WorldWideScience

Sample records for effective hydrodesulfurization catalysts

  1. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  2. Performance Testing of Hydrodesulfurization Catalysts Using a Single-Pellet-String Reactor

    NARCIS (Netherlands)

    Moonen, Roel; Ras, Erik Jan; Harvey, Clare; Alles, Jeroen; Moulijn, J.A.

    2017-01-01

    Small-scale parallel trickle-bed reactors were used to evaluate the performance of a commercial hydrodesulfurization catalyst under industrially relevant conditions. Catalyst extrudates were loaded as a single string in reactor tubes. It is demonstrated that product sulfur levels and densities

  3. The role of Ni in sulfided carbon-supported Ni-Mo hydrodesulfurization catalysts

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Barthe-Zahir, N.; Beer, de V.H.J.; Prins, R.

    1991-01-01

    The thiophene hydrodesulfurization activities of Ni and Ni---Mo sulfide catalysts supported on activated carbon were measured at atmospheric pressure and the catalyst structures were studied by means of X-ray photoelectron spectroscopy, dynamic oxygen chemisorption, and chemical sulfur analysis. The

  4. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    Directory of Open Access Journals (Sweden)

    Yamina Boukoberine

    2016-09-01

    Full Text Available CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in catalyst results in a decrease of the thiophene HDS activity. This decrease is probably caused by the formation of heavy compounds and the deactivation of the zeolite at high temperatures.

  5. Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism

    International Nuclear Information System (INIS)

    Hinnemann, Berit; Moses, Poul Georg; Noerskov, Jens K

    2008-01-01

    The present article will highlight some recent density functional theory (DFT) studies of hydrodesulfurization (HDS) catalysts. It will be summarized how DFT in combination with experimental studies can give a detailed picture of the structure of the active phase. Furthermore, we have used DFT to investigate the reaction pathway for thiophene HDS, and we find that the reaction entails a complex interplay of different active sites, depending on reaction conditions. An investigation of pyridine inhibition confirmed some of these results. These fundamental insights constitute a basis for rational improvement of HDS catalysts, as they have provided important structure-activity relationships

  6. Hydrodesulfurization of Iraqi Atmospheric Gasoil by Ti-Ni-Mo/γ-Al2O3 Prepared Catalyst

    Directory of Open Access Journals (Sweden)

    Abdul Halim Abdul Karim Mohammed

    2017-11-01

    Full Text Available This study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA occurs simultaneously with hydrodesulfurization (HDS process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test.Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of metals as oxide; titanium oxide 3 wt. %, nickel oxide 5 wt. % and molybdenum oxide 12 wt. %. The performance of the synthesized catalyst for removing sulfur and aromatic saturation were tested at various temperatures 275 to 350°C, LHSV 1 to 4h-1, constant pressure 40 bar and H2/HC ratio 500 ml/ml.Results showed that the sulfur and aromatic content were reduced at all operating conditions. Maximum sulfur removal was 75.52 wt. % in gas oil on Ti-Ni-Mo/γ-Al2O3 at temperature 350˚C, LHSV 1h-1, while minimum aromatic content achieved was 15.6 wt. % at the same conditions.

  7. EXAFS Determination of the Structure of Cobalt in Carbon-Supported Cobalt and Cobalt-Molybdenum Sulfide Hydrodesulfurization Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Bouwens, S.M.A.M.; Veen, J.A.R. van; Beer, V.H.J. de; Prins, R.

    1991-01-01

    The structure of the cobalt present in carbon-supported Co and Co-Mo sulfide catalysts was studied by means of X-ray absorption spectroscopy at the Co K-edge and by X-ray photoelectron spectroscopy (XPS). Thiophene hydrodesulfurization activities were used to measure the catalytic properties of

  8. Hydrodesulfurization and hydrodearomatization activities of catalyst containing ETS-10 and AlPO{sub 4}-5 on Daqing FCC diesel

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhao; Baojian Shen; Wencheng Zhang; Ran Tian; Zhihua Zhang; Jinsen Gao [China University of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing

    2008-08-15

    A Ni-W loaded ETS-10/AlPO{sub 4}-5/Al{sub 2}O{sub 3} composite support catalyst was optimized and used in hydrodesulfurization (HDS) and hydrodearomatization (HDA) of Daqing FCC diesel feedstock. The result indicated that ETS-10 and AlPO{sub 4}-5 showed positive synergism effect. The effects of operating conditions on its catalytic performance were investigated by using a 100 mL hydrotreating test unit. The catalyst showed a remarkable HDS conversion of 99.9% and a HDA conversion of 73.2%. A clean diesel product with ultra-low sulfur content (<1.0 {mu}g/g) and very low polycyclic aromatic content (<2.0 wt.%) was obtained. Short communication. 21 refs., 4 tabs.

  9. Chemistry and engineering of catalytic hydrodesulfurization

    NARCIS (Netherlands)

    Schuit, G.C.A.; Gates, B.C.

    1973-01-01

    A review with 74 refs. on catalytic hydrodesulfurization of pure compds. and petroleum feedstocks, with emphasis on reaction intermediates and structures of Al2O3-supported Ni-W and Co-Mo catalysts. [on SciFinder (R)

  10. Commercial application of titania-supported hydrodesulfurization catalysts in the production of hydrogen using full-range FCC off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaohu [SINOPEC Wuhan Branch, Qingshan, Wuhan 430082 (China); Shen, Binglong; Qu, Lianglong [Beijing Haishunde Titanium Catalyst Co. Ltd., A-1 North East-Ring Road, Beijing Economic-Technological Development Area, Beijing 100176 (China)

    2004-11-24

    This paper provides an alternative for low-cost feed used for on-purpose hydrogen production. Full-range FCC off-gas was applied to steam-reforming process as feed after treating with hydrogenation and hydrodesulfurization catalysts. Commercial run results were reported with novel TiO{sub 2}-supported Mo-based catalysts, T205A-1 and T205. The processes of catalysts loading, sulfidation, start-up and long-term run were described in details. Long-term run showed that TiO{sub 2}-supported Mo catalysts have good low-temperature hydrogenation activity, excellent HDS activity, and outstanding stability. Use of FCC off-gas as feed for hydrogen production is quite promising and will increase margins for refiners today.

  11. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    International Nuclear Information System (INIS)

    Muhammad, Yaseen; Lu Yingzhou; Shen Chong; Li Chunxi

    2011-01-01

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 o C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al 2 O 3 , Ni-Mo/Al 2 O 3 , Ru-Co-Mo/Al 2 O 3 and Ru-Ni-Mo/Al 2 O 3 were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N 2 adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al 2 O 3 catalyst at 380 o C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al 2 O 3 > Ni-Mo/Al 2 O 3 > Ru-Co-Mo/Al 2 O 3 > Co-Mo/Al 2 O 3 at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT.

  12. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Yaseen; Shen, Chong; Li, Chunxi [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Lu, Yingzhou [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-02-15

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al{sub 2}O{sub 3}, Ni-Mo/Al{sub 2}O{sub 3}, Ru-Co-Mo/Al{sub 2}O{sub 3} and Ru-Ni-Mo/Al{sub 2}O{sub 3} were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N{sub 2} adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al{sub 2}O{sub 3} catalyst at 380 C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al{sub 2}O{sub 3}> Ni-Mo/Al{sub 2}O{sub 3}> Ru-Co-Mo/Al{sub 2}O{sub 3}> Co-Mo/Al{sub 2}O{sub 3} at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT. (author)

  13. Synthesis, characterization, and application of hydrotalcites in hydrodesulfurization of FCC gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ruiyu; Yin, Changlong; Zhao, Huiji; Liu, Chenguang [College of Chemistry and Chemical Engineering, Key Laboratory of Catalysis, CNPC, University of Petroleum, Dongying, Shandong 257061 (China)

    2003-05-25

    Magnesium-aluminum, copper-aluminum, zinc-aluminum hydrotalcite(HT) compounds were synthesized using co-precipitation method. The effects of stirring rate, feeding rate of reactants, pH, calcination temperature on the properties of Mg-Al mixed oxides were investigated by using XRD, TG-DTA and BET techniques. The catalytic activity and selectivity of CoMo/{gamma}-Al{sub 2}O{sub 3}, CoMo/{gamma}-Al{sub 2}O{sub 3}+HT catalysts for hydrodesulfurization of FCC gasoline were examined in a high pressure microreactor. The results showed that the catalysts with mixed oxide obtained from hydrotalcite as support give lower levels of olefin hydrogenation than the catalyst with {gamma}-Al{sub 2}O{sub 3} as support, and lower octane number reduction and hydrodesulfurization yield, too. The hydrodesulfurization activity order was as follows: CoMo/{gamma}-Al{sub 2}O{sub 3}>CoMo/{gamma}-Al{sub 2}O{sub 3}+Mg-Al(HT)>CoMo/{gamma}-Al{sub 2}O{sub 3}+Cu-A l(HT)>CoMo/{gamma}-Al{sub 2}O{sub 3}+Zn-Al(HT), and the olefin hydrogenation activity and octane number reduction order were as follows: CoMo/{gamma}-Al{sub 2}O{sub 3}+Zn-Al(HT)

  14. Comparison of Nitrogen Tolerance of PdMo/Al2O3 and CoMo/Al2O3 Catalysts in Hydrodesulfurization of Model Compounds

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Kaluža, Luděk; Gulková, Daniela

    2014-01-01

    Roč. 120, MAR (2014), s. 86-90 ISSN 0016-2361 R&D Projects: GA ČR GA104/09/0751; GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : hydrodesulfurization * nitrogen inhibition * PdMo catalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.520, year: 2014

  15. Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization

    DEFF Research Database (Denmark)

    Bodin, Anders; Christoffersen, Ann-Louise N.; Elkjær, Christian F.

    2018-01-01

    Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts...... for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo75Ni25 metal target in a reactive atmosphere of Ar and H2S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered...

  16. The effect of passivation on the activity and structure of sulfided hydrotreating catalysts

    NARCIS (Netherlands)

    Louwers, S.P.A.; Crajé, M.W.J.; Kraan, van der A.M.; Geantet, C.; Prins, R.

    1993-01-01

    Air exposure (passivation) and subsequent resulfidation caused a substantial increase in the thiophene hydrodesulfurization activity of sulfided Co-Mo/Al2O3 catalysts. Since no effect was observed for Mo/Al2O3 and Co/Al2O3 catalysts, the passivation effect must be related to the Co---Mo---S

  17. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)

    Energy Technology Data Exchange (ETDEWEB)

    Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

    2006-10-15

    Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

  18. Support Effect in Hydrodesulfurization over Ruthenium Sulfide

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Kaluža, Luděk; Vít, Zdeněk; Zdražil, Miroslav

    2009-01-01

    Roč. 51, č. 2 (2009), s. 146-149 ISSN 1337-7027 R&D Projects: GA ČR GA104/06/0705 Institutional research plan: CEZ:AV0Z40720504 Keywords : ruthenium sulfide * hydrodesulfurization * support effect Subject RIV: CC - Organic Chemistry

  19. Hydrodesulfurization and hydrodemetalation reactions of residue oils over CoMo/aluminum borate catalysts in a trickle bed reactor

    International Nuclear Information System (INIS)

    Tsai, M.C.; Chen, Y.W.; Kang, B.C.; Wu, J.C.; Leu, L.J.

    1991-01-01

    In this paper, a series of aluminum borates (AB) with various Al/B mole ratios is prepared by the precipitation method. The results indicated that the exhibited properties are dependent on the Al/B ratio of the material. The monodisperse pore size distributions of these samples simply that it is a true microcomposite structure rather than a mixture of the individual materials. Hydrodesulfurization (HDS) and hydrodemetalation (HDM) of heavy Kuwait atmospheric residuum over CoMo/AB catalysts were carried out in a bench-scale trickle bed reactor at 663 K and 7582 kPa. The weight hourly space velocity of residue oils was 1.5, and the hydrogen flow rate was kept constant at 300 mL/min (STP). The results showed that these catalysts are much more active than the conventional CoMo/Al 2 O 3 catalyst in HDS and HDM reactions. The results of desulfurization activity are mainly interpreted on the basis of difference in dispersion and the interaction of Mo species with the support. The demetalation activity was strongly influenced by the intraparticle diffusion of metal porphyrins

  20. Enabling Ultra Deep Hydrodesulfurization by Nanoscale Engineering of New Catalysts

    DEFF Research Database (Denmark)

    Christoffersen, Ann-Louise Nygård

    The HYDECAT project was initiated to make a targeted effort in the field of hydrodesulfurization (HDS), which is the process where sulfur is removed from crude oil by addition of hydrogen to form hydrocarbons and hydrogen sulfide. This PhD thesis represents my share in the project. Due to the adv......The HYDECAT project was initiated to make a targeted effort in the field of hydrodesulfurization (HDS), which is the process where sulfur is removed from crude oil by addition of hydrogen to form hydrocarbons and hydrogen sulfide. This PhD thesis represents my share in the project. Due...... the process of introducing them in their gaseous form into the µ-reactor at ambient pressure, and a specially designed flange with an incorporated ion source and internal heat tracing was implemented.  HDS of DBT and 4,6-DMDBT at 800 mbar on six mass-selected Pt samples were conducted. Two Pt samples of ∼3 nm...

  1. Elucidation of hydrodesulfurization mechanism using 35S radioisotope pulse tracer methods

    International Nuclear Information System (INIS)

    Kabe, Toshiaki; Qian, Weihua; Ishihara, Atsushi

    1997-01-01

    Molybdenum-based catalysts as hydrodesulfurization (HDS) catalysts are among the most important industrial catalysts. One of the new approaches characterizing the structure of such catalysts and the behavior of sulfur over the 'working' catalyst is a 35S radioisotope pulse tracer method (RPTM). By tracing the behavior of sulfur in the HDS reaction and sulfur exchange reaction over the sulfided Mo/Al 2 O 3 and Co-Mo/Al 2 O 3 catalysts under practical reaction conditions, it becomes possible for us to observe the catalytic behavior of the catalyst in situ. The formation process of active sites, the important role that H 2 S plays in this process, and the promotion by cobalt for Mo/Al 2 O 3 catalyst have become better understood

  2. The Effect of gamma-Al2O3, TiO2, and ZrO2 Supports on Hydrodesulfurization Activity of Transition-Metal Sulfides

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Zdražil, Miroslav

    2008-01-01

    Roč. 73, 8-9 (2008), s. 945-955 ISSN 0010-0765 R&D Projects: GA ČR GP104/06/P034 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrodesulfurization * transition metal sulfides * sulfide catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  3. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  4. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Diaz-Garcia, L.; Cortez de la Paz, M.T.

    2007-01-01

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS x catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  5. Coke formation on hydrodesulphurization catalysts. [Including effects of different promoters

    Energy Technology Data Exchange (ETDEWEB)

    Ternan, M.; Furimsky, E.; Parsons, B.I.

    1979-02-01

    The extent of coke formation was measured on a number of different hydrodesulfurization catalysts, primarily as a function of the catalyst chemical composition. Variations in the concentration of MoO/sub 3/ on the alumina, the type of catalyst promoter, the promoter/MoO/sub 3/ ratio, the presulfiding material and the reaction temperature were made. Increases in the reaction rate caused by either changes in the catalyst composition or by moderate changes in the reaction temperature were compared to the catalyst coke content. It was suggested that two types of coke were present on the catalyst, a reactive coke which is subsequently converted to reaction products and an unreactive coke which blocks catalytic sites.

  6. High-activity MgO-supported CoMo Hydrodesulfurization Catalysts Prepared by Non-aqueous Impregnation

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Gulková, Daniela; Vít, Zdeněk; Zdražil, Miroslav

    2015-01-01

    Roč. 162, JAN 2015 (2015), s. 430-436 ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : CoMo/MgO * benzothiophene hydrodesulfurization * non-aqueous impregnation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.328, year: 2015

  7. Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis

    DEFF Research Database (Denmark)

    Šaric, Manuel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    A relation between hydrogen evolution and hydrodesulfurization catalysis was found by density functional theory calculations. The hydrogen evolution reaction and the hydrogenation reaction in hydrodesulfurization share hydrogen as a surface intermediate and, thus, have a common elementary step...

  8. A series of NiMo/Al{sub 2}O{sub 3} catalysts containing boron and phosphorus. Part 2. Hydrodenitrogenation and hydrodesulfurization using heavy gas oil derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Dalai, A.K. [Catalysis and Chemical Reactor Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon (Canada) SK S7N 5C9; Adjaye, J. [Syncrude Canada Ltd., Edmonton Research Center (Canada)

    2004-04-08

    The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activity of a series of NiMo/Al{sub 2}O{sub 3} catalyst containing boron (B) and phosphorus (P) were tested in a trickle bed reactor using heavy gas oil derived from Athabasca bitumen. Detailed characterization of these catalysts is given in Part I of this paper. Addition of B and P caused the formation of extremely strong acid sites on the catalyst and enhanced its HDN activity. The total (TN), basic (BN) and non-basic nitrogen (NBN) conversions increased from 61.9 to 78.0wt.%, from 78.9 to 93.0wt.% and from 52.8 to 70.0wt.%, respectively, with the increase in B concentration from 0 to 1.7wt.% to NiMo/Al{sub 2}O{sub 3} catalyst. Similarly, TN, BN and NBN conversions increased from 61.9 to 78.4wt.%, from 78.9 to 91.0wt.%, and from 52.8 to 71.6wt.% with the addition of 2.7wt.% P. Though the addition of B and P to NiMo/Al{sub 2}O{sub 3} catalyst did not show any significant effect on S conversion, the HDN and HDS activities of the catalyst containing 1.7wt.% B and the one containing 2.7wt.% P are comparable to those of a commercial catalyst. The activity over extended period indicated that catalysts L and K were more stable (lower deactivation rate) in terms of nitrogen removal activity than catalyst B (reference catalyst). On the other hand, the stability for sulfur removal was comparable with catalyst B. Selected catalysts after use were characterized using BET surface area, TPR, TPD and SEM techniques which were correlated further with their activities.

  9. Hydrodesulfurization device for diesel fuel

    International Nuclear Information System (INIS)

    Al Asadi, Nadija

    2004-01-01

    New gas oil hydrodesulfurization unit was erected in OKTA Refinery. This unit is meant to produce low sulfur diesel. Capacity of the unit s 363.000 tons. Actually unit is producing diesel fuel with sulfur content of 0.035% wt, with possibility of decreasing sulfur content up to 0.005% wt. With this possibility OKTA reaches the target to supply market with diesel fuel satisfying local, and European fuel specifications. Feedstock for this unit are two gas oil fractions from the Crude oil atmospheric distillation column. As a result of new generation of CoMo and NiMo catalysts performance, high degree of desulfurization is reached at lower temperatures. Milder conditions enables longer operating period between two regenerations, savings of fuel, power etc. With further investments, and practically without changes, the unit will be able of producing diesel with sulfur content of 50 ppm and later with upgrading, 10 ppm. This means that OKTA has solved diesel quality problem for longer period. (Author)

  10. Investigation and development of heavy oil upgrading catalysts. 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.K.; Lee, I.C.; Yoon, W.L.; Lee, H.T.; Chung, H.; Hwang, Y.J.; Park, S.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This study aimed at the domestic development of HDS catalysts which are most fundamental and wide-used in the petroleum refinery. In this year, some experimental works were conducted for developing the effective utilization technology of the novel dispersed-catalysts in the hydro-desulfurization of heavy oils, and improving the reaction performance of alumina-supported Mo-based hydro-treating catalysts conventionally used in most of refineries. First, it was experimentally proved that the dispersed catalysts of Co-Mo could be employed for the hydro-desulfurization of a heavy atmospheric residual oil excluding the catalyst deactivation. The utilization of a carbon-expanded reactor in combination with this dispersed catalyst system exhibited an enhanced reaction performance and provided an efficient way for the separation and recovery of the dispersed catalytic component from oils. Second, the tungsten-incorporated WCoMo/{gamma}-Al{sub 2}O{sub 3} catalyst revealed the improved catalytic performance in the various hydro-treating reactions and in the initial deactivation rates for the high pressure hydro-treatment of a heavy oil as compared with the commercial CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst. This new experimental finding for the promoting role of the monomeric WO{sub 3} species in CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst may be generally applicable to the Mo-based alumina-sulfide phase, higher catalytic activity, and more extended service life. (author). 101 refs., 33 figs., 18 tabs.

  11. Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid

    NARCIS (Netherlands)

    Hollak, S.A.W.; Gosselink, R.J.A.; Es, van D.S.; Bitter, J.H.

    2013-01-01

    Group 6 (W, Mo) metal carbide catalysts are promising alternatives to hydrodesulfurization (NiMo, CoMo) catalysts and group 10 (Pd) type catalysts in the deoxygenation of vegetable fats/oils. Herein, we report a comparison of carbon nanofiber-supported W2C and Mo2C catalysts on activity,

  12. Effect of Promotion Metals on the Activity of MoS2/ZrO2 Catalyst in the Parallel Hydrodesulfurization of 1-Benzothiophene and Hydrogenation of 1-Methyl-Cyclohex-1-ene.

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Gulková, Daniela

    2016-01-01

    Roč. 118, č. 1 (2016), s. 313-324 ISSN 1878-5190 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : hydrodesulfurization * hydrogenation * support effect Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.264, year: 2016

  13. Effect of temperature in hydrocracking of light cycle oil on a noble metal-supported catalyst for fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.; Arandes, J.M.; Castano, P.; Olazar, M.; Bilbao, J. [Universidad del Pais Vasco (UPV-EHU), Departamento de Ingenieria Quimica, Bilbao (Spain); Barona, A. [Universidad del Pais Vasco (UPV-EHU), Escuela de Ingenieria, Departamento de Ingenieria Quimica y Medio Ambiente, Alda, Urkijo s/n, Bilbao (Spain)

    2012-04-15

    The effect of temperature has been studied in hydrocracking of light cycle oil (LCO), byproduct of fluidized catalytic cracking (FCC) units on a bifunctional catalyst (Pt-Pd/HY zeolite). The increase in both temperature and H{sub 2} partial pressure have an important attenuating effect on catalyst deactivation, given that they decrease sulfur equilibrium adsorption and enhance hydrocracking of coke precursors. Therefore, the catalyst maintains significant hydrodesulfurization and hydrocracking activity. As the temperature is increased, hydrocracking conversion and naphtha selectivity increase, although there is no significant dearomatization of the medium distillate fraction in the range of the studied experimental conditions. 400 C is the more suitable temperature for obtaining a high yield of naphtha with a high content of i-paraffins. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  15. An EXAFS study of the structure of Co-Mo hydrodesulfurization catalysts

    International Nuclear Information System (INIS)

    Clausen, B.S.; Topsoe, H.; Candia, R.; Villadsen, J.; Lengeler, B.

    1981-05-01

    By analysing the extended X-ray absorption fine structure (EXAFS) of the Mo absorption edge, structural information about both calcined and sulfided Mo/Al 2 O 3 and Co-Mo/Al 2 O 3 catalysts has been obtained. The calcined catalysts show only one strong backscatterer peak in the radial distribution function, which indicates that molybdenum is present in a highly disordered structure. For the Co-Mo/Al 2 O 3 catalyst the presence of cobalt seems to have some effect on the immediate surroundings of molybdenum. Upon sulfiding the catalysts, an ordering of the molybdenum-containing phase takes place as evidenced by the observation of a contribution from the second coordination shell. From a comparison with EXAFS data obtained on well-crystallized MoS 2 it is concluded that the molybdenum atoms in the catalysts are present in MoS 2 -like structures. Furthermore, from a comparison of the amplitude of the Mo-backscatterer peak it is found that these MoS 2 -like structures are ordered in very small domains. (orig.)

  16. Theoretical Studies in Heterogenous Catalysis: Towards a Rational Design of Novel Catalysts for Hydrodesulfurization and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez,J.A.; Liu, P.

    2008-10-01

    important advantage of the cluster approach is that one can use the whole spectrum of quantum-chemical methods developed for small molecules with relatively minor modifications. On the other hand, the numerical effort involved in cluster calculations increases rather quickly with the size of the cluster. This problem does not exist when using slab models. Due to the explicit incorporation of the periodicity of the crystal lattice through the Bloch theorem, the actual dimension of a slab calculation depends only on the size of the unit cell. In practical terms, the slab approach is mainly useful for investigating the behavior of adsorbates at medium and high coverages. Very large unit cells are required at the limit of low to zero coverage, or when examining the properties and chemical behavior of isolated defect sites in a surface. In these cases, from a computational viewpoint, the cluster approach can be much more cost effective than the slab approach. Slab and cluster calculations can be performed at different levels of sophistication: semi-empirical methods, simple ab initio Hartree-Fock, ab initio post-Hartree-Fock (CI, MP2, etc), and density functional theory. Density-functional (DF) based calculations frequently give adsorption geometries with a high degree of accuracy and predict reliable trends for the energetics of adsorption reactions. This article provides a review of recent theoretical studies that deal with the behavior of novel catalysts used for hydrodesulfurization (HDS) reactions and the production of hydrogen (i.e. catalytic processes employed in the generation of clean fuels). These studies involve a strong coupling of theory and experiment. A significant fraction of the review is focused on the importance of size-effects and correlations between the electronic and chemical properties of catalytic materials. The article begins with a discussion of results for the desulfurization of thiophene on metal carbides and phosphides, systems which have the

  17. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  18. Petroleum residue upgrading with dispersed catalysts. Part 1. Catalysts activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy)

    2000-12-04

    The results of a study aimed at the identification of the relevant chemical aspects involved in the process of upgrading heavy feedstocks in the presence of dispersed catalysts are discussed. The catalytic activity of different compounds was compared in terms of products yields and quality. Moreover, a detailed and systematic characterization of the catalysts recovered at the end of the reactions was achieved. The experimental work provided quite a large set of data, allowing to investigate the factors that may affect catalyst activity (precursor solubility, rate of activation, degree of dispersion, presence of promoters, etc.). The results of this study demonstrate that the best performances are obtained by the microcrystalline molybdenite generated in situ by oil-soluble precursors. The nature of the organic ligand does not play a very relevant role in influencing the hydrogenation activity. The presence of phosphorus, however, significantly enhances hydrodemetallation, at least in terms of vanadium removal. Bimetallic precursors show a slight synergistic effect towards the hydrodesulfurization reaction. Microsized powdered catalyst precursors have a much lower catalytic activity compared to the oil-soluble ones.

  19. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  20. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  1. From biomass to fuels: hydrotreating of oxygen-containing feeds on a CoMo/Al{sub 2}O{sub 3} hydrodesulfurization catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Viljava, T.-R.

    2001-07-01

    Biomass is a renewable alternative to fossil raw materials in the production of liquid fuels and chemicals. Liquefied biomass contains an abundance of oxygen-containing molecules that need to be removed to improve the stability of the liquids. A hydrotreating process, hydrodeoxygenation (HDO), is used for the purpose. Hydrodeoxygenation is similar to the hydrodesulfurization (HDS) process used in oil refining, relying upon a presulfided CoMo/{gamma}-Al{sub 2}O{sub 2}; catalyst. The stability of the sulfided catalyst is critical in HDO because biocrudes usually do not contain the sulfur compounds needed to maintain the sulfidation of the catalyst. The aim of this work was to examine the role of sulfur in maintaining the activity of the HDO catalyst. Sulfur was introduced as an organic sulfur-containing co-reactant or as a sulfur substituent in an oxygen-containing reactant molecule as a way of simulating mixed feeds composed of biocrudes and conventional crudes, or it was introduced as a low molecular weight sulfiding agent. In addition, the stability of the sulfided catalyst against changes in the feed composition was studied to find out whether the activity of the catalyst could be maintained by carrying out HDO alternately with HDS. Simultaneous HDO and HDS was studied in a batch reactor with model compounds having a sulfur-containing (inercapto or inethylmercapto) and an oxygen-containing (hydroxyl or inethoxy) substituent in the same molecule, and with binary mixtures of mono-substituted benzene compounds. In both cases, the reactions of the oxygencontaining substituents were strongly suppressed as long as a sulfur-containing functionality was present. HDS reactions of inercapto and inethylinercapto groups were either enhanced or retarded in the presence of oxygen-containing functionality. HDS was enhanced when the oxygen-containing substituent was located in Para-position to the sulfur substituent thereby increasing the electronegativity of the sulfur atom and

  2. Effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Solovetskij, Yu.I.; Lunin, V.V.; Miroshnichenko, I.I.

    1993-01-01

    A study was made on reasons of radiation-thermal damage by 2.0 MeV accelerated electron beams of surface and active metal phases of Al, Ni, Mo base hydrodesulfurization catalysts. Data of diffusion reflection electron spectra for coked industrial and model systems after radiation-thermal treatment are presented. 14 refs., 2 figs

  3. Iridium Sulfide and Ir Promoted Mo Based Catalysts.

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk

    2007-01-01

    Roč. 322, - (2007), s. 142-151 ISSN 0926-860X R&D Projects: GA ČR(CZ) GA104/06/0870 Institutional research plan: CEZ:AV0Z40720504 Keywords : iridium sulfide * IrMo catalyst * hydrodesulfurization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2007

  4. MoO3/Al2O3 Catalyst: Comparison of Catalysts Prepared by New Slurry Impregnation with Molybdic Acid with Conventional Samples

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A. A.; Kostova, N. G.; Vít, Zdeněk; Zdražil, Miroslav

    2003-01-01

    Roč. 77, - (2003), s. 767-778 ISSN 0137- 5083 R&D Projects: GA AV ČR IAA4072802 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrodesulfurization * molybdenum sulphide catalyst * alumina supported molybdenum oxide Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.515, year: 2003

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  6. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  7. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  8. Catalysts for petroleum desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.; Diemann, E.; Baumann, F.W.

    1988-01-01

    In order to obtain marketable products from low-quality oils, efficient hydrogenation processes are required for removing sulfur (hydrodesulfurization, HDS), nitrogen (hydrodenitrification, HDN), and oxygen (hydrodeoxygenation, HDO), which would poison the noble metal catalysts of the downstream petrochemical processes. Hydrogenation will produce low-sulfur, low-nitrogen fuels and thus contribute to the reduction of SO/sub 2/ and NO/sub x/ emissions which is long overdue from the ecological point of view (forest decline, acidification of surface bodies of water, etc.).

  9. Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2012-12-01

    Full Text Available Carbon nanotubes have been successfully synthesized using the catalytic chemical vapor deposition (CCVD technique over typical refining hydrotreating catalysts (hydrodesulfurization and hydrodenitrogenation containing Ni–Mo and Co–Mo supported on Al2O3 catalysts at 700°C in a fixed bed horizontal reactor using natural gas as a carbon source. The catalysts and the as-grown CNTs were characterized by transmission electron microscopy, HRTEM, X-ray diffraction patterns, EDX and TGA–DTG. The obtained data clarified that the Ni–Mo catalyst gives higher yield, higher purity and selectivity for CNTs compared to Co–Mo catalyst. XRD, TEM and TGA reveal also that the Ni–Mo catalyst produces mostly CNTs with different diameters whereas the Co–Mo catalyst produces largely amorphous carbon.

  10. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  11. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  12. Hydrothermal synthesis of Ni_2P nanoparticle and its hydrodesulfurization of dibenzothiophene

    International Nuclear Information System (INIS)

    Zhao, Qi; Han, Yang; Huang, Xiang; Dai, Jinhui; Tian, Jintao; Zhu, Zhibin; Yue, Li

    2017-01-01

    Nanosized nickel phosphide (Ni_2P) has been synthesized via hydrothermal reaction with environmental-friendly red phosphorus and nickel chloride. The reaction mechanism has been studied by measurement techniques of IC, XRD ,TEM, EDS, and XPS. The results showed that the particle sizes of as-prepared Ni_2P are in nanoscale ranging from 10 to 30 nm. In hydrothermal reaction, red phosphorus reacts with water to its oxyacids, especially its hypophosphorous acid (or hypophosphite) which can reduce nickel chloride to nickel, and then metallic nickel will penetrate into the rest of red phosphorus to generate nano-Ni_2P. Furthermore, the catalytic performance of as-synthesized Ni_2P for the hydrodesulfurization of dibenzothiophene has been tested. It has been shown that the HDS reaction process over Ni_2P catalyst agrees well with the pseudo-first order kinetic equation, and the HDS conversion can reach up to 43.83% in 5 h with a stable increasing catalytic activity during the whole examination process.

  13. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  14. Phosphorus poisoning of molybdenum sulfide hydrodesulfurization catalysts supported on carbon and alumina

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Vissers, J.P.R.; Beer, de V.H.J.; Prins, R.

    1988-01-01

    Phosphorus-containing Mo sulfide catalysts supported on ¿-Al2O3 and activated carbon were evaluated for their thiophene HDS activities. Phosphorus was added as phosphoric acid to the carrier material prior to the molybdenum component. The thiophene HDS activity of the carbon-supported catalysts was

  15. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  16. Coking of residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  17. Basic study of catalyst aging in the H-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Cable, T.L.; Massoth, F.E.; Thomas, M.G.

    1985-04-01

    Samples of CoMo/Al/sub 2/O/sub 3/ catalysts used in an H-coal process demonstration run were studied to determine causes of catalyst deactivation. Physical and surface properties of the aged and regenerated catalysts were examined. Model compounds were used to assess four catalyst activity functions, viz., hydrodesulfurization (HDS), hydrogenation, cracking and hydrodeoxygenation (HDO). Other tests were performed to study the effects of coke and metals separately on the four catalyst activity functions. Catalyst coke content and metal deposits first increased rapidly, then more gradually with exposure time in the process run. Surface area and pore volume markedly decreased with exposure time. Catalyst activities of aged catalysts showed a rapid decline with exposure time. One-day exposure to coal resulted in significant losses in HDS and hydrogenation activities and nearly complete loss in cracking and HDO activities. Although metal deposits caused some permanent catalyst deactivation, coke had a much greater effect. Regenerated catalysts showed less recovery of catalytic activity as processing time increased. These results agreed well with product inspections from the process run. Oxygen chemisorption on aged-regenerated catalysts decreased with catalyst exposure time, indicating a significant loss of active sites. However, ESCA results showed no evidence of extensive sintering of the active MoS/sub 2/ phase. Permanent deactivation of the longer-time exposed catalysts can be ascribed, at least partly, to lateral growth of the active molybdenum sulfide phase. In addition, some loss in cobalt promotion occurred early in the process, which may account for the rapid loss in HDS and HDO activity in regenerated catalysts. 24 references.

  18. Hydrodenitrogenation of heavy oil--1. Survey of hydrodenitrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Ono, T.; Togari, O.

    1979-11-01

    Forty catalysts consisting of binary oxides of silica/alumina, zirconium dioxide, titanium dioxide, or magnesium oxide or alumina/boron oxide, titanium dioxide, zirconium dioxide, or phosphorus pentoxide in various proportions, or of alumina alone, were screened for their activity for hydrodenitrogenation (kn) and hydrodesulfurization (ks) of a Gach Saran vacuum gas oil containing 0.16Vertical Bar3< nitrogen and 2.0Vertical Bar3< sulfur. The activities were correlated with the acid amount and acid strength of the catalysts as measured by temperature-programed desorption of ammonia. The mixed oxides of silica had low kn and low ks, and the kn was proportional to the acidity. The unmixed alumina catalysts showed low kn and high ks and no obvious relationship between activity and acidity. The binary alumina catalysts showed high kn and high ks and no obvious correlation between acidity and activity. Generally, catalysts with high acid strength had the lowest kn, especially the unmixed alumina.

  19. Hydrotreating catalyst deactivation by coke from SRC-II oil

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Y.; Kumata, F.; Massoth, F.E.

    1988-10-01

    Samples of a CoMo/Al/sub 2/O/sub 3/ catalyst were partially deactivated with SRC-II feed in an autoclave reactor to give coked samples of 5 to 18% C. The coked catalysts were analyzed for surface area, pore volume, coronene adsorption and diffusivity, and their catalytic activity determined for hydrodesulfurization (HDS), hydrodeoxygenation (HDO) and C-N hydrogenolysis (CNH) using model compounds. All of the above measurements decreased with increase in coke content. Property data indicate that some pores are blocked by coke and diffusivity results show narrowing of pore mouths with increasing coke content. Catalyst deactivation versus coke level was identical for HDS and HDO, but less for CNH. A simple model of coke deactivation was developed to relate activity to coke content. Coke is envisioned as forming wedge-like deposits in the catalyst pores. 11 refs., 5 figs., 3 tabs.

  20. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  1. The effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst. II. UV-Vis diffuse reflectance spectra of surface compounds after irradiation

    International Nuclear Information System (INIS)

    Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.

    1993-01-01

    Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs

  2. Catalytic hydrotreatment of coal-derived naphtha using commercial catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, S.-J.; Keogh, R.A.; Thomas, G.A.; Davis, B.H. (University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research)

    Naphtha samples derived from the liquefaction of a bituminous Illinois No. 6 and a subbituminous Black Thunder coal were hydrotreated using commercial Co-Mo/Al[sub 2]O[sub 3], Ni-Mo/Al[sub 2]O[sub 3], and Ni-W/Al[sub 2]O[sub 3] catalysts. It was easier to remove the N, O and S heteroatoms from Illinois No. 6 naphtha than from the Black Thunder naphtha. Nitrogen and oxygen were more difficult to remove than sulfur in the temperature range 200-400[degree]C. Considerable differences in catalyst activity for the hydrodenitrogenation (HDN), hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) reactions were observed. The Ni-Mo catalyst was found to be the most active catalyst for the HDN and HDO reactions and the least active catalyst for the HDS. The Co-Mo catalyst was the most active catalyst for the sulfur removal. For the Illinois No. 6 naphtha, a first-order reaction applies for the HDN and HDO reactions for all three catalysts. However, for the Black Thunder naphtha, the first-order reaction applies only at the lower space velocities; a large deviation is observed at higher space velocities. 11 refs., 15 figs., 4 tabs.

  3. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    International Nuclear Information System (INIS)

    Wang, Qingfang; Wang, Zhiqiang; Yin, Xiaoqian; Zhou, Linxi; Zhang, Minghui

    2016-01-01

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru_2P were synthesized using triphenylphosphine as phosphorus sources. • Ru_2P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO_2 prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H_2-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru_2P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N_2 adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru_2P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  4. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingfang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Yin, Xiaoqian; Zhou, Linxi [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); College of Chemistry and Environmental Science, Kashgar University, Kashgar 844006 (China)

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  5. Hydrothermal synthesis of Ni{sub 2}P nanoparticle and its hydrodesulfurization of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Han, Yang; Huang, Xiang, E-mail: materials@ouc.edu.cn; Dai, Jinhui; Tian, Jintao; Zhu, Zhibin; Yue, Li [Ocean University of China, Institute of Materials Science and Engineering (China)

    2017-04-15

    Nanosized nickel phosphide (Ni{sub 2}P) has been synthesized via hydrothermal reaction with environmental-friendly red phosphorus and nickel chloride. The reaction mechanism has been studied by measurement techniques of IC, XRD ,TEM, EDS, and XPS. The results showed that the particle sizes of as-prepared Ni{sub 2}P are in nanoscale ranging from 10 to 30 nm. In hydrothermal reaction, red phosphorus reacts with water to its oxyacids, especially its hypophosphorous acid (or hypophosphite) which can reduce nickel chloride to nickel, and then metallic nickel will penetrate into the rest of red phosphorus to generate nano-Ni{sub 2}P. Furthermore, the catalytic performance of as-synthesized Ni{sub 2}P for the hydrodesulfurization of dibenzothiophene has been tested. It has been shown that the HDS reaction process over Ni{sub 2}P catalyst agrees well with the pseudo-first order kinetic equation, and the HDS conversion can reach up to 43.83% in 5 h with a stable increasing catalytic activity during the whole examination process.

  6. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    Science.gov (United States)

    Yik, Edwin Shyn-Lo

    The presence of heteroatoms (e.g. S, N) in crude oil poses formidable challenges in petroleum refining processes as a result of their irreversible binding on catalytically active sites at industrially relevant conditions. With increasing pressures from legislation that continues to lower the permissible levels of sulfur content in fuels, hydrodesulfurization (HDS), the aptly named reaction for removing heteroatoms from organosulfur compounds, has become an essential feedstock pretreatment step to remove deleterious species from affecting downstream processing. Extensive research in the area has identified the paradigm catalysts for desulfurization; MoSx or WSx, promoted with Co or Ni metal; however, despite the vast library of both empirical and fundamental studies, a clear understanding of site requirements, the elementary steps of C-S hydrogenolysis, and the properties that govern HDS reactivity and selectivity have been elusive. While such a lack of rigorous assessments has not prevented technological advancements in the field of HDS catalysis, fundamental interpretations can inform rational catalyst and process design, particularly in light of new requirements for "deep" desulfurization and in the absence of significant hydrotreatment catalyst developments in recent decades. We report HDS rates of thiophene, which belongs to a class of compounds that are most resistant to sulfur removal (i.e. substituted alkyldibenzothiophenes), over a range of industrially relevant temperatures and pressures, measured at differential conditions and therefore revealing their true kinetic origins. These rates, normalized by the number of exposed metal atoms, on various SiO 2-supported, monometallic transition metals (Re, Ru, Pt), range several orders of magnitude. Under relevant HDS conditions, Pt and Ru catalysts form a layer of chemisorbed sulfur on surfaces of a metallic bulk, challenging reports that assume the latter exists as its pyrite sulfide phase during reaction. While

  7. A review of metal recovery from spent petroleum catalysts and ash.

    Science.gov (United States)

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  9. The functionalities of Pt/{gamma}-Al{sub 2}O{sub 3} catalysts in simultaneous HDS and HDA reactions

    Energy Technology Data Exchange (ETDEWEB)

    V.G. Baldovino-Medrano; Sonia A. Giraldo; Aristobulo Centeno [Universidad Industrial de Santander (UIS), Bucaramanga (Colombia). Centro de Investigaciones en Catalisis (CICAT)

    2008-08-15

    A Pt/{gamma}-Al{sub 2}O{sub 3} catalyst was tested in simultaneous hydrodesulfurization (HDS) of dibenzothiophene and hydrodearomatization (HDA) of naphthalene reactions. Samples of it were subjected to different pretreatments: reduction, reduction-sulfidation, sulfidation with pure H{sub 2}S and non-activation. The reduced catalyst presented the best performance, even comparable to that of Co(Ni)Mo catalysts. All catalyst samples were selective to the HDS reaction over HDA, and to the direct desulfurization pathway of dibenzothiophene HDS over the hydrogenation reaction pathway of HDS. The effect of H{sub 2}S partial pressure on the functionalities of the reduced Pt/{gamma}-Al{sub 2}O{sub 3} catalyst was studied. The results showed that an increase in H{sub 2}S partial pressure does not cause poisoning, but an inhibition effect, without changing the catalyst selectivity. Accordingly, the activity trends were ascribed to adsorption differences between the different reactive molecules over the same catalytic active site. TPR characterization along with a thermodynamics analysis showed that the active phase of reduced Pt/{gamma}-Al{sub 2}O{sub 3} is constituted by Pt{sup 0} particles. However, presulfidation of the catalyst leads to a mixture of PtS and Pt{sup 0}which has a negative effect on the catalytic performance without changing catalyst functionalities. 61 refs., 4 figs., 1 tab.

  10. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  11. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  12. Engelhard and IFP/Procatalyse set up worldwide catalysts venture

    International Nuclear Information System (INIS)

    Hunter, D.

    1992-01-01

    The new joint venture between Engelhard (Iselin, N) and Procatalyse (Paris), jointly owned by process licenser Institut Francais de Petrole (IFP; Rueil Malmaison, France) and Rhone-Poulenc (RP; Paris), marks the latest episode in the worldwide catalyst industry's restructuring. The operation will combine Engelhard's catalyst line, apart from its fluid catalytic cracking (FCC) and emission catalysts, with Procatalyse's offering. To be launched at the beginning of 1993, the venture will have annual sales of about $75 million. Reforming catalysts will be the biggest part of the venture's lineup at the outset, making it number three in the US, behind UOP - which dominates the sector - and Criterion. IFP is starting to establish a presence in North America with its reforming technology. But flat gasoline demand and reductions on aromatics in gasoline limit requirements for new reforming units, comments one competitor. Although lower sulfur specifications are putting some new demand into the hydrodesulfurization (HDS) catalyst market, both partners play down their prospects. The sector, whose leaders are Akzo and Crtierion, is continuing to suffer from severe overcapacity. Procatalyse's HDS business is mainly linked to IFP licensees, while Engelhard is due to mothball its Salt Lake City HDS catalyst plant by year-end, transferring output to Elyria

  13. New insides in the characterization of HDS industrial catalysts by HAADF-STEM

    Science.gov (United States)

    Del Angel, Paz; Ponce, Arturo; Arellano, Josefina; Yacaman, Miguel J.; Hernandez-Pichardo, Martha; Montoya, J. Ascencion; Escobar, Jose

    2015-03-01

    Hydrodesulfurization (HDS) catalysts are of great importance in the petroleum industry. Transition metal sulphides catalysts of Ni(Co)Mo(W)/Al2O3 are widely used for hydrotreating reactions, like hydrodenitrogenation and HDS. One of the main issue in these catalysts is to understand the mechanism of the reaction, where MoS2 plays the most important role in the catalytic activity. We studied an industrial NiMo/Alumina sulfide catalyst highly active by using aberration-corrected HAADF-STEM techniques. The used catalysts was a state-of- the art commercial nickel-molybdenum alumina-supported formulation, including organic agent modifier. This type of material belongs to a novel family of catalysts specially designed for ultra-low sulfur production from straight-run gas oil (SRGO), cycle oil, coker gas oil, or their combinations at operating conditions of commercial interest in hydrotreating units at industrial scale. Aberration corrected HAADF-STEM allowed to observe the nanostructure and location of MoS2 and his interaction with the alumina. The results indicate that the MoS2 is highly dispersed on the alumina, however the location of Ni is one of the task of this kind of catalyst.

  14. FY 1999 report on the results of the technology development for abatement of pollutants related to oil refining; 1999 nendo sekiyu seisei osen busshitsu teigen nado gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The technologies are developed for efficiently, economically improving quality of automobile fuels by, e.g., abatement of environmental pollutants present in the oil products. For improvement of hydrodesulfurization rate of gas oil deep hydrodesulfurization process, the catalyst components high in isomerization ability of the hard-to-desulfurize compounds are investigated, and effectiveness of zeolite is confirmed. For production of low-sulfur gas oil by hydrodesulfurization and hydrocracking of heavy oil, the catalyst with small pores is preferable for desulfurization of gas oil as the co-product of the treatment of heavy oil in the presence of catalyst for heavy oil desulfurization. For hydrocracking, the catalysts are prepared, on a trial basis, for achieving the target gas oil sulfur content of 10ppm or less by optimizing the zeolite and matrix properties. For suitability of gas oil qualities, it is found that the hydrogenation step is the rate-determining step among the reaction routes involved in the hydrogenation of difficult-to-desulfurize compounds. The data of low-sulfur gas oil qualities in Europe are collected. (NEDO)

  15. MoO3/Al2O3 catalyst: Comparison of catalysts prepared by new slurry impregnation with molybdic acid with conventional samples

    International Nuclear Information System (INIS)

    Spojakina, A.; Kostova, N.; Vit, Z.; Zdrazil, M.

    2003-01-01

    Alumina-supported molybdena catalysts were prepared by conventional impregnation with (NH 4 ) 6 Mo 7 O 24 (CIM) and by a new slurry impregnation method (SIM). SIM is the reaction of alumina support with a slurry of MoO 3 in water. Two commercial supports were used and the commercial Mo 3 /Al 2 O 3 catalyst was included for comparison. Maximum amount of MoO 3 deposited by SIM was about 19-20 % MoO 3 with the surface area of the support of 260-280 m 2 g -1 and this corresponded to saturation monolayer of similar density as described in literature for CIM catalysts. At the ratios of MoO 3 to Al 2 O 3 in the impregnation slurry below saturation monolayer, the pH of the slurry was 3.5-6 (depending on loading) and chemical erosion of alumina is negligible. However, using the large excess of MoO 3 (35% MoO 3 ) the pH was 2.4-3.4 and chemical erosion of alumina occurred. Silica contained in alumina supports was partly extracted as soluble silicomolybdic anions during SIM. The catalysts were characterized by BET, IR, DRS (UV-vis and NIR), TPR and catalytic activity in hydrodesulfurization of thiophene. Calcination had no significant effect on the properties of SIM catalysts and this proved that calcination is not needed in that method. All catalysts exhibited features of high monolayer dispersion of molybdena and no significant difference in structure and catalytic properties was observed between SIM and CIM catalysts. This confirmed that SIM is a simple, clean and reliable method of preparation of monolayer type MoO 3 /Al 2 O 3 catalysts. (author)

  16. Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Linde, Kasper; Hansen, Thomas Klint

    2011-01-01

    containing 16wt.% Mo (atomic ratio Co/Mo=1/3), which did not contain crystalline MoO3 and only small amounts of CoAl2O4. The hydrotreating activity was approximately 75% of that of commercial cobalt molybdenum catalysts prepared by wet impregnation of pre-shaped alumina extrudates. Since the commercial...... obtained consisted mostly of γ-Al2O3 with some CoAl2O4, as evidenced by X-ray diffraction (XRD) and UV–vis spectroscopy. Bulk MoO3 was not detected by XRD, except at the highest molybdenum content (32wt.%) and in the unsupported sample, indicating that molybdenum is well dispersed on the surface.......After activation by sulfidation the activity of the catalysts were measured for the three hydrotreating reactions hydrodesulfurization, hydrodenitrogenation and hydrogenation using a model oil containing dibenzothiophene, indole and naphthalene in n-heptane solution. The best catalyst was the FSP-produced material...

  17. Oxidation of Commercial Petronas Diesel with Tert-Butyl Hydroperoxide Over Poly molybdate Alumina Supported Catalyst Modified With Alkaline Earth Metals

    International Nuclear Information System (INIS)

    Wan Nazwanie Wan Abdullah; Rusmidah Ali; Wan Azlee Wan Abu Bakar

    2016-01-01

    Due to strict environmental legislation for ultra-low sulfur diesel fuels, increasing technical and operational challenges are imposed to conventional hydrodesulfurization (HDS) technology. Therefore, catalytic oxidative desulfurization (Cat-ODS) has been suggested to be an alternative method to replace a conventional method which is hydrodesulfurization. In this study, catalytic oxidation of commercial diesel was performed using an oil-soluble oxidant, tert-butyl hydroperoxide (TBHP), over poly molybdate supported on alumina MoO_3-PO_4/ Al_2O_3 catalyst. A commercial Petronas diesel with 440 ppm of total sulfur was employed to evaluate the elimination of sulfur compounds. Besides, the percentage of sulfur removal was measured by (GC-FPD). Alkaline earth metals, such as Calcium (Ca), Barium (Ba) and Strontium (Sr) were introduced on the surface of MoO_3-PO_4/ Al_2O_3. The results showed that the catalytic activity decreased in the order, Ca/ MoO_3-PO_4/ Al_2O_3>Sr/ MoO_3-PO_4/ Al_2O_3> Ba/ MoO_3-PO_4/ Al_2O_3. The Ca/ MoO_3-PO_4/ Al_2O_3 catalyst was characterized by XRD and FESEM. XRD results showed that the best catalyst was highly amorphous while FESEM micrograph illustrated an aggregation and agglomeration of various particle sizes. The catalytic activity of Ca/ MoO_3-PO_4/ Al_2O_3 catalyst with various Ca/ Mo ratios were also studied. When the Ca/ Mo ratio was 15:85, the sulfur removal was the highest (79 %) at 45 degree Celsius, 30 min and O/ S molar ratio 3.0 with solvent = dimethylformamide (DMF), diesel/ solvent ratio = 1.0. (author)

  18. The Rearrangement of 1-Methylcyclohex-1-ene during the Hydrodesulfurization of FCC Gasoline over Supported Co(Ni)Mo/Al2O3 Sulfide Catalysts: the Isolation and Identification of Branched Cyclic C7 Olefins

    Czech Academy of Sciences Publication Activity Database

    Žáček, Petr; Kaluža, Luděk; Karban, Jindřich; Storch, Jan; Sýkora, Jan

    2014-01-01

    Roč. 112, č. 2 (2014), s. 335-346 ISSN 1878-5190 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 ; RVO:61388963 Keywords : hydrodesulfurization * olefin hydrogenation * branched cyclic olefins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.170, year: 2014

  19. In situ X-ray absorption fine structure studies on the structure of nickel phosphide catalyst supported on K-USY

    CERN Document Server

    Kawai, T; Suzuki, S

    2003-01-01

    Local structure around Ni in a nickel phosphide catalyst supported on K-USY was investigated by an situ X-ray absorption fine structure (XAFS) method during the reduction process of the catalyst and the hydrodesulfurization (HDS) reaction of thiophene. In the passivated sample, Ni phosphide was partially oxidized but after the reduction, 1.1 nm diameter Ni sub 2 P particles were formed with Ni-P and Ni-Ni distances at 0.218 and 0.261 nm, respectively, corresponding to those of bulk Ni sub 2 P. In situ XAFS cleary revealed that the Ni sub 2 P structure was stable under reaction conditions and was an active structure for the HDS process.

  20. Controllable synthesis in a continuous mode of unsupported molybdenum catalysts with micro/nano size for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Hill, J.M.; Pereira Almao, P.R. [Calgary Univ., AB (Canada)

    2004-07-01

    Heavy oils contain significant amounts of impurities compared to conventional oils, thereby posing a challenge for hydroprocessing operations at refineries. Hydrodesulfurization is one of the important reactions involved in hydroprocessing. Transition metal sulfides have excellent properties in terms of sulphur removal. Molybdenum based catalysts have been used extensively in the petroleum industry for hydrotreating heavy oil fractions. Supported molybdenum based catalysts suffer strong deactivation in the traditional hydrotreating process due to the deposition of carbonaceous components on the surface of the catalyst when they are used in conventional fixed bed reactors. Unsupported catalysts have higher catalytic activity with better metal dispersion. Laboratory experiments were conducted in which micro/nano size unsupported molybdenum catalysts were synthesized from a water/oil emulsion. The catalysts were prepared in a continuous mode for online application to hydroprocessing or in situ upgrading. Dispersed molybdenum catalysts are more suitable for processing heavier feeds because they are less prone to deactivation. Also, their submicron size ensure high activities due to a large specific surface area. They are also sufficiently small to be readily dispersed in the residual oil. 4 refs., 1 tab., 2 figs.

  1. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Diaz-Garcia, L.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Cortez de la Paz, M.T.

    2006-01-01

    Four NiMo catalyst supported on Al 2 O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 A for HDS and HDN

  2. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    Science.gov (United States)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  3. Effect of phosphorus addition on the hydrotreating activity of NiMo/Al{sub 2}O{sub 3} carbide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB T6N 1H4 (Canada)

    2007-07-30

    A series of phosphorus promoted {gamma}-Al{sub 2}O{sub 3} supported NiMo carbide catalysts with 0-4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H{sub 2} temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide, increased the dispersion of {beta}-Mo{sub 2}C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalysts showed enhanced HDN activity compared to the NiMo/{gamma}-Al{sub 2}O{sub 3} catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/{gamma}-Al{sub 2}O{sub 3} carbide with LGO and dibenzothiophene. P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide accelerated C-N bond breaking and thus increased the HDN activity. (author)

  4. Influence of the sulfidation procedure on the performance and the selectivity of hydro-treating catalysts; Influence de la procedure de sulfuration sur la performance et la selectivite des catalyseurs d'hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Texier, S

    2004-10-15

    This work is part of a general effort to reduce the sulfur content of fuels to satisfy new European regulations. The objective was to determine the influence of several activating agents during sulfidation on the activity of hydro-desulfurization (HDS) catalysts. Indeed, sulfidation is a critical step to achieve a good level of HDS activity on sulfide catalysts. Under industrial conditions, the activation by organo-sulfide compounds would be more beneficial to obtain active catalysts than the use of hydrogen sulfide. A systematic study of the various operational parameters of the activation process was thus carried out by comparing precisely activation by H{sub 2}S or by organo-sulfides. This study reveals that the recognized advantage of organo-sulfides compounds has not a 'purely chemical origin' but would be more probably related to a heating and/or thermodynamic effect which depends on the processes and on the implementation of sulfidation under the industrial conditions. (author)

  5. Influence of the sulfidation procedure on the performance and the selectivity of hydro-treating catalysts; Influence de la procedure de sulfuration sur la performance et la selectivite des catalyseurs d'hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Texier, S.

    2004-10-15

    This work is part of a general effort to reduce the sulfur content of fuels to satisfy new European regulations. The objective was to determine the influence of several activating agents during sulfidation on the activity of hydro-desulfurization (HDS) catalysts. Indeed, sulfidation is a critical step to achieve a good level of HDS activity on sulfide catalysts. Under industrial conditions, the activation by organo-sulfide compounds would be more beneficial to obtain active catalysts than the use of hydrogen sulfide. A systematic study of the various operational parameters of the activation process was thus carried out by comparing precisely activation by H{sub 2}S or by organo-sulfides. This study reveals that the recognized advantage of organo-sulfides compounds has not a 'purely chemical origin' but would be more probably related to a heating and/or thermodynamic effect which depends on the processes and on the implementation of sulfidation under the industrial conditions. (author)

  6. Study on the influence of nickel and Al{sub 2}O{sub 3} support on MoS{sub 2} as hydrodenitrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hein, J.; Hrabar, A.; Gutierrez, O.Y.; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Catalysis Research Center

    2012-07-01

    Alumina-supported Mo and Ni-Mo catalysts as well as an unsupported NiMo catalyst were characterized and tested in the hydrodenitrogenation (HDN) of quinoline in the presence of dibenzothiophene (DBT). The supported catalysts had a well dispersed MoS{sub 2} phase with an average stacking degree around two and slabs length below 10 nm. The unsupported NiMo sulfide catalyst exhibited long, multistacked MoS{sub 2} slabs and contained segregated Ni{sub x}S{sub y} phases. The formation of the Ni-Mo-S phase in both Ni containing catalysts was verified by X-ray absorption spectroscopy, whereas the concentration of coordinatively unsaturated sites was higher for the supported Mo and Ni-Mo catalysts than for the unsupported one. All catalysts were active in the HDN of quinoline and hydrodesulfurization of DBT. The catalytic activity increased in the order Mo/Al{sub 2}O{sub 3} < NiMo/unsupported < Ni-Mo/Al{sub 2}O{sub 3}. Thus, the influence on the catalytic activity of the promoter metal Ni is more important than the presence of a support due to the formation of the Ni-Mo-S phase (more active than MoS{sub 2}). (orig.)

  7. Catalyst design for clean and efficient fuels

    OpenAIRE

    Šaric, Manuel; Jacobsen, Karsten Wedel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    This thesis contains a theoretical approach to specific problems in catalysis and is based upon fundamental concepts from thermodynamics and density functional theory calculations. It investigates the already existing and well established process of hydrodesulfurization and a novel process of synthesizing dimethyl carbonate electrochemically.Hydrodesulfurization is an industrial refining process in which sulfur is removed from oil in order to reduce SO2 emissions. The study on hydrodesulfuriz...

  8. High-throughput heterogeneous catalyst research

    Science.gov (United States)

    Turner, Howard W.; Volpe, Anthony F., Jr.; Weinberg, W. H.

    2009-06-01

    With the discovery of abundant and low cost crude oil in the early 1900's came the need to create efficient conversion processes to produce low cost fuels and basic chemicals. Enormous investment over the last century has led to the development of a set of highly efficient catalytic processes which define the modern oil refinery and which produce most of the raw materials and fuels used in modern society. Process evolution and development has led to a refining infrastructure that is both dominated and enabled by modern heterogeneous catalyst technologies. Refineries and chemical manufacturers are currently under intense pressure to improve efficiency, adapt to increasingly disadvantaged feedstocks including biomass, lower their environmental footprint, and continue to deliver their products at low cost. This pressure creates a demand for new and more robust catalyst systems and processes that can accommodate them. Traditional methods of catalyst synthesis and testing are slow and inefficient, particularly in heterogeneous systems where the structure of the active sites is typically complex and the reaction mechanism is at best ill-defined. While theoretical modeling and a growing understanding of fundamental surface science help guide the chemist in designing and synthesizing targets, even in the most well understood areas of catalysis, the parameter space that one needs to explore experimentally is vast. The result is that the chemist using traditional methods must navigate a complex and unpredictable diversity space with a limited data set to make discoveries or to optimize known systems. We describe here a mature set of synthesis and screening technologies that together form a workflow that breaks this traditional paradigm and allows for rapid and efficient heterogeneous catalyst discovery and optimization. We exemplify the power of these new technologies by describing their use in the development and commercialization of a novel catalyst for the

  9. Iron sulphide containing hydrodesulfurization catalysts : Mössbauer study of the sulfidibility of alpha-iron(III) oxide

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Beer, de V.H.J.; Kraan, van der A.M.

    1988-01-01

    As a first step in the study of the sulphidation of carbon-supported iron oxide catalyst systems the sulphiding of a well-characterized, unsupported model compound, viz. a-Fe2O3(mean particle diameter ca. 50 nm) was investigated using in-situ Mössbauer spectroscopy and the temperature-programmed

  10. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  11. Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha. 1. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.P.; Liaw, S.-J.; Srinivasan, R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-03-13

    Naphtha derived from an Illinois No. 6 coal contains appreciable quantities of sulfur-, nitrogen- and oxygen-containing compounds. The hydrotreatment of this naphtha was evaluated over unsupported transition metal sulfide catalysts (Ru, Rh, Mo, Pd, Zr, Mb). The catalysts were prepared by a room temperature precipitation reaction. Surface areas, crystalline phase and particle size distributions were determined by Brunauer-Emmet-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. A comparison of average particle sizes calculated from these three techniques has enable the understanding of the morphology of the transition metal sulfides. The catalysts exhibit a so-called volcano plot for the HDS of dibenzothiophene. Similar so-called volcano plots are also exhibited for the simultaneous hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and the hydrodeoxygenation (HDO) of the coal-derived naphtha containing a mixture of heteroatoms. The order of reactivity of the transition metal catalysts is the same for all three of the processes. Ruthenium sulfide is the most active catalyst for HDS, HDN and HDO of the coal-derived naphtha. 22 refs., 3 figs., 4 tabs.

  12. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction

    Science.gov (United States)

    Liu, Guoliang; Robertson, Alex W.; Li, Molly Meng-Jung; Kuo, Winson C. H.; Darby, Matthew T.; Muhieddine, Mohamad H.; Lin, Yung-Chang; Suenaga, Kazu; Stamatakis, Michail; Warner, Jamie H.; Tsang, Shik Chi Edman

    2017-08-01

    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

  13. Evaluation of phase separator number in hydrodesulfurization (HDS) unit

    Science.gov (United States)

    Jayanti, A. D.; Indarto, A.

    2016-11-01

    The removal process of acid gases such as H2S in natural gas processing industry is required in order to meet sales gas specification. Hydrodesulfurization (HDS)is one of the processes in the refinery that is dedicated to reduce sulphur.InHDS unit, phase separator plays important role to remove H2S from hydrocarbons, operated at a certain pressure and temperature. Optimization of the number of separator performed on the system is then evaluated to understand the performance and economics. From the evaluation, it shows that all systems were able to meet the specifications of H2S in the desired product. However, one separator system resulted the highest capital and operational costs. The process of H2S removal with two separator systems showed the best performance in terms of both energy efficiency with the lowest capital and operating cost. The two separator system is then recommended as a reference in the HDS unit to process the removal of H2S from natural gas.

  14. Preparation, characterization of Mo catalysts supported on Ni- containing calcium deficient hydroxyapatite and reactivity for the thiophene HDS reaction

    Directory of Open Access Journals (Sweden)

    Cherif A.

    2013-09-01

    Full Text Available Ni-containing Calcium Hydroxyapatite (NiCaHAp; 3.31 wt.% Ni was synthesized by coprecipitation and used as catalyst support. Molybdenum was supported on NiCaHAp by impregnation using ammonium heptamolybdate. The prepared catalysts Mo(x/NiCaHAp (x: 2 to 8 wt % in Mo were characterized by elemental analysis, XRD, FT-IR, N2 adsorption-desorption and TEM-EDX. The catalysts were sulfided in-situ at 673 K under flowing H2S/H2 (15 Vol.% H2S and tested in hydrodesulfurization (HDS of thiophene at 673 K. The main XRD peaks of hydroxyapatite CaHAp phase were observed in all samples and a peak due probably to crystalline MoO3 phase was also identified from the results. However, no crystalline phase of NiO was found for the catalysts, which showed its Ni species were highly dispersed. The sulfided catalysts Mo(x/NiCaHAp presented are active in HDS of thiophene, despite the presence of some large MoO3 crystallites and incomplete sulfidation. This activity may be due to interaction of NiO and MoO3 on CaHAp resulting in the formation of Ni-Mo-S phase under flowing H2S/H2. When the molybdenum content increased the HDS activity increasead slightly, which was caused by the agglomeration of MoO3. The Mo(8/NiCaHAp catalyst is about two times less active for thiophene HDS than the commercial NiMoP/Al2O3.

  15. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  16. Effects of catalytic hydrotreating on light cycle oil fuel quality

    International Nuclear Information System (INIS)

    Anabtawi, J.A.; Ali, S.A.

    1991-01-01

    This paper reports on a pilot plant study that was conducted to evaluate three commercial catalysts for hydrotreating of light cycle oil to reduce its aromatic content and improve the cetane index. The operating parameters were varied between 325 and 400 degrees C, 1 and 3 h - 1 , and 4 and 10 MPa at 535 L/L. The data showed that, in general, the product density and aromatic content decreased as the temperature or pressure increased or space velocity decreased. The cetane index improvement ranged from 7.3 to 10.0 for the Ni-W/Al 2 O 3 catalyst and from 6.1 to 10.1 for the Ni-Mo/Al 2 O 3 catalysts. The catalyst performance was evaluated in terms of hydrodesulfurization, hydrodenitrogenation, hydrogenation, aromatic saturation, and hydrogen consumption. This study confirms that light cycle oil can be hydrotreated to improve its cetane quality, thus increasing the extent of its blending ratio into the diesel pool

  17. Effect of Co Mo/HSO3-functionalized MCM-41 over heavy oil

    International Nuclear Information System (INIS)

    Schacht, P.; Ramirez G, M.; Ramirez, S.; Aguilar P, J.; Norena F, L.; Abu, I.

    2010-01-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  18. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  19. A New Approach to Deep Desulfurization of Light Cycle Oil over Ni2P Catalysts: Combined Selective Oxidation and Hydrotreating

    Directory of Open Access Journals (Sweden)

    Gwang-Nam Yun

    2018-03-01

    Full Text Available Amphiphilic phosphotungstic acid (A-PTA and Ni2P/SBA-15 catalysts were prepared to apply for selective oxidation of refractory sulfur compounds in light cycle oils and hydrotreating of the oxidized S compounds, respectively. Physical properties of the catalyst samples were analyzed by BET, CO uptake chemisorption, and TEM. Structural properties for the supported Ni2P catalysts were analyzed by X-ray diffraction (XRD and extended X-ray absorption fine structure (XAFS spectroscopy. The selective oxidation of S compounds in the LCO feed was conducted in a batch reactor at H2O2/S ratio of 10, atmospheric pressure and 353 K and then the products were fed to a continuous flow fixed-bed reactor for hydrotreating at 623 K, 3.0 MPa, and LHSV’s of 0.5–2.0 h−1. A-PTA catalyst showed a high oxidation conversion of 95% for a real LCO feed. The following hydrotreating led to a hydrodesulfurization (HDS conversion of 99.6% and a hydrodenitrogenation (HDN conversion of 94.7% over Ni2P/SBA-15, which were much higher than those of direct hydrotreating results which gave an HDS conversion of 63.5% and an HDN conversion of 17.5% based on the same LHSV of 2.0 h−1. It was revealed that the reduction in refractory nitrogen compounds after oxidative treatment contributed to the increase of the following HDS activity.

  20. Effect of Co Mo/HSO{sub 3}-functionalized MCM-41 over heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, P.; Ramirez G, M.; Ramirez, S. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico); Aguilar P, J.; Norena F, L. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, 02200 Mexico D. F. (Mexico); Abu, I., E-mail: pschacha@imp.m [University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)

    2010-07-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  1. Syntheses, Characterization and Kinetics of Nickel-Tungsten Nitride Catalysts for Hydrotreating of Gas Oil

    Science.gov (United States)

    Botchwey, Christian

    This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed

  2. Integration of non linearities in the economic refining model. Case of the hydro-desulfurization unit; Prise en compte de non-linearites dans la modelisation economique du raffinage. Cas de l`unite d`hydrodesulfuration

    Energy Technology Data Exchange (ETDEWEB)

    Baudouin, C.

    1998-12-08

    In recent years, the modifications in oil products demand and the increased quality requirements of European specifications have driven the oil industry towards more and more complex refining schemes. This situation should become even more pronounced in the future. Under these conditions, a technical analysis of the units operation must be carried out and combined with an economic approach. The research undertaken is divided into two parts. The first part is dedicated to the study of the European refining industry and its representation by the classic linear programming model. In these models, the units` operation is represented by typical running. The technical parameters are not explicitly taken into account. Therefore, in order to meet future requirements and to represent this activity in the best way, the current model must be improved. The second part relates to an analysis with forecasts future developments in the European refining sector up to 2010 and how linear programming models themselves will be adapted. Thus, the straight run gas oil hydro-desulfurization unit is completely redefined. The operating conditions and the design parameters of this unit are introduced into the model. Depending on the feed, they determine the performances and the material balance of the unit. Some of these operating conditions are new variables and appear in non linear equations. Therefore, we need non linear programming (the augmented Lagrangians method) to solve this detailed model. The results of the second part confirm those determined by the first part. They also provide us with a better representation of the hydro-desulfurization unit (taking the optimisation of the operating conditions into account). Using these models and the analysis described above, we can develop an outline plan of the future European refining industry. This shows that sizeable investments in both conventional and deep conversion capacity will be required to meet the requirements of changes in

  3. Hydrotreating and hydrocracking of Athabasca bitumen derived heavy gas oils using NiMo catalyst supported on titania modified alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Bakhshi, N.N.; Dalai, A.K.; Adjaye, J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering, Catalysis and Chemical Reaction Engineering Laboratories]|[Syncrude Canada Ltd., Edmonton, AB (Canada)

    2006-07-01

    Different NiMo catalysts supported on titania modified Al{sub 2}O{sub 3} were synthesized and characterized in an effort to study the hydrodenitrigenation (HDN) and hydrodesulfurization (HDS) of different gas oils derived from Athabasca bitumen. The Al{sub x}O{sub 3} supports were modified by incorporating up to 9 wt per cent titanium (Ti). All modified supports as well as fresh and spent catalysts were characterized by BET surface area, pore volume and pore diameter, XRD, TPR, TPD and SEM. A trickle-bed reactor using 3 different gas oils from the Athabasca bitumen was used to test the initial activity of these catalysts. The 3 oils were light gas oil (LGO), heavy gas oil (HGO) and blended gas oil having 50 per cent LGO and 50 per cent HGO. The study showed that nitrogen conversion increased for all the gas oils when Ti was incorporated into the alumina. With an increase in Ti concentrations from 0 to 6 wt per cent, nitrogen conversion increased from 57-69.5 wt per cent, 75-80.2 wt per cent, 83-91.5 wt per cent and for LGO, HGO and blended, respectively. Nearly 86 wt per cent sulphur conversion was obtained for all Ti concentrations for LGO, while HGO and blended sulphur conversions were in the range of 96-97 wt per cent. Detailed hydrotreating and hydrocracking of HGO was then performed using the 6 wt per cent Ti modified catalyst because it achieved the maximum nitrogen conversion. This paper also presented the temperature, pressure and liquid hourly space velocity for this catalyst along with the maximum nitrogen and sulphur conversions. Results were compared with those of commercial catalysts. tabs., figs.

  4. Alkali promotion effect in Fischer-Tropsch cobalt-alumina catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, M.V.; Davydov, P.E.; Kazantsev, R.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Belousova, O.S.; Lapidus, A.L. [Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Promoting Co-alumina Fischer-Tropsch synthesis catalysts with alkali and alkaline-earth metals was studied. XRD, oxygen titration and CO chemisorption were used for the characterization of the catalysts. The best results in terms of catalyst selectivity and long-chain alkanes content in synthesized products were obtained with K-promoted catalyst. Catalytic performance strongly depends on K:Co atomic ratio as well as preparation procedure. Effect of K loading on selectivities is non-linear with extreme point at K:Co=0.01. Significant increase in C{sub 5+} selectivity of K-promoted catalyst may be explained as a result of strong CO adsorption on the catalyst surface, as was confirmed in CO chemisorption experiments. (orig.)

  5. Atomic-scale investigation of the interaction of organic molecules with MoS2-based hydrotreating model catalysts

    DEFF Research Database (Denmark)

    Salazar Moreira, Norberto José

    The aim of this work is to provide new insight into the formation, activation and reactivity of hydrotreating catalysts extensively used in the refinery for the conversion of heavy feedstocks and for improving the quality of the final oil products. This is done through numerous studies of the con......The aim of this work is to provide new insight into the formation, activation and reactivity of hydrotreating catalysts extensively used in the refinery for the conversion of heavy feedstocks and for improving the quality of the final oil products. This is done through numerous studies...... of the conversion of molybdenum oxides and metallic precursors into molybdenum disulfide (MoS2), the active phase involved in most of the hydrotreating reactions, especially for those dedicated to the removal of sulfur from various fuel fractions, commonly referred to as hydrodesulfurization (HDS). The evolution...... the presence of the reduced MoOx phase impedes the MoS2 growth and leads to rather stable amorphous oxysulfide phases. The sulfidation in H2S atmosphere of molybdenum metal and bimetallic cobalt-molybdenum clusters deposited on Au(111) facilitate instead the formation of well-dispersed MoS2 and Co-promoted Mo...

  6. Studies of the kinetics and mechanisms of ammonia synthesis and hydrodesulfurization on metal single-crystal surfaces

    International Nuclear Information System (INIS)

    Gellman, A.J.; Asscher, M.; Somorjai, G.A.

    1985-01-01

    The authors studied the ammonia synthesis reaction over Fe and Re single crystal surfaces and the hydrodesulfurization of thiophene over the Mo(100) single crystal surface. The studies have been performed using UHV surface science tools with the capability of exposing the surfaces to high pressure, high temperature reaction conditions. The ammonia synthesis reaction was shown to be extremely sensitive to surface structure on both Fe and Re, favoring surfaces with a rough or open topography. The HDS reaction on the Mo(100) surface has been shown to be similar to that on MoS/sub 2/ and appears to proceed via a reaction path that does not produce a strong Mo-S bond as an intermediate species

  7. Analysis and removal of heteroatom containing species in coal liquid distillate over NiMo catalysts

    Energy Technology Data Exchange (ETDEWEB)

    S.D. Sumbogo Murtia; Ki-Hyouk Choi; Kinya Sakanishi; Osamu Okuma; Yozo Korai; Isao Mochida [Kyushu University, Fukuoka (Japan). Institute for Materials Chemistry and Engineering

    2005-02-01

    Heteroatom containing molecules in South Banko coal liquid (SBCL) distillate were identified with a gas chromatograph equipped with an atomic emission detector (GC-AED). Thiophenes and benzothiophenes were found to be the major sulfur compounds. Pyridines, anilines, and phenols were the major nitrogen and oxygen compounds, respectively. Reactivities of heteroatom containing species in hydrotreatment over conventional NiMoS/Al{sub 2}O{sub 3}, NiMoS/Al{sub 2}O{sub 3}-SiO{sub 2} catalysts were very different according to their cyclic structure as well as the kind of heteroatom in the species. The sulfur species were completely desulfurized over the catalysts examined in the present study by 60 min at 360{degree}C under initial hydrogen pressure of 5 MPa. However, hydrodenitrogenation was more difficult than hydrodesulfurization even at 450{degree}C. Anilines were found the most refractory ones among the nitrogen species. Hydrodeoxygenation of SBCL was also difficult in the hydrotreatment conditions examined in the present study. Dibenzofuran was the most refractory molecule among the oxygen species. A two-stage reaction configuration at 340 and 360{degree}C improved HDN and HDO reactivities, although the conversions were still insufficient. Increasing the acidity of the support as well as the loading of the metals on the NiMoS/Al{sub 2}O{sub 3} catalysts improved very much the heteroatom reduction to achieve complete removal of nitrogen by two-stage reaction configuration at 340-360{degree}C and oxygen at 360{degree}C, respectively. The addition of H{sub 2}S in the reaction atmosphere inhibited the HDN reaction but increased markedly the HDO conversion. The acidic support increased the activity in hydrotreatment through enhancing the hydrogenation activity, while H{sub 2}S maintained the catalyst in a sufficiently sulfided state. 19 refs., 4 figs., 8 tabs.

  8. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  9. Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters

    Energy Technology Data Exchange (ETDEWEB)

    Borges Junior, Itamar; Silva, Alexander M., E-mail: itamar@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro-RJ (Brazil). Programa de Pos-Graduacao em Engenharia de Defesa

    2012-10-15

    A general two-step theoretical approach to study electronic redistributions in catalytic processes is presented. In the first step, density functional theory (DFT) is used to fully optimize two geometries: the cluster representing the catalyst and the cluster plus adsorbed molecule system. In the second step, the converged electron density is divided into multipoles centered on atomic sites according to a distributed multipole analysis which provides detailed topological information on the charge redistribution of catalyst and molecule before and after adsorption. This approach is applied to thiophene adsorption on the 10{sup -}10 metal edge of Ni(Co)MoS catalysts and compared to the same reaction on bare MoS{sub 2}. Calculated adsorption energies, geometries and multipole analysis indicate weak thiophene chemisorption on both cases. A Coulombic bond model showed that surface metal-sulfur bond strengths in Ni(Co)MoS promoted catalysts are considerably smaller than in bare MoS{sub 2}, thus confirming the origin of the enhancement of hydrodesulfurization (HDS) activity in these catalysts. (author)

  10. Comparison of P-containing {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB (Canada)

    2006-09-01

    Phosphorus containing {gamma}-Al{sub 2}O{sub 3} supported bimetallic Ni-Mo carbide, nitride and sulfide catalysts have been synthesized from an oxide precursor containing 12.73wt.% Mo, 2.54wt.% Ni and 2.38wt.% P and characterized by elemental analysis, pulsed CO chemisorption, surface area measurements, X-ray diffraction, temperature-programmed reduction and DRIFT spectroscopy of CO adsorption. DRIFT spectroscopy of adsorbed CO on activated catalysts showed that carbide and nitride catalysts have surface exposed sites of Mo{sup o+} (0hydrodesulfurization (HDS) activities of the bimetallic Ni-Mo carbide, nitride and sulfide catalysts were compared against commercial Ni-Mo/Al{sub 2}O{sub 3} catalyst in a trickle bed reactor using light gas oil and heavy gas oil derived from Athabasca bitumen in the temperature range 340-370 and 375-400{sup o}C respectively at 8.8MPa. The gradual transformation of Ni-Mo carbide and nitride phases into Ni-Mo sulfide phases was observed during precoking period, and the formed Ni-Mo sulfide phases enhanced the HDN and HDS activities of carbide and nitride catalysts. The {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic sulfide catalyst was found to be more active for HDN and HDS of light gas oil and heavy gas oil than the corresponding carbide and nitride catalysts on the basis of unit weight. (author)

  11. Effect of drying method on properties of vanadium-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Savchenko, L.A.; Tarasova, D.V.; Tret'yakov, Yu.D.; Olen'kova, I.P.; Nikoro, T.A.; Maksimov, N.G.

    1981-01-01

    Effect of drying method of molybdenum and vanadium salt solutions on physicochemical and catalytical properties of vanadium-molybdenum catalysts is studied. It is shown that the drying method of solutions determines the completeness of vanadium binding into oxide vanadium-molybdenum compounds and thus effects the activity and selectivity of catalysts in acrolein oxidation into acrylic acid. Besides the drying method determines the porous structure of catalysts [ru

  12. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  13. Effect of the reaction medium on the properties of solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boreskov, G.K.

    1980-01-01

    The effect of the reaction medium on the properties of solid catalysts, such as bulk or supported metals, alloys, or metal oxides, include variations in surface composition, structure, and catalytic properties due to catalyst interaction with the reactants. This interaction leads to the establishment of a steady state, which is determined by the composition of the reaction medium and temperature, but is independent of the initial state of the catalyst. This steady state for a catalyst of a given chemical composition is characterized by an approximately constant specific activity in most chemical reactions, which is almost independent of the preparation method, surface area, or crystal size of the catalyst. The structurally sensitive reactions, which occur only on limited segments of catalyst surface characterized by specific structures, are the exception. The effects of the variations in catalytic properties caused by the reaction medium on the steady-state and nonsteady-state reaction kinetics are also discussed based on the results obtained for oxidative dehydrogenation of 1-butene over an iron/antimony oxide catalyst.

  14. The effect of catalysts blending on coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, F.; Gulyurtlu, I.; Lobo, L.S.; Cabrita, I. [INETI, Lisbon (Portugal)

    1999-05-01

    The effect of several catalysts on coal hydropyrolysis efficiency was studied, having selected catalysts with different characteristics and behaviours. For the experimental conditions used Fe{sub 2}O{sub 3} and ICI 41-6 showed selectivity towards lighter fractions, whilst ZnCl{sub 2} led to the highest coal conversion and to the greatest preasphaltenes yields. These results suggested the use of mixtures of catalysts. The heavier molecules of asphaltenes produced as a result of ZnCl{sub 2} action, could then be converted into lighter fractions by the action of a selective catalyst. Coal hydropyrolysis tests were undertaken using ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3} or ICI 41-6. These mixtures of catalysts led to increased conversions and higher product yields. The best results were obtained in the presence of ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3}. In an attempt to interpret these results, coal structure before and after swelling pre-treatment was also studied using SEM. 17 refs., 11 figs., 1 tab.

  15. Insight into thiophene hydrodesulfurization on clean and S-modified MoP(010): a periodic density functional theory study.

    Science.gov (United States)

    Li, Guixia; Zhao, Lianming; Zhu, Houyu; Liu, Xiuping; Ma, Huifang; Yu, Yanchen; Guo, Wenyue

    2017-07-05

    The hydrodesulfurization (HDS) of thiophene on clean and S-modified MoP(010) is investigated to understand the HDS mechanism as well as the surface sulfur (S) atom effect using periodic density functional theory (DFT). The results show that thiophene prefers strongly flat adsorption on both the clean and S-modified surfaces, in either the molecular state or the dissociative state breaking simultaneously one C-S bond, and the adsorption of thiophene can be slightly weakened by the surface S atom. Thermodynamic and kinetic analysis indicates that the HDS of thiophene in both the molecular and dissociative adsorption states prefers to take place along the direct desulfurization (DDS) pathway rather than hydrogenation on both the clean and S-modified MoP(010) surfaces. Surface S shows a promotion effect on the HDS catalytic activity of MoP(010), because the energy barrier/rate constant of the rate-determining step on the DDS pathway is decreased/enlarged under the S modification. Compared with the situation of MoP(001), MoP(010) should have relatively low HDS activity, since a higher energy barrier as well as weaker exothermicity is involved in the reaction on the latter surface.

  16. Effect of catalysts on heterogeneous oxidation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Glazkova, A P; Kazarova, Yu A; Suslov, A V

    1978-01-01

    Analyzes the effects of catalysts on the heterogeneous oxidation of coal in deflagration processes of stoichiometric mixtures. The following substances are studied as catalysts: alkali and alkaline-earth metals, and compounds of copper, lead, chromium, iron, and sulfur. In the first case the catalysts are used in the form of nitrates and the nitrate simultaneously plays the role of an oxidizer. In the second case the catalysts are added to stoichiometric mixtures of ammonium nitrate with carbon. It is shown that during carbon oxidation by nitrates the catalytic efficiency of the metals studied forms the following order: sodium > lead > potassium > barium > aluminium > calcium > magnesium > copper. The calculated and experimental parameters of combustion are given. The problem of dependence of combustion rate on combustion heat, the mechanism of the combustion reaction and the catalytic effects of the additives are discussed. Features of heterogeneous catalysis in the oxidation process of carbon by various oxidizers are analyzed. The investigations on the combustion process are important as the process takes place during explosion of coal dust in underground coal mines and during burning of coal in industrial furnaces. (34 refs.) (In Russian)

  17. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  18. Modeling the Thiophene HDS reaction on a molecular level

    NARCIS (Netherlands)

    Diemann, E.; Weber, T.; Müller, A.

    1994-01-01

    The structure of MoS2/Al2O3 catalyst and the initial step of the hydrodesulfurization (HDS) reaction using an experimental model have been studied by in situ Raman-, infrared emission (IRE)-, inelastic electron tunneling (IET)-spectroscopy and thermal desorption measurements accompanied by molecular

  19. Highly active sulfided CoMo catalysts supported on (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, José, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, Gustavo A. Madero, México, D.F. 07730 (Mexico); De Los Reyes, José A., E-mail: jarh@xanum.uam.mx [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Ulín, Carlos A. [Area de Ing. Química, UAM – Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México, D.F. 09340 (Mexico); Barrera, María C., E-mail: mcbdgavilan@gmail.com [Facultad de Ciencias Químicas, Universidad Veracruzana, Av. Universidad km. 7.5, Col. Santa Isabel, Coatzacoalcos, Veracruz, México, D.F. 96538 (Mexico)

    2013-12-16

    (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} ternary oxide at 20 mol% Al{sub 2}O{sub 3} (80% ZrO{sub 2}–TiO{sub 2}, in turn at 40–60 mol ratio) prepared by controlled co-precipitation (by urea thermal decomposition) of zirconium (ZrOCl{sub 2}·8H{sub 2}O) and titanium (TiCl{sub 4}) chlorides over a ground alumina substrate constitutes a promising material to be used as carrier of sulfided hydrodesulfurization (HDS) catalysts. After calcining (at 500 °C), the ternary oxide presented textural properties (S{sub g} = 387 m{sup 2} g{sup −1}, V{sub p} = 0.74 ml g{sup −1}, mean pore diameter = 7.6 nm) suitable to its utilization as carrier of catalysts applied in the oil-derived middle distillates HDS. As determined by temperature programmed-reduction and Raman and UV–vis spectroscopies ZrO{sub 2}–TiO{sub 2} deposition over alumina substrate resulted in decreased proportion of Mo{sup 6+} species in tetrahedral coordination on the oxidic impregnated material. As those species constitute hardly reducible precursors, their diminished concentration could be reflected in enhanced amount of Mo species susceptible of activation by sulfiding (H{sub 2}S/H{sub 2} at 400 °C) over our ternary carrier. Limiting the concentration of zirconia-titania (at 40–60 mol ratio) to 20 mol% in the mixed oxides support allowed the preparation of highly active promoted (by cobalt, at Co/(Co + Mo) = 0.3) MoS{sub 2} phase (at 2.8 atoms/nm{sup 2}), that formulation showing excellent properties in hydrodesulfurization (HDS) of both dibenzothiophene and highly-refractory 4,6-dimethyl-dibenzothiophene. Due to alike yields to various HDS products over CoMo/(ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3} and the corresponding Al{sub 2}O{sub 3}-supported formulation, presence of similar actives sites over those catalysts was strongly suggested. It seemed that enhanced concentration of octahedral Mo{sup 6+} over the oxidic impregnated precursor with (ZrO{sub 2}–TiO{sub 2})/Al{sub 2}O{sub 3

  20. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  1. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Yang, Xiaojun, E-mail: 10100201@wit.edu.cn [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Cao, Shuo, E-mail: cao23@email.sc.edu [North America R& D Center, Clariant BU Catalysts, Louisville, 40209, KY (United States); Zhou, Jie [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Wu, Yuanxin [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Han, Jinyu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yan, Zhiguo [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Zheng, Mingming [Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Oilcrops Lipid Chemistry and Nutrition, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Polyvinyl alcohol (PVA) inhibited the sintering and reduction of Pd nanoparticles. • Activity was improved for supported Pd catalysts with PVA modified method. • PVA modified method minimized the catalyst deactivation. • This work provides an insight of the regeneration strategies for Pd catalysts. - Abstract: A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  2. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts : Effect of catalyst synthesis protocols on activity

    NARCIS (Netherlands)

    Piskun, A.s.; Ftouni, J.; Tang, Z.; Weckhuysen, B.m.; Bruijnincx, P.c.a.; Heeres, Hero J.

    2018-01-01

    γ-Valerolactone (GVL) is a value-added renewable chemical with great potential and can be obtained from biomass by the hydrogenation of levulinic acid (LA) using metal-based catalysts, such as Ru/TiO2. We here report an in depth study of the effect of catalyst synthesis parameters on the performance

  3. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  4. Local Electric Field Effects on Rhodium-Porphyrin and NHC-Gold Catalysts

    Science.gov (United States)

    2015-01-05

    AFRL-OSR-VA-TR-2015-0023 (NII) - Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold Catalysts MATTHEW KANAN LELAND STANFORD JUNIOR UNIV...Effects on Rhodium -Porphyrin and NHC-Gold Catalysts Principal Investigator: Matthew W. Kanan Project Publications: 1. “An Electric Field–Induced Change...Stanford University Grant/Contract Title The full title of the funded effort. (NII)-Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold

  5. Effect of Cobalt Source on the Catalyst Reducibility and Activity of ...

    African Journals Online (AJOL)

    The effect of cobalt precursor (nitrate, acetate and chloride salts) on the catalyst reducibility and dispersion, ... balt catalysts (>5.0 wt%) prepared using ammonium cobalt ... heated from 323 K to 1073 K using a heating ramp of 10 K min–1.

  6. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi I.

    2018-01-01

    Full Text Available This research is aimed to study the effect of catalyst pellet-diameter and catalyst basicity on the transesterification process of soybean oil into biodiesel over a hybrid catalytic-plasma reactor. Various catalyst diameters (3, 5, and 7 mm were tested in this reaction system. Catalyst basicity was also examined by comparing fresh and used catalyst as well as with and without K2O promoter. All catalysts testing were performed in a hybrid plasma-catalytic reactor (dielectric barrier discharge – DBD type. From the results, the synergistic effects roles of the catalyst and the plasma in the transesterification process are important, in which the energetic electrons within plasma assist the reaction on the catalyst surface by an exciting bonded electron. The catalyst basicity was influenced by the composition of CaO on the catalyst as well as roles of the alkaline K2O promoter. Catalyst basicity is important in producing biodiesel with high performance. Yield of fatty acid alkyl ester (FAAE or biodiesel is slightly influenced by the catalyst diameter within the range of diameter studied.

  7. Influence of the size of MoS{sub 2} particles supported on alumina on the activity and the selectivity of hydro-treating reactions; Influence de la taille des particules de MoS{sub 2} supportees sur alumine sur l`activite et la selectivite des reactions d`hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, P.

    1998-01-14

    The influence of the size of molybdenum disulfide particles supported on alumina on hydro-desulfurization and hydrogenation reactions has been studied. Different methods have been used to modify the length and the stacking of MoS{sub 2} slabs. MoS{sub 2} slab length measured from Electron Microscopy is increased from 20 to 40 angstroms by increasing loading from 4 to 22 % pds in Mo. These catalysts have been tested and characterised by different techniques. Increasing the sulfiding temperature also leads to an increase in MoS{sub 2} slab length. Bulk MoS{sub 2} and MoS{sub 2}/Al{sub 2}O{sub 3} showing high MoS{sub 2} slab stacking have been prepared from ammonium tetra-thio-molybdate salt. Sulfide phase characterisation results and an hexagonal MoS{sub 2} slab model have been used to estimate a number of edge and corner Mo ions. Catalysts have been characterised by Temperature Programmed Reduction and by CO adsorption at low temperatures (infra-red). Edge and corner Mo ions site densities determined by these techniques are linearly correlated with the number of sites calculated from the hexagonal MoS{sub 2} slab model and the characterisation results. Catalysts have been tested at 350 deg. C, under a total pressure of 4,5 MPa for dibenzo-thiophene hydro-desulfurization and 1-methyl naphthalene hydrogenation in the presence of nitrogen compounds. Linear correlations have been obtained between the catalytic activity and the number of edge and corner Mo sites estimated from different techniques. These results obtained from independent techniques clearly show the essential part played by edge and corner sites on catalytic activity. MoS{sub 2} slab length has no influence on the selectivity hydrogenation/hydro-desulfurization of tested catalysts. On the other side, the increase o stacking of MoS{sub 2} slab un-favours the hydrogenation reaction when compared to the hydro-desulfurization reaction. (author) 169 refs.

  8. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, August 1981-October 1981. [Using model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1981-01-01

    Model compound reactions were studied to evaluate the effects of mass transfer, solvent type, solvent blending, hydrogen partial pressure, temperature, reactant concentration, additive loading and its preparation, etc. Naphthalene hydrogenation and benzothiophene hydrodesulfurization were investigated under the conditions comparable to commercial coal liquefaction and related processes. Both of these reaction systems were observed to be surface reaction controlled under the reaction conditions used in this work. Certain aromatic compounds were observed to cause a reduction in the reaction rates of naphthalene and benzothiophene. Single stage coal dissolution was investigated using tetralin as a hydrogen donor solvent and a commercial cobalt-molybdate catalyst. A spinning basket system was developed to allow injection of the catalyst at a desired time in the reaction cycle. This catalyst injection technique proved to be reliable for the exploratory work done here. The degree of catalyst deactivation was rated by comparing the activities of the spent catalyst for model compound (naphthalene and cumene) reactivities relative to those of the fresh catalyst. No substantial reduction in deactivation was observed to result with delayed contacting of the catalyst with the coal-tetralin reaction mixture. The effect of reaction temperature on the initial rate of catalyst deactivation was also studied.

  9. Electron beam irradiation effect on nanostructured molecular sieve catalysts

    International Nuclear Information System (INIS)

    Yuan Zhongyong; Zhou Wuzong; Parvulescu, Viorica; Su Baolian

    2003-01-01

    Electron impact can induce chemical changes on particle surfaces of zeolites and molecular sieve catalysts. Some experimental observations of electron irradiation effect on molecular sieve catalysts are presented, e.g., electron-beam-induced growth of bare silver nanowires from zeolite crystallites, formation of vesicles in calcium phosphate, migration of microdomains in iron-oxide doped mesoporous silicas, structural transformation from mesostructured MCM-41 to microporous ZSM-5, etc. The formation mechanisms of the surface structures are discussed

  10. Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available A novel non-photo-dependent semiconductor catalyst (CT was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water.

  11. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  12. Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.; Liaw, S.J.; Chary, K.V.R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-03-16

    The hydrotreatment of naphtha derived from Illinois No. 6 coal was investigated using molybdenum sulfide and nitride catalysts. The two catalysts are compared on the basis of total catalyst weight. Molybdenum sulfide is more active than molybdenum nitride for hydrodesulfurization (HDS) of a coal-derived naphtha. The rate of hydrodeoxygenation (HDO) of the naphtha over both catalysts are comparable. For hydrodenitrogenation (HDN), the sulfide is more active than the nitride only at higher temperatures ({gt}325{degree}C). Based upon conversion data, the naphtha can be lumped into a reactive and a less reactive fraction with each following first-order kinetics for heteroatom removal. The HDS and HDN rates and activation energies of the less reactive lump are smaller for the nitride than for the sulfide catalyst.

  13. Evidence for H2/D2 isotope effects on Fischer-Tropsch synthesis over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Kellner, C.S.; Bell, A.T.

    1981-01-01

    The effects of using D 2 rather than H 2 during Fischer-Tropsch synthesis were investigated using alumina- and silica-supported Ru catalysts. For the alumina-supported catalysts, the rate of CD 4 formation was 1.4 to 1.6 times faster than the formation of CH 4 . A noticeable isotope effect was also observed for higher molecular weight products. The magnitude of the isotope effects observed using the silica-supported catalyst was much smaller than that found using the alumina-supported catalysts. The formation of olefins relative to paraffins was found to be higher when H 2 rather than D 2 was used, independent of the catalyst support. The observed isotope effects are explained in terms of a mechanism for CO hydrogenation and are shown to arise from a complex combination of the kinetic and equilibrium isotope effects associated with elementary processes occurring on the catalyst surface

  14. Mesoporous Silica-Alumina as Support for Pt and Pt-Mo Sulfide Catalysts; Effect of Pt Loading on Activity and Selectivity in HDS and HDN of Model Compounds

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Yoshimura, Y.; Vít, Zdeněk

    2009-01-01

    Roč. 87, 3-4 (2009), s. 171-180 ISSN 0926-3373 R&D Projects: GA ČR GA104/06/0870 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * hydrodesulfurization * msa Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.252, year: 2009

  15. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  16. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  17. Potassium effects on kinetics of propane oxydehydrogenation on vanadia-titania catalyst

    International Nuclear Information System (INIS)

    Grabowski, R.; Samson, K.

    2003-01-01

    Oxidative dehydrogenation of propane (ODH) over V 2 O 5 /TiO 2 and V 2 O 5 /TiO 2 doped with K was carried out by measuring conversions and selectiveness for various feed compositions, contact times and temperatures. The results obtained for both catalysts were interpreted on the basis of the mechanism, in which propene is formed through Eley-Rideal sequence of steps, i.e. without participation of the adsorbed propane species. Kinetic constants (activation energies, pre-exponential factors) for the model of ODH reaction of propane on these catalysts, obtained on the basis of steady-state results, are given. Addition of K to vanadia-titania catalysts leads to decrease of total combustion of propane and consecutive combustion of propene. It has been found that the direct propane total oxidation is 5 - 9 times lower than that of the consecutive propene oxidation and is almost temperature independent for potassium doped catalyst, whereas it quickly decreases with temperature for a non-doped catalyst. Secondly, the addition of K to a vanadia-titania catalyst decreases the activation energies for propene formation (k 1 ), parallel formation of CO x (k 3 ) and reoxidation of the catalyst (k os ). Potassium exhibits a stronger inhibitory effect on the secondary propene combustion, what reflects the lower activity of V 5+ cations modified by the strongly basic alkali oxide species. (author)

  18. Effect of Pretreatment with Sulfuric Acid on Catalytic Hydrocracking of Fe/AC Catalysts

    Directory of Open Access Journals (Sweden)

    Ruiyu Wang

    2017-01-01

    Full Text Available Activated carbon (AC was modified by H2SO4 and used as a support for catalyst. The Fe2S3/AC-T catalyst was prepared by deposition-precipitation method and used to catalyze hydrocracking of coal-related model compound, di(1-naphthylmethane (DNM. The properties of catalyst were studied by N2 adsorption-desorption, X-ray diffraction, and scanning electron microscopy. The result showed that ferric sulfate and acidic centers had synergetic effect on hydrocracking of DNM when using Fe2S3/AC-T as catalyst, the optimal loading of Fe is 9 wt.%. Hydroconversion of the extraction residue from Guizhou bituminous coal was also studied using Fe2S3/AC-T as the catalyst. The reaction was conducted in cyclohexane under 0.8 Mpa of initial hydrogen pressure at 310°C. The reaction mixture was extracted with petroleum ether and analyzed by GC/MS. Amounts of organic compounds which fall into the categories of homologues of benzene and naphthalene were detected. It suggested that the catalyst could effectively catalyze the cleavage of C-C-bridged bonds.

  19. Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support

    International Nuclear Information System (INIS)

    Escandon, Lara S.; Ordonez, Salvador; Vega, Aurelio; Diez, Fernando V.

    2008-01-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO 2 adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model - considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium - was used for modelling the deactivation behaviour

  20. Effect of chlorine on performance of Pd catalysts prepared via colloidal immobilization

    NARCIS (Netherlands)

    Zhao, Yingnan; Liang, Wanwei; Li, Yongdan; Lefferts, Leon

    2017-01-01

    This contribution shows the effect of residual chlorine on the catalytic performance of a Pd-based catalyst in the hydrogenation of nitrite for cleaning of drinking water. The catalyst was prepared via immobilization a colloidal Pd nanoparticles using activated carbon as support. Different amount of

  1. Effect of pre-heat treatment on a Fischer-Tropsch iron catalyst

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Ganguly, B.; Mahajan, V.; Huffman, G.P.; Davis, B.; O'Brien, R.J.; Xu Liguang; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy was used to investigate the effect of heating the Fischer-Tropsch catalyst 100 Fe/5 Cu/4.2 K/24 SiO 2 in two different atmospheres while ramping the temperature of the catalyst from room temperature to 280 C in 5.5 h prior to pretreatment of the catalyst. Preheating in H 2 /CO = 0.7 gave rise to an iron (Fe 2+ ) silicate, while preheating in helium resulted in the formation of ε'-carbide Fe 2.2 C. Iron oxides and χ-carbide Fe 5 C 2 were also formed in both preheat treatments. (orig.)

  2. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    Science.gov (United States)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  3. An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts

    Science.gov (United States)

    Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.

    2012-10-01

    The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.

  4. Effect of catalyst on melamine-formaldehyde organic aerogel

    International Nuclear Information System (INIS)

    Sun Zhipeng; Yang Xi; Fu Zhibing; Zhong Minglong; Wang Chaoyang; Ma Kangfu; Huang Xiaoli; Chang Lijuan

    2013-01-01

    A series of melamine-formaldehyde(MF) organic aerogel templates were prepared with different categories and concentration of catalyst. Their molecular structure, thermal stability and pore structure were tested by Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption. It is indicated that the type and concentration of catalyst do not affect molecular structure and thermal stability of the MF organic aerogel template. The specific surface area and pore volume of the MF organic aerogel template using Na 2 CO 3 as catalyst are higher than those using NaOH, NaHCO 3 as catalyst. When the ratio of the concentration of melamine to that of catalyst is 500, the specific surface area is maximized. (authors)

  5. Deep hydrotreating of middle distillates from crude and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Landau, M.V. [The Blechner Center for Industrial Catalysis and Process Development, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    1997-06-20

    The potential scientific and technological solutions to the problems that appear as a result of shifting the hydrotreating of crude oil middle distillates and shale oils from the `normal` to the `deep` mode are considered on the basis of the reactivities and transformation routes of the least-reactive sulfur-, nitrogen-, and oxygen-containing compounds. The efficiency of selecting the optimal feedstock, increasing the process severity, improving the catalysts activity, and using alternative catalytic routes are compared, taking into account the specific issues related to deep hydrodesulfurization/hydrodenitrogenation/hydrodeoxygenation, i.e., chemical aspects, kinetics and catalysts

  6. Study on the poisoning effect-of non-vanadium catalysts by potassium

    Science.gov (United States)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  7. Newly designed PdRuBi/N-Graphene catalysts with synergistic effects for enhanced ethylene glycol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Tengfei; Huang, Yiyin; Ding, Kui; Wu, Peng; Abbas, Syed Comail; Ghausi, Muhammad Arsalan; Zhang, Teng; Wang, Yaobing

    2016-01-01

    Graphical abstract: We rationally design and synthesize a ternary PdRuBi/NG catalyst with significantly enhanced catalytic activity with synergetic effect of Ru and Bi towards ethylene glycol electro-oxidation. - Abstract: Palladium (Pd)-based catalysts are appealing electro-catalysts for alcohol oxidation reaction in fuel cell, but still not efficient as the complicated oxidation process and sluggish kinetic. Here we rationally design and synthesize a PdRuBi/NG tri-metallic catalyst with space synergetic effect for enhanced ethylene glycol electro-oxidation, in which both Ru and Bi in the catalyst are synergistic effective in promoting catalytic activity of Pd catalytic interlayer by electronic effect and surface modification mechanism respectively. It shows 4.2 times higher peak current density towards ethylene glycol electro-oxidation than commercial Pd/C catalyst, and the catalytic durability is also greatly improved.

  8. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  9. Morphological effect of BiVO4 catalysts on degradation of aqueous paracetamol under visible light irradiation.

    Science.gov (United States)

    Hu, Changying; Xu, Jie; Zhu, Yaqi; Chen, Acong; Bian, Zhaoyong; Wang, Hui

    2016-09-01

    Morphological effect of bismuth vanadate (BiVO4) on visible light-driven catalytic degradation of aqueous paracetamol was carefully investigated using four monoclinic BiVO4 catalysts. The catalysts with different morphologies were controllably prepared by a hydrothermal method without any additions. The prepared catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS). Under the visible light irradiation, these catalysts with different morphology were investigated to degrade aqueous paracetamol contaminant. The degradation effects were evaluated based on the catalyst morphology, solution pH, initial paracetamol concentration, and catalyst dosage. Cube-like BiVO4 powders exhibited excellent photocatalytic performance. The optimal photocatalytic performance of the cube-like BiVO4 in degrading paracetamol was achieved.

  10. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  11. The structure and function of supported molybdenum nitride and molybdenum carbide hydrotreating catalysts

    Science.gov (United States)

    Dolce, Gregory Martin

    1997-11-01

    A series of gamma-Alsb2Osb3 supported molybdenum nitrides and carbides were prepared by the temperature programmed reaction of supported molybdates with ammonia and methane/hydrogen mixtures, respectively. In the first part of this research, the effects of synthesis heating rates and molybdenum loading on the catalytic properties of the materials were examined. A significant amount of excess carbon was deposited on the surface of the carbides during synthesis. The materials consisted of small particles which were very highly dispersed. Oxygen chemisorption indicated that the nitride particles may have been two-dimensional. The dispersion of the carbides, however, appeared to decrease as the loading increased. The catalysts were evaluated for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). The molybdenum loading had the largest effect on the activity of the materials. For the nitrides, the HDN and HDS activities were inverse functions of the loading. This suggested that the most active HDN and HDS sites were located at the perimeter of the two-dimensional particles. The HDN and HDS activities of the carbides followed the same trend as the oxygen uptake. This result suggested that oxygen titrated the active sites on the supported carbides. Selected catalysts were evaluated for methylcarbazole HDN, dibenzothiophene HDS, and dibenzofuran HDO. The activity and selectivity of the nitrides and carbides were competitive with a presulfided commercial catalyst. In the second part of this work, a series of supported nitrides and carbides were prepared using a wider range of loadings (5-30 wt% Mo). Thermogravimetric analysis was used to determine the temperature at which excess carbon was deposited on the carbides. By modifying the synthesis parameters, the deposition of excess carbon was effectively inhibited. The dispersions of the supported nitrides and carbides were constant and suggested that the materials consisted of two

  12. Radiation catalytical effects in the pre-irradiated and thermally treated catalyst BASF K-3-10

    International Nuclear Information System (INIS)

    Motl, A.

    1987-01-01

    The effects of different heat treatment methods on radiation catalysis, induced by pre-irradiation of the BASF K-3-10 catalyst by γ- or β-radiation or by fast neutrons were investigated. It was found that calcination of the irradiated non-reduced catalyst resulted in a strong decrease in or even a total disappearance of the final radiation catalytical effects; however, at the same time the catalytical activity of the unirradiated catalyst was found to increase. The calcination of the catalyst in a nitrogen atmosphere after reduction also led to a substantial decrease in the resulting positive radiation catalytical effects and the exceedance of a certain calcination temperature also resulted in a decrease in the unirradiated catalyst activity. It could be concluded that calcination in nitrogen of the reduced irradiated samples decreased the radiation catalytical effects to a lesser degree than the calcination in the air of the non-reduced irradiated samples. In both cases, a different thermal stability of effects induced by different types of ionizing radiation was observed and it was found that it increased in the sequence beta radiation - gamma radiation - fast neutrons. The investigation of the γ radiation dose dependence of the radiation catalytical effect on the catalyst calcined before irradiation in the presence of air showed that the final radiation catalytical effects were lower than those observed in case of similarly irradiated but non-calcined samples. The dose dependence of the effect had the same character in both cases. (author). 3 tabs., 8 refs

  13. Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Chen

    2018-02-01

    Full Text Available The co-processing of an unconventional type of Jatropha bio-oil with petroleum distillates over mesoporous alumina-supported CoMo and NiMo sulfide catalysts (denoted CoMo/γ-Al2O3 and NiMo/γ-Al2O3 was studied. Either a stainless-steel high-pressure batch-type reactor or an up-flow fixed-bed reaction system was used under severe reaction conditions (330–350 °C and 5–7 MPa, similar to the conditions of the conventional diesel hydrodesulfurization (HDS process. To understand the catalytic performance of the mesoporous sulfide catalysts for co-processing, we prepared two series of oil feedstocks. First, model diesel oils, consisting of hydrocarbons and model molecules with various heteroatoms (sulfur, oxygen, and nitrogen were used for the study of the reaction mechanisms. Secondly, low-grade oil feedstocks, which were prepared by dissolving of an unconventional type of Jatropha bio-oil (ca. 10 wt % in the petroleum distillates, were used to study the practical application of the catalysts. Surface characterization by gas sorption, spectroscopy, and electron microscopy indicated that the CoMo/γ-Al2O3 sulfide catalyst, which has a larger number of acidic sites and coordinatively unsaturated sites (CUS on the mesoporous alumina framework, was associated with small Co-incorporated MoS2-like slabs with high stacking numbers and many active sites at the edges and corners. In contrast, the NiMo/γ-Al2O3 sulfide catalyst, which had a lower number of acidic sites and CUS on mesoporous alumina framework, was associated with large Ni-incorporated MoS2-like slabs with smaller stacking numbers, yielding more active sites at the brims and corresponding to high hydrogenation (HYD activity. Concerning the catalytic performance, the mesoporous CoMo/γ-Al2O3 sulfide catalyst with large CUS number was highly active for the conventional diesel HDS process; unfortunately, it was deactivated when oxygen- and nitrogen-containing model molecules or Jatropha bio

  14. Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation

    International Nuclear Information System (INIS)

    Witoon, Thongthai; Bumrungsalee, Sittisut; Chareonpanich, Metta; Limtrakul, Jumras

    2015-01-01

    Highlights: • CO 2 hydrogenation over Cu-loaded unimodal and hierarchical alumina catalysts. • Cu-loaded hierarchical catalyst exhibited higher methanol selectivity and stability. • The presence of macropores reduced the probability of side reaction. - Abstract: Effects of pore structures of alumina on the catalytic performance of copper catalysts for CO 2 hydrogenation were investigated. Copper-loaded hierarchical meso–macroporous alumina (Cu/HAl) catalyst exhibited no significant difference in terms of CO 2 conversion with copper-loaded unimodal mesoporous alumina (Cu/UAl) catalyst. However, the selectivity to methanol and dimethyl ether of the Cu/HAl catalyst was much higher than that of the Cu/UAl catalyst. This was attributed to the presence of macropores which diminished the occurrence of side reaction by the shortening the mesopores diffusion path length. The Cu/HAl catalyst also exhibited much higher stability than the Cu/UAl catalyst due to the fast diffusion of water out from the catalyst pellets, alleviating the oxidation of metallic copper to CuO

  15. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Brik; Kustov, Arkady

    The deactivation performance of Pt-catalysts for CO oxidation has been studied in relation to use in sewage sludge municipal waste burners, where HMDS was found to poison the industrial catalyst in a similar way to the model Pt/TiO2 catalyst. A promising regeneration procedure was developed based...... on reduction with hydrogen. This procedure had negligible effect on the performance of the SCR catalyst. After treatment with 2% H2, 8% O2 in N2 for one hour, a slight better NO SCR activity was observed due to increase in the concentration V4+ sites. However, after exposure in normal NO SCR gases the activity...

  16. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  17. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  18. Effects of impregnation methods and drying conditions on quinoline hydrodenitrogenation over Ni-W based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fang; Qiu, Zegang; Zhao, Liangfu; Xiang, Hongwei [Institute of Coal Chemistry, Chinese Academy of Sciences (China); Guo, Shaoqing [Taiyuan University of Science and Technology (China)

    2014-04-15

    The effects of impregnation methods (co-impregnation and sequential impregnation) and drying conditions (air and vacuum) on the structure and catalytic behavior of MCM-41 supported Ni-W catalysts were investigated. The catalysts were characterized by powder X-ray diffraction (XRD) analysis, Fourier-transform infrared spectroscopy (FT-IR), diffuse reflectance UV-Vis absorbance spectroscopy (DRS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and pyridine adsorbed infrared spectroscopy (Py-IR) techniques. They were tested for hydrodenitrogenation (HDN) of quinoline at temperatures of 300-400 deg C. The HDN results showed that the catalysts prepared by co-impregnation were more active than the catalysts prepared by sequential impregnation and the catalysts prepared by drying under vacuum were more active than the catalysts dried in air. Characterization revealed that the co-impregnation method and drying under vacuum promoted the dispersion of W, the formation of the active phases, and the formation of acidic sites on the catalysts. (author)

  19. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  20. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  1. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  2. High pressure flow reactor for in situ X-ray absorption spectroscopy of catalysts in gas-liquid mixtures—A case study on gas and liquid phase activation of a Co-Mo/Al2O3 hydrodesulfurization catalyst

    NARCIS (Netherlands)

    van Haandel, L.; Hensen, E.J.M.; Weber, Th.

    2017-01-01

    An in situ characterization of heterogeneous catalysts under industrial operating conditions may involve high pressure and reactants in both the gas and the liquid phase. In this paper, we describe an in situ XAS flow reactor, which is suitable to operate under such conditions (pmax 20 bar, Tmax 350

  3. Synergism between Ni and W in the NiW/gama-Al2O3 Hydrotreating Catalysts

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A.A.; Palcheva, R.; Jirátová, Květa; Tyuliev, G.; Petrov, L.

    2005-01-01

    Roč. 104, 1-2 (2005), s. 45-52 ISSN 1011-372X Institutional research plan: CEZ:AV0Z40720504 Keywords : NiW/gama-Al2O3 * Thiophene hydrodesulfurization * TPR, XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.088, year: 2005

  4. Exploring electronic and steric effects on the insertion and polymerization reactivity of phosphinesulfonato pdii catalysts

    KAUST Repository

    Neuwald, Boris

    2013-11-21

    Thirteen different symmetric and asymmetric phosphinesulfonato palladium complexes ([{(X1-Cl)-μ-M}n], M=Na, Li, 1= X(P^O)PdMe) were prepared (see Figure 1). The solid-state structures of the corresponding pyridine or lutidine complexes were determined for (MeO)21-py, (iPrO)21-lut, (MeO,Me2)1-lut, (MeO)31-lut, CF31-lut, and Ph1-lut. The reactivities of the catalysts X1, obtained after chloride abstraction with AgBF4, toward methyl acrylate (MA) were quantified through determination of the rate constants for the first and the consecutive MA insertion and the analysis of β-H and other decomposition products through NMR spectroscopy. Differences in the homo- and copolymerization of ethylene and MA regarding catalyst activity and stability over time, polymer molecular weight, and polar co-monomer incorporation were investigated. DFT calculations were performed on the main insertion steps for both monomers to rationalize the effect of the ligand substitution patterns on the polymerization behaviors of the complexes. Full analysis of the data revealed that: 1) electron-deficient catalysts polymerize with higher activity, but fast deactivation is also observed; 2) the double ortho-substituted catalysts (MeO)21 and (MeO)31 allow very high degrees of MA incorporation at low MA concentrations in the copolymerization; and 3) steric shielding leads to a pronounced increase in polymer molecular weight in the copolymerization. The catalyst properties induced by a given P-aryl (alkyl) moiety were combined effectively in catalysts with two different non-chelating aryl moieties, such as cHexO/(MeO)21, which led to copolymers with significantly increased molecular weights compared to the prototypical MeO1. Catalyst control: The influence of steric and electronic effects on the reactivity of phosphinesulfonato PdII catalysts in polymerization and copolymerization is explored through experimental and DFT methods. A comparison of thirteen different X(P O)PdMe catalysts ((P O)= κ2-P

  5. Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters.

    Science.gov (United States)

    Tan, Y L; Abdullah, A Z; Hameed, B H

    2018-05-18

    Silica-alumina catalyst was prepared and used in the catalytic fast pyrolysis of durian rind in a drop-type two-stage reactor. The effects of catalytic temperature (400 °C-600 °C) and catalyst-to-durian rind ratio (1:30-3:30) were evaluated. Bio-oil yield was increased with increased catalytic temperature due to considerable dehydration process, but it was reduced with high catalyst loading due to the overcracking of organics into light gases. Silica-alumina catalyst possessed good selectivity and the products changed according to the temperature. The major components in bio-oil were hydrocarbons, furan derivatives, and aromatic compounds at 400 °C, 500 °C, and 600 °C, respectively. The hydrogen and carbon contents of bio-oil were reduced with high catalyst loading due to the overcracking of organics, and the deoxygenation process became unfavorable. The silica-alumina catalyst worked well in catalytic fast pyrolysis of durian rind, and the condition may be adjusted based on the desired products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mahdi [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Abdollahifar, Mozaffar [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  7. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  8. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  9. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  10. Hydroisomerization of n-Pentane over Pt/Mordenite Catalyst: Effect of Feed Composition and Process Conditions

    Directory of Open Access Journals (Sweden)

    Behrouz Bayati

    2016-04-01

    Full Text Available The hydroisomerization of pure n-pentane over H-mordenite supported Pt-catalyst was investigated in a fixed bed reactor by changing reaction parameters such as temperature, pressure, and WHSV, as well as the H2/HC ratio. The maximum yield of isopentane over Pt/mordenite catalyst was achieved at 220 °C and a relatively low reaction pressure. To address the effect of feed composition on the catalytic performance of the samples, the catalysts were assessed for activity and selectivity in the isomerization of a mixture consisting of n-pentane (70 wt.% and isopentane (30 wt.% at 220 °C. The effects of pressure, WHSV, and H2/HC ratio on the catalyst performance were also studied using binary mixtures of the pentane isomers as a feedstock. It was observed that an effect of WHSV and H2/HC on the catalytic performance was similar to its behavior in pure n-pentane isomerization, while the conversion of n-pentane in the binary mixture showed a different trend and had a minimum value at 1.5 bar. It could be due to the presence of isopentane in feed and adsorption phenomenon of binary mixture on mordenite-supported catalyst.

  11. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  12. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-05-01

    Full Text Available Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS. The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 24th December 2016; Accepted: 16th February 2017 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2017. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 227-234 (doi:10.9767/bcrec.12.2.775.227-234 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.775.227-234

  13. Effect of cobalt sources on properties of co-b catalysts synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Figen, Aysel Kantürk; Co ú kuner, Bilge; Özdemir, Özgül Dere [Department of Chemical Engineering, Yildiz Technical University Istanbul (Turkey); Burçin Pi ú kin, Mehmet [Department of Bioengineering, Y Õ ld Õ z Technical University, Istanbul (Turkey)

    2013-07-01

    In this studying, Co-B catalysts were prepared by sol-gel method via kinds of cobalt source for clarifying the effect of these for characteristic properties of Co-B catalysts. Co sources, cobalt(II)chloride (CoCl{sub 2} .6H{sub 2}O), cobalt(II)sulfate (CoSO{sub 4} .7H{sub 2}O) and cobalt(II)nitrate (Co(NO{sub 3}){sub 2} .6H{sub 2}O), were used as a metal source with boron oxide (B{sub 2}O{sub 3} ) while citric acid (C{sub 6}H{sub 8}O{sub 7} ) used as organic ligand to forming sol-gel structure. The crystalline structures of Co-B catalysts were determined by X-ray diffraction. The N{sub 2} sorption technique was used for analyzing catalysts surface area. The variety of Co-B catalysts morphological properties were investigated via scanning electron microscope. By the effect of cobalt sources the Co-B catalyst’s properties were altered that clarified from analysis results. The amorphous Co-B catalyst produced from CoCl{sub 2}.6H{sub 2} O as metal source had the largest porous surface area with 122.7 m 2 .g -1 . Investigation of hydrolysis were performed under variety of temperatures (22, 40 and 60 o C), NaOH concentrations (1-15 wt. %) and NaBH 4 /Co-B catalyst ratio (2-40 wt./wt.) ratios in order to investigate the activation of Co-B catalyst. The maximum hydrogen generation rate 0.84L H 2 .min -1 .g -1 was obtained under 40 °C, 10 wt. % NaOH and 9.52wt./wt. NaBH{sub 4}/Co-B catalyst ratio. Yet the kinetic investigations, the reaction order was found that zero order with 0.9954 coefficient of correlation and 51.83 kJ/mol activation energy. Key words: Sol-gel, Co-B Catalyst, Boron.

  14. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    Science.gov (United States)

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.

  15. Thermal effects in highly dispersed iron catalysts

    International Nuclear Information System (INIS)

    Alvarez, A.M.; Cagnoli, M.V.; Gallegos, N.G.; Marchetti, S.G.; Yeramian, A.A.; Mercader, R.C.

    1994-01-01

    The Moessbauer spectra of three Fe/SiO 2 catalysts with 5 wt% iron content show the presence of several Fe species and display different magnetic behaviours when the precursors are subjected to various thermal treatments. Based on the Moessbauer parameters and CO chemisorption measurements, the average crystal sizes of the catalysts are estimated and discussed in connection with the thermal pretreatment severity and magnetic properties of the samples. (orig.)

  16. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pindoria, R.V.; Megaritis, A.; Herod, A.A.; Kandiyoti, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    1998-12-01

    This investigation involved the hydropyrolysis of biomass (eucalyptus globulus) and the immediate catalytic hydrocracking of pyrolytic oils in the second stage of the reactor. The effects of temperature, pressure and the catalyst ageing time on the final product tar have been studied using the catalyst Zeolite H-ZSM5. The catalytically hydrocracked tar/oil products were characterised and compared with the hydropyrolysis product from the first stage of the reactor to determine the effect of catalytic hydrocracking. The carbon deposition on the catalyst has been examined using thermogravimetric analysis. The tar yields after catalytic hydrocracking decreased with increasing pressure and temperature of the cracking stage. The tar yields at 10 bar pressure were greater than those at 40 bar pressure. The fresh zeolite catalyst trapped more than 40% of the product from the hydropyrolysis stage and TGA evidence indicated that this was not as carbon deposition but as volatiles trapped in the zeolite matrix. Reuse of the catalyst resulted in little more uptake of volatiles; however, extended use of the catalyst did not result in increased yields of liquid products but in increased production of light volatiles or gas. The H-ZSM5 catalyst appeared to act as a more active cracking catalyst rather than to promote hydrogenation or deoxygenation of the liquids produced in the hydropyrolysis stage. Characterisation of the liquids by SEC and UV fluorescence indicated that structural changes were relatively minor despite the significant changes in yields of liquids with process conditions. Available reaction routes do not appear to allow specific deoxygenation pathways to predominate without disintegration of parent molecules to lighter volatiles, under the conditions used here. 41 refs., 10 figs., 4 tabs.

  17. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  18. Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tian, F.; Li, H.P.; Zhao, N.Q.; He, C.N.

    2009-01-01

    Catalytic effects of the fabrication of carbon nanotubes (CNTs) by chemical vapor deposition of methane were investigated by thermogravimetric analysis. More specifically, the total yield and thermal stability characteristics of the product were examined with respect to physicochemical characteristics of the catalyst. Three kinds of Ni/Al catalysts with 5 wt%, 10 wt% and 15 wt% Ni, respectively were employed to synthesize CNTs. It was determined that an optimal Ni content of the catalyst resulted in maximum yield and most stable product. With increasing the Ni content, the CNT yield increased but they became less stable during heat treatment in air. According to transmission electron microscopy observations, the defect sites along the walls and at the ends of the raw CNTs facilitated the thermal oxidative destruction of the CNTs.

  19. Effect of Gas Flowrate on Nucleation Mechanism of MWCNTs for a Compound Catalyst

    Directory of Open Access Journals (Sweden)

    S. Shukrullah

    2017-01-01

    Full Text Available Activation of the catalyst particles during a CVD process can be anticipated from the carbon feeding rate. In this study, Fe2O3/Al2O3 catalyst was synthesized with uniformly dispersed iron over alumina support for onward production of multiwalled carbon nanotubes (MWCNTs in a fluidized bed chemical CVD reactor. The effect of the ethylene flowrate on catalytic activity of the compound catalyst and morphology of the as-grown MWCNTs was also investigated in this study. The dispersed active phases of the catalyst and optimized gas flowrate helped in improving the tube morphology and prevented the aggregation of the as-grown MWCNTs. The flowrates, below 100 sccm, did not provide sufficient reactants to interact with the catalyst for production of defect-free CNT structures. Above 100 sccm, concentration of the carbon precursor did not show notable influence on decomposition rate of the gas molecules. The most promising results on growth and structural properties of MWCNTs were gained at ethylene flowrate of 100 sccm. At this flowrate, the ratio of G and D intensity peaks (IG/ID was deliberated about 1.40, which indicates the growth of graphitic structures of MWCNTs.

  20. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  1. Electron microscopic studies of natural gas oxidation catalystEffects of thermally accelerated aging on catalyst microstructure

    DEFF Research Database (Denmark)

    Honkanen, Mari; Hansen, Thomas Willum; Jiang, Hua

    2017-01-01

    Structural changes of PtPd nanoparticles in a natural gas oxidation catalyst were studied at elevated temperatures in air and low-oxygen conditions and in situ using environmental transmission electron microscopy (ETEM). The fresh catalyst shows

  2. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    Science.gov (United States)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Birk; Kustov, Arkadii

    Municipal waste flue gas was previously found to deactivate the Pt-based CO oxidation catalyst severely. In the specific case studied, siloxanes were found to cause the deactivation. An on-site method for complete regeneration of the catalyst activity was found without shutdown of the flue gas...... stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest here, is the effect of hydrogen gas on the performance of the deNOx + SCR catalytic process...

  4. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN

    Science.gov (United States)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-08-01

    Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing (CMP) of GaN were deeply investigated in this paper. Working as an ideal homogeneous substrate material in LED industry, GaN ought to be equipped with a smooth and flat surface. Taking the strong chemical stability of GaN into account, photocatalytic oxidation technology was adopted in GaN CMP process to realize efficient removal. It was found that, because of the improved reaction rate of photocatalytic oxidation, GaN material removal rate (MRR) increases by a certain extent with catalyst concentration increasing. Cross single line analysis on the surface after polishing by Phase Shift MicroXAM-3D was carried out to prove the better removal effect with higher catalyst concentration. Ultraviolet intensity field in H2O2-SiO2-based polishing system was established and simulated, revealing the variation trend of ultraviolet intensity around the outlet of the slurry. It could be concluded that, owing to the higher planarization efficiency and lower energy damage, the UV lamp of 125 W is the most appropriate lamp in this system. Based on the analysis, defects removal model of this work was proposed to describe the effects of higher catalyst concentration and higher power of UV lamp.

  5. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    Science.gov (United States)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  6. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  7. Effect of Lanthanum as a Promoter on Fe-Co/SiO2 Catalyst for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Ali Abbasi

    2014-03-01

    Full Text Available Iron-Cobalt catalyst is well known from both operational and economical aspects for Fischer-Tropsch synthesis. Effort to increase the efficiency of this kind of catalyst is an important research topic. In this work, the effect of lanthanum on characteristic behavior, conversion and selectivity of a Fe-Co/SiO2 Fischer-Tropsch catalyst was studied. The Fe-Co-La/SiO2 Catalysts were prepared using an incipient wetness impregnation method. These catalysts were then characterized by XRF-EDAX, BET and TPR techniques, and their performance were evaluated in a lab-scale reactor at 250ºC, H2/CO = 1.8 of molar ratio, 16 barg pressure and GHSV=600 h-1. TPR analysis showed that the addition of La lowered the reduction temperature of Fe-Co catalyst, and due to a lower temperature, the sintering of the catalyst can be mitigated. Furthermore, from the micro reactor tests (about 4 days, it was found that lanthanum promoted catalyst had higher selectivity toward hydrocarbons, and lower selectivity toward CO2.Received: 8th July 2013; Revised: 18th November 2013; Accepted: 1st December 2013[How to Cite: Abbasi, A., Ghasemi, M., Sadighi, S. (2014. Effect of Lanthanum as a Promoter on Fe-Co/SiO2 Catalyst for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 23-27. (doi:10.9767/bcrec.9.1.5142.23-27][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5142.23-27

  8. Control of dealkylation vs ring hydrogenation by use of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, S.; Satterfield, C.N. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia). Chemical Engineering Dept.

    1995-05-01

    Hydrotreating studies with propylbenzene as a model compound on a commercial NiMo/Al{sub 2}O{sub 3} catalyst at 300-360{degree}C and 6.9 MPa showed that selectivity to ring hydrogenation vs dealkylation was increased by addition of ammonia at partial pressures up to 49 kPa, although overall activity decreased. Both reactions followed first-order kinetics. Selectivity was markedly increased at the lowest temperatures but again was accompanied by the lowest overall activity. The poisoning effect of ammonia here is much greater than that previously observed on hydrodesulfurization of thiophene or hydrodeoxygenation of dibenzofuran under identical reaction conditions. 6 refs., 3 figs., 3 tabs.

  9. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  10. Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available The Ni/MgO and Ni-Cu/MgO catalysts were prepared by sol-gel method and used as the catalysts for synthesis of carbon nanotubes by thermal chemical vapor deposition. The effect of Cu on the carbon yield and structure was investigated, and the effects of calcination temperature and reaction temperature were also investigated. The catalysts and synthesized carbon materials were characterized by temperature programmed reduction (TPR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. Results showed that the addition of Cu promoted the reduction of nickel species, subsequently improving the growth and yield of CNTs. Meanwhile, CNTs were synthesized by the Ni/MgO and Ni-Cu/MgO catalysts with various calcination temperatures and reaction temperatures, and results suggested that the obtained CNTs on Ni-Cu/MgO catalyst with the calcination temperature of 500°C and the reaction temperature of 650°C were of the greatest yield and quantity of 927%.

  11. Effective degradation and mineralization of real textile effluent by sonolysis, photocatalysis, and sonophotocatalysis using ZnO nano catalyst

    Directory of Open Access Journals (Sweden)

    Gunvant Sonwane

    2016-07-01

    Full Text Available In this study, the ultrasonic, photocatalytic and sonophotocatalytic degradation of organics in textile industrial effluent was studied using ZnO nano catalyst, ZnO nano catalyst was synthesized by using sol-gel method. The structure and morphology of the catalyst were investigated using scanning election microscopy (SEM, electron dispersive X-ray spectroscopy (EDS and X-ray diffraction pattern (XRD. The percentage removal of textile influents was determined by using TOC.  The effects of various operational parameters such as, contact time, catalyst loading, and solution pH on the degradation efficiency were studied. The increase in degradation efficiency with the increase in catalyst loading, contact time. Neutral pH is suitable for degradation of textile industrial effluents, and comparative study shows that the sonophotocatalyst is effective for degradation technique than ultrasonic and photocatalytic degradation of textile industrial effluent.

  12. Effects of adding lanthanum to Ni/ZrO2 catalysts on ethanol steam reforming

    International Nuclear Information System (INIS)

    Profeti, Luciene Paula Roberto; Habitzheuter, Filipe; Assaf, Elisabete Moreira

    2012-01-01

    The catalytic performance of Ni/ZrO 2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting with the support, due to the higher dispersion effect. The best catalytic performance at 450 deg C was found for the Ni/12LZ catalyst, which exhibited an effluent gaseous mixture with the highest H 2 yield. (author)

  13. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts

    International Nuclear Information System (INIS)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-01-01

    Highlights: ► Oxidative desulfurization was studied with WO x /ZrO 2 calcined at different temp. ► The importance of the phases of zirconia and tungsten oxide was suggested. ► The catalyst was analyzed thoroughly with Raman and XRD techniques. ► The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO x /ZrO 2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WO x /ZrO 2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO 2 ) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO 3 and monoclinic ZrO 2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WO x /ZrO 2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  14. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  15. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  16. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  17. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    International Nuclear Information System (INIS)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-01-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H 2 -temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H 2 /CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C 5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum

  18. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  19. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  20. Effect of nanoscale flows on the surface structure of nanoporous catalysts.

    Science.gov (United States)

    Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios

    2017-06-07

    The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.

  1. Ce - promoted catalyst from hydrotalcites for CO2 reforming of methane: calcination temperature effect

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Daza

    2012-01-01

    Full Text Available Ce-promoted Ni-catalysts from hydrotalcites were obtained. The effect of calcination temperature on the chemical and physical properties of the catalysts was studied. Several techniques were used to determine the chemical and physical characteristics of oxides. The apparent activation energies of reduction were determined. Catalytic experiments at 48 L g-1h-1 without pre-reduction in CO2 reforming of methane were performed. The spinel-like phase in these oxides was only formed at 1000 ºC. The reduction of Ni2+ in the oxides was clearly affected by the calcination temperature which was correlated with catalytic performance. The catalyst calcined at 700 ºC showed the greatest activity.

  2. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    Science.gov (United States)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  3. Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: Effects of Catalyst Preparation and Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Russel N. Menchavez

    2017-09-01

    Full Text Available Crude glycerol from biodiesel production is a biobased material capable of co-producing biofuels and chemicals. This study aimed to develop a line of Ni catalysts supported on cerium–magnesium (Ce–Mg to improve the process efficiency of glycerol hydrogenolysis for ethanol and 1,2-propanediol (1,2-PDO. Results showed that catalytic activity was greatly improved by changing the preparation method from impregnation to deposition precipitation (DP, and by adjusting calcination temperatures. Prepared via DP, the catalysts of 25 wt % Ni supported on Ce–Mg (9:1 mol/mol greatly improved the effectiveness in glycerol conversion while maintaining the selectivities to ethanol and 1,2-PDO. Calcination at 350 °C provided the catalysts better selectivities of 15.61% to ethanol and 67.93% to 1,2-PDO. Increases in reaction temperature and time improved the conversion of glycerol and the selectivity to ethanol, but reduced the selectivity to 1,2-PDO. A lower initial water content led to a higher conversion of glycerol, but lower selectivities to ethanol and 1,2-PDO. Higher hydrogen application affected the glycerol conversion rate positively, but the selectivities to ethanol and 1,2-PDO negatively. A comparison to the commercial Raney® Ni catalyst showed that the Ni/Ce–Mg catalyst developed in this study showed a better potential for the selective co-production of ethanol and 1,2-PDO from glycerol hydrogenolysis.

  4. Catalytic hydroprocessing of simulated coal tars. 2. Effect of acid catalysts on the hydroconversion of model compounds on a sulphided Ni-Mo/Al/sub 2/O/sub 3/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lemberton, J.L.; Touzeyidio, M.; Guisnet, M. (Laboratoire de Catalyse en Chimie Organique CNRS, Poitiers (France))

    1989-09-15

    Acid catalysts were added to sulphided Ni-Mo/Al/sub 2/O/sub 3/ catalyst in order to obtain a higher hydrocracking activity. The hydroconversion of phenanthrene, alone or in the presence of carbazole and/or 1-naphthol, was chosen as a model reaction. The presence of acid catalysts greatly increases the conversion of phenanthrene and allows significant amounts of light products to be obtained. In the presence of carbazole or of 1-naphthol, acid catalysts create a small increase in phenanthrene conversion, but light products are no longer obtained as the acid sites are poisoned either by adsorption of ammonia from carbazole decomposition, or by extensive coke deposition generated from 1-naphthol. In the presence of carbazole and 1-naphthol, there is no longer any effect of the acid catalysts on the hydroconversion of phenanthrene, owing to complete inhibition of the acid sites. 12 refs., 5 tabs.

  5. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  6. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  7. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  8. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  9. Remarkable promotion effect of trace sulfation on OMS-2 nanorod catalysts for the catalytic combustion of ethanol.

    Science.gov (United States)

    Zhang, Jie; Zhang, Changbin; He, Hong

    2015-09-01

    OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using MnSO4 (OMS-2-SO4) and Mn(CH3COO)2 (OMS-2-AC) as precursors. SO4(2-)-doped OMS-2-AC catalysts with different SO4(2-) concentrations were prepared next by adding (NH4)2SO4 solution into OMS-2-AC samples to investigate the effect of the anion SO4(2-) on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4(2-) doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4(2-) (SO4/catalyst=0.5% W/W). The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4(2-) species in the OMS-2-AC catalyst could decrease the Mn-O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4(2-) species in OMS-2-SO4 samples. Copyright © 2015. Published by Elsevier B.V.

  10. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  11. Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition

    Directory of Open Access Journals (Sweden)

    Urko Izquierdo

    2018-01-01

    Full Text Available This work studies Ni-based catalyst deactivation and regeneration processes in the presence of H2S under a biogas tri-reforming process for hydrogen production, which is an energy vector of great interest. 25 ppm of hydrogen sulfide were continuously added to the system in order to provoke an observable catalyst deactivation, and once fully deactivated two different regeneration processes were studied: a self-regeneration and a regeneration by low temperature oxidation. For that purpose, several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on alumina modified with CeO2 and ZrO2 were used as well as a commercial Katalco 57-5 for comparison purposes. Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 catalysts almost recovered their initial activity. For these catalysts, after the regeneration under oxidative conditions at low temperature, the CO2 conversions achieved—79.5% and 86.9%, respectively—were significantly higher than the ones obtained before sulfur poisoning—66.7% and 45.2%, respectively. This effect could be attributed to the support modification with CeO2 and the higher selectivity achieved for the Reverse Water-Gas-Shift (rWGS reaction after catalysts deactivation. As expected, the bimetallic Rh-Ni/Ce-Al2O3 catalyst showed higher resistance to deactivation and its sulfur poisoning seems to be reversible. In the case of the commercial and Ni/Zr-Al2O3 catalysts, they did not recover their activity.

  12. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects

    International Nuclear Information System (INIS)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.; Washton, Nancy M.

    2017-01-01

    Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4 /Beta, and NH 4 /SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27 Al-nuclear magnetic resonance ( 27 Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further tested with standard NH 3 -SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3 -SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.

  13. Effect of precipitating agent on the catalytic behaviour of precipitated iron catalysts

    International Nuclear Information System (INIS)

    Motjope, T.R.; Dlamini, H.T.; Pollak, H.; Coville, N.J.

    1999-01-01

    Iron precipitated catalysts have been prepared using different precipitating agents (NH 4 OH, K 2 CO 3 ) at different pH values. In situ Moessbauer (MES) study of the reduced catalyst prepared using NH 4 OH revealed the presence of superparamagnetic Fe 2+ , Fe 3+ and magnetically split α-Fe only, whereas the catalyst prepared with K 2 CO 3 also showed an extra magnetic sextuplet of Fe 3 O 4 . For both catalyst systems, in situ MES revealed that during Fischer-Tropsch synthesis α-Fe was converted into ε'-Fe 2,2 C and finally into χ-Fe 2,5 C when the synthesis time was increased. The rate of formation of hydrocarbons was observed to increase with the increase in the degree of carburisation with the NH 4 OH catalyst showing a higher rate of reaction. The K 2 CO 3 catalyst exhibited higher olefin selectivity than the NH 4 OH catalyst under similar pH conditions

  14. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  15. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  16. Effects of basic nitrogen poisoning on adsorption of hydrogen on a hydrotreatment catalyst

    International Nuclear Information System (INIS)

    Entz, R.W.; Seapan, M.

    1985-01-01

    Activity of a hydrotreatment catalyst depends on the hydrogen adsorption characteristics of the catalyst. In this work, the adsorption of hydrogen on a Ni-Mo/Al/sub 2/O/sub 3/ catalyst (shell 324) has been studied using a TGA at 1 atm pressure and 200-400 0 C temperature. Hydrogen adsorption on a calcined catalyst was shown to be of activated type with a sudden increase in hydrogen adsorption around 350 0 C. When the catalyst is extracted with Tetrahydrofuran (THF), the hydrogen adsorption increases gradually as the temperature is increased, approaching a monolayer coverage of the catalyst surface. It is shown that solvent extraction of catalyst changes its hydrogen adsorption characteristics significantly. Indeed, at 400 0 C, an extracted catalyst adsorbs about four times more hydrogen than an unextracted catalyst. Adsorption of basic nitrogen compounds on the catalyst interferes with the hydrogen adsorption. The adsorption of pyridine, piperidine, n-pentylamine, and ammonia were studied at 400 0 C. It is shown that the strength of adsorption of piperidine and n-pentylamine are relatively similar, however their adsorption strength is higher than pyridine. Ammonia is the weakest adsorbing compound studied. These observations are in agreement with other studies

  17. Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium

    International Nuclear Information System (INIS)

    Wang Zhenbo; Zuo Pengjian; Yin Geping

    2009-01-01

    The effect of W on the activity of Pt-Ru/C catalyst was investigated. The Pt-Ru-W/C and Pt-Ru/C-TR catalysts were prepared by thermal reduction method. Comparison was made to a homemade Pt-Ru/C-CR catalyst prepared by chemical reduction. Their performances were tested by using a glassy carbon thin film electrode through cyclic voltammetric and chronoamperometric curves. The particle size, structure, composition, and surface state of homemade catalyst were determined by means of X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS). The result of XRD analysis shows that the homemade ternary catalyst exhibits face-centered cubic structure and has smaller lattice parameter than Pt-alone and homemade Pt-Ru/C catalysts. The particle size of Pt-Ru-W/C catalyst is relatively large of 6.5 nm. Its electrochemically active specific area is 20 m 2 g -1 less than that of Pt-Ru/C-CR, and much twice as big as that of Pt-Ru/C-TR. But, XPS analysis shows that the addition of W changes the surface state of Pt components in the alloy and can clean Pt surface active sites which are adsorbed by hydrogen. The electrocatalytic activity and tolerance performance to CO ads of Pt-Ru-W/C catalyst for methanol electrooxidation is the best due to the promoting function of W in comparison with homemade Pt-Ru/C ones.

  18. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    Directory of Open Access Journals (Sweden)

    Mallika Gummalla

    2015-05-01

    Full Text Available The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with the smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s, the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA of the decayed membrane-electrode assembly (MEA showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.

  19. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  20. Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Resan, Mirna; Hampton, Michael D.; Lomness, Janice K. [Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366 (United States); Slattery, Darlene K. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa, FL 32922 (United States)

    2005-11-01

    The effects of various catalysts on the hydrogen release characteristics of LiAlH{sub 4} were studied. The catalysts were incorporated into the alanate by ball milling. The catalysts studied included elemental titanium, TiH{sub 2}, TiCl{sub 4}, TiCl{sub 3}, AlCl{sub 3}, FeCl{sub 3}, elemental iron, elemental nickel, elemental vanadium, and carbon black. Dehydriding/rehydriding properties were characterized by using differential scanning calorimetry coupled with pressure measurement and X-ray diffraction. The addition of TiCl{sub 3} and TiCl{sub 4} to LiAlH{sub 4} eliminated the first step of hydrogen evolution and significantly lowered decomposition temperature of the second step. Doping with elemental iron caused only a slight decrease in the amount of hydrogen released and did not eliminate the first step of hydrogen evolution. Ball milling in the absence of the catalyst was found to decrease the release temperature of hydrogen, while doping with elemental iron did not have any additional effect on the temperature of hydrogen release of LiAlH{sub 4}. (author)

  1. Effect of the solvent in the catalyst ink preparation on the properties and performance of unsupported PtRu catalyst layers in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Alcaide, Francisco; Álvarez, Garbiñe; Cabot, Pere L.; Genova-Koleva, Radostina; Grande, Hans-Jürgen; Miguel, Oscar

    2017-01-01

    The effect of the organic solvent polarity on the properties of unsupported PtRu catalyst inks and on the performance of the catalyst layers prepared with them for the methanol electrooxidation, has been studied. The light scattering results indicate that the PtRu-Nafion ® aggregates in the inks prepared with n-butyl acetate (NBA) are larger than those prepared with 2-propanol (IPA). The lower polarity of the former favours the aggregation of Nafion ® and nanoparticles. The electron microscopy images and porosimetry measurements of the catalyst layers show that the secondary pore volume between the agglomerates is larger for NBA. The linear sweep voltammetry and eis results for the methanol electrooxidation in the three-electrode cell denote the higher active surface area for NBA and comparable specific oxidation rates of the intermediates in both catalysts layers. The current densities for PtRu anode catalyst layers in single DMFC are higher when the solvent is NBA, the mass transport limitations being much more apparent with IPA. The adapted transmission line equivalent circuit to interpret the impedance results in single DMFC indicates that the proton resistance for NBA is significantly lower than for IPA, thus suggesting that the greater number of accessible active sites for methanol oxidation in the former are well connected to the Nafion ® ionomers and easier transported to the membrane.

  2. Effects of preparation method and active metal content on of Ni/kieselguhr catalyst activity

    International Nuclear Information System (INIS)

    Galuh Widiyarti; Wuryaningsih Sri Rahayu

    2010-01-01

    The preparation and the active metal content influence the activity of catalyst. Study has been conducted to see the activity of Ni/kieselguhr based on preparation method and Nickel (Ni) contents in the catalyst in the laboratory scale. The Ni/kieselguhr catalyst were prepared by impregnation and precipitation methods, with Ni active contents of 10, 20, and 30 % by weight. The catalysts characterization was analyzed using X-Ray Diffraction (XRD). Catalysts activities were analyzed based on decreasing of iodine number from hydrogenation of crude palm oil for 2 hours. The activity tests results show that precipitation catalysts are more active than impregnation catalysts. The decreasing in iodine number of fatty acid after 2 hours of hydrogenation process using precipitation catalysts and impregnation catalysts are 51.53 and 21.85 %, respectively. In addition, the catalysts are more active with increasing Ni contents. (author)

  3. Effects of Cu over Pd based catalysts supported on silica or niobia

    Directory of Open Access Journals (Sweden)

    Roma M.N.S.C.

    2000-01-01

    Full Text Available Palladium and palladium-copper catalysts supported on silica and niobia were characterized by H2 chemisorption and H2-O2 titration. Systems over silica were also analyzed by transmission electron microscopy and EXAFS. The metallic dispersion decreased from 20% to 7% when the content of Pd was increased from 0.5wt.-% to 3wt.-% in monometallic catalysts. The addition of 3 wt.-% Cu to obtain Pd-Cu catalysts caused a remarkable capacity loss of hydrogen chemisorption. TPR analysis suggested an interaction between the two metals and EXAFS characterization of the catalyst supported on silica confirmed the formation of Pd-Cu alloy. Pd/Nb2O5 catalysts showed turnover numbers higher than those obtained with the Pd/SiO2 systems in the cyclohexane dehydrogenation. However, the bimetallic catalysts showed very low turnover numbers.

  4. A comparative evaluation of nitrogen compounds in petroleum distillates

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dheer; Chopra, Anju; Patel, Mitra Bhanu; Sarpal, Amarjit Singh [Indian Oil Corporation Limited, Faridabad (India). Research and Development Centre

    2011-07-15

    Although the concentration of nitrogen compounds in crude oil is relatively low, they can become more concentrated in petroleum distillates and poison the catalysts used in refining processes. They cause undesirable deposits, color formation and odor in products; they also contribute to air pollution and some are highly carcinogenic. The poisoned catalyst becomes deactivated for hydrodesulfurization and unable to remove sulfur from middle distillates. In order to understand the effect on catalytic processes, it is desirable to identify the nitrogen compounds in various petroleum distillates. This paper compares the nitrogen species profiles in different petroleum distillates using a nitrogen chemiluminescence detector. In addition, four different petroleum distillate samples from different refineries were analyzed to find the variation in their nitrogen profiles. The nitrogen compounds in petroleum distillate samples were identified as anilines, quinolines, indoles, and carbazoles and their alkyl derivatives. Quantitation was carried out against known reference standards. The quantitative data were compared to the total nitrogen content determined by elemental analysis. (orig.)

  5. The effect of zirconium on cobalt catalyst in fischer-tropsch synthesis

    International Nuclear Information System (INIS)

    Moradi, GH.R.; Mahbob Basir, M.; Taeb, A.

    2003-01-01

    A series of 10 wt % Co/SiO 2 catalysts with different loading ratios of zirconia (0, 5, 10, 15, 20) has been prepared through an original pseudo sol-gel method. All catalysts were characterized by BET, XRD, SEM, and TPR experiments. The catalytic performance of the catalysts for the so-called fischer- tropsch synthesis was examined under H 2 /CO=2 at 230 d ig C and 8 bar in a fixed bed microreactor. By increasing zirconia, the Co-SiO 2 interaction decreases and is replaced by Co-Zr interaction which favours reduction of the catalyst at lower temperatures. While it leads to a higher degree of reduction and as increase in the metallic cobalt atoms on the surface. The activity of the promoted catalysts increases with the addition of zirconia (max. by a factor 2.5). The C 1 0 + selectivity increased with the addition of zirconia (from 42.3% in unpromoted catalyst to 68.8 % in the 20 % ZrO 2 promoted. This can be attributed to the higher amount of the surface Cobalt metal present and to the larger Cobalt particle size

  6. Diels-Alder reactions: The effects of catalyst on the addition reaction

    Science.gov (United States)

    Yilmaz, Özgür; Kus, Nermin Simsek; Tunç, Tuncay; Sahin, Ertan

    2015-10-01

    The reaction between 2,3-dimethyl-1,3-butadiene and dimethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate is efficiently achieved with small amounts of catalyst, i.e. phenol, AcOH, nafion, and β-cyclodextrin. Exo-diastereoselective cycloaddition reactions were observed both without catalyst and different catalysts for 48 days. As a result, different products (tricyclicmolecule 5, retro-Diels-Alder product 6, and oxidation product 7) were obtained with different catalysts. In addition, we synthesized Diels-Alders product 8 and tricyclocyclitol 10 via Diels-Alder reaction. The structures of these products were characterized by 1H NMR, 13C NMR, MS and IR spectroscopy.

  7. The effect of promoters on the electronic structure of ruthenium catalysts supported on carbon

    International Nuclear Information System (INIS)

    Guraya, Monica; Sprenger, Susanne; Rarog-Pilecka, Wioletta; Szmigiel, Dariusz; Kowalczyk, Zbigniew; Muhler, Martin

    2004-01-01

    Alkali- and earth-alkali-promoted ruthenium catalysts supported on graphitized carbon were investigated by means of X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) in order to study the effect of promoters on the electronic structure of this metal-support system. Samples were measured as prepared and after thorough reduction in hydrogen. The C 1s spectra of reduced alkali-promoted catalysts showed a shift towards higher binding energies and an asymmetric broadening. Neither non-promoted nor Ba-promoted Ru/C samples exhibited such a behaviour after similar treatments. The most important feature in the UP spectra of the reduced alkali-promoted catalysts was the appearance of a well defined Fermi edge absent in the semimetal-like electronic structure of graphite. No significant effects appeared in the case of non-promoted or Ba-promoted catalysts. The increase in the density of occupied states at the Fermi energy indicates a shift of this level into the conduction band, due to a charge transfer from the promoter to the support. This interpretation also provides an explanation for the observed higher C 1s binding energy and asymmetric broadening, due to the off-set introduced in the binding energy scale and the increasing probability of inelastic excitations near the Fermi level. In addition to photoelectron spectroscopy, low energy ion scattering (ISS) was used to obtain information about the localisation of the promoters. Based on the mild sputtering effect during prolonged series of spectra, it was possible to conclude that potassium covers both the carbon support and the Ru metal particles

  8. Combined spectroscopy and microscopy of supported MoS2 nanoparticles

    DEFF Research Database (Denmark)

    Nielsen, Jane Hvolbæk; Bech, Lone; Nielsen, Kenneth

    2009-01-01

    Supported molybdenum-sulfide nanoparticles are known catalysts for petroleum hydrodesulfurization as well as for electrochemical hydrogen evolution. In this study, we investigate molybdenum-sulfide nanoparticles supported on Au(111) using X-ray photoelectron spectroscopy (XPS) and scanning...... tunneling microscopy (STM), aiming to correlate spectroscopically determined chemical states with atomically resolved nanostructure. The results of this study allow us to conclude the following: (1) the XPS results from our model system are in good agreement with previously published results on supported Mo...

  9. Effect of iron catalyst thickness on vertically aligned carbon nanotube forest straightness for CNT-MEMS

    International Nuclear Information System (INIS)

    Moulton, Kellen; Jensen, Brian D; Morrill, Nicholas B; Konneker, Adam M; Vanfleet, Richard R; Allred, David D; Davis, Robert C

    2012-01-01

    This paper examines the effect of iron catalyst thickness on the straightness of growth of carbon nanotubes (CNTs) for microelectromechanical systems fabricated using the CNT-templated-microfabrication (CNT-M) process. SEM images of samples grown using various iron catalyst thicknesses show that both straight sidewalls and good edge definition are achieved using an iron thickness between 7 and 8 nm. Below this thickness, individual CNTs are well aligned, but the sidewalls of CNT forests formed into posts and long walls are not always straight. Above this thickness, the CNT forest sidewalls are relatively straight, but edge definition is poor, with significantly increased sidewall roughness. The proximity of a device or feature to other regions of iron catalyst also affects CNT growth. By using an iron catalyst thickness appropriate for straight growth, and by adding borders of iron around features or devices, a designer can greatly improve straightness of growth for CNT-MEMS. (paper)

  10. Effect of Iminodiacetic Acid-Modified Nieuwland Catalyst on the Acetylene Dimerization Reaction

    Directory of Open Access Journals (Sweden)

    Yanhe You

    2017-12-01

    Full Text Available The iminodiacetic acid-modified Nieuwland catalyst not only improves the conversion of acetylene but also increases the selectivity of monovinylacetylene (MVA. A catalyst system containing 4.5% iminodiacetic acid exhibited excellent performance, and the yield of MVA was maintained at 32% after 24 h, producing an increase in the yield by 12% relative to the Nieuwland catalyst system. Based on a variety of characterization methods analysis of the crystal precipitated from the catalyst solution, it can be inferred that the outstanding performance and lifetime of the catalyst system was due to the presence of iminodiacetic acid, which increases the electron density of Cu+ and adjusts the acidity of the catalytic solution.

  11. Effects of catalyst-bed’s structure parameters on decomposition and combustion characteristics of an ammonium dinitramide (ADN)-based thruster

    International Nuclear Information System (INIS)

    Yu, Yu-Song; Li, Guo-Xiu; Zhang, Tao; Chen, Jun; Wang, Meng

    2015-01-01

    Highlights: • The decomposition and combustion process is investigated by numerical method. • Heat transfer in catalyst bed is modeled using non-isothermal and radiation model. • The wall heat transfer can impact on the distribution of temperature and species. • The value of catalyst bed length, diameter and wall thickness are optimized. - Abstract: The present investigation numerically studies the evolutions of decomposition and combustion within an ADN-based thruster, and the effects of the catalyst-bed’s three structure parameters (length, diameter, and wall thickness) on the general performance of ADN-based thruster have been systematically investigated. Based upon the calculated results, it can be known that the distribution of temperature gives a Gaussian manner at the exits of the catalyst-bed and the combustion chamber, and the temperature can be obviously effected by each the three structure parameters of the catalyst-bed. With the rise of each the three structure parameter, the temperature will first increases and decreases, and there exists an optimal design value making the temperature be the highest. Via the comparison on the maximal temperature at combustion chamber’s exit and the specific impulse, it can be obtained that the wall thickness plays an important role in the influences on the general performance of ADN-based thruster while the catalyst-bed’s length has the weak effects on the general performance among the three structure parameters.

  12. Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: Effect of stoichiometric composition

    International Nuclear Information System (INIS)

    Taufiq-Yap, Yun Hin; Teo, Siow Hwa; Rashid, Umer; Islam, Aminul; Hussien, Mohd Zobir; Lee, Keat Teong

    2014-01-01

    Highlights: • Biodiesel synthesis from Jatropha curcas oil catalyzed by CaO–La 2 O 3 mixed oxide. • Effects of Ca-to-La ratio, catalyst concentration, methanol/oil ratio and reaction temperature were optimized. • Biodiesel yield >85% was achieved at 65 °C temperature. • CaO–La 2 O 3 catalyst can be easy regenerated. - Abstract: Heterogeneous solid mixed oxide (CaO–La 2 O 3 ) catalysts with different molar ratios of calcium to lanthanum (Ca-to-La) were synthesized by co-precipitation method. The synthesized solid CaO–La 2 O 3 mixed metal oxide catalysts were utilized in transesterification of Jatropha curcus oil as feedstock to produce biodiesel. Under the optimized conditions at 65 °C, 4% catalyst dose with 24:1 MeOH to Jatropha oil molar ratio, the transesterification reaction exhibited 86.51% of biodiesel yield. The prepared catalysts were characterized using various techniques such as X-ray diffraction (XRD), nitrogen sorption with Brunauer–Emmer–Teller (BET) method, temperature-programmed desorption of CO 2 (CO 2 -TPD) and scanning electron microscopy (SEM). Influence of Ca-to-La atomic ratio in the mixed metal oxide catalyst, catalyst amount, methanol to oil molar ratio, reaction time, different oils on the fatty acid methyl ester (FAME) yield were appraised. Different catalyst regeneration procedures were also performed to investigate the reusability of the CaO–La 2 O 3 catalyst

  13. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  14. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhu, Jianbin; Lv, Qing

    2015-01-01

    Cost-effective, active and stable electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for the wide-spread adoption of technologies such as fuel cells and metal-air batteries. Among the already reported non-precious metal catalysts, carbon-supported transition metal...... to that for the undoped Fe-N/C catalyst. The activity and durability of the catalysts are demonstrated in direct methanol fuel cells....

  15. Transmission electron microscopy on live catalysts

    NARCIS (Netherlands)

    Bremmer, G.M.

    2017-01-01

    The dissertation describes TEM experiments on heterogeneous catalysts. Starting with characterization of (Ni/Co)MoS2 on Alumina and the effect of oxidation, and sequential resulfidation. After that, Co-based catalysts are used for high-resolution (S)TEM/EDX caracterization studies, and in situ

  16. Preparation Effects on the Performance of Silica-Doped Hydrous Titanium Oxide (HTO:Si)-Supported Pt Catalysts for Lean-Burn NOx Reduction by Hydrocarbons; TOPICAL

    International Nuclear Information System (INIS)

    GARDNER, TIMOTHY J.; MCLAUGHLIN, LINDA I.; MOWERY, DEBORAH L.; SANDOVAL, RONALD S.

    2002-01-01

    This report describes the development of bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported Pt catalysts for lean-burn NOx catalyst applications. The effects of various preparation methods, including both anion and cation exchange, and specifically the effect of Na content on the performance of Pt/HTO:Si catalysts, were evaluated. Pt/HTO:Si catalysts with low Na content ( and lt; 0.5 wt.%) were found to be very active for NOx reduction in simulated lean-burn exhaust environments utilizing propylene as the major reductant species. The activity and performance of these low Na Pt/HTO:Si catalysts were comparable to supported Pt catalysts prepared using conventional oxide or zeolite supports. In ramp down temperature profile test conditions, Pt/HTO:Si catalysts with Na contents in the range of 3-5 wt.% showed a wide temperature window of appreciable NOx conversion relative to low Na Pt/HTO:Si catalysts. Full reactant species analysis using both ramp up and isothermal test conditions with the high Na Pt/HTO:Si catalysts, as well as diffuse reflectance FTIR studies, showed that this phenomenon was related to transient NOx storage effects associated with NaNO(sub 2)/NaNO(sub 3) formation. These nitrite/nitrate species were found to decompose and release NOx at temperatures above 300 C in the reaction environment (ramp up profile). A separate NOx uptake experiment at 275 C in NO/N(sub 2)/O(sub 2) showed that the Na phase was inefficiently utilized for NOx storage. Steady state tests showed that the effect of increased Na content was to delay NOx light-off and to decrease the maximum NOx conversion. Similar results were observed for high K Pt/HTO:Si catalysts, and the effects of high alkali content were found to be independent of the sample preparation technique. Catalyst characterization (BET surface area, H(sub 2) chemisorption, and transmission electron microscopy) was performed to elucidate differences between the HTO- and HTO

  17. Study of the effect of ionizing radiation for utilization of spent cracking catalysts

    International Nuclear Information System (INIS)

    Kondo, Fernando Mantovani

    2014-01-01

    Catalyst is a substance that changes the rate of a reaction. In the petroleum industry the commonly catalysts are used for Fluid Catalytic Cracking (FCC) and Hydrocatalytic Cracking (HCC), which one applied in a specific stage. These catalysts are used to facilitate the molecular chains cracking which will generate a mixture of hydrocarbons. However, the catalyst gradually loses its activity, either by changing its original molecular structure or by its contamination from other petroleum molecules. The application of ionizing radiation (electron beam and gamma rays) over these spent catalysts was studied to contribute with the extraction of metals or rare-earths of high added-value. Tests carried out with FCC catalysts were used the techniques of 60 Co irradiation and electron beam (EB) and had as a subject the extraction of lanthanum (La 2 O 3 ), regeneration and utilization of these catalysts. However, the use of ionizing radiation has not contributed in these processes. Meanwhile with HCC catalysts the irradiation used was electron beam and had as a subject the extraction of molybdenum (MoO 3 ). In temperature around 750°C, these irradiated catalysts of the lower region have an extraction yield twice higher compared to non-irradiated ones, in other words 57.65% and 26.24% respectively. (author)

  18. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  19. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  20. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma, E-mail: jperez@iqsc.usp.br [Instituto de Quimica de Sao Carlos, USP (Brazil); Antolini, Ermete [Scuola di Scienza dei Materiali (Italy)

    2012-09-15

    The effect of the relationship between particle size (d), inter-particle distance (x{sub i}), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x{sub i}/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x{sub i}/d can be always obtained. For y {>=} 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x{sub i}/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x{sub i}/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x{sub i}/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  1. The Effect of Annealing Temperature on Nickel on Reduced Graphene Oxide Catalysts on Urea Electrooxidation

    International Nuclear Information System (INIS)

    Glass, Dean E.; Galvan, Vicente; Prakash, G.K. Surya

    2017-01-01

    Highlights: •Nickel was reduced on graphene oxide and annealed under argon from 300 to 700 °C. •Nickel was oxidized from the removal of oxygen groups on the graphene oxide. •Higher annealed catalysts displayed decreased urea electrooxidation currents. •Micro direct urea/hydrogen peroxide fuel cells were employed for the first time. •Ni/rGO catalysts displayed enhanced fuel cell performance than the bare nickel. -- Abstract: The annealing temperature effects on nickel on reduced graphene oxide (Ni/rGO) catalysts for urea electrooxidation were investigated. Nickel chloride was directly reduced in an aqueous solution of graphene oxide (GO) followed by annealing under argon at 300, 400, 500, 600, and 700 °C, respectively. X-ray Diffraction (XRD) patterns revealed an increase in the crystallite size of the nickel nanoparticles while the Raman spectra displayed an increase in the graphitic disorder of the reduced graphene oxide at higher annealing temperatures due to the removal of oxygen functional groups. The Ni/rGO catalysts annealed at higher temperatures displayed oxidized nickel surface characteristics from the Ni 2p X-ray Photoelectron Spectra (XPS) due to the oxidation of the nickel from the oxygen functional groups in the graphitic lattice. In the half-cell testing, the onset potential of urea electrooxidation decreased while the urea electrooxidation currents decreased as the annealing temperature was increased. The nickel catalyst annealed at 700 °C displayed a 31% decrease in peak power density while the catalyst annealed at 300 °C displayed a 13% increase compared with the unannealed Ni/rGO catalyst in the micro direct urea/hydrogen peroxide fuel cells tests.

  2. Synergy effects between bismuth molybdate catalyst phases (Bi/Mo from 0.57 to 2) for the selective oxidation of propylene to arcrolein

    DEFF Research Database (Denmark)

    Le, Minh Thang; Well, Willy van; Stoltze, Per

    2005-01-01

    In this work, the synergy effect between different phases of bismuth molybdate catalysts was investigated systematically. The catalysts were prepared by spray drying and had a Bi/Mo atomic between 0.57 and 2. It is found that the synergy effect is only observed in mixtures containing γ-phase. A m......-phase. A mixture with Bi/Mo ratio = 1.3 consisting of γ- and α-phase, exhibits the highest activity. Less homogeneous ‘artificial mixtures’ exhibit reduced synergy effects when compared to homogeneous ‘in situ mixtures’.......In this work, the synergy effect between different phases of bismuth molybdate catalysts was investigated systematically. The catalysts were prepared by spray drying and had a Bi/Mo atomic between 0.57 and 2. It is found that the synergy effect is only observed in mixtures containing γ...

  3. Effect of Calcination Temperatures and Mo Modification on Nanocrystalline (γ-χ-Al2O3 Catalysts for Catalytic Ethanol Dehydration

    Directory of Open Access Journals (Sweden)

    Tharmmanoon Inmanee

    2017-01-01

    Full Text Available The mixed gamma and chi crystalline phase alumina (M-Al catalysts prepared by the solvothermal method were investigated for catalytic ethanol dehydration. The effects of calcination temperatures and Mo modification were elucidated. The catalysts were characterized by X-ray diffraction (XRD, N2 physisorption, transmission electron microscopy (TEM, and NH3-temperature programmed desorption (NH3-TPD. The catalytic activity was tested for ethylene production by dehydration reaction of ethanol in gas phase at atmospheric pressure and temperature between 200°C and 400°C. It was found that the calcination temperatures and Mo modification have effects on acidity of the catalysts. The increase in calcination temperature resulted in decreased acidity, while the Mo modification on the mixed phase alumina catalyst yielded increased acidity, especially in medium to strong acids. In this study, the catalytic activity of ethanol dehydration to ethylene apparently depends on the medium to strong acid. The mixed phase alumina catalyst calcined at 600°C (M-Al-600 exhibits the complete ethanol conversion having ethylene yield of 98.8% (at 350°C and the Mo-modified catalysts promoted dehydrogenation reaction to acetaldehyde. This can be attributed to the enhancement of medium to strong acid with metal sites of catalyst.

  4. Plasma and catalyst for the oxidation of NOx

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  5. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation

    Science.gov (United States)

    Xiao, Haiping; Chen, Yu; Qi, Cong; Ru, Yu

    2018-03-01

    This paper aims to study the effect of alkali metal sodium (Na) poisoning on the performance of the Selective Catalytic Reduction (SCR) catalyst. The result showed that Na2SO4 poisoning leads to a reduced denitration rate of the SCR catalyst and an increase in the SO3 generation rate. Na2O poisoning leads to a significant reduction in the denitration rate of the SCR catalyst and marginally improves the formation of SO3. The maximum of the SO3 generation rate for a Na2SO4-poisoned catalyst reached 1.35%, whereas it was only 0.85% for the SCR catalyst. When the SO2 was contained in flue gas, the denitration rate for the Na2O-poisoned catalyst clearly increased by more than 28%. However, the effect of SO2 on the Na2SO4-poisoned catalyst was very slight. The denitration rate of the SCR catalyst decreased with an increase in the Na content. The BET and XRD results showed that Na poisoning of the catalyst decreased the number of acid sites, the reducibility of the catalyst, the surface area, and pore volume. The H2-TPR and NH3-TPD results show that Na decreases the number of acid sites and the reducibility of the catalyst. The FT-IR and XPS results showed that Na2O poisoning led to the decrease of V5+dbnd O bonds and the consumptions of oxygen atoms. Na2SO4 poisoning can improve surface adsorbed oxygen, which was beneficial for the SO2-SO3 conversion reaction.

  6. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. EFFECT OF TIME AND TEMPERATURE ON ISOMERIZATION REACTION OF ?-PINENEUSING CATALYST ZR 4+ Nanik Wijayati, Supartono, Nuni Widiarti, Tri Handayani /NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Nanik Wijayati

    2016-03-01

    Full Text Available Effects of time and temperature on ?-pinene isomerization reaction using catalysts Zr/natural zeolitewas studied. Characterization of the catalysts include: crystallinity, observed using X-Ray Diffraction, count Zr 4+ carried observed using X-Ray Fluorescence, area and porosity catalyst was observed using the Surface Area Analyzer, and acidity catalyst observed through gravimetric method. Isomerization reaction carried out in a batch reactor with temperature variations 90, 120 and 150 C and reaction time variations of 60, 90, 120, 150 and 180 minutes. Best results of isomerisation in this study was obtained at 150 derajat C with a reaction time of 180 minutes. Kindsof isomer obtained was observed using GCMS. Catalyst characterization results indicate that modification of the catalyst by cation Zr increases the acidity from 2.76 to 6.64 mmol/g and does not damage the crystal structure significantly. The highest product conversion in this research is 9.24%, less than the maximum results caused by pre-treatment of the catalyst produces a low area. Thus, temperature and reaction time affect the concentration of ? pinene isomerization product in addition to the effect of the catalyst used.

  8. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    International Nuclear Information System (INIS)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-01-01

    The effect of the relationship between particle size (d), inter-particle distance (x i ), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5–3 nm) and x i /d (>5) values, was evaluated. It was found that for y i /d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y i /d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i /d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i /d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  9. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Science.gov (United States)

    Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-09-01

    The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y fuel cell electrode than that using catalysts with y ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  10. NO formation during burnoff of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zaitlin, L.; Laugher, R. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1993-11-01

    Temperature-programmed oxidation (from room temperature to 600[degree]C) was performed on operating forms of aged CoMo (extrudate) and NiMo (chestnut bur-like) as well as powder forms, with continuous on-line analysis for NO, CO, CO[sub 2] and SO[sub 2]. For all catalysts, NO formation was delayed by that of CO and CO[sub 2], indicating either a strong interaction of nitrogen-containing compounds with the catalyst surface or a lower reactivity of nitrogen during burnoff compared with that of carbon. The existence of diffusion effects during burnoff was quite evident. These effects were influenced by the catalyst structure and the level of catalyst deactivation. 18 refs., 6 figs., 1 tab.

  11. Immobilization of Highly Effective Palladium Catalyst onto Poly(4-Vinylpyridine): Synthesis and Characterization

    International Nuclear Information System (INIS)

    Siti Kamilah Che Soh; Intan Shafinass Kassim; Siti Aminah Jusoh; Mustaffa Samsuddin

    2016-01-01

    A commonly known weakness of homogeneous catalysts is the difficulty to recover the active catalyst from the product. Due to the disadvantage, the designing of supported catalyst has been approached to overcome the separation difficulty of the palladium-based homogeneous catalyst. New polymer supported N 2 O 2 metal complex was successfully immobilized by mixing of poly(4-vinylpyridine) with palladium(II) complex in the presence of ethyl acetate as solvent. Then, the reaction was stirred for 72 hours at room temperature to form corresponding P 4 VP-Pd catalyst. The properties of immobilized catalyst were characterized by various techniques such as fourier transform infrared (FTIR), thermogravimetric (TGA), X-ray diffraction (XRD), scanning electron microscopy/ energy dispersive X-ray (SEM/ EDX) and inductively coupled plasma-optical emission (ICP-OES) spectroscopy. (author)

  12. The effect of diluting ruthenium by iron in RuxSey catalyst for oxygen reduction

    International Nuclear Information System (INIS)

    Delacote, Cyril; Lewera, Adam; Pisarek, Marcin; Kulesza, Pawel J.; Zelenay, Piotr; Alonso-Vante, Nicolas

    2010-01-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru x Se y . The catalysts were obtained by thermal decomposition of Ru 3 (CO) 12 and Fe(CO) 5 in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  13. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    KAUST Repository

    Atiqullah, Muhammad

    2013-08-12

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  14. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    KAUST Repository

    Atiqullah, Muhammad; Anantawaraskul, Siripon; Emwas, Abdul-Hamid M.; Al-Harthi, Mamdouh Ahmed; Hussain, Ikram; Ul-Hamid, Anwar; Hossaen, Anwar

    2013-01-01

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  15. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  16. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    Science.gov (United States)

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  17. Effect of TiB2 Pretreatment on Pt/TiB2 Catalyst Performance

    International Nuclear Information System (INIS)

    Huang, Zhen; Lin, Rui; Fan, Renjie; Fan, Qinbai; Ma, Jianxin

    2014-01-01

    Highlights: • We pretreated Titanium diboride by different acids and alkali. • We synthesis the Pt/as-pretreated TiB 2 catalysts by a colloid route. • We investigated the effects of TiB 2 Pretreatment on Pt/TiB 2 Catalyst Performance. • The BET surface area and defects on the surface have a close relationship with the deposition of Pt nanoparticles. - Abstract: Carbon support corrosion of traditional Pt/C catalyst is one of the major contributors causing poor durability of proton exchange membrane fuel cells (PEMFC). Titanium diboride (TiB 2 ) has high electrical conductivity and considerable chemical stability, which making it as a good candidate for catalyst support in PEMFC. In this work, TiB 2 was pretreated by different acid and alkali. The as-obtained samples were characterized by Ex-situ microscopy (ESM) and X-ray diffraction (XRD). The pore size distribution (PSD) was analyzed by using DFT method. The PSD shows distinct volume in mesopore regions (less than 50 nm). The TiB2 pretreated by H 2 O 2 shows the biggest BET surface area of 57 m 2 g −1 and its PSD focus on mesoporous (1.5-8 nm) region, which resulted to high dispersion and better loading of Pt particles. The Hydrogen oxidization reaction (HOR) and oxygen reduction reaction (ORR) activity was characterized by Rotating Disk Electrode (RDE). The Pt/TiB 2 prepared by H 2 O 2 -pretreated TiB 2 using the colloidal method showed better half-cell electrochemical performance. Facile synthetic for the development of Pt/TiB 2 catalysts was developed

  18. Effect of Zn/ZSM-5 and FePO4 Catalysts on Cellulose Pyrolysis

    Directory of Open Access Journals (Sweden)

    Haian Xia

    2015-01-01

    Full Text Available A series of Zn/ZSM-5 catalysts with different Zn contents and FePO4 were used to pyrolyze cellulose to produce value added chemicals. The nature of these catalysts was characterized by ammonia-temperature programmed desorption (NH3-TPD, IR spectroscopy of pyridine adsorption, and X-ray diffraction (XRD techniques. Noncatalytic and catalytic pyrolytic behaviors of cellulose were studied by thermogravimetric (TG technique. The pyrolytic liquid products, that is, the biooils, were analyzed by gas chromatography-mass spectrometry (GC-MS. The major components of the biooils are anhydrosugars such as levoglucosan (LGA, 1,6-anhydro-β-D-glucofuranose (AGF, levoglucosenone (LGO, 1,6-anhydro-3,4-dideoxy-β-D-pyranosen-2-one, and 1,4:3,6-dianhydro-α-D-glucopyranose (DGP, as well as furan derivatives, alcohols, and so forth. Zn/ZSM-5 samples with Brønsted and Lewis acid sites and the FePO4 catalyst with Lewis acid sites were found to have a significant effect on the pyrolytic behaviors of cellulose and product distribution. These results show that Brønsted and Lewis acid sites modified remarkably components of the biooil, which could promote the production of furan compounds and LGO. On the basis of the findings, a model was proposed to describe the pyrolysis pathways of cellulose catalyzed by the solid acid catalysts.

  19. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  20. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  1. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  2. Deactivation of molybdate catalysts by nitrogen bases

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1982-10-01

    Nitrogen bases present in petroleum deactivate the surface of molybdate catalysts. The detrimental effect is attributed either to interactions of the bases with Lewis sites via unpaired electrons on nitrogen or to their ability to remove proton from the surface. The later effect results in a decrease of concentration of Bronsted sites known to be active in catalytic reactions. This enhances rate of coke forming reactions. Resistence of molybdate catalysts to coke formation depends on the form and redistribution of active ingredients on the surface. This can be effected by conditions applied during preparation and pretreatment of the catalysts. Processing parameters used during catalytic hydrotreatment are also important; i.e., the coke formation is slow under conditions ensuring high rate of removal of basic nitrogen containing compounds.

  3. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion...

  4. Oxidative desulfurization of benzothiophene and thiophene with WO{sub x}/ZrO{sub 2} catalysts: Effect of calcination temperature of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Zubair; Jeon, Jaewoo [Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Jhung, Sung Hwa, E-mail: sung@knu.ac.kr [Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Oxidative desulfurization was studied with WO{sub x}/ZrO{sub 2} calcined at different temp. Black-Right-Pointing-Pointer The importance of the phases of zirconia and tungsten oxide was suggested. Black-Right-Pointing-Pointer The catalyst was analyzed thoroughly with Raman and XRD techniques. Black-Right-Pointing-Pointer The importance of electron density on S was confirmed with the kinetics of oxidation. - Abstract: Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO{sub x}/ZrO{sub 2} catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WO{sub x}/ZrO{sub 2} catalyst is around 700 Degree-Sign C. The most active catalyst is composed of tetragonal zirconia (ZrO{sub 2}) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO{sub 3} and monoclinic ZrO{sub 2} for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WO{sub x}/ZrO{sub 2} catalyst, treated suitably, can be used as a reusable active catalyst in the ODS.

  5. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates.

    Science.gov (United States)

    Gao, Zheng-Yang; Yang, Wei-Jie; Ding, Xun-Lei; Lv, Gang; Yan, Wei-Ping

    2018-03-07

    The adsorption and catalytic activation of O 2 on single atom iron catalysts with graphene-based substrates were investigated systematically by density functional theory calculation. It is found that the support effects of graphene-based substrates have a significant influence on the stability of the single atom catalysts, the adsorption configuration, the electron transfer mechanism, the adsorption energy and the energy barrier. The differences in the stable adsorption configuration of O 2 on single atom iron catalysts with different graphene-based substrates can be well understood by the symmetrical matching principle based on frontier molecular orbital analysis. There are two different mechanisms of electron transfer, in which the Fe atom acts as the electron donor in single vacancy graphene-based substrates while the Fe atom mainly acts as the bridge for electron transfer in double vacancy graphene-based substrates. The Fermi softness and work function are good descriptors of the adsorption energy and they can well reveal the relationship between electronic structure and adsorption energy. This single atom iron catalyst with single vacancy graphene modified by three nitrogen atoms is a promising non-noble metal single atom catalyst in the adsorption and catalytic oxidation of O 2 . Furthermore, the findings can lay the foundation for the further study of graphene-based support effects and provide a guideline for the development and design of new non-noble-metal single atom catalysts.

  6. Novel anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  7. Hydrodesulfurization and hydrodemetallization of different origin vacuum residues : new modeling approach.

    OpenAIRE

    Ferreira , Cristina; Tayakout-Fayolle , Melaz; Guibard , Isabelle; Lemos , Francisco

    2014-01-01

    International audience; In order to be able to upgrade the heaviest part of the crude oil one needs to remove several impurities, such as sulfur or metals. Residue hydrotreatment in fixed beds, under high hydrogen pressure can achieve high removal performances, with an industrial catalysts optimized staging. Despite the recent improvements, petroleum residues remain very difficult to describe and characterize in detail. Several kinetic models have been developed, but mostly they are feed depe...

  8. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  9. Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Bok Agnieszka

    2014-12-01

    Full Text Available The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides. The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

  10. Petroleum residue upgrading with dispersed catalysts: Part 2. Effect of operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil (Italy); Carniti, P. [Universita degli Studi di Milano, Dip. Chimica Fisica ed Elettrochimica, Via Celoria 20, Milan (Italy)

    2000-12-04

    The hydrotreatment of a petroleum residue in the presence of dispersed molybdenite was carried out within a wide range of operating conditions and catalyst loading. The effect of reaction severity as well as of molybdenum concentration on product distribution and quality was studied. Based on the experimental results, a simplified reaction scheme was proposed. The hydroprocessing of the residue was described in terms of the competition between two reactions: the direct conversion of the feedstock to distillate and coke, and the catalytic hydrogenation. Compared to thermal conditions, the presence of dispersed molybdenite controls very well coke formation; however, a trend of increasing formation of solids was observed at high catalyst concentrations. The overall upgrading of the feedstock requires significant amounts of molybdenum as well as relatively high hydrogen pressure.

  11. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  12. NO reduction by CO over noble-metal catalysts under cycled feedstreams

    International Nuclear Information System (INIS)

    Muraki, H.; Fujitani, Y.

    1986-01-01

    The reduction of NO with CO was studied over α-Al/sub 2/O/sub 3/-supported Pt, Pd, Rh, Ru, and Ir catalysts. The activities were measured by using cycled feeds and steady noncycled feed. The activity sequence of the catalysts tested was Rh > Ru > Ir > Pd > Pt. The activities of Pt and Pd catalysts were increased under the cycled feed. The periodic operation effect on the Pt catalyst was more predominant than that on the Pd catalyst. The order of periodic operation effect corresponded to the order of their susceptibility to CO self-poisoning

  13. The effect of catalyst support on the RWGS reaction

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Sutthisripok, W.

    2004-01-01

    'Full text:' Methane steam reforming is generally applied in order to produce synthesis gas mainly consist of hydrogen and carbon monoxide for later utilization in SOFC. This reaction is always carried out with the water gas shift reaction over a catalyst at elevated temperatures resulting in some carbon dioxide production. The CO/CO2 production selectivity strongly depends on the influence of water gas shift reaction. It was observed that the reactivity of this reaction depended on the type of support material. Stabilities, activities, and kinetics of the reverse water gas shift reaction (RWGS) for commercial nickel on CeO2, ZrO2, CeO2-ZrO2, TiO2, MgO, and Al2O3 supports were studied in order to observe the influence of the support on this reaction. According to the experiment, the activities of Ni/CeO2 toward the reverse water gas shift reaction (RWGS) were very high, and reached equilibrium level at approximately 600 o C (where the conversion of CO2 was closed to 1). Other oxide supports provided lower activities toward this reaction. It was observed that the activity of Ni/Al2O3 toward this reaction was the lowest. The kinetics of this reaction was also studied. Carbon dioxide presented positive effect on the reverse water gas shift reaction. The reaction orders in carbon dioxide were observed to be positive partial value between 0-1. It slightly decreased with increasing temperature for Ni/ CeO2 and Ni/CeO2-ZrO2, whereas it seemed to be independent of the operating temperature for other materials in the range of conditions studied. Hydrogen also showed positive effect on the reverse water gas shift reaction for all materials. The reaction order in hydrogen for all materials was observed to be the positive value and less than one for the range of conditions studied. The approximate values for all catalysts were between 0.45-0.65, and seemed to be independent of the operating temperature. The estimated values of the apparent activation energy for RWGS reaction

  14. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  15. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  16. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik

    2018-01-01

    . In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either...... by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst....... to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal...

  17. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  18. Effect of iron promoter on structure and performance of CuMnZnO catalyst for higher alcohols synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mingyue [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Qiu, Minghuang [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Graduate School of Chinese Academy of Science, Beijing 100049 (China); Wang, Tiejun [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Ma, Longlong; Wu, Chuangzhi [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Liu, Jianguo [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Graduate School of Chinese Academy of Science, Beijing 100049 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Incorporation of iron promotes the dispersion of catalyst particles. Black-Right-Pointing-Pointer Adding iron facilitates the separation of CuO from the Cu-Mn solid solution. Black-Right-Pointing-Pointer Both the copper and iron carbides are well dispersed in higher iron amount. Black-Right-Pointing-Pointer The selectivity to C{sub 2}{sup +}OH is promoted by increasing iron concentration. -- Abstract: Effect of iron promoter on the microstructures of CuMnZnO catalysts was investigated by N{sub 2} physical adsorption (BET), X-ray diffraction (XRD), and temperature-programmed reduction of hydrogen (H{sub 2}-TPR). Higher alcohols synthesis (HAS) was performed in a fixed bed reactor. The characterization results indicated that incorporation of iron in the CuMnZnO catalyst resulted in the increase of BET surface area and the dispersion of catalyst particles. Adding iron facilitated the formation of Fe-Mn solid solution and reduced the interaction between copper and manganese, which promoted the separation of CuO from the Cu-Mn solid solution and the reduction of the catalyst. In the HAS reaction, the catalytic activity of CO hydrogenation and the selectivity to C{sub 2}{sup +}OH and hydrocarbons presented an increasing trend with the increase in iron concentration, which may be attributed to the synergistic effect between the dispersed copper and iron carbides.

  19. Effect of preparation method on catalytic activity of Ni/ γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Miranda Morales, Barbara

    2017-01-01

    The performance of catalysts was shown to be strongly dependent on their methods of preparation. A study to examine the relationship between catalyst preparation procedures and the structure, dispersion, activity, and selectivity of the finished catalyst is reported. 10 wt.%Ni/γ-Al 2 O 3 catalysts were prepared by incipient wetness impregnation and by wet impregnation. The catalysts were used in the conversion of glycerol in gas phase and atmospheric pressure. The selectivity and activity of the catalysts were affected by the preparation method employed. The catalysts were characterized by thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), N 2 -physorption, H 2 -chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and temperature-programmed oxidation (TPO). The Ni particle size and dispersion of the catalysts affected the selectivity to hydrogenolysis and dehydration routes, and the formation of carbon deposits was also affected. (author) [es

  20. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    Science.gov (United States)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  1. Application of magnetic resonance imaging (MRI) to determine the influence of fluid dynamics on desulfurization in Bench scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.L.; Reimert, R. [Engler-Bunte-Institut, Bereich Gas, Erdoel und Kohle, Universitaet Karlsruhe (T.H.) (Germany); Hardy, E.H. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.) (Germany)

    2006-07-15

    The influence of fluid dynamics on the hydrodesulfurization (HDS) reactions of a diesel oil in bench-scale reactors was evaluated. The porosities and liquid saturations of catalyst beds were quantified by using the MRI technique. The gas-liquid systems used in the experiments were nitrogen diesel and hydrogen diesel. An apparatus was especially constructed, allowing in situ measurements of gas and liquid distributions in packed beds at elevated pressure and temperature up to 20 bar and 200 C, respectively. The reactor itself had a length of 500 mm and an internal diameter of 19 mm. The packed beds used in this MRI study consisted of: (1) 2 mm diameter nonporous spherical glass beads and (2) 1.3 mm diameter porous Al{sub 2}O{sub 3} trilobes having the same size as the original trilobe catalyst used in HDS bench-scale experiments. The superficial gas and liquid velocities were set within the range of trickle flow, e.g., u{sub 0G} = 20-500 mm/s and u{sub 0L} = 0.1-6 mm/s. In parallel with the MRI experiments, the hydrodesulfurization of a gas oil was investigated in a bench-scale plant. Its reactor had the same dimensions of the trickle-bed column used in the MRI experiments and was filled with original trilobe catalyst. These catalytic experiments were carried out at a wide range of operating conditions (p = 30-80 bar, T = 300-380 C, LHSV = 1-4 h{sup -1}). The results of both fluid dynamic and catalytic reaction experiments were then combined for developing a simulation model to predict the HDS performance by accounting for fluid dynamic nonidealities. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Effects of γ- and x-irradiation upon activity and selectivity of a supported silver catalyst in the oxidation of ethylene and carbon monoxide

    International Nuclear Information System (INIS)

    Mora Vallejo, R.J.

    1975-01-01

    Effects of γ and x-radiation on catalytic selectivity of supported silver catalysts for production of ethylene oxide via ethylene oxidation were compared by determination of radio-induced changes in conversion-yield profiles. Influence of photon energy on the kinetics of the irradiation process was studied by determination of conversion-yield profiles, using samples of catalyst exposed to x-rays of different mean photon energy and γ-rays for different cumulative periods of time. The effect of γ-radiation on catalytic activity of the same silver catalysts for carbon monoxide oxidation was analyzed by determination of the reaction kinetics before and after catalyst irradiation

  3. Structural Modification of Cobalt Catalysts: Effect of Wetting Studied by X-Ray and Infrared Techniques

    Directory of Open Access Journals (Sweden)

    Khodakov A.

    1999-07-01

    Full Text Available The effect of wetting on the structure and localisation of cobalt species on various supports (Al2O3, SiO2, TiO2, HZSM-5 zeolite was studied using X-ray diffraction, Fourier transform infrared spectroscopy with CO as a molecular probe, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. Aqueous impregnation to incipient wetness of reduced and passivated cobalt catalysts results, even in the absence of any promoter, in a considerable decrease in the concentration of Co crystalline phases and modifies the surface sites. The decrease in the concentration of Co3O4 crystallites was especially pronounced on silica supported catalysts prepared via impregnation of cobalt and on a mixture of Co3O4 and HZSM-5 zeolite. Saturation with water of the passivated Co/SiO2 sample results in an amorphous solid with a local structure close to that of Co2SiO4. For Co/Al2O3 and Co/TiO2 catalysts, the effect of wetting on the concentration of Co3O4 crystalline phase was considerably smaller.

  4. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  5. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  6. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  7. Deep desulfurization of jet fuel for applications in mobile fuel cell systems; Tiefentschwefelung von Flugturbinenkraftstoffen fuer die Anwendung in mobilen Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong

    2012-07-01

    Fuel cell powered APUs are promising for the on-board electricity supply in heavy vehicles, aircraft and ships because of their high efficiency and low emission of pollutants. The catalytical reforming with subsequent gas processing units is applied to operate the fuel cell system with onboard available fuels. Within the reformer the liquid fuel is converted into a hydrogen-rich synthesis gas in the presence of metal catalysts. However, an on-board desulfurization of fuels is required to avoid the deactivation of catalysts in the fuel processing unit as well as in the fuel cell. The present work aims at developing a technically feasible deep desulfurization process for fuel cell powered APUs with theoretical and experimental study as well as procedural analysis. The focus of the work is on the desulfurization of jet fuels in liquid phase, since the reformer currently developed in IEK-3 is designed for aviation applications of fuel cell APUs and it can only be operated by liquid jet fuels. In addition, the desulfurization of marine gas oil was investigated to fulfill the sulfur requirement of the fuels for the application of fuel cell A PUs for inland navigation. In the petroleum industry, low-sulfur fuels are often obtained by hydrodesulfurization and the S-Zorb Process. However, these conventional methods are highly inconvenient for reducing sulfur compounds to the desired level in a mobile fuel cell system, since improvements of the desulfurization efficiency are limited by increasingly severe operating conditions and escalating costs. Moreover, the hydrodesulfurization and the S-Zorb Process are not suitable for mobile applications, since hydrogen recycling is required, which is not possible with H{sub 2} syngas. To this end, a large number of processes discussed in the literature were assessed with regard to their application in fuel cell APUs. Three potentially suitable processes were selected: pervaporation, adsorption, and hydrodesulfurization with pre

  8. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst

    International Nuclear Information System (INIS)

    Niu Zhiqiang; Fang Yan

    2008-01-01

    The influence of temperature on synthesizing single-walled carbon nanotubes (SWCNTs) by catalytic chemical vapor deposition of methane over Mo-Co-MgO catalyst was studied by Transmission Electron Microscope (TEM) and Raman scattering. The Mo-Co-MgO bimetallic catalyst was prepared by decomposing the mixture of magnesium nitrate, ammonium molybdate, citric acid, and cobalt nitrate. The results show that Mo-Co-MgO bimetallic catalyst is effective to synthesize SWCNTs. By using Mo-Co-MgO bimetallic catalyst, generation of SWCNTs even at 940 K was demonstrated. The optimum temperature of synthesizing SWCNTs over Mo-Co-MgO bimetallic catalyst may be about 1123 K. At 1123 K, the diameters of SWCNTs are in the range of 0.75-1.65 nm. The content of SWCNTs is increased with the increase of temperature below 1123 K and the carbon yield rate is also increased with the increase of synthesis temperature. Therefore, the amount of SWCNTs increases with the increase of temperature below 1123 K. However, above 1123 K, the content of SWCNTs is decreased with the increase of temperature; therefore, it is not effective to increase the amount of SWCNTs through increasing synthesis temperature above 1123 K

  9. Spillover effect induced Pt-TiO2/C as ethanol tolerant oxygen reduction reaction catalyst for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Meenakshi, S.; Nishanth, K.G.; Sridhar, P.; Pitchumani, S.

    2014-01-01

    Hypo-hyper-d-electronic interactive nature is used to develop a new carbon supported HT-Pt-TiO 2 composite catalyst comprising Pt and Ti in varying atomic ratio, namely 1:1, 2:1 and 3:1. The electro-catalysts are characterized by XRD, TEM, SEM-EDAX, Cyclic Voltammetry (CV) and Linear sweep voltammetry (LSV) techniques. HT-Pt-TiO 2 /C catalysts exhibit significant improvement in oxygen reduction reaction (ORR) over Pt/C. The effect of composition towards ORR with and without ethanol has been studied. The direct ethanol fuel cell (DEFC) with HT-Pt-TiO 2 /C cathode catalyst exhibits an enhanced peak power density of 41 mW cm −2 , whereas 21 mW cm −2 is obtained for the DEFCs with carbon-supported Pt catalyst operating under identical conditions

  10. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    Science.gov (United States)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  11. Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M.; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E.; Mukerjee, Sanjeev

    2015-01-01

    The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo3/HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling. PMID:26413384

  12. Restrictive liquid-phase diffusion and reaction in bidispersed catalysts

    International Nuclear Information System (INIS)

    Lee, S.Y.; Seader, J.D.; Tsai, C.H.; Massoth, F.E.

    1991-01-01

    In this paper, the effect of bidispersed pore-size distribution on liquid-phase diffusion and reaction in NiMo/Al 2 O 3 catalysts is investigated by applying two bidispersed-pore-structure models, the random-pore model and a globular-structure model, to extensive experimental data, which were obtained from sorptive diffusion measurements at ambient conditions and catalytic reaction rate measurements on nitrogen-containing compounds. Transport of the molecules in the catalysts was found to be controlled by micropore diffusion, in accordance with the random-pore model, rather than macropore diffusion as predicted by the globular-structure model. A qualitative criterion for micropore-diffusion control is proposed: relatively small macroporosity and high catalyst pellet density. Since most hydrotreating catalysts have high density, diffusion in these types of catalysts may be controlled by micropore diffusion. Accordingly, it is believed in this case that increasing the size of micropores may be more effective to reduce intraparticle diffusion resistance than incorporating macropores alone

  13. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  14. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    Science.gov (United States)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  15. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  16. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  17. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance

    Science.gov (United States)

    Park, Jong Cheol; Choi, Chang Hyuck

    2017-08-01

    Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.

  18. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States); Hu, Weiming; Deng, Baolin [University of Missouri, Department of Civil and Environmental Engineering (United States); Liang, Xinhua, E-mail: liangxin@mst.edu [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States)

    2017-04-15

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO{sub 2}), commercial γ-Al{sub 2}O{sub 3}, and ALD-prepared porous Al{sub 2}O{sub 3} particles (ALD-Al{sub 2}O{sub 3}). The results of TEM analysis showed that ~1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO{sub 2} showed the highest activity due to the strong acidity of SiO{sub 2} and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al{sub 2}O{sub 3} catalysts were more stable than Pt/SiO{sub 2}, as a result of the different interactions between the Pt NPs and the supports.

  19. Reduction and reoxidation of cobalt Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hilmen, Anne-Mette

    1996-12-31

    The Fischer-Tropsch synthesis involves the hydrogenation of carbon monoxide to produce mainly hydrocarbons, water and carbon dioxide, but also alcohols, aldehydes and acids are formed. The distribution of these products is determined by the choice of catalyst and synthesis conditions. This thesis studies the reduction and reoxidation of 17%Co/Al{sub 2}O{sub 3} and 17%Co-1%Re/Al{sub 2}O{sub 3} by means of several characterization techniques. The effect of small amounts of Re on the reduction properties of Al{sub 2}O{sub 3}-supported Co catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of CoAl{sub 2}O{sub 3} and Re/Al{sub 2}O{sub 3} catalysts showed a promoting effect of Re similar to that for co impregnated CoRe/Al{sub 2}O{sub 3}. A loose mixture of Co/Al{sub 2}O{sub 3} + Re/Al{sub 2}O{sub 3} did not show any effect of Re on the reduction of Co. But a promoting effect was observed if the mixture had been pre-treated with Ar saturated with water before the TPR. It is suggested that Re promotes the reduction of Co oxide by hydrogen spillover. It is shown that a high temperature TPK peak at 1200K assigned to Co aluminate is mainly caused by the diffusion of Co ions during the TPR and not during calcination. The Co particle size measured by x-ray diffraction on oxidized catalysts decreased compared to the particle size on the calcined catalysts, while the dispersion measured by volumetric chemisorption decreased somewhat after the oxidation-reduction treatment. The role of water in the deactivation of Co/Al{sub 2}O{sub 3} and CoRe/Al{sub 2}O{sub 3} Fischer-Tropsch catalysts has been extensively studied. There were significant differences in the reducibility of the phases formed for the two catalysts during exposure to H{sub 2}O/He. 113 refs., 76 figs., 18 tabs.

  20. From trash to resource: recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H 2 production

    KAUST Repository

    Gombac, V.; Montini, T.; Falqui, Andrea; Loche, D.; Prato, M.; Genovese, Alessandro; Mercuri, M. L.; Serpe, A.; Fornasiero, P.; Deplano, P.

    2016-01-01

    The successful production of a nanostructured and highly dispersed Pd-TiO2 photo-catalyst, using [Pd(Me2dazdt)2](I3)2 (Me2dazdt = N,N′-dimethyl-perhydrodiazepine-2,3-dithione) salt, obtained through the selective and safe recovery of palladium from model exhaust three-way catalysts (TWCs), is reported here. The photo-catalyst prepared by the impregnation/photo-reduction of palladium on the support showed improved performance in H2 production from methanol and in glycerol photo-reforming compared to reference photo-catalysts obtained from conventional Pd-salts. The reported results represent a case of successful palladium “recovery and re-employment” and thus constitute an example of green chemistry by providing, in one route, the environmentally friendly recovery of a critical metal and its employment in the renewable energy field.

  1. From trash to resource: recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H 2 production

    KAUST Repository

    Gombac, V.

    2016-01-06

    The successful production of a nanostructured and highly dispersed Pd-TiO2 photo-catalyst, using [Pd(Me2dazdt)2](I3)2 (Me2dazdt = N,N′-dimethyl-perhydrodiazepine-2,3-dithione) salt, obtained through the selective and safe recovery of palladium from model exhaust three-way catalysts (TWCs), is reported here. The photo-catalyst prepared by the impregnation/photo-reduction of palladium on the support showed improved performance in H2 production from methanol and in glycerol photo-reforming compared to reference photo-catalysts obtained from conventional Pd-salts. The reported results represent a case of successful palladium “recovery and re-employment” and thus constitute an example of green chemistry by providing, in one route, the environmentally friendly recovery of a critical metal and its employment in the renewable energy field.

  2. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  3. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  4. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  5. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  6. Performance of supported catalysts for water electrolysis

    OpenAIRE

    Gurrik, Stian

    2012-01-01

    The most active catalyst for oxygen evolution in PEM water electrolysis is ruthenium oxide. Its major drawback as a commercial catalyst is its poor stability. In a mixed oxide with iridium, ruthenium becomes more stable. However, it would be favorable to find a less expensive substitute to iridium. In this work, the dissolution potential and lifetime of mixed oxides containing ruthenium and tantalum are investigated. In order to effectively determine what effects tantalum and particle size ha...

  7. Effect of K promoter on the structure and catalytic behavior of supported iron-based catalysts in fischer-tropsch synthesis

    Directory of Open Access Journals (Sweden)

    F. E. M Farias

    2011-09-01

    Full Text Available Effects of K addition on the performance of supported Fe catalysts for Fischer - Tropsch synthesis (FTS were studied in a slurry reactor at 240 to 270ºC, 2.0 to 4.0 MPa and syngas H2/CO = 1.0. The catalysts were characterized by N2 adsorption, H2 temperature programmed reduction, X - ray diffraction, X - ray fluorescence, thermogravimetric analysis, scanning electron microscopy and dispersive X - ray spectroscopy. A strong interaction was observed between Fe and K, which inhibited the reduction of Fe catalyst. Addition of potassium increased the production of heavy hydrocarbons (C20+.

  8. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  9. Synthesis of palm biodiesel using sodium methoxide catalyst

    International Nuclear Information System (INIS)

    Azhari; Robiah Yunus; Rasyid, S.A.; Abdullah, L.C.

    2006-01-01

    Synthesis of palm biodiesel (methyl ester) was successfully carried out from refined bleached deodorized palm oil (RBDPO) by transesterification reaction. Two kinds of alkali catalyst were selected for this reaction namely sodium hydroxide (NaOH) and sodium methoxide (NaOCH 3 ), and the effects of operating variables such as molar ratio, reaction temperature and quantity of catalyst were also investigated. The reaction was carried out under atmosphere pressure. The reaction temperature and time were varied between 55 to 70 degree C and 50 to 90 minutes respectively. The methanol to oil molar ratios were also varied at 6:1, 5:1, 4:1 and 3:1 to examine its effect on reaction yield. The reaction conversion was 99% by use of NaOCH 3 as a catalyst. However, with NaOH as catalyst, the conversion was slightly lower compared to using NaOCH 3 . The optimum conditions for NaOCH 3 as catalyst were reaction temperature, 65 degree C; reaction time, 60 minutes; molar ratio, 6:1; and catalyst amount, 1.0% w/w. The kinetics study on transesterification of RBDPO with methanol established that the reaction occurred via two stepwise and irreversible elementary reactions following second order model. A vacuum distillation process was used to reduce the pour point of palm biodiesel. The lowest pour point attainable for palm biodiesel was at 3 degree C. (Author)

  10. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  11. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  12. Effect of ZIF-8 Crystal Size on the O2 Electro-Reduction Performance of Pyrolyzed Fe–N–C Catalysts

    Directory of Open Access Journals (Sweden)

    Vanessa Armel

    2015-07-01

    Full Text Available The effect of ZIF-8 crystal size on the morphology and performance of Fe–N–C catalysts synthesized via the pyrolysis of a ferrous salt, phenanthroline and the metal-organic framework ZIF-8 is investigated in detail. Various ZIF-8 samples with average crystal size ranging from 100 to 1600 nm were prepared. The process parameters allowing a templating effect after argon pyrolysis were investigated. It is shown that the milling speed, used to prepare catalyst precursors, and the heating mode, used for pyrolysis, are critical factors for templating nano-ZIFs into nano-sized Fe–N–C particles with open porosity. Templating could be achieved when combining a reduced milling speed with a ramped heating mode. For templated Fe–N–C materials, the performance and activity improved with decreased ZIF-8 crystal size. With the Fe–N–C catalyst templated from the smallest ZIF-8 crystals, the current densities in H2/O2 polymer electrolyte fuel cell at 0.5 V reached ca. 900 mA cm−2, compared to only ca. 450 mA cm−2 with our previous approach. This templating process opens the path to a morphological control of Fe–N–C catalysts derived from metal-organic frameworks which, when combined with the versatility of the coordination chemistry of such materials, offers a platform for the rational design of optimized Metal–N–C catalysts.

  13. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    Science.gov (United States)

    Jusoh, N. W. C.; Jalil, A. A.; Triwahyono, S.; Karim, A. H.; Salleh, N. F.; Annuar, N. H. R.; Jaafar, N. F.; Firmansyah, M. L.; Mukti, R. R.; Ali, M. W.

    2015-03-01

    ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH4OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, 29Si MAS NMR, nitrogen adsorption-desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si-O-Zn during the electrolysis, as well as formation of new Si-O-Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH4OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10-1 h-1 than unsupported ZnO (1.13 × 10-1 h-1) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O2 at the conduction band, decomposed water at the valence band and irradiated H2O2 in the solution, are key factors that influenced the reaction. It is also noted that the recycled ZM-1.0 catalyst maintained its activity up to five runs without serious catalyst deactivation.

  14. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    International Nuclear Information System (INIS)

    Yang Jianli; Zhun Jisheng; Liu Zhenyu; Zhong Bing

    2002-01-01

    Catalyst plays an important role in direct coal liquefaction (DCL). Iron catalysts are regarded as the most attractive catalysts for DCL. To maximize catalytic effect and minimize catalysts usage, ultra-fine size catalysts are preferred. The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles. Besides the physical size, chemical form of a catalyst or a catalyst precursor is also important in determination of DCL activity. The expended X-ray absorption fine structure spectroscopy technique were used in this study. It was shown that the catalysts tested are in nanomater range and have structure mainly in the form of γ-FeOOH and FeS, or possibly of Fe/O/S. The presence of γ-FeOOH can be attributed to the interaction between Fe and the oxygen containing groups of coal or oxygen from moisture

  15. Hydrogenation of aromatic compounds during gas oil hydrodewaxing. Part 1. Effect of ruthenium content and method of nickel catalyst preparation

    Energy Technology Data Exchange (ETDEWEB)

    Masalska, Aleksandra [Wroclaw University of Technology, Faculty of Chemistry, 7/9 Gdanska Street, 50-344 Wroclaw (Poland)

    2008-09-30

    Ni-based (8 wt.% NiO) dewaxing catalysts for the hydroconversion of the hydroraffinate of oil fraction (d{sub 20} {sub C} = 0.845 g/cm{sup 3}; cloud point (CP) -2 C; aromatics = 25.8 wt.%; S = 25 ppm) were modified with Ru. The effect of Ru content (0.6, 0.75 and 0.9 wt.% of RuO{sub 2}) and the methods of Ni catalyst preparation were examined. The catalysts were characterised by N{sub 2} sorption, TPR, ICP, XRD, SEM, XPS, H{sub 2} chemisorption. Activity was tested in a continuous-flow system at 6 MPa (LHSV, 2.5 h{sup -1}; H{sub 2}:CH, 350 N m{sup 3}/m{sup 3}). NiO and RuO{sub 2} were found to exert a synergic effect on catalytic activity. The rise in RuO{sub 2} content from 0.6 to 0.9 wt.% increased the HDA of HON from 23 to 65% at 240 C and was parallelled by a drop in CP (by about 15 C). The effect of Ru was found to depend on the method of Ni catalyst preparation. (author)

  16. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  17. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  18. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  19. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters.

    Science.gov (United States)

    Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping

    2018-07-01

    Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  1. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  2. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  3. Hydrodeoxygenation of heavy oils derived from low-temperature coal gasification over NiW catalysts-effect of pore structure

    Energy Technology Data Exchange (ETDEWEB)

    Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

    2008-01-15

    The effect of the pore structure on the hydroprocessing of heavy distillate oils derived from low-temperature coal gasification residues was studied using four NiW catalysts with different pore size distributions. The hydroprocessing was conducted at a pressure of 17.5 MPa, a temperature range of 370-410{sup o}C, and a 0.50 h{sup -1} space velocity. The degree of hydrodeoxygenation (HDO) in terms of phenolics removal was influenced by the catalyst pore structure, with the most preferable peak pore diameter for HDO ranging between 6.8 and 16 nm. The catalyst with the highest volume of pores in the 3.5-6 nm range showed the lowest HDO activity. The apparent activation energies for the HDO reaction varied between 59 and 87 kJ/mol, whereby the lowest values are obtained for the catalysts with a peak pore diameter of 11 and 16 nm. 30 refs., 5 figs., 6 tabs.

  4. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  5. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  6. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  7. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  8. Modeling of On-Line Catalyst Addition Effects in a Short Contact Time Reactor

    National Research Council Canada - National Science Library

    Zerkle, David K; Allendorf, Mark Donald; Wolf, Markus; Deutschmann, Olaf

    2000-01-01

    ... operating ( on-line catalyst addition). Our simulations indicate that the fundamental behavior of the ethane SCTR prepared with catalyst added online is the result of coupled heterogeneous and homogeneous chemical processes...

  9. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  10. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  11. Effect of Solvent, Catalyst Type and Catalyst Activation on the Microwave Transformation of 2-Tert-butylphenol

    Czech Academy of Sciences Publication Activity Database

    Radoiu, M.; Hájek, Milan

    2002-01-01

    Roč. 186, 1-2 (2002), s. 121-126 ISSN 1381-1169 Institutional research plan: CEZ:AV0Z4072921 Keywords : microwaves * tert-butylphenols * catalyst activation Subject RIV: CC - Organic Chemistry Impact factor: 1.729, year: 2002

  12. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  13. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  14. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    Science.gov (United States)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  15. Exploring electronic and steric effects on the insertion and polymerization reactivity of phosphinesulfonato pdii catalysts

    KAUST Repository

    Neuwald, Boris; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Mecking, Stefan

    2013-01-01

    incorporation at low MA concentrations in the copolymerization; and 3) steric shielding leads to a pronounced increase in polymer molecular weight in the copolymerization. The catalyst properties induced by a given P-aryl (alkyl) moiety were combined effectively

  16. EXAFS characterization of supported metal catalysts in chemically dynamic environments

    International Nuclear Information System (INIS)

    Robota, H.J.

    1991-01-01

    Characterization of catalysts focuses on the identification of an active site responsible for accelerating desirable chemical reactions. The identification, characterization, and selective modification of such sites is fundamental to the development of structure-function relationships. Unfortunately, this goal is far from realized in nearly all catalysts, and particularly in catalysts comprised of small supported metal particles. X-ray absorption spectroscopy (XAS) has had a dramatic effect on our understanding of supported metal particles in their resting state. However, the performance of a catalyst can not be assessed from such simple resting state measurements. Among the factors which influence catalyst performance are the exact catalyst composition, including the support and any modifiers; particle size; catalyst finishing and pretreatment conditions; pressure, composition, and temperature of the operating environment; time. Gaining an understanding of how the structure of a catalytic site can change with such an array of variables requires that we begin to develop measurement methods which are effective under chemically dynamic conditions. Ideally, it should be possible to obtain a full X-ray absorption spectrum of each element thought to have a causal relationship with observed catalyst properties. From these spectra, we can optimally extract only a relatively limited amount of information which we must then piece together with information derived from other characterization methods and intuition to arrive at a hypothetical structure of the operating catalyst. Information about crystallinity, homogeneity, and general disorder can be obtained from the Debye-Waller factor. Finally, through analogy with known compounds, the electronic structure of the active atoms can be inferred from near edge absorption features

  17. A new catalyst for heavy water production and its prospect

    International Nuclear Information System (INIS)

    Sato, Toshio; Ohkoshi, Sumio; Takahashi, Tomiki

    1978-01-01

    The heavy water production process utilizing isotope exchange reaction between liquid water and hydrogen is the most promising method. Study was made for developing highly active and long life catalyst practically applied for this process. As platinum is used as this catalyst, catalytic activities using varieties of Polapacs and Shodexes instead of active carbon as the carriers of platinum catalyst were investigated. It became clear that the catalytic activity using Pt/Shodex 104 (3 wt %) was 1000 times as high as the activity using Pt/active carbon (1 wt %). This method is considered to be reasonable enough economically. There are many problems which must be solved hereafter for its practical use, and the further studies are required regarding the following points; forming of catalyst, life of catalyst, mass production of catalyst, most appropriate counter flow reacting device of hydrophobic catalyst, pressure and temperature effects on reaction. (Kobatake, H.)

  18. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Nishizaki, K.; Uchida, H.; Watanabe, M. [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  19. Ligh oil-gas cracking on zeolite-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Takhmarova, G M; Topchieva, K V

    1977-01-01

    A comparative study was made of the activity of cation-decationized forms of zeolite-containing catalysts in the cracking of the kerosene-gas oil fraction. The greatest benzene yield was obtained at 400/sup 0/. Temperatures greater than that lead to a more intense cracking and to changes in the redistributive ability of the catalysts. An increase in the polyvalent cations was shown to have little effect on the activity of the thermally processed zeolite-containing catalysts but did lead to a reduction in the activity of the thermally processed samples. 5 tables, 6 references.

  20. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jögi, I.; Erme, K.; Levoll, E.

    2017-01-01

    The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts in the im......The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts...... in the improvement of oxidation efficiency based on the stationary and time-dependent studies of the NOx oxidation at different reactor configurations and experimental conditions. The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst...... surfaces while the exact mechanism and extent of the effect depended on the reactor configuration. The effect of catalyst at different experimental conditions was quantitatively described with the aid of analytical lumped kinetic models derived for the NOx oxidation when the catalyst was directly...

  1. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  2. Radiation modification of vanadium catalyst for anthracene oxidation

    International Nuclear Information System (INIS)

    Norek, J.; Vymetal, J.; Mucka, V.; Pospisil, M.; Cabicar, J.

    1985-01-01

    Vanadium pentoxide on a suitable carrier is often used as catalyst for the oxidation of anthracene in the gaseous phase to 9,10-anthraquinone. The activity and selectivity of the catalyst may be affected by irradiation. The effects were studied of gamma radiation on the properties of the catalyst where the active system was a V 2 O 5 -KOH-K 2 SO 4 mixture on a Al 2 O 3 +SiO 2 carrier. The 60 Co radiation source had an activity of 185 TBq; the carrier of the catalyst was irradiated at a dose rate of 3.05, 1.98 and 0.084 kGy/h to a total dose of 10 kGy. Irradiation increased the selectivity of the catalyst such that in the oxidation temperature optimum of 300 to 400 degC the yield of 9,10-anthraquinone increased by 4.6 to 4.8 %mol. to roughly 90 %mol.; a significant reduction of the content of acid components (phthalanhydride) in the oxidation product also occurred. This effect remained unchanged for 5 months after irradiation. A reduction of selectivity was observed at lower dose rates only in the temperature range between 400 and 480 degC. (A.K.)

  3. Session 6: Synergistic effects in selective hydro dechlorination on bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Srebowata, A.; Legawiec-Jarzyna, M.; Juszczyk, W.; Karpinski, Z. [Institute of Physical Chemistry of PAS, Warszawa (Poland)

    2004-07-01

    Catalytic removal of chlorine from organic compounds has recently attracted increasing interest. A special case of this important environmental issue is the hydro-dechlorination (HDC). HDC of three compounds was investigated: dichloro-difluoro-methane, carbon tetrachloride and 1,2-dichloroethane. Since the most desired products of the mentioned reactions are: CH{sub 2}F{sub 2}, chloroform and ethene (highlighted below), our attention was focused at the rates of formation of these products: CCl{sub 2}F{sub 2} {yields} CH{sub 2}F{sub 2} {yields} CH{sub 4}; CCl{sub 4} {yields} CHCl{sub 3} {yields} CH{sub 4}; ClCH{sub 2}-CH{sub 2}Cl {yields} CH{sub 2}=CH{sub 2} {yields} CH{sub 3}CH{sub 3}. In fact, Selection of the most suitable HDC catalyst depends on the C-Cl bond strength in a molecule subjected to reaction. A relatively weak C-Cl bond in CCl{sub 4} (306 kJ/mol) does not require a high dechlorination potential, which can be directly correlated with the strength of a metal-chlorine bond. Thus Pt is a better catalyst than Pd in CCl{sub 4} reaction. In addition, an improvement of Pt-based catalysts can be achieved by alloying with metals which bind chlorine even less strongly than Pt (i.e. with Au). In contrast, Pd is a better catalyst than Pt for hydro-dechlorination of a stronger C-Cl bond (about 350 kJ/mol), present in CCl{sub 2}F{sub 2} and ClCH{sub 2}-CH{sub 2}Cl. However, a good performance of Pd can still be improved by alloying it with much less active Pt (or Au), as a result of weakening of the metal-chlorine bond. This effect leads to a higher selectivity toward partial dehalogenation, i.e. to formation of a desired CH{sub 2}F{sub 2} (at the expense of CH{sub 4}). In a similar way, combination of Pd with Co and Cu is rationalized. For HDC of ClCH{sub 2}-CH{sub 2}Cl, addition of a metal characterized by a poor hydrogenation strength (like Cu or Ag) to Pd (or Pt) reduces undesired formation of ethane, giving higher yields of ethene. (authors)

  4. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra; Li, Cheng Chao; Zeng, Hua Chun; Ngiam, Joyce S Y; Seayad, Abdul M.; Chen, Anqi

    2014-01-01

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  5. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra

    2014-02-06

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  6. Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst.

    Science.gov (United States)

    Tian, Wenying; Liu, Renlong; Wang, Wenjia; Yin, Zhaosen; Yi, Xuewen

    2018-05-04

    In this study, the effects of reaction temperature, holding time, algae/water ratio and catalyst dosage on the yield and quality of bio-oil produced via the HTL of Spirulina were investigated. The maximum bio-oil yield (43.05 wt%) and energy recovery (ER) value (64.62%) were obtained at 260 °C for 30 min, with an algae/water ratio of 1/4 and a catalyst dosage of 5 wt%. The bio-oil samples were characterized by elemental analysis, Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared (FI-IR), and Thermo-gravimetric analysis (TGA). Results indicated that higher heating values (HHVs) of bio-oils were in the range of 27.28-36.01 MJ/kg, and main compounds of bio-oil were amides, esters, nitriles, hydroperoxide and alkanes. Adding of the Ni/TiO 2 catalyst can decrease the contents of oxygenated and nitrogenous compounds and promote the formation of desirable components such as esters and alkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  8. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  9. Fischer-Tropsch diesel production over calcium-promoted Co/alumina catalyst: Effect of reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    A.R. de la Osa; A. De Lucas; A. Romero; J.L. Valverde; P. Sanchez [University of Castilla-La Mancha, Ciudad Real (Spain). Chemical Engineering Department

    2011-05-15

    The effects of reaction conditions on the Fischer-Tropsch activity and product distribution of an alkali-earth metal promoted cobalt based catalyst were studied. The influence of the promoter on the reducibility and cobalt particle size was studied by different techniques, including N{sub 2} adsorption, X-ray diffraction, temperature-programmed reduction, temperature-programmed desorption and acid-base titrations. Experiments were carried out on a bench-scale fixed bed reactor and catalysts were prepared by incipient wetness impregnation. It was observed that addition of a small amount of calcium oxide as a promoter (0.6 wt.%) improved the cobalt oxide reducibility and reduced the formation of cobalt-aluminate species. A positive correlation between basicity and particle size was observed. In terms of FTS results, CO conversion and C{sub 5}{sup +} selectivity were found to be enhanced by the addition of this promoter. It was important to note that the addition of calcium shifted the distribution to mainly C{sub 16}-C{sub 18} hydrocarbons fraction, which could be greatly considered for a diesel formulation. Furthermore, the variation of the reaction conditions seemed to influence product distribution in a lesser extent than unpromoted catalyst. Also, a displacement of hydrocarbon distribution to higher molecular weight with decreasing space velocity and temperature was observed. Moreover, the addition of calcium to the cobalt based catalyst was found to greatly maintain selectivity to C{sub 5}{sup +} for a wide range of H{sub 2}/CO molar ratios. 60 refs., 10 figs., 5 tabs.

  10. Effect of catalyst preparation on the yield of carbon nanotube growth

    International Nuclear Information System (INIS)

    Escobar, Mariano; Rubiolo, Gerardo; Candal, Roberto; Goyanes, Silvia

    2009-01-01

    Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 deg. C) and then treated at 450 deg. C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 deg. C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 deg. C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 deg. C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25-40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.

  11. Effect of catalyst preparation on the yield of carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Mariano, E-mail: mescobar@df.uba.a [Dep. Quimica Inorganica, Analitica y Quimica Fisica, FCEyN, UBA, Ciudad Universitaria (1428), Bs As (Argentina); LP and MC, Dep. Fisica, FCEyN, UBA (Argentina); Rubiolo, Gerardo [Unidad de Actividad Materiales, CNEA, Av Gral Paz 1499, San Martin (1650), Bs As (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Candal, Roberto [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Fisico-quimica de Materiales, Ambiente y Energia (INQUIMAE), CONICET - UBA (Argentina); Goyanes, Silvia [LP and MC, Dep. Fisica, FCEyN, UBA (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2009-10-01

    Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 deg. C) and then treated at 450 deg. C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 deg. C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 deg. C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 deg. C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25-40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.

  12. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  13. Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene

    Directory of Open Access Journals (Sweden)

    Titinan Chanchuey

    2016-01-01

    Full Text Available The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% of Mo. The final catalysts were characterized using various techniques such as XRD, N2 physisorption, SEM/EDX, TEM, and NH3-TPD. The catalytic activity for all catalysts in gas-phase ethanol dehydration reaction was determined at temperature range of 200°C to 400°C. It was found that the most crucial factor influencing the catalytic activities appears to be the acidity. The acid property of catalysts depended on the amount of Mo loading. Increased Mo loading in Al-SSP resulted in increased weak acid sites, which enhanced the catalytic activity. Besides acidity, the high concentration of Al at surface of catalyst is also essential to obtain high activity. Based on the results, the most suitable catalyst in this study is 1% Mo/Al-SSP catalyst, which can produce ethylene yield of ca. 90% at 300°C with slight amounts of diethyl ether (DEE and acetaldehyde.

  14. Effects of the gas-liquid ratio on the optimal quantity of the catalyst for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Ushida, A.; Sugiyama, T.; Yamamoto, I.

    2007-01-01

    In order to improve the separative performance of a CECE (Combined Electrolysis Catalytic Exchange) process we have been carried out experimental studies on hydrogen isotope separation by a CECE process using with a LPCE (Liquid Phase Catalytic Exchange) column of trickle-type bed. Two types of trickle beds were tested in our previous study. One was the layered bed where layers of Kogel catalysts and that of Dixon gauze rings were filled in the column alternately. The other was the homogeneous bed where Kogel catalysts and Dixon gauze rings were mixed and filled in the column homogeneously. We found two major points: 1) the homogeneous bed was more efficient than the layered bed and 2) there was an optimal quantity of the catalyst for both types of beds to obtain the largest separation factor. The optimal quantity of the catalyst is affected by various factors such as catalytic activity, flow rates of fluid, temperature and so on. In this study we focused on an effect of the gasliquid ratio. The purpose of the present study is to investigate experimentally the effect of the gas-liquid ratio on the optimal quantity of the catalyst using with a homogeneous bed. The column is a Pyrex glass tube with 25 mm internal diameter and 60 cm length. The column is filled with Kogel catalysts (1.0 wt% Pt deposited) and Dixon gauze rings. A catalyst packed-ratio is defined as a ratio of the grain-volume of catalyst to the grain volume of the whole packings, where grain volumes mean the volume of a sphere with average diameter of the Kogel catalyst and the volume of a cylinder which has the outer shape same as a Dixon gauze ring. Hydrogen-deuterium isotope separation with the CECE equipment was performed at 101 kPa, 343 K for various values of the catalyst packed-ratio and for various values of the gas-liquid ratio. Hydrogen gas was generated by the Solid Polymer Electrolysis (SPE) electrolyzer. Maximum production rate and purity of hydrogen gas are 1 m3/h and 99.99%. The

  15. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  16. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  17. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  18. Effect of support on the activity of MoVCeZr catalyst for propane ammoxidation reaction

    International Nuclear Information System (INIS)

    Anita Ramli; Farinaa Md Jamil; Ishak Ahmad

    2010-01-01

    Mixed metal oxide catalysts based on Mo-V have been known as the most active and selective in the ammoxidation of propane to ACN. A series of MoVCeZr (5 % wt/ wt) supported with MOR, TiO 2 and MgO have been prepared by incipient wetness impregnation method for propane ammoxidation reaction to ACN. The catalyst was calcined in a two step calcination process in static air between 350 - 600 degree Celsius for 10 hour. The surface area and pore size of these catalysts were measured using physical adsorption of nitrogen following Brunauer, Emmet and Teller (BET) equation. The textural and morphological of these catalysts were determined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The activities of all catalysts were tested using a fixed-bed reactor with online gas chromatography (GC) at 420 degree Celsius and atmospheric pressure in the presence of 0.5 ml catalyst with composition consisting of 5.8:7:17.4 (propane: ammonia: air) and helium as carrier to give a total flow of 120 ml. Result shows that MoVCeZr support gives a better conversion due to the surface area and pore size characteristic of the catalyst. (author)

  19. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  20. Effect of the prominent catalyst layer surface on reactant gas transport and cell performance at the cathodic side of a PEMFC

    International Nuclear Information System (INIS)

    Perng, Shiang-Wuu; Wu, Horng-Wen

    2010-01-01

    The cell performance enhancement of a proton exchange membrane fuel cell (PEMFC) has been numerically investigated with the prominence-like form catalyst layer surface of the same composition at the cathodic half-cell of a PEMFC. The geometries of the prominence-like form catalyst layer surface are assigned as one prominence, three prominences, and five prominences catalyst layer surfaces with constant distance between two prominences in the same gas diffusion layer (GDL) for the purpose of investigating the cell performance. To confine the current investigation to two-dimensional incompressible flows, we assume that the fluid flow is laminar with a low Reynolds number 15. The results indicate that the prominence-like form catalyst layer surface can effectively enhance the local cell performance of a PEMFC.

  1. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  2. Inverting the diastereoselectivity of the mukaiyama-michael addition with graphite-based catalysts

    KAUST Repository

    Acocella, Maria Rosaria

    2014-02-07

    Here, we show that graphite-based catalysts, mainly graphite oxide (GO) and exfoliated GO, are effective recyclable catalysts for a relevant stereoselective Mukaiyama-Michael addition, outperforming currently available catalysts. Moreover, the graphite-based catalysts described here invert the diastereoselectivity relative to that observed with known catalysts, with the unprecedented large prevalence of the anti diastereoisomer. This inverted diastereoselectivity is increased when the catalyst concentration is reduced and after catalyst recycling. Density functional theory calculations suggest that the selectivity is determined by two types of supramolecular interactions operating between the catalyst and the substrates at the diastereoselectivity- determining transition state, specifically, the π-stacking of b-nitrostyrene with graphite and the van der Waals interaction between the SiMe3 group of the silyl ether and the graphite. © 2013 American Chemical Society.

  3. Effects of water on the esterification of free fatty acids by acid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Yeon; Kim, Deog-Keun; Lee, Jin-Suk [Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Wang, Zhong-Ming [Guangzhou Institute of Energy Conversion, No. 2 Nengyuan Rd, Wushan, Tianhe, Guangzhou 510-640 (China)

    2010-03-15

    To maximize the production of biodiesel from soybean soapstock, the effects of water on the esterification of high-FFA (free fatty acid) oils were investigated. Oleic acid and high acid acid oil (HAAO) were esterified by reaction with methanol in the presence of Amberlyst-15 as a heterogeneous catalyst or sulfuric acid as a homogeneous catalyst. The yield of fatty acid methyl ester (FAME) was studied at oil to methanol molar ratios of 1:3 and 1:6 and reaction temperatures of 60 and 80 C. The rate of esterification of oleic acid significantly decreased as the initial water content increased to 20% of the oil. The activity of Amberlyst-15 decreased more rapidly than that of sulfuric acid, due to the direct poisoning of acid sites by water. Esterification using sulfuric acid was not affected by water until there was a 5% water addition at a 1:6 molar ratio of oil to methanol. FAME content of HAAO prepared from soapstock rapidly increased for the first 30 min of esterification. Following the 30-min mark, the rate of FAME production decreased significantly due to the accumulation of water. When methanol and Amberlyst-15 were removed from the HAAO after 30 min of esterification and fresh methanol and a catalyst were added, the time required to reach 85% FAME content was reduced from 6 h to 1.8 h. (author)

  4. Characterization of steam-reforming catalysts

    Directory of Open Access Journals (Sweden)

    Santos D. C. R.M.

    2004-01-01

    Full Text Available The effect of the addition of Mg and Ca to Ni/ a-Al2O3 catalysts was investigatedstudied, aiming to detail the promotion mechanismaddress their role as promoters in the steam reforming reaction. Temperature- programmed reduction and H2 and CO temperature-programmed desorption experiments indicated that Mg interacts with the metallic phase. Mg-promoted catalysts showed a greater difficulty for Ni precursors reduction besides different probe molecules (H2 and CO adsorbed states. In the conversion of cyclohexane, Mg inhibited the formation of hydrogenolysis products. Nonetheless, the presence of Ca did not influence the metallic phase.

  5. Application of aromatization catalyst in synthesis of carbon nanotubes

    Indian Academy of Sciences (India)

    In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the ...

  6. Sabatier Catalyst Poisoning Investigation

    Science.gov (United States)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  7. Effects of Preparation Method on the Structure and Catalytic Activity of Ag–Fe2O3 Catalysts Derived from MOFs

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    2017-12-01

    Full Text Available In this work, Ag–Fe2O3 catalysts were successfully prepared using several different methods. Our main intention was to investigate the effect of the preparation methods on the catalysts’ structure and their catalytic performance for CO oxidation. The catalysts were characterized by X-ray diffraction (XRD, N2 adsorption–desorption, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, H2-temperature program reduction (H2-TPR and inductively coupled plasma optical emission spectroscopy (ICP-OES. Ag–Fe catalysts prepared by impregnating Ag into MIL-100 (Fe presented the best catalytic activity, over which CO could be completely oxidized at 160 °C. Based on the characterization, it was found that more metallic Ag species and porosity existed on Ag–Fe catalysts, which could efficiently absorb atmospheric oxygen and, thus, enhance the CO oxidation.

  8. Reduce NOx Emissions by Adsorber-Reduction Catalyst on Lean Burn Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Dongpeng Yue

    2013-09-01

    Full Text Available The effect of a new catalyst system composed of traditional three way catalyst converter and adsorber-reduction catalysis converter on the emission characteristics and BSFC (Breake Specific Fuel Consumption- BSFCof a lean burn gasoline engine operated were investigated in this paper under different schemes of catalyst converter arrangement and different speeds and loads. The results show that the position of Three Way Catalyst is before the NOx adsorber Catalyst was the best scheme of catalyst converter arrangement. Which has the highest converter efficiency of reduction NOx emission in lean burn gasoline engine. The effects of speed on the exhaust emission and BSFC were also related to the ratio of lean burn time to rich burn time and the absolute value of both time of the adsorber-reduction catalyst converter. The load of the engine was the main influential factor to the exhaust emission characteristics and BSFC of lean burn gasoline engine, and the more load of the engine was, the more NOx emission , the less NOx conversion rate (CNOx and the better BSFC were.

  9. Effects of catalysts on combustion characteristics and kinetics of coal-char blends

    Science.gov (United States)

    Hu, Yingjie; Wang, Zhiqiang; Cheng, Xingxing; Liu, Ming; Ma, Chunyuan

    2018-04-01

    The effects of Fe2O3, CaO, and MnO2 on the combustion characteristics and kinetics of coal-char blends were investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that catalysts exhibited positive effects on the combustion characteristics of coal-char blends, especially in the initial period of coal-char blends combustion. With catalysts addition (mass 1.5%), it could improves volatile matter release, and reduces ignition point, promotes char to begin burning under lower temperature. The ignition index (C) was increased, respectively, by 27% for Fe2O3, 6% for CaO, 11.3% for MnO2, and the combustion characteristic index ( S ) was increased respectively, by 29% for Fe2O3, 5% for CaO, 8.3% for MnO2. In addition, two kinetic models (R2 and F1) were adopted to calculate the kinetic parameters in different stage of combustion processes. The results showed that with Fe2O3 or CaO addition, the activation energy at second stage decreases from 86.0 KJ/mol to 76.92 KJ/mol and 75.12 KJ/mol, respectively. There are no obvious decreases at the third stage of samples combustion process.

  10. Effect of catalysts on lithium passivation in thionyl chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kanevskii, L.S.; Avdalyan, M.B.; Kulova, T.L. [Frumkin Institute of Electrochemistry, Moscow (Russian Federation)

    1995-04-01

    The effect that various catalysts added to the electrolyte or the cathode of lithium-thionyl chloride cells for promoting the cathodic process exert on lithium anodes is studied. It is shown that, in the presence of platinum, the lithium anode is subjected to intense corrosion, and this leads to the appearance of a great voltage delay. Macrocyclic complexes activate lithium electrodes. Impedance measurements showed that the introduction of such complexes in the system is accompanied by changes in the passive film characteristics, and this leads to a decrease in the corrosion rate of lithium and a noticeable reduction of the voltage delay.

  11. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  12. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  13. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  14. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts

    International Nuclear Information System (INIS)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Liu, Changye; Yan, Beibei

    2015-01-01

    Highlights: • Novel heterogeneous animal bone-based catalysts were developed. • The optimum catalyst is 30K/HAP-600. • Maximum biodiesel yield of 96.4% was achieved using the novel catalyst. • The novel catalyst can achieve a desirable recyclability. • Little deactivation was found due to K + ions leaching to the product. - Abstract: In the present study, calcined waste pig bone (CB, a solid waste from animal) derived hydroxyapatite (HAP) was served as the support for K 2 CO 3 to prepare a cost-effective solid base catalyst for biodiesel production. The catalysts were characterized by XRD, FTIR, SEM–EDS, N 2 adsorption–desorption and the Hammett indicator method. The effects of catalyst preparation conditions (such as the loading of K 2 CO 3 on the CB and the calcination temperature), reaction conditions (such as reaction time, methanol/oil molar ratio and catalyst loading) and the catalyst reusability were studied in detail. The experimental results revealed that the highest biodiesel yield of 96.4% was obtained using the 30K/HAP-600 catalyst under the optimum reaction condition (reaction time of 1.5 h, catalyst loading of 8 wt.% and methanol/oil molar ratio of 9:1) due to its highest total basicity. Moreover, after reused for more than 8 cycles, the catalyst can still possess a rather high biodiesel yield (above 90%). A little deactivation was found due to K + ions leaching to the product

  15. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  16. Effect of deposition rate on melting point of copper film catalyst substrate at atomic scale

    Science.gov (United States)

    Marimpul, Rinaldo; Syuhada, Ibnu; Rosikhin, Ahmad; Winata, Toto

    2018-03-01

    Annealing process of copper film catalyst substrate was studied by molcular dynamics simulation. This copper film catalyst substrate was produced using thermal evaporation method. The annealing process was limited in nanosecond order to observe the mechanism at atomic scale. We found that deposition rate parameter affected the melting point of catalyst substrate. The change of crystalline structure of copper atoms was observed before it had been already at melting point. The optimum annealing temperature was obtained to get the highest percentage of fcc structure on copper film catalyst substrate.

  17. Catalytic effects of various catalysts in hydroprocessing of Cold Lake vacuum bottom. Cold Lake zansayu no hydroprocessing ni okeru kakushu shokubai no koka

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, S.; Yamamoto, M.; Maekawa, Y.; Kotanigawa, T. (Government Industrial Development Laboratory, Hokkaido, Sapporo (Japan))

    1991-11-07

    The effects of various types of catalysts were studied on hydroprocessing of Cold Lake vacuum bottom (CLVB). FeS2 [Py] of an analytical reagent grade was used as sulfide catalyst, Fe2O3(SO4)[sup 2[minus

  18. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  19. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  20. Preparation of wet-proofed catalyst for tritium removal

    Energy Technology Data Exchange (ETDEWEB)

    Son, S-H; Lee, G-B; Song, M-J [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H{sub 2} adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs.

  1. Preparation of wet-proofed catalyst for tritium removal

    International Nuclear Information System (INIS)

    Son, S-H.; Lee, G-B.; Song, M-J.

    1995-01-01

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H 2 adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs

  2. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    Science.gov (United States)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  3. Combined catalysts for the combustion of fuel in gas turbines

    Science.gov (United States)

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  4. Recombination Catalysts for Hypersonic Fuels

    Science.gov (United States)

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  5. On the potential of nickel catalysts for steam reforming in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z.; Boon, J.; Van Delft, Y.C.; Dijkstra, J.W.; Van den Brink, R.W. [Energy research Center of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2010-10-15

    Hydrogen membrane reactors have been identified as a promising option for hydrogen production for power generation from natural gas with pre-combustion decarbonisation. While Pd or Pd-alloy membranes already provide good hydrogen permeances the most suitable catalyst design for steam reforming in membrane reactors (SRMR) is yet to be identified. This contribution aims to provide insight in the suitability of nickel based catalysts in SRMR. The use of nickel (Ni) catalysts would benefit the cost-effectiveness of membrane reactors and therefore its feasibility. For this, the activity of nickel catalysts in SRMR was assessed with kinetics reported in literature. A 1D model was composed in order to compare the hydrogen production rates derived from the kinetics with the rate of hydrogen withdrawal by permeation. Catalyst stability was studied by exposing the catalysts to reformate gas with two different H/C ratios to mimic the hydrogen lean reformate gas in the membrane reactor. For both the activity (modeling) and stability study the Ni-based catalysts were compared to relevant catalyst compositions based on rhodium (Rh). Using the high pressure kinetics reported for Al2O3 supported Rh and MgAl2O4 and Al2O3 supported Ni catalyst it showed that Ni and Rh catalysts may very well provide similar hydrogen production rates. Interestingly, the stability of Ni-based catalysts proved to be superior to precious metal based catalysts under exposure to simulated reformate feed gas with low H/C molar ratio. A commercial (pre-)reforming Ni-based catalyst was selected for further testing in an experimental membrane reactor for steam reforming at high pressure. During the test period 98% conversion at 873 K could be achieved. The conversion was adjusted to approximately 90% and stable conversion was obtained during the test period of another 3 weeks. Nonetheless, carbon quantification tests of the Ni catalyst indicated that a small amount of carbon had deposited onto the catalyst

  6. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  7. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates

    International Nuclear Information System (INIS)

    Teng, F-Y; Ting, J-M; Sharma, Sahendra P; Liao, Kun-Hou

    2008-01-01

    In this paper we report the effect of Al interlayers on the growth characteristics of carbon nanotubes (CNTs) using as-deposited and plasma etched Fe-Si catalyst films as the catalysts. Al interlayers having various thicknesses ranging from 2 to 42 nm were deposited on Si substrates prior to the deposition of Fe-Si catalysts. It was found that the Al interlayer diffuses into the Fe-Si catalyst during the plasma etching prior to the CNT growth, leading to the swelling and amorphization of the catalyst. This allows enhanced carbon diffusion in the catalyst and therefore a faster growth rate of the resulting CNTs. It was also found that use of an Al interlayer having a thickness of ∼3 ± 1 nm is most effective. Due to the effectiveness of this, the normally required catalyst etching is no longer needed for the growth of CNTs

  8. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates.

    Science.gov (United States)

    Teng, F-Y; Ting, Jyh-Ming; Sharma, Sahendra P; Liao, Kun-Hou

    2008-03-05

    In this paper we report the effect of Al interlayers on the growth characteristics of carbon nanotubes (CNTs) using as-deposited and plasma etched Fe-Si catalyst films as the catalysts. Al interlayers having various thicknesses ranging from 2 to 42 nm were deposited on Si substrates prior to the deposition of Fe-Si catalysts. It was found that the Al interlayer diffuses into the Fe-Si catalyst during the plasma etching prior to the CNT growth, leading to the swelling and amorphization of the catalyst. This allows enhanced carbon diffusion in the catalyst and therefore a faster growth rate of the resulting CNTs. It was also found that use of an Al interlayer having a thickness of ∼3 ± 1 nm is most effective. Due to the effectiveness of this, the normally required catalyst etching is no longer needed for the growth of CNTs.

  9. Effect of cation nature on development of Zn-, Cd- and Ca-zeolite catalysts during ethylbenzene transformations

    International Nuclear Information System (INIS)

    Tuan, K.Kh.; Berentsvejg, V.V.; Rudenko, A.P.; Tkhuan, N.T.; Topchieva, K.V.

    1984-01-01

    It is shown that in the course of ethylbenzene transformations at 650 deg, 0.25 7nY, 0.25CdY, 0.82CdY catalysts on the basis of Y-type zeolite are developed for the process of styrene formation accompanied by the accumulation of packing products (PP) and increase in styrene selectivity from 0 to 100%. It is shown that the nature of Me 2+ ion in zeolite is of great importance in the manifestation of the effect of catalyst development in the course of ethylbenzene transformations. Ions capable of PP formation and accumulation composing polymercatalyst complexes [PPxMe 2+ ] are active in this process

  10. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  11. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.

    2007-01-01

    for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between...... addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts...

  12. Lithium/magnesium oxide catalyst and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, J.H.; Hinson, P.G.

    1991-07-16

    This patent describes a method for preparing a catalyst which is effective for converting methane to ethane and ethylene. It comprises mixing a solution of a magnesium alkoxide in an alcohol with a solution containing a source of lithium in an alcohol, to obtain a ratio of magnesium metal to lithium metal; hydrolyzing the magnesium alkoxide in the solution to form a gel; and calcining the gel to form a catalyst which is effective for converting methane to ethane and ethylene.

  13. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  14. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  15. Effects of composition on structure and activity of PtRu/C catalysts.

    Science.gov (United States)

    Wiltshire, Richard J K; King, Colin R; Rose, Abigail; Wells, Peter P; Davies, Hazel; Hogarth, Martin P; Thompsett, David; Theobald, Brian; Mosselmans, Fredrick W; Roberts, Mark; Russell, Andrea E

    2009-04-07

    A series of carbon supported PtRu bimetallic catalysts with varying Pt:Ru ratio were prepared and characterised using ex situ and in situ XRD, in situ EXAFS at 0 V vs. RHE, ex situ XPS and monolayer CO stripping voltammetry. Although the catalysts were found to be well mixed/alloyed, with no evidence of unalloyed Ru (oxides) present, the surfaces of the electrocatalyst nanoparticles were found to be enriched with Pt compared to the nominal bulk composition. The methanol oxidation activities of the catalysts were determined in 1.0 mol dm(-3) H2SO4. In agreement with published studies of polycrystalline bulk PtRu alloys the catalyst with a 0.6 surface fraction of Pt was found to give the best methanol oxidation activity at 30 degrees C. However, at 80 degrees C a greater surface fraction of Ru could be tolerated, with some activity at low current densities found for a Pt surface fraction as low as 0.2. The results support the conclusion that a limited amount of methanol dehydrogenation occurs at Ru sites or Ru dominated surface ensembles at 80 degrees C.

  16. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  17. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  18. Polypropylene obtained through zeolite supported catalysts

    International Nuclear Information System (INIS)

    Bastos, Queli C.; Marques, Maria de Fatima V.

    2004-01-01

    Propylene polymerizations were carried out with φ 2 C(Flu)(Cp)ZrCl 2 and SiMe 2 (Ind)2ZrCl 2 catalysts supported on silica, zeolite sodic mordenite (NaM) and acid mordenite (HM). The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]). The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f 2 C(Flu)(Cp)ZrCl 2 , SiO 2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereo regularity. (author)

  19. Kinetics and compensation effects during steam gasification of Fujian anthracite using viscose liquor as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lin Ju; Zhang Ji-yu; Zhong Xue-qing [Fuzhou University, Fuzhou (China). Institute of Chemical Engineering and Technology

    2009-08-15

    Catalytic steam gasification kinetics of Fujian Youxi anthracite using viscose liquor as catalyst was investigated in an isothermal thermo-gravimetric analyzer under ambient pressure. Coal conversions versus reaction time with different viscose liquor concentrations (0-12% NaOH) were measured at the temperature range from 850 to 950{sup o}C. The research shows that the viscose liquor can greatly improve the gasification rate and carbon conversion. The Loading Saturation Level (LSL) of the viscose liquor within the experimental conditions was also determined. The catalytic steam gasification reaction can be well fitted by a shrinking-core model (SCM) and the reaction rate constants are obtained. The kinetic analysis indicates that the catalytic gasification exhibits a prominent compensation effect between the activation energy and the pre-exponential factor. The kinetic equation including the compensation effects for the catalytic steam gasification of Fujian Youxi anthracite using viscose liquor as catalyst is presented. 23 refs., 7 figs., 3 tabs.

  20. Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst

    International Nuclear Information System (INIS)

    Kim, Han-Gyu; Yang, Yoon-Cheol; Jeong, Kwang-Eun; Kim, Tae-Wan; Jeong, Soon-Yong; Kim, Chul-Ung; Jhung, Sung Hwa; Lee, Kwan-Young

    2013-01-01

    The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/Al 2 ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption (NH3-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/Al 2 ratio of ZSM-5 is about 50-80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of 437 .deg. C and WHSV of 0.8 h −1

  1. Production Biodiesel from Coconut Oil Using Microwave: Effect of Some Parameters on Transesterification Reaction by NaOH Catalyst

    Directory of Open Access Journals (Sweden)

    A. Suryanto

    2015-07-01

    Full Text Available The purpose of this research was to study the effect of reaction time and NaOH catalyst in transesterification of coconut oil enhanced by microwave and to obtain a biodiesel. Reaction was conducted in batch reactor which equipped by microwave. Coconut oil contains saturated fatty acids about 70% with medium chain (C8-C14, especially lauric acid and myristic acid. The reaction was initiated by mixing oil and methanol with oil to methanol mole ratios of 1:3, 1:6, 1:9 and 1:12, catalyst concentration of 0.1, 0.15, 0.2, 0.25 and 0.3 wt.%, as well as setting electrical power at 100, 264 and 400 W. The reaction times were of  0.5, 1, 1.5, 2, 2.5, 3 and 3.5 min. The result showed that microwave could be employed as an energy source and was able to accelerate the transesterification process to produce biodiesel using NaOH catalyst. The biodiesel yields increase with increasing microwave power. The highest yield of biodiesel obtained  was of  97.37%  with reaction conditions set at 0.2 wt.% catalyst, a reaction time of 2 min, molar ratio of methanol to oil 1:9 and microwave power of 400 watt. © 2015 BCREC UNDIP. All rights reservedReceived: 15th January 2015; Revised: 10th March 2015; Accepted: 15th March 2015How to Cite: Suryanto, A., Suprapto, S., Mahfud, M. (2015. Production Biodiesel from Coconut Oil Using Microwave: Effect of Reaction Time on Transesterification Reaction by NaOH Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 162-168. (doi:10.9767/bcrec.10.2.8080.162-168 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8080.162-168 

  2. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  3. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    International Nuclear Information System (INIS)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-01-01

    Highlights: • Pt particle size effect on ORR was re-evaluated for Pt/C catalysts. • Nafion-free activity of Pt/C catalysts was evaluated using thin-film RDE methods. • Ultrathin-uniform catalyst layers were employed to obtain accurate activity values. • Specific activity increased steeply from 2 to 10 nm and less steeply at over 10 nm. • Re-evaluated effect agrees with a particle model assuming terrace active sites. - Abstract: The platinum ‘particle size effect’ on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2–10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO 4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O 2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range ∼2–10 nm (0.8–1.8 mA/cm 2 Pt at 0.9 V vs. RHE) and plateaued over ∼10 nm to 2.7 mA/cm 2 Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.

  4. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R.; Canale, A.; Bouza, A. [Departamento de Termodinamica y Fenomenos de Transporte. Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Sanchez, Y. [Departamento de Procesos y Sistemas. Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2012-01-15

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H{sub 2}), hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H{sub 2}/feed ratio and the inhibiting effect of H{sub 2}S on HDS and NH{sub 3} on HDN. (author)

  5. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    Science.gov (United States)

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  6. Catalyst deterioration over the lifetime of small utility engines.

    Science.gov (United States)

    Doll, Nicholas J; Reisel, John R

    2007-10-01

    In this paper, the deterioration of catalysts in small, four-stroke, spark-ignition engines is described. The laboratory testing performed followed a proven test method that mimics the lifetime of a small air-cooled utility engine operating under normal field conditions. The engines used were single-cylinder, 6.5-hp, side-valve engines. These engines have a nominal 125-hr lifetime. The effectiveness of the catalysts was determined by testing exhaust emissions before and after the catalyst to determine the catalyst's efficiency. This was done several times during the lifetime of the engines to determine the deterioration in the performance of the catalysts at lowering pollutant emissions. Additional testing was performed on the catalysts to determine wear patterns, contamination, and recoverable activity. The results indicate that considerable catalyst deterioration is occurring over the lifetime of the engine. The results reveal that soot buildup, poisons, and active surface loss appear to be the contributing factors to the deterioration. These results were determined after analyzing the exhaust emissions data, scanning electron microscope results analysis, and the impact of regeneration attempts. An ANOVA statistical analysis was performed, and it was determined that the emissions are also impacted, to some degree, by time and the engine itself.

  7. Carbonized tantalum catalysts for catalytic chemical vapor deposition of silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shimin [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Gao Huiping; Ren Tong; Ying Pinliang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Li Can, E-mail: canli@dicp.ac.cn [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China)

    2012-06-01

    Catalytic chemical vapor deposition (Cat-CVD) has been demonstrated as a promising way to prepare device-quality silicon films. However, catalyst ageing due to Si contamination is an urgency to be solved for the practical application of the technique. In this study, the effect of carbonization of tantalum catalyst on its structure and performance was investigated. The carbonized Ta catalyst has a TaC surface layer which is preserved over the temperature range between 1450 and 1750 Degree-Sign C and no Si contamination occurs on the catalyst after long-term use. Si film prepared using the carbonized Ta catalyst has a similar crystal structure to that prepared by uncarbonized Ta catalyst. Formation of the TaC surface layer can alleviate the ageing problem of the catalyst, which shows great potential as a stable catalyst for Cat-CVD of Si films. - Highlights: Black-Right-Pointing-Pointer Si films prepared by catalytic chemical vapor deposition. Black-Right-Pointing-Pointer Carbonized Ta with a TaC surface layer used as catalyst. Black-Right-Pointing-Pointer TaC surface structure preserved after long-term use in a wide temperature range. Black-Right-Pointing-Pointer Help to solve the ageing problem of metal catalysts. Black-Right-Pointing-Pointer Si film obtained has a similar crystal structure to that prepared by Ta catalyst.

  8. Selective hydrogenation of 4-isobutylacetophenone over a sodium-promoted Pd/C catalyst

    International Nuclear Information System (INIS)

    Cho, Hong-Baek; Lee, Bae Uk; Nakayama, Tadachika; Park, Yeung-Ho; Ryu, Chung-Han

    2013-01-01

    The effect of sodium promotion on the selective hydrogenation of 4-isobutylacetophenone, 4-IBAP, was investigated over a Pd/C catalyst. A precipitation and deposition method was used to prepare the catalyst, and sodium was promoted on the Pd/C catalyst via post-impregnation while varying the sodium content. The sodium-promoted Pd/C catalyst resulted in a significantly improved yield greater than 96% of the desired product, 1-(4-isobutylphenyl) ethanol (4-IBPE), compared with the non-patented literature results under a mild hydrogenation condition. A detailed hydrogenation network over the Pd/C catalyst was suggested. The reaction mechanism for the yield and selectivity enhancement of 4-IBPE induced-by the promoted Pd/C was elucidated in relation to the geometric and electronic effects of reactant molecules in the microporous support depending on the reaction steps

  9. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  10. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  11. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  12. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    -based catalysts synthesized at Hampton University, (ii) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (iii) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to attrition study of the iron-based catalysts. Precipitated silica appeared to decrease attrition resistance of spray-dried iron FT catalysts. It was found that the catalyst with precipitated silica content at around 12wt% showed the lowest attrition resistance. The results of net change in volume moment and catalyst morphology showed supporting evidences to the attrition results. Catalysts with low attrition resistance generated more fines loss, had higher net change in volume moment and showed more breakage of particles. BET surface area and pore volume of this catalyst series fluctuated; therefore no conclusion can be drawn from the data obtained. However, catalyst with no precipitated silica showed the lowest in BET surface area and pore volume, as expected. Addition of precipitated silica to the catalysts had no effect to the phase changes of iron that could have significant influence to catalyst attrition. The presence of precipitated silica is needed for enhancing catalyst surface area; however, the amount of silica added should be compromising with attrition resistance of catalysts

  13. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Rabnawaz, Muhammad

    2017-01-01

    Highlights: • Fe-Co/SiO 2 catalyst with medium acidity was more effective for bio-oil upgrading. • Co-loading of Fe and Co on SiO 2 support improved catalyst performance. • Catalyst showing the best catalytic activity had a Fe/Co mole ratio of 1. • Biofuel produced by Fe-Co(1)/SiO 2 had the higher hydrocarbons content at 22.44%. • The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed. - Abstract: Hydrodeoxygenation (HDO) is an effective route to upgrade bio-oil to hydrocarbon bio-oil, but the development of efficient catalysts for bio-oil HDO still remains a challenge. In this study, non-sulfided Fe-Co/SiO 2 catalysts were used to upgrade bio-oil using HDO. A series of Fe-Co/SiO 2 catalysts with different Fe/Co mole ratios were prepared, characterized and evaluated. The Fe and/or Co loading did not change SiO 2 crystalline structure. The Fe and/or Co metals increased the amount and strength of Fe-Co/SiO 2 catalyst acidity. Physicochemical properties of upgraded bio-oils produced using Fe-Co/SiO 2 catalysts such as water content, total acid number, viscosity and higher heating values improved in comparison to raw bio-oil. Bimetallic Fe-Co/SiO 2 catalysts resulted in better HDO performance than monometallic Fe/SiO 2 or Co/SiO 2 catalysts. This was due to the synergistic effect of Fe and Co occurring on the SiO 2 support. Fe-Co/SiO 2 catalyst having medium amount of acidity was more effective for bio-oil upgrading. The highest hydrocarbons content produced using Fe-Co(1)/SiO 2 catalyst was 22.44%. The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed.

  14. Effect of Nafion ionometer content on proton conductivity in the catalyst layer of proton exchange fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ozalevlia, Cihan Cemil; Jian Xie; Xu, Fan [METU MS Mechanical Engineering (United States)], email: cihan.ozalevli@metu.edu.tr, email: jianxie@iupui.edu, email: fanxu@iupui.edu

    2011-07-01

    In the energy conversion sector, proton exchange fuel cells (PEFC's) are among the most promising technologies for the future. The Nafion ionometer is the most important part of the membrane electrode assembly (MEA) which is the core technology of the system. The Nafion ionometer is both a proton conductor and a binder for the catalyst layer in the technology. The aim of this study is to assess the effect of the Nafion content in the cathode catalyst layer on the proton conductivity of the MEA. Two MEAs with different Nafion content were prepared following the LANL process and the proton conductivity of the catalyst layer was measured. Results showed a much higher performance of the 28wt. % Nafion MEA than the 10wt. %. This study demonstrated that when the Nafion ionometer content decreases, the performance of the fuel cell decreases; further investigations should be undertaken with Nafion ionometer amounts of 15wt. % to 20wt. %.

  15. Catalytic performance of Ni/MgO catalyst in methane dry reforming

    Science.gov (United States)

    Al-Swai, Basem M.; Osman, N. B.; Abdullah, Bawadi

    2017-10-01

    Methane dry reforming to synthesis gas over nickel catalysts supported on magnesium oxide has been studied. The support was prepared via co-precipitation method using ammonia solution (20 wt% in water) as the precipitating agent. 10 wt% of Ni metal was impregnated to form Ni/MgO catalyst. The prepared catalyst was characterized by different techniques, such as XRD, BET, SEM, and TGA analysis. The effect of reaction conditions on the conversions of CH4 and CO2, selectivity of H2 and CO, and carbon deposition were investigated in a tabular furnace reactor. The catalyst afforded as high as 93% CH4 conversion at 900 °C. The catalyst has also shown excellent stability during reaction at relatively higher space velocity (1.8×104 ml g-1 h-1) and 800 °C reaction temperature. TGA characterization of spent catalyst has shown lesser magnitude of carbon deposition on the surface of the catalyst at 900 °C.

  16. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation.

    Science.gov (United States)

    Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren

    2013-07-24

    Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.

  17. Utilization of a cost effective Lapindo mud catalyst derived from eruption waste for transesterification of waste oils

    International Nuclear Information System (INIS)

    Talib, N.B.; Triwahyono, S.; Jalil, A.A.; Mamat, C.R.; Salamun, N.; Fatah, N.A.A.; Sidik, S.M.; Teh, L.P.

    2016-01-01

    Highlights: • Lapindo mud (LM) was used as catalyst in waste cooking oil (WCO) transesterification. • K_2O and CaO were identified as the active species for WCO transesterification. • FTIR and ESR analyses prove activated LM have higher basicity and surface defects. • Under the optimum conditions, WCO transesterification reached 96.6% FAME yield. • Conversion of palm oil mill effluent (POME) in optimum conditions gave 91.69% FAME. - Abstract: The most remarkable property of heterogeneous-catalyzed transesterification is its recyclability which surpass the issue by homogenous catalyst. Lapindo mud (LM), an eruption waste from Indonesia, was treated into an active catalyst for transesterification. LM is reasonably tolerant to FFA, as no visible soap layer was observed during transesterification of high acid value WCO (20.723 mgKOH/g) and POME (120.48 mgKOH/g) with FAME yield of 96.6% and 91.69%, respectively. The reaction conditions obtained for both reaction are mild and comparable to currently reported conditions except LM effectively accelerated the transesterification process of WCO. Reusability test showed that LM exhibited a stable performance with less than 10% declined in FAME after the seventh run with 95% catalyst recovery. Kinetic analysis showed that both WCO and POME transesterification fitted well with Langmuir–Hishelwood first order reaction. The activation energy for WCO and POME transesterification were 55.7 and 59.75 kJ/mol. This findings shows the possibility of LM as a catalyst in general heterogeneous reaction and particularly for transesterification to produce FAME.

  18. Catalytic hydrothermal liquefaction (HTL of biomass for bio-crude production using Ni/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2017-04-01

    Full Text Available Hydrothermal liquefaction (HTL is an effective method that can convert biomass into bio-crude, but direct use of bio-crude derived from biomass HTL remains a challenge due to the lower quality. In this study, bifunctional Ni/HZSM-5 catalysts and zinc hydrolysis were combined to produce upgraded bio-crude in an in-situ HTL process. The K2CO3 and HZSM-5 catalysts with different Ni loading ratios were tested. The effects of different catalysts on the yield and quality of bio-crude and gas were investigated. The results indicated that the catalysts improved bio-crude and gas yields, compared to pine sawdust liquefaction without catalyst. The catalysts reduced the contents of undesirable oxygenated compounds such as acids, ketones, phenols, alcohols and esters in bio-crude products while increased desirable hydrocarbons content. K2CO3 produced highest bio-crude yield and lowest solid residue yield among all catalysts. Compared to parent HZSM-5 catalyst, bifunctional Ni/HZSM-5 catalysts exhibited higher catalyst activity to improve quality of upgraded bio-crude due to its integration of cracking and hydrodeoxygenation reactions. 6%Ni/HZSM-5 catalyst produced the bio-crude with the highest hydrocarbons content at 11.02%. This catalyst can be a candidate for bio-crude production from biomass HTL.

  19. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  20. Sodium phosphate as a solid catalyst for biodiesel preparation

    Directory of Open Access Journals (Sweden)

    S. T. Jiang

    2010-03-01

    Full Text Available Sodium phosphate (Na3PO4 was chosen as catalyst for biodiesel preparation from rapeseed oil. The effects of mass ratio of catalyst to oil, molar ratio of methanol to oil, reaction temperature and rotation speed on biodiesel yield were investigated. For a mass ratio of catalyst to oil of 3%, molar ratio of methanol to oil of 9:1, reaction temperature of 343K and rotation speed of 600rpm, the transesterification was nearly completed within 20 minutes. Na3PO4 has a similar activity to homogeneous catalysts. Na3PO4 could be used repeatedly for 8 runs without any activation treatment and no obvious activity loss was observed. The concentrations of catalyst in biodiesel ranged from 0.6 to 0.7 mg/g. Compared to Na3PO4, Na3PO4.10H2O was cheaper, but the final yield was 71.3%, much lower than that of Na3PO4 at 99.7%.

  1. Iron Fischer-Tropsch Catalysts Prepared by Solvent-Deficient Precipitation (SDP: Effects of Washing, Promoter Addition Step, and Drying Temperature

    Directory of Open Access Journals (Sweden)

    Kyle M. Brunner

    2015-07-01

    Full Text Available A novel, solvent-deficient precipitation (SDP method for catalyst preparation in general and for preparation of iron FT catalysts in particular is reported. Eight catalysts using a 23 factorial design of experiments to identify the key preparation variables were prepared. The catalysts were characterized by electron microprobe, N2 adsorption, TEM, XRD, and ICP. Results show that the morphology of the catalysts, i.e., surface area, pore volume, pore size distribution, crystallite sizes, and promoter distribution are significantly influenced by (1 whether or not the precursor catalyst is washed, (2 the promoter addition step, and (3 the drying condition (temperature. Consequently, the activity, selectivity, and stability of the catalysts determined from fixed-bed testing are also affected by these three variables. Unwashed catalysts prepared by a one-step method and dried at 100 °C produced the most active catalysts for FT synthesis. The catalysts of this study prepared by SDP compared favorably in activity, productivity, and stability with Fe FT catalysts reported in the literature. It is believed that this facile SDP approach has promise for development of future FT catalysts, and also offers a potential alternate route for the preparation of other catalysts for various other applications.

  2. Effects of the gas-liquid ratio on the optimum catalyst quantity for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Sugiyama, T.; Ushida, A.; Yamamoto, I.

    2008-01-01

    In order to improve the separative performance of a combined electrolysis catalytic exchange (CECE) process, we have carried out experimental studies on hydrogen isotope separation by a CECE process using a liquid phase catalytic exchange (LPCE) column of trickle-type packed beds. Two types of trickle beds were tested in our previous study. One was the layered bed, where layers of Kogel catalysts and Dixon gauze rings were alternately filled in the column. The other was the homogeneous bed, where Kogel catalysts and Dixon gauze rings were homogeneously mixed and filled in the column. We found that (1) the homogeneously packed bed was more efficient than the layered packed bed, and (2) the catalyst quantity was optimal, which resulted in the highest separative performance. In this study, the effect of the gas-liquid ratio (G/L) on the optimum catalyst quantity was studied experimentally in a homogeneously packed bed. When the value of G/L was 1.7, total separation factors were relatively small and the optimum catalyst quantity could not be determined. On the other hand, when the values of G/L were 0.9 and 0.7, the values of the total separation factors had maximums and the optimal quantities of the catalyst were clearly obtained

  3. Achievement report for fiscal 2000 on development of technologies to reduce pollutants in oil refining; 2000 nendo sekiyu seisei osen busshitsu teigen nado gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development has been made on technologies to reduce sulfur content in light oil and on optimization of light oil quality. This paper summarizes the achievements in fiscal 2000. In the study of enhancing the desulfurization rate in gas oil deep hydrodesulfurization process, it was found that NiHY zeolite having Ni introduced by using the ion exchange method shows stable activity, whereas the target of sulfur content of 50 ppm or lower was achieved by adding the third constituent and by optimizing the impregnation solution to pH3. In the study of the Ni, Mo/alumina catalyst, the desulfurization activity was enhanced by optimization of carrier pore size to 120 to 140 angstroms and by addition of phosphorus and silica, having the target of sulfur content of 50 ppm or lower achieved. In the research of manufacturing low-sulfur light oil using heavy oil desulfurization and hydrocracking, optimization was performed on the catalyst used in the latter stage of heavy oil desulfurization, and evaluation was given on the performance in combination of commercially available hydrometallation catalyst/middle part HDS catalyst/bottom part HDS catalyst. As a result, achievement of the target of sulfur content in the desulfurized light oil of 300 ppm or lower was verified. Life evaluation test is in continuation on the heavy oil hydrocracking catalyst. (NEDO)

  4. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  5. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  6. Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature

    Directory of Open Access Journals (Sweden)

    A.S. Al-Fatesh

    2018-02-01

    Full Text Available Catalytic decomposition of methane has been studied extensively as the production of hydrogen and formation of carbon nanotube is proven crucial from the scientific and technological point of view. In that context, variation of catalyst preparation procedure, calcination temperature and use of promoters could significantly alter the methane conversion, hydrogen yield and morphology of carbon nanotubes formed after the reaction. In this work, Ni promoted and unpromoted Fe/Al2O3 catalysts have been prepared by impregnation, sol–gel and co-precipitation method with calcination at two different temperatures. The catalysts were characterized by X-ray diffraction (XRD, N2 physisorption, temperature programmed reduction (TPR and thermogravimetric analysis (TGA techniques. The catalytic activity was tested for methane decomposition reaction. The catalytic activity was high when calcined at 500 °C temperature irrespective of the preparation method. However while calcined at high temperature the catalyst prepared by impregnation method showed a high activity. It is found from XRD and TPR characterization that disordered iron oxides supported on alumina play an important role for dissociative chemisorptions of methane generating molecular hydrogen. The transmission electron microscope technique results of the spent catalysts showed the formation of carbon nanotube which is having length of 32–34 nm. The Fe nanoparticles are present on the tip of the carbon nanotube and nanotube grows by contraction–elongation mechanism. Among three different methodologies impregnation method was more effective to generate adequate active sites in the catalyst surface. The Ni promotion enhances the reducibility of Fe/Al2O3 oxides showing a higher catalytic activity. The catalyst is stable up to six hours on stream as observed in the activity results.

  7. Effect of Mn doped-titania on the activity of metallocene catalyst by in situ ethylene polymerization

    KAUST Repository

    Abdul Kaleel, S. H.

    2012-09-01

    Ethylene polymerization was carried out using highly active metallocene catalysts (Cp 2ZrCl 2 and Cp 2TiCl 2) in combination with methylalumoxane. Titanium(IV) oxide containing 1% Mn as dopant was used as nanofillers. The influence of filler concentration, reaction temperature and pressure on the catalytic activity and polymer properties was investigated. There was a fourfold increase in the activity of zirconocene catalyst by addition of doped-titania. The morphology indicates that the doped-titania nanoparticles have a nucleus effect on the polymerization and caused a homogeneous PE shell around them. The optimum condition for polymerization was found to be 30°C. © 2012 The Korean Society of Industrial and Engineering Chemistry.

  8. Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Gaurav Rattan

    2012-12-01

    Full Text Available To examine the effect of preparation methods, four catalyst samples having same composition (CuCe5.17Zr3.83Ox/g-Al2O3 (15wt% were prepared by four different methods for CO oxidation. The catalysts were prepared by co-impregnation, citric acid sol-gel, urea nitrate combustion and urea gelation co-precipitation methods, and characterized by BET, XRD, TGA/DSC and SEM. The The air oxidation of CO was carried out in a tubular fixed bed reactor under the following operating conditions: catalyst weight - 100 mg, temperature - ambient to 250 oC, pressure - atmospheric, 2.5% CO in air, total feed rate - 60 ml/min.  It was observed that the catalytic activity greatly influenced by the preparation methods. The highest activity of the catalyst prepared by the sol gel method appeared to be associated with its largest BET surface area. All the four catalysts were active for CO oxidation and did not show deactivation of catalytic activity for 50 hours of continuous runs. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 14th June 2012, Revised: 8th September 2012, Accepted: 19th September 2012[How to Cite: G. Rattan, R. Prasad, R.C.Katyal. (2012. Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 112-123. doi:10.9767/bcrec.7.2.3646.112-123] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3646.112-123 ] | View in 

  9. Investigation and Modelling of Diesel Hydrotreating Reactions

    DEFF Research Database (Denmark)

    Boesen, Rasmus Risum

    on a commercial CoMo catalyst, and a simple kinetic model is presented. Hydrogenation of fused aromatic rings are known to be fast, and it is possible, that the reaction rates are limited by either internal or external mass transfer. An experiment conducted at industrial temperatures and pressure, using...... naphthalene as a model compound, have shown, that intra-particle diffusion resistance are likely to limit the reaction rate. In order to produce ULSD it is necessary to remove sulfur from some of the most refrac- tive sulfur compounds, such as sterically hindered dibenzothiophenes. Basic nitrogen com- pounds...... are known to inhibit certain hydrotreating reactions. Experimental results are pre- sented, showing the effect of 3 different nitrogen compounds, acridine, 1,4-dimethylcarabazole and 3-methylindole, on the hydrodesulfurization of a real feed and of a model compound, 4,6-dimethyldibenzothiophene. It is shown...

  10. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Sari Suvanto

    2013-03-01

    Full Text Available The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO2 and nano-TiO2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM, inductively coupled plasma mass spectrometry (ICP-MS, BET, powder X-ray diffraction (PXRD and NH3- temperature-programmed desorption (TPD.

  11. The effect of diluting ruthenium by iron in Ru{sub x}Se{sub y} catalyst for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Delacote, Cyril [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France); CEISAM, CNRS, University of Nantes, F-44322 Nantes Cedex 3 (France); Lewera, Adam [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Pisarek, Marcin [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland); Kulesza, Pawel J. [University of Warsaw, Department of Chemistry, ul. Pasteura 1, 02-093 Warsaw (Poland); Zelenay, Piotr [Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Alonso-Vante, Nicolas, E-mail: nicolas.alonso.vante@univ-poitiers.f [Laboratory of Electrocatalysis, CNRS, University of Poitiers, F-86022 Poitiers Cedex (France)

    2010-11-01

    This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type Ru{sub x}Se{sub y}. The catalysts were obtained by thermal decomposition of Ru{sub 3}(CO){sub 12} and Fe(CO){sub 5} in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.

  12. Effect of Si/Al2 Ratio on 2-butanol Dehydration over HY Zeolite Catalysts

    International Nuclear Information System (INIS)

    Jung, Euna; Choi, Hyeonhee; Jeon, Jong-Ki

    2015-01-01

    Synthesis of butenes through dehydration of 2-butanol was investigated over HY zeolite catalysts. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. 2-Butanol conversion was increased with increase of Si/Al 2 ratio of HY zeolite catalysts, which can be ascribed to increase of acid strength with increase of Si/Al 2 ratio. Selectivities to 1-butene, trans-2-butene, and cis-2-butene were not greatly influenced by the change of the Si/Al 2 ratio of HY zeolite. As a result, it was advantageous to use a HY zeolite catalyst with 60 Si/Al 2 ratio for maximizing the yield of 1-butene in the dehydration of 2-butanol. The optimal reaction temperature for maximizing the yield of 1-butene was 250 .deg. C over HY (60) catalyst

  13. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids

    International Nuclear Information System (INIS)

    Li, Shuwen; Guo, Shujing; Yang, Honglei; Gou, Galian; Ren, Ren; Li, Jing; Dong, Zhengping; Jin, Jun; Ma, Jiantai

    2014-01-01

    Highlights: • The new catalyst was fabricated by a facile and environment-friendly approach. • The catalyst has excellent activity and reusability due to the synergistic effect. • The approach provides a green way to synthesize low cost Au-based catalysts. - Abstract: New catalyst, prepared through Au nanoparticles anchored on the Ionic Liquid of 3,4,9,10-perylene tetracarboxylic acid-noncovalent functionalized graphene (Au/PDIL-GS), was fabricated using a facile and environment-friendly approach. The information of the morphologies, sizes, dispersion of Au nanoparticles (NPs) and chemical composition for the as-prepared catalysts was verified by systematic characterizations, including transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectra, X-ray diffraction (XRD) and X-Ray photoelectron spectroscopy (XPS). As a new catalyst, the resulting Au/PDIL-GS exhibited excellent catalytic activity in the reduction of 4-nitrophenol because of the synergistic effect between the PDIL-GS and Au NPs. The facile and environment-friendly approach provides a green way to effectively synthesize low cost Au-based catalysts for 4-NP reduction and is promising for the development of other useful materials

  14. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  15. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  16. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, the introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest in this study is the effect of hydrogen gas on the performance of the selective catalytic...... reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...

  17. The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: A density functional study

    DEFF Research Database (Denmark)

    Moses, Poul Georg; Hinnemann, Berit; Topsøe, Henrik

    2009-01-01

    to proceed. We find that Co-promotion decreases the barrier of hydrogenation reactions and active site regeneration but increases the barrier of C–S-scission reactions. The net result of Co promotion is found to be an increase in the hydrogenation activity and also of the relative importance of the DDS...

  18. Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Alberto [Universita di Milano, Italy; Schiavoni, Marco [University of Milan and INFN, Milano, Italy; Fulvio, Pasquale F [ORNL; Mahurin, Shannon Mark [ORNL; Dai, Sheng [ORNL; Mayes, Richard T [ORNL; Veith, Gabriel M [ORNL; Prati, Laura [Universita di Milano, Italy

    2013-01-01

    Phosphorylated mesoporous carbons (PMCs) have been synthesized using an already reported one pot methodology. These materials have been applied as acidic catalysts in the dehydration of fructose to hydroxymethylfurfural (HMF). PMCs showed better selectivity to HMF compared to sulfonated carbon catalyst (SC) despite lower activity. The concentration of P-O groups correlates to the activity/selectivity of the catalysts; the higher the P-O concentration the higher the activity. However, the higher the P-O content the lower the selectivity to HMF. Indeed a lower concentration of the P-O groups (and even the acidic groups) minimized the degradation of HMF to levulinic acid and the formation of by-products, such as humines. Stability tests showed that these systems deactivate due to the formation of humines, water insoluble by-products derived from the dehydration of fructose, blocking the active site of the catalyst. Increasing the amount of P-O groups, higher amount of humines are formed; therefore carbons containing lower amount of phosphorylated groups, such as P/N-0.25, are less prone to deactivation. Keywords: Phosphorylated mesoporous carbons; fructose dehydration; HMF

  19. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  20. Effect of Support Pretreatment Temperature on the Performance of an Iron Fischer–Tropsch Catalyst Supported on Silica-Stabilized Alumina

    Directory of Open Access Journals (Sweden)

    Kamyar Keyvanloo

    2018-02-01

    Full Text Available The effect of support material pretreatment temperature, prior to adding the active phase and promoters, on Fischer–Tropsch activity and selectivity was explored. Four iron catalysts were prepared on silica-stabilized alumina (AlSi supports pretreated at 700 °C, 900 °C, 1100 °C or 1200 °C. Addition of 5% silica to alumina made the AlSi material hydrothermally stable, which enabled the unusually high support pretreatment temperatures (>900 °C to be studied. High-temperature dehydroxylation of the AlSi before impregnation greatly reduces FeO·Al2O3 surface spinel formation by removing most of the support-surface hydroxyl groups leading to more effectively carbided catalyst. The activity increases more than four-fold for the support calcined at elevated temperatures (1100–1200 °C compared with traditional support calcination temperatures of <900 °C. This unique pretreatment also facilitates the formation of ε′-Fe2.2C rather than χ-Fe2.5C on the AlSi support, which shows an excellent correlation with catalyst productivity.

  1. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-09

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  3. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  4. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  5. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  6. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  7. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst

    International Nuclear Information System (INIS)

    Sirisomboonchai, Suchada; Abuduwayiti, Maidinamu; Guan, Guoqing; Samart, Chanatip; Abliz, Shawket; Hao, Xiaogang; Kusakabe, Katsuki; Abudula, Abuliti

    2015-01-01

    Highlights: • Calcined scallop shell was used as low-cost and effective catalyst for biodiesel production. • BDF yield from waste cooking oil reached 86% at 65 °C with a catalyst loading amount of 5 wt%. • Calcined scallop shell showed good reusability. • Calcium glyceroxide played an important role on the reusability of calcined scallop shell. • Water in the waste cooking oil had negative effect on the catalytic activity of calcined scallop shell. - Abstract: Transesterification of waste cooking oil (WCO) and methanol by using calcined scallop shell (CSS) as catalyst was carried out in a closed system for biodiesel fuel (BDF) production. It is found that the optimum calcination temperature for the preparation of CSS was 1000 °C. The effects of transesterification temperature, reaction time, methanol/oil molar ratio and catalyst loading amount on the BDF yield were investigated. Compared with the commercial CaO, CSS showed higher catalytic activity and the BDF yield reached 86% at 65 °C with a catalyst loading amount of 5 wt% (WCO basis) and a reaction time of 2 h. The catalyst was reused for 5 cycles whilst the BDF yield decreased 23%. It is found that CaO in CSS was transferred to calcium glyceroxide after the transesterification reaction, and calcium glyceroxide also showed good catalytic activity and reusability. Furthermore, Water content in WCO had negative effect on BDF yield. It is found that BDF yield reduced 15% due to the occurring of saponification when the water content was increased from 0.64% to 2.48%. It is expected that CCS can be used as an alternative and cheap catalyst for the biodiesel production

  8. Reverse microemulsion prepared Ni–Pt catalysts for methane cracking to produce COx-free hydrogen

    KAUST Repository

    Zhou, Lu

    2017-09-08

    A monodispersed 15 nm Ni9Pt1 catalyst synthesized via a reverse microemulsion method, shows a lower activation energy than both Ni and Pt catalysts during the methane cracking reaction. Thanks to the synergic effect of Ni–Pt alloy, this catalyst presents a stable H2 formation rate at 700 °C, and forms carbon nanotubes, anchoring the catalyst particles on top.

  9. Reverse microemulsion prepared Ni–Pt catalysts for methane cracking to produce COx-free hydrogen

    KAUST Repository

    Zhou, Lu; Harb, Moussab; Enakonda, Linga Reddy; Al Mana, Noor; Hedhili, Mohamed N.; Basset, Jean-Marie

    2017-01-01

    A monodispersed 15 nm Ni9Pt1 catalyst synthesized via a reverse microemulsion method, shows a lower activation energy than both Ni and Pt catalysts during the methane cracking reaction. Thanks to the synergic effect of Ni–Pt alloy, this catalyst presents a stable H2 formation rate at 700 °C, and forms carbon nanotubes, anchoring the catalyst particles on top.

  10. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  11. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  12. Dimethyl carbonate synthesis via transesterification of propylene carbonate with methanol by ceria-zinc catalysts: Role of catalyst support and reaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Srivastava, Vimal Chandra; Mishra, Indra Mani [Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2015-09-15

    Ceria and zinc oxide catalyst were impregnated onto various oxide supports, namely Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, individually by deposition-coprecipitation method. The synthesized catalysts (CZA, CZS and CZT having supports Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, respectively) were characterized by X-ray diffraction (XRD), NH{sub 3}- and CO{sub 2}-temperature programmed desorption (TPD) and N2 adsorption. These catalysts were used for synthesis of dimethyl carbonate (DMC) from methanol and propylene carbonate in a batch reactor. CZS was found to have larger average grain size as compared to CZA and CZT. Composite oxides (catalysts) were found to contain individual phases of ZnO, CeO{sub 2} and some spinel forms of Zn, Ce along with their supports. CZS having highest basicity and surface area showed better catalytic activity as compared to CZA and CZT. Effect of reaction temperature and methanol/PC molar ratio on DMC yield was studied and a reaction mechanism has been discussed. Maximum DMC yield of 77% was observed with CZS catalyst at 170 .deg. C with methanol/PC molar ratio of 10.

  13. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    Science.gov (United States)

    Calahorra, Yonatan; Kerlich, Alexander; Amram, Dor; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan

    2016-04-01

    Catalyst assisted vapour-liquid-solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120-450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2-3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology.

  14. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  15. Effect of Composition and Mass Ratio on the Catalytic Wet Air Oxidation Catalyst Cu–Fe–La/FSC

    Directory of Open Access Journals (Sweden)

    Wu Chao

    2016-01-01

    Full Text Available The catalytic wet air oxidation (CWAO technology is used for the treatment of the simulated printing and dyeing wastewater and also for investigating the catalyst performance indicators such as catalyst activity and stability. The catalyst activity is mainly reflected from the water decolorization and CODCr removal rates, and the stability of the catalyst is mainly reflected by the quantity of metal dissolution. The experimental results showed that the prepared Cu–Fe–La/FSC catalyst with a 1:1:2 ratio of Cu–Fe–La by the impregnation method exhibited good activity for the treatment of the simulated printing and dyeing wastewater by the CWAO method, and the decolorization and CODCr removal rates using this catalyst were 98.7% and 78.6%, respectively, with a higher catalytic activity, lower concentration of metal dissolution, and good stability.

  16. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    International Nuclear Information System (INIS)

    Jusoh, N.W.C.; Jalil, A.A.; Triwahyono, S.; Karim, A.H.; Salleh, N.F.; Annuar, N.H.R.; Jaafar, N.F.; Firmansyah, M.L.; Mukti, R.R.; Ali, M.W.

    2015-01-01

    Graphical abstract: - Highlights: • Hierarchical-like structure of MSN was formed in alkaline aqueous electrolyte. • Desilication generated abundant silanol groups and oxygen vacancies. • Zn 2+ inserted to external –OH groups of the MSN to form Si–O–Zn bonds. • Oxygen vacancies trapped electrons to enhance electron–hole pair separation. • Hydroxyl radical generated from three main sources greatly influenced photoactivity. - Abstract: ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH 4 OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, 29 Si MAS NMR, nitrogen adsorption–desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si–O–Zn during the electrolysis, as well as formation of new Si–O–Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH 4 OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10 −1 h −1 than unsupported ZnO (1.13 × 10 −1 h −1 ) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O 2 at the conduction band, decomposed water at the valence band and irradiated H 2 O 2 in the solution, are key factors that influenced the reaction. It is

  17. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    Energy Technology Data Exchange (ETDEWEB)

    Jusoh, N.W.C. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S.; Karim, A.H. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Salleh, N.F. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Annuar, N.H.R.; Jaafar, N.F.; Firmansyah, M.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No 10, Bandung 40132 (Indonesia); Ali, M.W. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Hierarchical-like structure of MSN was formed in alkaline aqueous electrolyte. • Desilication generated abundant silanol groups and oxygen vacancies. • Zn{sup 2+} inserted to external –OH groups of the MSN to form Si–O–Zn bonds. • Oxygen vacancies trapped electrons to enhance electron–hole pair separation. • Hydroxyl radical generated from three main sources greatly influenced photoactivity. - Abstract: ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH{sub 4}OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, {sup 29}Si MAS NMR, nitrogen adsorption–desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si–O–Zn during the electrolysis, as well as formation of new Si–O–Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH{sub 4}OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10{sup −1} h{sup −1} than unsupported ZnO (1.13 × 10{sup −1} h{sup −1}) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O{sub 2} at the conduction band, decomposed water at the valence band and irradiated H{sub 2}O{sub 2} in the solution

  18. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  19. Morphological Effect of Pd Catalyst on Ethanol Electro-Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    Rosalba Fuentes Ramírez

    2012-09-01

    Full Text Available In the present study, three different structures with preferentially exposed crystal faces were supported on commercial carbon black by the polyol method (nanoparticles (NP/C, nanobars (NB/C and nanorods (NR/C. The electrocatalysts were characterized by XRD, TEM, TGA and cyclic voltammetry at three different ethanol concentrations. Considerable differences were found in terms of catalytic electroactivity. At all ethanol concentrations, the trend observed for the ethanol oxidation peak potential was preserved as follows: NB/C < NP/C< NR/C < commercial Pd/C. This result indicates that, from a thermodynamics point of view, the NB/C catalyst enclosed by Pd(100 facets presented the highest activity with respect to ethanol electro-oxidation among all of the catalysts studied.

  20. Effect of aluminum alkyls on a homogeneous and silica-supported phenoxy-imine titanium catalyst for ethylene trimerization

    NARCIS (Netherlands)

    Karbach, Fabian F.; Severn, John R.; Duchateau, Robbert

    A phenoxy-imine titanium catalyst (FI-catalyst) for selective ethylene trimerization was immobilized on methyl aluminoxane (MAO) pretreated silica and its activity and selectivity was compared with that of the corresponding homogeneous catalyst system. The homogeneous and heterogeneous ethylene

  1. Fischer-Tropsch synthesis: Support and cobalt cluster size effects on kinetics over Co/Al{sub 2}O{sub 3} and Co/SiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wenping Ma; Gary Jacobs; Dennis E. Sparks; Muthu K. Gnanamani; Venkat Ramana Rao Pendyala; Chia H. Yen; Jennifer L.S. Klettlinger; Thomas M. Tomsik; Burtron H. Davis [University of Kentucky, Lexington, KY (USA). Center for Applied Energy Research

    2011-02-15

    The influence of support type and cobalt cluster size (i.e., with average diameters falling within the range of 8-40 nm) on the kinetics of Fischer-Tropsch synthesis (FT) were investigated by kinetic tests employing a CSTR and two Co/{gamma}-Al{sub 2}O{sub 3} catalysts having different average pore sizes, and two Co/SiO{sub 2} catalysts prepared on the same support but having different loadings. A kinetic model -r{sub CO}=kP{sup a}{sub co}P{sup b}{sub H2}/(1 + mP{sub H2O}/P{sub H2}) that contains a water effect constant 'm' was used to fit the experimental data obtained with all four catalysts. Kinetic parameters suggest that both support type and average Co particle size impact FT behavior. Cobalt cluster size influenced kinetic parameters such as reaction order, rate constant, and the water effect parameter.Decreasing the average Co cluster diameter by about 30% led to an increase in the intrinsic reaction rate constant k, defined on a per g of catalyst basis, by 62-102% for the {gamma}-Al{sub 2}O{sub 3} and SiO{sub 2}-supported cobalt catalysts. Moreover, less inhibition by adsorbed CO and greater H{sub 2} dissociation on catalysts having smaller Co particles was suggested by the higher a and lower b values obtained for the measured reaction orders. Irrespective of support type, the catalysts having smaller average Co particles were more sensitive to water. Comparing the catalysts having strong interactions between cobalt and support (Co/Al{sub 2}O{sub 3}) to the ones with weak interactions (Co/SiO{sub 2}), the water effect parameters were found to be positive (indicating a negative influence on CO conversion) and negative (denoting a positive effect on CO conversion), respectively. Greater a and a/b values were observed for both Al{sub 2}O{sub 3}-supported Co catalysts, implying greater inhibition of the FT rate by strongly adsorbed CO on Co/Al{sub 2}O{sub 3} relative to Co/SiO{sub 2}. 78 refs., 4 figs., 3 tabs.

  2. STUDY ON THE CONCENTRATION EFFECT OF Nb2O5-ZAA CATALYST TOWARDS TOTAL CONVERSION OF BIODIESEL IN TRANSESTERIFICATION OF WASTED COOKING OIL

    Directory of Open Access Journals (Sweden)

    Astuti Tri Padmaningsih

    2010-06-01

    Full Text Available Study on the concentration effect of Nb2O5-ZAA catalyst towards total conversion of biodiesel has been conducted. The natural zeolite (ZA was activated by dipping in NH4Cl solution and was calcined using N2 atmosphere at 500 °C for 5h to produce the ZAA sample. The Nb2O5-ZAA catalyst was made by mixing the activated natural zeolite (ZAA, Nb2O5 3 % (w/w and oxalic acid 10 % (w/w solution, until the paste was formed, followed by drying and calcining the catalyst for 3 h at 500 °C under N2 atmosphere. Catalyst characterizations were conducted by measuring acidity with NH3 gas using gravimetric method and porosimetric analysis using N2 gas adsorption based on the BET equation by surface area analyzer instrument. The Nb2O5-ZAA catalyst was then used as an acid catalyst in free fatty acid esterification reaction of wasted cooking oil in methanol medium with variation of catalyst concentration: 1.25%; 2.5%; 3.75% and 5% towards the weight of oil+methanol. The reaction was continued by transesterification of triglyceride in the used cooking oil using NaOH catalyst in methanol medium. For comparison, the esterification reaction using H2SO4 catalyst 1.25% towards the weight of oil+methanol has been conducted as well. Methyl ester (biodiesel product was analyzed using Gas Chromatography (GC and Gas Chromatography-Mass Spectrometry (GC-MS. The characters of biodiesel were analyzed using American Society for Testing and Materials (ASTM method. The results showed that modification of ZAA by impregning Nb2O5 3% (w/w increased the total catalyst acidity from 5.00 mmol/g to 5.65 mmol/g. The Nb2O5-ZAA catalyst has specific surface area of 60.61 m2/g, total pore volume of 37.62x10-3 cc/g and average pore radius of 12.41 Å. The Nb2O5-ZAA catalyst with concentration of 1.25%-5% produced higher total conversion of biodiesel than that of H2SO4 catalyst 1.25%. The Nb2O5-ZAA catalyst with concentration of 3.75% produced the highest total conversion of biodiesel, i

  3. Theoretical modeling of structure and function of cathode catalyst layers in PEMFC

    International Nuclear Information System (INIS)

    Wang, Q.; Eikerling, M.; Song, D.; Liu, Z.

    2004-01-01

    'Full text:' In this work, we first investigate transport and reaction kinetics in single agglomerates of cathode catalyst layers in proton exchange fuel cells. Two types of spherical agglomerates are evaluated, which represent limiting structures that can be obtained by distinct synthetic procedures. One type consists of a mixture of carbon/catalyst particles and proton conducting perfluorosulfonated ionomer (PFSI). The other type consists of carbon/catalyst particles and water-filled pores. Performance of the former type is rationalized on the basis of the well-known Thiele-modulus. Characteristics of the latter type are studied using Nernst-Planck and Poisson equations. Aspects of current conversion, reactant and current distributions, and catalyst utilization are explored. In general, the PFSI-filled agglomerates exhibit more homogeneous distributions of reaction rates. Effectiveness factors for them are close to one. However, it was found that proton penetration depths in waterflooded agglomerates could be quite significant as well under certain conditions, resulting in unexpectedly high catalyst utilization. The effects of agglomerate radius and of boundary conditions at the agglomerate surface are studied. Moreover, using the same approach, we evaluate the performance of a flat PFSI-free catalyst layer with water-filled pore space. Compared with conventional composite catalyst layers impregnated with PFSI, the PFSI-free layer exhibits better performance and high Pt utilization for thicknesses less than 0.1 μm. The significance of these results for the optimization catalyst layers in view of operation conditions and synthesis methods is discussed. (author)

  4. Preparation of supported heterogeneous catalysts by pulse impregnation: Application to Ru[sub 3](CO)[sub 12]/2,2[prime]-bipyridine/SiO[sub 2] catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Haukka, M.; Pakkanen, T.A. (Univ. of Joensuu (Finland))

    1994-07-01

    In this paper, the authors introduce pulse impregnation, a method for preparing supported heterogeneous catalysts by successive impregnation cycles. Pulse impregnation is a method for preparing supported heterogeneous catalysts from the liquid phase. In the pulse-impregnation technique the catalyst surface is grown gradually in consecutive cycles, with each cycle consisting of separate deposition and activation steps. During the deposition step, the catalyst precursor or precursors are deposited onto the support from a suitable solvent. The actual chemically bonded catalyst phase is formed during the activation step (e.g., thermal activation). Pulse impregnation was tested in the separate deposition of 2,2[prime]-bipyridine and Ru[sub 3](CO)[sub 12] onto a silica support, and in the preparation of Ru[sub 3](CO)[sub 12]/2,2[prime]-bipyridine/SiO[sub 2] catalyst, in a column-type reactor system. Macroscopically uniform deposition was achieved with both 2,2[prime]-bipyridine and Ru[sub 3](CO)[sub 12]. Various solvent systems were used to control the amount of solute adsorbed during deposition. In the preparation of the Ru[sub 3](CO)[sub 12]/2,2[prime]-bipyridine/SiO[sub 2] catalyst, the ruthenium content increased nearly linearly with the number of preparation cycles. The effects of the preparation method on the catalyst activity was also tested in 1-hexane hydroformylation. 31 refs., 7 figs., 1 tab.

  5. Isotopic exchange between deuterium and neohexane on supported platinum and palladium catalysts

    International Nuclear Information System (INIS)

    Eskinazi, V.

    1979-01-01

    The isotopic exchange reaction between neohexane and deuterium on supported Pt/SiO 2 and Pd/SiO 2 catalysts has been investigated in the temperature range 86.5 to 110 0 C. Rates of exchange were studied as functions of percentage of metal atoms exposed, the conditions of catalyst pretreatment, and the reaction temperature. The rates of exchange were not strongly dependent upon percentage exposed; however, the relative yields of d 1 through d 5 in the ethyl moiety or neohexane were dependent on the percentage metal atoms exposed. The Pt/SiO 2 catalysts were found to be more active for exchange than the Pd/SiO 2 catalysts by an order of magnitude. Both the turnover frequencies and the exchange pattern were observed to be influenced by the pretreatment of the catalyst. Maxima in the exchange pattern occurred at d 3 and d 5 in the case of Pt/SiO 2 and at d 5 only in the case of the Pd/SiO 2 catalysts. In order to account for the d 3 maximum observed for Pt catalysts, some extension of the Horiuti-Polanyi mechanism is required. Mechanisms by which the d 3 species might be formed are proposed and discussed. On Pd/SiO 2 catalysts exchange occurs preferentially in the ethyl substituent of the quaternary carbon atom rather than on the three methyl substituents of the quaternary carbon atom. Such preference is not observed on Pt/SiO 2 catalysts; in fact, in some cases, this preference is reversed. Whenever exchange occurs in the three methyl substituents, mostly the d 1 product is obtained. For Pt/SiO 2 catalysts, the exchange pattern appears to be influenced by steric effects, but the data suggest that factors other than steric effects are important on Pd

  6. Decomposition of hydrogen peroxide on nickel oxide - vanadium pentoxide catalysts and the effect of ionizing radiation on them

    International Nuclear Information System (INIS)

    Mucka, V.

    1984-01-01

    Some physico-chemical and catalytic properties of nickel oxide-vanadium pentoxide two-component catalysts were studied over the entire concentration range of the components, using the decomposition of hydrogen peroxide in an aqueous solution as the test reaction. The two oxides were found to affect each other; this was shown by the dependences of the specific surface area, the V 4+ ion concentration, and the catalyst activity on the system composition. At low vanadium pentoxide concentrations (up to 15 mol%) the reaction took place on nickel oxide modified with vanadium pentoxide, whereas in the region of higher vanadium pentoxide concentrations the decomposition of the peroxide was catalyzed primarily in the homogeneous phase by vanadium(V) peroxide ions; in a sample with 30 mol% V 2 O 5 , trivalent vanadium also played a part. With catalysts obtained by mere mechanical mixing of the two oxides, a modified activity was observed in the region of high excess of nickel oxide. The activity of catalyst, particularly pure nickel oxide, was increased by its partial reduction and decreased by its exposure to gamma radiation if the dose was higher than 10 5 Gy. The effects observed are interpreted in terms of the concept of bivalent catalytic centres. (author)

  7. Selective hydrogenation of acetylene on SiO{sub 2} supported Ni-In bimetallic catalysts: Promotional effect of In

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanjun; Chen, Jixiang, E-mail: jxchen@tju.edu.cn

    2016-11-30

    Graphical abstract: A suitable Ni/In ratio remarkably enhanced the acetylene conversion, the selectivity to ethylene and the catalyst stability. Display Omitted - Highlights: • There was a promotional effect of In on the performance of Ni/SiO{sub 2}. • A suitable Ni/In ratio was required for good performance of Ni{sub x}In/SiO{sub 2}. • Both geometrical and electronic effects of In contributed to good performance. • Ni/SiO{sub 2} deactivation is mainly owing to phase change from Ni to nickel carbide. • The carbonaceous deposit was the main reason for Ni{sub x}In/SiO{sub 2} deactivation. - Abstract: Ni/SiO{sub 2} and the bimetallic Ni{sub x}In/SiO{sub 2} catalysts with different Ni/In ratios were tested for the selective hydrogenation of acetylene, and their physicochemical properties before and after the reaction were characterized by means of N{sub 2}-sorption, H{sub 2}-TPR, XRD, TEM, XPS, H{sub 2} chemisorption, C{sub 2}H{sub 4}-TPD, NH{sub 3}-TPD, FT-IR of adsorbed pyridine, and TG/DTA and Raman. A promotional effect of In on the performance of Ni/SiO{sub 2} was found, and Ni{sub x}In/SiO{sub 2} with a suitable Ni/In ratio gave much higher acetylene conversion, ethylene selectivity and catalyst stability than Ni/SiO{sub 2}. This is ascribed to the geometrical isolation of the reactive Ni atoms with the inert In ones and the charge transfer from the In atoms to Ni ones, both of which are favorable for reducing the adsorption strength of ethylene and restraining the C−C hydrogenolysis and the polymerizations of acetylene and the intermediate compounds. On the whole, Ni{sub 6}In/SiO{sub 2} and Ni{sub 10}In/SiO{sub 2} had better performance. Nevertheless, with increasing the In content, the selectivity to the C4+ hydrocarbons tended to increase due to the enhanced catalyst acidity because of the charge transfer from the In atoms to Ni ones. As the Lewis acid ones, the In sites could promote the polymerization. The catalyst deactivation was also analyzed

  8. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  9. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  10. Catalyst inks and method of application for direct methanol fuel cells

    Science.gov (United States)

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  11. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition.

    Science.gov (United States)

    Lu, Junling; Fu, Baosong; Kung, Mayfair C; Xiao, Guomin; Elam, Jeffrey W; Kung, Harold H; Stair, Peter C

    2012-03-09

    We showed that alumina (Al(2)O(3)) overcoating of supported metal nanoparticles (NPs) effectively reduced deactivation by coking and sintering in high-temperature applications of heterogeneous catalysts. We overcoated palladium NPs with 45 layers of alumina through an atomic layer deposition (ALD) process that alternated exposures of the catalysts to trimethylaluminum and water at 200°C. When these catalysts were used for 1 hour in oxidative dehydrogenation of ethane to ethylene at 650°C, they were found by thermogravimetric analysis to contain less than 6% of the coke formed on the uncoated catalysts. Scanning transmission electron microscopy showed no visible morphology changes after reaction at 675°C for 28 hours. The yield of ethylene was improved on all ALD Al(2)O(3) overcoated Pd catalysts.

  12. Heat and mass transfer in a reforming catalyst bed. Analytical prediction of distributions in the catalyst bed; Kaishitsu shokubaiso ni okeru netsu oyobi busshitsu ido. Suchi kaiseki ni yoru sonai bunpu no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Y [Tokyo Electric Power Co. Inc., Tokyo (Japan); Fukusako, S; Yamada, M [Hokkaido University, Sapporo (Japan)

    2000-01-25

    Heat and mass transfer characteristics within a reforming catalyst bed have been analytically investigated. A numerical analysis was carried out in a two-dimensional steady-state model of reforming catalyst layer. Reforming tube was filled with catalyst and the tube wall was uniformly heated, a mixture of steam and methane was reformed through the catalyst bed. Predicted temperature, formed gas composition, methane conversion rate, and heat transfer coefficient distributions in the catalyst layer showed good agreement with experimental data. The effects of space velocity, steam carbon molar ratio, and wall temperature on the heat transfer coefficient were analytically presented. From temperature and composition distributions simulated by two-dimensional analysis, the effects of these factors above mentioned and diffusion on the transport phenomena were qualitatively predicted. (author)

  13. Secondary promoters in alumina-supported nickel-molybdenum hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.M.

    1992-01-01

    Two secondary promoters, phosphorus and fluoride, have been investigated for their influences on the physicochemical properties of alumina-supported nickel-molybdenum hydroprocessing catalysts. Model compound reactions and infrared spectroscopy were used to probe the functionalities of the different catalysts, and the catalysts were tested in the hydroprocessing of a low-nitrogen and a high-nitrogen (quinoline-spiked) gas oil feed to assess the utility of the model compound reaction studies. Fluoride-promoted catalysts with high cumene hydrocracking activity and with comparable thiophene hydrodesulphurization (HDS) activity to Ni-Mo/Al[sub 2]O[sub 3] can be prepared by coimpregnation of the F, Ni and Mo additives. Fluoride promotes the hydrogenation (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing (HYD) and HDS activity of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of a low-nitrogen feed. Fluoride promotes the quinoline hydrodenitrogenation (HDN) activity of Ni-Mo/Al[sub 2]O[sub 3] catalysts. Impregnation of phosphorus prior to the metal additives results in catalysts which are more active in HDS. Phosphorus increases indirectly the Broensted acidity of the catalyst by increasing the activity of the MoS[sub 2]-associated acid sites. Phosphorus promotes the HDSW and HYD activities of Ni-Mo/Al[sub 2]O[sub 3] in the hydroprocessing of the low-N feed. A promotional effect of phosphorus is seen in quinoline HDN. P- and F-promoted Ni-MO/Al[sub 2]O[sub 3] catalysts are very active in quinoline HDN and maintain good activity in HDS and HYD of the high-N feed. Thiophene HDS was a good reaction for probing the activity of catalysts in the HDS of sterically-unhindered molecules, but an inaccurate probe for the HDS of hindered compounds.

  14. Kinetic modelling of slurry polymerization of ethylene with a polymer supported Ziegler-Natta catalyst (hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.

    1996-12-31

    The kinetics of polymerization of ethylene catalyzed by a polymer supported Ziegler-Natta catalyst were investigated in a semi-batch reactor system. The influences of six polymerization variables were investigated using a central composite design. The variables were monomer partial pressure, catalyst loading, co-catalyst loading, catalyst particle size and hydrogen to monomer ratio. The influence of temperature on rate and polymer properties were investigated. Empirical models were fitted to the experimental data to quantify the effects of the polymerization variables on the rate characteristics and polymer properties. The rate of polymerization exhibited a first order dependency with respect to monomer partial pressure, but a nonlinear relationship with respect to catalyst loading. In the absence of hydrogen, the polymerization rate showed a non-decaying profile at the centre point conditions for the other variables. Catalyst loading and catalyst particle size had a negligible effect on weight-and-number-average molecular weights, while increasing co-catalysts loading lowered the molecular weights, as did increased temperature and hydrogen concentration. refs., figs.

  15. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming

    Science.gov (United States)

    Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang

    2017-10-01

    Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.

  16. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi; Cheng, Shaoan; Zhang, Xiaoyuan; Li, Xiao-yan; Logan, Bruce E.

    2011-01-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously

  17. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures.

    Science.gov (United States)

    Wang, Renhu; Li, Junhua

    2010-06-01

    Volatile organic compounds (VOCs) emitted from many industrial processes and transportation activities are major organic pollutants in the atmosphere and toxic to human health. Octahedral molecular sieve (OMS-2) catalysts with different precursors and sulfate-acidified OMS-2 catalysts were synthesized using refluxing methods. The catalysts were investigated on complete oxidation of ethanol and acetaldehyde, and both demonstrated good reactivity. However, acidification resulted in a decrease in activity. OMS-2 catalyst using MnSO(4) as precursor exhibited the best catalytic performance and, thus, was selected for catalyst deactivation by sulfur dioxide. The results of this study suggested that the Mn-O bond of OMS-2 catalysts was the main determinant of the catalytic activity toward oxygenated VOC oxidation and weaker acid sites benefited higher acetaldehyde selectivity. Catalyst deactivation resulted from a strong but slow chemical interaction between the Mn-O bond and sulfur dioxide, probably forming manganese sulfate.

  18. Green nano-catalyst for methanolysis of non-edible Jatropha oil

    International Nuclear Information System (INIS)

    Teo, Siow Hwa; Rashid, Umer; Taufiq-Yap, Yun Hin

    2014-01-01

    Highlights: • A green nano heterogeneous base catalyst was prepared from CaO. • Transesterified Jatropha curcas oil achieved 95% of biodiesel yield at 65 °C. • Parameters affecting catalyst reaction were optimized. • Biodiesel produced was satisfied the International biodiesel standards. - Abstract: Non-edible feedstocks are regarded as a sustainable source of renewable energy. In order to find renewable, cheaper and easier methods to obtain energy, attention has been paid to develop potential green catalyst to produce renewable biodiesel. The catalyst was characterized by X-ray diffraction (XRD) results in combination with thermogravimetry–differential thermal analysis (TG–DTA), Brunauer–Emmer–Teller (BET), Fourier transfrom-infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM analysis depicted that calcium methoxide (Ca(OCH 3 ) 2 ) catalysts were in size of 34.7 nm. The reaction parameters namely; reaction time, methanol/oil molar ratio, catalyst dosage were investigated for fatty acid methyl ester (FAME) yield. The highest biodiesel yield (95%) was appraised under the optimum condition (i.e. catalyst amount of 2 wt.%; methanol/oil molar ratio of 15:1, reaction time of 90 min). The Ca(OCH 3 ) 2 phase of catalyst can be regarded as an active phase to get high yield of biodiesel which was confirmed from characterization study. Furthermore, important fuel properties were also investigated and satisfied the ASTM D6751 and European 14214 biodiesel standards. Thus, Ca(OCH 3 ) 2 catalyst prepared in this study was having efficient, low toxicity, cost effective and easy to prepare for green fuels production especially biodiesel

  19. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  20. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  1. Synthesis and properties of catalysts prepared from silicomolybdovanadium heteropoly acid

    International Nuclear Information System (INIS)

    Chumachenko, N.N.; Tarasova, D.V.; Nikoro, T.A.; Yaroslavtseva, I.V.

    1984-01-01

    Catalytic properties of samples prepared of silicomolybdovanadium heteropoly acid (HPA) have been investigated. The massive catalyst is shown to be comparatively low effective in the reaction of acrolein oxidation to acrylic acid. Impregnation of coarse-dispersed silica gel by the HPA solution results in the formation of active and selective catalyst, whereas low-active catalyst of deep oxidation is formed on the base of high-dispersed silica gel. The obtained data are explained by the formation and stabilization of different forms of vanadium- and molybdenum-containing compounds on the carrier surface

  2. Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability

    NARCIS (Netherlands)

    Severn, J.R.; Chadwick, J.C.

    2013-01-01

    The activity and stability of homogeneous olefin polymerisation catalysts, when immobilised on a support, are dependent on both chemical and physical effects. Chemical factors affecting catalyst activity include the ease of formation of the active species, which is strongly dependent on the

  3. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  4. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  5. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  6. Effect of Ce on performance and physicochemical properties of Pt-containing automotive emission control catalysts

    International Nuclear Information System (INIS)

    Nunan, J.G.; Silver, R.G.; Bradley, S.A.

    1992-01-01

    Present-day automotive emission control catalysts contain noble metals such as Pt, Pd and Rh all on an alumina support with a variety of promoters. Ce is one of the most important promoters. In this paper, the interaction between Pt and Ce is studied using TPR and STEM on a variety of catalysts. The degree of Pt/Ce interaction is increased by decreasing CeO 2 crystallite size, and to a lesser extent by increasing CeO 2 loading. Direct Pt/Ce interaction leads to a synergistic reduction of both Pt and surface Ce. This reduction qualitatively correlates with catalyst performance after activation in a reducing gas. It is proposed that this synergistic reduction of Pt and Ce is associated with observed improvements in catalyst performance using a non-oscillating exhaust gas

  7. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  8. Synthesis of Higher Alcohols via Syngas on Cu/Zn/Si Catalysts. Effect of Polyethylene Glycol Content

    Science.gov (United States)

    Cui, Rong-Ji; Yan, Xing; Fan, Jin-Chuan; Huang, Wei

    2018-05-01

    Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.

  9. Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Xiaoru Li

    2015-04-01

    Full Text Available Ni-based catalysts as replacement for noble metal catalysts are of particular interest in the catalytic conversion of biomass due to their cheap and satisfactory catalytic activity. The Ni/SiO2 catalyst has been studied for the hydrogenolysis of glycerol, and doping with phosphorus (P found to improve the catalytic performance significantly because of the formation of Ni2P alloys. However, in the present work we disclose a different catalytic phenomenon for the P-doped Ni/Al2O3 catalyst. We found that doping with P has a significant effect on the state of the active Ni species, and thus improves the selectivity to 1,2-propanediol (1,2-PDO significantly in the hydrogenolysis of glycerol, although Ni-P alloys were not observed in our catalytic system. The structure and selectivity correlations were determined from the experimental data, combining the results of X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, hydrogen temperature-programmed reduction (H2-TPR and ammonia temperature-programmed desorption (NH3-TPD. The presence of NiO species, formed from P-doped Ni/Al2O3 catalyst, was shown to benefit the formation of 1,2-PDO. This was supported by the results of the Ni/Al2O3 catalyst containing NiO species with incomplete reduction. Furthermore, the role the NiO species played in the reaction and the potential reaction mechanism over the P-doped Ni/Al2O3 catalyst is discussed. The new findings in the present work open a new vision for Ni catalysis and will benefit researchers in designing Ni-based catalysts.

  10. Hydroisomerization of n-dodecane over Pt/Al-MCM-48 catalysts.

    Science.gov (United States)

    Yun, Soyoung; Park, Young-Kwon; Jeong, Soon-Yong; Han, Jeongsik; Jeon, Jong-Ki

    2014-04-01

    The objective of this study is to evaluate the catalytic potential of Pt/Al-MCM-48 catalysts in hydroisomerization of n-dodecane. The effects of the Si/Al ratio and platinum loading on the acid characteristics of Al-MCM-48 and the catalytic performance in n-dodecane hydroisomerization were analyzed. The catalysts were characterized by X-ray diffraction, nitrogen adsorption, infrared spectroscopy of pyridine adsorption, and temperature programmed desorption of ammonia. The number of weak strength acid sites on Al-MCM-48 increased with 0.5 wt% platinum loading. The weak strength acid sites of Pt/Al-MCM-48 catalysts were ascribed to Lewis acid sites, which can be confirmed by NH3-TPD and FTIR spectra of pyridine adsorption. Iso-dodecane can be produced with high selectivity in n-dodecane hydrosisomerization over Pt/Al-MCM-48 catalysts. This is attributed to the mild acidic properties of Pt/Al-MCM-48 catalysts.

  11. Synthesis of Dicyclopentadiene Oligomer Over Nanoporous Al-MCM-41 Catalysts.

    Science.gov (United States)

    Park, Eunseo; Kim, Jinhan; Yim, Jin-Heong; Han, Jeongsik; Kwon, Tae Soo; Park, Y K; Jeon, Jong-Ki

    2016-05-01

    One step reaction composed of DCPD oligomerization and DCPD oligomer isomerization was investigated over nanoporous Al-MCM-41 catalysts. The effects of aluminum grafting over MCM-41 on the catalyst characteristics were studied with respect to the synthesis of TCPD isomer. Physical and chemical properties of the catalysts were analyzed by N2 adsorption, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The overall number of acid sites as well as the number of Lewis acid sites increased with increasing of aluminum content over MCM-41. When utilizing MCM-41 and Al-MCM-41 as the catalyst, DCPD oligomerization reaction activity greatly increased compared to the thermal reaction. The highest TCPD isomer selectivity over the Al-MCM-41 catalyst with the highest aluminum content could be ascribed to the largest amount of acid sites. This study showed an increased level of TCPD isomer selectivity by an increasing level of Lewis acid sites through aluminum addition over MCM-41.

  12. Iron Contamination Mechanism and Reaction Performance Research on FCC Catalyst

    Directory of Open Access Journals (Sweden)

    Zhaoyong Liu

    2015-01-01

    Full Text Available FCC (Fluid Catalytic Cracking catalyst iron poisoning would not only influence units’ product slate; when the poisoning is serious, it could also jeopardize FCC catalysts’ fluidization in reaction-regeneration system and further cause bad influences on units’ stable operation. Under catalytic cracking reaction conditions, large amount of iron nanonodules is formed on the seriously iron contaminated catalyst due to exothermic reaction. These nodules intensify the attrition between catalyst particles and generate plenty of fines which severely influence units’ smooth running. A dense layer could be formed on the catalysts’ surface after iron contamination and the dense layer stops reactants to diffuse to inner structures of catalyst. This causes extremely negative effects on catalyst’s heavy oil conversion ability and could greatly cut down gasoline yield while increasing yields of dry gas, coke, and slurry largely. Research shows that catalyst’s reaction performance would be severely deteriorated when iron content in E-cat (equilibrium catalyst exceeds 8000 μg/g.

  13. Effect of Surface Modification by Chelating Agents on Fischer- Tropsch Performance of Co/SiO{sub 2} Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bambal, Ashish S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-11-14

    The silica support of a Co-based catalyst for Fischer-Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts show reduced crystallite sizes, a better-dispersed Co₃O₄ phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions.

  14. Interfacial charge distributions in carbon-supported palladium catalysts

    DEFF Research Database (Denmark)

    Rao, Radhika G.; Blume, Raoul; Hansen, Thomas Willum

    2017-01-01

    Controlling the charge transfer between a semiconducting catalyst carrier and the supported transition metal active phase represents an elite strategy for fine turning the electronic structure of the catalytic centers, hence their activity and selectivity. These phenomena have been theoretically...... and experimentally elucidated for oxide supports but remain poorly understood for carbons due to their complex nanoscale structure. Here, we combine advanced spectroscopy and microscopy on model Pd/C samples to decouple the electronic and surface chemistry effects on catalytic performance. Our investigations reveal...... treatments can be used to tune the interfacial charge distribution, hereby providing a strategy to rationally design carbon-supported catalysts.Control over charge transfer in carbon-supported metal nanoparticles is essential for designing new catalysts. Here, the authors show that thermal treatments...

  15. Bifunctional anode catalysts for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios

    2012-01-01

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties......: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation....... Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts....

  16. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    International Nuclear Information System (INIS)

    Geng, Xuewen; Grismer, Dane A; Bohn, Paul W; Duan, Barrett K; Zhao, Liancheng

    2013-01-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal–semiconductor interface. (paper)

  17. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  18. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  19. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Morihisa, H; Tamanouchi, M; Araki, H; Yamada, S [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  20. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba