inflationary scenario is possible. The results are sensitive to the total number N of chiral superfields. For large N, we find that in 'hidden sector' models supersymmetry must be broken at a scale governed by the energy density of the false vacuum: msub(3/2) > or approx. 2√8π μ 2 /Msub(p), where μ approx.= (10 -3 -10 -4 )Msub(p) in typical inflationary scenarios. We also discuss an alternative picture where inflation occurs at the preonic level, before the preon-confining phase transition. (orig.)

  11. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  12. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube

    Science.gov (United States)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.

    2018-02-01

    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  13. Effectiveness of the current method of calculating member states' contributions

    CERN Document Server

    2002-01-01

    At its Two-hundred and eighty-sixth Meeting of 19 September 2001, the Finance Committee requested the Management to re-assess the effectiveness of the current method of forecasting Net National Income (NNI) for the purposes of calculating the Member States' contributions by comparing the results of the current weighted average method with a method based on a simple arithmetic average. The Finance Committee is invited to take note of this information.

  14. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    Science.gov (United States)

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Analytical formulation for φ4 field potential dynamics

    International Nuclear Information System (INIS)

    Javidan, Kurosh; Ghahraman, Arash

    2011-01-01

    An analytical model for adding a space dependent potential to the φ 4 field equation of motion is presented, by constructing a collective coordinate system for the solitary solutions of this model. The interaction of φ 4 solitons with a delta function potential barrier and also delta function potential well is investigated. Most of the characters of interaction are derived analytically while they are calculated by other models numerically. We will find that the behaviour of a solitary solution is like a point particle which is moved under the influence of a complicated effective potential. The effective potential is a function of the field initial conditions and also of parameters of the added potential. (author)

  16. The OH + D2 --> HOD + D angle-velocity distribution: quasi-classical trajectory calculations on the YZCL2 and WSLFH potential energy surfaces and comparison with experiments at ET = 0.28 eV.

    Science.gov (United States)

    Sierra, José Daniel; Martínez, Rodrigo; Hernando, Jordi; González, Miguel

    2009-12-28

    The angle-velocity distribution (HOD) of the OH + D(2) reaction at a relative translational energy of 0.28 eV has been calculated using the quasi-classical trajectory (QCT) method on the two most recent potential energy surfaces available (YZCL2 and WSLFH PESs), widely extending a previous investigation of our group. Comparison with the high resolution experiments of Davis and co-workers (Science, 2000, 290, 958) shows that the structures (peaks) found in the relative translational energy distributions of products could not be satisfactorily reproduced in the calculations, probably due to the classical nature of the QCT method and the importance of quantum effects. The calculations, however, worked quite well for other properties. Overall, both surfaces led to similar results, although the YZCL2 surface is more accurate to describe the H(3)O PES, as derived from comparison with high level ab initio results. The differences observed in the QCT calculations were interpreted considering the somewhat larger anisotropy of the YZCL2 PES when compared with the WSLFH PES.

  17. Calculation of longitudinal and transverse wake-field effects in dielectric structures

    International Nuclear Information System (INIS)

    Gai, W.

    1989-01-01

    The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs

  18. The correlation of cathodic peak potentials of vitamin K(3) derivatives and their calculated electron affinities. The role of hydrogen bonding and conformational changes.

    Science.gov (United States)

    Nasiri, Hamid Reza; Panisch, Robin; Madej, M Gregor; Bats, Jan W; Lancaster, C Roy D; Schwalbe, Harald

    2009-06-01

    2-methyl-1,4-naphtoquinone 1 (vitamin K(3), menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E(1/2)) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (E(A)). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (E(A)) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.

  19. Large scale calculations for hadron spectroscopy

    International Nuclear Information System (INIS)

    Rebbi, C.

    1985-01-01

    The talk reviews some recent Monte Carlo calculations for Quantum Chromodynamics, performed on Euclidean lattices of rather large extent. Purpose of the calculations is to provide accurate determinations of quantities, such as interquark potentials or mass eigenvalues, which are relevant for hadronic spectroscopy. Results obtained in quenched QCD on 16 3 x 32 lattices are illustrated, and a discussion of computational resources and techniques required for the calculations is presented. 18 refs.,3 figs., 2 tabs

  20. Molecular dynamics investigation of ferrous-ferric electron transfer in a hydrolyzing aqueous solution: Calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force

    International Nuclear Information System (INIS)

    Rustad, James R.; Rosso, Kevin M.; Felmy, Andrew R.

    2004-01-01

    We present a molecular model for ferrous-ferric electron transfer in an aqueous solution that accounts for electronic polarizability and exhibits spontaneous cation hydrolysis. An extended Lagrangian technique is introduced for carrying out calculations of electron-transfer barriers in polarizable systems. The model predicts that the diabatic barrier to electron transfer increases with increasing pH, due to stabilization of the Fe 3+ by fluctuations in the number of hydroxide ions in its first coordination sphere, in much the same way as the barrier would increase with increasing dielectric constant in the Marcus theory. We have also calculated the effect of pH on the potential of mean force between two hydrolyzing ions in aqueous solution. As expected, increasing pH reduces the potential of mean force between the ferrous and ferric ions in the model system. The magnitudes of the predicted increase in diabatic transfer barrier and the predicted decrease in the potential of mean force nearly cancel each other at the canonical transfer distance of 0.55 nm. Even though hydrolysis is allowed in our calculations, the distribution of reorganization energies has only one maximum and is Gaussian to an excellent approximation, giving a harmonic free energy surface in the reorganization energy F(ΔE) with a single minimum. There is thus a surprising amount of overlap in electron-transfer reorganization energies for Fe 2+ -Fe(H 2 O) 6 3+ , Fe 2+ -Fe(OH)(H 2 O) 5 2+ , and Fe 2+ -Fe(OH) 2 (H 2 O) + couples, indicating that fluctuations in hydrolysis state can be viewed on a continuum with other solvent contributions to the reorganization energy. There appears to be little justification for thinking of the transfer rate as arising from the contributions of different hydrolysis states. Electronic structure calculations indicate that Fe(H 2 O) 6 2+ -Fe(OH) n (H 2 O) 6-n (3-n)+ complexes interacting through H 3 O 2 - bridges do not have large electronic couplings

  1. Reaction matrix calculation of 4He including Δ degrees of freedom

    International Nuclear Information System (INIS)

    Wakamatsu, Masashi.

    1979-06-01

    The effects of the Δ(3-3 resonance) components on the binding energy of 4 He are studied within the framework of the reaction matrix theory. In this approach, the Δ configurations in 4 He are introduced in terms of the NΔ transition potential by solving the reaction matrix equation and thus it goes beyond perturbation theory with the NΔ transition potential. Not only the two-body cluster energy but also the three-body cluster energy containing Δ configurations are calculated. (author)

  2. Zeta potential in colloid science principles and applications

    CERN Document Server

    Hunter, Robert J; Rowell, R L

    2013-01-01

    Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the stu

  3. Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study

    OpenAIRE

    Nabil M. Muhaisen; Rajab Abdullah Hokoma

    2012-01-01

    This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating ...

  4. First-principle optimal local pseudopotentials construction via optimized effective potential method

    International Nuclear Information System (INIS)

    Mi, Wenhui; Zhang, Shoutao; Wang, Yanchao; Ma, Yanming; Miao, Maosheng

    2016-01-01

    The local pseudopotential (LPP) is an important component of orbital-free density functional theory, a promising large-scale simulation method that can maintain information on a material’s electron state. The LPP is usually extracted from solid-state density functional theory calculations, thereby it is difficult to assess its transferability to cases involving very different chemical environments. Here, we reveal a fundamental relation between the first-principles norm-conserving pseudopotential (NCPP) and the LPP. On the basis of this relationship, we demonstrate that the LPP can be constructed optimally from the NCPP for a large number of elements using the optimized effective potential method. Specially, our method provides a unified scheme for constructing and assessing the LPP within the framework of first-principles pseudopotentials. Our practice reveals that the existence of a valid LPP with high transferability may strongly depend on the element.

  5. Strain effects on the electronic structure of ZnSnP{sub 2} via modified Becke–Johnson exchange potential

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: yingxuy@126.com [School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201 (China); Ao, Zhi Min [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Zou, Dai Feng; Nie, Guo Zheng; Sheng, Wei [School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201 (China); Yuan, Ding Wang [College of Materials Science and Engineering, Hunan University, ChangSha 410082 (China)

    2015-02-20

    ZnSnP{sub 2} is a promising photovoltaic absorber material with a direct band gap of 1.68 eV, further reducing the band gap of ZnSnP{sub 2} that can achieve higher photovoltaic conversion efficiency. To achieve this target, the influence of biaxial in-plane strain (±3%) on the band gap, hole effective mass and optical properties of ZnSnP{sub 2} were investigated by first-principles calculations via Modified Becke–Johnson exchange potential. The results indicate that the biaxial tensile strain can reduce the band gap of ZnSnP{sub 2} from 1.3 eV to 1.0 eV and enhance the absorption of visible light of c-axis direction, while the biaxial compress strain increases the band gap of ZnSnP{sub 2} slightly. This research provides an alternative approach to tune the band gap of ZnSnP{sub 2} by strains. The variation of the band gap under different strains is determined by the highest-energy valance band state, and it can be explained by the redistribution of electrons under different strain. - Highlights: • The influence of biaxial in-plane strain (±3%) on the band gap of ZnSnP{sub 2} were investigated by DFT calculations. • MBJ exchange potential can describe the band structure of ZnSnP{sub 2} quite well. • Tensile strain brings a substantial decrease of the band gap, while the compress strain has no evident effect. • The calculated visible light adsorption coefficient increases along c-axis direction under tensile strain.

  6. Estimation of small perturbation effects in multiversion calculations by the PRIZMA-D code

    International Nuclear Information System (INIS)

    Kandiev, Ya.Z.; Malakhov, A.A.; Serova, E.V.; Spirina, S.G.

    2005-01-01

    The PRIZMA-D code is intended for solving by the Monte Carlo method of the problems, connected with calculations of nuclear reactors and critical assemblies. Taking into account the effect of the perturbation on the distribution of the source division points is carried out by means of the method of small iterations for the division points. This method is described in the paper. Possibilities of its application are shown by the examples of calculations of some problems. The comparative results are presented [ru

  7. Numerical Calculations of the Effect of Moisture Content and Moisture Flow on Ionic Multi-Species Diffusion in the Pore Solution of Porous Materials

    DEFF Research Database (Denmark)

    Johannesson, Björn; Hosokawa, Yoshifumi; Yamada, Kazuo

    2009-01-01

    A method to analyse and calculate concentration profiles of different types of ions in the pore solution of porous materials such as concrete subjected to external wetting and drying is described. The equations in use have a solid theoretical meaning and are derived from a porous media technique......, which is a special branch of the more general mixture theory. The effect of chemical action is ignored making the presented model suitable to be implemented into codes dealing solely with chemical equilibrium. The coupled set of equations for diffusion of ionic species, the internal electrical potential...... of the model should be judged from the assumptions made when developing the balance laws and the constitutive equations and the assumptions made in obtaining a working numerical calculation scheme....

  8. Calculation of accelerating electric fields in the CO2 injector

    International Nuclear Information System (INIS)

    Baron, E.

    1999-01-01

    The accelerating structure in the injecting cyclotron for O.A.E. can be divided, if one takes the inflector exit as departure point, into the following two regions: 1. the relatively complex central zone comprising three accelerating gaps which is flanked by vertical pillars destined to increase the transit time factor and, at the same time, to reduce the influence of electric field vertical components; 2. the so-called 'large radius' subsequent zone where the gaps are no longer radially delimited. To study the behavior of the individual trajectories in these fields, the equations of motion must be integrated step by step (for instance by Runge-Kutta method) what implies the knowledge of field (or at least of potential) in every point. This is the method for the calculation of potential contour maps which is presented here; the potentials are static, and a sinusoidal time variation is subsequently applied to perform dynamical calculations. The paper has the following sections: 1. Introduction; 2. Potential and large radius field components; 2.1. Calculation of median plane potential; 2.2. Calculation of the off-median-plane potential and field; 3. Potential in the central region; 4. Further Developments

  9. Development of an atmospheric diffusion numerical model for a nuclear facility. Numerical calculation method incorporating building effects

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi

    2002-01-01

    Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)

  10. Student nurses need more than maths to improve their drug calculating skills.

    Science.gov (United States)

    Wright, Kerri

    2007-05-01

    Nurses need to be able to calculate accurate drug calculations in order to safely administer drugs to their patients (NMC, 2002). Studies have shown however that nurses do not always have the necessary skills to calculate accurate drug dosages and are potentially administering incorrect dosages of drugs to their patients (Hutton, M. 1998. Nursing Mathematics: the importance of application. Nursing Standard 13(11), 35-38; Kapborg, I. 1994. Calculation and administration of drug dosage by Swedish nurses, Student Nurses and Physicians. International Journal for Quality in Health Care 6(4), 389-395; O'Shea, E. 1999. Factors contributing to medication errors: a literature review. Journal of Advanced Nursing 8, 496-504; Wilson, A. 2003. Nurses maths: researching a practical approach. Nursing Standard 17(47), 33-36). The literature indicates that in order to improve drug calculations strategies need to focus on both the mathematical skills and conceptual skills of student nurses so they can interpret clinical data into drug calculations to be solved. A study was undertaken to investigate the effectiveness of implementing several strategies which focussed on developing the mathematical and conceptual skills of student nurses to improve their drug calculation skills. The study found that implementing a range of strategies which addressed these two developmental areas significantly improved the drug calculation skills of nurses. The study also indicates that a range of strategies has the potential ensuring that the skills taught are retained by the student nurses. Although the strategies significantly improved the drug calculation skills of student nurses, the fact that only 2 students were able to achieve 100% in their drug calculation test indicates a need for further research into this area.

  11. Solvent effects and potential of mean force study of the SN2 reaction of CH3+CN‑ in water

    Science.gov (United States)

    Li, Chen; Liu, Peng; Li, Yongfang; Wang, Dunyou

    2018-03-01

    We used a combined quantum mechanics and molecular mechanics (QM/MM) method to investigate the solvent effects and potential of mean force of the CH3F+CN‑ reaction in water. Comparing to gas phase, the water solution substantially affects the structures of the stationary points along the reaction path. We quantitatively obtained the solvent effects’ contributions to the reaction: 1.7 kcal/mol to the activation barrier and ‑26.0 kcal/mol to the reaction free energy. The potential mean of force calculated with the density functional theory/MM theory has a barrier height at 19.7 kcal/mol, consistent with the experimental result at 23.0 kcal/mol; the calculated reaction free energy at ‑43.5 kcal/mol is also consistent with the one estimated based on the gas-phase data at ‑39.7 kcal/mol. Project supported by the National Natural Science Foundation of China (Grant No. 11774206) and Taishan Scholarship Fund from Shandong Province, China.

  12. Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations

    International Nuclear Information System (INIS)

    Li, Ming-Fu; Surh, M.P.; Louie, S.G.

    1988-06-01

    Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs

  13. MatchingTools: A Python library for symbolic effective field theory calculations

    Science.gov (United States)

    Criado, Juan C.

    2018-06-01

    MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.

  14. Calculation of the effectiveness of manual control rods for the reactor of Ignalina NPP Unit 2

    International Nuclear Information System (INIS)

    Bubelis, E.; Pabarcius, R.

    2001-01-01

    On the basis of one of the recent databases of the reactor of Ignalina NPP Unit 2, calculations of the effectiveness of separate manual control rods, groups of manual control rods and axial characteristic of effectiveness of separate manual control rods were performed. The results of the calculations indicated, that all analyzed separate manual control rods have approximately the same effectiveness, which doesn't depend on the location of a control rod in the reactor core layout Manual control rod of the new design has about 10% greater effectiveness than manual control rod of the old design. (author)

  15. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  16. Effect of temperature dependence of the Langmuir constant molecular pair potentials on gas hydrates formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, B.; Enayati, M. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of); Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch

    2008-07-01

    Theoretical methods show that crystalline hydrates can form from single-phase systems consisting of both vapor water with gaseous hydrate former and liquid water with dissolved hydrate former. Two phase systems consist of both liquid water with gaseous hydrate former and with liquid hydrate former on the surface. This paper presented a Langmuir constant related model for the prediction of equilibrium pressures and cage occupancies of pure component hydrates. Intermolecular potentials were fit to quantum mechanical energies to obtain the Langmuir constants, which differed from the procedure utilized with the vdWP model. The paper described the experimental method and model calculations. This included the Fugacity model and Van der Waals and Platteeuw model. The paper also discussed pair potential of non-spherical molecules, including the multicentre (site-site) potential; Gaussian overlap potential; Lennard-Jones potential; and Kihara generalized pair potential. It was concluded that fraction of occupied cavities is a function of pair potentials between hard core and empty hydrate lattice. These pair potentials could be calculated from some model as Kihara cell potential, Gaussian potential, Lennard-Jones potential and multicentre pair potential. 49 refs., 3 figs.

  17. MELCOR 1.8.2 calculations of selected sequences for the ABWR

    International Nuclear Information System (INIS)

    Kmetyk, L.N.

    1994-07-01

    This report summarizes the results from MELCOR calculations of severe accident sequences in the ABWR and presents comparisons with MAAP calculations for the same sequences. MELCOR was run for two low-pressure and three high-pressure sequences to identify the materials which enter containment and are available for release to the environment (source terms), to study the potential effects of core-concrete interaction, and to obtain event timings during each sequence; the source terms include fission products and other materials such as those generated by core-concrete interactions. Sensitivity studies were done on the impact of assuming limestone rather than basaltic concrete and on the effect of quenching core debris in the cavity compared to having hot, unquenched debris present

  18. Effectiveness of a Clinical Skills Workshop for drug-dosage calculation in a nursing program.

    Science.gov (United States)

    Grugnetti, Anna Maria; Bagnasco, Annamaria; Rosa, Francesca; Sasso, Loredana

    2014-04-01

    Mathematical and calculation skills are widely acknowledged as being key nursing competences if patients are to receive care that is both effective and safe. Indeed, weaknesses in mathematical competence may lead to the administration of miscalculated drug doses, which in turn may harm or endanger patients' lives. However, little attention has been given to identifying appropriate teaching and learning strategies that will effectively facilitate the development of these skills in nurses. One such approach may be simulation. To evaluate the effectiveness of a Clinical Skills Workshop on drug administration that focused on improving the drug-dosage calculation skills of second-year nursing students, with a view to promoting safety in drugs administration. A descriptive pre-post test design. Educational. Simulation center. The sample population included 77 nursing students from a Northern Italian University who attended a 30-hour Clinical Skills Workshop over a period of two weeks. The workshop covered integrated teaching strategies and innovative drug-calculation methodologies which have been described to improve psychomotor skills and build cognitive abilities through a greater understanding of mathematics linked to clinical practice. Study results showed a significant improvement between the pre- and the post-test phases, after the intervention. Pre-test scores ranged between 0 and 25 out of a maximum of 30 points, with a mean score of 15.96 (SD 4.85), and a median score of 17. Post-test scores ranged between 15 and 30 out of 30, with a mean score of 25.2 (SD 3.63) and a median score of 26 (pstudy shows that Clinical Skills Workshops may be tailored to include teaching techniques that encourage the development of drug-dosage calculation skills, and that training strategies implemented during a Clinical skills Workshop can enhance students' comprehension of mathematical calculations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Calculation of the effective environmental dose rate for ESR and luminescence dating

    International Nuclear Information System (INIS)

    Brennan, B.J.

    2001-01-01

    The determination of the age of a sample using luminescence and ESR dating techniques requires knowledge of the sample's average effective environmental dose rate due to natural radiation sources (alpha, beta, gamma, and cosmic), and age estimates can never be more accurate than the estimate of this dose rate. The estimation process is often complicated by spatial and temporal inhomogeneities in the distribution of natural radiation sources. This paper discusses applications of radiation physics in modelling the effects of these inhomogeneities to ensure accurate estimation of the average dose rate for the sample. For natural alpha, beta, and gamma sources, 'dose point kernels' are employed in calculations using an assumed model for the spatial and temporal dependence of source concentrations. These three types of radiation have rather different penetration properties, with their typical effective ranges being multiples of 10 micrometre, 1 mm, and 100 mm respectively. For each type of radiation, applications are discussed where spatial inhomogeneity in the distribution of sources around and in a sample has a serious effect on the average dose rate to the sample. In some cases, (e.g. gamma dose estimation in 'lumpy' environments) lack of detailed knowledge precludes accurate modelling of the site for a particular sample, but useful statistical information can still be obtained. Temporal variation of radioactive source concentrations is usually coupled with spatial effects and can arise from processes such as parent-daughter disequilibrium, uptake or leaching of sources, or variation in burial depth or water saturation. Again, calculations based non a known or assumed history can be employed to obtain a time-averaged dose rate for a sample. The accuracy with which these calculations can reflect the true environmental dose rate is limited principally by the reliability of the model assumed, which in turn depends on the state of knowledge of the site and its history

  20. Density and starting-energy dependent effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo

    1979-01-01

    A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)