WorldWideScience

Sample records for effective field theory

  1. Effective field theories

    International Nuclear Information System (INIS)

    Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.

    1992-05-01

    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)

  2. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  3. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  4. An introduction to effective field theory

    International Nuclear Information System (INIS)

    Donoghue, John F.

    1999-01-01

    In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)

  5. Effective field theory for NN interactions

    International Nuclear Information System (INIS)

    Tran Duy Khuong; Vo Hanh Phuc

    2003-01-01

    The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)

  6. Boundary effects on quantum field theories

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1991-01-01

    Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)

  7. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  8. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  9. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  10. Issues of effective field theories with resonances

    International Nuclear Information System (INIS)

    Gegelia, J.; Japaridze, G.

    2014-01-01

    We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)

  11. Effective field theory: A modern approach to anomalous couplings

    International Nuclear Information System (INIS)

    Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen

    2013-01-01

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics

  12. Effective field theory for magnetic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)

    2017-04-10

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  13. Playing with QCD I: effective field theories

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  14. Correlated effective field theory in transition metal compounds

    International Nuclear Information System (INIS)

    Mukhopadhyay, Subhasis; Chatterjee, Ibha

    2004-01-01

    Mean field theory is good enough to study the physical properties at higher temperatures and in higher dimensions. It explains the critical phenomena in a restricted sense. Near the critical temperatures, when fluctuations become important, it may not give the correct results. Similarly in low dimensions, the correlations become important and the mean field theory seems to be inadequate to explain the physical phenomena. At low-temperatures too, the quantum correlations become important and these effects are to be treated in an appropriate way. In 1974, Prof. M.E. Lines of Bell Laboratories, developed a theory which goes beyond the mean field theory and is known as the correlated effective field (CEF) theory. It takes into account the fluctuations in a semiempirical way. Lines and his collaborators used this theory to explain the short-range correlations and their anisotropy in the paramagnetic phase. Later Suzuki et al., Chatterjee and Desai, Mukhopadhyay and Chatterjee applied this theory to the magnetically ordered phase and a tremendous success of the theory has been found in real systems. The success of the CEF theory is discussed in this review. In order to highlight the success of this theory, earlier effective field theories and their improvements over mean field theories e.g., Bethe-Peierls-Weiss method, reaction field approximation, etc., are also discussed in this review for completeness. The beauty of the CEF theory is that it is mean field-like, but captures the essential physics of real systems to a great extent. However, this is a weak correlated theory and as a result is inappropriate for the metallic phase when strong correlations become important. In recent times, transition metal oxides become important due to the discovery of the high-temperature superconductivity and the colossal magnetoresistance phenomena. These oxides seem to be Mott insulators and undergo an insulator to metal transition by applying magnetic field, pressure and by changing

  15. More effective field theory for non-relativistic scattering

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1997-01-01

    An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)

  16. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  17. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  18. Infrared and ultraviolet behaviour of effective scalar field theory

    International Nuclear Information System (INIS)

    Ball, R.D.; Thorne, R.S.

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z 2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also Weinberg's Theorem for the massive effective theory, n the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of theory. 12 refs

  19. Infrared and ultraviolet behaviour of effective scalar field theory

    CERN Document Server

    Ball, R D

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z_2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also prove Weinberg's Theorem for the massive effective theory, in the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of the theory.

  20. Effective theories of single field inflation when heavy fields matter

    CERN Document Server

    Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P

    2012-01-01

    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...

  1. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  2. Effective field theory of interactions on the lattice

    DEFF Research Database (Denmark)

    Valiente, Manuel; Zinner, Nikolaj T.

    2015-01-01

    We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling consta...... constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.......We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling...

  3. Renormalons in effective field theories

    International Nuclear Information System (INIS)

    Luke, M.; Manohar, A.V.; Savage, M.J.

    1995-01-01

    We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar

  4. Soft-collinear factorization in effective field theory

    International Nuclear Information System (INIS)

    Bauer, Christian W.; Pirjol, Dan; Stewart, Iain W.

    2002-01-01

    The factorization of soft and ultrasoft gluons from collinear particles is shown at the level of operators in an effective field theory. Exclusive hadronic factorization and inclusive partonic factorization follow as special cases. The leading-order Lagrangian is derived using power counting and gauge invariance in the effective theory. Several species of gluons are required, and softer gluons appear as background fields to gluons with harder momenta. Two examples are given: the factorization of soft gluons in B→Dπ and the soft-collinear convolution for the B→X s γ spectrum

  5. On the derivation of effective field theories

    International Nuclear Information System (INIS)

    Uzunov, Dimo I.

    2004-12-01

    A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the φ 4 -theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated. (author)

  6. Globally and locally supersymmetric effective theories for light fields

    CERN Document Server

    Brizi, Leonardo; Scrucca, Claudio A

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...

  7. Effective Field Theories and the Role of Consistency in Theory Choice

    CERN Document Server

    Wells, James D

    2012-01-01

    Promoting a theory with a finite number of terms into an effective field theory with an infinite number of terms worsens simplicity, predictability, falsifiability, and other attributes often favored in theory choice. However, the importance of these attributes pales in comparison with consistency, both observational and mathematical consistency, which propels the effective theory to be superior to its simpler truncated version of finite terms, whether that theory be renormalizable (e.g., Standard Model of particle physics) or nonrenormalizable (e.g., gravity). Some implications for the Large Hadron Collider and beyond are discussed, including comments on how directly acknowledging the preeminence of consistency can affect future theory work.

  8. Effective-field theory on the kinetic Ising model

    International Nuclear Information System (INIS)

    Shi Xiaoling; Wei Guozhu; Li Lin

    2008-01-01

    As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)

  9. Generalized uncertainty principle as a consequence of the effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam (Netherlands); Nassar, Ali, E-mail: anassar@zewailcity.edu.eg [Department of Physics, Zewail City of Science and Technology, 12588, Giza (Egypt)

    2017-02-10

    We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  10. Generalized uncertainty principle as a consequence of the effective field theory

    Directory of Open Access Journals (Sweden)

    Mir Faizal

    2017-02-01

    Full Text Available We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  11. Could reggeon field theory be an effective theory for QCD in the Regge limit?

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Jochen [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Contreras, Carlos [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. España 1680, Casilla 110-V, Valparaiso (Chile); Vacca, G.P. [INFN Sezione di Bologna, DIFA, Via Irnerio 46, I-40126 Bologna (Italy)

    2016-03-30

    In this paper we investigate the possibility whether, in the extreme limit of high energies and large transverse distances, reggeon field theory might serve as an effective theory of high energy scattering for strong interactions. We analyse the functional renormalization group equations (flow equations) of reggeon field theory and search for fixed points in the space of (local) reggeon field theories. We study in complementary ways the candidate for the scaling solution, investigate its main properties and briefly discuss possible physical interpretations.

  12. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  13. Consistency relations in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  14. Baryon non-invariant couplings in Higgs effective field theory

    International Nuclear Information System (INIS)

    Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario

    2017-01-01

    The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)

  15. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  16. Effective field theory approach to nuclear matter

    International Nuclear Information System (INIS)

    Saviankou, P.; Gruemmer, F.; Epelbaum, E.; Krewald, S.; Meissner, Ulf-G.

    2006-01-01

    Effective field theory provides a systematic approach to hardon physics and few-nucleon systems. It allows one to determine the effective two-, three-, and more-nucleon interactions which are consistent with each other. We present a project to derive bulk properties of nuclei from the effective nucleonic interactions

  17. Globally and locally supersymmetric effective theories for light fields

    International Nuclear Information System (INIS)

    Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.

  18. Reconstructing inflationary paradigm within Effective Field Theory framework

    Science.gov (United States)

    Choudhury, Sayantan

    2016-03-01

    In this paper my prime objective is to analyse the constraints on a sub-Planckian excursion of a single inflaton field within Effective Field Theory framework in a model independent fashion. For a generic single field inflationary potential, using the various parameterization of the primordial power spectrum I have derived the most general expression for the field excursion in terms of various inflationary observables, applying the observational constraints obtained from recent Planck 2015 and Planck 2015 + BICEP2/Keck Array data. By explicit computation I have reconstructed the structural form of the inflationary potential by constraining the Taylor expansion co-efficients appearing in the generic expansion of the potential within the Effective Field Theory. Next I have explicitly derived, a set of higher order inflationary consistency relationships, which would help us to break the degeneracy between various class of inflationary models by differentiating them. I also provided two simple examples of Effective Theory of inflation- inflection-point model and saddle-point model to check the compatibility of the prescribed methodology in the light of Planck 2015 and Planck 2015 + BICEP2/Keck Array data. Finally, I have also checked the validity of the prescription by estimating the cosmological parameters and fitting the theoretical CMB TT, TE and EE angular power spectra with the observed data within the multipole range 2 < l < 2500.

  19. Fluid analog model for boundary effects in field theory

    International Nuclear Information System (INIS)

    Ford, L. H.; Svaiter, N. F.

    2009-01-01

    Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.

  20. Band mixing effects in mean field theories

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1989-01-01

    The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs

  1. Versatility of field theory motivated nuclear effective Lagrangian approach

    International Nuclear Information System (INIS)

    Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.

    2004-01-01

    We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei

  2. Effective field theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  3. Effective field theory of cosmological perturbations

    Science.gov (United States)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  4. QCD Effective Field Theories for Heavy Quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora

    2006-01-01

    QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT

  5. Strong field effects on binary systems in Einstein-aether theory

    International Nuclear Information System (INIS)

    Foster, Brendan Z.

    2007-01-01

    'Einstein-aether' theory is a generally covariant theory of gravity containing a dynamical preferred frame. This article continues an examination of effects on the motion of binary pulsar systems in this theory, by incorporating effects due to strong fields in the vicinity of neutron star pulsars. These effects are included through an effective approach, by treating the compact bodies as point particles with nonstandard, velocity dependent interactions parametrized by dimensionless sensitivities. Effective post-Newtonian equations of motion for the bodies and the radiation damping rate are determined. More work is needed to calculate values of the sensitivities for a given fluid source; therefore, precise constraints on the theory's coupling constants cannot yet be stated. It is shown, however, that strong field effects will be negligible given current observational uncertainties if the dimensionless couplings are less than roughly 0.1 and two conditions that match the PPN parameters to those of pure general relativity are imposed. In this case, weak field results suffice. There then exists a one-parameter family of Einstein-aether theories with 'small-enough' couplings that passes all current observational tests. No conclusion can be reached for larger couplings until the sensitivities for a given source can be calculated

  6. Effective field theory dimensional regularization

    International Nuclear Information System (INIS)

    Lehmann, Dirk; Prezeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed

  7. Effective field theory dimensional regularization

    Science.gov (United States)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  8. Off-shell renormalization in Higgs effective field theories

    Science.gov (United States)

    Binosi, Daniele; Quadri, Andrea

    2018-04-01

    The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.

  9. Threshold resummation for Higgs production in effective field theory

    International Nuclear Information System (INIS)

    Idilbi, Ahmad; Ji Xiangdong; Ma Jianping; Yuan Feng

    2006-01-01

    We present an effective field theory approach to resum the large double logarithms originated from soft-gluon radiations at small final-state hadron invariant masses in Higgs and vector boson (γ*,W,Z) production at hadron colliders. The approach is conceptually simple, independent of details of an effective field theory formulation, and valid to all orders in subleading logarithms. As an example, we show the result of summing the next-to-next-to-next-to leading logarithms is identical to that of the standard pQCD factorization method

  10. Scattering of decuplet baryons in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-11-15

    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)

  11. Consistent constraints on the Standard Model Effective Field Theory

    International Nuclear Information System (INIS)

    Berthier, Laure; Trott, Michael

    2016-01-01

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.

  12. Field theory

    CERN Multimedia

    1999-11-08

    In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.

  13. Constraints on four dimensional effective field theories from string and F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Baume, Florent

    2017-06-21

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E{sub 8} to SU(5) x U(1){sup n}. We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  14. Constraints on four dimensional effective field theories from string and F-theory

    International Nuclear Information System (INIS)

    Baume, Florent

    2017-01-01

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E 8 to SU(5) x U(1) n . We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  15. Studies in quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Mandula, J.E.; Shrauner, J.E.

    1982-01-01

    Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD

  16. Effective Field Theory with Two Higgs Doublets

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2016-01-01

    In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.

  17. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    International Nuclear Information System (INIS)

    Antusch, Stefan; Nolde, David

    2015-01-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale

  18. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    Science.gov (United States)

    Antusch, Stefan; Nolde, David

    2015-09-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  19. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Nolde, David [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2015-09-22

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  20. The utility of quantum field theory

    International Nuclear Information System (INIS)

    Dine, Michael

    2001-01-01

    This talk surveys a broad range of applications of quantum field theory, as well as some recent developments. The stress is on the notion of effective field theories. Topics include implications of neutrino mass and a possible small value of sin(2β), supersymmetric extensions of the standard model, the use of field theory to understand fundamental issues in string theory (the problem of multiple ground states and the question: does string theory predict low energy supersymmetry), and the use of string theory to solve problems in field theory. Also considered are a new type of field theory, and indications from black hole physics and the cosmological constant problem that effective field theories may not completely describe theories of gravity. (author)

  1. Global effects in quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Brumby, S.P.; Joshi, G.C.

    1997-01-01

    A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,

  2. Unraveling the Structure of Hadrons with Effective Field Theories of QCD

    International Nuclear Information System (INIS)

    Iain Stewart

    2004-01-01

    Effective Field theory is a powerful framework based on controlled expansions for problems with a natural separation of energy scales. This technique is particularly important for QCD, the theory of strong interactions, due to the vast diversity of phenomena that it describes. Stewart and collaborators have invented a new class of effective theories that can be used in processes with energetic hadrons. These Soft-Collinear Effective Theories provide a unified framework for describing hadronic processes which involve hard probes or the release of a large amount of energy. Many interesting issues about hadronic physics can be addressed with the soft-collinear effective theory. Examples include the size and shape of hadronic form factors, the universality of hadronic distribution functions for a plethora of processes, and the importance of subleading corrections at intermediate energy scales. Effective field theories allow these issues to be addressed using only the underlying symmetries and scales in QCD. Understanding these issues also has a direct impact on other areas of physics, such as on devising clean methods for the measurement of CP violation in the decay of B-mesons. Current progress on the soft-collinear effective theory and related methods is discussed in this report

  3. A periodic table of effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.

  4. Effective-field theories for heavy quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora; Pineda, Antonio; Soto, Joan; Vairo, Antonio

    2005-01-01

    This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schroedinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production

  5. Topics in quantum field theory

    International Nuclear Information System (INIS)

    Svaiter, N.F.

    2006-11-01

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method

  6. Uses of Effective Field Theory in Lattice QCD

    OpenAIRE

    Kronfeld, Andreas S.

    2002-01-01

    Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...

  7. Effective potential in Lorentz-breaking field theory models

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

    2017-12-15

    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

  8. Effective potential in Lorentz-breaking field theory models

    International Nuclear Information System (INIS)

    Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.

    2017-01-01

    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

  9. Nuclear Lattice Simulations with Chiral Effective Field Theory

    OpenAIRE

    Lee, Dean

    2008-01-01

    We present recent results on lattice simulations using chiral effective field theory. In particular we discuss lattice simulations for dilute neutron matter at next-to-leading order and three-body forces in light nuclei at next-to-next-to-leading order.

  10. Blockspin transformations for finite temperature field theories with gauge fields

    International Nuclear Information System (INIS)

    Kerres, U.

    1996-08-01

    A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)

  11. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  12. Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2010-01-01

    Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)

  13. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  14. Information loss in effective field theory: Entanglement and thermal entropies

    Science.gov (United States)

    Boyanovsky, Daniel

    2018-03-01

    Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.

  15. Higgs effective field theories. Systematics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Claudius G.

    2016-07-28

    Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different

  16. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  17. The Lamb shift in muonic hydrogen and the proton radius from effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara; Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica and IFAE, Bellaterra (Barcelona) (Spain)

    2015-12-15

    We comprehensively analyse the theoretical prediction for the Lamb shift in muonic hydrogen, and the associated determination of the proton radius. We use effective field theories. This allows us to relate the proton radius with well-defined objects in quantum field theory, eliminating unnecessary model dependence. The use of effective field theories also helps us to organize the computation so that we can clearly state the parametric accuracy of the result. In this paper we review all (and check several of) the contributions to the energy shift of order α{sup 5}, as well as those that scale like α{sup 6} x logarithms in the context of non-relativistic effective field theories of QED. (orig.)

  18. Gauge field theories

    International Nuclear Information System (INIS)

    Pokorski, S.

    1987-01-01

    Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry

  19. Hyperon-nucleon interactions - a chiral effective field theory approach

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2006-01-01

    We construct the leading order hyperon–nucleon potential in chiral effective field theory. We show that a good description of the available data is possible and discuss briefly further improvements of this scheme

  20. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  1. 3D quantum gravity and effective noncommutative quantum field theory.

    Science.gov (United States)

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  2. Is the effective field theory of dark energy effective?

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V. [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, New Campbell Hall 341, Berkeley, CA, 94720 (United States); Sengör, Gizem; Watson, Scott, E-mail: evlinder@lbl.gov, E-mail: gsengor@syr.edu, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244 (United States)

    2016-05-01

    The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions —assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H ( z ) or dark energy equation of state w ( z ) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.

  3. Nucleon Polarisabilities and Effective Field Theories

    Science.gov (United States)

    Griesshammer, Harald W.

    2017-09-01

    Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.

  4. Mass corrections in string theory and lattice field theory

    International Nuclear Information System (INIS)

    Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo

    2009-01-01

    Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.

  5. Unitary field theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1980-01-01

    A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion

  6. Effective field theory and tunneling currents in the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Bieri, Samuel; Fröhlich, Jürg

    2012-01-01

    We review the construction of a low-energy effective field theory and its state space for “abelian” quantum Hall fluids. The scaling limit of the incompressible fluid is described by a Chern–Simons theory in 2+1 dimensions on a manifold with boundary. In such a field theory, gauge invariance implies the presence of anomalous chiral modes localized on the edge of the sample. We assume a simple boundary structure, i.e., the absence of a reconstructed edge. For the bulk, we consider a multiply connected planar geometry. We study tunneling processes between two boundary components of the fluid and calculate the tunneling current to lowest order in perturbation theory as a function of dc bias voltage. Particular attention is paid to the special cases when the edge modes propagate at the same speed, and when they exhibit two significantly distinct propagation speeds. We distinguish between two “geometries” of interference contours corresponding to the (electronic) Fabry–Perot and Mach–Zehnder interferometers, respectively. We find that the interference term in the current is absent when exactly one hole in the fluid corresponding to one of the two edge components involved in the tunneling processes lies inside the interference contour (i.e., in the case of a Mach–Zehnder interferometer). We analyze the dependence of the tunneling current on the state of the quantum Hall fluid and on the external magnetic flux through the sample. - Highlights: ► We review and extend on the field theoretic construction of the FQHE. ► We calculate tunneling currents between different edge components of a sample. ► We find an absence of interference terms in the currents for some sample geometries. ► No observable Aharonov–Bohm effect is found as the magnetic field is varied. ► Deformation of the edge leads to observable Aharonov–Bohm effect in the currents.

  7. Precision constraints on the top-quark effective field theory at future lepton colliders

    Energy Technology Data Exchange (ETDEWEB)

    Durieux, Gauthier

    2017-08-15

    We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the e{sup +}e{sup -}→bW{sup +} anti bW{sup -} process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.

  8. Precision constraints on the top-quark effective field theory at future lepton colliders

    International Nuclear Information System (INIS)

    Durieux, Gauthier

    2017-08-01

    We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the e + e - →bW + anti bW - process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.

  9. Minimal flavour violation an effective field theory approach

    CERN Document Server

    D'Ambrosio, G.; Isidori, G.; Strumia, A.

    2002-01-01

    We present a general analysis of extensions of the Standard Model which satisfy the criterion of Minimal Flavour Violation (MFV). We define this general framework by constructing a low-energy effective theory containing the Standard Model fields, with one or two Higgs doublets and, as the only source of SU(3)^5 flavour symmetry breaking, the background values of fields transforming under the flavour group as the ordinary Yukawa couplings. We analyse present bounds on the effective scale of dimension-six operators, which range between 1 and 10 TeV, with the most stringent constraints imposed by B -> X_s gamma. In this class of theories, it is possible to relate predictions for FCNC processes in B physics to those in K physics. We compare the sensitivity of various experimental searches in probing the hypothesis of MFV. Within the two-Higgs-doublet scenario, we develop a general procedure to obtain all tan(beta)-enhanced Higgs-mediated FCNC amplitudes, discussing in particular their impact in B -> l^+l^-, Delta...

  10. 1. Vienna central european seminar on particle physics and quantum field theory. Advances in quantum field theory. Program

    International Nuclear Information System (INIS)

    Hueffel, H.

    2004-01-01

    The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)

  11. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  12. Effective-field-theory model for the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Zhang, S.C.; Hansson, T.H.; Kivelson, S.

    1989-01-01

    Starting directly from the microscopic Hamiltonian, we derive a field-theory model for the fractional quantum hall effect. By considering an approximate coarse-grained version of the same model, we construct a Landau-Ginzburg theory similar to that of Girvin. The partition function of the model exhibits cusps as a function of density and the Hall conductance is quantized at filling factors ν = (2k-1)/sup -1/ with k an arbitrary integer. At these fractions the ground state is incompressible, and the quasiparticles and quasiholes have fractional charge and obey fractional statistics. Finally, we show that the collective density fluctuations are massive

  13. Localization of effective actions in open superstring field theory

    Science.gov (United States)

    Maccaferri, Carlo; Merlano, Alberto

    2018-03-01

    We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.

  14. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  15. The Supersymmetric Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)

    2017-03-10

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.

  16. [Studies in quantum field theory

    International Nuclear Information System (INIS)

    1990-01-01

    During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity

  17. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  18. A proposal for an effective interacting field theory of open and closed strings

    International Nuclear Information System (INIS)

    Baulieu, L.; Grossman, B.

    1987-01-01

    We propose the use of the reggeon-pomeron vertex to obtain an effective field theory for open and closed strings. We suggest that closed string fields are necessary in order to go off-shell in an open string field theory. We then find that the closed string fields satisfy the Virasoro constraints (including equal number of left and right movers) in an appropriate choice of gauge. (orig.)

  19. String field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1987-01-01

    In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory

  20. Einstein-aether as a quantum effective field theory

    International Nuclear Information System (INIS)

    Withers, Benjamin

    2009-01-01

    The possibility that Lorentz symmetry is violated in gravitational processes is relatively unconstrained by experiment, in stark contrast with the level of accuracy to which Lorentz symmetry has been confirmed in the matter sector. One model of Lorentz violation in the gravitational sector is Einstein-aether theory, in which Lorentz symmetry is broken by giving a vacuum expectation value to a dynamical vector field. In this paper, we analyse the effective theory for quantized gravitational and aether perturbations. We show that this theory possesses a controlled effective expansion within dimensional regularization, that is, for any process there are a finite number of Feynman diagrams which will contribute to a given order of accuracy. We find that there is no log running of the 2-derivative phenomenological parameters, justifying the use of experimental constraints for these parameters obtained over many orders of magnitude in energy scale. Given the stringent experimental bounds on 2-derivative Lorentz-violating operators, we estimate the size of matter Lorentz violation which arises due to loop effects. This amounts to an estimation of the natural size of coefficients for Lorentz-violating dimension-6 matter operators, which in turn can be used to obtain a new bound on the 2-derivative parameters of this theory.

  1. Finite temperature field theory

    CERN Document Server

    Das, Ashok

    1997-01-01

    This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

  2. Strong coupling gauge theories and effective field theories. Proceedings of the 2002 international workshop

    International Nuclear Information System (INIS)

    Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi

    2003-01-01

    This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)

  3. On the effective field theory of intersecting D3-branes

    Science.gov (United States)

    Abbaspur, Reza

    2018-05-01

    We study the effective field theory of two intersecting D3-branes with one common dimension along the lines recently proposed in ref. [1]. We introduce a systematic way of deriving the classical effective action to arbitrary orders in perturbation theory. Using a proper renormalization prescription to handle logarithmic divergencies arising at all orders in the perturbation series, we recover the first order renormalization group equation of ref. [1] plus an infinite set of higher order equations. We show the consistency of the higher order equations with the first order one and hence interpret the first order result as an exact RG flow equation in the classical theory.

  4. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  5. Effective field theories for correlated electrons

    International Nuclear Information System (INIS)

    Wallington, J.P.

    1999-10-01

    In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)

  6. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  7. Effects of a strict cutoff on Quantum Field Theory

    International Nuclear Information System (INIS)

    Sturnfield, J.F.

    1987-01-01

    Standard Quantum Field Theory has a number of integrals which are infinite. Although these are eliminated for some cases by renormalization, this aspect of the theory is not fully satisfactory. A number of theories with fundamental lengths have been introduced as alternatives and it would be useful to be able to distinguish between them. In particular, the effects that a strict cutoff would have on Quantum Field Theory is studied. It is noted that care must be taken in the method used to apply a strict cutoff. This lead to considering a theory where the cutoffs are defined by restricting each internal line. This theory is only piece-wise analytic. The resulting scattering matrix is frame dependent, yet the theory still satisfies the special relativity view that all frames are subjectively identical. The renormalization of this theory is finite. The change in mass from the electron self-energy will be a spinor operator. The main distinctions of this theory from standard theory will occur at super high energies. New poles and resonances which arise from new endpoint singularities will be found. The locations of these singularities will be frame dependent. Some of these singularities will correspond to creations or interactions of the normal particles with tachyons. It will be shown that for the one loop diagram, the form of the cutoff singularities are closely related to the standard singularities. When there is more than one loop, there can appear some new type of behavior. In particular, a cube root type of behavior in the two loop self-energy diagram will be found. Also the asymptotic behavior of the ladder diagram is studied

  8. Superfield approach to calculation of effective potential in supersymmetric field theories

    International Nuclear Information System (INIS)

    Bukhbinder, I.L.; Kuzenko, S.M.; Yarevskaya, Zh.V.

    1993-01-01

    Superfield method of computing effective potential in supersymmetric field theories is suggested. The one-loop effective potential of the Wess-Zumino model is found. The prescription for obtaining multi-loop corrections is described

  9. Effective field theory of dark matter from membrane inflationary paradigm

    Science.gov (United States)

    Choudhury, Sayantan; Dasgupta, Arnab

    2016-09-01

    In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation from tensor-to-scalar ratio (r), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance (ΩDMh2) and primordial gravity waves (r), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, σ ≤ O(10-9) Mp4 , bulk mass scale M5 ≤ O(0.04 - 0.05) Mp, and cosmological constant Λ˜5 ≥ - O(10-15) Mp5 , in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized s, t and u channel interactions in RSII membrane. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck + BICEP2 + Keck Array joint data sets. Using all of these derived results we have shown that to satisfy the bound on, ΩDMh2 = 0.1199 ± 0.0027, as from Planck 2015 data, it is possible to put further stringent constraint on r within, 0.01 ≤ r ≤ 0.12, for thermally averaged annihilation cross-section of dark matter, 〈 σv 〉 ≈ O(10-28 - 10-27) cm3 / s, which are very useful to constrain various membrane inflationary models.

  10. 2PI effective action for the SYK model and tensor field theories

    Science.gov (United States)

    Benedetti, Dario; Gurau, Razvan

    2018-05-01

    We discuss the two-particle irreducible (2PI) effective action for the SYK model and for tensor field theories. For the SYK model the 2PI effective action reproduces the bilocal reformulation of the model without using replicas. In general tensor field theories the 2PI formalism is the only way to obtain a bilocal reformulation of the theory, and as such is a precious instrument for the identification of soft modes and for possible holographic interpretations. We compute the 2PI action for several models, and push it up to fourth order in the 1 /N expansion for the model proposed by Witten in [1], uncovering a one-loop structure in terms of an auxiliary bilocal action.

  11. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)

    2016-07-01

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.

  12. Geophysical Field Theory

    International Nuclear Information System (INIS)

    Eloranta, E.

    2003-11-01

    The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)

  13. Effective field theory for cold atoms

    International Nuclear Information System (INIS)

    Hammer, H.-W.

    2005-01-01

    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms. Recent extensions of this approach to the four-body system and N-boson droplets in two spatial dimensions will also be discussed

  14. Three-body interactions in many-body effective field theory

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2004-01-01

    This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful

  15. Quantum field theory

    International Nuclear Information System (INIS)

    Ryder, L.H.

    1985-01-01

    This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity

  16. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  17. String creation, D-branes and effective field theory

    International Nuclear Information System (INIS)

    Hung Lingyan

    2008-01-01

    This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries

  18. Reformulation of the Hermitean 1-matrix model as an effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Klitz, Alexander

    2009-07-15

    The formal Hermitean 1-matrix model is shown to be equivalent to an effective field theory. The correlation functions and the free energy of the matrix model correspond directly to the correlation functions and the free energy of the effective field theory. The loop equation of the field theory coupling constants is stated. Despite its length, this loop equation is simpler than the loop equations in the matrix model formalism itself since it does not contain operator inversions in any sense, but consists instead only of derivative operators and simple projection operators. Therefore the solution of the loop equation could be given for an arbitrary number of cuts up to the fifth order in the topological expansion explicitly. Two different methods of obtaining the contributions to the free energy of the higher orders are given, one depending on an operator H and one not depending on it. (orig.)

  19. Heavy quark effective theory, interpolating fields and Bethe-Salpeter amplitudes

    International Nuclear Information System (INIS)

    Hussain, F.; Thomspon, G.

    1994-07-01

    We use the LSZ reduction theorem and interpolating fields, along with the heavy quark effective theory, to investigate the structure of the Bethe-Salpeter amplitude for heavy hadrons. We show how a simple form of this amplitude, used extensively in heavy hadron decay calculations, follows naturally up to O(1/M) from these field theoretic considerations. (author). 13 refs, 1 tab

  20. Field theories with subcanonical fields

    International Nuclear Information System (INIS)

    Bigi, I.I.Y.

    1976-01-01

    The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de

  1. Rosetta: an operator basis translator for standard model effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, Adam [Laboratoire de Physique Théorique, Bat. 210, Université Paris-Sud, 91405, Orsay (France); Fuks, Benjamin [Département Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg/CNRS-IN2P3, 23 rue du Loess, 67037, Strasbourg (France); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050, Brussels (Belgium); Mimasu, Ken, E-mail: k.mimasu@sussex.ac.uk [Department of Physics and Astronomy, University of Sussex, BN1 9QH, Brighton (United Kingdom); Riva, Francesco [CERN, Theory Division, 1211, Geneva (Switzerland); Sanz, Verónica [Department of Physics and Astronomy, University of Sussex, BN1 9QH, Brighton (United Kingdom)

    2015-12-10

    We introduce Rosetta, a program allowing for the translation between different bases of effective field theory operators. We present the main functions of the program and provide an example of usage. One of the Lagrangians which Rosetta can translate into has been implemented into FeynRules, which allows Rosetta to be interfaced into various high-energy physics programs such as Monte Carlo event generators. In addition to popular bases choices, such as the Warsaw and Strongly Interacting Light Higgs bases already implemented in the program, we also detail how to add new operator bases into the Rosetta package. In this way, phenomenological studies using an effective field theory framework can be straightforwardly performed.

  2. Rosetta: an operator basis translator for standard model effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, Adam [Universite Paris-Sud, Laboratoire de Physique Theorique, Bat. 210, Orsay (France); Fuks, Benjamin [Universite de Strasbourg/CNRS-IN2P3, Departement Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, Strasbourg (France); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium); Mimasu, Ken; Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Riva, Francesco [CERN, Theory Division, Geneva (Switzerland)

    2015-12-15

    We introduce Rosetta, a program allowing for the translation between different bases of effective field theory operators. We present the main functions of the program and provide an example of usage. One of the Lagrangians which Rosetta can translate into has been implemented into FeynRules, which allows Rosetta to be interfaced into various high-energy physics programs such as Monte Carlo event generators. In addition to popular bases choices, such as the Warsaw and Strongly Interacting Light Higgs bases already implemented in the program, we also detail how to add new operator bases into the Rosetta package. In this way, phenomenological studies using an effective field theory framework can be straightforwardly performed. (orig.)

  3. DsixTools: the standard model effective field theory toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)

    2017-06-15

    We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)

  4. The MSSM without gluinos; an effective field theory for the stop sector

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Jason; Greub, Christoph [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Crivellin, Andreas [Paul Scherrer Institut (PSI), Villigen (Switzerland); Yamada, Youichi [Tohoku University, Department of Physics, Sendai (Japan)

    2017-11-15

    In this article we study the MSSM with stops and Higgs scalars much lighter than gluinos and squarks of the first two generations. In this setup, one should use an effective field theory with partial supersymmetry in which the gluino and heavy squarks are integrated out in order to connect SUSY parameters (given at a high scale) to observables in the stop sector. In the construction of this effective theory, valid below the gluino mass scale, we take into account O(α{sub 3}) and O(Y{sub t,b}{sup 2}) effects and calculate the matching as well as the renormalization group evolution. As a result, the running of the parameters for the stop sector is modified with respect to the full MSSM and SUSY relations between parameters are broken. We show that for some couplings sizable numerical differences exist between the effective field theory approach and the naive calculation based on the MSSM running. (orig.)

  5. Effective field theory and integrability in two-dimensional Mott transition

    International Nuclear Information System (INIS)

    Bottesi, Federico L.; Zemba, Guillermo R.

    2011-01-01

    Highlights: → Mott transition in 2d lattice fermion model. → 3D integrability out of 2D. → Effective field theory for Mott transition in 2d. → Double Chern-Simons. → d-Density waves. - Abstract: We study the Mott transition in a two-dimensional lattice spinless fermion model with nearest neighbors density-density interactions. By means of a two-dimensional Jordan-Wigner transformation, the model is mapped onto the lattice XXZ spin model, which is shown to possess a quantum group symmetry as a consequence of a recently found solution of the Zamolodchikov tetrahedron equation. A projection (from three to two space-time dimensions) property of the solution is used to identify the symmetry of the model at the Mott critical point as U q (sl(2)-circumflex)xU q (sl(2)-circumflex), with deformation parameter q = -1. Based on this result, the low-energy effective field theory for the model is obtained and shown to be a lattice double Chern-Simons theory with coupling constant k = 1 (with the standard normalization). By further employing the effective filed theory methods, we show that the Mott transition that arises is of topological nature, with vortices in an antiferromagnetic array and matter currents characterized by a d-density wave order parameter. We also analyze the behavior of the system upon weak coupling, and conclude that it undergoes a quantum gas-liquid transition which belongs to the Ising universality class.

  6. Naturalness in an Effective Field Theory for Neutron Star Matter

    International Nuclear Information System (INIS)

    Razeira, Moises; Vasconcellos, Cesar A.Z.; Bodmann, Bardo E.J.; Coelho, Helio T.; Dillig, Manfred

    2004-01-01

    High density hadronic matter is studied in a generalized relativistic multi-baryon lagrangian density. By comparing the predictions of our model with estimates obtained within a phenomenological naive dimensional analysis based on the naturalness of the coefficients of the theory, we show that naturalness plays a major role in effective field theory and, in combination with experiment, could represent a relevant criterium to select a model among others in the description of global static properties of neutron stars

  7. On the exotic Higgs decays in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belusca-Maito, Hermes; Falkowski, Adam [Universite Paris-Sud, Laboratoire de Physique Theorique, Orsay (France)

    2016-09-15

    We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context. (orig.)

  8. On the exotic Higgs decays in effective field theory.

    Science.gov (United States)

    Bélusca-Maïto, Hermès; Falkowski, Adam

    2016-01-01

    We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context.

  9. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  10. Effective field theory analysis of Higgs naturalness

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)

    2015-07-20

    Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.

  11. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  12. A multipole-expanded effective field theory for vortex ring-sound interactions

    Science.gov (United States)

    Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto

    2018-02-01

    The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.

  13. Unified field theory

    International Nuclear Information System (INIS)

    Prasad, R.

    1975-01-01

    Results of researches into Unified Field Theory over the past seven years are presented. The subject is dealt with in chapters entitled: the choice of affine connection, algebraic properties of the vector fields, field laws obtained from the affine connection based on the path integral method, application to quantum theory and cosmology, interpretation of physical theory in terms of geometry. (U.K.)

  14. Finite discrete field theory

    International Nuclear Information System (INIS)

    Souza, Manoelito M. de

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

  15. Field theory of anyons and the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Viefers, S.F.

    1997-11-01

    The thesis is devoted to a theoretical study of anyons, i.e. particles with fractional statistics moving in two space dimensions, and the quantum Hall effect. The latter constitutes the only known experimental realization of anyons in that the quasiparticle excitations in the fractional quantum Hall system are believed to obey fractional statistics. First, the properties of ideal quantum gases in two dimensions and in particular the equation of state of the free anyons gas are discussed. Then, a field theory formulation of anyons in a strong magnetic field is presented and later extended to a system with several species of anyons. The relation of this model to fractional exclusion statistics, i.e. intermediate statistics introduced by a generalization of the Pauli principle, and to the low-energy excitations at the edge of the quantum Hall system is discussed. Finally, the Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect is studied, mainly focusing on edge effects; both the ground state and the low-energy edge excitations are examined in the simple one-component model and in an extended model which includes spin effects

  16. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  17. Status of effective field theory of NN scattering

    International Nuclear Information System (INIS)

    Beane, S.R.

    1998-06-01

    There exist many nucleon-nucleon potentials which reproduce phase shifts and nuclear properties with remarkable accuracy. Three fundamental features are shared by these potential models: (1) pions are important at long distances, (2) there is a source of intermediate-range attraction, and (3) there is a source of short-distance repulsion. However, in general, distinct physical mechanisms in these models account for the same feature of the nuclear force. Agreement with experiment is maintained in spite of these differences because of the large number of fit parameters. Systematic approaches to the scattering of strongly interacting particles, such as chiral perturbation theory, are based on the ideas of effective field theory (EFT). The author reviews recent progress in developing a systematic power counting scheme for scattering processes involving more than one nucleon

  18. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  19. Effective field theory approach to structure functions at small xBj

    International Nuclear Information System (INIS)

    Nachtmann, O.

    2003-01-01

    We relate the structure functions of deep inelastic lepton-nucleon scattering to current-current correlation functions in a Euclidean field theory depending on a parameter r. The r-dependent Hamiltonian of the theory is P 0 -(1-r)P 3 , with P 0 the usual Hamiltonian and P 3 the third component of the momentum operator. We show that a small x Bj in the structure functions corresponds to the small r limit of the effective theory. We argue that for r→0 there is a critical regime of the theory where simple scaling relations should hold. We show that in this framework Regge behaviour of the structure functions obtained with the hard pomeron ansatz corresponds to a scaling behaviour of the matrix elements in the effective theory where the intercept of the hard pomeron appears as a critical index. Explicit expressions for various analytic continuations of the structure functions and matrix elements are given as well as path integral representations for the matrix elements in the effective theory. Our aim is to provide a framework for truly non-perturbative calculations of the structure functions at small x Bj for arbitrary Q 2 . (orig.)

  20. Background Independent Open String Field Theory and Constant B-Field

    OpenAIRE

    Nemeschansky, D.; Yasnov, V.

    2000-01-01

    We calculate the background independent action for bosonic and supersymmetric open string field theory in a constant B-field. We also determine the tachyon effective action in the presence of constant B-field.

  1. Field theory and strings

    International Nuclear Information System (INIS)

    Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.

    1987-01-01

    It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper

  2. Asymmetric Invisibility Cloaking Theory Based on the Concept of Effective Electromagnetic Fields for Photons

    Science.gov (United States)

    Amemiya, Tomo; Taki, Masato; Kanazawa, Toru; Arai, Shigehisa

    2014-03-01

    The asymmetric invisibility cloak is a special cloak with unidirectional transparency; that is, a person in the cloak should not be seen from the outside but should be able to see the outside. Existing theories of designing invisibility cloaks cannot be used for asymmetric cloaking because they are based on the transformation optics that uses Riemannian metric tensor independent of direction. To overcome this problem, we propose introducing directionality into invisibility cloaking. Our theory is based on ``the theory of effective magnetic field for photons'' proposed by Stanford University.[2] To realize asymmetric cloaking, we have extended the Stanford's theory to add the concept of ``effective electric field for photons.'' The effective electric and the magnetic field can be generated using a photonc resonator lattice, which is a kind of metamaterial. The Hamiltonian for photons in these fields has a similar form to that of the Hamiltonian for a charged particle in an electromagnetic field. An incident photon therefore experiences a ``Lorentz-like'' and a ``Coulomb-like'' force and shows asymmetric movement depending of its travelling direction.We show the procedure of designing actual invisibility cloaks using the photonc resonator lattice and confirm their operation with the aid of computer simulation. This work was supported in part by the MEXT; JSPS KAKENHI Grant Numbers #24246061, #24656046, #25420321, #25420322.

  3. The Effective Field Theory of nonsingular cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Wan, Youping [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui 230026 (China); Li, Hai-Guang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Qiu, Taotao [Institute of Astrophysics, Central China Normal University,Wuhan 430079 (China); Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University,Wuhan 430079 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-01-20

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  4. The Effective Field Theory of nonsingular cosmology

    International Nuclear Information System (INIS)

    Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song

    2017-01-01

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  5. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  6. Dualities among one-time field theories with spin, emerging from a unifying two-time field theory

    International Nuclear Information System (INIS)

    Bars, Itzhak; Quelin, Guillaume

    2008-01-01

    The relation between two-time physics (2T-physics) and the ordinary one-time formulation of physics (1T-physics) is similar to the relation between a 3-dimensional object moving in a room and its multiple shadows moving on walls when projected from different perspectives. The multiple shadows as seen by observers stuck on the wall are analogous to the effects of the 2T-universe as experienced in ordinary 1T spacetime. In this paper we develop some of the quantitative aspects of this 2T to 1T relationship in the context of field theory. We discuss 2T field theory in d+2 dimensions and its shadows in the form of 1T field theories when the theory contains Klein-Gordon, Dirac and Yang-Mills fields, such as the standard model of particles and forces. We show that the shadow 1T field theories must have hidden relations among themselves. These relations take the form of dualities and hidden spacetime symmetries. A subset of the shadows are 1T field theories in different gravitational backgrounds (different space-times) such as the flat Minkowski spacetime, the Robertson-Walker expanding universe, AdS d-k xS k , and others, including singular ones. We explicitly construct the duality transformations among this conformally flat subset, and build the generators of their hidden SO(d,2) symmetry. The existence of such hidden relations among 1T field theories, which can be tested by both theory and experiment in 1T-physics, is part of the evidence for the underlying d+2 dimensional spacetime and the unifying 2T-physics structure

  7. Wilson lines in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.

    2014-07-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  8. Wilson lines in quantum field theory

    International Nuclear Information System (INIS)

    Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der

    2014-01-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  9. Van der Waals Forces and Photon-Less Effective Field Theory

    International Nuclear Information System (INIS)

    Arriola, E.R.

    2011-01-01

    In the ultra-cold regime Van der Waals forces between neutral atoms can be represented by short range effective interactions. We show that universal low energy scaling features of the underlying vdW long range force stemming from two photon exchange impose restrictions on an Effective Field Theory without explicit photons. The role of naively redundant operators, relevant to the definition of three body forces, is also analyzed. (author)

  10. A note on nonperturbative renormalization of effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jifeng [Department of Physics, East China Normal University, Shanghai 200062 (China)

    2009-08-28

    Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.

  11. A note on nonperturbative renormalization of effective field theory

    International Nuclear Information System (INIS)

    Yang Jifeng

    2009-01-01

    Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.

  12. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  13. Renormalization of topological field theory

    International Nuclear Information System (INIS)

    Birmingham, D.; Rakowski, M.; Thompson, G.

    1988-11-01

    One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs

  14. Effective potentials in gauge field theories

    International Nuclear Information System (INIS)

    Caldas, P.S.S.; Fleming, H.; Garcia, R.L.

    An elementary and very efficient method for computing the effective potential of any theory containing scalar bosons is described. Examples include massless scalar electrodynamics and Yang-Mills theories [pt

  15. The gamma N ---> Delta transition in chiral effective-field theory.

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-04-27

    We describe the pion electroproduction processes in the {Delta}(1232)-resonance region within the framework of chiral effective-field theory. By studying the observables of pion electroproduction in a next-to-leading order calculation we are able to make predictions and draw conclusions on the properties of the N {yields} {Delta} electromagnetic form factors.

  16. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  17. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  18. Effective Einsteinian gravity from Poincare gauge field theory

    International Nuclear Information System (INIS)

    Baekler, P.; Mielke, E.W.

    1985-10-01

    The Poincare gauge theory of gravity should apply in the microphysical domain. Here we investigate its implications for macrophysics. Weakly self double dual Riemann-Cartan curvature is assumed throughout. It is shown that the metrical background is then determined by Einstein's field equations with the Belinfante-Rosenfeld symmetrized energy-momentum current amended by spin squared terms. Moreover, the effective cosmological constant can be reconciled with the empirical data by absorbing the corresponding constant curvature part into the dynamical torsion of recently found exact solutions. Macroscopically this extra torsion remains undetectable. (author)

  19. Introduction to gauge field theory

    International Nuclear Information System (INIS)

    Bailin, D.; Love, A.

    1986-01-01

    This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications

  20. Introduction to gauge field theory

    International Nuclear Information System (INIS)

    Bailin, David; Love, Alexander

    1986-01-01

    The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)

  1. MatchingTools: A Python library for symbolic effective field theory calculations

    Science.gov (United States)

    Criado, Juan C.

    2018-06-01

    MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.

  2. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  3. Statistical predictions from anarchic field theory landscapes

    International Nuclear Information System (INIS)

    Balasubramanian, Vijay; Boer, Jan de; Naqvi, Asad

    2010-01-01

    Consistent coupling of effective field theories with a quantum theory of gravity appears to require bounds on the rank of the gauge group and the amount of matter. We consider landscapes of field theories subject to such to boundedness constraints. We argue that appropriately 'coarse-grained' aspects of the randomly chosen field theory in such landscapes, such as the fraction of gauge groups with ranks in a given range, can be statistically predictable. To illustrate our point we show how the uniform measures on simple classes of N=1 quiver gauge theories localize in the vicinity of theories with certain typical structures. Generically, this approach would predict a high energy theory with very many gauge factors, with the high rank factors largely decoupled from the low rank factors if we require asymptotic freedom for the latter.

  4. Doublet channel neutron-deuteron scattering in leading order effective field theory

    OpenAIRE

    B. BlankleiderFlinders U.; J. Gegelia(INFN)

    2015-01-01

    The doublet channel neutron-deuteron scattering amplitude is calculated in leading order effective field theory (EFT). It is shown that this amplitude does not depend on a constant contact interaction three-body force. Satisfactory agreement with available data is obtained when only two-body forces are included.

  5. Strangeness S = -2 baryon-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2007-01-01

    We derive the leading order strangeness S =−2 baryon–baryon interactions in chiral effective field theory. The potential consists of contact terms without derivatives and of one-pseudoscalar-meson exchanges. The contact terms and the couplings of the pseudoscalar mesons to the baryons are related

  6. Dissipative Effects in the Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Nacir, Diana; /Buenos Aires, CONICET /Buenos Aires U.; Porto, Rafael A.; /Princeton, Inst. Advanced Study /ISCAP, New York /Columbia U.; Senatore, Leonardo; /Stanford U., ITP /SLAC /KIPAC, Menlo Park; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study

    2012-09-14

    We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.

  7. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  8. Wilsonian effective action of superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2017-01-25

    By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.

  9. Dual double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States); Penas, Victor A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-06-06

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic' dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  10. Morse theory interpretation of topological quantum field theories

    International Nuclear Information System (INIS)

    Labastida, J.M.F.

    1989-01-01

    Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)

  11. Effective field theory of an anomalous Hall metal from interband quantum fluctuations

    Science.gov (United States)

    Chua, Victor; Assawasunthonnet, Wathid; Fradkin, Eduardo

    2017-07-01

    We construct an effective field theory, a two-dimensional two-component metallic system described by a model with two Fermi surfaces ("pockets"). This model describes a translationally invariant metallic system with two types of fermions, each with its own Fermi surface, with forward scattering interactions. This model, in addition to the O (2 ) rotational invariance, has a U (1 )×U (1 ) symmetry of separate charge conservation for each Fermi surface. For sufficiently attractive interactions in the d -wave (quadrupolar) channel, this model has an interesting phase diagram that includes a spontaneously generated anomalous Hall metal phase. We derive the Landau-Ginzburg effective action of quadrupolar order parameter fields which enjoys an O (2 )×U (1 ) global symmetry associated to spatial isotropy and the internal U (1 ) relative phase symmetries, respectively. We show that the order parameter theory is dynamically local with a dynamical scaling of z =2 and perform a one-loop renormalization group analysis of the Landau-Ginzburg theory. The electronic liquid crystal phases that result from spontaneous symmetry breaking are studied and we show the presence of Landau damped Nambu-Goldstone modes at low momenta that is a signature of non-Fermi-liquid behavior. Electromagnetic linear response is also analyzed in both the normal and symmetry broken phases from the point of view of the order parameter theory. The nature of the coupling of electromagnetism to the order parameter fields in the normal phase is non-minimal and decidedly contains a precursor to the anomalous Hall response in the form of a order-parameter-dependent Chern-Simons term in the effective action.

  12. Axiomatic conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Goddard, P.

    2000-01-01

    A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)

  13. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  14. Hamiltonian Anomalies from Extended Field Theories

    Science.gov (United States)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  15. Matrix models as non-commutative field theories on R3

    International Nuclear Information System (INIS)

    Livine, Etera R

    2009-01-01

    In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.

  16. Dissipation Effects in Schrödinger and Quantal Density Functional Theories of Electrons in an Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Xiao-Yin Pan

    2018-03-01

    Full Text Available Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field. In addition, there is an internal field whose components are representative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, kinetic effects, and density. There is also an internal contribution due to the magnetic field. The response of the electron is governed by the current density field in which a damping coefficient appears. The law leads to further insights into Schrödinger theory, and in particular the intrinsic self-consistent nature of the Schrödinger equation. It is proved that in the presence of dissipative effects, the basic variables (gauge-invariant properties, knowledge of which determines the Hamiltonian are the density and physical current density. Finally, a local effective potential theory of dissipative systems—quantal density functional theory (QDFT—is developed. This constitutes the mapping from the interacting dissipative electronic system to one of noninteracting fermions possessing the same dissipation and basic variables. Attributes of QDFT are the separation of the electron correlations due to the Pauli exclusion principle and Coulomb repulsion, and the determination of the correlation contributions to the kinetic energy. Hence, Schrödinger theory in conjunction with QDFT

  17. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    Science.gov (United States)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  18. Field theory approach to quantum hall effect

    International Nuclear Information System (INIS)

    Cabo, A.; Chaichian, M.

    1990-07-01

    The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig

  19. Large N field theories, string theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)

    2002-05-15

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)

  20. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  1. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  2. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  3. Theory of interacting quantum fields

    International Nuclear Information System (INIS)

    Rebenko, Alexei L.

    2012-01-01

    This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.

  4. Topics in two dimensional conformal field theory and three dimensional topological lattice field theory

    International Nuclear Information System (INIS)

    Chung, Stephen-wei.

    1993-01-01

    The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint

  5. Introduction to string field theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.

    1989-01-01

    A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)

  6. Further Development of HS Field Theory

    Science.gov (United States)

    Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud

    2006-04-01

    We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.

  7. Nuclear Forces from Effective Field Theory

    International Nuclear Information System (INIS)

    Krebs, H.

    2011-01-01

    Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N 3 LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N 2 LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N 3 LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N 2 LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker V III potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories

  8. Naturality in conformal field theory

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)

  9. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2013-12-15

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.

  10. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa

    2013-01-01

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior

  11. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  12. The $\\gamma N\\to \\De$ transition in chiral effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-04-27

    We describe the pion electroproduction processes in the {Delta}(1232)-resonance region within the framework of chiral effective-field theory. By studying the observables of pion electroproduction in a next-to-leading order calculation we are able to make predictions and draw conclusions on the properties of the N {yields} {Delta} electromagnetic form factors.

  13. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.

    1991-03-01

    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  14. The effective field theory of nonsingular cosmology: II

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Li, Hai-Guang [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Piao, Yun-Song [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)

    2017-06-15

    Based on the effective field theory (EFT) of cosmological perturbations, we explicitly clarify the pathology in nonsingular cubic Galileon models and show how to cure it in EFT with new insights into this issue. With the least set of EFT operators that are capable to avoid instabilities in nonsingular cosmologies, we construct a nonsingular model dubbed the Genesis-inflation model, in which a slowly expanding phase (namely, Genesis) with increasing energy density is followed by slow-roll inflation. The spectrum of the primordial perturbation may be simulated numerically, which shows itself a large-scale cutoff, as the large-scale anomalies in CMB might be a hint for. (orig.)

  15. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  16. Theoretical physics. Field theory

    International Nuclear Information System (INIS)

    Landau, L.; Lifchitz, E.

    2004-01-01

    This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)

  17. Quantum field theory

    CERN Document Server

    Sadovskii, Michael V

    2013-01-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  18. Effective field theories in the large-N limit

    International Nuclear Information System (INIS)

    Weinberg, S.

    1997-01-01

    Various effective field theories in four dimensions are shown to have exact nontrivial solutions in the limit as the number N of fields of some type becomes large. These include extended versions of the U (N) Gross-Neveu model, the nonlinear O(N) σ model, and the CP N-1 model. Although these models are not renormalizable in the usual sense, the infinite number of coupling types allows a complete cancellation of infinities. These models provide qualitative predictions of the form of scattering amplitudes for arbitrary momenta, but because of the infinite number of free parameters, it is possible to derive quantitative predictions only in the limit of small momenta. For small momenta the large-N limit provides only a modest simplification, removing at most a finite number of diagrams to each order in momenta, except near phase transitions, where it reduces the infinite number of diagrams that contribute for low momenta to a finite number. copyright 1997 The American Physical Society

  19. Duality and braiding in twisted quantum field theory

    International Nuclear Information System (INIS)

    Riccardi, Mauro; Szabo, Richard J.

    2008-01-01

    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality

  20. Magnetic moment calculation for p+d→ 3 He+γ process in Big=bang nucleosynthesis with effective field theory

    International Nuclear Information System (INIS)

    Bayegan, S.; Sadeghi, H.

    2004-01-01

    In big-bang nucleosynthesis, processes relevant ti increasing of nucleon density are more important. One of the theories that its solutions more accurately explain the experimental works is Effective Field Theory in this paper. Magnetic moment (χM1) for radiative capture of protons by deuterons p + d → 3 He+γ process is calculated using Effective Field Theory. The calculation includes coulomb interaction up to next-to -next-leading order (N 2 LO)

  1. Introduction to field theory

    CERN Multimedia

    CERN. Geneva; CERN. Geneva

    2001-01-01

    Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.

  2. Topological field theories and duality

    International Nuclear Information System (INIS)

    Stephany, J.; Universidad Simon Bolivar, Caracas

    1996-05-01

    Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs

  3. Unitarity Bounds and RG Flows in Time Dependent Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-04-05

    We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-N double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.

  4. Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

    Science.gov (United States)

    Dedes, A.; Materkowska, W.; Paraskevas, M.; Rosiek, J.; Suxho, K.

    2017-06-01

    We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as "Warsaw basis". We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.

  5. Gauge field theories

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1981-01-01

    The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)

  6. Supersymmetric gauge field theories

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1976-01-01

    The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models

  7. Modular groups in quantum field theory

    International Nuclear Information System (INIS)

    Borchers, H.-J.

    2000-01-01

    The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)

  8. Introduction to conformal field theory. With applications to string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Plauschinn, Erik

    2009-01-01

    Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)

  9. Renormalization and Interaction in Quantum Field Theory

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2008-01-01

    This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr

  10. Infrared problems in field perturbation theory

    International Nuclear Information System (INIS)

    David, Francois.

    1982-12-01

    The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr

  11. Grand partition function in field theory with applications to sine-Gordon field theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1978-01-01

    Certain relativistic field theories are shown to be equivalent to the grand partition function of an interacting gas. Using the physical insight given by this analogy many field-theoretic results are obtained, particularly for the sine-Gordon field theory. The main results are enumerated in the summary to which the reader is referred

  12. Group field theories for all loop quantum gravity

    Science.gov (United States)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  13. The Gaussian streaming model and convolution Lagrangian effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.

  14. Spectral methods in quantum field theory

    International Nuclear Information System (INIS)

    Graham, Noah; Quandt, Markus; Weigel, Herbert

    2009-01-01

    This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)

  15. L_∞ algebras and field theory

    International Nuclear Information System (INIS)

    Hohm, Olaf; Zwiebach, Barton

    2017-01-01

    We review and develop the general properties of L_∞ algebras focusing on the gauge structure of the associated field theories. Motivated by the L_∞ homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L_∞ structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L_∞ algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L_∞ algebra for the interacting theory. The analysis suggests that L_∞ algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  17. Irreversibility and higher-spin conformal field theory

    CERN Document Server

    Anselmi, D

    2000-01-01

    I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...

  18. The ``Folk Theorem'' on effective field theory: How does it fare in nuclear physics?

    Science.gov (United States)

    Rho, Mannque

    2017-10-01

    This is a brief history of what I consider as very important, some of which truly seminal, contributions made by young Korean nuclear theorists, mostly graduate students working on PhD thesis in 1990s and early 2000s, to nuclear effective field theory, nowadays heralded as the first-principle approach to nuclear physics. The theoretical framework employed is an effective field theory anchored on a single scale-invariant hidden local symmetric Lagrangian constructed in the spirit of Weinberg's "Folk Theorem" on effective field theory. The problems addressed are the high-precision calculations on the thermal np capture, the solar pp fusion process, the solar hep process — John Bahcall's challenge to nuclear theorists — and the quenching of g A in giant Gamow-Teller resonances and the whopping enhancement of first-forbidden beta transitions relevant in astrophysical processes. Extending adventurously the strategy to a wild uncharted domain in which a systematic implementation of the "theorem" is far from obvious, the same effective Lagrangian is applied to the structure of compact stars. A surprising, unexpected, result on the properties of massive stars, totally different from what has been obtained up to day in the literature, is predicted, such as the precocious onset of conformal sound velocity together with a hint for the possible emergence in dense matter of hidden symmetries such as scale symmetry and hidden local symmetry.

  19. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  20. Covariant Noncommutative Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)

    2008-07-02

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.

  1. Covariant Noncommutative Field Theory

    International Nuclear Information System (INIS)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-01-01

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced

  2. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2010-07-12

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  3. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2010-01-01

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  4. Effects of collisions on conservation laws in gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Watanabe, T.-H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2015-08-15

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.

  5. On the stability of the asymptotically free scalar field theories

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, A M. [Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha (Qatar); Physics Department, Faculty of Science, Mansoura University, Egypt. amshalab@qu.edu.qa (Egypt)

    2015-03-30

    Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.

  6. The zero-bin and mode factorization in quantum field theory

    International Nuclear Information System (INIS)

    Manohar, Aneesh V.; Stewart, Iain W.

    2007-01-01

    We study a Lagrangian formalism that avoids double counting in effective field theories where distinct fields are used to describe different infrared momentum regions for the same particle. The formalism leads to extra subtractions in certain diagrams and to a new way of thinking about factorization of modes in quantum field theory. In nonrelativistic field theories, the subtractions remove unphysical pinch singularities in box-type diagrams, and give a derivation of the known pullup mechanism between soft and ultrasoft fields which is required by the renormalization group evolution. In a field theory for energetic particles, the soft-collinear effective theory (SCET), the subtractions allow the theory to be defined with different infrared and ultraviolet regulators, remove double counting between soft, ultrasoft, and collinear modes, and give results which reproduce the infrared divergences of the full theory. Our analysis shows that convolution divergences in factorization formulas occur due to an overlap of momentum regions. We propose a method that avoids this double counting, which helps to resolve a long-standing puzzle with singularities in collinear factorization in QCD. The analysis gives evidence for a factorization in rapidity space in exclusive decays

  7. Affine field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.

    1989-01-01

    The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index

  8. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  9. The Nonlinear Field Space Theory

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-01-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  10. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  11. Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects

    OpenAIRE

    Braaten, Eric; Johnson, Evan; Zhang, Hong

    2018-01-01

    Near a critical value of the wino mass where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold, low-energy winos can be described by a zero-range effective field theory (ZREFT) in which the winos interact nonperturbatively through a contact interaction and through Coulomb interactions. The effects of wino-pair annihilation into electroweak gauge bosons are taken into account through the analytic continuation of the real parameters for the contact interaction to comple...

  12. Infrared behavior of massless field theories

    International Nuclear Information System (INIS)

    Sapirstein, J.R.

    1979-01-01

    Typical infrared effects in several gauge field theories with massless particles are investigated in perturbation theory. It is first shown that divergences occurring in individual Feynman graphs arising from integrations over the long-wavelength modes of the fields cancel when the graphs are grouped together in a particular way, in a generalization of the Bloch-Nordsieck treatment of QED. As one of the requirements of finiteness is renormalization of the vector propagator off shell, the charge in these theories is not directly related to classical experiment. In an effort to find the meaning of charge the low-energy theorem is considered. Although in lowest order the graphs reproduce the Thompson limit, it is found that loop corrections are singular in the low-energy limit; a simple definition of the charge is thus precluded. Finally, the behavior of the quark color magnetic moment is treated. An apparent infrared singularity of this moment is shown to be due to an improper use of perturbation theory, and is removed and replaced with a finite, field-dependent moment, by use of Furry picture propagators

  13. Minding one's P's and Q's: From the one loop effective action in quantum field theory to classical transport theory

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal; Jeon, Sangyong; Venugopalan, Raju; Wirstam, Jens

    2000-01-01

    The one loop effective action in quantum field theory can be expressed as a quantum mechanical path integral over world lines, with internal symmetries represented by Grassmanian variables. In this paper, we develop a real time, many body, world line formalism for the one loop effective action. In particular, we study hot QCD and obtain the classical transport equations which, as Litim and Manuel have shown, reduce in the appropriate limit to the non-Abelian Boltzmann-Langevin equation first obtained by Boedeker. In the Vlasov limit, the classical kinetic equations are those that correspond to the hard thermal loop effective action. We also discuss the imaginary time world line formalism for a hot φ 4 theory, and elucidate its relation to classical transport theory. (c) 2000 The American Physical Society

  14. WORKSHOP: Thermal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-15

    The early history of the Universe is a crucial testing ground for theories of elementary particles. Speculative ideas about the constituents of matter and their interactions are reinforced if they are consistent with what we suppose happened near the beginning of time and discarded if they are not. The cosmological consequences of these theories are usually deduced using a general statistical approach called thermal field theory. Thus, 75 physicists from thirteen countries met in Cleveland, Ohio, last October for the first 'Workshop on Thermal Field Theories and their Applications'.

  15. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  16. Quantum Yang-Mills theory of Riemann surfaces and conformal field theory

    International Nuclear Information System (INIS)

    Killingback, T.P.

    1989-01-01

    It is shown that Yang-Mills theory on a smooth surface, when suitably quantized, is a topological quantum field theory. This topological gauge theory is intimately related to two-dimensional conformal field theory. It is conjectured that all conformal field theories may be obtained from Yang-Mills theory on smooth surfaces. (orig.)

  17. Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function

  18. An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model

    Energy Technology Data Exchange (ETDEWEB)

    Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)

    2014-11-15

    We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.

  19. A superstring field theory for supergravity

    Science.gov (United States)

    Reid-Edwards, R. A.; Riccombeni, D. A.

    2017-09-01

    A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.

  20. Nuclear parity violation in effective field theory

    International Nuclear Information System (INIS)

    Zhu Shilin; Maekawa, C.M.; Holstein, B.R.; Ramsey-Musolf, M.J.; Kolck, U. van

    2005-01-01

    We reformulate the analysis of nuclear parity violation (PV) within the framework of effective field theory (EFT). To O(Q), the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV πNN coupling. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV

  1. Three-loop corrections in a covariant effective field theory

    International Nuclear Information System (INIS)

    McIntire, Jeff

    2008-01-01

    Chiral effective field theories have been used with success in the study of nuclear structure. It is of interest to systematically improve these energy functionals (particularly that of quantum hadrodynamics) through the inclusion of many-body correlations. One possible source of improvement is the loop expansion. Using the techniques of Infrared Regularization, the short-range, local dynamics at each order in the loops is absorbed into the parameterization of the underlying effective Lagrangian. The remaining nonlocal, exchange correlations must be calculated explicitly. Given that the interactions of quantum hadrodynamics are relatively soft, the loop expansion may be manageable or even perturbative in nuclear matter. This work investigates the role played by the three-loop contributions to the loop expansion for quantum hadrodynamics

  2. Standard model effective field theory: Integrating out neutralinos and charginos in the MSSM

    Science.gov (United States)

    Han, Huayong; Huo, Ran; Jiang, Minyuan; Shu, Jing

    2018-05-01

    We apply the covariant derivative expansion method to integrate out the neutralinos and charginos in the minimal supersymmetric Standard Model. The results are presented as set of pure bosonic dimension-six operators in the Standard Model effective field theory. Nontrivial chirality dependence in fermionic covariant derivative expansion is discussed carefully. The results are checked by computing the h γ γ effective coupling and the electroweak oblique parameters using the Standard Model effective field theory with our effective operators and direct loop calculation. In global fitting, the proposed lepton collider constraint projections, special phenomenological emphasis is paid to the gaugino mass unification scenario (M2≃2 M1) and anomaly mediation scenario (M1≃3.3 M2). These results show that the precision measurement experiments in future lepton colliders will provide a very useful complementary job in probing the electroweakino sector, in particular, filling the gap of the soft lepton plus the missing ET channel search left by the traditional collider, where the neutralino as the lightest supersymmetric particle is very degenerated with the next-to-lightest chargino/neutralino.

  3. Noncommutative field theory

    International Nuclear Information System (INIS)

    Douglas, Michael R.; Nekrasov, Nikita A.

    2001-01-01

    This article reviews the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, on both the classical and the quantum level

  4. Usefulness of effective field theory for boosted Higgs production

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lewis, I. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Zeng, Mao [Stony Brook Univ., Stony Brook, NY (United States)

    2015-04-07

    The Higgs + jet channel at the LHC is sensitive to the effects of new physics both in the total rate and in the transverse momentum distribution at high pT. We examine the production process using an effective field theory (EFT) language and discussing the possibility of determining the nature of the underlying high-scale physics from boosted Higgs production. The effects of heavy color triplet scalars and top partner fermions with TeV scale masses are considered as examples and Higgs-gluon couplings of dimension-5 and dimension-7 are included in the EFT. As a byproduct of our study, we examine the region of validity of the EFT. Dimension-7 contributions in realistic new physics models give effects in the high pT tail of the Higgs signal which are so tiny that they are likely to be unobservable.

  5. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  6. The matter power spectrum in redshift space using effective field theory

    Science.gov (United States)

    Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun

    2017-11-01

    The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.

  7. Hydrodynamics, fields and constants in gravitational theory

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Mel'nikov, V.N.

    1983-01-01

    Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles

  8. Supersymmetric rings in field theory

    International Nuclear Information System (INIS)

    Blanco-Pillado, Jose J.; Redi, Michele

    2006-01-01

    We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension

  9. Aspects of affine Toda field theory

    International Nuclear Information System (INIS)

    Braden, H.W.; Corrigan, E.; Dorey, P.E.; Sasaki, R.

    1990-05-01

    The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E 8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)

  10. Developments in superstring field theory

    International Nuclear Information System (INIS)

    Green, M.B.

    1987-01-01

    In this article the structure of superstring theories is outlined. The one-loop quantum superstring gauge anomalies are then described and it is shown that their absence leads to an interesting theory with gauge group SO(32). The one-loop infinities also cancel for this gauge group. The anomaly cancellation can be understood in terms of the low-energy effective supergravity-Yang-Mills field theory, from which it is shown that E 8 x E 8 is an equally good gauge group, which suggests that there should also be an interesting E 8 x E 8 superstring theory. A new type of superstring theory, known as the 'heterotic' string theory, which only describes strings with gauge groups E 8 x E 8 or SO(32) is described. Finally some very exciting prospects for obtaining a sensible description of four-dimensional physics from a ten-dimensional superstring theory with gauge group E 8 x E 8 is outlined. (author)

  11. Long-range interactions in lattice field theory

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations

  12. Long-range interactions in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  13. Topics in low-dimensional field theory

    International Nuclear Information System (INIS)

    Crescimanno, M.J.

    1991-01-01

    Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density

  14. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  15. Quantum field theory with infinite component local fields as an alternative to the string theories

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1987-05-01

    We show that the introduction of the infinite component local fields with higher order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ 5 -anomalous theories the introduction of the infinite component field makes the theory renormalizable or superrenormalizable. (orig.)

  16. Hyperfunction quantum field theory

    International Nuclear Information System (INIS)

    Nagamachi, S.; Mugibayashi, N.

    1976-01-01

    The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de

  17. Correspondence between quantum gauge theories without ghost fields and their covariantly quantized theories with ghost fields

    International Nuclear Information System (INIS)

    Cheng Hung; Tsai Ercheng

    1986-01-01

    We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)

  18. The logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.

    1997-01-01

    We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)

  19. Boundary effects in quantum field theory

    International Nuclear Information System (INIS)

    Deutsch, D.; Candelas, P.

    1979-01-01

    Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the ''renormalized mode sum energy,'' a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary

  20. Topics in quantum field theory; Topicos em teoria quantica dos campos

    Energy Technology Data Exchange (ETDEWEB)

    Svaiter, N.F

    2006-11-15

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method.

  1. Chiral effective field theory on the lattice at next-to-leading order

    International Nuclear Information System (INIS)

    Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.

    2008-01-01

    We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)

  2. [Studies in quantum field theory: Progress report, April 1, 1991--March 31, 1992

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    Professors Bender, Bernard, and Shrauner, Assistant Professors Ogilvie and Goltermann, Research Assistant Professors Visser and Petcher, and Research Associate Rivas are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: lattice gauge calculations of masses and weak matrix elements; strong-coupling approximation; low-energy effective field theories; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; the nature of perturbation theory in large order; quark condensation in QCD; chiral fermion theories on the lattice; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD; studies of the early universe and inflation; quantum gravity. This work is described in detail in the body of this proposal

  3. Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbations such as in DBI inflation.

  4. Renormalization group study of scalar field theories

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Hasenfratz, P.

    1986-01-01

    An approximate RG equation is derived and studied in scalar quantum field theories in d dimensions. The approximation allows for an infinite number of different couplings in the potential, but excludes interactions containing derivatives. The resulting non-linear partial differential equation can be studied by simple means. Both the gaussian and the non-gaussian fixed points are described qualitatively correctly by the equation. The RG flows in d=4 and the problem of defining an ''effective'' field theory are discussed in detail. (orig.)

  5. Effective field theory approach to LHC Higgs data

    Indian Academy of Sciences (India)

    2016-08-23

    Aug 23, 2016 ... pletely specify the theory up to 19 free parameters. The local ... distributions of particles produced in high-energy col- lisions ... magnetic and electric dipole moments, as well as .... generation space. ... rotation is needed to diagonalize the mass matrix. .... motion, integration by parts, and redefinition of fields.

  6. Nonadiabatic theory of strong-field atomic effects under elliptical polarization

    International Nuclear Information System (INIS)

    Wang Xu; Eberly, J. H.

    2012-01-01

    Elliptically polarized laser fields provide a new channel for access to strong-field processes that are either suppressed or not present under linear polarization. Quantum theory is mostly unavailable for their analysis, and we report here results of a systematic study based on a classical ensemble theory with solution of the relevant ab inito time-dependent Newton equations for selected model atoms. The study's approach is necessarily nonadiabatic, as it follows individual electron trajectories leading to single, double, and triple ionizations. Of particular interest are new results bearing on open questions concerning experimental reports of unexplained species dependences as well as double-electron release times that are badly matched by a conventional adiabatic quantum tunneling theory. We also report the first analysis of electron trajectories for sequential and non-sequential triple ionization.

  7. Bell-type quantum field theories

    International Nuclear Information System (INIS)

    Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino

    2005-01-01

    In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49-54) John S Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a vertical bar Ψ vertical bar 2 -distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; we call such processes Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to 'second quantization'. As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field. (topical review)

  8. Anomaly cancelation in field theory and F-theory on a circle

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Kapfer, Andreas

    2016-01-01

    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.

  9. Spinning gravitating objects in the effective field theory in the post-Newtonian scheme

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-09-30

    We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.

  10. n+p→d+γ in effective field theory

    International Nuclear Information System (INIS)

    Savage, Martin J.; Scaldeferri, Kevin A.; Wise, Mark B.

    1999-01-01

    The radiative capture process n+p→d+γ provides clear evidence for meson exchange currents in nuclear physics. We compute this process at low energies using a recently developed power counting for the effective field theory that describes nucleon-nucleon interactions. The leading order contribution to this process comes from the photon coupling to the nucleon magnetic moments. At subleading order there are other contributions. Among these are graphs where the photon couples directly to pions, i.e. meson exchange currents. These diagrams are divergent and require the presence of a local four-nucleon-one-photon counterterm. The coefficient of this operator is determined by the measured cross section, σ expt = 334.2±0.5 mb, for incident neutrons with speed vertical bar ν vertical bar = 2200 m/s

  11. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  12. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  13. The effective field theory of inflation models with sharp features

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Cannone, Dario; Matarrese, Sabino

    2013-01-01

    We describe models of single-field inflation with small and sharp step features in the potential (and sound speed) of the inflaton field, in the context of the Effective Field Theory of Inflation. This approach allows us to study the effects of features in the power-spectrum and in the bispectrum of curvature perturbations, from a model-independent point of view, by parametrizing the features directly with modified ''slow-roll'' parameters. We can obtain a self-consistent power-spectrum, together with enhanced non-Gaussianity, which grows with a quantity β that parametrizes the sharpness of the step. With this treatment it is straightforward to generalize and include features in other coefficients of the effective action of the inflaton field fluctuations. Our conclusion in this case is that, excluding extrinsic curvature terms, the only interesting effects at the level of the bispectrum could arise from features in the first slow-roll parameter ε or in the speed of sound c s . Finally, we derive an upper bound on the parameter β from the consistency of the perturbative expansion of the action for inflaton perturbations. This constraint can be used for an estimation of the signal-to-noise ratio, to show that the observable which is most sensitive to features is the power-spectrum. This conclusion would change if we consider the contemporary presence of a feature and a speed of sound c s < 1, as, in such a case, contributions from an oscillating folded configuration can potentially make the bispectrum the leading observable for feature models

  14. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  15. On spin chains and field theories

    International Nuclear Information System (INIS)

    Roiban, Radu

    2004-01-01

    We point out that the existence of global symmetries in a field theory is not an essential ingredient in its relation with an integrable model. We describe an obvious construction which, given an integrable spin chain, yields a field theory whose 1-loop scale transformations are generated by the spin chain hamiltonian. We also identify a necessary condition for a given field theory to be related to an integrable spin chain. As an example, we describe an anisotropic and parity-breaking generalization of the XXZ Heisenberg spin chain and its associated field theory. The system has no nonabelian global symmetries and generally does not admit a supersymmetric extension without the introduction of more propagating bosonic fields. For the case of a 2-state chain we find the spectrum and the eigenstates. For certain values of its coupling constants the field theory associated to this general type of chain is the bosonic sector of the q-deformation of N = 4 SYM theory. (author)

  16. Gauge field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Slavnov, A.A.

    1981-01-01

    This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru

  17. Effective Field Theories and Matching for Codimension-2 Branes

    CERN Document Server

    Burgess, C P; De Rham, C; Tasinato, G

    2009-01-01

    It is generic for the bulk fields sourced by branes having codimension two and higher to diverge at the brane position, much as does the Coulomb potential at the position of its source charge. This complicates finding the relation between brane properties and the bulk geometries they source. (These complications do not arise for codimension-1 sources, such as in RS geometries, because of the special properties unique to codimension one.) Understanding these relations is a prerequisite for phenomenological applications involving higher-codimension branes. Using codimension-2 branes in extra-dimensional scalar-tensor theories as an example, we identify the classical matching conditions that relate the near-brane asymptotic behaviour of bulk fields to the low-energy effective actions describing how space-filling codimension-2 branes interact with the surrounding extra-dimensional bulk. We do so by carefully regulating the near-brane divergences, and show how these may be renormalized in a general way. Among the ...

  18. Quantum Fluctuations and the Unruh effect in strongly-coupled conformal field theories

    Science.gov (United States)

    Cáceres, Elena; Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2010-06-01

    Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.

  19. Percolative Theory of Organic Magnetoresistance and Fringe-Field Magnetoresistance

    Science.gov (United States)

    Flatté, Michael E.

    2013-03-01

    A recently-introduced percolation theory for spin transport and magnetoresistance in organic semiconductors describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Increases in the spin-flip rate open up ``spin-blocked'' pathways to become viable conduction channels and hence, as the spin-flip rate changes with magnetic field, produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with measurements of the shape and saturation of measured magnetoresistance curves. We find that the threshold hopping distance is analogous to the branching parameter of a phenomenological two-site model, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance. Regimes of slow and fast hopping magnetoresistance are uniquely characterized by their line shapes. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory. Extensions to this theory also describe fringe-field magnetoresistance, which is the influence of fringe magnetic fields from a nearby unsaturated magnetic electrode on the conductance of an organic film. This theory agrees with several key features of the experimental fringe-field magnetoresistance, including the applied fields where the magnetoresistance reaches extrema, the applied field range of large magnetoresistance effects from the fringe fields, and the sign of the effect. All work done in collaboration with N. J. Harmon, and fringe-field magnetoresistance work in collaboration also with F. Macià, F. Wang, M. Wohlgenannt and A. D. Kent. This work was supported by an ARO MURI.

  20. Theory of field induced incommensurability: CsFeCl3

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1986-01-01

    Using correlation theory for the singlet-doublet magnet CsFeCl3 in a magnetic field, a field induced incommensurate ordering along K-M is predicted without invoking dipolar effects. A fully self-consistent RPA theory gives Hc=44 kG in agreement with experiments at T=1.3K. Correlation and dipolar...

  1. Time independent mean-field theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1980-02-01

    The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures

  2. Towards quantum gravity via quantum field theory. Problems and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)

    2016-07-01

    General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.

  3. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  4. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  5. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  6. On the background independence of string field theory

    International Nuclear Information System (INIS)

    Sen, A.

    1990-01-01

    Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)

  7. Supersymmetric extensions of K field theories

    Science.gov (United States)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2012-02-01

    We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.

  8. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  9. An old-timer looks at modern field theory

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1977-01-01

    Four examples of intuitive reasoning in field theory are presented. The first three are concerned with problems of quantum electro-dynamics, namely, the Lamb shift, the radiative correction to the magnetic moment of the electron (the deviation of the electronic g factor from 2), and the polarization of the vacuum by an external charge. The polarization of the vacuum is a simple example of a typical fact resulting from quantum electro-dynamics: the effective charge e' for processes in which momentum transfers q >> m (electron mass) occur, increases with larger q as e' approximately log (q/m). The fourth example deals with an intuitive approach to the problem of 'asymptotic freedom', a term used for the fact that in certain field theories the effective charge e' decreases with larger g as e' approximately (log q/m)sup(-n) where n in the simplest case is 1/2. In these field theories, usually referred to as 'non-Abelian', not only the particles but also the fields are carriers of charge. (U.K.)

  10. Quantum field theory in curved spacetime and black hole thermodynamics

    CERN Document Server

    Wald, Robert M

    1994-01-01

    In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum f...

  11. Introduction to quantum field theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    1994-01-01

    The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.

  12. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  13. ΔΔ intermediate state in 1S0NN scattering from effective field theory

    International Nuclear Information System (INIS)

    Savage, M.J.

    1997-01-01

    We examine the role of the ΔΔ intermediate state in NN scattering in the 1 S 0 channel. The computation is performed at lowest order in an effective-field theory involving local four-fermion operators and one-pion exchange using dimensional regularization with minimal subtraction (MS). As first discussed by Weinberg, in the theory with only nucleons, the large-scattering length in this channel requires a small scale for the local N 4 operators. When Δ close-quote s are included (but without pions) a large-scattering length can be obtained from operators with a scale √(2M N (M Δ -M N )), but fine-tuning is required. The coefficients of the contact terms involving the Δ fields are not uniquely determined but for reasonable values one finds that, in general, NN scattering computed in the theory with Δ close-quote s looks like that computed in the theory without Δ close-quote s. The leading effect of the Δ close-quote s is to change the coefficients of the four-nucleon contact terms between the theories with and without Δ close-quote s. Further, the decoupling of the Δ close-quote s in the limit of large mass and strong coupling is clearly demonstrated. When pions are included, the typical scale for the contact terms is ∼100MeV, both with and without Δ close-quote s and is not set by √(2M N (M Δ -M N )). For reasonable values of contact terms that reproduce the scattering length and effective range (at lowest order) the phase shift is not well reproduced over a larger momentum range as is found in the theory without Δ close-quote s at lowest order. copyright 1997 The American Physical Society

  14. L{sub ∞} algebras and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2017-03-15

    We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Mathematical aspects of quantum field theory

    CERN Document Server

    de Faria, Edson

    2010-01-01

    Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

  16. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  17. Fermion boson metamorphosis in field theory

    International Nuclear Information System (INIS)

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered

  18. N=1 field theory duality from M theory

    International Nuclear Information System (INIS)

    Schmaltz, M.; Sundrum, R.

    1998-01-01

    We investigate Seiberg close-quote s N=1 field theory duality for four-dimensional supersymmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory configuration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in type IIA string theory is given an elegant derivation from M theory. copyright 1998 The American Physical Society

  19. Wall deffects in field theories at finite temperature

    International Nuclear Information System (INIS)

    Bazeia Filho, D.

    1985-01-01

    We discuss the effect of restauration of simmetry in field theories at finite temperature and its relation with wall deffects which appear as consequence of the instability of the constant field configuration. (M.W.O.) [pt

  20. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  1. Dynamical Mean Field Approximation Applied to Quantum Field Theory

    CERN Document Server

    Akerlund, Oscar; Georges, Antoine; Werner, Philipp

    2013-12-04

    We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...

  2. Field theory approach to gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1978-01-01

    A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable

  3. Some aspects of quantum field theory in non-Minkowskian space-times

    International Nuclear Information System (INIS)

    Toms, D.J.

    1980-01-01

    Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed

  4. Low-energy limit of two-scale field theories

    International Nuclear Information System (INIS)

    Leon, J.; Perez-Mercader, J.; Sanchez, M.F.

    1991-01-01

    We present a full and self-contained discussion of the decoupling theorem applied to several general models in four-dimensional field theory. We compute in each case the low-energy effective action and show the explicit one-loop expressions for each of the effective parameters. We find that for suitable conditions one can always build an effective low-energy theory where the conditions of the decoupling theorem are satisfied

  5. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  6. Introduction to quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1988-01-01

    The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs

  7. Vertex operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Huang, Y.Z.

    1992-01-01

    This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics

  8. A landscape of field theories

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2016-11-28

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  9. Operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Gabbiani, F.; Froehlich, J.

    1993-01-01

    We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)

  10. Generalized Field Theory and Kasner universe

    International Nuclear Information System (INIS)

    Klotz, A.H.

    1986-01-01

    It is shown that the only Kasner-like solution of the Generalized Field Theory field equations with a nonzero electromagnetic field corresponds to an empty field geometry of the space-time. In this case, the electromagnetic field tensors of the theory coincide as could be expected from general considerations. 6 refs. (author)

  11. A path-integral approach for bosonic effective theories for Fermion fields in four and three dimensions

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    1998-02-01

    We study four dimensional Effective Bosonic Field Theories for massive fermion field in the infrared region and massive fermion in ultraviolet region by using an appropriate Fermion Path Integral Chiral variable change and the Polyakov's Fermi-Bose transmutation in the 3D-Abelian Thrirring model. (author)

  12. Lattice Field Theory with the Sign Problem and the Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Masahiro Imachi

    2007-02-01

    Full Text Available Although numerical simulation in lattice field theory is one of the most effective tools to study non-perturbative properties of field theories, it faces serious obstacles coming from the sign problem in some theories such as finite density QCD and lattice field theory with the θ term. We reconsider this problem from the point of view of the maximum entropy method.

  13. Setting limits on Effective Field Theories: the case of Dark Matter

    Science.gov (United States)

    Pobbe, Federico; Wulzer, Andrea; Zanetti, Marco

    2017-08-01

    The usage of Effective Field Theories (EFT) for LHC new physics searches is receiving increasing attention. It is thus important to clarify all the aspects related with the applicability of the EFT formalism in the LHC environment, where the large available energy can produce reactions that overcome the maximal range of validity, i.e. the cutoff, of the theory. We show that this does not forbid to set rigorous limits on the EFT parameter space through a modified version of the ordinary binned likelihood hypothesis test, which we design and validate. Our limit-setting strategy can be carried on in its full-fledged form by the LHC experimental collaborations, or performed externally to the collaborations, through the Simplified Likelihood approach, by relying on certain approximations. We apply it to the recent CMS mono-jet analysis and derive limits on a Dark Matter (DM) EFT model. DM is selected as a case study because the limited reach on the DM production EFT Wilson coefficient and the structure of the theory suggests that the cutoff might be dangerously low, well within the LHC reach. However our strategy can also be applied, if needed, to EFT's parametrising the indirect effects of heavy new physics in the Electroweak and Higgs sectors.

  14. On finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1984-01-01

    The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)

  15. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  16. Microcontinuum field theories

    CERN Document Server

    Eringen, A Cemal

    1999-01-01

    Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...

  17. Introduction to algebraic quantum field theory

    International Nuclear Information System (INIS)

    Horuzhy, S.S.

    1990-01-01

    This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs

  18. Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Degrande, Celine [CERN, Theory Division, Geneva 23 (Switzerland); Fuks, Benjamin [Sorbonne Universites, UPMC Univ. Paris 06, Paris (France); CNRS, Paris (France); Mawatari, Kentarou [Universite Grenoble-Alpes, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Vrije Universiteit Brussel, Theoretische Natuurkunde and IIHE/ELEM, International Solvay Institutes, Brussels (Belgium); Mimasu, Ken [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    We study the impact of dimension-six operators of the standard model effective field theory relevant for vector-boson fusion and associated Higgs boson production at the LHC. We present predictions at the next-to-leading order accuracy in QCD that include matching to parton showers and that rely on fully automated simulations. We show the importance of the subsequent reduction of the theoretical uncertainties in improving the possible discrimination between effective field theory and standard model results, and we demonstrate that the range of the Wilson coefficient values allowed by a global fit to LEP and LHC Run I data can be further constrained by LHC Run II future results. (orig.)

  19. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  20. Backreacted axion field ranges in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Baume, Florent; Palti, Eran [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2016-08-05

    String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.

  1. Superstring field theory

    International Nuclear Information System (INIS)

    Green, M.B.

    1984-01-01

    Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)

  2. The Global Approach to Quantum Field Theory

    International Nuclear Information System (INIS)

    Folacci, Antoine; Jensen, Bruce

    2003-01-01

    theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin-Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynm an functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky-DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should be noted that DeWitt's book

  3. A philosophical approach to quantum field theory

    CERN Document Server

    Öttinger, Hans Christian

    2015-01-01

    This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.

  4. Toward finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1986-01-01

    The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)

  5. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  6. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  7. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Quella, Thomas

    2013-07-01

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  8. Next-to-leading order effective field theory Lambda N -> NN potential in coordinate space

    Czech Academy of Sciences Publication Activity Database

    Peréz-Obiol Castaneda, Axel; Entem, D. R.; Julia-Diaz, B.; Parreno, A.

    2016-01-01

    Roč. 954, OCT (2016), s. 213-241 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : non-mesonic weak decay * effective field theory * hypernuclei Subject RIV: BE - Theoretical Physics Impact factor: 1.916, year: 2016

  9. Mean-field theory and solitonic matter

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1989-01-01

    Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)

  10. Effective field theories for heavy Majorana neutrinos in a thermal bath

    Energy Technology Data Exchange (ETDEWEB)

    Biondini, Simone

    2016-05-06

    In the leptogenesis framework Majorana neutrinos are at the origin of the baryon asymmetry in the universe. We develop an effective field theory for non-relativistic Majorana fermions and we apply it to the case of a heavy Majorana neutrino decaying in a hot plasma of Standard Model particles, whose temperature is much smaller than the mass of the Majorana neutrino but still much larger than the electroweak scale. Moreover we compute systematically thermal corrections to the CP asymmetries in the Majorana neutrino decays.

  11. Effective field theory with differential operator technique for dynamic phase transition in ferromagnetic Ising model

    International Nuclear Information System (INIS)

    Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko

    2009-01-01

    The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.

  12. Causality Constraints in Conformal Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  13. Causality constraints in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  14. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  15. Non-perturbative field theory/field theory on a lattice

    International Nuclear Information System (INIS)

    Ambjorn, J.

    1988-01-01

    The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas

  16. Cutkosky rules for superstring field theory

    International Nuclear Information System (INIS)

    Pius, Roji; Sen, Ashoke

    2016-01-01

    Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.

  17. Self-consistent normal ordering of gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1987-01-01

    Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs

  18. Effective field theory for quantum liquid in dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Rosen, Rachel A., E-mail: gg32@nyu.edu, E-mail: rarosen@physik.su.se [Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, Roslagstullsbacken 21, SE - 106 91, Stockholm (Sweden)

    2010-04-01

    An effective field theory approach is used to describe quantum matter at greater-than-atomic but less-than-nuclear densities which are encountered in white dwarf stars. We focus on the density and temperature regime for which charged spin-0 nuclei form an interacting charged Bose-Einstein condensate, while the neutralizing electrons form a degenerate fermi gas. After a brief introductory review, we summarize distinctive properties of the charged condensate, such as a mass gap in the bosonic sector as well as gapless fermionic excitations. Charged impurities placed in the condensate are screened with great efficiency, greater than in an equivalent uncondensed plasma. We discuss a generalization of the Friedel potential which takes into account bosonic collective excitations in addition to the fermionic excitations. We argue that the charged condensate could exist in helium-core white dwarf stars and discuss the evolution of these dwarfs. Condensation would lead to a significantly faster rate of cooling than that of carbon- or oxygen-core dwarfs with crystallized cores. This prediction can be tested observationally: signatures of charged condensation may have already been seen in the recently discovered sequence of helium-core dwarfs in the nearby globular cluster NGC 6397. Sufficiently strong magnetic fields can penetrate the condensate within Abrikosov-like vortices. We find approximate analytic vortex solutions and calculate the values of the lower and upper critical magnetic fields at which vortices are formed and destroyed respectively. The lower critical field is within the range of fields observed in white dwarfs, but tends toward the higher end of this interval. This suggests that for a significant fraction of helium-core dwarfs, magnetic fields are entirely expelled within the core.

  19. Z/NZ conformal field theories

    International Nuclear Information System (INIS)

    Degiovanni, P.

    1990-01-01

    We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)

  20. String-theoretic breakdown of effective field theory near black hole horizons

    Science.gov (United States)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  1. Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields

    International Nuclear Information System (INIS)

    Anco, Stephen C.

    2003-01-01

    A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here

  2. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    formalism of quantum field theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin-Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynm an functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky-DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should

  3. Group field theory with noncommutative metric variables.

    Science.gov (United States)

    Baratin, Aristide; Oriti, Daniele

    2010-11-26

    We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.

  4. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  5. Gaussian processes and constructive scalar field theory

    International Nuclear Information System (INIS)

    Benfatto, G.; Nicolo, F.

    1981-01-01

    The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)

  6. Superconformal quantum field theories in string. Gauge theory dualities

    Energy Technology Data Exchange (ETDEWEB)

    Wiegandt, Konstantin

    2012-08-14

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  7. Superconformal quantum field theories in string. Gauge theory dualities

    International Nuclear Information System (INIS)

    Wiegandt, Konstantin

    2012-01-01

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  8. How to use the Standard Model effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Brian; Lu, Xiaochuan [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Murayama, Hitoshi [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),Todai Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan)

    2016-01-05

    We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.

  9. Nuclear electric dipole moments in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Vries, J. de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Hanhart, C. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); Liebig, S. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing,Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany); Minossi, D. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Nogga, A.; Wirzba, A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2015-03-19

    We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model.

  10. Semiclassical methods in field theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1978-10-01

    A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt

  11. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  12. Algebraic quantum field theory, perturbation theory, and the loop expansion

    International Nuclear Information System (INIS)

    Duetsch, M.; Fredenhagen, K.

    2001-01-01

    The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)

  13. Singularity theory and N = 2 superconformal field theories

    International Nuclear Information System (INIS)

    Warner, N.P.

    1989-01-01

    The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs

  14. Higher-derivative boson field theories and constrained second-order theories

    Energy Technology Data Exchange (ETDEWEB)

    Urries, F.J. de [Departamento de Fisica, Universidad de Alcala de Henares, Madrid (Spain) and IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)]. E-mail: fernando.urries@uah.es; Julve, J. [IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)]. E-mail: julve@imaff.cfmac.csic.es; Sanchez, E.J. [IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (ES) and Departamento de Matematica, Universidad Europea, Madrid (Spain)]. E-mail: ejesus.sanchez@mat.ind.uem.es

    2001-10-26

    As an alternative to the covariant Ostrogradski method, we show that higher-derivative (HD) relativistic Lagrangian field theories can be reduced to second differential order by writing them directly as covariant two-derivative theories involving Lagrange multipliers and new fields. Despite the intrinsic non-covariance of the Dirac procedure used to deal with the constraints, the explicit Lorentz invariance is recovered at the end. We develop this new setting on the basis of a simple scalar model and then its applications to generalized electrodynamics and HD gravity are worked out. For a wide class of field theories this method is better suited than Ostrogradski's for a generalization to 2n-derivative theories. (author)

  15. Probing scalar effective field theories with the soft limits of scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Antonio [School of Physics and Astronomy, University of Nottingham,University Park, Nottingham, NG7 2RD United Kingdom (United Kingdom); Stefanyszyn, David [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, Groningen, 9747 AG The (Netherlands); Wilson, Toby [School of Physics and Astronomy, University of Nottingham,University Park, Nottingham, NG7 2RD United Kingdom (United Kingdom)

    2017-04-04

    We investigate the soft behaviour of scalar effective field theories (EFTs) when there is a number of distinct derivative power counting parameters, ρ{sub 1}<ρ{sub 2}<…<ρ{sub Q}. We clarify the notion of an enhanced soft limit and use these to extend the scope of on-shell recursion techniques for scalar EFTs. As an example, we perform a detailed study of theories with two power counting parameters, ρ{sub 1}=1 and ρ{sub 2}=2, that include the shift symmetric generalised galileons. We demonstrate that the minimally enhanced soft limit uniquely picks out the Dirac-Born-Infeld (DBI) symmetry, including DBI galileons. For the exceptional soft limit we uniquely pick out the special galileon within the class of theories under investigation. We study the DBI galileon amplitudes more closely, verifying the validity of the recursion techniques in generating the six point amplitude, and explicitly demonstrating the invariance of all amplitudes under DBI galileon duality.

  16. Geometry of lattice field theory

    International Nuclear Information System (INIS)

    Honan, T.J.

    1986-01-01

    Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus

  17. Nuclear collective vibrations in extended mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D. [Lab. de Physique Corpusculaire/ ENSICAEN, 14 - Caen (France); Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2003-07-01

    The extended mean-field theory, which includes both the incoherent dissipation mechanism due to nucleon-nucleon collisions and the coherent dissipation mechanism due to coupling to low-lying surface vibrations, is briefly reviewed. Expressions of the strength functions for the collective excitations are presented in the small amplitude limit of this approach. This fully microscopic theory is applied by employing effective Skyrme forces to various giant resonance excitations at zero and finite temperature. The theory is able to describe the gross properties of giant resonance excitations, the fragmentation of the strength distributions as well as their fine structure. At finite temperature, the success and limitations of this extended mean-field description are discussed. (authors)

  18. Abelian Chern endash Simons theory. I. A topological quantum field theory

    International Nuclear Information System (INIS)

    Manoliu, M.

    1998-01-01

    We give a construction of the Abelian Chern endash Simons gauge theory from the point of view of a 2+1-dimensional topological quantum field theory. The definition of the quantum theory relies on geometric quantization ideas that have been previously explored in connection to the non-Abelian Chern endash Simons theory [J. Diff. Geom. 33, 787 endash 902 (1991); Topology 32, 509 endash 529 (1993)]. We formulate the topological quantum field theory in terms of the category of extended 2- and 3-manifolds introduced in a preprint by Walker in 1991 and prove that it satisfies the axioms of unitary topological quantum field theories formulated by Atiyah [Publ. Math. Inst. Hautes Etudes Sci. Pans 68, 175 endash 186 (1989)]. copyright 1998 American Institute of Physics

  19. Introduction to classical and quantum field theory

    International Nuclear Information System (INIS)

    Ng, Tai-Kai

    2009-01-01

    This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)

  20. Renormalization Group Equations of d=6 Operators in the Standard Model Effective Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The one-loop renormalization group equations for the Standard Model (SM) Effective Field Theory (EFT) including dimension-six operators are calculated. The complete 2499 × 2499 one-loop anomalous dimension matrix of the d=6 Lagrangian is obtained, as well as the contribution of d=6 operators to the running of the parameters of the renormalizable SM Lagrangian. The presence of higher-dimension operators has implications for the flavor problem of the SM. An approximate holomorphy of the one-loop anomalous dimension matrix is found, even though the SM EFT is not a supersymmetric theory.

  1. Quantum field theory with infinite component local fields as an alternative to the string theories

    Science.gov (United States)

    Krasnikov, N. V.

    1987-09-01

    We show that the introduction of the infinite component local fields with higher-order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ5-anomalous theories the introduction of the infinite component field makes the theory renormalizable or even superrenormalizable. I am indebted to J. Ambjōrn, P. Di Vecchia, H.B. Nielsen and L. Rozhansky for useful discussions. It is a pleasure to thank the Niels Bohr Institute (Copenhagen) where this work was completed for kind hospitality.

  2. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    Science.gov (United States)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  3. Field theory and the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, E [Orsay, LPT (France)

    2014-07-01

    This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.

  4. Plasma effective field theory advertised, then illustrated by e, p, H-atom gas

    International Nuclear Information System (INIS)

    Brown, L.S.

    2001-01-01

    The first part is a lightning fast overview of the application of ideas of modern effective quantum field theory (which originated in elementary particle theory) to plasma physics. An exhaustive account is presented in a long report with L. G. Yaffe which contains all the details set out in a self-contained and pedagogical fashion. The second part shows how the low temperature but dilute limit of the partition function at two-loop order describes a gas of electrons, protons, and hydrogen atoms in their ground state. Hydrogen atoms emerge automatically from the general framework which does not begin with any explicit consideration of atoms. (orig.)

  5. Euler-Poincare reduction for discrete field theories

    International Nuclear Information System (INIS)

    Vankerschaver, Joris

    2007-01-01

    In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed

  6. Spin-polarized neutron matter at different orders of chiral effective field theory

    OpenAIRE

    Sammarruca, F.; Machleidt, R.; Kaiser, N.

    2015-01-01

    Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...

  7. Unified field theory

    International Nuclear Information System (INIS)

    Vollendorf, F.

    1976-01-01

    A theory is developed in which the gravitational as well as the electromagnetic field is described in a purely geometrical manner. In the case of a static central symmetric field Newton's law of gravitation and Schwarzschild's line element are derived by means of an action principle. The same principle leads to Fermat's law which defines the world lines of photons. (orig.) [de

  8. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  9. Austerity and geometric structure of field theories

    International Nuclear Information System (INIS)

    Kheyfets, A.

    1986-01-01

    The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories

  10. Heterotic/Type-II duality and its field theory avatars

    International Nuclear Information System (INIS)

    Kiritsis, Elias

    1999-01-01

    In these lecture notes, I will describe heterotic/type-II duality in six and four dimensions. When supersymmetry is the maximal N=4 it will be shown that the duality reduces in the field theory limit to the Montonen-Olive duality of N=4 Super Yang-Mills theory. We will consider further compactifications of type II theory on Calabi-Yau manifolds. We will understand the physical meaning of geometric conifold singularities and the dynamics of conifold transitions. When the CY manifold is a K3 fibration we will argue that the type-II ground-state is dual to the heterotic theory compactified on K3xT 2 . This allows an exact computation of the low effective action. Taking the field theory limit, α ' →0, we will recover the Seiberg-Witten non-perturbative solution of N=2 gauge theory

  11. On the covariant formalism of the effective field theory of gravity and its cosmological implications

    DEFF Research Database (Denmark)

    Codello, Alessandro; Jain, Rajeev Kumar

    2017-01-01

    Following our previous work wherein the leading order effective action was computed in the covariant effective field theory of gravity, here we specialize the effective action to the FRW spacetime and obtain the effective Friedmann equations. In particular, we focus our attention on studying...... expansion of the universe at the present epoch even in the absence of a cosmological constant. We briefly discuss some phenomenological consequences of our results....

  12. On background-independent open-string field theory

    International Nuclear Information System (INIS)

    Witten, E.

    1992-01-01

    A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator

  13. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge

    2000-01-01

    A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)

  14. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  15. Effective field theory, electric dipole moments and electroweak baryogenesis

    International Nuclear Information System (INIS)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-01-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  16. Effective field theory, electric dipole moments and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba; White, Graham [ARC Centre of Excellence for Particle Physics at the Terascale School of Physics and Astronomy,Monash University,Victoria 3800 (Australia); Yue, Jason [Department of Physics, National Taiwan Normal University,Taipei 116, Taiwan (China); ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Sydney,NSW 2006 (Australia)

    2017-03-07

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  17. Metric quantum field theory: A preliminary look

    International Nuclear Information System (INIS)

    Watson, W.N.

    1988-01-01

    Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics

  18. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  19. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  20. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    Science.gov (United States)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  1. Relativistic field theory of neutron stars and their hyperon populations

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1986-01-01

    The nuclear many-body problem is examined by means of the formulation of an effective relativistic field theory of interacting hadrons. A relativistic field theory of hadronic matter is especially appropriate for the description of hot or dense matter, because of the appearance of antiparticles and higher baryon resonances and because it automatically respects causality. 8 refs., 7 figs., 1 tab

  2. Electric dipole moments of light nuclei in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)

    2014-07-01

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.

  3. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  4. A simple solvable model of quantum field theory of open strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; AN SSSR, Moscow

    1990-01-01

    A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)

  5. Knots, topology and quantum field theories

    International Nuclear Information System (INIS)

    Lusanna, L.

    1989-01-01

    The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks

  6. An introduction to conformal field theory in two dimensions and string theory

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1989-01-01

    This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields

  7. Path integral quantization of parametrized field theory

    International Nuclear Information System (INIS)

    Varadarajan, Madhavan

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory

  8. Nonlocal quantum field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1976-01-01

    The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version

  9. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    Science.gov (United States)

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  10. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  11. Fundamental problems of gauge field theory

    International Nuclear Information System (INIS)

    Velo, G.; Wightman, A.S.

    1986-01-01

    As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now provides the standard language for the description of Nature; QCD and the standard model of the electroweak interactions illustrate this point. It is a basic task of mathematical physics to provide a solid foundation for these developments by putting the theory in a physically transparent and mathematically rigorous form. The lecture notes collected in this volume concentrate on the many unsolved problems which arise here, and on the general ideas and methods which have been proposed for their solution. In particular, the use of rigorous renormalization group methods to obtain control over the continuum limit of lattice gauge field theories, the exploration of the extraordinary enigmatic connections between Kac-Moody-Virasoro algebras and string theory, and the systematic use of the theory of local algebras and indefinite metric spaces to classify the charged C* states in gauge field theories are mentioned

  12. Mathematical methods of many-body quantum field theory

    CERN Document Server

    Lehmann, Detlef

    2004-01-01

    Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...

  13. Effective field theory approach to open heavy flavor production in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Department of Physics and Astronomy, University of California,Los Angeles, California 90095 (United States); Mani L. Bhaumik Institute for Theoretical Physics, University of California,Los Angeles, California 90095 (United States); Theoretical Division, Los Alamos National Laboratory,Los Alamos, New Mexico 87545 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, New Mexico 87545 (United States)

    2017-03-28

    We develop a version of Soft Collinear Effective Theory (SCET) which includes finite quark masses, as well as Glauber gluons that describe the interaction of collinear partons with QCD matter. In the framework of this new effective field theory, labeled SCET{sub M,G}, we derive the massive splitting functions in the vacuum and the QCD medium for the processes Q→Qg, Q→gQ and g→QQ̄. The numerical effects due to finite quark masses are sizable and our results are consistent with the traditional approach to parton energy loss in the soft gluon emission limit. In addition, we present a new framework for including the medium-induced full splitting functions consistent with next-to-leading order calculations in QCD for inclusive hadron production. Finally, we show numerical results for the suppression of D- and B-mesons in heavy ion collisions at √(s{sub NN})=5.02 TeV and 2.76 TeV and compare to available data from the LHC.

  14. A novel string field theory solving string theory by liberating left and right movers

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2014-01-01

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model

  15. Hidden gravity in open-string field theory

    International Nuclear Information System (INIS)

    Siegel, W.

    1994-01-01

    We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory

  16. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  17. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  18. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  19. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  20. Twistor-theoretic approach to topological field theories

    International Nuclear Information System (INIS)

    Ito, Kei.

    1991-12-01

    The two-dimensional topological field theory which describes a four-dimensional self-dual space-time (gravitational instanton) as a target space, which we constructed before, is shown to be deeply connected with Penrose's 'twistor theory'. The relations are presented in detail. Thus our theory offers a 'twistor theoretic' approach to topological field theories. (author)

  1. The S-matrix of superstring field theory

    International Nuclear Information System (INIS)

    Konopka, Sebastian

    2015-01-01

    We show that the classical S-matrix calculated from the recently proposed superstring field theories give the correct perturbative S-matrix. In the proof we exploit the fact that the vertices are obtained by a field redefinition in the large Hilbert space. The result extends to include the NS-NS subsector of type II superstring field theory and the recently found equations of motions for the Ramond fields. In addition, our proof implies that the S-matrix obtained from Berkovits’ WZW-like string field theory then agrees with the perturbative S-matrix to all orders.

  2. A non-linear field theory

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A unified field theory of mesons and their particle sources is proposed and considered in its classical aspects. The theory has static solutions of a singular nature, but finite energy, characterized by spin directions; the number of such entities is a rigorously conserved constant of motion; they interact with an external meson field through a derivative-type coupling with the spins, akin to the formalism of strong-coupling meson theory. There is a conserved current identifiable with isobaric spin, and another that may be related to hypercharge. The postulates include one constant of the dimensions of length, and another that is conjecture necessarily to have the value (h/2π)c, or perhaps 1/2(h/2π)c, in the quantized theory. (author). 5 refs

  3. Statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Samuel, S.A.

    1979-05-01

    Field theory methods are applied to statistical mechanics. Statistical systems are related to fermionic-like field theories through a path integral representation. Considered are the Ising model, the free-fermion model, and close-packed dimer problems on various lattices. Graphical calculational techniques are developed. They are powerful and yield a simple procedure to compute the vacuum expectation value of an arbitrary product of Ising spin variables. From a field theorist's point of view, this is the simplest most logical derivation of the Ising model partition function and correlation functions. This work promises to open a new area of physics research when the methods are used to approximate unsolved problems. By the above methods a new model named the 128 pseudo-free vertex model is solved. Statistical mechanics intuition is applied to field theories. It is shown that certain relativistic field theories are equivalent to classical interacting gases. Using this analogy many results are obtained, particularly for the Sine-Gordon field theory. Quark confinement is considered. Although not a proof of confinement, a logical, esthetic, and simple picture is presented of how confinement works. A key ingredient is the insight gained by using an analog statistical system consisting of a gas of macromolecules. This analogy allows the computation of Wilson loops in the presence of topological vortices and when symmetry breakdown occurs in the topological quantum number. Topological symmetry breakdown calculations are placed on approximately the same level of rigor as instanton calculations. The picture of confinement that emerges is similar to the dual Meissner type advocated by Mandelstam. Before topological symmetry breakdown, QCD has monopoles bound linearly together by three topological strings. Topological symmetry breakdown corresponds to a new phase where these monopoles are liberated. It is these liberated monopoles that confine quarks. 64 references

  4. Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach

    International Nuclear Information System (INIS)

    Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.

    2005-01-01

    It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei

  5. Views of a devil's advocate -- Fundamental challenges to effective field theory treatments of nuclear physics

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1998-04-01

    The physics goals of the effective field theory program for nuclear phenomena are outlined. It is pointed out that there are multiple schemes for implementing EFT and it is presently not clear if any of these schemes is viable. Most of the applications of effective field theory ideas have been on nucleon-nucleon scattering. It is argued that this is little more than curve fitting and that other quantities need to be calculated to test the ideas. It is shown that EFT methods work well for certain bound state properties of the deuteron electric form factor. However, it is also shown that this success depends sensitively on the fact that the majority of the probability of the deuteron's wave function is beyond the range of the potential. This circumstance is special to the deuteron suggesting that it will be very difficult to achieve the same kinds of success for tightly bound nuclei

  6. A Guided Inquiry Activity for Teaching Ligand Field Theory

    Science.gov (United States)

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  7. Organization Theory: Bright Prospects for a Permanently Failing Field

    NARCIS (Netherlands)

    P.P.M.A.R. Heugens (Pursey)

    2008-01-01

    textabstractOrganization theory is a paradoxical field of scientific inquiry. It has struggled for more than fifty years to develop a unified theory of organizational effectiveness under girded by a coherent set of assumptions, and it has thus far failed to produce one. Yet, by other standards it is

  8. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  9. Neutrinoless double β decay and effective field theory

    International Nuclear Information System (INIS)

    Prezeau, G.; Ramsey-Musolf, M.; Vogel, Petr

    2003-01-01

    We analyze neutrinoless double β decay (0νββ decay) mediated by heavy particles from the standpoint of effective field theory. We show how symmetries of the 0νββ-decay quark operators arising in a given particle physics model determine the form of the corresponding effective, hadronic operators. We classify the latter according to their symmetry transformation properties as well as the order at which they appear in a derivative expansion. We apply this framework to several particle physics models, including R-parity violating supersymmetry (RPV SUSY) and the left-right symmetric model (LRSM) with mixing and a right-handed Majorana neutrino. We show that, in general, the pion exchange contributions to 0νββ decay dominate over the short-range four-nucleon operators. This confirms previously published RPV SUSY results and allows us to derive new constraints on the masses in the LRSM. In particular, we show how a nonzero mixing angle ζ in the left-right symmetry model produces a new potentially dominant contribution to 0νββ decay that substantially modifies previous limits on the masses of the right-handed neutrino and boson stemming from constraints from 0νββ decay and vacuum stability requirements

  10. Local algebras in Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Guerra, Francesco.

    1975-06-01

    The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr

  11. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1978-03-01

    Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references

  12. Finite-temperature field theory

    International Nuclear Information System (INIS)

    Kapusta, J.I.; Landshoff, P.V.

    1989-01-01

    Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)

  13. Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level

    International Nuclear Information System (INIS)

    Saririan, K.

    1997-05-01

    In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model

  14. Four-dimensional boson field theory. II. Existence

    International Nuclear Information System (INIS)

    Baker, G.A. Jr.

    1986-01-01

    The existence of the continuum, quantum field theory found by Baker and Johnson [G. A. Baker, Jr. and J. D. Johnson, J. Phys. A 18, L261 (1985)] to be nontrivial is proved rigorously. It is proved to satisfy all usual requirements of such a field theory, except rotational invariance. Currently known information is consistent with rotational invariance however. Most of the usual properties of other known Euclidean boson quantum field theories hold here, in a somewhat weakened form. Summability of the sufficiently strongly ultraviolet cutoff bare coupling constant perturbation series is proved as well as a nonzero radius of convergence for high-temperature expansions of the corresponding continuous-spin Ising model. The description of the theory by these two series methods is shown to be equivalent. The field theory is probably not asymptotically free

  15. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  16. Topological BF field theory description of topological insulators

    International Nuclear Information System (INIS)

    Cho, Gil Young; Moore, Joel E.

    2011-01-01

    Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.

  17. Quantum Field Theory in a Semiotic Perspective

    CERN Document Server

    Günter Dosch, Hans; Sieroka, Norman

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...

  18. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  19. Quantum field theory for the gifted amateur

    CERN Document Server

    Lancaster, Tom

    2014-01-01

    Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...

  20. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  1. Quantum field theory in 2+1 dimensions

    International Nuclear Information System (INIS)

    Marino, E.C.

    1998-01-01

    An introductory review is made of many outstanding features of Quantum Field Theory formulated in three-dimensional spacetime. These include topological properties, the Huygens Principle, the Coulomb potential, topological excitations like vortices and skyrmions, dynamical mass generation, fractional spin and statistics, duality nd bosonization. Theories including the Maxwell-Chern-Simons, Abelian Higgs and C P 1 -Nonlinear Sigma Model are used to illustrate the different features. Applications to High-T c Superconductivity and to the Quantum Hall Effect are also presented. (author)

  2. Towards a chiral effective field theory of nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.

    2008-01-01

    As a preliminary attempt to formulate an effective theory of nuclear matter, we undertake to calculate the effective pole parameters of nucleon in such a medium. We begin with the virial expansion of these parameters to leading order in nucleon number density in terms of the on-shell NN scattering amplitude. We then proceed to calculate the same parameters in the effective theory, getting a formula for the nucleon mass-shift to leading order, that was known already to give too large a value to be acceptable at normal nuclear density. At this point the virial expansion suggests a modification of this formula, which we carry out following Weinberg's method for the two-nucleon system in the effective theory. The results are encouraging enough to attempt a complete, next-to-leading order calculation of the off-shell nucleon spectral function in nuclear medium. (author)

  3. Noncommutative quantum field theory: attempts on renormalization

    International Nuclear Information System (INIS)

    Popp, L.

    2002-05-01

    Quantum field theory is the art of dealing with problems at small distances or, equivalently, large momenta. Although there are different approaches (string theory, for example), it is generally accepted that these principles cannot be extrapolated to arbitrarily small distances as can be shown by applying simple, heuristic arguments. Therefore, the concept of space-time as a differential manifold has to be replaced by something else at such scales, the road we have chosen to follow is noncommutative geometry. We start from the basic relation [ x μ , x ν ] = i θ { μν}, where θ is a (usually) constant, antisymmetric matrix. This relation amounts to a noncommutativity of position measurements, or, put differently, the points are somehow 'smeared' out, which should have a positive effect on field theory since infinities arise from point-like interactions. However, it was shown that the effects of the commutation relation (leading to the so-called Moyal product) do not necessarily cure the divergences but introduce a new kind of problem: whereas UV-divergent integrals are rendered finite by phase factors (that arise as a consequence of the Moyal product), this same kind of 'regularization' introduces IR-divergences which led to the name 'UV/IR-mixing' for this problem. In order to overcome this peculiarity, one expands the action in θ which is immediate for the phase factors but requires the so-called Seiberg-Witten map for the fields. In this thesis, we emphasize the derivation of the Seiberg-Witten map by using noncommutative Lorentz symmetries, which is more general than the original derivation. After that, we concentrate on a treatment of θ-expanded theories and their renormalization, where it can be shown that the photon self-energy of noncommutative Maxwell theory can be renormalized to all orders in hbar and θ when the freedom in the Seiberg-Witten map (there are ambiguities in the map) is exploited. Although this is very promising, it cannot be

  4. New results in topological field theory and Abelian gauge theory

    International Nuclear Information System (INIS)

    Thompson, G.

    1995-10-01

    These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs

  5. New results in topological field theory and Abelian gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G

    1995-10-01

    These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs.

  6. Screening effects in a polyelectrolyte brush: self-consistent-field theory

    NARCIS (Netherlands)

    Zhulina, E.B.; Klein Wolterink, J.; Borisov, O.V.

    2000-01-01

    We have developed an analytical self-consistent-field (SCF) theory describing conformations of weakly charged polyelectrolyte chains tethered to the solid-liquid interface and immersed in a solution of low molecular weight salt. Depending on the density of grafting of the polyelectrolytes to the

  7. Vacuum instability in scalar field theories

    International Nuclear Information System (INIS)

    McKane, A.J.

    1978-09-01

    Scalar field theories with an interaction of the form gphisup(N) have no stable vacuum state for some range of values of their coupling constant, g. This thesis reports calculations of vacuum instability in such theories. Using the idea that the tunnelling out of the vacuum state is described by the instanton solutions of the theory, the imaginary part of the vertex functions is calculated for the massless theory in the one-loop approximation, near the dimension dsub(c) = 2N/N-2, where the theory is just renormalisable. The calculation differs from previous treatments in that dimensional regularisation is used to control the ultra-violet divergences of the theory. In this way previous analytic calculations in conformally invariant field theories are extended to the case where the theory is almost conformally invariant, since it is now defined in dsub(c) - epsilon dimensions (epsilon > 0). (author)

  8. Study of one dimensional magnetic system via field theory

    International Nuclear Information System (INIS)

    Talim, S.L.

    1988-04-01

    We present a study of one-dimensional magnetic system using field theory methods. We studied the discreteness effects in a classical anisotropic one dimensional antiferromagnet in an external magnetic field. It is shown that for TMMC, at the temperatures and magnetic fields where most experiments have been done, the corrections are small and can be neglected. (author)

  9. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.

    1988-01-01

    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  10. Quantum field theory in a semiotic perspective

    International Nuclear Information System (INIS)

    Dosch, H.G.

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  11. Quantum field theory in a semiotic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)

    2005-07-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  12. Field theories with multiple fermionic excitations

    International Nuclear Information System (INIS)

    Crawford, J.P.

    1978-01-01

    The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation

  13. Renormalization of gauge theories in the background-field approach arXiv

    CERN Document Server

    Barvinsky, Andrei O.; Herrero-Valea, Mario; Sibiryakov, Sergey M.; Steinwachs, Christian F.

    Using the background-field method we demonstrate the Becchi-Rouet-Stora-Tyutin (BRST) structure of counterterms in a broad class of gauge theories. Put simply, we show that gauge invariance is preserved by renormalization in local gauge field theories whenever they admit a sensible background-field formulation and anomaly-free path integral measure. This class encompasses Yang-Mills theories (with possibly Abelian subgroups) and relativistic gravity, including both renormalizable and non-renormalizable (effective) theories. Our results also hold for non-relativistic models such as Yang-Mills theories with anisotropic scaling or Horava gravity. They strengthen and generalize the existing results in the literature concerning the renormalization of gauge systems. Locality of the BRST construction is emphasized throughout the derivation. We illustrate our general approach with several explicit examples.

  14. Light-front quantization of field theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.

  15. Light-front quantization of field theory

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs

  16. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  17. Flat holography: aspects of the dual field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Arjun [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Basu, Rudranil [Saha Institute of Nuclear Physics,Block AF, Sector 1, Bidhannagar, Kolkata 700068 (India); Kakkar, Ashish [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India); Mehra, Aditya [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India)

    2016-12-29

    Assuming the existence of a field theory in D dimensions dual to (D+1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk – 2d boundary case and then focus on the 4d bulk – 3d boundary example, where the symmetry in question is the infinite dimensional BMS{sub 4} algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under the conformal Carroll group in D=4. We explore the different sectors within these Carrollian gauge theories and investigate the symmetries of the equations of motion to find that an infinite ultra-relativistic conformal structure arises in each case.

  18. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, P., E-mail: pkurian@gmx.com [National Human Genome Center, Howard University, College of Medicine, Washington, DC (United States); Verzegnassi, C. [Department of Chemistry and Environmental Physics, University of Udine, Udine (Italy); Association for Medicine and Complexity (AMeC), Trieste (Italy)

    2016-01-28

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  19. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    International Nuclear Information System (INIS)

    Kurian, P.; Verzegnassi, C.

    2016-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  20. Chameleon field theories

    International Nuclear Information System (INIS)

    Khoury, Justin

    2013-01-01

    Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this paper, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: (i) the range of the chameleon force at cosmological density today can be at most ∼Mpc; (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We show how requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound of m −3 ) 1/3 eV for gravitational strength coupling, whereas fifth force experiments place a lower bound of m > 0.0042 eV. An improvement of less than a factor of 2 in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. (paper)

  1. Pilot-wave approaches to quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Struyve, Ward, E-mail: Ward.Struyve@fys.kuleuven.be [Institute of Theoretical Physics, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Institute of Philosophy, K.U.Leuven, Kardinaal Mercierplein 2, B-3000 Leuven (Belgium)

    2011-07-08

    The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of deBroglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as 'measurement' and 'observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.

  2. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    International Nuclear Information System (INIS)

    Papenbrock, T; Weidenmüller, H A

    2015-01-01

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band. (paper)

  3. Dual field theories of quantum computation

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N

  4. Axial-gauge formulation of a three-dimensional field theory

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1985-01-01

    Since the non-Abelian version of a recently formulated gauge theory in two spatial dimensions gives rise to a nonlinear constraint upon the fields in the radiation-gauge approach, one is motivated to attempt a description in terms of the axial gauge. This is accomplished in the Abelian version of the model, with results similar to those encountered in the radiation gauge. The non-Abelian case is then formally solved in the same gauge, it being subsequently shown, however, that the theory is not covariant. It is argued on the basis of perturbation theory that such noncovariance is a real effect which is not readily circumvented by modification of the field transformation properties

  5. Fractional Quantum Field Theory: From Lattice to Continuum

    Directory of Open Access Journals (Sweden)

    Vasily E. Tarasov

    2014-01-01

    Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.

  6. Calculation of doublet capture rate for muon capture in deuterium within chiral effective field theory

    Czech Academy of Sciences Publication Activity Database

    Adam, Jiří; Tater, Miloš; Truhlík, Emil; Epelbaum, E.; Machleidt, R.; Ricci, P.

    2012-01-01

    Roč. 709, 1-2 (2012), s. 93-100 ISSN 0370-2693 R&D Projects: GA MŠk LC06002; GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : negative muon capture * deuteron * effective field theory * meson exchange currents Subject RIV: BE - Theoretical Physics Impact factor: 4.569, year: 2012

  7. Quantum-field theories as representations of a single $^\\ast$-algebra

    OpenAIRE

    Raab, Andreas

    2013-01-01

    We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.

  8. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  9. Calculations in perturbative string field theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1987-01-01

    The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules

  10. Introduction to conformal field theory and string theory

    International Nuclear Information System (INIS)

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs

  11. A simple proof of orientability in colored group field theory.

    Science.gov (United States)

    Caravelli, Francesco

    2012-01-01

    Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.

  12. Quantum field theory in a nutshell

    CERN Document Server

    Zee, A

    2010-01-01

    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading

  13. Thermo field theory versus imaginary time formalism

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Nishino, H.; Grigjanis, R.

    1983-11-01

    We calculate a two-loop diagram at finite temperature to compare Thermo Field Theory (=Th.F.Th.) with the conventional imaginary time formalism (=Im.T.F.). The summation over the Matsubara frequency in Im.T.F. is carried out at two-loop level, and the result is shown to coincide with that of Th.F.Th. We confirm that in Im.T.F. the temperature dependent divergences cancel out at least in the calculation of effective potential of phi 4 theory, as in Th.F.Th. (author)

  14. Workshop on low-dimensional quantum field theory and its applications

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi

    1990-02-01

    The workshop on 'Low-Dimensional Quantum Field Theory and its Applications' was held at INS on December 18 - 20, 1989 with about seventy participants. Some pedagogical reviews and the latest results were delivered on the recent topics related to both solid-state and particle physics. Among them are quantum Hall effect, high T c superconductivity and related topics in low-dimensional quantum field theory. Many active discussions were made on these issues. (J.P.N.)

  15. A Yang-Mills structure for string field theory

    International Nuclear Information System (INIS)

    Tsousheung Tsun

    1990-01-01

    String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)

  16. Two Ramond-Ramond corrections to type II supergravity via field-theory amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiarizadeh, Hamid R. [Sirjan University of Technology, Department of Physics, Sirjan (Iran, Islamic Republic of)

    2017-12-15

    Motivated by the standard form of the string-theory amplitude, we calculate the field-theory amplitude to complete the higher-derivative terms in type II supergravity theories in their conventional form. We derive explicitly the O(α{sup '3}) interactions for the RR (Ramond-Ramond) fields with graviton, B-field and dilaton in the low-energy effective action of type II superstrings. We check our results by comparison with previous work that has been done by the other methods, and we find exact agreement. (orig.)

  17. Exact mean-field theory of ionic solutions: non-Debye screening

    International Nuclear Information System (INIS)

    Varela, L.M.; Garcia, Manuel; Mosquera, Victor

    2003-01-01

    The main aim of this report is to analyze the equilibrium properties of primitive model (PM) ionic solutions in the formally exact mean-field formalism. Previously, we review the main theoretical and numerical results reported throughout the last century for homogeneous (electrolytes) and inhomogeneous (electric double layer, edl) ionic systems, starting with the classical mean-field theory of electrolytes due to Debye and Hueckel (DH). In this formalism, the effective potential is derived from the Poisson-Boltzmann (PB) equation and its asymptotic behavior analyzed in the classical Debye theory of screening. The thermodynamic properties of electrolyte solutions are briefly reviewed in the DH formalism. The main analytical and numerical extensions of DH formalism are revised, ranging from the earliest extensions that overcome the linearization of the PB equation to the more sophisticated integral equation techniques introduced after the late 1960s. Some Monte Carlo and molecular dynamic simulations are also reviewed. The potential distributions in an inhomogeneous ionic system are studied in the classical PB framework, presenting the classical Gouy-Chapman (GC) theory of the electric double layer (edl) in a brief manner. The mean-field theory is adequately contextualized using field theoretic (FT) results and it is proven that the classical PB theory is recovered at the Gaussian or one-loop level of the exact FT, and a systematic way to obtain the corrections to the DH theory is derived. Particularly, it is proven following Kholodenko and Beyerlein that corrections to DH theory effectively lead to a renormalization of charges and Debye screening length. The main analytical and numerical results for this non-Debye screening length are reviewed, ranging from asymptotic expansions, self-consistent theory, nonlinear DH results and hypernetted chain (HNC) calculations. Finally, we study the exact mean-field theory of ionic solutions, the so-called dressed-ion theory

  18. Growing up with field theory

    International Nuclear Information System (INIS)

    Vajskopf, V.F.

    1982-01-01

    The article deals with the history of the development of quantum electrodynamics since the date of publishing the work by P.A.M. Dirac ''The Quantum Theory of the Emission and Absorption of Radiation''. Classic ''before-Dirac'' electrodynamics related with the names of Maxwell, Lorenz, Hertz, is outlined. Work of Bohr and Rosenfeld is shown to clarify the physical sense of quantized field and to reveal the existence of uncertainties between the strengths of different fields. The article points to the significance of the article ''Quantum theory of radiation'' by E. Fermi which clearly describes the Dirac theory of radiation, relativistic wave equation and fundamentals of quantum electrodynamics. Shown is work on elimination of troubles related with the existence of states with negative kinetic energy or with negative mass. Hypothesis on the Dirac filled-in vacuum led to understanding of the existence of antiparticles and two unknown till then fundamental processes - pair production and annihilation. Ways of fighting against the infinite quantities in quantum electrodynamics are considered. Renormalization of the theory overcame all the infinities and gave a pattern for calculation of any processes of electron interactions with electromagnetic field to any desired accuracy

  19. Field theory of propagating reaction-diffusion fronts

    International Nuclear Information System (INIS)

    Escudero, C.

    2004-01-01

    The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive at results already confirmed by numerical simulations

  20. Two problems in thermal field theory

    Indian Academy of Sciences (India)

    In this talk, I review recent progress made in two areas of thermal field theory. In par- ticular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate. Keywords. Thermal field theory; quark-gluon plasma. PACS Nos 11.10.Wx; 12.38.

  1. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  2. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  3. Topological quantum field theory and four manifolds

    CERN Document Server

    Marino, Marcos

    2005-01-01

    The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...

  4. Analytic aspects of rational conformal field theories

    International Nuclear Information System (INIS)

    Kiritsis, E.B.; Lawrence Berkeley Lab., CA

    1990-01-01

    The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)

  5. A Field Theory with Curvature and Anticurvature

    Directory of Open Access Journals (Sweden)

    M. I. Wanas

    2014-01-01

    Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.

  6. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  7. Gauge field theories an introduction with applications

    CERN Document Server

    Guidry, Mike

    1991-01-01

    Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises

  8. On single-time reduction in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1984-01-01

    It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory

  9. On a formulation of qubits in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Jacques, E-mail: calmet@ira.uka.de [Karlsruhe Institute of Technology (KIT), Institute for Cryptography and Security, Am Fasanengarten 5, 76131 Karlsruhe (Germany); Calmet, Xavier, E-mail: x.calmet@sussex.ac.uk [Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2012-01-30

    Qubits have been designed in the framework of quantum mechanics. Attempts to formulate the problem in the language of quantum field theory have been proposed already. In this short Letter we refine the meaning of qubits within the framework of quantum field theory. We show that the notion of gauge invariance naturally leads to a generalization of qubits to QFTbits which are then the fundamental carriers of information from the quantum field theoretical point of view. The goal of this Letter is to stress the availability of such a generalized concept of QFTbits. -- Highlights: ► Gauge invariant qubits are proposed. ► Non-linear QFT effects are discussed. ► Entanglement of qubits in QFT.

  10. Quantum field theories in two dimensions collected works of Alexei Zamolodchikov

    CERN Document Server

    Pugai, Yaroslav; Zamolodchikov, Alexander

    2012-01-01

    Volume 1 is a collection of reprinted works of Alexei Zamolodchikov who was a prominent theoretical physicist of his time. It contains his works on conformal field theories, 2D quantum gravity, and Liouville theory. These original contributions of Alexei Zamolodchikov have a profound effect on shaping the fast developing areas of theoretical physics. His ideas are expressed lucidly, such as the recursive relation for conformal blocks and the structure of conformal bootstrap in Liouville theory, including the boundary Liouville theory. These ideas are at the foundation of the subject and they are of great interest to a wide community of physicists and mathematicians working in diverse areas. This volume is a part of the 2-volume collection of remarkable research papers that can be used as an advanced textbook by graduate students specializing in string theory, conformal field theory and integrable models of QFT. It is also highly relevant to experts in these fields. Volume 2 includes Alexei Zamolodchikov's w...

  11. Exclusion Statistics in Conformal Field Theory Spectra

    International Nuclear Information System (INIS)

    Schoutens, K.

    1997-01-01

    We propose a new method for investigating the exclusion statistics of quasiparticles in conformal field theory (CFT) spectra. The method leads to one-particle distribution functions, which generalize the Fermi-Dirac distribution. For the simplest SU(n) invariant CFTs we find a generalization of Gentile parafermions, and we obtain new distributions for the simplest Z N -invariant CFTs. In special examples, our approach reproduces distributions based on 'fractional exclusion statistics' in the sense of Haldane. We comment on applications to fractional quantum Hall effect edge theories. copyright 1997 The American Physical Society

  12. Phenomenology of noncommutative field theories

    International Nuclear Information System (INIS)

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model

  13. Methods of thermal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)

    1998-11-01

    We introduce the basic ideas of thermal field theory and review its path integral formulation. We then discuss the problems of QCD theory at high and at low temperatures. At high temperature the naive perturbation expansion breaks down and is cured by resummation. We illustrate this improved perturbation expansion with the g{sup 2}{phi}{sup 4} theory and then sketch its application to find the gluon damping rate in QCD theory. At low temperature the hadronic phase is described systematically by the chiral perturbation theory. The results obtained from this theory for the quark and the gluon condensates are discussed. (author) 22 refs., 6 figs.

  14. Views of a devil`s advocate -- Fundamental challenges to effective field theory treatments of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D.

    1998-04-01

    The physics goals of the effective field theory program for nuclear phenomena are outlined. It is pointed out that there are multiple schemes for implementing EFT and it is presently not clear if any of these schemes is viable. Most of the applications of effective field theory ideas have been on nucleon-nucleon scattering. It is argued that this is little more than curve fitting and that other quantities need to be calculated to test the ideas. It is shown that EFT methods work well for certain bound state properties of the deuteron electric form factor. However, it is also shown that this success depends sensitively on the fact that the majority of the probability of the deuteron`s wave function is beyond the range of the potential. This circumstance is special to the deuteron suggesting that it will be very difficult to achieve the same kinds of success for tightly bound nuclei.

  15. N-particle effective generators of the Poincare group derived from a field theory

    International Nuclear Information System (INIS)

    Krueger, A.; Gloeckle, W.

    1999-01-01

    In quantum mechanics the principle of relativity is guaranteed by unitary operators being associated with inhomogeneous Lorentz transformations ensuring that quantum mechanical expectation values remain unchanged. In field theory the ten generators of inhomogeneous Lorentz transformations can be derived from a scalar Lagrangian density describing the physical system of interest. They obey the well known Poincare Lie algebra. For interacting systems some of the generators become operators allowing for particle production or annihilation so that the generators act on the full Fock space. However, given a field theory on the whole Fock space we prove that it is possible to construct generators acting on a subspace with a finite number of particles by one and the same unitary transformation of all generators leaving the Poincare algebra valid. In this manner it is in principle possible to derive a relativistically invariant theory of interacting particles on a Hilbert space with a finite number of particles from a field theoretical Lagrangian. Refs. 3 (author)

  16. String fields, higher spins and number theory

    CERN Document Server

    Polyakov, Dimitri

    2018-01-01

    The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.

  17. Two field formulation of closed string field theory

    International Nuclear Information System (INIS)

    Bogojevic, A.R.

    1990-09-01

    A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)

  18. Introduction to functional and path integral methods in quantum field theory

    International Nuclear Information System (INIS)

    Strathdee, J.

    1991-11-01

    The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs

  19. Nilpotent weights in conformal field theory

    Directory of Open Access Journals (Sweden)

    S. Rouhani

    2001-12-01

    Full Text Available   Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.

  20. Schrodinger representation in renormalizable quantum field theory

    International Nuclear Information System (INIS)

    Symanzik, K.

    1983-01-01

    The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward

  1. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  2. Analysis of interacting quantum field theory in curved spacetime

    International Nuclear Information System (INIS)

    Birrell, N.D.; Taylor, J.G.

    1980-01-01

    A detailed analysis of interacting quantized fields propagating in a curved background spacetime is given. Reduction formulas for S-matrix elements in terms of vacuum Green's functions are derived, special attention being paid to the possibility that the ''in'' and ''out'' vacuum states may not be equivalent. Green's functions equations are obtained and a diagrammatic representation for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate space techniques for showing renormalizability are developed in Minkowski space, for lambdaphi 3 /sub() 4,6/ field theories. The extension of these techniques to curved spacetimes is considered. It is shown that the possibility of field theories becoming nonrenormalizable there cannot be ruled out, although, allowing certain modifications to the theory, phi 3 /sub( 4 ) is proven renormalizable in a large class of spacetimes. Finally particle production from the vacuum by the gravitational field is discussed with particular reference to Schwarzschild spacetime. We shed some light on the nonlocalizability of the production process and on the definition of the S matrix for such processes

  3. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1995-01-01

    The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)

  4. Geometric symmetries and topological terms in F-theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapfer, Andreas

    2016-08-25

    In this thesis we investigate topological aspects and arithmetic structures in quantum field theory and string theory. Particular focus is put on consistent truncations of supergravity and compactifications of F-theory. The first part treats settings of supersymmetry breaking in five dimensions. We focus on an N=4 to N=2 breaking in gauged supergravity. For certain classes of embedding tensors we can analyze the theory around the vacuum to a great extent. Importantly, one-loop corrections to Chern-Simons terms are generically induced which are independent of the supersymmetry-breaking scale. We investigate concrete examples of consistent truncations of supergravity and M-theory which show this N=4 to N=2 breaking pattern in five dimensions. In particular, we analyze necessary conditions for these consistent truncations to be used as effective theories for phenomenology by demanding consistency of the scale-independent corrections to Chern-Simons couplings. The second part is devoted to the study of anomalies and large gauge transformations in circle-reduced gauge theories and F-theory. We consider four- and six-dimensional matter-coupled gauge theories on the circle and classify all large gauge transformations that preserve the boundary conditions of the matter fields. Enforcing that they act consistently on one-loop Chern-Simons couplings in three and five dimensions explicitly yields all higher-dimensional gauge anomaly cancelation conditions. In the context of F-theory compactifications we identify the classified large gauge transformations along the circle with arithmetic structures on elliptically fibered Calabi-Yau manifolds via the dual M-theory setting. Integer Abelian large gauge transformations correspond to free basis shifts in the Mordell-Weil lattice of rational sections while special fractional non-Abelian large gauge transformations are matched to torsional shifts in the Mordell-Weil group. For integer non-Abelian large gauge transformations we

  5. Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories.

    Science.gov (United States)

    Roberts, Daniel A; Swingle, Brian

    2016-08-26

    As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound-the Lieb-Robinson bound-and the butterfly effect in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity v_{B}. Similarly, the Lieb-Robinson velocity places a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice models. Here, we argue that v_{B} is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free-particle computations to understand the role of strong coupling. We find that v_{B} remains constant or decreases with decreasing temperature. We also comment on experimental prospects and on the relationship between the butterfly velocity and signaling.

  6. Enhanced gauge symmetry and winding modes in double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, G. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Graña, M. [Institut de Physique Théorique, CEA/ Saclay,91191 Gif-sur-Yvette Cedex (France); Iguri, S. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Mayo, M. [Centro Atómico Bariloche,8400 S.C. de Bariloche (Argentina); Instituto Balseiro (CNEA-UNC) and CONICET,8400 S.C. de Bariloche (Argentina); Nuñez, C. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Universidad de Buenos Aires,1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, J.A. [Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2016-03-15

    We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1)×U(1) symmetry to SU(2)×SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with ((O(d+3,d+3))/(O(d+3)×O(d+3))) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.

  7. A general action for topological quantum field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-03-01

    Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs

  8. On the interplay between string theory and field theory

    International Nuclear Information System (INIS)

    Brunner, I.

    1998-01-01

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  9. On the interplay between string theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, I.

    1998-07-08

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T{sup 6}, which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  10. Brane configurations and 4D field theory dualities

    International Nuclear Information System (INIS)

    Brandhuber, A.; Sonnenschein, J.; Yankielowicz, S.

    1997-01-01

    We study brane configurations which correspond to field theories in four dimension with N=2 and N=1 supersymmetry. In particular we discuss brane motions that translate to Seiberg's duality in N=1 models recently studied by Elitzur, Giveon and Kutasov. We investigate, using the brane picture, the moduli spaces of the dual theories. Deformations of these models like mass terms and vacuum expectation values of scalar fields can be identified with positions of branes. The map of these deformations between the electric and dual magnetic theories is clarified. The models we study reproduce known field theory results and we provide an example of new dual pairs with N=1 supersymmetry. Possible relations between brane configurations and non-supersymmetric field theories are discussed. (orig.)

  11. Lattice field theories: non-perturbative methods of analysis

    International Nuclear Information System (INIS)

    Weinstein, M.

    1978-01-01

    A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references

  12. Mean-field magnetohydrodynamics and dynamo theory

    CERN Document Server

    Krause, F

    2013-01-01

    Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen

  13. A Kallosh theorem for BF-type topological field theory

    International Nuclear Information System (INIS)

    Birmingham, D.; Gibbs, R.; Mokhtari, S.

    1991-01-01

    A Kallosh theorem is established for the case of BF-type theories in three dimensions, including a coupling to Chern-Simons theory. The phase contribution to the one-loop off-shell effective action is computed for a two-parameter family of local covariant gauges. It is shown that the phase is independent of these parameters, and thus equals the 'no Vilkovisky-DeWitt' gauge result. The field space metric dependence of a corresponding calculation for generalized BF theory is briefly discussed. (orig.)

  14. 2D conformal field theories and holography

    International Nuclear Information System (INIS)

    Freidel, Laurent; Krasnov, Kirill

    2004-01-01

    It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions

  15. Experimental signature of scaling violation implied by field theories

    International Nuclear Information System (INIS)

    Tung, W.

    1975-01-01

    Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated

  16. Heterotic α ’-corrections in Double Field Theory

    OpenAIRE

    Bedoya, OscarInstituto de Astronomía y Física del Espacio (CONICET-UBA), Ciudad Universitaria, Buenos Aires, Argentina; Marqués, Diego(Instituto de Astronomía y Física del Espacio (CONICET-UBA), Ciudad Universitaria, Buenos Aires, Argentina); Núñez, Carmen(Instituto de Astronomía y Física del Espacio (CONICET-UBA), Ciudad Universitaria, Buenos Aires, Argentina)

    2014-01-01

    We extend the generalized flux formulation of Double Field Theory to include all the first order bosonic contributions to the α′ expansion of the heterotic string low energy effective theory. The generalized tangent space and duality group are enhanced by α′ corrections, and the gauge symmetries are generated by the usual (gauged) generalized Lie derivative in the extended space. The generalized frame receives derivative corrections through the spin connection with torsion, which is incorpora...

  17. Spectator interactions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Hill, Richard J.; Neubert, Matthias

    2003-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  18. Spectator Interactions in Soft-Collinear Effective Theory

    International Nuclear Information System (INIS)

    Hill, Richard J

    2002-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  19. Gyrokinetic field theory

    International Nuclear Information System (INIS)

    Sugama, H.

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  20. Conformal invariant quantum field theory and composite field operators

    International Nuclear Information System (INIS)

    Kurak, V.

    1976-01-01

    The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry