WorldWideScience

Sample records for effect characterization method

  1. A method for evaluating the effectiveness of site characterization measurements

    International Nuclear Information System (INIS)

    Ditmars, J.D.

    1987-01-01

    A quantitative approach for evaluating the effectiveness of site characterization measurement activities is developed and illustrated with an example application to hypothetical measurement schemes at a potential geologic repository site for radioactive waste. The method is a general one and could also be applied at sites for underground disposal of hazardous chemicals. The approach presumes that measurements will be undertaken to support predictions of the performance of some aspect of a constructed facility or natural system. It requires a quantitative performance objective, such as groundwater travel time or contaminant concentration, against which to compare predictions of performance. The approach recognizes that such predictions are uncertain because the measurements upon which they are based are uncertain. The effectiveness of measurement activities is quantified by a confidence index, β, that reflects the number of standard deviations separating the best estimate of performance from the predetermined performance objective. Measurements that reduce the uncertainty in predictions lead to increased values of β. 5 refs., 4 figs

  2. Characterization methods

    Energy Technology Data Exchange (ETDEWEB)

    Glass, J.T. [North Carolina State Univ., Raleigh (United States)

    1993-01-01

    Methods discussed in this compilation of notes and diagrams are Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and other surface analysis techniques (auger electron spectroscopy, x-ray photoelectron spectroscopy, electron energy loss spectroscopy, and scanning tunnelling microscopy). A comparative evaluation of different techniques is performed. In-vacuo and in-situ analyses are described.

  3. Characterization of Fabricated Photonic Crystal Fibers Using Effective Index Method

    OpenAIRE

    Faramarz E. Seraji

    2009-01-01

    In this paper, the characteristics of photonic crystal fibers (PCFs), which have been experimentally determined in the last few years in Iran's Telecom Research Center are analyzed and compared theoretically using an effective index method. The PCFs under investigation are fabricated with a high speed drawing process that has not yet been reported elsewhere. It was shown that at higher wavelengths in PCFs; the light field is confined in the core where in shorter wavelengths the field spread...

  4. Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization

    Science.gov (United States)

    Morency, C.

    2017-12-01

    Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Waste Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  6. Waste Characterization Methods

    International Nuclear Information System (INIS)

    Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-01-01

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream's generation, characterization, and management; and not merely a list of information sources.

  7. High precision micro-scale Hall Effect characterization method using in-line micro four-point probes

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Lin, Rong

    2008-01-01

    Accurate characterization of ultra shallow junctions (USJ) is important in order to understand the principles of junction formation and to develop the appropriate implant and annealing technologies. We investigate the capabilities of a new micro-scale Hall effect measurement method where Hall...... effect is measured with collinear micro four-point probes (M4PP). We derive the sensitivity to electrode position errors and describe a position error suppression method to enable rapid reliable Hall effect measurements with just two measurement points. We show with both Monte Carlo simulations...... and experimental measurements, that the repeatability of a micro-scale Hall effect measurement is better than 1 %. We demonstrate the ability to spatially resolve Hall effect on micro-scale by characterization of an USJ with a single laser stripe anneal. The micro sheet resistance variations resulting from...

  8. Inverse method for effects characterization from ultrasonic b-scan images

    International Nuclear Information System (INIS)

    Faur, M.

    1999-02-01

    In service inspections of French nuclear pressure water reactor vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a direct field that passes through the inner surface (water/steel) of the component containing the defect and a secondary field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. This work deals with extraction of the maximum available information for characterizing OSD from ultrasonic Bscan images. Our main objectives are to obtain the type of OSD and their geometric parameters by means of two specific inverse methods. The first method is used for the identification of the geometrical parameters of the equivalent planar OSD from segmented Bscan images. Ultrasonic equivalent defect sizing model-based methods may be used to size a defect in a material by obtaining a best-fit simple equivalent shape that matches the ultrasonic observed data. We illustrate the application of such an equivalent sizing OSD method that is based on a simplified direct model. The major drawback of this identification method, as used to date, is that only a part of the useful information contained into original Bscan image, i.e. segmented Bscan image, is used for defect characterization. Moreover, it requires the availability of defect classification information (i.e. if the defect is volumetric or planer, e. g. a crack or a lack of fusion), which, generally, may be as difficult to obtain as the defect parameters themselves. Therefore, we propose a parameter estimation method for extracting complementary information on the defect

  9. Evaluating the effect of a wavelet enhancement method in characterization of simulated lesions embedded in dense breast parenchyma

    International Nuclear Information System (INIS)

    Costaridou, L.; Skiadopoulos, S.; Sakellaropoulos, P.; Panayiotakis, G.; Likaki, E.; Kalogeropoulou, C.P.

    2005-01-01

    Presence of dense parenchyma in mammographic images masks lesions resulting in either missed detections or mischaracterizations, thus decreasing mammographic sensitivity and specificity. The aim of this study is evaluating the effect of a wavelet enhancement method on dense parenchyma for a lesion contour characterization task, using simulated lesions. The method is recently introduced, based on a two-stage process, locally adaptive denoising by soft-thresholding and enhancement by linear stretching. Sixty simulated low-contrast lesions of known image characteristics were generated and embedded in dense breast areas of normal mammographic images selected from the DDSM database. Evaluation was carried out by an observer performance comparative study between the processed and initial images. The task for four radiologists was to classify each simulated lesion with respect to contour sharpness/unsharpness. ROC analysis was performed. Combining radiologists' responses, values of the area under ROC curve (A z ) were 0.93 (95% CI 0.89, 0.96) and 0.81 (CI 0.75, 0.86) for processed and initial images, respectively. This difference in A z values was statistically significant (Student's t-test, P<0.05), indicating the effectiveness of the enhancement method. The specific wavelet enhancement method should be tested for lesion contour characterization tasks in softcopy-based mammographic display environment using naturally occurring pathological lesions and normal cases. (orig.)

  10. Evaluating the effect of a wavelet enhancement method in characterization of simulated lesions embedded in dense breast parenchyma

    Energy Technology Data Exchange (ETDEWEB)

    Costaridou, L.; Skiadopoulos, S.; Sakellaropoulos, P.; Panayiotakis, G. [University of Patras, Department of Medical Physics, Patras (Greece); Likaki, E.; Kalogeropoulou, C.P. [University of Patras, Department of Radiology, Patras (Greece)

    2005-08-01

    Presence of dense parenchyma in mammographic images masks lesions resulting in either missed detections or mischaracterizations, thus decreasing mammographic sensitivity and specificity. The aim of this study is evaluating the effect of a wavelet enhancement method on dense parenchyma for a lesion contour characterization task, using simulated lesions. The method is recently introduced, based on a two-stage process, locally adaptive denoising by soft-thresholding and enhancement by linear stretching. Sixty simulated low-contrast lesions of known image characteristics were generated and embedded in dense breast areas of normal mammographic images selected from the DDSM database. Evaluation was carried out by an observer performance comparative study between the processed and initial images. The task for four radiologists was to classify each simulated lesion with respect to contour sharpness/unsharpness. ROC analysis was performed. Combining radiologists' responses, values of the area under ROC curve (A{sub z}) were 0.93 (95% CI 0.89, 0.96) and 0.81 (CI 0.75, 0.86) for processed and initial images, respectively. This difference in A{sub z} values was statistically significant (Student's t-test, P<0.05), indicating the effectiveness of the enhancement method. The specific wavelet enhancement method should be tested for lesion contour characterization tasks in softcopy-based mammographic display environment using naturally occurring pathological lesions and normal cases. (orig.)

  11. Analytical methods of radwaste characterization

    International Nuclear Information System (INIS)

    Garcia, C.M.

    1994-10-01

    In view of the need to carry out more extensive studies on the design of newly proposed methods for the treatment of radioactive wastes collected at PNRI, this study is aimed to provide a guide in the characterization of wastes which is a preparatory step for a well-planned waste processing. (auth.). 8 refs

  12. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  13. Radiation effect characterization and test methods of single-chip and multi-chip stacked 16Mbit DRAMs

    International Nuclear Information System (INIS)

    LaBel, K.A.; Gates, M.M.; Moran, A.K.; Kim, H.S.; Seidleck, C.M.; Marshall, P.; Kinnison, J.; Carkhuff, B.

    1996-01-01

    This paper presents radiation effects characterization performed by the NASA Goddard Space Flight Center (GSFC) on spaceflight candidate 16Mbit DRAMs. This includes heavy ion, proton, and Co60 irradiations on single-chip devices as well as proton irradiation of a stacked DRAM module. Lastly, a discussion of test methodology is undertaken

  14. Waste Characterization: Approaches and Methods

    DEFF Research Database (Denmark)

    Lagerkvist, A.; Ecke, H.; Christensen, Thomas Højlund

    2011-01-01

    Characterization of solid waste is usually a difficult task because of the heterogeneity of the waste and its spatial as well as temporal variations. This makes waste characterization costly if good and reliable data with reasonable uncertainty is to be obtained. Therefore, a waste characterization...... is often narrowly defined to meet specific needs for information. This may however limit the general usefulness of the information gained, for example, if the specific purpose limited the characterization to a subset of variables. In general, data available in the solid waste area are limited and often...... related to individual treatment processes and waste products are dealt with in the following chapters: Characteristic data on residential waste (Chapter 2.2), commercial and institutional waste (Chapter 2.3), industrial waste (Chapter 2.4) and construction and demolition waste (Chapter 2...

  15. Diffusion-weighted magnetic resonance imaging in the characterization of testicular germ cell neoplasms: Effect of ROI methods on apparent diffusion coefficient values and interobserver variability

    Energy Technology Data Exchange (ETDEWEB)

    Tsili, Athina C., E-mail: a_tsili@yahoo.gr [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Ntorkou, Alexandra, E-mail: alexdorkou@hotmail.com [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Astrakas, Loukas, E-mail: astrakas@uoi.gr [Department of Medical Physics, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Xydis, Vasilis, E-mail: vxydis@cc.uoi.gr [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Tsampalas, Stavros, E-mail: stamp@gmail.com [Department of Urology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Sofikitis, Nikolaos, E-mail: akrosnin@hotmail.com [Department of Urology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece); Argyropoulou, Maria I., E-mail: margyrop@cc.uoi.gr [Department of Clinical Radiology, Medical School, University of Ioannina, University Campus, 45110, Ioannina (Greece)

    2017-04-15

    Highlights: • Seminomas have lower mean ADC compared to NSGCNs. • Round ROI is accurate in characterizing TGCNS. • ROI shape has no significant effect on interobserver variability. - Abstract: Introduction: To evaluate the difference in apparent diffusion coefficient (ADC) measurements at diffusion-weighted (DW) magnetic resonance imaging of differently shaped regions-of-interest (ROIs) in testicular germ cell neoplasms (TGCNS), the diagnostic ability of differently shaped ROIs in differentiating seminomas from nonseminomatous germ cell neoplasms (NSGCNs) and the interobserver variability. Materials and methods: Thirty-three TGCNs were retrospectively evaluated. Patients underwent MR examinations, including DWI on a 1.5-T MR system. Two observers measured mean tumor ADCs using four distinct ROI methods: round, square, freehand and multiple small, round ROIs. The interclass correlation coefficient was analyzed to assess interobserver variability. Statistical analysis was used to compare mean ADC measurements among observers, methods and histologic types. Results: All ROI methods showed excellent interobserver agreement, with excellent correlation (P < 0.001). Multiple, small ROIs provided the lower mean ADC in TGCNs. Seminomas had lower mean ADC compared to NSGCNs for each ROI method (P < 0.001). Round ROI proved the most accurate method in characterizing TGCNS. Conclusion: Interobserver variability in ADC measurement is excellent, irrespective of the ROI shape. Multiple, small round ROIs and round ROI proved the more accurate methods for ADC measurement in the characterization of TGCNs and in the differentiation between seminomas and NSGCNs, respectively.

  16. Characterization methods of nuclear fuel materials

    International Nuclear Information System (INIS)

    Bustillos, O.W.R.; Teixeira, S.R.; Lordello, A.R.; Imakuma, K.; Rodrigues, C.

    1980-01-01

    In order to organize quality control and quality assurance activities for PWR fuel production, the laboratory of IPEN (Instituto de Pesquisas Energeticas e Nucleares) has developed various chemical and physical methods to be employed for fuel characterization of UO 2 pellets. The techniques developed are the determination of total residual gases by vacuum fusion method, determination of impurity elements by optical spectrography and characterization methods by X-ray diffraction. The development and the implementation of these techniques under the implementation of these techniques under the general scheme of characterization and quality control is the major theme discussed. (E.G.) [pt

  17. Cone penetrometer testing and discrete-depth groundwater sampling techniques: A cost-effective method of site characterization in a multiple-aquifer setting

    International Nuclear Information System (INIS)

    Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.

    1992-01-01

    Cone penetrometer testing (CPT), combined with discrete-depth groundwater sampling methods, can reduce significantly the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs) to a depth of 80 feet within a 1/2 mile-by-1/4-mile residential and commercial area in a complex alluvial fan setting. To expedite site characterization, a five-week field screening program was implemented that consisted of a shallow groundwater survey, CPT soundings, and discrete-depth groundwater sampling. Based on continuous lithologic information provided by the CPT soundings, four coarse-grained water-yielding sedimentary packages were identified. Eighty-three discrete-depth groundwater samples were collected using shallow groundwater survey techniques, the BAT Enviroprobe, or the QED HydroPunch 1, depending on subsurface conditions. A 20-well monitoring network was designed and installed to monitor critical points within each sedimentary package. Understanding the vertical VOC distribution and concentrations produced substantial cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings to be installed. Significant long-term cost savings will result from reduced sampling costs. Where total VOC concentrations exceeded 20 φg/l in the screening samples, a good correlation was found between the discrete-depth screening data and data from monitoring wells. Using a screening program to characterize the site before installing monitoring wells resulted in an estimated 50-percent reduction in costs for site characterization, 65-percent reduction in time for site characterization, and 50-percent reduction in long-term monitoring costs

  18. Application of geophysical methods for fracture characterization

    International Nuclear Information System (INIS)

    Lee, K.H.; Majer, E.L.; McEvilly, T.V.; California Univ., Berkeley, CA; Morrison, H.F.; California Univ., Berkeley, CA

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs

  19. Oromucosal film preparations: classification and characterization methods.

    Science.gov (United States)

    Preis, Maren; Woertz, Christina; Kleinebudde, Peter; Breitkreutz, Jörg

    2013-09-01

    Recently, the regulatory authorities have enlarged the variety of 'oromucosal preparations' by buccal films and orodispersible films. Various film preparations have entered the market and pharmacopoeias. Due to the novelty of the official monographs, no standardized characterization methods and quality specifications are included. This review reports the methods of choice to characterize oromucosal film preparations with respect to biorelevant characterization and quality control. Commonly used dissolution tests for other dosage forms are not transferable for films in all cases. Alternatives and guidance on decision, which methods are favorable for film preparations are discussed. Furthermore, issues about requirements for film dosage forms are reflected. Oromucosal film preparations offer a wide spectrum of opportunities. There are a lot of suggestions in the literature on how to control the quality of these innovative products, but no standardized tests are available. Regulatory authorities need to define the standards and quality requirements more precisely.

  20. Synthesis, structural, optical and morphological characterization of hematite through the precipitation method: Effect of varying the nature of the base

    Science.gov (United States)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    2017-08-01

    Iron oxide (α-Fe2O3) nanoparticles were synthesized using the precipitation synthesis method focusing only on (FeCl3, 6H2O), NaOH, KOH and NH4OH as raw materials. The impact of varying the nature of the base on the crystalline phase, size and morphology of α-Fe2O3 products was explored. XRD spectra revealed that samples crystallize in the rhombohedral (hexagonal) system at 800 °C.The Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to detect the morphology of synthesized nanoparticles and specify their sizes. However, the Fourier Transform Infra-Red (FT-IR) spectroscopy has permitted the observation of vibration band Fe-O. Raman spectroscopy was used not only to prove that we have synthesized hematite but also to identify their phonon modes. The Thermo Gravimetric Analysis (TGA) findings allow the thermal cycle determination of samples whereas Differential Thermal Analysis (DTA) findings allow the phase transition temperature identification. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV. Findings highlight that the nature of the agent precipitant plays a significant role in the morphology of the products and the formation of the crystalline phase. Hematite synthesis with the base NH4OH brought about much stronger, sharper and wider diffraction peaks of α-Fe2O3. The morphology of samples are spherical with a size of about 61 nm while the size of the nanoparticles of hematite which we have synthesized with NaOH and KOH is respectively of the order of 82 and 79 nm.

  1. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  2. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  3. Food powders flowability characterization: theory, methods, and applications.

    Science.gov (United States)

    Juliano, Pablo; Barbosa-Cánovas, Gustavo V

    2010-01-01

    Characterization of food powders flowability is required for predicting powder flow from hoppers in small-scale systems such as vending machines or at the industrial scale from storage silos or bins dispensing into powder mixing systems or packaging machines. This review covers conventional and new methods used to measure flowability in food powders. The method developed by Jenike (1964) for determining hopper outlet diameter and hopper angle has become a standard for the design of bins and is regarded as a standard method to characterize flowability. Moreover, there are a number of shear cells that can be used to determine failure properties defined by Jenike's theory. Other classic methods (compression, angle of repose) and nonconventional methods (Hall flowmeter, Johanson Indicizer, Hosokawa powder tester, tensile strength tester, powder rheometer), used mainly for the characterization of food powder cohesiveness, are described. The effect of some factors preventing flow, such as water content, temperature, time consolidation, particle composition and size distribution, is summarized for the characterization of specific food powders with conventional and other methods. Whereas time-consuming standard methods established for hopper design provide flow properties, there is yet little comparative evidence demonstrating that other rapid methods may provide similar flow prediction.

  4. A method for characterizing photon radiation fields

    International Nuclear Information System (INIS)

    Whicker, J.J.; Hsu, H.H.; Hsieh, F.H.; Borak, T.B.

    1999-01-01

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers' torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed

  5. Metrological evaluation of characterization methods applied to nuclear fuels

    International Nuclear Information System (INIS)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho

    2010-01-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO 2 that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO 2 samples were focused. The thermal characterization of UO 2 samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of the

  6. Current characterization methods for cellulose nanomaterials.

    Science.gov (United States)

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  7. Methods to characterize non-Gaussian noise in TAMA

    International Nuclear Information System (INIS)

    Ando, Masaki; Arai, K; Takahashi, R; Tatsumi, D; Beyersdorf, P; Kawamura, S; Miyoki, S; Mio, N; Moriwaki, S; Numata, K; Kanda, N; Aso, Y; Fujimoto, M-K; Tsubono, K; Kuroda, K

    2003-01-01

    We present a data characterization method for the main output signal of the interferometric gravitational-wave detector, in particular targeting at effective detection of burst gravitational waves from stellar core collapse. The time scale of non-Gaussian events is evaluated in this method, and events with longer time scale than real signals are rejected as non-Gaussian noises. As a result of data analysis using 1000 h of real data with the interferometric gravitational-wave detector TAMA300, the false-alarm rate was improved 10 3 times with this non-Gaussian noise evaluation and rejection method

  8. Metrological evaluation of characterization methods applied to nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho, E-mail: kellyfisica@gmail.co, E-mail: fernando.lameiras@pq.cnpq.b, E-mail: dmc@cdtn.b, E-mail: ranf@cdtn.b, E-mail: flmigliorini@hotmail.co, E-mail: lucsc@hotmail.co, E-mail: egonn@ufmg.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2010-07-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO{sub 2} that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO{sub 2} samples were focused. The thermal characterization of UO{sub 2} samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of

  9. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yunqiao [ORNL; Meng, Xianzhi [University of Tennessee, Knoxville (UTK); Yoo, Chang Geun; Li, Mi; Ragauskas, Arthur J [ORNL

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection of analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.

  10. Method applied for the HPGe detector characterization

    International Nuclear Information System (INIS)

    Guillot, Nicolas; Monestier, Mathieu; Saurel, Nicolas

    2013-06-01

    Gamma ray spectrometry is a passive non destructive assay most commonly used to identify and quantify the radionuclides present in the complex huge objects such as nuclear waste packages. The treatment of spectra from the measurement of nuclear waste is performed in two steps: the first step is to extract the raw data from the spectra (energies and net photoelectric absorption peaks areas) and the second step is to determine the detection efficiency of the measured scene. The establishment by numerical modeling of the detection efficiency of the measured scene requires numerical modeling of both the measuring device (in this case a hyper pure germanium detector HPGe) and numerical modeling of the measured object. Numerical detector modeling is also called diode characterization, and has a spatial response equivalent to these of the real HPGe detector. This characterization is essential for the quantification of complex and non reproducible huge objects for which the detection efficiency can not be determined empirically. The Nuclear Measurement and Valuation Laboratory (LMNE) at the Atomic Energy Commission Valduc (CEA Valduc) has developed a new methodology for characterizing the HPGe detector. It has been tested experimentally with a real diode present in the laboratory (P-type planar detector). The characterization obtained with this methodology is similar to these of a real HPGe detector with an uncertainty approaching 5 percents. It is valid for a distance ranging from 10 cm to 150 cm, an angle ranging from 0 to 90 degrees and energy range from 53 keV to 1112 keV. The energy range is obtained with a source of Barium-133 and a source of Europium-152. The continuity of the detection efficiency curve is checked between the two sources with an uncertainty less than 2 percents. In addition, this methodology can be extrapolated to any type of detector crystal geometry (planar). (authors)

  11. Preparation and Characterization of MoO3/Al2O3 Catalyst for Oxidative Desulfurization of Diesel using H2O2: Effect of Drying Method and Mo Loading

    OpenAIRE

    Azam Akbari; Mohammadreza Omidkhah; Jafar Toufighi Darian

    2012-01-01

    The mesoporous MoO3/γ-Al2O3 catalyst was prepared by incipient wetness impregnation method aiming to investigate the effect of drying method and molybdenum content on the catalyst property and performance towards the oxidation of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyle dibenzothiophene (4,6-DMDBT) with H2O2 for deep oxidative desulfurization of diesel fuel. The catalyst was characterized by XRD, BET, BJH and SEM method. The catalyst with 10wt.% and 1...

  12. Characterization of solid heterogeneous waste fuel - the effect of sampling and preparation method; Karaktaerisering av fasta inhomogena avfallsbraenslen - inverkan av metoder foer provtagning och provberedning

    Energy Technology Data Exchange (ETDEWEB)

    Wikstroem-Blomqvist, Evalena; Franke, Jolanta; Johansson, Ingvar

    2007-12-15

    simplified, especially by effective sample and particle size reduction through gradually grinding processes. Consequently, the plant owner can reduced their cost for each sampling campaign by using the simplified methods described in this project. A finding that either can be used to lower the cost for waste sampling or to increase the number of samples and sampling frequency which will increase the plant owners knowledge about the waste composition, properties and qualities. Increased quality and an even quality of the waste mixture has an large impact on the life cycle cost of the plant since it's affect the accessibility as well as the cost of maintenance.

  13. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    Science.gov (United States)

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.

  14. Materials characterization by resonant ultrasonic spectroscopy method

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Jung, H.K.; Joo, Y.S.; Sim, C.M.

    2001-01-01

    A high temperature resonant ultrasound spectroscopy(RUS) was developed. The dynamic elastic constant of RPV weld, which has various different microstructure was determined by RUS. It was confirmed the RUS method is very sensitive to the microstructures of the material. RUS can be used to monitor the degradation of nuclear materials including neutron irradiation embrittlement through the measurement of dynamic elastic constants, elastic anisotropy, high temperature elastic constant and Q-factor

  15. Comparison of optical methods for surface roughness characterization

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul Erik; Pilny, Lukas

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler....... For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance...... of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal...

  16. Magnetic Method to Characterize the Current Densities in Breaker Arc

    International Nuclear Information System (INIS)

    Machkour, Nadia

    2005-01-01

    The purpose of this research was to use magnetic induction measurements from a low voltage breaker arc, to reconstruct the arc's current density. The measurements were made using Hall effect sensors, which were placed close to, but outside the breaking device. The arc was modelled as a rectangular current sheet, composed of a mix of threadlike current segments and with a current density varying across the propagation direction. We found the magnetic induction of the arc is a convolution product of the current density, and a function depending on the breaker geometry and arc model. Using deconvolution methods, the current density in the electric arc was determined.The method is used to study the arc behavior into the breaker device. Notably, position, arc size, and electric conductivity could all be determined, and then used to characterize the arc mode, diffuse or concentrated, and study the condition of its mode changing

  17. Spacecraft Dynamic Characterization by Strain Energies Method

    Science.gov (United States)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven

  18. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour

    International Nuclear Information System (INIS)

    Millard-Pinard, N.

    2003-01-01

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is dedicated to this study

  19. Spectroscopic methods for characterization of nuclear fuels

    International Nuclear Information System (INIS)

    Sastry, M.D.

    1999-01-01

    Spectroscopic techniques have contributed immensely in the characterisation and speciation of materials relevant to a variety of applications. These techniques have time tested credentials and continue to expand into newer areas. In the field of nuclear fuel fabrication, atomic spectroscopic methods are used for monitoring the trace metallic constituents in the starting materials and end product, and for monitoring process pick up. The current status of atomic spectroscopic methods for the determination of trace metallic constituents in nuclear fuel materials will be briefly reviewed and new approaches will be described with a special emphasis on inductively coupled plasma techniques and ETV-ICP-AES hyphenated techniques. Special emphasis will also be given in highlighting the importance of chemical separation procedures for the optimum utilization of potential of ICP. The presentation will also include newer techniques like Photo Acoustic Spectroscopy, and Electron Paramagnetic Resonance (EPR) Imaging. PAS results on uranium and plutonium oxides will be described with a reference to the determination of U 4+ /U 6+ concentration in U 3 O 8 . EPR imaging techniques for speciation and their spatial distribution in solids will be described and its potential use for Gd 3+ containing UO 2 pellets (used for flux flattening) will be highlighted. (author)

  20. High-throughput characterization methods for lithium batteries

    Directory of Open Access Journals (Sweden)

    Yingchun Lyu

    2017-09-01

    Full Text Available The development of high-performance lithium ion batteries requires the discovery of new materials and the optimization of key components. By contrast with traditional one-by-one method, high-throughput method can synthesize and characterize a large number of compositionally varying samples, which is able to accelerate the pace of discovery, development and optimization process of materials. Because of rapid progress in thin film and automatic control technologies, thousands of compounds with different compositions could be synthesized rapidly right now, even in a single experiment. However, the lack of rapid or combinatorial characterization technologies to match with high-throughput synthesis methods, limit the application of high-throughput technology. Here, we review a series of representative high-throughput characterization methods used in lithium batteries, including high-throughput structural and electrochemical characterization methods and rapid measuring technologies based on synchrotron light sources.

  1. Recent characterization of steel by surface analysis methods

    International Nuclear Information System (INIS)

    Suzuki, Shigeru

    1996-01-01

    Surface analysis methods, such as Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, glow discharge optical emission spectrometry and so on, have become indispensable to characterize surface and interface of many kinds of steel. Although a number of studies on characterization of steel by these methods have been carried out, several problems still remain in quantification and depth profiling. Nevertheless, the methods have provided essential information on the concentration and chemical state of elements at the surface and interface. Recent results on characterization of oxide layers, coated films, etc. on the surface of steel are reviewed here. (author). 99 refs

  2. Synthesis and characterization of NaCo(1-x)MnxO2 solid electrolyte using sol-gel method: the effect of milling speed variations

    Science.gov (United States)

    Suyati, L.; Widyayanti, O. A.; Qushoyyi, M.; Darmawan, A.; Nuryanto, R.

    2018-04-01

    Battery is a device that converts chemical energy into electrical energy through electrochemical process. Further research on the synthesis of cathode of Na-ion battery that has good conductivity to maximize the battery performance needs to be conducted. One of the production steps of the NaCo(1-x)NaCo cathode synthesis in the Na-Ion battery was a ball-milling process, in which by the ball-milling process, the crystal size of NaCo(1-x)MnxO2 cathode can be minimized. The purpose of this study was to determine the effect of variation of ball-milling speed to the characteristics of resulting product including the oxide types composing NaCo(1-x)MnxO2 cathode, surface morphology, and conductivity. The main ingredients used were sodium acetate, manganese acetate, cobalt acetate with molar ratio of 0.7: 0.66: 0.22, respectively and citric acid as chelating agent with the M/CA ratio of 1: 1. The variations of milling speed were 0, 300, 400, 500, 600 and 700 rpm. Characterization of the product was conducted using XRD, SEM-EDS, and conductivity meter (LCR-meter). The result showed that a solid electrolyte of NaCo(1-x)MnxO2 consisting of NaMnO2, NaO2, CoO, Co2O3, MnO2 components was successfully synthesized. The observation on the milling speed at 400 rpm showed that the solid electrolyte produced had the highest conductivity i.e. 4.08 x 10-6 Scm-1 with a homogeneous surface morphology and had a spinel formula NaCo0,65Mn0,35O2.

  3. Classification of analysis methods for characterization of magnetic nanoparticle properties

    DEFF Research Database (Denmark)

    Posth, O.; Hansen, Mikkel Fougt; Steinhoff, U.

    2015-01-01

    The aim of this paper is to provide a roadmap for the standardization of magnetic nanoparticle (MNP) characterization. We have assessed common MNP analysis techniques under various criteria in order to define the methods that can be used as either standard techniques for magnetic particle...... characterization or those that can be used to obtain a comprehensive picture of a MNP system. This classification is the first step on the way to develop standards for nanoparticle characterization....

  4. Inverse method for effects characterization from ultrasonic b-scan images; Caracterisation des defauts par une methode d'inversion lors d'un controle ultrasonore. Application au controle des defauts en paroi externe

    Energy Technology Data Exchange (ETDEWEB)

    Faur, M. [Paris-11 Univ., 91 - Orsay (France)

    1999-02-01

    In service inspections of French nuclear pressure water reactor vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a direct field that passes through the inner surface (water/steel) of the component containing the defect and a secondary field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. This work deals with extraction of the maximum available information for characterizing OSD from ultrasonic Bscan images. Our main objectives are to obtain the type of OSD and their geometric parameters by means of two specific inverse methods. The first method is used for the identification of the geometrical parameters of the equivalent planar OSD from segmented Bscan images. Ultrasonic equivalent defect sizing model-based methods may be used to size a defect in a material by obtaining a best-fit simple equivalent shape that matches the ultrasonic observed data. We illustrate the application of such an equivalent sizing OSD method that is based on a simplified direct model. The major drawback of this identification method, as used to date, is that only a part of the useful information contained into original Bscan image, i.e. segmented Bscan image, is used for defect characterization. Moreover, it requires the availability of defect classification information (i.e. if the defect is volumetric or planer, e. g. a crack or a lack of fusion), which, generally, may be as difficult to obtain as the defect parameters themselves. Therefore, we propose a parameter estimation method for extracting complementary information on the defect

  5. Method to characterize dielectric properties of powdery substances

    Science.gov (United States)

    Tuhkala, M.; Juuti, J.; Jantunen, H.

    2013-07-01

    An open ended coaxial cavity method for dielectric characterization of powdery substance operating at 4.5 GHz in TEM mode is presented. Classical mixing rules and electromagnetic modeling were utilized with measured effective permittivities and Q factors to determine the relative permittivity and dielectric loss tangent of different powders with ɛr up to 30. The modeling enabled determination of the correction factor for the simplified equation for the relative permittivity of an open ended coaxial resonator and mixing rules having the best correlation with experiments. SiO2, Al2O3, LTCC CT 2000, ZrO2, and La2O3 powders were used in the experiments. Based on the measured properties and Bruggeman symmetric and Looyenga mixing rules, the determined dielectric characteristics of the powders exhibited good correlation with values in the literature. The presented characterization method enabled the determination of dielectric properties of powdery substances within the presented range, and therefore could be applied to various research fields and applications where dielectric properties of powders need to be known and controlled.

  6. Morphological Characterization of Nanofibers: Methods and Application in Practice

    Directory of Open Access Journals (Sweden)

    Jakub Širc

    2012-01-01

    Full Text Available Biomedical applications such as wound dressing for skin regeneration, stem cell transplantation, or drug delivery require special demands on the three-dimensional porous scaffolds. Besides the biocompatibility and mechanical properties, the morphology is the most important attribute of the scaffold. Specific surface area, volume, and size of the pores have considerable effect on cell adhesion, growth, and proliferation. In the case of incorporated biologically active substances, their release is also influenced by the internal structure of nanofibers. Although many scientific papers are focused on the preparation of nanofibers and evaluation of biological tests, the morphological characterization was described just briefly as service methods. The aim of this paper is to summarize the methods applicable for morphological characterization of nanofibers and supplement it by the results of our research. Needleless electrospinning technique was used to prepare nanofibers from polylactide, poly(ε-caprolactone, gelatin, and polyamide. Scanning electron microscopy was used to evaluate the fiber diameters and to reveal eventual artifacts in the nanofibrous structure. Nitrogen adsorption/desorption measurements were employed to measure the specific surface areas. Mercury porosimetry was used to determine total porosities and compare pore size distributions of the prepared samples.

  7. ASTM test methods for composite characterization and evaluation

    Science.gov (United States)

    Masters, John E.

    1994-01-01

    A discussion of the American Society for Testing and Materials is given. Under the topic of composite materials characterization and evaluation, general industry practice and test methods for textile composites are presented.

  8. Characterization of Newly Developed Semisolid Stir Joining Method for Cast Cu Base Alloy (Cu-Al-Si-Fe) and Effect of Stirrer Type on Uniformity of Microstructure

    Science.gov (United States)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi

    2015-02-01

    In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.

  9. Effectiveness of Family Planning Methods

    Science.gov (United States)

    ... women in a year Effectiveness of Family Planning Methods Implant Reversible Intrauterine Device (IUD) Permanent Male Sterilization ... 0.5 % Diaphragm 12 % How to make your method most effective After procedure, little or nothing to ...

  10. Transuranic waste characterization sampling and analysis methods manual. Revision 1

    International Nuclear Information System (INIS)

    Suermann, J.F.

    1996-04-01

    This Methods Manual provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) and the WIPP Waste Analysis Plan. This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP and the WIPP Waste Analysis Plan. The procedures in this Methods Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site-specific procedures. With some analytical methods, such as Gas Chromatography/Mass Spectrometry, the Methods Manual procedures may be used directly. With other methods, such as nondestructive characterization, the Methods Manual provides guidance rather than a step-by-step procedure. Sites must meet all of the specified quality control requirements of the applicable procedure. Each DOE site must document the details of the procedures it will use and demonstrate the efficacy of such procedures to the Manager, National TRU Program Waste Characterization, during Waste Characterization and Certification audits

  11. The characterization methods for colloids in aqueous solutions

    International Nuclear Information System (INIS)

    Vuorinen, U.; Kumpulainen, H.

    1993-11-01

    This literature review deals with characterization methods for colloids in aqueous solutions and in groundwater. The basis for the review has been the needs of nuclear waste disposal studies and methods applicable in such studies. The methods considered include non-destructive laserspectroscopic methods (e.g. TRLFS, LPAS, PALS), several separation methods (e.g. ultrafiltration, dialysis, electrophoresis, field-flow-fractionation) and also some surface analytical methods, as well as some other methods giving additional information on formation and migration properties of colloids. (au.) (71 refs., 13 figs., 3 tabs.)

  12. Semi-automated potentiometric titration method for uranium characterization.

    Science.gov (United States)

    Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T

    2012-07-01

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Comparison of optical methods for surface roughness characterization

    International Nuclear Information System (INIS)

    Feidenhans’l, Nikolaj A; Hansen, Poul-Erik; Madsen, Morten H; Petersen, Jan C; Pilný, Lukáš; Bissacco, Giuliano; Taboryski, Rafael

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler. For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal instruments, if the common bandwidth is applied. Likewise, a correlation is observed when determining the Aq value with the BRDF and the rBRDF instruments.Furthermore, we show that it is possible to determine the Rq value from the Aq value, by applying a simple transfer function derived from the instrument comparisons. The presented method is validated for surfaces with predominantly 1D roughness, i.e. consisting of parallel grooves of various periods, and a reflectance similar to stainless steel. The Rq values are predicted with an accuracy of 38% at the 95% confidence interval. (paper)

  14. Development of subsurface characterization method for decommissioning site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In situ measurement of peak to valley method based on the ratio of counting rate between the full energy peak and Compton region was applied to identify the depth distribution of 137Cs. The In situ measurement and sampling results were applied to evaluate a residual radioactivity before and after remediation in decommissioning KRR site. Spatial analysis based on the Geostatistics method provides a reliable estimating the volume of contaminated soil with a graphical analysis, which was applied to the site characterization in the decommissioning KRR site. The in situ measurement and spatial analysis results for characterization of subsurface contamination are presented. The objective of a remedial action is to reduce risks to human health to acceptable levels by removing the source of contamination. Site characterization of the subsurface contamination is an important factor for planning and implementation of site remediation. Radiological survey and evaluation technology are required to ensure the reliability of the results, and the process must be easily applied during field measurements. In situ gamma-ray spectrometry is a powerful method for site characterization that can be used to identify the depth distribution and quantify radionuclides directly at the measurement site. The in situ measurement and Geostatistics method was applied to the site characterization for remediation and final status survey in decommissioning KRR site.

  15. Semi-automated potentiometric titration method for uranium characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, B.F.G., E-mail: barbara@ird.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Instituto de Radioprotecao e Dosimetria (IRD), Avenida Salvador Allende s/n Recreio dos Bandeirantes, PO Box 37750, Rio de Janeiro, 22780-160 RJ (Brazil); Delgado, J.U.; Silva, J.W.S. da; Barros, P.D. de; Araujo, R.M.S. de [Comissao Nacional de Energia Nuclear (CNEN), Instituto de Radioprotecao e Dosimetria (IRD), Avenida Salvador Allende s/n Recreio dos Bandeirantes, PO Box 37750, Rio de Janeiro, 22780-160 RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear (PEN/COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundao, PO Box 68509, Rio de Janeiro, 21945-970 RJ (Brazil)

    2012-07-15

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. - Highlights: Black-Right-Pointing-Pointer We developed a semi-automatic version of potentiometric titration method. Black-Right-Pointing-Pointer The method is used for certification and characterization of uranium compounds. Black-Right-Pointing-Pointer The traceability of the method was assured by a K{sub 2}Cr{sub 2}O{sub 7} primary standard. Black-Right-Pointing-Pointer The results of U{sub 3}O{sub 8} reference material analyzed was consistent with certified value. Black-Right-Pointing-Pointer The uncertainty obtained, near 0.01%, is useful for characterization purposes.

  16. Effect of Various Solvent on the Synthesis of NiO Nanopowders by Simple Sol-Gel Methods and Its Characterization

    Directory of Open Access Journals (Sweden)

    Sherly Kasuma Warda Ningsih

    2015-03-01

    Full Text Available Synthesis of nickel oxide (NiO with various solvents by simple sol-gel process has been done. NiO nanopowders were obtained by using nickel nitrate hexahydrate and sodium hydroxide 5 M were used as precursor and agent precipitator, respectively. The addition of various solvents that used in this research were aquadest, methanol and isopropanol. The powders were formed by drying in the temperature of 100-110 °C for 1 h and after heating at ±450 °C for 1 h. The products were obtained black powders. The products were characterized by Energy Dispersive X-Ray Fluorescence (ED-XRF, X-Ray Diffraction (XRD and Scanning Electron Microscopy (SEM. The ED-XRF pattern show that composition of NiO produced was 96.9%. The XRD patterns showed NiO forms were in monoclinic structure with aquadest solvent and cubic structure with methanol and isopropanol used. Crystal sizes of NiO particles produced with aquadest, methanol, isopropanol were obtained in the range 37.05; 72.16; 66.04 nm respectively. SEM micrograph clearly showed that powder had a spherical shape with uniform distribution size is 0.1-1.0 µm approximately.

  17. Waste characterization methods at belgoprocess and the importance of NDA

    International Nuclear Information System (INIS)

    Botte, J.; Luycx, P.

    2003-01-01

    Waste characterization in the end cycle becomes more and more important. Several methods are available for a radiological characterization: from copying the waste producers declaration over a calculation based on known characteristics or measured values to combinations of several techniques. The decision on what technique(s) to be used will be based on several criteria. One also has to evaluate at what stage of the waste treatment process the characterization has to be performed. Recently belgoprocess has performed large efforts and investments to assure a good waste characterization. These are concentrated in studies on historical and recent waste, resulting in isotopic vectors and the purchase of several NDA devices in order to cover the whole scala of waste the company treats. The measuring results always need to be integrated with isotopic vectors. (orig.)

  18. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  19. Overview of geotechnical methods to characterize rock masses

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-12-01

    The methods that are used to characterize discontinuous rock masses from a geotechnical point of view are summarized. Emphasis is put on providing key references on each subject. The topics of exploration, in-situ stresses, mechanical properties, thermal properties, and hydraulic properties are addressed

  20. Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: Effect of varying the nature of precursor

    Science.gov (United States)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Ammar, Salah; Gadri, Abdellatif

    2018-03-01

    α-Fe2O3 nanoparticles were prepared via a precipitation method using each of three different precursors ((FeCl3, 6H2O), (Fe (C5H7O2)3) and (Fe (NO3)3, 9H2O)). The impact of varying the nature of the precursor on crystalline phase, size and magnetic parameters of α-Fe2O3 was examined. Powder X-ray diffraction pattern disclosed rhombohedral structure. The TEM and SEM results showed that the size of α-Fe2O3 nanocrystals was between 21 and 38 nm. FT-IR confirms the phase purity of prepared compounds. Raman studies showed the phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The optical investigation exhibited that samples have an optical gap of 2.1 eV. The products exhibited the attractive magnetic properties with high saturation magnetization, which were examined by a vibrating sample magnetometer (VSM).

  1. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

    Science.gov (United States)

    Muradov, Mustafa B.; Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Maharramov, Abel M.; Qahramanli, Lala R.; Eyvazova, Goncha M.; Aghamaliyev, Zohrab A.

    2018-03-01

    Convenient and environmentally friendly synthesis of Co9S8/PVA, CoxSy/EG and CoxSy/3-MPA nanocomposites were carried out in the presence of ultrasonic irradiation by the liquid phase synthesis of the sonochemical method. For the synthesis, cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] and sodium sulfide (Na2S·9H2O) were used as a cobalt and sulfur precursor, respectively. Polyvinyl alcohol (PVA), ethylene glycol (EG) and 3-mercaptopropionic acid (3-MPA) were used as a capping agent and surfactant. The structural, optical properties and morphology of nanocomposites were characterized using X-ray diffractometer (XRD), Ultraviolet/Visible Spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optical band gap of Co9S8/PVA is 1.81 eV and for CoxSy/EG is 2.42 eV, where the direct band gap of bulk cobalt sulfide is (0.78-0.9 eV). The wide band gap indicates that synthesised nanocomposites can be used in the fabrication of optical and photonic devices. The growth mechanisms of the Co9S8, CoS2 and Co3S4 nanoparticles were discussed by the reactions. The effects of sonication time and annealing temperature on the properties of the nanoparticles have been studied in detail.

  2. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  3. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  4. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  5. Monte Carlo method to characterize radioactive waste drums

    International Nuclear Information System (INIS)

    Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.

    2013-01-01

    Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)

  6. Preparation, characterization and antibacterial effects of eco-friendly ...

    African Journals Online (AJOL)

    Purpose: To synthesize and characterize eco-friendly gold nanorods (Au-NRs) and to assess their effects against two bacterial strains. Methods: Synthesis of eco-friendly gold nanorods was done from an aqueous solution of chloroauric acid and cetyltrimethylammonium bromide by mixing Olea europaea fruit and Acacia ...

  7. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter [Energy & Geoscience Institute at the University of Utah, Salt Lake City, UT (United States); Harris, Joel [Univ. of Utah, Salt Lake City, UT (United States)

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one method of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.

  8. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Introduction to optical methods for characterizing liquid crystals at interfaces.

    Science.gov (United States)

    Miller, Daniel S; Carlton, Rebecca J; Mushenheim, Peter C; Abbott, Nicholas L

    2013-03-12

    This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and nonplanar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically functionalized, and biomolecular interfaces, are described in this Instructional Review on a level that can be easily understood by a nonexpert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories.

  10. Application of radiological imaging methods to radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Souza, Daiane Cristini B. de; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiological imaging technologies are most frequently used for medical diagnostic purposes but are also useful in materials characterization and other non-medical applications in research and industry. The characterization of radioactive waste packages or waste samples can also benefit from these techniques. In this paper, the application of some imaging methods is examined for the physical characterization of radioactive wastes constituted by spent ion-exchange resins and activated charcoal beds stored at the Radioactive Waste Management Department of IPEN. These wastes are generated when the filter media of the water polishing system of the IEA-R1 Nuclear Research Reactor is no longer able to maintain the required water quality and are replaced. The IEA-R1 is a 5MW pool-type reactor, moderated and cooled by light water, and fission and activation products released from the reactor core must be continuously removed to prevent activity buildup in the water. The replacement of the sorbents is carried out by pumping from the filter tanks into several 200 L drums, each drum getting a variable amount of water. Considering that the results of radioanalytical methods to determine the concentrations of radionuclides are usually expressed on dry basis,the amount of water must be known to calculate the total activity of each package. At first sight this is a trivial problem that demanded, however some effort to be solved. The findings on this subject are reported in this paper. (author)

  11. Characterizing lentic freshwater fish assemblages using multiple sampling methods

    Science.gov (United States)

    Fischer, Jesse R.; Quist, Michael C.

    2014-01-01

    Characterizing fish assemblages in lentic ecosystems is difficult, and multiple sampling methods are almost always necessary to gain reliable estimates of indices such as species richness. However, most research focused on lentic fish sampling methodology has targeted recreationally important species, and little to no information is available regarding the influence of multiple methods and timing (i.e., temporal variation) on characterizing entire fish assemblages. Therefore, six lakes and impoundments (48–1,557 ha surface area) were sampled seasonally with seven gear types to evaluate the combined influence of sampling methods and timing on the number of species and individuals sampled. Probabilities of detection for species indicated strong selectivities and seasonal trends that provide guidance on optimal seasons to use gears when targeting multiple species. The evaluation of species richness and number of individuals sampled using multiple gear combinations demonstrated that appreciable benefits over relatively few gears (e.g., to four) used in optimal seasons were not present. Specifically, over 90 % of the species encountered with all gear types and season combinations (N = 19) from six lakes and reservoirs were sampled with nighttime boat electrofishing in the fall and benthic trawling, modified-fyke, and mini-fyke netting during the summer. Our results indicated that the characterization of lentic fish assemblages was highly influenced by the selection of sampling gears and seasons, but did not appear to be influenced by waterbody type (i.e., natural lake, impoundment). The standardization of data collected with multiple methods and seasons to account for bias is imperative to monitoring of lentic ecosystems and will provide researchers with increased reliability in their interpretations and decisions made using information on lentic fish assemblages.

  12. Analytical method for the isotopic characterization of soils

    International Nuclear Information System (INIS)

    Sibello Hernandez, Rita; Cozzella, Maria Letizia; Mariani, Mario

    2014-01-01

    The aim of this work was to develop an analytical method in order to determine the isotopic composition of different elements in soil samples and to determine the existence of contamination. The method used in the digestion of the samples was the EPA 3050B, and some metal concentration were determined including uranium and thorium. For elements with even lower concentrations such as plutonium and radium a treatment after mineralization by EPA, was necessary. The measurement technique used was mass spectrometry with quadrupole and plasma induced associated (ICP-MS). Results of the analysis performed in two laboratories showed a good correspondence. This method allowed to perform the isotopic characterization of studied soils and results showed that the studied soils do not present any local pollution and that the presence of plutonium-239, is due to global failure

  13. Prony's method application for BWR instabilities characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2015-04-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred.

  14. Prony's method application for BWR instabilities characterization

    International Nuclear Information System (INIS)

    Castillo, Rogelio; Ramírez, J. Ramón; Alonso, Gustavo; Ortiz-Villafuerte, Javier

    2015-01-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred

  15. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  16. Tensor analysis methods for activity characterization in spatiotemporal data

    Energy Technology Data Exchange (ETDEWEB)

    Haass, Michael Joseph; Van Benthem, Mark Hilary; Ochoa, Edward M

    2014-03-01

    Tensor (multiway array) factorization and decomposition offers unique advantages for activity characterization in spatio-temporal datasets because these methods are compatible with sparse matrices and maintain multiway structure that is otherwise lost in collapsing for regular matrix factorization. This report describes our research as part of the PANTHER LDRD Grand Challenge to develop a foundational basis of mathematical techniques and visualizations that enable unsophisticated users (e.g. users who are not steeped in the mathematical details of matrix algebra and mulitway computations) to discover hidden patterns in large spatiotemporal data sets.

  17. Towards a method to characterize temporary groundwater dynamics during droughts

    Science.gov (United States)

    Heudorfer, Benedikt; Stahl, Kerstin

    2016-04-01

    In order to improve our understanding of the complex mechanisms involved in the development, propagation and termination of drought events, a major challenge is to grasp the role of groundwater systems. Research on how groundwater responds to meteorological drought events (i.e. short-term climate anomalies) is still limited. Part of the problem is that there is as yet no generic method to characterize the response of different groundwater systems to extreme climate anomalies. In order to explore possibilities for such a methodology, we evaluate two statistical approaches to characterize groundwater dynamics on short time scales by applying them on observed groundwater head data from different pre- and peri-mountainous groundwater systems in humid central Europe (Germany). The first method is based on the coefficient of variation in moving windows of various lengths, the second method is based on streamflow recession characteristics applied on groundwater data. With these methods, the gauges behavior during low head events and its response to precipitation was explored. Findings regarding the behavior of the gauges make it possible to distinguish between gauges with a dominance of cyclic patterns, and gauges with a dominance of patterns on seasonal or event scale (commonly referred to as slow/fast responding gauges, respectively). While some clues on what factors that might control these patterns are present, the specific controls are general unclear for the gauges in this study. However as the key conclusion stands the question if the variety of manifestations of groundwater dynamics, as they occur in real systems, is subsumable with one unique method. Further studies on the topic are in progress.

  18. Overview of the most commonly used methods in allergen characterization

    Directory of Open Access Journals (Sweden)

    TANJA CIRKOVIC VELICKOVIC

    2005-03-01

    Full Text Available The characterization of an allergen is a troublesome and difficult process, as it requires both the precise biochemical characterization of a (glycoprotein molecule and the establishment of its susceptibility to IgE antibodies, as they are themain link to histamine release in some hypersensitivity states (type I allergies. As the characterization of an allergen includes molecular weight determination of the allergenic molecule, its structure determination, physicochemical properties, IgE binding properties of the allergen molecule, and its allergenicity, an overal review of which biochemical and immunochemical methods are used in achieving this goal are presented in this paper. The information on the molecular level on the stuctures of allergens indicates that allergens are considerably heterogeneous protein structures, and that there is no particular aminoacid sequence which is responsible for the allergenicity. Therefore, information gained from detailed structural, functional and immunochemical studies of these intriguing molecules, which nowadaysmodulate a variety of pathophysiological conditions, would greatly improve our understanding of the underlying disease mechanisms, and the way to handle them.

  19. Some absolutely effective product methods

    Directory of Open Access Journals (Sweden)

    H. P. Dikshit

    1992-01-01

    Full Text Available It is proved that the product method A(C,1, where (C,1 is the Cesàro arithmetic mean matrix, is totally effective under certain conditions concerning the matrix A. This general result is applied to study absolute Nörlund summability of Fourier series and other related series.

  20. Boiling anomaly detection by various signal characterization methods

    International Nuclear Information System (INIS)

    Sakuma, M.; Kozma, R.; Kitamura, M.; Schoonewelle, H.; Hoogenboom, J.E.

    1996-01-01

    In order to detect anomalies in the early stage for complex dynamical systems like nuclear power plants, it is important to characterize various statistical features of the data acquired in normal operating condition. In this paper, concept of hierarchical anomaly monitoring method is outlined, which is based on the diversification principle. In addition to usual time and frequency domain analysis (FFT, APDF, MAR-SPRT), other analysis (wavelet, fractal, etc.) are performed. As soon as any inconsistency arises in the results of the analysis on the upper level, a thorough analysis is initiated. A comparison among these methods is performed and the efficiency of the diversification approach has been demonstrated through simulated boiling anomalies in nuclear reactors. (authors)

  1. Standard test methods for characterizing duplex grain sizes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These test methods provide simple guidelines for deciding whether a duplex grain size exists. The test methods separate duplex grain sizes into one of two distinct classes, then into specific types within those classes, and provide systems for grain size characterization of each type. 1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this standard to consult appropriate safety and health practices and determine the applicability of regulatory limitations prior to its use.

  2. Methods of characterization of multiphase Nd-Fe-B melt-spun alloys

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2007-01-01

    Full Text Available Nanocomposite permanent magnetic materials based on Nd-Fe-B alloys with a low Nd content are a new type of permanent magnetic material. The microstructure of these nanocomposite permanent magnets is composed of a mixture of magnetically soft and hard phases providing the so called exchange coupling effect. Beside the optimization process parameters, methods of characterization have a very important role in the design of an optimal magnetic matrix of multiphase melt-spun Nd-Fe-B alloys. Different methods and techniques of characterization were used for observation and study of the microstructure evolution during crystallization. A summary results of measurements using different methods of characterization are presented to enable a better insight into relations between the microstructure and magnetic properties of the investigated melt-spun Nd-Fe-B alloys. .

  3. Microstructural characterization of radiation effects in nuclear materials

    CERN Document Server

    2017-01-01

    Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...

  4. Amyloid oligomer structure characterization from simulations: A general method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France)

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  5. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method

    Science.gov (United States)

    Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.

    2018-01-01

    Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.

  6. Methods to incorporate different data types in the characterization process

    International Nuclear Information System (INIS)

    Gomez-Hernandez, J.J.; Carrera, J.; Medina, A.

    1998-01-01

    Spatial variability of the hydrodynamic parameters controlling radionuclide transport causes large uncertainties in the predictions. Methods have been devised to analyze spatial variability of these parameters and to model the uncertainty of the predictions. However, the final use given to large portions of the total data collected is minimal. Techniques have been developed and implemented with the aim of incorporating all types of data in the characterization of the spatial variability of conductivity/transmissivity. This serves to reduce the uncertainty in the predictions and to increase the confidence in the model. Types of data used in models include: geometric information, transmissivity data, piezometric data, geological/geophysical information tracer test concentration data, and isotopic data. (R.P.)

  7. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  8. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    International Nuclear Information System (INIS)

    David W. Freeman

    2000-01-01

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community

  9. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  10. The matrix method for radiological characterization of radioactive waste

    CERN Document Server

    Magistris, M

    2007-01-01

    Beam losses are responsible for material activation in some of the components of particle accelerators. The activation is caused by several nuclear processes and varies with the irradiation history and the characteristics of the material (namely chemical composition and size). Once at the end of their operational lifetime, these materials require radiological characterization. The radionuclide inventory depends on the particle spectrum, the irradiation history and the chemical composition of the material. As long as these factors are known and the material cross-sections are available, the induced radioactivity can be calculated analytically. However, these factors vary widely among different items of waste and sometimes they are only partially known. The European Laboratory for Particle Physics (CERN, Geneva) has been operating accelerators for high-energy physics for 50 years. Different methods for the evaluation of the radionuclide inventory are currently under investigation at CERN, including the so-calle...

  11. Lithographic apparatus, device manufacturing methods, mask and method of characterizing a mask and/or pellicle

    NARCIS (Netherlands)

    2008-01-01

    A thick pellicle is allowed to have a non-flat shape and its shape is characterized to calculate corrections to be applied in exposures to compensate for the optical effects of the pellicle. The pellicle may be mounted so as to adopt a one-dimensional shape under the influence of gravity to make the

  12. Characterizing aging effects of lithium ion batteries by impedance spectroscopy

    International Nuclear Information System (INIS)

    Troeltzsch, Uwe; Kanoun, Olfa; Traenkler, Hans-Rolf

    2006-01-01

    Impedance spectroscopy is one of the most promising methods for characterizing aging effects of portable secondary batteries online because it provides information about different aging mechanisms. However, application of impedance spectroscopy 'in the field' has some higher requirements than for laboratory experiments. It requires a fast impedance measurement process, an accurate model applicable with several batteries and a robust method for model parameter estimation. In this paper, we present a method measuring impedance at different frequencies simultaneously. We propose to use a composite electrode model, capable to describe porous composite electrode materials. A hybrid method for parameter estimation based on a combination of evolution strategy and Levenberg-Marquardt method allowed a robust and fast parameter calculation. Based on this approach, an experimental investigation of aging effects of a lithium ion battery was carried out. After 230 discharge/charge cycles, the battery showed a 14% decreased capacity. Modeling results show that series resistance, charge transfer resistance and Warburg coefficient changed thereby their values by approximately 60%. A single frequency impedance measurement, usually carried out at 1 kHz, delivers only information about series resistance. Impedance spectroscopy allows additionally the estimation of charge transfer resistance and Warburg coefficient. This fact and the high sensitivity of model parameters to capacity change prove that impedance spectroscopy together with an accurate modeling deliver information that significantly improve characterization of aging effects

  13. Characterizing aging effects of lithium ion batteries by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Troeltzsch, Uwe [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany)]. E-mail: uwe.troeltzsch@unibw-muenchen.de; Kanoun, Olfa [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany); Traenkler, Hans-Rolf [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany)

    2006-01-20

    Impedance spectroscopy is one of the most promising methods for characterizing aging effects of portable secondary batteries online because it provides information about different aging mechanisms. However, application of impedance spectroscopy 'in the field' has some higher requirements than for laboratory experiments. It requires a fast impedance measurement process, an accurate model applicable with several batteries and a robust method for model parameter estimation. In this paper, we present a method measuring impedance at different frequencies simultaneously. We propose to use a composite electrode model, capable to describe porous composite electrode materials. A hybrid method for parameter estimation based on a combination of evolution strategy and Levenberg-Marquardt method allowed a robust and fast parameter calculation. Based on this approach, an experimental investigation of aging effects of a lithium ion battery was carried out. After 230 discharge/charge cycles, the battery showed a 14% decreased capacity. Modeling results show that series resistance, charge transfer resistance and Warburg coefficient changed thereby their values by approximately 60%. A single frequency impedance measurement, usually carried out at 1 kHz, delivers only information about series resistance. Impedance spectroscopy allows additionally the estimation of charge transfer resistance and Warburg coefficient. This fact and the high sensitivity of model parameters to capacity change prove that impedance spectroscopy together with an accurate modeling deliver information that significantly improve characterization of aging effects.

  14. A systematic method for characterizing the time-range performance of ground penetrating radar

    International Nuclear Information System (INIS)

    Strange, A D

    2013-01-01

    The fundamental performance of ground penetrating radar (GPR) is linked to the ability to measure the signal time-of-flight in order to provide an accurate radar-to-target range estimate. Having knowledge of the actual time range and timing nonlinearities of a trace is therefore important when seeking to make quantitative range estimates. However, very few practical methods have been formally reported in the literature to characterize GPR time-range performance. This paper describes a method to accurately measure the true time range of a GPR to provide a quantitative assessment of the timing system performance and detect and quantify the effects of timing nonlinearity due to timing jitter. The effect of varying the number of samples per trace on the true time range has also been investigated and recommendations on how to minimize the effects of timing errors are described. The approach has been practically applied to characterize the timing performance of two commercial GPR systems. The importance of the method is that it provides the GPR community with a practical method to readily characterize the underlying accuracy of GPR systems. This in turn leads to enhanced target depth estimation as well as facilitating the accuracy of more sophisticated GPR signal processing methods. (paper)

  15. RELIABILITY AND ACCURACY ASSESSMENT OF INVASIVE AND NON- INVASIVE SEISMIC METHODS FOR SITE CHARACTERIZATION: FEEDBACK FROM THE INTERPACIFIC PROJECT

    OpenAIRE

    Garofalo , F.; Foti , S.; Hollender , F.; Bard , P.-Y.; Cornou , C.; Cox , B.R.; Dechamp , A.; Ohrnberger , M.; Sicilia , D.; Vergniault , C.

    2017-01-01

    International audience; The InterPacific project (Intercomparison of methods for site parameter and velocity profile characterization) aims to assess the reliability of seismic site characterization methods (borehole and surface wave methods) used for estimating shear wave velocity (VS) profiles and other related parameters (e.g., VS30). Three sites, representative of different geological conditions relevant for the evaluation of seismic site response effects, have been selected: (1) a hard r...

  16. A spatiotemporal characterization method for the dynamic cytoskeleton.

    Science.gov (United States)

    Alhussein, Ghada; Shanti, Aya; Farhat, Ilyas A H; Timraz, Sara B H; Alwahab, Noaf S A; Pearson, Yanthe E; Martin, Matthew N; Christoforou, Nicolas; Teo, Jeremy C M

    2016-05-01

    The significant gap between quantitative and qualitative understanding of cytoskeletal function is a pressing problem; microscopy and labeling techniques have improved qualitative investigations of localized cytoskeleton behavior, whereas quantitative analyses of whole cell cytoskeleton networks remain challenging. Here we present a method that accurately quantifies cytoskeleton dynamics. Our approach digitally subdivides cytoskeleton images using interrogation windows, within which box-counting is used to infer a fractal dimension (Df ) to characterize spatial arrangement, and gray value intensity (GVI) to determine actin density. A partitioning algorithm further obtains cytoskeleton characteristics from the perinuclear, cytosolic, and periphery cellular regions. We validated our measurement approach on Cytochalasin-treated cells using transgenically modified dermal fibroblast cells expressing fluorescent actin cytoskeletons. This method differentiates between normal and chemically disrupted actin networks, and quantifies rates of cytoskeletal degradation. Furthermore, GVI distributions were found to be inversely proportional to Df , having several biophysical implications for cytoskeleton formation/degradation. We additionally demonstrated detection sensitivity of differences in Df and GVI for cells seeded on substrates with varying degrees of stiffness, and coated with different attachment proteins. This general approach can be further implemented to gain insights on dynamic growth, disruption, and structure of the cytoskeleton (and other complex biological morphology) due to biological, chemical, or physical stimuli. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Expedited Site Characterization: A rapid, cost-effective process for preremedial site characterization

    International Nuclear Information System (INIS)

    Burton, J.C.; Walker, J.L.; Jennings, T.V.; Aggarwal, P.K.; Hastings, B.; Meyer, W.T.; Rose, C.M.; Rosignolo, C.L.

    1993-01-01

    Argonne National Laboratory has developed a unique, cost- and time-effective, technically innovative process for preremedial site characterization, referred to as Expedited Site Characterization (ESC). The cost of the ESC field sampling process ranges from 1/10 to 1/5 of the cost of traditional site characterization. The time required for this ESC field activity is approximately 1/30 of that for current methods. Argonne's preremedial site investigations based on this approach have been accepted by the appropriate regulatory agencies. The ESC process is flexible and neither site nor contaminant dependent. The process has been successfully tested and applied in site investigations of multiple contaminated landfills in New Mexico (for the US Department of the Interior's Bureau of Land Management [BLM]) and at former grain storage facilities in Nebraska and Kansas, contaminated with carbon tetrachloride (for the Department of Agriculture's Commodity Credit Corporation [CCC/USDA]). A working demonstration of this process was sponsored by the US Department of Energy (DOE) Office of Technology Development as a model of the methodology needed to accelerate site characterizations at DOE facilities. This report describes the application of the process in New Mexico, Nebraska and Kansas

  18. Synthesis and characterization of graphene oxide using modified Hummer's method

    Science.gov (United States)

    Kaur, Manpreet; Kaur, Harsimran; Kukkar, Deepak

    2018-05-01

    In the present study, a simple approach has been followed for the synthesis of graphene oxide (GO) using modified Hummers method in which graphite powder was oxidized in the presence of concentrated H2SO4 and KMnO4. The amount of NaNO3 and KMnO4 was varied to produce sheet like structure. The varied concentrations of NaNO3 and KMnO4 resulted in yielding large amount of the product. Structural, morphological and physicochemical features of the product were studied using UV-Visible spectrophotometer, Fourier Transform infrared spectroscopy (FTIR), and crystal structure was determined using X-ray powder diffraction (XRD). UV-Vis spectra of GO was observed at a maximum absorption of 230 nm due to (π-π*) transition of atomic carbon-carbon bonds. FTIR spectra revealed the presence of oxygen containing functional groups which ensures the complete exfoliation of graphite into graphene oxide X-ray powder diffraction pattern of the product showed the diffraction peak at (2θ = 26.7°) with an interlayer spacing of 0.334 nm. All the above characterizations successfully confirmed the formation of GO.

  19. Development of radiometric methods for radioactive waste characterization

    International Nuclear Information System (INIS)

    Tessaro, Ana Paula Gimenes

    2015-01-01

    The admission of radioactive waste in a final repository depends among other things on the knowledge of the radioisotopic inventory of the waste. To obtain this information it is necessary make the primary characterization of the waste so that it is composition is known, to guide the next steps of radioactive waste management. Filter cartridges that are used in the water polishing system of IEA-R1 research reactor is one of these wastes. The IEA-R1 is a pool-type research reactor, operating between 2 and 5 MW that uses water as coolant, moderator and biological shield. Besides research, it is used for production of radioisotopes and irradiation of samples with neutron and gamma beams. It is located in the Nuclear and Energy Research Institute at the University of Sao Paulo campus. The filter cartridges are used to retain particles that are suspended in the cooling water. When filters become saturated and are unable to maintain the flow within the established limits, they are replaced and disposed of as radioactive waste. After a period of decay, they are sent to the Radioactive Waste Management Department. The aim of this work is to present the studies to determine the activity of gamma emitters present in the cartridge filters. The activities were calculated using the dose rates measured with hand held detectors, after the ratios of the emission rates of photons were evaluated by gamma spectrometry, by the Point Kernel method, which correlates the activity of a source with dose rates at various distances. The method described can be used to determine routinely the radioactive inventory of these filters, avoiding the necessity of destructive radiochemical analysis, or the necessity of calibrating the geometry of measurement. (author)

  20. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    Science.gov (United States)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  1. EXAFS as a tool for catalyst characterization: a review of the data analysis methods

    Directory of Open Access Journals (Sweden)

    NORONHA F. B.

    1999-01-01

    Full Text Available A review of the EXAFS data analysis methods is presented. A detailed description of the EXAFS signal extraction and the Fourier transform of the data are discussed. The procedure for determining interatomic distances, coordination numbers and disorder effects from EXAFS data is described. This paper also discusses the data analysis statistics. Finally, one example of catalyst characterization by the EXAFS technique is reported.

  2. Methods for Characterization of Batteries Using Acoustic Interrogation

    Science.gov (United States)

    Bhadra, Shoham

    Batteries are a ubiquitous form of electrochemical energy storage, but thus far the methods for measuring the mechanical properties of batteries and their component materials in operando have lagged far behind the methods for measuring the corresponding electrical properties. In this thesis, I demonstrate methods for determining the changes in materials properties of an electrochemical energy storage cell both ex situ and in operando.. I begin by establishing the impact of micro-scale morphology changes on the macro-scale dynamic mechanical response in commercial alkaline AA cells. Using a bounce test, the coefficient of restitution (COR) of the cell is shown to increase non-linearly as a function of state of charge (SOC). I show that the reason for the increase in the COR stems from the spatially-dependent oxidation of the Zn anode, with an initial increase corresponding to the formation of a percolation pathway of ZnO-clad Zn particles spanning the radius of the anode. The subsequent saturation of the COR is shown to result from the ultimate solidification and desiccation of the Zn anode. Building from this, I present a generalized in operando solution for materials characterization in batteries using ultrasonic interrogation. The materials properties of battery components change during charge and discharge, resulting in a change in the sound speed of the materials. By attaching transducers to a battery during cycling and sending ultrasonic pulses through each cell I observe the changes in the time of flight (ToF) of the pulses, both in reflection and transmission. I show that the changes in ToF correspond to both SOC and state of health (SOH) in a variety of battery chemistries and geometries, and detail a corresponding acoustic conservation law model framework. Finally, I perform these electrochemical acoustic time of flight (EAToF) experiments on commercial alkaline AA cells. By correlating the results with energy dispersive x-ray diffraction (EDXRD) data and

  3. A new method for the characterization of micro-/nano-periodic structures based on microscopic Moiré fringes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Xie, Huimin, E-mail: xiehm@mail.tsinghua.edu.cn; Tang, Minjin; Hu, Zhenxing

    2014-01-15

    Linewidth and opening ratio (ratio of linewidth to period) are important parameters in characterizing micro-/nano-periodic and quasi-periodic structures. Periodic structures are conventionally characterized by the direct observation of specimens under a microscope. However, the field of view is relatively small, and only certain details can be acquired under a microscope. Moreover, the non-uniformity of the linewidth in quasi-periodic structures cannot be detected. This paper proposes a new characterization method for determining the linewidth and opening ratio of periodic structures based on Moiré fringe analysis. This method has the advantage of full-field characterization of the linewidth of micro-/nano-structures over a larger area than that afforded by direct observation. To validate the method, the linewidth of scanning electron microscope (SEM) scan lines was first calibrated with a standard grating. Next, a microperiodic structure with known geometry was characterized using this calibrated SEM system. The results indicate that the proposed method is simple and effective, indicating a potential approach for the characterization of gratings over large areas. This technique can be extended to various high-power scanning microscopes to characterize micro-/nano-structures. - Highlights: • A characterization method of the linewidth of high frequency gratings based on the microscope Moiré fringes is introduced. • The principle is according to the geometrical relationship between the gratings and the Moiré fringes. • This method has the potential application in characterization of the micro-/nano-structures. • The advantage of this method is that the micro-/nano-structures can be characterized in large view field under the full field of the microscope. • The microstructure of a butterfly has been characterized to declare the feasibility of this method.

  4. In situ thermal properties characterization using frequential methods

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, O.; Defer, D.; Antczak, E.; Chauchois, A.; Duthoit, B. [Laboratoire dArtois de Mecanique Thermique Instrumentation (LAMTI), FSA Universite dArtois, Technoparc Futura, 62400 Bethune (France)

    2008-07-01

    In numerous fields, especially that of geothermal energy, we need to know about the thermal behaviour of the soil now that the monitoring of renewable forms of energy is an ecological, economic and scientific issue. Thus heat from the soil is widely used for air-conditioning systems in buildings both in Canada and in the Scandinavian countries, and it is spreading. The effectiveness of this technique is based on the soils calorific potential and its thermophysical properties which will define the quality of the exchanges between the soil and a heat transfer fluid. This article puts forward a method to be used for the in situ thermophysical characterisation of a soil. It is based upon measuring the heat exchanges on the surface of the soil and on measuring a temperature a few centimetres below the surface. The system is light, inexpensive, well-suited to the taking of measurements in situ without the sensors used introducing any disturbance into the heat exchanges. Whereas the majority of methods require excitation, the one presented here is passive and exploits natural signals. Based upon a few hours of recording, the natural signals allow us to identify the soils thermophysical properties continuously. The identification is based upon frequency methods the quality of which can be seen when the thermophysical properties are injected into a model with finite elements by means of a comparison of the temperatures modelled and those actually measured on site. (author)

  5. Method and apparatus for surface characterization and process control utilizing radiation from desorbed particles

    International Nuclear Information System (INIS)

    Feldman, L.C.; Kraus, J.S.; Tolk, N.H.; Traum, M.M.; Tully, J.C.

    1983-01-01

    Emission of characteristic electromagnetic radiation in the infrared, visible, or UV from excited particles, typically ions, molecules, or neutral atoms, desorbed from solid surfaces by an incident beam of low-momentum probe radiation has been observed. Disclosed is a method for characterizing solid surfaces based on the observed effect, with low-momentum probe radiation consisting of electrons or photons. Further disclosed is a method for controlling manufacturing processes that is also based on the observed effect. The latter method can, for instance, be advantageously applied in integrated circuit-, integrated optics-, and magnetic bubble device manufacture. Specific examples of applications of the method are registering of masks, control of a direct-writing processing beam, end-point detection in etching, and control of a processing beam for laser- or electron-beam annealing or ion implantation

  6. METHOD AND APPARATUS FOR CHARACTERIZATION OF A SOLAR CELL

    DEFF Research Database (Denmark)

    2017-01-01

    ; and estimating variations in the solar cell, thereby electrically characterizing the solar cell. The disclosure further relates to a solar cell characterization apparatus for characterization of a solar cell, comprising: a light source for generating an optical probe light; a modulation unit, configured...... to produce modulated probe light by modulating the optical probe light with a modulation frequency of between 100 kHz and 0 MHz; a light scanning unit for scanning the modulated probe light such that said modulated probe light is incident on at least a part of the surface of the solar cell; and a 1 signal...

  7. Characterizing the thermal effects of High Energy Arc Faults

    Energy Technology Data Exchange (ETDEWEB)

    Putorti, Anthony; Bareham, Scott; Praydis, Joseph Jr. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States); Melly, Nicholas B. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC (United States)

    2015-12-15

    International and domestic operating experience involving High Energy Arc Faults (HEAF) in Nuclear Power Plant (NPP) electrical power systems have demonstrated the potential to cause extensive damage to electrical components and distribution systems along with damage to adjacent equipment and cables. An international study by the Committee on the Safety of Nuclear Installations (CSNI) gOECD Fire Project. Topical Report No. 1: Analysis of High Energy Arcing Fault (HEAF) Fire Events h published June 25, 2013 [1], illustrates that HEAF events have the potential to be major risk contributors with significant safety consequences and substantial economic loss. In an effort to better understand and characterize the threats posed by HEAF related phenomena, an international project has been chartered; the Joint Analysis of Arc Faults (Joan of ARC) OECD International Testing Program for High Energy Arc Faults. One of the major challenges of this research is how to properly measure and characterize the risk and influence of these events. Methods are being developed to characterize relevant parameters such as; temperature, heat flux, and heat release rate of fires resulting from HEAF events. Full scale experiments are being performed at low (≤ 1000 V) and medium (≤ 35 kV) voltages in electrical components. This paper introduces the methods being developed to measure thermal effects and discusses preliminary results of full scale HEAF experiments.

  8. Methods for initial characterization of Campylobacter jejuni bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.......Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity....

  9. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  10. Techniques and methods of characterization of admixtures for the concrete

    Directory of Open Access Journals (Sweden)

    Palacios, M.

    2003-03-01

    Full Text Available Admixtures are defined as those products that are incorporated in the moment of the process of mixture of the concrete in a quantity not bigger than 5 by mass of the cement %, with relationship to the cement content in the concrete, with object of modifying the properties of the mixture in .state fresh and/or hardened. The behaviour of the admixtures depends on its chemical and ionic composition, the organic functional groups present, and the structure of the polymer and the distribution of molecular weight of the different polymers. In the present work the techniques and methods of characterization physical-chemistry, chemistry and ionic, structural, as well as of the polymers that constitute this admixtures, are described. A lot of techniques have been employed like: ionic chromatography, ultraviolet-visible spectroscopy (UV-VIS, Fourier transform infrared spectroscopy (FTIR, Fourier transform Raman spectroscopy (FT-Raman, nuclear magnetic resonance spectroscopy (1H-RMN and 13C-RMN, gel permeation chromatography (GPC. Two commercial admixtures have been selected to carry out this characterization, a superplastificant based on policarboxilates, and a reducer of the shrinkage based on polipropilenglycol.

    RESUMEN Se definen los aditivos como aquellos productos que son incorporados en el momento del amasado del hormigón en una cantidad no mayor del 5% en masa, con relación al contenido de cemento en el hormigón, con objeto de modificar las propiedades de la mezcla en estado fresco y/o endurecido. El comportamiento de los aditivos depende de su composición química e iónica, de los grupos funcionales orgánicos presentes, de la estructura del polímero y de la distribución de pesos moleculares de los diferentes polímeros que lo constituyen. En el presente trabajo se describen diferentes técnicas y métodos de caracterización físico-química, química e iónica, estructural, así como de los polímeros que

  11. Methods for characterization of wafer-level encapsulation applied on silicon to LTCC anodic bonding

    International Nuclear Information System (INIS)

    Khan, M F; Ghavanini, F A; Enoksson, P; Haasl, S; Löfgren, L; Persson, K; Rusu, C; Schjølberg-Henriksen, K

    2010-01-01

    This paper presents initial results on generic characterization methods for wafer-level encapsulation. The methods, developed specifically to evaluate anodic bonding of low-temperature cofired ceramics (LTCC) to Si, are generally applicable to wafer-level encapsulation. Different microelectromechanical system (MEMS) structures positioned over the whole wafer provide local information about the bond quality. The structures include (i) resonating cantilevers as pressure sensors for bond hermeticity, (ii) resonating bridges as stress sensors for measuring the stress induced by the bonding and (iii) frames/mesas for pull tests. These MEMS structures have been designed, fabricated and characterized indicating that local information can easily be obtained. Buried electrodes to enable localized bonding have been implemented and their effectiveness is indicated from first results of the novel Si to LTCC anodic bonding.

  12. Characterization of the Effects of Fatigue on the Central Nervous System (CNS) and Drug Therapies

    National Research Council Canada - National Science Library

    Mery, Laura

    2007-01-01

    .... The modified flower pot method of sleep disruption was used to induce fatigue. This study utilized hippocampal dependant tasks, the radial arm maze and the Barnes maze, to characterize the effects of sleep disruption fatigue...

  13. Characterization of Hall effect thruster propellant distributors with flame visualization

    Science.gov (United States)

    Langendorf, S.; Walker, M. L. R.

    2013-01-01

    A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10-5 Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean.

  14. A new method to characterize dopant profiles in NMOSFETs using conventional transmission electron microscopy

    International Nuclear Information System (INIS)

    Kawamura, Kazuo; Ikeda, Kazuto; Terauchi, Masami

    2004-01-01

    We have developed a new method using conventional transmission electron microscopy (TEM) to obtain two dimensional dopant profiles in silicon and applied it to 40 nm-gate-length N + /p metal oxide semiconductor field effect transistors (MOSFETs). The results are consistent with those of selective-chemically etched samples observed by TEM. This method, using focused ion beam (FIB) sample preparation and conventional TEM, has the great advantage of simple sample preparation and high spatial resolution compared to other characterization methods, such as atomic capacitance microscopy, spreading resistance microscopy, and TEM combined with selective chemical etching. This indicates that this method can be applicable to the analysis of FETs at the 65 nm or smaller node

  15. A task specific uncertainty analysis method for least-squares-based form characterization of ultra-precision freeform surfaces

    International Nuclear Information System (INIS)

    Ren, M J; Cheung, C F; Kong, L B

    2012-01-01

    In the measurement of ultra-precision freeform surfaces, least-squares-based form characterization methods are widely used to evaluate the form error of the measured surfaces. Although many methodologies have been proposed in recent years to improve the efficiency of the characterization process, relatively little research has been conducted on the analysis of associated uncertainty in the characterization results which may result from those characterization methods being used. As a result, this paper presents a task specific uncertainty analysis method with application in the least-squares-based form characterization of ultra-precision freeform surfaces. That is, the associated uncertainty in the form characterization results is estimated when the measured data are extracted from a specific surface with specific sampling strategy. Three factors are considered in this study which include measurement error, surface form error and sample size. The task specific uncertainty analysis method has been evaluated through a series of experiments. The results show that the task specific uncertainty analysis method can effectively estimate the uncertainty of the form characterization results for a specific freeform surface measurement

  16. Study of borehole probing methods to improve the ground characterization

    Science.gov (United States)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  17. Characterizing CDMA downlink feasibility via effective interference

    NARCIS (Netherlands)

    Endrayanto, A.I.; van den Berg, Hans Leo; Boucherie, Richardus J.

    2003-01-01

    This paper models and analyses downlink power assignment feasibility in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a

  18. EFFECT OF BLANCHING METHODS ON

    African Journals Online (AJOL)

    Prof(Mrs)T-Akintunde

    2011-12-07

    Dec 7, 2011 ... effect on the on the drying kinetics of fruits and vegetables [3, 4, 6, 7, 8]. ..... reduced the effect of skin thickness, which is a normal resistance to water .... Karathanos VT and VG Belessiotis Sun and Artificial Air Drying Kinetics.

  19. Characterization of depleted uranium oxides fabricated using different processing methods

    International Nuclear Information System (INIS)

    Hastings, E.P.; Lewis, C.; FitzPatrick, J.; Rademacher, D.; Tandon, L.

    2008-01-01

    Identifying both physical and chemical characteristics of Special Nuclear Material (SNM) production processes is the corner stone of nuclear forensics. Typically, processing markers are based on measuring an interdicted sample's bulk chemical properties, such as the elemental or isotopic composition, or focusing on the chemical and physical morphology of only a few particles. Therefore, it is imperative that known SNM processes be fully characterized from bulk to trace level for each particle size range. This report outlines a series of particle size measurements and fractionation techniques that can be applied to a bulk SNM powders, categorizing both chemical and physical properties in discrete particle size fractions. This will be demonstrated by characterizing the process signatures of a series of different depleted uranium oxides prepared at increasing firing temperatures (350-1100 deg C). Results will demonstrate how each oxides' material density, particle size distribution, and morphology varies. (author)

  20. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors

    Science.gov (United States)

    Seppä, Jeremias; Niemelä, Karri; Lassila, Antti

    2018-05-01

    The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm  ×  2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.

  1. β-characterization by irreversibility analysis: A thermoeconomic diagnosis method

    International Nuclear Information System (INIS)

    Zaleta-Aguilar, Alejandro; Olivares-Arriaga, Abraham; Cano-Andrade, Sergio; Rodriguez-Alejandro, David A.

    2016-01-01

    This paper presents a reconciliation methodology for the diagnosis of energy systems. The methodology is based on the characterization of irreversibilities in the components of an energy system. These irreversibilities can be attributed to malfunctions or dysfunctions. The characterization of irreversibilities as presented here makes possible to reconcile the Actual Operating Condition (AOC) versus the Reference Operating Condition (ROC) of the energy system in a real-time manner. The diagnosis methodology introduces a parameter β, which represents the total exergy or useful work of a component in terms of its inlet and output streams at either design (full-load) or off-design (partial-load) conditions. The methodology is applied to the diagnosis of an actual Natural Gas Combined Cycle (NGCC) power plant. Data for the model is obtained directly from the plant by monitoring its performance at every time; thus, a real-time thermodynamic diagnosis for the system is obtained. Results show that the methodology presented here is able to detect and quantify the deviations on the performance of the NGCC power plant during its real-time operation. Based on the detection and quantification of these deviations, the user is able to make recommendations to schedule maintenance on the components where the irreversibilities are present. - Highlights: • A new methodology for thermoeconomic diagnosis of energy systems is presented. • A parameter β is defined for characterization of the components of an energy system. • The β characterization methodology is tested in a real 420 MW NGCC power plant. • Results show that the complexity of a diagnosis analysis is reduced substantially.

  2. Methods for the characterization of pyrolytic deposited carbon

    International Nuclear Information System (INIS)

    Bongartz, K.; Hoven, H.; Koizlik, K.

    Pyrocarbon is deposited as a coating material on fuel kernels used in HTGRs. For the development of particle coatings specified for various reactor designs, it is necessary to know the properties of pyrocarbon and their changes by neutron irradiation. In this report, procedures are described which are used to characterize pyrocarbon: measurement of geometry, density, microporosity, apparent crystallite size, anisotropy of orientation, modulus of elasticity, and strength of coatings, as well as ceramography, etching by oxidation, secondary and transmission electron microscopy. (auth)

  3. Radiometric method for the characterization of particulate processes in colloidal suspensions. II. Experimental verification of the method

    Energy Technology Data Exchange (ETDEWEB)

    Subotic, B. [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1979-09-15

    A radiometric method for the characterization of particulate processes is verified using stable hydrosols of silver iodide. Silver iodide hydrosols satisfy the conditions required for the applications of the proposed method. Comparison shows that the values for the change of particle size measured in silver iodide hydrosols by the proposed method are in excellent agreement with the values obtained by other methods on the same systems (electron microscopy, sedimentation analysis, light scattering). This shows that the proposed method is suitable for the characterization of particulate processes in colloidal suspensions. (Auth.).

  4. Structuring a cost-effective site characterization

    International Nuclear Information System (INIS)

    Berven, B.A.; Little, C.A.; Swaja, R.E.

    1990-01-01

    Successful chemical and radiological site characterizations are complex activities which require meticulously detailed planning. Each layer of investigation is based upon previously generated information about the site. Baseline historical, physical, geological, and regulatory information is prerequisite for preliminary studies at a site. Preliminary studies then provide samples and measurements which define the identity of potential contaminants and define boundaries around the area to be investigated. The goal of a full site characterization is to accurately determine the extent and magnitude of contaminants and carefully define the site conditions such that the future movements of site contaminants can be assessed for potential exposure to human occupants and/or environmental impacts. Critical to this process is the selection of appropriate measurement and sampling methodology, selection and use of appropriate instrumentation and management/interpretation of site information. Site investigations require optimization between the need of information to maximize the understanding of site conditions and the cost of acquiring that information. 5 refs., 1 tab

  5. EPICOR-II resin characterization and proposed methods for degradation analysis. Rev. 1

    International Nuclear Information System (INIS)

    Doyle, J.D.; McConnell, J.W. Jr.; Sanders, R.D. Sr.

    1984-06-01

    One goal of the EPICOR-II Research and Disposition Program is the examination of the EPICOR-II organic ion-exchange resins for physical and chemical degradation. This report summarizes preliminary information necessary for the evaluation of the resins for degradation. Degradation of the synthetic organic ion-exchange resins should be efficiently and accurately measurable by using the baseline data provided by the nonirradiated resin characterization. The degradation threshold is about 10 8 rads, approximately the same dose rate the resins will have received by the examination date. If degradation has not occurred at the first examination point, later examinations will detect resin degradation using the same analytical methods. The results from the characterization tests will yield practical and useful data on the actual effects of radiation on commercial synthetic organic ion-exchange resins. 10 references, 12 figures

  6. Review of geophysical characterization methods used at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  7. Review of geophysical characterization methods used at the Hanford Site

    International Nuclear Information System (INIS)

    GV Last; DG Horton

    2000-01-01

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ''all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts

  8. Thermal Characterization of a Hall Effect Thruster

    Science.gov (United States)

    2008-03-01

    View Factor A = Area θ = Angle R = Distance xiii J = Radiosity q = Heat Transfer Rate W = Radiated Power U = Voltage C...summation rule. 1 1 N ij j F = =∑ (18) Radiosity (Ji) takes into account both radiation emitted and reflected from a surface. Analyzing radiation...exchanges between two surfaces is made easier with a few assumptions. Each surface is assumed isothermal and characterized by a uniform radiosity

  9. Survey of Swedish buffer material candidates and methods for characterization

    International Nuclear Information System (INIS)

    Erlstroem, M.; Pusch, R.

    1987-12-01

    The study has given a good overview of potential clay buffer candidates in the part of Sweden that offers the best possibilities to find large accessible quantities of smectitic materials. The most promising Scanian materials are those in the Kaageroed and Vallaakra (Margreteberg) areas since they represent the most smectitic ones, which may serve as raw material for the production of canister embedment. The moraine clays in the Lund-Landskrona region seem to be useful for backfilling purposes. A refined version of Reynolds technique is suggested as an SKB standard for prospecting and characterization of buffer materials. (orig./DG)

  10. Peptidomics for dairy foods characterization - a method development study

    DEFF Research Database (Denmark)

    Villumsen, Nanna Stengaard; Hammershøj, Marianne; Sørensen, John

    During storage of long shelf life dairy products undesired changes can appear in the products. One major change in liquid UHT products and re-dissolved dairy product powders is an increase in viscosity, creation of “fluffy” material or “clouds” caused by aggregation of material including proteins...... of proteins and/or proteolysis from heat stable proteases – either native bovine proteases or from psychrotropic bacteria in the raw milk, or in combination. The project therefore aims at analyzing and outlining the formation of aggregates by proteomic characterizations combined with peptidomic profiles...

  11. Apparatus and method for detection and characterization of particles using light scattered therefrom

    Science.gov (United States)

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  12. Computational Biology Methods for Characterization of Pluripotent Cells.

    Science.gov (United States)

    Araúzo-Bravo, Marcos J

    2016-01-01

    Pluripotent cells are a powerful tool for regenerative medicine and drug discovery. Several techniques have been developed to induce pluripotency, or to extract pluripotent cells from different tissues and biological fluids. However, the characterization of pluripotency requires tedious, expensive, time-consuming, and not always reliable wet-lab experiments; thus, an easy, standard quality-control protocol of pluripotency assessment remains to be established. Here to help comes the use of high-throughput techniques, and in particular, the employment of gene expression microarrays, which has become a complementary technique for cellular characterization. Research has shown that the transcriptomics comparison with an Embryonic Stem Cell (ESC) of reference is a good approach to assess the pluripotency. Under the premise that the best protocol is a computer software source code, here I propose and explain line by line a software protocol coded in R-Bioconductor for pluripotency assessment based on the comparison of transcriptomics data of pluripotent cells with an ESC of reference. I provide advice for experimental design, warning about possible pitfalls, and guides for results interpretation.

  13. Characterization methods of integrated optics for mid-infrared interferometry

    Science.gov (United States)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  14. Wake characterization methods of a circulation control wing

    Science.gov (United States)

    El Sayed Mohamed, Y.; Semaan, R.; Sattler, S.; Radespiel, R.

    2017-10-01

    We propose a three-pronged methodology to characterise the wake behind a circulation control wing. The study relies on time-resolved particle image velocimetry (TR-PIV) measurements in a water tunnel for a range of blowing intensities. The first method is the well-known proper orthogonal decomposition (POD). The second tool is a new implementation of the power spectrum. Finally, a modified Q-criterion vortex detection and quantification method is presented. The results show the complementary advantage of the three methods in analysing wake flows with varying conditions.

  15. Sheet metals characterization using the virtual fields method

    Science.gov (United States)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2018-05-01

    In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.

  16. Characterization of HEM silicon for solar cells. [Heat Exchanger Method

    Science.gov (United States)

    Dumas, K. A.; Khattak, C. P.; Schmid, F.

    1981-01-01

    The Heat Exchanger Method (HEM) is a promising low-cost ingot casting process for material used for solar cells. This is the only method that is capable of casting single crystal ingots with a square cross section using a directional solidification technique. This paper describes the chemical, mechanical and electrical properties of the HEM silicon material as a function of position within the ingot.

  17. Development and application of methods to characterize code uncertainty

    International Nuclear Information System (INIS)

    Wilson, G.E.; Burtt, J.D.; Case, G.S.; Einerson, J.J.; Hanson, R.G.

    1985-01-01

    The United States Nuclear Regulatory Commission sponsors both international and domestic studies to assess its safety analysis codes. The Commission staff intends to use the results of these studies to quantify the uncertainty of the codes with a statistically based analysis method. Development of the methodology is underway. The Idaho National Engineering Laboratory contributions to the early development effort, and testing of two candidate methods are the subjects of this paper

  18. Technologies and methods used for the detection, enrichment and characterization of cancer stem cells.

    Science.gov (United States)

    Williams, Anthony; Datar, Ram; Cote, Richard

    2010-01-01

    Cancer stem cells (CSCs) represent a subclass of tumour cells with the ability for self-renewal, production of differentiated progeny, prolonged survival, resistance to damaging therapeutic agents, and anchorage-independent survival, which together make this population effectively equipped to metastasize, invade and colonize secondary tissues in the face of therapeutic intervention. In recent years, investigators have increasingly focused on the characterization of CSCs to better understand the mechanisms that govern malignant disease progression in an effort to develop more effective, targeted therapeutic agents. The primary obstacle to the study of CSCs, however, is their rarity. Thus, the study of CSCs requires the use of sensitive and efficient technologies for their enrichment and detection. This review discusses technologies and methods that have been adapted and used to isolate and characterize CSCs to date, as well as new potential directions for the enhanced enrichment and detection of CSCs. While the technologies used for CSC enrichment and detection have been useful thus far for their characterization, each approach is not without limitations. Future studies of CSCs will depend on the enhanced sensitivity and specificity of currently available technologies, and the development of novel technologies for increased detection and enrichment of CSCs.

  19. Characterization of resonances using finite size effects

    International Nuclear Information System (INIS)

    Pozsgay, B.; Takacs, G.

    2006-01-01

    We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra

  20. Assessing performance of flaw characterization methods through uncertainty propagation

    Science.gov (United States)

    Miorelli, R.; Le Bourdais, F.; Artusi, X.

    2018-04-01

    In this work, we assess the inversion performance in terms of crack characterization and localization based on synthetic signals associated to ultrasonic and eddy current physics. More precisely, two different standard iterative inversion algorithms are used to minimize the discrepancy between measurements (i.e., the tested data) and simulations. Furthermore, in order to speed up the computational time and get rid of the computational burden often associated to iterative inversion algorithms, we replace the standard forward solver by a suitable metamodel fit on a database built offline. In a second step, we assess the inversion performance by adding uncertainties on a subset of the database parameters and then, through the metamodel, we propagate these uncertainties within the inversion procedure. The fast propagation of uncertainties enables efficiently evaluating the impact due to the lack of knowledge on some parameters employed to describe the inspection scenarios, which is a situation commonly encountered in the industrial NDE context.

  1. Proceedings of national workshop on advanced methods for materials characterization

    International Nuclear Information System (INIS)

    2004-10-01

    During the past two decades there had been tremendous growth in the field of material science and a variety of new materials with user specific properties have been developed such as smart shape memory alloys, hybrid materials like glass-ceramics, cermets, met-glasses, inorganic- organic composite layered structures, mixed oxides with negative thermal expansion, functional polymer materials etc. Study of nano-particles and the materials assembled from such particles is another area of active research being pursued all over the world. Preparation and characterization of nano-sized materials is a challenge because of their dimensions and size dependent properties. This has led to the emergence of a variety of advanced techniques, which need to be brought to the attention of the researchers working in the field of material science which requires the expertise of physics, chemistry and process engineering. This volume deals with above aspects and papers relevant to INIS are indexed separately

  2. Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization

    Science.gov (United States)

    Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.

    1997-01-01

    Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.

  3. Characterization of craniofacial sutures using the finite element method.

    Science.gov (United States)

    Maloul, Asmaa; Fialkov, Jeffrey; Wagner, Diane; Whyne, Cari M

    2014-01-03

    Characterizing the biomechanical behavior of sutures in the human craniofacial skeleton (CFS) is essential to understand the global impact of these articulations on load transmission, but is challenging due to the complexity of their interdigitated morphology, the multidirectional loading they are exposed to and the lack of well-defined suture material properties. This study aimed to quantify the impact of morphological features, direction of loading and suture material properties on the mechanical behavior of sutures and surrounding bone in the CFS. Thirty-six idealized finite element (FE) models were developed. One additional specimen-specific FE model was developed based on the morphology obtained from a µCT scan to represent the morphological complexity inherent in CFS sutures. Outcome variables of strain energy (SE) and von Mises stress (σvm) were evaluated to characterize the sutures' biomechanical behavior. Loading direction was found to impact the relationship between SE and interdigitation index and yielded varied patterns of σvm in both the suture and surrounding bone. Adding bone connectivity reduced suture strain energy and altered the σvm distribution. Incorporating transversely isotropic material properties was found to reduce SE, but had little impact on stress patterns. High-resolution µCT scanning of the suture revealed a complex morphology with areas of high and low interdigitations. The specimen specific suture model results were reflective of SE absorption and σvm distribution patterns consistent with the simplified FE results. Suture mechanical behavior is impacted by morphologic factors (interdigitation and connectivity), which may be optimized for regional loading within the CFS. © 2013 Elsevier Ltd. All rights reserved.

  4. Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline.

    Science.gov (United States)

    Chang, Lun-Ching; Lin, Hui-Min; Sibille, Etienne; Tseng, George C

    2013-12-21

    As high-throughput genomic technologies become accurate and affordable, an increasing number of data sets have been accumulated in the public domain and genomic information integration and meta-analysis have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple microarray studies with relevant biological hypotheses are combined in order to improve candidate marker detection. Many methods have been developed and applied in the literature, but their performance and properties have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice of a meta-analysis method given an application; the decision essentially requires both statistical and biological considerations. We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles, and such methods can be categorized for different hypothesis setting purposes: (1) HS(A): DE genes with non-zero effect sizes in all studies, (2) HS(B): DE genes with non-zero effect sizes in one or more studies and (3) HS(r): DE gene with non-zero effect in "majority" of studies. We then performed a comprehensive comparative analysis through six large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data structure, respectively. The aggregated results from the simulation study categorized the 12 methods into three hypothesis settings (HS(A), HS(B), and HS(r)). Evaluation in real data and results from MDS and entropy analyses provided an insightful and practical guideline to the choice of the most suitable method in a given application. All source files for simulation and real data are available on the author's publication website.

  5. Characterizing Reinforcement Learning Methods through Parameterized Learning Problems

    Science.gov (United States)

    2011-06-03

    extraneous. The agent could potentially adapt these representational aspects by applying methods from feature selection ( Kolter and Ng, 2009; Petrik et al...611–616. AAAI Press. Kolter , J. Z. and Ng, A. Y. (2009). Regularization and feature selection in least-squares temporal difference learning. In A. P

  6. DNA based methods used for characterization and detection of food ...

    African Journals Online (AJOL)

    Detection of food borne pathogen is of outmost importance in the food industries and related agencies. For the last few decades conventional methods were used to detect food borne pathogens based on phenotypic characters. At the advent of complementary base pairing and amplification of DNA, the diagnosis of food ...

  7. Quantitative, Qualitative and Geospatial Methods to Characterize HIV Risk Environments.

    Directory of Open Access Journals (Sweden)

    Erin E Conners

    Full Text Available Increasingly, 'place', including physical and geographical characteristics as well as social meanings, is recognized as an important factor driving individual and community health risks. This is especially true among marginalized populations in low and middle income countries (LMIC, whose environments may also be more difficult to study using traditional methods. In the NIH-funded longitudinal study Mapa de Salud, we employed a novel approach to exploring the risk environment of female sex workers (FSWs in two Mexico/U.S. border cities, Tijuana and Ciudad Juárez. In this paper we describe the development, implementation, and feasibility of a mix of quantitative and qualitative tools used to capture the HIV risk environments of FSWs in an LMIC setting. The methods were: 1 Participatory mapping; 2 Quantitative interviews; 3 Sex work venue field observation; 4 Time-location-activity diaries; 5 In-depth interviews about daily activity spaces. We found that the mixed-methodology outlined was both feasible to implement and acceptable to participants. These methods can generate geospatial data to assess the role of the environment on drug and sexual risk behaviors among high risk populations. Additionally, the adaptation of existing methods for marginalized populations in resource constrained contexts provides new opportunities for informing public health interventions.

  8. DNA based methods used for characterization and detection of food ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... selective medium followed by plating in differential agar medium ... result. Biochemical and immunological methods for the detection require substantial amount of pure culture whereas .... biotin (chemiluminescent) probes are detected visually. It ..... are also gathering special attention due to their covalent.

  9. Membrane Characterization by Microscopic and Scattering Methods: Multiscale Structure

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-04-01

    Full Text Available Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES membranes (10, 30, 100 and 300 kDa and new 100 kDa hollow fibers (PVDF. Scanning Electron Microscopy (SEM with “in lens” detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI and Atomic Force Microscopy (AFM using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512 showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  10. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials

    International Nuclear Information System (INIS)

    Martin-Olmos, Cristina; Gimzewski, James K; Stieg, Adam Z

    2012-01-01

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices. (paper)

  11. Application of Patterson-function direct methods to materials characterization.

    Science.gov (United States)

    Rius, Jordi

    2014-09-01

    The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.

  12. Application of Patterson-function direct methods to materials characterization

    Directory of Open Access Journals (Sweden)

    Jordi Rius

    2014-09-01

    Full Text Available The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM, from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.

  13. Characterization of Mg-containing hydroxyapatites synthesized by combustion method

    Science.gov (United States)

    Kaygili, Omer; Keser, Serhat; Bulut, Niyazi; Ates, Tankut

    2018-05-01

    In the present paper, Mg-substituted hydroxyapatites with the morphology, composed of the stacked plate- and rod-like structures, were prepared at the temperature of 600 °C by combustion method using glycerine as a fuel. A significant decrease in the crystallite size values calculated for both Scherrer and Williamson-Hall methods is found. The crystallinity, lattice parameter of a, stress and anisotropic energy density values decreased by adding of Mg, whereas the lattice strain increased. The amount of HAp phase decreases with increasing amount of Mg and the β-tricalcium phosphate content increases. Mg incorporation the apatitic structure was detected. Depending on the increase in Mg content, Ca-deficiency was observed.

  14. Synthesis and Characterization of Anatase TiO_2 Powder using a Homogeneous Precipitation Method

    International Nuclear Information System (INIS)

    Choi, Soon Ok; Cho, Jee Hee; Lim, Sung Hwan; Chung, Eun Young

    2011-01-01

    This paper studies the experimental method that uses the homogeneous precipitation method to prepare mica flakes coated with anatase-type titania pearlescent pigment with urea as precipitant. The optimum technology parameters, the chemical composition, the microstructure, and the color property of resulting pigments are discussed. The coating principle of mica coated titania with various coating thickness is analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and tested by spectrophotometer analysis. The colored nanocrystalline pigments with different morphology and coating thickness 45-170 nm were prepared by homogeneous precipitation treatment of TiOSO_4(titanum oxysulfate) aqueous solutions. Characterizations on the pigments show that the pearlescent effects of the pigments depend mainly on mica size, thickness of the metal oxide deposit, its chemical composition, and crystal structure.

  15. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  16. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    Science.gov (United States)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  17. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    International Nuclear Information System (INIS)

    Kamimoto, Takeyuki

    2006-01-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed

  18. Selection method and characterization of neutron monochromator natural crystals

    International Nuclear Information System (INIS)

    Stasiulevicius, R.; Kastner, G.F.

    2000-01-01

    Thermal neutrons are important analytical tools for microscopic material probe. These neutrons can be selected by diffraction technique using monocrystal, usually artificial. A crystal selection process was implemented and the characteristics of natural specimens were studied by activation analysis-k 0 method. The representative 120 samples, of which 21 best types, were irradiated in IPR-R1 and measured with a neutron diffractometer at IEA-R1m Brazilian reactors. These results are useful for database build up and ease the choice of appropriate natural crystal, with some advantage options: highest intensity diffracted, enlarging the energy operational interval and optimal performance in special applications. (author)

  19. Monitoring Ion Implantation Energy Using Non-contact Characterization Methods

    Science.gov (United States)

    Tallian, M.; Pap, A.; Mocsar, K.; Somogyi, A.; Nadudvari, Gy.; Kosztka, D.; Pavelka, T.

    2011-01-01

    State-of-the-art ultra-shallow junctions are produced using extremely low ion implant energies, down to the range of 1-3 keV. This can be achieved by a variety of production techniques; however there is a significant risk that the actual implantation energy differs from the desired value. To detect this, sensitive measurement methods need to be utilized. Experiments show that both Photomodulated Reflection measurements before anneal and Junction Photovoltage-based sheet resistance measurements after anneal are suitable for this purpose.

  20. Characterization of Developer Application Methods Used in Fluorescent Penetrant Inspection

    Science.gov (United States)

    Brasche, L. J. H.; Lopez, R.; Eisenmann, D.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is the most widely used inspection method for aviation components seeing use for production as well as an inservice inspection applications. FPI is a multiple step process requiring attention to the process parameters for each step in order to enable a successful inspection. A multiyear program is underway to evaluate the most important factors affecting the performance of FPI, to determine whether existing industry specifications adequately address control of the process parameters, and to provide the needed engineering data to the public domain. The final step prior to the inspection is the application of developer with typical aviation inspections involving the use of dry powder (form d) usually applied using either a pressure wand or dust storm chamber. Results from several typical dust storm chambers and wand applications have shown less than optimal performance. Measurements of indication brightness and recording of the UVA image, and in some cases, formal probability of detection (POD) studies were used to assess the developer application methods. Key conclusions and initial recommendations are provided.

  1. An experimental method of characterization of deformable porous media

    Directory of Open Access Journals (Sweden)

    Sommier Alain

    2012-04-01

    Full Text Available A porous medium saturated with liquid and placed within a medium that undergoes a change in pressure reacts by shrinking. If the space contains the same liquid as the pores of the sample, then after a certain lapse of time the sample dilates. By measuring this dilation kinetic the specimen’s permeability can be approximated. This experimental method is called Dynamic Pressurisation. We set up an experimental apparatus to measure the permeability and the different agarose gel compressibility moduli. The liquid contained inside the gel pores is water. We have realized experiments in water and others in oil. In Scherer’s method the flow is considered only in the radial direction. To find the real permeability value we have built a numerical model considering that both the liquid and the solid are compressible. The simulations were compared to the experimental results and have allowed finding the real value of the permeability by considering the flow in both radial and axial directions.

  2. An Extensive Unified Thermo-Electric Module Characterization Method

    Science.gov (United States)

    Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio

    2016-01-01

    Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios. PMID:27983575

  3. The Characterization of Lithium Titanate Microspheres Synthesized by a Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available Lithium titanate microspheres were synthesized by a hydrothermal method. The structure and morphology of samples were characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, respectively. The specific surface area and average pore diameter of samples were studied by N2 adsorption-desorption isotherms. The results indicated that amorphous phase changed to lithium titanium oxide hydrate, accompanying mesopores formed between agglomerated primary particles in hydrothermal reaction. After sintering, mesoporous Li4Ti5O12 microspheres assembled by nanosized particle were obtained and had a diameter of about 400–700 nm. Then, a possible formation process analogous to the Kirkendall effect was proposed. Moreover, the effect of sintering temperature on the electrochemical properties of Li4Ti5O12 microspheres was investigated.

  4. Methods for radiation detection and characterization using a multiple detector probe

    Science.gov (United States)

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  5. Currently used methods for identification and characterization of hemichannels.

    Science.gov (United States)

    Schalper, Kurt A; Palacios-Prado, Nicolás; Orellana, Juan A; Sáez, Juan C

    2008-05-01

    Connexins and pannexins are vertebrate transmembrane proteins that form hexameric conduits termed hemichannels. Functional hemichannels allow the diffusional transport of ions and small molecules across the plasma membrane and serve as paracrine and autocrine communication pathways. During the last decade, interest in the hemichannel field increased substantially. Today, there is evidence for the existence of connexin hemichannels in vertebrate cells and bulk of information supports their function in diverse physiological and pathological responses. Controversy regarding the molecular identity of the hemichannel type mediating many responses arose recently with the identification of pannexin-based hemichannels. Here, the authors describe the most frequently used methods for studying hemichannels in living mammalian cells and focus on those with which they have more experience. Although the available in vitro evidence is substantial, further studies and possibly new experimental approaches are required to understand the role and properties of connexin and pannexin hemichannels in vivo.

  6. Characterizing critical phenomena via the Purcell effect

    Science.gov (United States)

    Silva Neto, M. B.; Szilard, D.; Rosa, F. S. S.; Farina, C.; Pinheiro, F. A.

    2017-12-01

    We investigate the role of phase transitions into the spontaneous-emission rate of a single quantum emitter embedded in a critical medium. Using a Landau-Ginzburg approach, we find that in the broken symmetry phase, the emission rate is reduced, or even suppressed, due to the photon mass generated by the Higgs mechanism. Remarkably, its sensitivity to the critical exponents of the phase transition allows for an optical determination of universality classes. When applied to the cases of superconductivity and superfluidity, we show that the Purcell effect also provides valuable information on spectroscopic and thermodynamic quantities, such as the size of the superconducting gap and the discontinuity in the specific heat at the transition. By unveiling that a deeper connection between the Purcell effect and phase transitions exists, we demonstrate that the former is an efficient optical probe of distinct critical phenomena and their associated observables.

  7. A radiometric method for the characterization of particulate processes in colloidal suspensions. II

    International Nuclear Information System (INIS)

    Subotic, B.

    1979-01-01

    A radiometric method for the characterization of particulate processes is verified using stable hydrosols of silver iodide. Silver iodide hydrosols satisfy the conditions required for the applications of the proposed method. Comparison shows that the values for the change of particle size measured in silver iodide hydrosols by the proposed method are in excellent agreement with the values obtained by other methods on the same systems (electron microscopy, sedimentation analysis, light scattering). This shows that the proposed method is suitable for the characterization of particulate processes in colloidal suspensions. (Auth.

  8. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  9. A novel method to characterize silica bodies in grasses.

    Science.gov (United States)

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  10. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  11. Development of method to characterize emissions from spray polyurethane foam insulation

    Science.gov (United States)

    This presentation updates symposium participants re EPA progress towards development of SPF insulation emissions characterization methods. The presentation highlights evaluation of experiments investigating emissions after application of SPF to substrates in micro chambers and i...

  12. The Development of Testing Methods for Characterizing Emissions and Sources of Exposures from Polyurethane Products

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures is not well understood. Currently, no comprehensive standard test methods exist for characterizing and quantifying product emissions. Exposures to diisocyanate compoun...

  13. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds.

    Science.gov (United States)

    Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T

    2012-09-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A novel preparation method for drug nanocrystals and characterization by ultrasonic spray assisted electrostatic adsorption

    Directory of Open Access Journals (Sweden)

    Gao B

    2013-10-01

    Full Text Available Bing Gao,1–3 Jun Wang,2 Dunju Wang,1,2 Ziqiang Zhu,1,2 Zhiqiang Qiao,2 Guangcheng Yang,2 Fude Nie21School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China, 2Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China, 3Si Chuan Research Center of New Materials, Mianyang, People's Republic of ChinaPurpose: The purpose of this study was to develop a novel and continuous method for preparing a nanosized particle of drug crystals and to characterize its properties.Materials and methods: A new apparatus was introduced to crystallize nanosized drug crystals of amitriptyline hydrochloride as a model drug. The samples were prepared in the pure state by ultrasonic spray, and elaborated deposition was completed via electrostatic adsorption. Scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy were used to characterize the size of the particles; this was subsequently followed by differential scanning calorimetry.Results and discussion: Nanoparticles of drug crystals were successfully prepared. The size of the drug crystals ranged from 20 nm to 400 nm; the particle size of amitriptyline hydrochloride was approximately 71 nm. The particles were spherical and rectangular in shape. Moreover, the melting point of the nanoparticles decreased from 198.2°C to 196.3°C when compared to raw particle crystals. Furthermore, the agglomeration effect was also attenuated as a result of electrostatic repulsion among each particle when absorbed, and depositing on the inner wall of the gathering unit occurred under the electrostatic effect.Conclusion: Ultrasonic spray-assisted electrostatic adsorption is a very effective and continuous method to produce drug nanocrystals. This method can be applied to poorly water-soluble drugs, and it can also be a very effective alternative for industrial production. Once the

  15. Effect of microwave irradiation on petrophysical characterization of coals

    International Nuclear Information System (INIS)

    Hong, Yi-du; Lin, Bai-quan; Zhu, Chuan-jie; Li, He

    2016-01-01

    Highlights: • Microwave energy increase porosity, pore size and numbers of coals. • Growth rates of porosity decreased at first then increased with microwave energy. • NMR can be reliable to measure coal samples. • Microwave energy may have the potential for degassing of coal seams. - Abstract: The experimental work described in this paper aims to study the effect of microwave irradiation on petrophysical characterization of coals. Twenty coal samples were irradiated at 2.45 GHz with variable power (2, 4, 6 kW). The temperature, mass and specific heat capacity of coal samples were measured and calculated. The effect of microwave irradiation on the porosity of coal samples was evaluated by the gravimetric method and nuclear magnetic resonance (NMR) measurements. The porosity obviously increases after microwave heating. Interestingly, growth rate of the porosity decreases at first then increases with microwave energy. The turning point is approximately 100 kJ. The influence of microwave irradiation on pore size, throat size and pore numbers of coal samples were also evaluated by NMR measurements. It suggest that the pore size, throat size and pore numbers are obviously increase with microwave energy. In a word, it appears likely that microwave energy may have the potential for the degassing coal seams.

  16. Effective Methods of Teaching Moon Phases

    Science.gov (United States)

    Jones, Heather; Hintz, E. G.; Lawler, M. J.; Jones, M.; Mangrubang, F. R.; Neeley, J. E.

    2010-01-01

    This research investigates the effectiveness of several commonly used methods for teaching the causes of moon phases to sixth grade students. Common teaching methods being investigated are the use of diagrams, animations, modeling/kinesthetics and direct observations of moon phases using a planetarium. Data for each method will be measured by a pre and post assessment of students understanding of moon phases taught using one of the methods. The data will then be used to evaluate the effectiveness of each teaching method individually and comparatively, as well as the method's ability to discourage common misconceptions about moon phases. Results from this research will provide foundational data for the development of educational planetarium shows for the deaf or other linguistically disadvantage children.

  17. Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method

    Science.gov (United States)

    Sathisha, D.; Naik, K. Gopalakrishna

    2018-05-01

    Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.

  18. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method

    International Nuclear Information System (INIS)

    Wang Wei; Qiao Xueliang; Chen Jianguo; Tan Fatang

    2008-01-01

    Ti-doped MgO nanopowders were prepared via a chemical coprecipitation method using acetic acid as a modifier in the presence of the surfactant polyethylene glycol (PEG 400). The as-obtained products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results show that titanium atoms have been successfully incorporated into the crystal lattice of MgO with periclase structure. The modifier, acetic acid, can significantly reduce the particle size, and improve size distribution and dispersion of nanoparticles. In addition, the effect of doped titanium on the structure and morphology of magnesium oxide was also investigated

  19. Characterization of nuclear fuel using immersion and method of penetration (MPI)

    International Nuclear Information System (INIS)

    Faeda, K. C. M.; Lameiras, F.S.; Ferraz, W.B.; Machado, G.C.

    2011-01-01

    The characterization of nuclear fuel is of great importance and aims to minimize the effects related to burning and the temperature in the fuel, so that the stability of the fuel during the time of his stay in the reactor core. The method of penetration and use the boost immersion with vacuum impregnation to measure density and open porosity of ceramic materials. It is non-destructive if the liquid impregnation can be removed from the sample. The impregnation requires the use of a liquid with low surface tension and small variation of surface tension with temperature. The xylene due its large industrial employment has been widely used for this purpose. However, it presents serious problems of toxicity. In this work, comparable studies of xylene with water + detergent to measure density and porosity in alumina pellets. The atmospheric pressure, temperature and humidity were monitored during the measurements and considered as covariates. (author)

  20. Structural characterization of pure and doped calcium phosphate bioceramics prepared by simple solid state method

    International Nuclear Information System (INIS)

    Ahmed, S.; Kabir, H.; Nigar, F.

    2011-01-01

    Calcium Phosphate based bioceramic materials, in pure and doped forms have been successfully synthesized from egg shells by using solid-state method for the first time. Considering the diverse role of zinc and fluoride in biological functions, these two ions were chosen to develop the substituted bioceramic materials. Structural characterizations of these developed bioceramics were performed by using FTIR, XRD, SEM and EDS techniques. The results revealed that the fluoride doped apatite was formed in single phase containing hydroxyapatite while pure and Zinc doped apatites contained -TCP with hydroxyapatite. Experimental results and the crystallographic parameters matched well with the literature values indicating that the present experimental protocol favoured the formation of the desired bioceramics. However, to synthesize the (Ca (PO)) based bioceramic materials, such a simple solid-state approach would obviously be very helpful, not only in making the process economically feasible, but also in creating an effective material recycling technology for waste-management. (author)

  1. Genealogical series method. Hyperpolar points screen effect

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1991-01-01

    The fundamental values of the genealogical series method -the genealogical integrals (sandwiches) have been investigated. The hyperpolar points screen effect has been found. It allows one to calculate the sandwiches for the Fermion systems with large number of particles and to ascertain the validity of the iterated-potential method as well. For the first time the genealogical-series method has been realized numerically for the central spin-independent potential

  2. Exploration of the Effectiveness of Tactile Methods

    Science.gov (United States)

    Aldajani, Neda F.

    2016-01-01

    This paper introduces the tactile method and aims to explore the effectiveness of using tactile methods with students who are blind and visually impaired. Although there was limited research about using this strategy, all of the research agrees that using tactile is one of the best ways for students who are blind and visually impaired to be…

  3. Effectiveness of weed control methods on pavement

    NARCIS (Netherlands)

    Vermeulen, G.D.; Verwijs, B.R.; Kempenaar, C.

    2007-01-01

    The policy in the Netherlands is to signifiantly reduce the use of herbicides, also on pavements. Existing non-chemical methods to control weeds are much less effective than spot spraying, the usual method at this moment. Therefore, the cost of non-chemical weed management is often estimated to be 4

  4. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe.

    Science.gov (United States)

    Cvetkovikj, I; Stefkov, G; Acevska, J; Stanoeva, J Petreska; Karapandzova, M; Stefova, M; Dimitrovska, A; Kulevanova, S

    2013-03-22

    Although the knowledge and use of several Salvia species (Salvia officinalis, Salvia fruticosa, and Salvia pomifera) can be dated back to Greek Era and have a long history of culinary and effective medicinal use, still there is a remarkable interest concerning their chemistry and especially the polyphenolic composition. Despite the demand in the food and pharmaceutical industry for methods for fast quality assessment of the herbs and spices, even now there are no official requirements for the minimum content of polyphenols in sage covered by current regulations neither the European Pharmacopoeia monographs nor the ISO 11165 standard. In this work a rapid analytical method for extraction, characterization and quantification of the major polyphenolic constituents in Sage was developed. Various extractions (infusion - IE; ultrasound-assisted extraction - USE and microwave-assisted extraction - MWE) were performed and evaluated for their effectiveness. Along with the optimization of the mass-detector and chromatographic parameters, the applicability of three different reverse C18 stationary phases (extra-density bonded, core-shell technology and monolith column) for polyphenolics characterization was evaluated. A comprehensive overview of the very variable polyphenolic composition of 118 different plant samples of 68 populations of wild growing culinary Salvia species (S. officinalis: 101; S. fruticosa: 15; S. pomifera: 2) collected from South East Europe (SEE) was performed using HPLC-DAD-ESI-MS(n) and more than 50 different compounds were identified and quantified. With this work the knowledge about polyphenols of culinary Sage was expanded thus the possibility for gaining an insight into the chemodiversity of culinary Salvia species in South East Europe was unlocked. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Growth and characterization of magnetite-maghemite thin films by the dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, A. A., E-mail: avelas26@eafit.edu.edu.co; Arnedo, A. [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia)

    2017-11-15

    We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite (γ-Fe{sub 2}O{sub 3}) and two doublets attributed to superparamagnetic magnetite (Fe{sub 3}O{sub 4}), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.

  6. Surface characterization of retinal tissues for the enhancement of vitreoretinal surgical methods

    Science.gov (United States)

    Valentin-Rodriguez, Celimar

    Diabetic retinopathy is the most common ophthalmic complication of diabetes and the leading cause of blindness among adults, ages 30 to 70. Surgery to remove scar tissue in the eye is the only corrective treatment once the retina is affected. Visual recovery is often hampered by retinal trauma during surgery and by low patient compliance. Our work in this project aimed to improve vitreoretinal surgical methods from information gathered by sensitive surface analysis of pre-retinal tissues found at the vitreoretinal interface. Atomic force microscopy characterization of human retinal tissues revealed that surgically excised inner limiting membrane (ILM) has a heterogeneous surface and is mainly composed of globular and fibrous structures. ILM tissues also show low adhesion for clean unmodified surfaces as opposed to those with functional groups attractive to those on the ILM surface, due to their charge. Based on these observations, layer-by-layer films with embedded gold nanoparticles with a positive outer charge were designed. These modifications increased the adhesion between surgical instruments and ILM by increasing the roughness and tuning the film surface charge. These films proved to be stable under physiological conditions. Finally, the effect of vital dyes on the topographical characteristics of ILMs was characterized and new imaging modes to further reveal ILM topography were utilized. Roughness and adhesion force data suggest that second generation dyes have no effect on the surface nanostructure of ILMs, but increase adhesion at the tip sample interface. This project clearly illustrates that physicochemical information from tissues can be used to rationally re-design surgical procedures, in this case for tissue removal purposes. This rational design method can be applied to other soft tissue excision procedures as is the case of cataract surgery or laparoscopic removal of endometrial tissue.

  7. Growth and characterization of magnetite-maghemite thin films by the dip coating method

    International Nuclear Information System (INIS)

    Velásquez, A. A.; Arnedo, A.

    2017-01-01

    We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite (γ-Fe_2O_3) and two doublets attributed to superparamagnetic magnetite (Fe_3O_4), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.

  8. Argonne's Expedited Site Characterization: An integrated approach to cost- and time-effective remedial investigation

    International Nuclear Information System (INIS)

    Burton, J.C.; Walker, J.L.; Aggarwal, P.K.; Meyer, W.T.

    1995-01-01

    Argonne National Laboratory has developed a methodology for remedial site investigation that has proven to be both technically superior to and more cost- and time-effective than traditional methods. This methodology is referred to as the Argonne Expedited Site Characterization (ESC). Quality is the driving force within the process. The Argonne ESC process is abbreviated only in time and cost and never in terms of quality. More usable data are produced with the Argonne ESC process than with traditional site characterization methods that are based on statistical-grid sampling and multiple monitoring wells. This paper given an overview of the Argonne ESC process and compares it with traditional methods for site characterization. Two examples of implementation of the Argonne ESC process are discussed to illustrate the effectiveness of the process in CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) and RCRA (Resource Conservation and Recovery Act) programs

  9. Simple method for the characterization of intense Laguerre-Gauss vector vortex beams

    Science.gov (United States)

    Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.

    2018-05-01

    We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.

  10. Preparation and characterization of strontium-fluorapatite nanopowders by sol-gel method

    Science.gov (United States)

    Kamaei, Maryam; Fathi, Mohammad Hossein

    2018-01-01

    Biomaterials based on calcium orthophosphate are especially attractive for use in medicine, for bone and teeth implants due to their biological properties, such as biocompatibility and bioactivity. Among them, hydroxyapatite (HAP; Ca10(PO4)6(OH)2) is used particularly because of its similarities to the inorganic component of bone. Hydroxyapatite has been widely used for biomedical applications. Despite desirable properties such as bioactivity, biocompatibility, solubility and adsorption, synthetic HA is limited in application due to poor thermostability and poor mechanical properties. Properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. Use of the sol-gel technique is technically simple, cost effective and beneficial for fabrication biomaterials. This research aimed to prepare and characterize Sr-doped FA nanopowders (Sr-FA). Sr-FA with different Sr contents was prepared by sol-gel method. The designated degree of substitution of Ca by Sr in the mixture was determined by the x value in the general formula of (Ca10-x Srx(PO4)6F2), where x=0,0.5,1. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques were utilized to characterize the obtained nano powders. Results showed that Sr ions entered into the fluorapatite lattice and occupied Ca sites. The incorporation of Sr ions into the fluorapatite resulted in the increase of the lattice parameters.

  11. Superfield tadpole method for SUSY effective potential

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1983-01-01

    Superfield formulation of Weinberg's tadpole method to compute the effective potential in supersymmetric theories is illustrated by considering the general renormalizable action involving only chiral scalar superfields. Unconstrained superfield potentials are introduced to simplify the ''effective'' superfield propagator which is derived in a compact form. (orig.)

  12. Influence of 3D particle shape on the mechanical behaviour through a novel characterization method

    Directory of Open Access Journals (Sweden)

    Ouhbi Noura

    2017-01-01

    Full Text Available The sensitivity of the mechanical behaviour of railway ballast to particle shape variation is studied through Discrete Element Method (DEM numerical simulations, focusing on some basic parameters such as solid fraction, coordination number, or force distribution. We present an innovative method to characterize 3D particle shape using Proper Orthogonal Decomposition (POD of scanned ballast grains with a high accuracy. The method enables not only shape characterization but also the generation of 3D distinct and angular shapes. Algorithms are designed for face and edge recognition.

  13. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    International Nuclear Information System (INIS)

    Majer, E.L.; Lee, K.H.; Morrison, H.F.

    1992-08-01

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected

  14. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity.

    Science.gov (United States)

    Ok, Kang Min; Chi, Eun Ok; Halasyamani, P Shiv

    2006-08-01

    Characterization methods for bulk non-centrosymmetric compounds are described. These methods include second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. In this tutorial review with each phenomenon, details are given of the measurement techniques along with a brief history and background. Finally, data interpretation is discussed.

  15. Characterization of ceramic materials - Some methods employed in quality control of nuclear fuels

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferraz, W.B.; Lameiras, F.S.; Lopes, J.A.M.; Santos, A.M.M. dos; Ferreira, R.A.N.

    1986-01-01

    Measuring methods are presented for specific surface, density, open porosity and microstructure, such as bulk density of particles in form of nicrospheres, for characterization of ceramic materials used as nuclear fuels. Some of these methods are alternatives to those usually employed, and they present some advantages, such as economy, speed of execution, and accuracy. (Author) [pt

  16. Study of the possibilities of using nuclear methods for characterizing the surface region of glasses

    International Nuclear Information System (INIS)

    Hsiung, P.

    1983-01-01

    Following a review of the different methods used for the analysis of surfaces, we give a detailed description of charged particle elastic backscattering and the experimental devices. We then apply this method to the study of the lixiviation of borosilicate glasses in aqueous media and to the characterization of two heavy elements, cerium and thorium and their possible interaction in simple borosilicates [fr

  17. Preparation by a facile method and characterization of amorphous and crystalline nickel sulfide nanophases

    Energy Technology Data Exchange (ETDEWEB)

    Nagaveena, S., E-mail: nagaveena3@gmail.com; Mahadevan, C.K.

    2014-01-05

    Highlights: • Amorphous NiS, and crystalline NiS{sub 1.03}, β-NiS and α-NiS nanophases prepared. • Simple microwave assisted solvothermal method used. • Nanoparticles with low grain size, high phase purity and homogeneity obtained. • High coercivity observed indicates the applicability in data storage devices. -- Abstract: A simple solvothermal route using a domestic microwave oven has been developed to prepare the prominent nickel sulfide nanophases (amorphous NiS, and crystalline NiS{sub 1.03}, β-NiS and α-NiS). The prepared nanophases have been characterized chemically, structurally, optically, electrically, and magnetically by the available methods like thermogravimetric and differential thermal analyses, X-ray powder diffraction analysis, scanning electron microscopic, and transmission electron microscopic analyses, energy dispersive X-ray spectroscopic, Fourier transform-infrared spectral, UV–Vis spectral and photoluminescence spectral analyses, AC and DC electrical measurements at various temperatures in the range 40–150 °C, and vibrating sample magnetometric measurements. The average particle sizes obtained through transmission electron microscopic analysis are 15, 17, 18, 20 nm respectively for the amorphous NiS, NiS{sub 1.03}, β-NiS and α-NiS nanophases. Results obtained in the present study indicates that the method adopted is found to be an effective and economical one for preparing these nanophases with high purity, reduced size, homogeneity, and useful optical, electrical and magnetic properties.

  18. Characterization of working iron Fischer-Tropsch catalysts using quantitative diffraction methods

    Science.gov (United States)

    Mansker, Linda Denise

    This study presents the results of the ex-situ characterization of working iron Fischer-Tropsch synthesis (F-TS) catalysts, reacted hundreds of hours at elevated pressures, using a new quantitative x-ray diffraction analytical methodology. Compositions, iron phase structures, and phase particle morphologies were determined and correlated with the observed reaction kinetics. Conclusions were drawn about the character of each catalyst in its most and least active state. The identity of the active phase(s) in the Fe F-TS catalyst has been vigorously debated for more than 45 years. The highly-reduced catalyst, used to convert coal-derived syngas to hydrocarbon products, is thought to form a mixture of oxides, metal, and carbides upon pretreatment and reaction. Commonly, Soxhlet extraction is used to effect catalyst-product slurry separation; however, the extraction process could be producing irreversible changes in the catalyst, contributing to the conflicting results in the literature. X-ray diffraction doesn't require analyte-matrix separation before analysis, and can detect trace phases down to 300 ppm/2 nm; thus, working catalyst slurries could be characterized as-sampled. Data were quantitatively interpreted employing first principles methods, including the Rietveld polycrystalline structure method. Pretreated catalysts and pure phases were examined experimentally and modeled to explore specific behavior under x-rays. Then, the working catalyst slurries were quantitatively characterized. Empirical quantitation factors were calculated from experimental data or single crystal parameters, then validated using the Rietveld method results. In the most active form, after pretreatment in H 2 or in CO at Pambient, well-preserved working catalysts contained significant amounts of Fe7C3 with trace alpha-Fe, once reaction had commenced at elevated pressure. Amounts of Fe3O 4 were constant and small, with carbide dpavg 65 wt%, regardless of pretreatment gas and pressure, with

  19. Conditions promoting and restraining agronomic effectiveness of water-insoluble phosphate sources, in particular phosphate rock (PR): IV. Characterization of mobile P status of soils treated with PR using conventional methods

    International Nuclear Information System (INIS)

    Borlan, Z.; Stefanescu, D.; Gavriluta, I.; Soare, M.; Alexandrescu, A.

    2002-01-01

    Determining plant-available P through chemical extraction procedures is a real challenge in soil chemistry because 'mimicking' the plant abilities to take up phosphorus from soil and other natural and manufactured P sources is complex. Indeed, the idea of 'mimicking' complex physiological processes like P absorption and translocation in plants by a chemical dissolution process seems unrealistic. Nevertheless data on mobile soil P are needed to assess the soil P status and thus provide adequate P fertilizer recommendations to ensure normal plant growth and good yields. In this paper the appraisal of several mobile P extracting methods was made through statistical correlation with P accumulated in plants over a limited period of time. Based on plant, PR and soil correlation studies conducted from 1994 through 1997 the ammonium heptamolybdate 0.3 and 0.6% in calcium chloride 0.01 M at pH 4.3 methods have both performed better the other tested extraction methods. (author)

  20. Characterization of hazardous waste sites: a methods manual. Volume 2. Available sampling methods (second edition)

    International Nuclear Information System (INIS)

    Ford, P.J.; Turina, P.J.; Seely, D.E.

    1984-12-01

    Investigations at hazardous waste sites and sites of chemical spills often require on-site measurements and sampling activities to assess the type and extent of contamination. This document is a compilation of sampling methods and materials suitable to address most needs that arise during routine waste site and hazardous spill investigations. The sampling methods presented in this document are compiled by media, and were selected on the basis of practicality, economics, representativeness, compatability with analytical considerations, and safety, as well as other criteria. In addition to sampling procedures, sample handling and shipping, chain-of-custody procedures, instrument certification, equipment fabrication, and equipment decontamination procedures are described. Sampling methods for soil, sludges, sediments, and bulk materials cover the solids medium. Ten methods are detailed for surface waters, groundwater and containerized liquids; twelve are presented for ambient air, soil gases and vapors, and headspace gases. A brief discussion of ionizing radiation survey instruments is also provided

  1. Characterizing Watersheds with Geophysical Methods: Some uses of GPR and EMI in Hydropedological Investigations.

    Science.gov (United States)

    Doolittle, J.; Lin, H.; Jenkinson, B.; Zhou, X.

    2006-05-01

    The USDA-NRCS and its cooperators use ground-penetrating radar (GPR) and electromagnetic induction (EMI) as rapid, noninvasive tools to support soil surveys at different scales and levels of resolution. The effective use of GPR is site-specific and generally restricted to soils having low electrical conductivity (e.g., soils with low clay and soluble salt contents). In suitable soils, GPR provides high resolution data, which are used to estimate depths to soil horizons and geologic layers that restrict, redirect, and/or concentrate the flow of water through landscapes. In areas of coarse-textured soils, GPR has been used to map spatiotemporal variations in water-table depths and local ground-water flow patterns. Compared with GPR, EMI can be effectively used across a broader spectrum of soils and spatial scales, but provides lower resolution of subsurface features. EMI is used to refine and improve soil maps prepared with traditional soil survey methods. Differences in apparent conductivity (ECa) are associated with different soils and soil properties (e.g., clay, moisture and soluble salt contents). Apparent conductivity maps provide an additional layer of information, which directs soil sampling, aids the identification and delineation of some soil polygons, and enhances the quality of soil maps. More recently, these tools were used to characterize the hydropedological character of a small, steeply sloping, forested watershed. Within the watershed, EMI was used to characterize the principal soil-landscape components, and GPR was used to provide high resolution data on soil depth and layering within colluvial deposits located in swales and depressional areas.

  2. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.

    Science.gov (United States)

    Etheridge, Michael L; Choi, Jeunghwan; Ramadhyani, Satish; Bischof, John C

    2013-02-01

    While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to -150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the "iceball" with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated

  3. Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley

    through percolating networks and reaction rates at the triple phase boundaries. Quantitative analysis of microstructure is thus important both in research and development of optimal microstructure design and fabrication. Three dimensional microstructure characterization in particular holds great promise...... for gaining further fundamental understanding of how microstructure affects performance. In this work, methods for automatic 3D characterization of microstructure are studied: from the acquisition of 3D image data by focused ion beam tomography to the extraction of quantitative measures that characterize...... the microstructure. The methods are exemplied by the analysis of Ni-YSZ and LSC-CGO electrode samples. Automatic methods for preprocessing the raw 3D image data are developed. The preprocessing steps correct for errors introduced by the image acquisition by the focused ion beam serial sectioning. Alignment...

  4. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds

    International Nuclear Information System (INIS)

    Cristiano, Bárbara F.G.; Delgado, José Ubiratan; Wanderley S da Silva, José; Barros, Pedro D. de; Araújo, Radier M.S. de; Dias, Fábio C.; Lopes, Ricardo T.

    2012-01-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. - Highlights: ► A semi-automatic potentiometric titration method was developed for U charaterization. ► K 2 Cr 2 O 7 was the only certified reference material used. ► Values obtained for U 3 O 8 samples were consistent with certified. ► Uncertainty of 0.01% was useful for characterization and intercomparison program.

  5. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  6. Using polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function

    Science.gov (United States)

    Weisman, Andrew L.

    Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a

  7. An effective method for terrestrial arthropod euthanasia.

    Science.gov (United States)

    Bennie, Neil A C; Loaring, Christopher D; Bennie, Mikaella M G; Trim, Steven A

    2012-12-15

    As scientific understanding of invertebrate life increases, so does the concern for how to end that life in an effective way that minimises (potential) suffering and is also safe for those carrying out the procedure. There is increasing debate on the most appropriate euthanasia methods for invertebrates as their use in experimental research and zoological institutions grows. Their popularity as pet species has also led to an increase in the need for greater veterinary understanding. Through the use of a local injection of potassium chloride (KCl) initially developed for use in American lobsters, this paper describes a safe and effective method for euthanasia in terrestrial invertebrates. Initial work focused on empirically determining the dose for cockroaches, which was then extrapolated to other arthropod species. For this method of euthanasia, we propose the term 'targeted hyperkalosis' to describe death through terminal depolarisation of the thoracic ganglia as a result of high potassium concentration.

  8. Synthesis and characterization of TiO2 nanoparticles by the method Pechini

    International Nuclear Information System (INIS)

    Zoccal, Joao Victor Marques; Arouca, Fabio de Oliveira; Goncalves, Jose Antonio Silveira

    2009-01-01

    In recent years, scientific research showed an increasing interest in the field of nanotechnology, resulting in several techniques for the production of nanoparticles, such as methods of chemical synthesis. Among the various existing methods, the Pechini method has been used to obtain nanoparticles of titanium dioxide (TiO 2 ). Thus, this work aims to synthesize and characterize nanoparticles of TiO 2 obtained by this method. The technique constitutes in the reaction between citric acid with titanium isopropoxide, resulting as the product the titanium citrate. With the addition of the ethylene glycol polymerization occurs, resulting in a polymeric resin. At the end of the process, the resin is calcined to remove organic matter, creating nanoparticles of TiO 2 . The resulting powders were characterized by thermogravimetric analysis (TGA) and thermal differential analysis (DTA), X-ray diffraction, absorption spectrophotometry in the infrared, method of adsorption nitrogen / helium (BET method) and scanning electron microscopy. The results obtained in the characterization techniques showed that the Pechini method is promising in obtaining nanosized TiO 2 . (author)

  9. National Nanotechnology Laboratory (LNNano) open facilities for scientific community: new methods for polymeric materials characterization

    International Nuclear Information System (INIS)

    Silva, Cristiane A.; Santos, Ramon H.Z. dos; Bernardes, Juliana S.; Gouveia, Rubia F.

    2015-01-01

    National Nanotechnology Laboratory (LNNano) at the National Center for Energy and Materials (CNPEM) presents open facilities for scientific public in some areas. In this work will be discussed the facilities for mainly the polymeric community, as well as new methods for the characterization. Low density polyethylene (LDPE) surfaces were characterized by X-ray microtomography and X-ray photoelectron spectroscopy (XPS). The results obtained by microtomography have shown that these surfaces present different contrasts when compared with the bulk. These differences are correlated with the formation of an oxidized layer at the polymer surface, which consequently have a greater X-ray attenuation. This hypothesis is confirmed by XPS, which shows LDPE surface layers are richer in carbonyl, carboxyl and vinyl groups than the bulk. This work presents that microtomography can be used as a new method for detection and characterization of polymer surface oxidation. (author)

  10. Development of characterization methods applied to radioactive wastes and waste packages

    International Nuclear Information System (INIS)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A.; Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F.; Moulin, V.; Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R.

    2004-01-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  11. Parameters of Higuchi's method to characterize primary waves in some seismograms from the Mexican subduction zone

    Science.gov (United States)

    Gálvez-Coyt, Gonzalo; Muñoz-Diosdado, Alejandro; Peralta, José; Balderas-López, José; Angulo-Brown, Fernando

    2012-06-01

    Higuchi's method is a procedure that, if applied appropriately, can determine in a reliable way the fractal dimension D of time series; this fractal dimension permits to characterize the degree of correlation of the series. However, when analyzing some time series with Higuchi's method, there are oscillations at the right-hand side of the graph, which can cause a mistaken determination of the fractal dimension. In this work, an appropriate explanation is given to this type of behaviour. Using the seismogram as a time series and the properties of the P and S waves, it is possible to use the properties of Higuchi's method to previously detect the arrival of the earthquake shacking stage, some seconds in advance, approximately 30-35 s in the case of Mexico City. Thus, we propose the Higuchi's method to characterize and detect the P waves in order to estimate the strength of the forthcoming S waves.

  12. Method of semi-automatic high precision potentiometric titration for characterization of uranium compounds

    International Nuclear Information System (INIS)

    Cristiano, Barbara Fernandes G.; Dias, Fabio C.; Barros, Pedro D. de; Araujo, Radier Mario S. de; Delgado, Jose Ubiratan; Silva, Jose Wanderley S. da; Lopes, Ricardo T.

    2011-01-01

    The method of high precision potentiometric titration is widely used in the certification and characterization of uranium compounds. In order to reduce the analysis and diminish the influence if the annalist, a semi-automatic version of the method was developed at the safeguards laboratory of the CNEN-RJ, Brazil. The method was applied with traceability guaranteed by use of primary standard of potassium dichromate. The standard uncertainty combined in the determination of concentration of total uranium was of the order of 0.01%, which is better related to traditionally methods used by the nuclear installations which is of the order of 0.1%

  13. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    International Nuclear Information System (INIS)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  14. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods

    NARCIS (Netherlands)

    Koutsopoulos, S.

    2002-01-01

    For the synthesis of hydroxyapatite crystals from aqueous solutions three preparation methods were employed. From the experimental processes and the characterization of the crystals it was concluded that aging and precipitation kinetics are critical for the purity of the product and its

  15. Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials.

    Science.gov (United States)

    Linkov, Pavel; Artemyev, Mikhail; Efimov, Anton E; Nabiev, Igor

    2013-10-07

    Fabrication of modern nanomaterials and nanostructures with specific functional properties is both scientifically promising and commercially profitable. The preparation and use of nanomaterials require adequate methods for the control and characterization of their size, shape, chemical composition, crystalline structure, energy levels, pathways and dynamics of physical and chemical processes during their fabrication and further use. In this review, we discuss different instrumental methods for the analysis and metrology of materials and evaluate their advantages and limitations at the nanolevel.

  16. EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    FRANCOIS, MARIANNE M. [Los Alamos National Laboratory; DENDY, EDWARD D. [Los Alamos National Laboratory; LOWRIE, ROBERT B. [Los Alamos National Laboratory; LIVESCU, DANIEL [Los Alamos National Laboratory; STEINKAMP, MICHAEL J. [Los Alamos National Laboratory

    2007-01-11

    The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.

  17. Safety equipment and methods for evaluating its effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimov, F I; Nadtoka, T B [DPI (Ukraine)

    1993-05-01

    Analyzes relations between technologies (especially for roof support) used in black coal mining and work safety in mines. The share of manual work and accident rate are compared for mining by narrow and wide web shearer loaders and by coal plows with powered and individual support. Protection from occupational injury is discussed at three levels: safety engineering, work organization and the human factor. A method of evaluating the social and economic effectiveness of protection from occupational injury developed at the DPI institute is presented. The method uses the knowledge of probability distribution of failure situations, failures and protective means to determine the probabilistic characteristics of the functioning of protection systems and to calculate, for a given period, the occurrence probability and mean number of accidents. Each state of the system is characterized by determined social and/or economic results. The method was used in designing equipment intended for protective power cut-off in electric mine networks.

  18. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.

    Science.gov (United States)

    Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei

    2017-12-01

    The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development and validation of NIR-chemometric methods for chemical and pharmaceutical characterization of meloxicam tablets.

    Science.gov (United States)

    Tomuta, Ioan; Iovanov, Rares; Bodoki, Ede; Vonica, Loredana

    2014-04-01

    Near-Infrared (NIR) spectroscopy is an important component of a Process Analytical Technology (PAT) toolbox and is a key technology for enabling the rapid analysis of pharmaceutical tablets. The aim of this research work was to develop and validate NIR-chemometric methods not only for the determination of active pharmaceutical ingredients content but also pharmaceutical properties (crushing strength, disintegration time) of meloxicam tablets. The development of the method for active content assay was performed on samples corresponding to 80%, 90%, 100%, 110% and 120% of meloxicam content and the development of the methods for pharmaceutical characterization was performed on samples prepared at seven different compression forces (ranging from 7 to 45 kN) using NIR transmission spectra of intact tablets and PLS as a regression method. The results show that the developed methods have good trueness, precision and accuracy and are appropriate for direct active content assay in tablets (ranging from 12 to 18 mg/tablet) and also for predicting crushing strength and disintegration time of intact meloxicam tablets. The comparative data show that the proposed methods are in good agreement with the reference methods currently used for the characterization of meloxicam tablets (HPLC-UV methods for the assay and European Pharmacopeia methods for determining the crushing strength and disintegration time). The results show the possibility to predict both chemical properties (active content) and physical/pharmaceutical properties (crushing strength and disintegration time) directly, without any sample preparation, from the same NIR transmission spectrum of meloxicam tablets.

  20. Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method.

    Science.gov (United States)

    Gao, Jian; Guildenbecher, Daniel R; Reu, Phillip L; Chen, Jun

    2013-11-04

    In the detection of particles using digital in-line holography, measurement accuracy is substantially influenced by the hologram processing method. In particular, a number of methods have been proposed to determine the out-of-plane particle depth (z location). However, due to the lack of consistent uncertainty characterization, it has been unclear which method is best suited to a given measurement problem. In this work, depth determination accuracies of seven particle detection methods, including a recently proposed hybrid method, are systematically investigated in terms of relative depth measurement errors and uncertainties. Both synthetic and experimental holograms of particle fields are considered at conditions relevant to particle sizing and tracking. While all methods display a range of particle conditions where they are most accurate, in general the hybrid method is shown to be the most robust with depth uncertainty less than twice the particle diameter over a wide range of particle field conditions.

  1. A new method to characterize the kinetics of cholinesterases inhibited by carbamates.

    Science.gov (United States)

    Xiao, Qiaoling; Zhou, Huimin; Wei, Hong; Du, Huaqiao; Tan, Wen; Zhan, Yiyi; Pistolozzi, Marco

    2017-09-10

    The inhibition of cholinesterases (ChEs) by carbamates includes a carbamylation (inhibition) step, in which the drug transfers its carbamate moiety to the active site of the enzyme and a decarbamylation (activity recovery) step, in which the carbamyl group is hydrolyzed from the enzyme. The carbamylation and decarbamylation kinetics decide the extent and the duration of the inhibition, thus the full characterization of candidate carbamate inhibitors requires the measurement of the kinetic constants describing both steps. Carbamylation and decarbamylation rate constants are traditionally measured by two separate set of experiments, thus making the full characterization of candidate inhibitors time-consuming. In this communication we show that by the analysis of the area under the inhibition-time curve of cholinesterases inhibited by carbamates it is possible to calculate the decarbamylation rate constant from the same data traditionally used to characterize only the carbamylation kinetics, therefore it is possible to obtain a full characterization of the inhibition with a single set of experiments. The characterization of the inhibition kinetics of human and dog plasma butyrylcholinesterase and of human acetylcholinesterase by bambuterol and bambuterol monocarbamate enantiomers was used to demonstrate the validity of the approach. The results showed that the proposed method provides reliable estimations of carbamylation and decarbamylation rate constants thus representing a simple and useful approach to reduce the time required for the characterization of carbamate inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effective beam method for element concentrations

    International Nuclear Information System (INIS)

    Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim

    2015-01-01

    A method to evaluate chemical element concentrations in samples by generating an effective polychromatic beam using as initial input real monochromatic beam data is presented. There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s)

  3. Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Ionic Gelation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Esquivel

    2015-01-01

    Full Text Available We derivatized low molecular weight chitosan (LMWC with 3-mercaptopropanoic acid (3-MPA by a coupling reaction. The chemical modification of LMWC was characterized by Fourier transform infrared spectroscopy (FT-IR and nuclear magnetic resonance, 1HNMR. We researched the influence of 3-MPA on the nanoparticles formation by ionic gelation method using sodium tripolyphosphate (TPP as cross-linker reagent. In order to optimize the nanoparticles formation, we studied the effect of the pH solution and molar ratio on nanoparticles stability. Analyses of particle size, morphology, and surface charge were determined by dynamic light scattering, Atomic Force Microscopy, and zeta potential, respectively. It was found that formation of semispherical and stable nanoparticles was improved due to the chemical modification of chitosan. Optimized semispherical nanoparticles of thiolated chitosan were synthesized with the parameters (pH 4.7, molar ratios 1 : 106. Additionally, we reported the thermodynamic profile of the nanoparticles formation determined by isothermal titration calorimetry (ITC. The aggregation process achieved to form nanoparticles of thiolated and nonmodified chitosan consisted of two stages, considering one binding site model. Gibbs free energy (ΔG and binding constant (Ka describe the aggregation process of thiolated chitosan/TPP, which is an initial reaction and followed by an endothermic stage. These results are promising for the possible application of these nanoparticles as nanocarriers and delivery systems.

  4. Synthesis and characterization of eggshell-derived hydroxyapatite via mechanochemical method: A comparative study

    Science.gov (United States)

    Hamidi, A. A.; Salimi, M. N.; Yusoff, A. H. M.

    2017-04-01

    The focus of bone graft properties has developed through generations, from the ability to withstand mechanical stress to the ability to integrate with the biological structure. In recent years, the use of hydroxyapatite (HA) as bone graft material in orthopedic and dental applications has been increasing. HA is a natural occuring mineral with excellent bioactivity but relatively poor mechanical properties. It constitutes 96% portion of enamel in teeth and 67% portion of bone. HA can be extracted from animal bones or fabricated from synthetic or biologic sources. In this study, eggshells were used as raw material to synthesize eggshell-derived HA (EHA) via mechanochemical method. The synthesis of EHA involved CaO, which was obtained from the calcination of eggshells, and reaction with dicalcium hydrogen phosphate dihydrous (DCPD) or phosphoric acid (H3PO4). The effects of rotational speed and heat treatment temperature on EHA's characteristics were investigated. The characterization studies were carried out by using the Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). HA powder was successfully synthesized with crystallite and particle sizes in the range of 8-47 nm and 250-550 nm respectively. It was observed from this study that the increase of milling rotational speed had increased the phase purity of EHA samples. Furthermore, the higher heating temperature of HA samples resulted in higher degree of crystallinity of HA and the appearance of β-tricalcium phosphate (β-TCP) as secondary phase.

  5. Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

    Directory of Open Access Journals (Sweden)

    K. Hedayati

    2015-10-01

    Full Text Available In this research zinc oxide (ZnO nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet-visible (UV-Vis, Fourier transform infra-red (FT-IR and energy dispersive X-ray (EDX spectroscopy. The structure of nanoparticles was studied using XRD pattern. The crystallite size of ZnO nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the SEM. The grain size of zinc oxide nanoparticles were in suitable agreement with the crystalline size calculated by XRD results. The optical properties of particles were studied with UV-Vis an FTIR absorption spectrum. The Raman spectrum measurements were carried out using a micro-laser Raman spectrometer forms the ZnO nanoparticles. At the end studied the effect of calcined temperature on the photoluminescence (PL emission of ZnO nanoparticles.

  6. An adaptive multi-element probabilistic collocation method for statistical EMC/EMI characterization

    KAUST Repository

    Yücel, Abdulkadir C.

    2013-12-01

    An adaptive multi-element probabilistic collocation (ME-PC) method for quantifying uncertainties in electromagnetic compatibility and interference phenomena involving electrically large, multi-scale, and complex platforms is presented. The method permits the efficient and accurate statistical characterization of observables (i.e., quantities of interest such as coupled voltages) that potentially vary rapidly and/or are discontinuous in the random variables (i.e., parameters that characterize uncertainty in a system\\'s geometry, configuration, or excitation). The method achieves its efficiency and accuracy by recursively and adaptively dividing the domain of the random variables into subdomains using as a guide the decay rate of relative error in a polynomial chaos expansion of the observables. While constructing local polynomial expansions on each subdomain, a fast integral-equation-based deterministic field-cable-circuit simulator is used to compute the observable values at the collocation/integration points determined by the adaptive ME-PC scheme. The adaptive ME-PC scheme requires far fewer (computationally costly) deterministic simulations than traditional polynomial chaos collocation and Monte Carlo methods for computing averages, standard deviations, and probability density functions of rapidly varying observables. The efficiency and accuracy of the method are demonstrated via its applications to the statistical characterization of voltages in shielded/unshielded microwave amplifiers and magnetic fields induced on car tire pressure sensors. © 2013 IEEE.

  7. Filtration Characterization Method as Tool to Assess Membrane Bioreactor Sludge Filterability—The Delft Experience

    Directory of Open Access Journals (Sweden)

    Maria Lousada-Ferreira

    2014-04-01

    Full Text Available Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs, responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality.

  8. Application of empirical mode decomposition method for characterization of random vibration signals

    Directory of Open Access Journals (Sweden)

    Setyamartana Parman

    2016-07-01

    Full Text Available Characterization of finite measured signals is a great of importance in dynamical modeling and system identification. This paper addresses an approach for characterization of measured random vibration signals where the approach rests on a method called empirical mode decomposition (EMD. The applicability of proposed approach is tested in one numerical and experimental data from a structural system, namely spar platform. The results are three main signal components, comprising: noise embedded in the measured signal as the first component, first intrinsic mode function (IMF called as the wave frequency response (WFR as the second component and second IMF called as the low frequency response (LFR as the third component while the residue is the trend. Band-pass filter (BPF method is taken as benchmark for the results obtained from EMD method.

  9. Synthesis and characterization of copper nanofluid by a novel one-step method

    International Nuclear Information System (INIS)

    Kumar, S. Ananda; Meenakshi, K. Shree; Narashimhan, B.R.V.; Srikanth, S.; Arthanareeswaran, G.

    2009-01-01

    This paper presents a novel one-step method for the preparation of stable, non-agglomerated copper nanofluids by reducing copper sulphate pentahydrate with sodium hypophosphite as reducing agent in ethylene glycol as base fluid by means of conventional heating. This is an in situ, one-step method which gives high yield of product with less time consumption. The characterization of the nanofluid is done by particle size analyzer, X-ray diffraction topography, UV-vis analysis and Fourier transform infrared spectroscopy (FT-IR) followed by the study of thermal conductivity of nanofluid by the transient hot wire method

  10. A Quadrupole Dalton-based multi-attribute method for product characterization, process development, and quality control of therapeutic proteins.

    Science.gov (United States)

    Xu, Weichen; Jimenez, Rod Brian; Mowery, Rachel; Luo, Haibin; Cao, Mingyan; Agarwal, Nitin; Ramos, Irina; Wang, Xiangyang; Wang, Jihong

    2017-10-01

    During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.

  11. Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles.

    Science.gov (United States)

    McClements, Jake; McClements, David Julian

    2016-06-10

    There has been a rapid increase in the fabrication of various kinds of edible nanoparticles for oral delivery of bioactive agents, such as those constructed from proteins, carbohydrates, lipids, and/or minerals. It is currently difficult to compare the relative advantages and disadvantages of different kinds of nanoparticle-based delivery systems because researchers use different analytical instruments and protocols to characterize them. In this paper, we briefly review the various analytical methods available for characterizing the properties of edible nanoparticles, such as composition, morphology, size, charge, physical state, and stability. This information is then used to propose a number of standardized protocols for characterizing nanoparticle properties, for evaluating their stability to environmental stresses, and for predicting their biological fate. Implementation of these protocols would facilitate comparison of the performance of nanoparticles under standardized conditions, which would facilitate the rational selection of nanoparticle-based delivery systems for different applications in the food, health care, and pharmaceutical industries.

  12. DOE assay methods used for characterization of contact-handled transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  13. DOE assay methods used for characterization of contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs

  14. Strategy for identification & characterization of Bartonella henselae with conventional & molecular methods

    Directory of Open Access Journals (Sweden)

    Kavita Diddi

    2013-01-01

    Full Text Available Background & objectives: Bartonella henselae is a fastidious gram-negative bacterium usually causing self limiting infections in immunocompetent individuals but often causes potentially life threatening infection, such as bacillary angiomatosis in immunocompromised patients. Both diagnosis of infections and research into molecular mechanisms of pathogenesis have been hindered by lack of appropriate and reliable diagnostic techniques. We undertook this study to standardize methods to characterize B. henselae in clinical samples to diagnose Bartonella infection correctly. Methods: B. henselae ATCC 49882 strain was procured from American type culture collection, USA. This strain was revived and maintained in the laboratory, and identification and characterization of this strain was done by conventional and molecular techniques, which included culture on various media, staining by different methods including electron microscopy, biochemical analysis by conventional methods and API, polymerase chain reaction (PCR for amplification of citrate synthase gene followed by restriction fragment length polymorphism (RFLP. Results: This organism was biochemically inert due to slow growth and generated unique identification code with API. The amplification of the citrate-synthase gene with primers yielded a 381 bp product followed by specific RFLP profile for B. henselae. Interpretation & conclusions: Bartonella is fastidious and fragile organism and should be handled carefully. Extra effort and careful observation are required to isolate and characterize this organism.

  15. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  16. Prediction methods environmental-effect reporting

    International Nuclear Information System (INIS)

    Jonker, R.J.; Koester, H.W.

    1987-12-01

    This report provides a survey of prediction methods which can be applied to the calculation of emissions in cuclear-reactor accidents, in the framework of environment-effect reports (dutch m.e.r.) or risk analyses. Also emissions during normal operation are important for m.e.r.. These can be derived from measured emissions of power plants being in operation. Data concerning the latter are reported. The report consists of an introduction into reactor technology, among which a description of some reactor types, the corresponding fuel cycle and dismantling scenarios - a discussion of risk-analyses for nuclear power plants and the physical processes which can play a role during accidents - a discussion of prediction methods to be employed and the expected developments in this area - some background information. (aughor). 145 refs.; 21 figs.; 20 tabs

  17. A multi-method approach toward de novo glycan characterization: a Man-5 case study.

    Science.gov (United States)

    Prien, Justin M; Prater, Bradley D; Cockrill, Steven L

    2010-05-01

    Regulatory agencies' expectations for biotherapeutic approval are becoming more stringent with regard to product characterization, where minor species as low as 0.1% of a given profile are typically identified. The mission of this manuscript is to demonstrate a multi-method approach toward de novo glycan characterization and quantitation, including minor species at or approaching the 0.1% benchmark. Recently, unexpected isomers of the Man(5)GlcNAc(2) (M(5)) were reported (Prien JM, Ashline DJ, Lapadula AJ, Zhang H, Reinhold VN. 2009. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap mass spectrometry (MS). J Am Soc Mass Spectrom. 20:539-556). In the current study, quantitative analysis of these isomers found in commercial M(5) standard demonstrated that they are in low abundance (2-aminobenzoic acid to detect and chromatographically resolve multiple M(5) isomers in bovine ribonuclease B. With this multi-method approach, we have the capabilities to comprehensively characterize a biotherapeutic's glycan array in a de novo manner, including structural isomers at >/=0.1% of the total chromatographic peak area.

  18. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour; Du couplage des techniques d'analyse par faisceaux d'ions et des methodes de caracterisation physico-chimique a l'etude des effets d'irradiation sur le comportement des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Millard-Pinard, N

    2003-07-01

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is dedicated to this study

  19. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour; Du couplage des techniques d'analyse par faisceaux d'ions et des methodes de caracterisation physico-chimique a l'etude des effets d'irradiation sur le comportement des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Millard-Pinard, N

    2003-07-01

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is

  20. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    Science.gov (United States)

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  1. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  2. A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge

    Directory of Open Access Journals (Sweden)

    Lihong Yang

    2018-04-01

    Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.

  3. An optical method for characterizing carbon content in ceramic pot filters.

    Science.gov (United States)

    Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R

    2017-08-01

    Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.

  4. Characterizing Dynamic Walking Patterns and Detecting Falls with Wearable Sensors Using Gaussian Process Methods

    Directory of Open Access Journals (Sweden)

    Taehwan Kim

    2017-05-01

    Full Text Available By incorporating a growing number of sensors and adopting machine learning technologies, wearable devices have recently become a prominent health care application domain. Among the related research topics in this field, one of the most important issues is detecting falls while walking. Since such falls may lead to serious injuries, automatically and promptly detecting them during daily use of smartphones and/or smart watches is a particular need. In this paper, we investigate the use of Gaussian process (GP methods for characterizing dynamic walking patterns and detecting falls while walking with built-in wearable sensors in smartphones and/or smartwatches. For the task of characterizing dynamic walking patterns in a low-dimensional latent feature space, we propose a novel approach called auto-encoded Gaussian process dynamical model, in which we combine a GP-based state space modeling method with a nonlinear dimensionality reduction method in a unique manner. The Gaussian process methods are fit for this task because one of the most import strengths of the Gaussian process methods is its capability of handling uncertainty in the model parameters. Also for detecting falls while walking, we propose to recycle the latent samples generated in training the auto-encoded Gaussian process dynamical model for GP-based novelty detection, which can lead to an efficient and seamless solution to the detection task. Experimental results show that the combined use of these GP-based methods can yield promising results for characterizing dynamic walking patterns and detecting falls while walking with the wearable sensors.

  5. Comparison of Molecular and Phenotypic Methods for the Detection and Characterization of Carbapenem Resistant Enterobacteriaceae.

    Science.gov (United States)

    Somily, Ali M; Garaween, Ghada A; Abukhalid, Norah; Absar, Muhammad M; Senok, Abiola C

    2016-03-01

    In recent years, there has been a rapid dissemination of carbapenem resistant Enterobacteriaceae (CRE). This study aimed to compare phenotypic and molecular methods for detection and characterization of CRE isolates at a large tertiary care hospital in Saudi Arabia. This study was carried out between January 2011 and November 2013 at the King Khalid University Hospital (KKUH) in Saudi Arabia. Determination of presence of extended-spectrum beta-lactamases (ESBL) and carbapenem resistance was in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines. Phenotypic classification was done by the MASTDISCS(TM) ID inhibitor combination disk method. Genotypic characterization of ESBL and carbapenemase genes was performed by the Check-MDR CT102. Diversilab rep-PCR was used for the determination of clonal relationship. Of the 883 ESBL-positive Enterobacteriaceae detected during the study period, 14 (1.6%) isolates were carbapenem resistant. Both the molecular genotypic characterization and phenotypic testing were in agreement in the detection of all 8 metalo-beta-lactamases (MBL) producing isolates. Of these 8 MBL-producers, 5 were positive for blaNDM gene and 3 were positive for blaVIM gene. Molecular method identified additional blaOXA gene isolates while MASTDISCS(TM) ID detected one AmpC producer isolate. Both methods agreed in identifying 2 carbapenem resistant isolates which were negative for carbapenemase genes. Diversilab rep-PCR analysis of the 9 Klebsiella pneumoniae isolates revealed polyclonal distribution into eight clusters. MASTDISCS(TM) ID is a reliable simple cheap phenotypic method for detection of majority of carbapenemase genes with the exception of the blaOXA gene. We recommend to use such method in the clinical laboratory.

  6. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method

    Directory of Open Access Journals (Sweden)

    Zaida Urbán-Morlán

    2010-08-01

    Full Text Available Zaida Urbán-Morlán1, Adriana Ganem-Rondero1, Luz María Melgoza-Contreras2, José Juan Escobar-Chávez1,2, María Guadalupe Nava-Arzaluz1, David Quintanar-Guerrero11División de Estudios de Posgrado (Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Estado de México, México; 2Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso, Colonia Villa Quietud, MéxicoAbstract: Solid lipid nanoparticles (SLNs have been used for carrying different therapeutic agents because they improve absorption and bioavailability. The aim of the study was to prepare lipidic nanoparticles containing cyclosporine (CyA by the emulsification-diffusion method and to study their physicochemical stability. Glyceryl behenate (Compritol® ATO 888 and lauroyl macrogolglycerides (Gelucire® 44/14 were used as carrier materials. Nanoparticles with good stability were obtained with Gelucire®, while it was difficult to obtain stable systems with Compritol®. Systems with Gelucire® were characterized by particle size, Z-potential, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, entrapment efficiency and in vitro release. Particle size and Z-potential were evaluated for at least three months. With a high CyA content (≥60 mg in Gelucire® SLNs, variations in size were greater and particle size also increased over time in all batches; this effect may have been caused by a probable expulsion of the drug due to the lipid’s partial rearrangement. While the Z-potential decreased 10 mV after three months, this effect may be explained by the superficial properties of the drug that make the molecules to be preferably oriented at the solid-liquid interface, causing a change in the net charge of the particle. SEM confirmed size and shape of the nanoparticles. DSC studies evidenced that CyA affects the lipid structure by a mechanism still unknown

  7. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  8. Methods for characterizing magnetic footprints of perpendicular magnetic recording writer heads

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaoping, E-mail: shaoping.li@wdc.com; Lin, Ed; George, Zach; Terrill, Dave; Mendez, H.; Santucci, J.; Yie, Derek [Western Digital Corp., 44100 Osgood Road, Fremont, California 94539 (United States)

    2014-05-07

    In this work, the magnetic footprints, along with some of its dynamic features in recording process, of perpendicular magnetic recording writer heads have been characterized by using three different techniques. Those techniques are the spin-stand stationary footprint technique, the spin-stand dynamic footprint technique, and the coherent writing technique combined with magnetic force microscope imaging method. The characteristics of those techniques have been compared to one another. It was found experimentally that the spin-stand stationary method could not precisely catch some peculiar recording dynamics of the write heads in certain conditions. The advantages and disadvantages among all those techniques are also examined and discussed in detail.

  9. Methods for characterizing magnetic footprints of perpendicular magnetic recording writer heads

    International Nuclear Information System (INIS)

    Li, Shaoping; Lin, Ed; George, Zach; Terrill, Dave; Mendez, H.; Santucci, J.; Yie, Derek

    2014-01-01

    In this work, the magnetic footprints, along with some of its dynamic features in recording process, of perpendicular magnetic recording writer heads have been characterized by using three different techniques. Those techniques are the spin-stand stationary footprint technique, the spin-stand dynamic footprint technique, and the coherent writing technique combined with magnetic force microscope imaging method. The characteristics of those techniques have been compared to one another. It was found experimentally that the spin-stand stationary method could not precisely catch some peculiar recording dynamics of the write heads in certain conditions. The advantages and disadvantages among all those techniques are also examined and discussed in detail

  10. Methods for characterizing magnetic footprints of perpendicular magnetic recording writer heads

    Science.gov (United States)

    Li, Shaoping; Lin, Ed; George, Zach; Terrill, Dave; Mendez, H.; Santucci, J.; Yie, Derek

    2014-01-01

    In this work, the magnetic footprints, along with some of its dynamic features in recording process, of perpendicular magnetic recording writer heads have been characterized by using three different techniques. Those techniques are the spin-stand stationary footprint technique, the spin-stand dynamic footprint technique, and the coherent writing technique combined with magnetic force microscope imaging method. The characteristics of those techniques have been compared to one another. It was found experimentally that the spin-stand stationary method could not precisely catch some peculiar recording dynamics of the write heads in certain conditions. The advantages and disadvantages among all those techniques are also examined and discussed in detail. PMID:24753633

  11. Current Methods Applied to Biomaterials - Characterization Approaches, Safety Assessment and Biological International Standards.

    Science.gov (United States)

    Oliveira, Justine P R; Ortiz, H Ivan Melendez; Bucio, Emilio; Alves, Patricia Terra; Lima, Mayara Ingrid Sousa; Goulart, Luiz Ricardo; Mathor, Monica B; Varca, Gustavo H C; Lugao, Ademar B

    2018-04-10

    Safety and biocompatibility assessment of biomaterials are themes of constant concern as advanced materials enter the market as well as products manufactured by new techniques emerge. Within this context, this review provides an up-to-date approach on current methods for the characterization and safety assessment of biomaterials and biomedical devices from a physicalchemical to a biological perspective, including a description of the alternative methods in accordance with current and established international standards. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    Science.gov (United States)

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-05

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  13. INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING CHARACTERIZATION FACILITY (WSCF)

    International Nuclear Information System (INIS)

    DOUGLAS JG; MEZNARICH HD, PHD; OLSEN JR; ROSS GA; STAUFFER M

    2008-01-01

    Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-846 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (S and GRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a 'blind' sample to the laboratory. Feedback from the S and GRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 2008a). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated-carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more

  14. Error baseline rates of five sample preparation methods used to characterize RNA virus populations.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Kugelman

    Full Text Available Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5 of all compared methods.

  15. The ISRM suggested methods for rock characterization, testing and monitoring 2007-2014

    CERN Document Server

    2015-01-01

    This book is a collection of ISRM suggested methods for testing or measuring properties of rocks and rock masses both in the laboratory and in situ, as well as for monitoring the performance of rock engineering structures. The first collection (Yellow Book) has been published in 1981. In order to provide access to all the Suggested Methods in one volume, the ISRM Blue Book was published in 2007 (by the ISRM via the Turkish National Group) and contains the complete set of Suggested Methods from 1974 to 2006 inclusive. The papers in this most recent volume have been published during the last seven years in international journals, mainly in Rock Mechanics and Rock Engineering. They offer guidance for rock characterization procedures and laboratory and field testing and monitoring in rock engineering. These methods provide a definitive procedure for the identification, measurement and evaluation of one or more qualities, characteristics, or properties of rocks or rock systems that produces a test result.

  16. Instructional Review: An Introduction to Optical Methods for Characterizing Liquid Crystals at Interfaces

    Science.gov (United States)

    Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L.

    2013-01-01

    This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and non-planar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically-functionalized and biomolecular interfaces, are described in this article at a level that can be easily understood by a non-expert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories. PMID:23347378

  17. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    Science.gov (United States)

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Formulation and characterization of ketoprofen embedded polycaprolactone microspheres using solvent evaporation method

    Directory of Open Access Journals (Sweden)

    Pankaj Wagh

    2015-07-01

    Full Text Available The purpose of this study was to prepare polymeric microspheres containing Ketoprofen (KFN by single emulsion [oil-in-water (o/w] solvent evaporation method. Polycaprolactone (PCL, biocompatible polymer, was used for the preparation of sustained released microspheres of KFN. A Plackett–Burman design was employed by using the Design-Expert® software (Version- 9.0.3.1, Stat-Ease Inc., Minneapolis, MN. Eleven factors out of six processing factors were investigated in order to enhance the encapsulation efficiency (EE of the microspheres. The resultant microspheres were characterized for their size, morphology, EE, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR spectroscopy, X-ray powder diffractometry (XRPD and Differential Scanning Calorimetry (DSC. Graphical and mathematical analyses of the design showed that concentration of factor PCL (B and varying speed (F, revolution per minute, rpm were significant negative effect on the EE and identified as the significant factor determining the EE of the microspheres. The microspheres showed high % EE (31.18 % to 96.81 %. The microspheres were found to be discrete, oval with porous surface. The FTIR analysis confirmed no interaction of KFN with the polymer. The XRPD revealed the dispersion of drug within microspheres formulation. Sustained drug release profile over 12 h was achieved by PCL polymer. In conclusion, polymeric microspheres containing KFN can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for EE of microspheres.

  19. Hartree-fock-slater method for materials science the DV-X alpha method for design and characterization of materials

    CERN Document Server

    Adachi, H; Kawai, J

    2006-01-01

    Molecular-orbital calculations for materials design such as alloys, ceramics, and coordination compounds are now possible for experimentalists. Molecuar-orbital calculations for the interpretation of chemical effect of spectra are also possible for experimentalists. The most suitable molecular-orbital calculation method for these purpose is the DV-Xa method, which is robust in such a way that the calculation converges to a result even if the structure of the molecule or solid is impossible in the pressure and temperature ranges on earth. This book specially addresses the methods to design novel materials and to predict the spectralline shape of unknown materials using the DV-Xa molecular-orbital method, but is also useful for those who want to calculate electronic structures of materials using any kind of method.

  20. Quantitative Characterization of the Toxicities of Cd-Ni and Cd-Cr Binary Mixtures Using Combination Index Method

    Directory of Open Access Journals (Sweden)

    Lingyun Mo

    2016-01-01

    Full Text Available Direct equipartition ray design was used to construct Cd-Ni and Cd-Cr binary mixtures. Microplate toxicity analysis was used to evaluate the toxicity of individual substance and the Cd-Ni and Cd-Cr mixtures on Chlorella pyrenoidosa and Selenastrum capricornutum. The interacting toxicity of the mixture was analyzed with concentration addition (CA model. In addition, combination index method (CI was proposed and used to quantitatively characterize the toxicity of the binary mixtures of Cd-Ni and Cd-Cr observed in experiment and find the degree of deviation from the predicted outcome of the CA model, that is, the intensity of interacting toxicity. Results indicate that most of the 20 binary mixtures exhibit enhancing and synergistic effect, and only Cd-Cr-R4 and Cd-Cr-R5 mixtures have relatively high antagonistic effects against C. pyrenoidosa. Based on confidence interval, CI can compare the intensities of interaction of the mixtures under varying levels of effect. The characterization methods are applicable for analyzing binary mixture with complex interaction.

  1. Optical and non-optical methods for detection and characterization of microparticles and exosomes.

    Science.gov (United States)

    van der Pol, E; Hoekstra, A G; Sturk, A; Otto, C; van Leeuwen, T G; Nieuwland, R

    2010-12-01

    Microparticles and exosomes are cell-derived microvesicles present in body fluids that play a role in coagulation, inflammation, cellular homeostasis and survival, intercellular communication, and transport. Despite increasing scientific and clinical interest, no standard procedures are available for the isolation, detection and characterization of microparticles and exosomes, because their size is below the reach of conventional detection methods. Our objective is to give an overview of currently available and potentially applicable methods for optical and non-optical determination of the size, concentration, morphology, biochemical composition and cellular origin of microparticles and exosomes. The working principle of all methods is briefly discussed, as well as their applications and limitations based on the underlying physical parameters of the technique. For most methods, the expected size distribution for a given microvesicle population is determined. The explanations of the physical background and the outcomes of our calculations provide insights into the capabilities of each method and make a comparison possible between the discussed methods. In conclusion, several (combinations of) methods can detect clinically relevant properties of microparticles and exosomes. These methods should be further explored and validated by comparing measurement results so that accurate, reliable and fast solutions come within reach. © 2010 International Society on Thrombosis and Haemostasis.

  2. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Computational methods for 2D materials: discovery, property characterization, and application design.

    Science.gov (United States)

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  4. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  5. Effect of defuzzification method of fuzzy modeling

    Science.gov (United States)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.

  6. Aquifer Characterization from Surface Geo-electrical Method, western coast of Maharashtra, India

    Science.gov (United States)

    DAS, A.; Maiti, D. S.

    2017-12-01

    Knowledge of aquifer parameters are necessary for managing groundwater amenity. These parameters are evaluated through pumping tests bring off from bore wells. But it is quite expensive as well as time consuming to carry out pumping tests at various sites and sometimes it is difficult to find bore hole at every required site. Therefore, an alternate method is put forward in which the aquifer parameters are evaluated from surface geophysical method. In this method, vertical electrical sounding (VES) with Schlumberger configuration were accomplished in 85 stations over Sindhudurg district. Sindhudurg district is located in the Konkan region of Maharashtra state, India. The district is located between north latitude 15°37' and 16° 40' and east longitude 73° 19' and 74° 13'. The area is having hard rock and acute groundwater problem. In this configuration, we have taken the maximum current electrode spacing of 200 m for every vertical electrical sounding (VES). Geo-electrical sounding data (true resistivity and thickness) is interpreted through resistivity inversion approach. The required parameters are achieved through resistivity inversion technique from which the aquifer variables (D-Z parameters, mean resistivity, hydraulic conductivity, transmissivity, and coefficient of anisotropy) are calculated by using some empirical formulae. Cross-correlation investigation has been done between these parameters, which eventually used to characterize the aquifer over the study area. At the end, the contour plot for these aquifer parameters has been raised which reveals the detailed distribution of aquifer parameters throughout the study area. From contour plot, high values of longitudinal conductance, hydraulic conductivity and transmissivity are demarcate over Kelus, Vengurle, Mochemar and Shiroda villages. This may be due to intrusion of saline water from Arabian sea. From contour trends, the aquifers are characterized from which the groundwater resources could be

  7. The characterization of insoluble dissolver residues and the development of treatment methods

    International Nuclear Information System (INIS)

    Baker, H.T.; Brown, P.E.; Pateman, R.J.; Wilkinson, K.L.

    1986-01-01

    Characterization studies have been carried out on the insoluble residue arising from laboratory scale dissolution of single pins of mixed oxide fuel irradiated in the Dounreay Fast Reactor (DFR). Similar characterization work has also been completed on six samples of insoluble residue recovered from the reprocessing of complete sub-assemblies of mixed oxide fuel irradiated in PFR. Treatment methods for the dissolver insolubles have consisted of preparing immobilized samples in sand/ordinary portland cement (OPC), sand/pulverized fly ash (PFA)/OPC, and blast furnace slag (BFS)/OPC. A programme of leach testing has been carried out according to the conditions laid down in the international Standard Organization Test. Four samples of DFR originated insoluble residues and six samples of PFR originated insoluble residues have been immobilized and leach tested. Variations have included experiments to evaluate the leach rate under temperature influence and to acid wash prior to immobilization

  8. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  9. Application of thermometric methods for detection and characterization of leakages in embankment dams

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Y.L.; Cunat, P.; Fry, J.J. [EDF, Grenoble (France); Faure, Y.H. [LTHE, Saint Martin d' Heres (France)

    2010-07-01

    The earliest possible detection of leakages in dikes is essential. Distributed temperature measurements using fibre optics allow the monitoring of large sections of the dike with a high spatial and temperature resolution. This paper presented the application of thermometric methods for detection and characterization of leakage in embankment dams. After a brief description of the system used, its application on a controlled experimental site and an EDF industrial site instrumented with fibre optics was presented. The instrumentation is complemented by installation of local temperature and pressure sensors in the piezometers for complete characterization of the detected leakages. The analysis of the results data clearly allowed detecting the leakages. The vertical location, intensity and location of the detected leakages were also identified. It was found that thermometry is potentially very powerful for detecting leaks and as a diagnostic tool.

  10. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  11. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods

    International Nuclear Information System (INIS)

    Mousa, M.A.; Bayoumy, W.A.A.; Khairy, M.

    2013-01-01

    Graphical abstract: - Highlights: • Nano-ZnO particles were synthesized by soft-wet precipitation and dry methods. • ZnO nanoparticle with different morphologies was obtained. • Nano ZnO samples showed a high photocatalytic activity. • ZnO nanoparticle showed strong ultraviolet emission at room temperature. • The samples showed high biological activity depending on their synthetic method. - Abstract: Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed

  12. An Evaluation of Fractal Surface Measurement Methods for Characterizing Landscape Complexity from Remote-Sensing Imagery

    Science.gov (United States)

    Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.

  13. Standardization of waste acceptance test methods by the Materials Characterization Center

    International Nuclear Information System (INIS)

    Slate, S.C.

    1985-01-01

    This paper describes the role of standardized test methods in demonstrating the acceptability of high-level waste (HLW) forms for disposal. Key waste acceptance tests are standardized by the Materials Characterization Center (MCC), which the US Department of Energy (DOE) has established as the central agency in the United States for the standardization of test methods for nuclear waste materials. This paper describes the basic three-step process that is used to show that waste is acceptable for disposal and discusses how standardized tests are used in this process. Several of the key test methods and their areas of application are described. Finally, future plans are discussed for using standardized tests to show waste acceptance. 9 refs., 1 tab

  14. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  15. A new characterization method of the microstructure by utilizing the macroscopic composition gradient in alloys

    International Nuclear Information System (INIS)

    Miyazaki, T.; Koyama, T.; Kobayashi, S.

    1996-01-01

    A new experimental method to determine the phase boundary and phase equilibrium is accomplished by - means of analytical transmission electron microscopy for alloys with a macroscopic composition gradient. The various phase boundaries, i.e. the coherent binodal and spinodal lines, incoherent binodal line and order/disorder transformation line are distinctly determined for the Cu-Ti alloy and the other alloy systems. Furthermore, the equilibrium compositions at the interface of precipitate/matrix can experimentally be obtained for various particle sizes, and thus the Gibbs-Thomson's relation is verified. It is expected that the composition gradient method proposed in the present will become an important experimental method of the microstructural characterization

  16. A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles

    Science.gov (United States)

    Bekdemir, Ahmet; Stellacci, Francesco

    2016-10-01

    Nanomedicine requires in-depth knowledge of nanoparticle-protein interactions. These interactions are studied with methods limited to large or fluorescently labelled nanoparticles as they rely on scattering or fluorescence-correlation signals. Here, we have developed a method based on analytical ultracentrifugation (AUC) as an absorbance-based, label-free tool to determine dissociation constants (KD), stoichiometry (Nmax), and Hill coefficient (n), for the association of bovine serum albumin (BSA) with gold nanoparticles. Absorption at 520 nm in AUC renders the measurements insensitive to unbound and aggregated proteins. Measurements remain accurate and do not become more challenging for small (sub-10 nm) nanoparticles. In AUC, frictional ratio analysis allows for the qualitative assessment of the shape of the analyte. Data suggests that small-nanoparticles/protein complexes significantly deviate from a spherical shape even at maximum coverage. We believe that this method could become one of the established approaches for the characterization of the interaction of (small) nanoparticles with proteins.

  17. Polymeric nanoparticles: A study on the preparation variables and characterization methods.

    Science.gov (United States)

    Crucho, Carina I C; Barros, Maria Teresa

    2017-11-01

    Since the emergence of Nanotechnology in the past decades, the development and design of nanomaterials has become an important field of research. An emerging component in this field is nanomedicine, wherein nanoscale materials are being developed for use as imaging agents or for drug delivery applications. Much work is currently focused in the preparation of well-defined nanomaterials in terms of size and shape. These factors play a significantly role in the nanomaterial behavior in vivo. In this context, this review focuses on the toolbox of available methods for the preparation of polymeric nanoparticles. We highlight some recent examples from the literature that demonstrate the influence of the preparation method on the physicochemical characteristics of the nanoparticles. Additionally, in the second part, the characterization methods for this type of nanoparticles are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Performance of NAA methods in an International Interlaboratory Reference Material Characterization Campaign

    International Nuclear Information System (INIS)

    Ihnat, M.

    2000-01-01

    An extensive database of analytical results from a recent biological matrix Reference Material Characterization Campaign permitted an intercomparison of the performances of various methods among each other and with 'true' best estimate concentration values established for these materials. Six different variants of neutron activation analysis (NAA) methods were employed including: instrumental neutron activation analysis, instrumental neutron activation analysis with acid digestion, neutron activation analysis with radiochemical separation, neutron capture prompt gamma activation analysis, epithermal instrumental neutron activation analysis, and neutron activation analysis with preconcentration. The precision and accuracy performance of NAA-based analytical methods are compared with three other major techniques, atomic absorption spectrometry (AAS), atomic emission spectrometry (AES) and mass spectrometry (MS) for 28 elements in 10 natural matrix materials. (author)

  19. Characterization of air freshener emission: the potential health effects.

    Science.gov (United States)

    Kim, Sanghwa; Hong, Seong-Ho; Bong, Choon-Keun; Cho, Myung-Haing

    2015-01-01

    Air freshener could be one of the multiple sources that release volatile organic compounds (VOCs) into the indoor environment. The use of these products may be associated with an increase in the measured level of terpene, such as xylene and other volatile air freshener components, including aldehydes, and esters. Air freshener is usually used indoors, and thus some compounds emitted from air freshener may have potentially harmful health impacts, including sensory irritation, respiratory symptoms, and dysfunction of the lungs. The constituents of air fresheners can react with ozone to produce secondary pollutants such as formaldehyde, secondary organic aerosol (SOA), oxidative product, and ultrafine particles. These pollutants then adversely affect human health, in many ways such as damage to the central nervous system, alteration of hormone levels, etc. In particular, the ultrafine particles may induce severe adverse effects on diverse organs, including the pulmonary and cardiovascular systems. Although the indoor use of air freshener is increasing, deleterious effects do not manifest for many years, making it difficult to identify air freshener-associated symptoms. In addition, risk assessment recognizes the association between air fresheners and adverse health effects, but the distinct causal relationship remains unclear. In this review, the emitted components of air freshener, including benzene, phthalate, and limonene, were described. Moreover, we focused on the health effects of these chemicals and secondary pollutants formed by the reaction with ozone. In conclusion, scientific guidelines on emission and exposure as well as risk characterization of air freshener need to be established.

  20. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    Science.gov (United States)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  1. A method to characterize structure and symmetry in low-resolution images of colloidal thin films

    International Nuclear Information System (INIS)

    McDonald, Matthew J; Yethiraj, Anand; Beaulieu, L Y

    2012-01-01

    A method is presented for characterizing particle centres, particle size and crystal symmetries with sub-pixel resolution from 8-bit digital images of colloidal thin films taken with a scanning electron microscope (SEM). Digital images are converted to xyz data points by converting colour contrast to a numerical intensity. The data are then passed through a modified form of a Savitzky–Golay filter which allows particle centres to be determined. A subsequent routine is presented that, by analysing the weighted standard deviation and average intensity of the pixels along shifting rings, improves the accuracy of the detected particle centres and provides the radius of each particle. Obtaining the particle centres allows the symmetry of each particle (with respect to its neighbours) along with the mean crystal orientation to be obtained, all in one cohesive package. A key advantage of the method presented here is that it is very robust and works with both low- and high-resolution images—enabling, for example, routine quantitative analysis of SEM images. Because of the low level of user input, the method can be used to process a batch of images in order to characterize the evolution of samples. (paper)

  2. Chemical characterization of materials relevant to nuclear technology using neutron and proton based nuclear analytical methods

    International Nuclear Information System (INIS)

    Acharya, R.

    2014-01-01

    Nuclear analytical techniques (NATs), utilizing neutron and proton based nuclear reactions and subsequent measurement of gamma rays, are capable of chemical characterization of various materials at major to trace concentration levels. The present article deals with the recent developments and applications of conventional and k0-based internal monostandard (i) neutron activation analysis (NAA) and (ii) prompt gamma ray NAA (PGNAA) methods as well as (iii) in situ current normalized particle induced gamma ray emission (PIGE). The materials that have been analyzed by NAA and PGNAA include (i) nuclear reactor structural materials like zircaloys, stainless steels, Ni alloys, high purity aluminium and graphite and (ii) uranium oxide, U-Th mixed oxides, uranium ores and minerals. Internal monostandard NAA (IM-NAA) method with in situ detection efficiency was used to analyze large and non-standard geometry samples and standard-less compositional characterization was carried out for zircaloys and stainless steels. PIGE methods using proton beams were standardized for quantification of low Z elements (Li to Ti) and applied for compositional analysis of borosilicate glass and lithium titanate (Li 2 TiO 3 ) samples and quantification of total B and its isotopic composition of B ( 10 B/ 11 B) in boron based neutron absorbers like B 4 C. (author)

  3. Characterization of nanostructured Mn3O4 thin films grown by SILAR method at room temperature

    International Nuclear Information System (INIS)

    Ubale, A.U.; Belkhedkar, M.R.; Sakhare, Y.S.; Singh, Arvind; Gurada, Chetan; Kothari, D.C.

    2012-01-01

    A novel successive ionic layer adsorption and reaction method has been successfully employed to grow nanostructured conducting nearly transparent thin films of Mn 3 O 4 on to glass substrates at room temperature using MnCl 2 and NaOH as cationic and anionic precursors. The structural and morphological characterizations of the as deposited Mn 3 O 4 films have been carried out by means of X-ray diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), EDAX, Atomic Fore Microscopy (AFM) and Fourier Transform Infrared Spectrum (FTIR) analysis. The optical absorption and electrical resistivity measurements were carried out to investigate optical band gap and activation energy of Mn 3 O 4 films deposited by SILAR method. The optical band gap and activation energy of the as deposited film is found to be 2.70 and 0.14 eV respectively. The thermo-emf measurements of Mn 3 O 4 thin film confirm its p-type semiconducting nature. Highlights: ► Nanostructured Mn 3 O 4 thin film is prepared by SILAR method at room temperature. ► The film is nanocrystalline with orthorhombic structure of Mn 3 O 4 . ► The XRD, FTIR, FESEM, EDX and AFM characterization confirms nanocrystalline nature. ► Optical band gap, electrical resistivity and activation energy of film is reported. ► A thermo-emf measurement confirms p-type conductivity of Mn 3 O 4 films.

  4. Synthesis and characterization of Zn3Ta2O8 nanomaterials by hydrothermal method

    International Nuclear Information System (INIS)

    Bîrdeanu, M.; Bîrdeanu, A.-V.; Gruia, A.S.; Fagadar-Cosma, E.; Avram, C.N.

    2013-01-01

    Graphical abstract: The results of an experimental program that was focused on obtaining the Zn 3 Ta 2 O 8 nanocrystalline synthesized by hydrothermal method using tantalum (V) oxide and zinc nitrate, the results of the nanomaterial’s structure characterization and the optical spectral properties of such nanomaterials that were thoroughly investigated. Also, the experimental results are compared with ab initio calculations of electronic properties of Zn 3 Ta 2 O 8 . Highlights: •Zn 3 Ta 2 O 8 nanomaterials were synthesized by hydrothermal method and characterized. •The obtained nanomaterials has excellent phosphor, optical and morphological properties. •The material can be used in designing high performance optoelectronical devices. -- Abstract: Zn 3 Ta 2 O 8 has been synthesized by hydrothermal method using tantalum (V) oxide and zinc nitrate. The crystal structure and microstructure, phase composition and the absorption of Zn 3 Ta 2 O 8 nanomaterials were characterized by X-ray diffraction, FT/IR measurements, UV–VIS measurements, PL measurements, SEM and AFM techniques and BET analysis. XRD results show the single phase of Zn 3 Ta 2 O 8 and the average particle size that is 52 nm. This narrow nanometer size was also confirmed by AFM measurements. BET analysis revealed that the nanomaterials are mesoporous. The PL spectra show the blue luminescence of Ta 2 Zn 3 O 8 . Besides, in the present work we report ab initio calculations regarding electronic properties of Zn 3 Ta 2 O 8 ; the theoretical results are compared with the experimental ones

  5. Experimental methods of effective delayed neutron fraction

    International Nuclear Information System (INIS)

    Yamaye, Yoshihiro

    1995-01-01

    The defining principle and examples of β eff measurement method: the substitutional method, Cf neutron source method, Bennett method, the coupling coefficient method and Nelson method were introduced and surveyed. Measurement errors and C/E value of the substitutional, Cf ray source and Bennett method were of the order of 3%, 5% and 3 - 6% and 0.903 - 0.965, 1.85 and 1.019 - 1.165, respectably. Evaluation of the absolute value is so hard that β eff measurement belongs to the difficult experiment. The dependence on nuclear calculation in decreasing order is the substitutional, Cf ray source, Bennett, the coupling coefficient and Nelson number method. If good substitute materials were selected, the substitutional method has possibility to determine β eff by small correction value or independent on calculation. (S.Y.)

  6. Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure

    Science.gov (United States)

    Youngquist, Robert C. (Inventor)

    2003-01-01

    Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.

  7. Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods

    KAUST Repository

    Liu, Zhaohui

    2017-06-16

    Hierarchically structured zeolites combine the merits of microporous zeolites and mesoporous materials to offer enhanced molecular diffusion and mass transfer without compromising the inherent catalytic activities and selectivity of zeolites. This short review gives an introduction to the synthesis strategies for hierarchically structured zeolites with emphasis on the latest progress in the route of ‘direct synthesis’ using various templates. Several characterization methods that allow us to evaluate the ‘quality’ of complex porous structures are also introduced. At the end of this review, an outlook is given to discuss some critical issues and challenges regarding the development of novel hierarchically structured zeolites as well as their applications.

  8. Evaluating the Performance of Polynomial Regression Method with Different Parameters during Color Characterization

    Directory of Open Access Journals (Sweden)

    Bangyong Sun

    2014-01-01

    Full Text Available The polynomial regression method is employed to calculate the relationship of device color space and CIE color space for color characterization, and the performance of different expressions with specific parameters is evaluated. Firstly, the polynomial equation for color conversion is established and the computation of polynomial coefficients is analysed. And then different forms of polynomial equations are used to calculate the RGB and CMYK’s CIE color values, while the corresponding color errors are compared. At last, an optimal polynomial expression is obtained by analysing several related parameters during color conversion, including polynomial numbers, the degree of polynomial terms, the selection of CIE visual spaces, and the linearization.

  9. Preparation and characterization of ZnTe thin films by SILAR method

    International Nuclear Information System (INIS)

    Kale, S.S.; Mane, R.S.; Pathan, H.M.; Shaikh, A.V.; Joo, Oh-Shim; Han, Sung-Hwan

    2007-01-01

    Nanocrystalline zinc telluride (ZnTe) thin films were prepared by using successive ionic layer adsorption and reaction (SILAR) method from aqueous solutions of zinc sulfate and sodium telluride. The films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The synthesized ZnTe thin films were nanocrystalline with densely aggregated particles in nanometer scale and were free from the voids or cracks. The optical band gap energy of the film was found to be thickness dependent. The elemental chemical compositional stoichiometric analysis revealed good Zn:Te elemental ratio of 53:47

  10. Experimental methods to characterize the woven composite prepreg behavior during the preforming process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weizhao; Ren, Huaqing; Lu, Jie; Zhang, Zixuan; Su, Lingxuan; Wang, Q Jane; Zeng, Danielle; Su, Xuming; Cao, Jian

    2016-09-19

    This paper reports several characterization methods of the properties of the uncured woven prepreg during the preforming process. The uniaxial tension, bias-extension, and bending tests are conducted to measure the in-plane properties of the material. The friction tests utilized to reveal the prepreg-prepreg and prepreg-forming tool interactions. All these tests are performed within the temperature range of the real manufacturing process. The results serve as the inputs to the numerical simulation for the product prediction and preforming process parameter optimization.

  11. Optical method for the characterization of laterally patterned samples in integrated circuits

    Science.gov (United States)

    Maris, Humphrey J [Barrington, RI

    2009-03-17

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  12. Method of shaping of direction-characterization of sensitivity of ionizing radiation detection probe

    International Nuclear Information System (INIS)

    Czarnecki, J.; Jaszczuk, J.; Kruczyk, M.; Slapa, M.; Wroblewski, T.

    1986-01-01

    A method of shaping of direction-characterization of sensitivity of the ionizing radiation detection probe, especially equipped with small gamma detectors is described. Two detectors are placed coaxially in the bases of the cylindrical shield. One of them is uncovered in the highest degree and the second is not covered to a maximum. The signals from them are processed on the standarized sequences of electrical impulses (taking into account the heights and the widths of the amplitude). 2 figs., 1 tab. (A.S.)

  13. New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM

    Science.gov (United States)

    Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.

    2016-01-01

    Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.

  14. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    International Nuclear Information System (INIS)

    Eydam, Agnes; Suchaneck, Gunnar; Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-01-01

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes

  15. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gabbasov, Raul, E-mail: gabbasov-raul@yandex.ru [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Polikarpov, Michael; Cherepanov, Valery [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chuev, Michael; Mischenko, Iliya; Lomov, Andrey [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Wang, Andrew [Ocean NanoTech. Springdale, AR (United States); Panchenko, Vladislav [National Research Center “Kurchatov Institute”, Moscow (Russian Federation)

    2015-04-15

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5–25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results. - Highlights: • KV parameter, obtained from Mössbauer spectra can be used for nanoparticle size characterization. • Mössbauer spectra of 10–25 nm nanoparticles can be effectively described by ferromagnetic model. • Surface impurities can cause incorrect nanoparticle size determination.

  16. Integrated use of surface geophysical methods for site characterization — A case study in North Kingstown, Rhode Island

    Science.gov (United States)

    Johnson, Carole D.; Lane, John W.; Brandon, William C.; Williams, Christine A.P.; White, Eric A.

    2010-01-01

    complementary techniques that measure different properties can be more effective for site characterization than a single‐method investigation.

  17. Methods of Speakers\\' Effects on the Audience

    Directory of Open Access Journals (Sweden)

    فریبا حسینی

    2010-09-01

    Full Text Available Methods of Speakers' Effects on the Audience    Nasrollah Shameli *   Fariba Hosayni **     Abstract   This article is focused on four issues. The first issue is related to the speaker's external appearance including the beauty of face, the power of his voice, moves and signals by hand, the stick and eyebrow as well as the height. Such characteristics could have an important effect on the audience. The second issue is related to internal features of the speaker. These include the ethics of the preacher , his/her piety and intention on the speakers based on their personalities, habits and emotions, knowledge and culture, and speed of learning. The third issue is concerned with the appearance of the lecture. Words should be clear enough as well as being mixed with Quranic verses, poetry and proverbs. The final issue is related to the content. It is argued that the subject of the talk should be in accordance with the level of understanding of listeners as well as being new and interesting for them.   3 - A phenomenon rhetoric: It was noted in this section How to give words and phrases so that these words and phrases are clear, correct, mixed in parables, governance and Quranic verses, and appropriate their meaning.   4 - the content of Oratory : It was noted in this section to the topic of Oratory and say that the Oratory should be the theme commensurate with the minds of audiences and also should mean that agree with the case may be, then I say: that the rhetoric if the theme was innovative and new is affecting more and more on the audience.     Key words : Oratory , Preacher , Audience, Influence of speech     * Associate Professor, Department of Arabic Language and Literature, University of Isfahan E-mail: Dr-Nasrolla Shameli@Yahoo.com   * * M.A. in Arabic Language and Literature from Isfahan University E-mail: faribahosayni@yahoo.com

  18. Quantitative Ultrasound Characterization of Cancer Radiotherapy Effects In Vitro

    International Nuclear Information System (INIS)

    Vlad, Roxana M.; Alajez, Nehad M.; Giles, Anoja B.Sc.; Kolios, Michael C.; Czarnota, Gregory J.

    2008-01-01

    Purpose: Currently, no routinely used imaging modality is available to assess tumor responses to cancer treatment within hours to days after radiotherapy. In this study, we demonstrate the preclinical application of quantitative ultrasound methods to characterize the cellular responses to cancer radiotherapy in vitro. Methods and Materials: Three different cell lines were exposed to radiation doses of 2-8 Gy. Data were collected with an ultrasound scanner using frequencies of 10-30 MHz. As indicators of response, ultrasound integrated backscatter and spectral slope were determined from the cell samples. These parameters were corrected for ultrasonic attenuation by measuring the attenuation coefficient. Results: A significant increase in the ultrasound integrated backscatter of 4-7 dB (p < 0.001) was found for radiation-treated cells compared with viable cells at all radiation doses. The spectral slopes decreased in the cell samples that predominantly underwent mitotic arrest/catastrophe after radiotherapy, consistent with an increase in cell size. In contrast, the spectral slopes did not change significantly in the cell samples that underwent a mix of cell death (apoptosis and mitotic arrest), with no significant change in average cell size. Conclusion: The changes in ultrasound integrated backscatter and spectral slope were direct consequences of cell and nuclear morphologic changes associated with cell death. The results indicate that this combination of quantitative ultrasonic parameters has the potential to assess the cell responses to radiation, differentiate between different types of cell death, and provide a preclinical framework to monitor tumor responses in vivo

  19. Applying system engineering methods to site characterization research for nuclear waste repositories

    International Nuclear Information System (INIS)

    Woods, T.W.

    1985-01-01

    Nuclear research and engineering projects can benefit from the use of system engineering methods. This paper is brief overview illustrating how system engineering methods could be applied in structuring a site characterization effort for a candidate nuclear waste repository. System engineering is simply an orderly process that has been widely used to transform a recognized need into a fully defined system. Such a system may be physical or abstract, natural or man-made, hardware or procedural, as is appropriate to the system's need or objective. It is a way of mentally visualizing all the constituent elements and their relationships necessary to fulfill a need, and doing so compliant with all constraining requirements attendant to that need. Such a system approach provides completeness, order, clarity, and direction. Admittedly, system engineering can be burdensome and inappropriate for those project objectives having simple and familiar solutions that are easily held and controlled mentally. However, some type of documented and structured approach is needed for those objectives that dictate extensive, unique, or complex programs, and/or creation of state-of-the-art machines and facilities. System engineering methods have been used extensively and successfully in these cases. The scientific methods has served well in ordering countless technical undertakings that address a specific question. Similarly, conventional construction and engineering job methods will continue to be quite adequate to organize routine building projects. Nuclear waste repository site characterization projects involve multiple complex research questions and regulatory requirements that interface with each other and with advanced engineering and subsurface construction techniques. There is little doubt that system engineering is an appropriate orchestrating process to structure such diverse elements into a cohesive, well defied project

  20. Characterization, thermal stability studies, and analytical method development of Paromomycin for formulation development.

    Science.gov (United States)

    Khan, Wahid; Kumar, Neeraj

    2011-06-01

    Paromomycin (PM) is an aminoglycoside antibiotic, first isolated in the 1950s, and approved in 2006 for treatment of visceral leishmaniasis. Although isolated six decades back, sufficient information essential for development of pharmaceutical formulation is not available for PM. The purpose of this paper was to determine thermal stability and development of new analytical method for formulation development of PM. PM was characterized by thermoanalytical (DSC, TGA, and HSM) and by spectroscopic (FTIR) techniques and these techniques were used to establish thermal stability of PM after heating PM at 100, 110, 120, and 130 °C for 24 h. Biological activity of these heated samples was also determined by microbiological assay. Subsequently, a simple, rapid and sensitive RP-HPLC method for quantitative determination of PM was developed using pre-column derivatization with 9-fluorenylmethyl chloroformate. The developed method was applied to estimate PM quantitatively in two parenteral dosage forms. PM was successfully characterized by various stated techniques. These techniques indicated stability of PM for heating up to 120 °C for 24 h, but when heated at 130 °C, PM is liable to degradation. This degradation is also observed in microbiological assay where PM lost ∼30% of its biological activity when heated at 130 °C for 24 h. New analytical method was developed for PM in the concentration range of 25-200 ng/ml with intra-day and inter-day variability of stability of PM was determined successfully. Developed analytical method was found sensitive, accurate, and precise for quantification of PM. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Methods for Characterization of the Diesel Combustion and Emission Formation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Mikael

    2011-07-01

    In this thesis various aspects of the diesel engine fuel injection, combustion and emission formation processes have been evaluated. Several types of evaluation tools and methods have been applied. Fuel spray momentum was used to characterize injection rate and hole-to-hole variations in fuel injectors. Using both instantaneous fuel impulse rates and instantaneous mass flow measurements, spray velocity and nozzle flow parameters were evaluated. Several other hole-to-hole resolved injector characterization methods were used to characterize a set of fuel injectors subjected to long term testing. Fuel injector nozzle hole-to-hole variations were found to have a large influence on engine efficiency and emissions. The degree of hole-to-hole variations for an injector has been shown to correlate well with the performance deterioration of that injector. The formation and atomization of fuel sprays, ignition onset and the development of diffusion flames were studied using an optical engine. Flame temperature evaluations have been made using two different methods. NO-formation depends strongly on flame temperature. By applying a NO-formation evaluation method based on both heat release rate and flame and gas temperature it was possible to achieve a reasonable degree of correlation with measured exhaust emissions for very varying operating conditions. The prediction capability of the NO-formation evaluation method was utilized to evaluate spatially and temporally resolved NO-formation from flame temperature distributions. This made it possible to pinpoint areas with a high degree of NO-formation. It was found that small hot zones in the flames can be responsible for a large part of the total amount of NO that is produced, especially in combustion cases where no EGR is used to lower the flame temperature. By applying optical diagnostics methods the combustion and emission formation phenomena encountered during production engine transients were evaluated. The transient

  2. Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-12

    This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dose associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.

  3. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    International Nuclear Information System (INIS)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza

    2013-01-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  4. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza, E-mail: amanda@igc.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: amanda@igc.ufmg.br, E-mail: lurdesfernandes@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horionte, MG (Brazil)

    2013-07-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  5. Error baseline rates of five sample preparation methods used to characterize RNA virus populations

    Science.gov (United States)

    Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.

    2017-01-01

    Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717

  6. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  7. Synthesis and characterization of the Pt/SiO2 nanocomposite by the sol-gel method

    Directory of Open Access Journals (Sweden)

    A. Salabat

    2011-01-01

    Full Text Available The silica supported platinum nanoparticles was synthesized by using the sol-gel method. The possibility of using diamminedinitro platinum (II as Pt precursor and effect of metal precursor concentration on the final Pt nanoparticle size was investigated. A stable silica sol was prepared via hydrolysis of tetraethyl orthosilicate (TEOS as a metal alcoxide and condensation reaction. Subsequently, diamminedinitro platinum (II was added to sol to form the Pt/silica sol. After drying and calcination of the sol, the Pt/SiO2 nanocpmposite has been obtained. Crystallographic information and crystalline size of the synthesized Pt/SiO2 were determined by X-ray diffraction (XRD method. Morphology of the nanoparticles and hydrogen-bonding interaction between silanol groups and amine ligands were characterized by SEM and Fourier transform infrared (FTIR spectra, respectively. Transmission Electron Microscopy (TEM was employed in evaluating the distribution and size of the platinum nanoparticles in the silica.

  8. Simple and efficient methods for the accurate evaluation of patterning effects in ultrafast photonic switches

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    Although patterning effects (PEs) are known to be a limiting factor of ultrafast photonic switches based on semiconductor optical amplifiers (SOAs), a simple approach for their evaluation in numerical simulations and experiments is missing. In this work, we experimentally investigate and verify...... as well as the operation bit rate. Furthermore, a simple and effective method for probing the maximum PEs is demonstrated, which may relieve the computational effort or the experimental difficulties associated with the use of long PRBSs for the simulation or characterization of SOA-based switches. Good...... agrement with conventional PRBS characterization is obtained. The method is suitable for quick and systematic estimation and optimization of the switching performance....

  9. Synthesis and characterization of Ni-CeO2 catalysts by the hydrothermal method

    International Nuclear Information System (INIS)

    Lazcano O, I.

    2013-01-01

    At the present time the necessity exists to reduce the level of atmospheric pollutants, because these are the main originators of such problems as: the greenhouse effect, acid rain, global heating, among others and that are affecting the human being seriously. In this context, is necessary to look for new solutions that contribute to the improvement of the problems without appealing to limitations in the energy production, because this would imply a non only delay in the economic development, but also in the cultural, technological and of research in our country. An alternative for the energy solution is the use of renewable fuels, because they will decrease the production costs with the time, as well as to diminish the dependence of the fossil fuels, contributing this way to the improvement of the environment quality. The use of the hydrogen as an alternating fuel to the petroleum, is intends as energy solution. The objective of the present work is to develop Ni-CeO 2 catalysts through the hydrothermal method for the hydrogen production starting from the partial oxidation reaction of methanol for the clean fuel generation that does not produce polluting emissions to the environment. As well as, to determine the importance of the metallic load in the catalytic activity for which catalysts to 1 and 2% in weight of Ni were prepared. To achieve these objective different techniques were used to characterize the prepared catalysts, as: Temperature Programmed Reduction to evidence the metal-support interaction, Scanning Electron Microscopy (Sem) to determine the morphology of the catalysts, Surface Area (Bet) with respect to the adsorption-desorption of N 2 and X-Rays Diffraction (XRD) to know the crystalline structure of the catalysts. Also the catalytic properties (activity and selectivity) were studied under the reaction: CH 3 OH + 1/2 O 2 obtaining as products to the CO 2 + 2H 2 , with the help of the multi-tasks equipment Rig-100 that operated to temperatures among

  10. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  11. Investigation of methods for fabricating, characterizing, and transporting cryogenic inertial-confinement-fusion tartets

    International Nuclear Information System (INIS)

    Fanning, J.J.; Kim, K.

    1981-01-01

    The objective of this work is to investigate methods for fabricating, characterizing and transporting cryogenic inertial confinement fusion targets on a continuous basis. A microprocessor-based data acquisition system has been built that converts a complete target image to digital data, which are then analyzed by automated software procedures. The low temperatures required to freeze the hydrogen isotopes contained in a target is provided by a cryogenic cold chamber capable of attaining 15 K. A new method for target manipulation and positioning is studied that employs molecular gas beams to levitate a target and an electrostatic quadrupole structure to provide for its lateral containment. Since the electrostatic target-positioning scheme requires that the targets be charged, preliminary investigation has been carried out for a target-charging mechanism based on ion-bombardment

  12. Development of ICP-AES based method for the characterization of high level waste

    International Nuclear Information System (INIS)

    Seshagiri, T.K.; Thulsidas, S.K.; Adya, V.C.; Kumar, Mithlesh; Radhakrishnan, K.; Mary, G.; Kulkarni, P.G.; Bhalerao, Bharti; Pant, D.K.

    2011-01-01

    An Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method was developed for the trace metal characterization of high level waste solutions (HLW) of different origin and the method was validated by analysis of synthetic samples of simulated high level waste solutions (SHLW) from spent fuels of varying composition. In this context, an inter-laboratory comparison exercise (ILCE) was carried out with the simulated HLW of different spent fuel types, viz., research reactor (RR), pressurized heavy water reactor (PHWR) and fast breeder reactor (FBR). An over view of the ICP-AES determination of trace metallic constituents in such SHLW solutions is presented. The overall agreement between the various laboratories was good. (author)

  13. Investigation of methods for fabricating, characterizing, and transporting cryogenic inertial-confinement-fusion tartets

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, J.J.; Kim, K.

    1981-01-01

    The objective of this work is to investigate methods for fabricating, characterizing and transporting cryogenic inertial confinement fusion targets on a continuous basis. A microprocessor-based data acquisition system has been built that converts a complete target image to digital data, which are then analyzed by automated software procedures. The low temperatures required to freeze the hydrogen isotopes contained in a target is provided by a cryogenic cold chamber capable of attaining 15 K. A new method for target manipulation and positioning is studied that employs molecular gas beams to levitate a target and an electrostatic quadrupole structure to provide for its lateral containment. Since the electrostatic target-positioning scheme requires that the targets be charged, preliminary investigation has been carried out for a target-charging mechanism based on ion-bombardment.

  14. Methods for validating the presence of and characterizing proteins deposited onto an array

    Science.gov (United States)

    Schabacker, Daniel S.

    2010-09-21

    A method of determining if proteins have been transferred from liquid-phase protein fractions to an array comprising staining the array with a total protein stain and imaging the array, optionally comparing the staining with a standard curve generated by staining known amounts of a known protein on the same or a similar array; a method of characterizing proteins transferred from liquid-phase protein fractions to an array including staining the array with a post-translational modification-specific (PTM-specific) stain and imaging the array and, optionally, after staining the array with a PTM-specific stain and imaging the array, washing the array, re-staining the array with a total protein stain, imaging the array, and comparing the imaging with the PTM-specific stain with the imaging with the total protein stain; stained arrays; and images of stained arrays.

  15. A method for the characterization of the reflectance of anisotropic functional surfaces

    DEFF Research Database (Denmark)

    Regi, Francesco; Nielsen, J B; Li, Dongya

    2018-01-01

    The functional properties of micro-structured surfaces have gained increasing interest thanks to many applications such as wetting, adhesion, thermal and/or electrical conductivity. In this study, directional optical properties, i.e. contrast between two regions of a surface, were achieved...... reflectance of the surface for a range of design-specific view-illumination configurations was determined using a method that involves a Hirox RH-2000 digital microscope, used as a gonioreflectometer. This method allows the empirical determination of the optimum surface microstructure for maximizing contrast...... between two horizontally orthogonal views. The results show that even if the uncertainty related to the instrumentation is up to 20% in some cases, this procedure is suitable for the characterization of the surface of both metal and plastic counterpart....

  16. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  17. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  18. Characterization of mixed waste for sorting and inspection using non-intrusive methods

    International Nuclear Information System (INIS)

    Roberson, G.P.; Ryon, R.W.; Bull, N.L.

    1994-12-01

    Characterization of mixed wastes (that is, radioactive and otherwise hazardous) requires that all hazardous, non-conforming, and radioactive materials be identified, localized, and quantified. With such information, decisions can be made regarding whether the item is treatable or has been adequately treated. Much of the required information can be gained without taking representative samples and analyzing them in a chemistry laboratory. Non-intrusive methods can be used to provide this information on-line at the waste treatment facility. Ideally, the characterization would be done robotically, and either automatically or semi-automatically in order to improve efficiency and safety. For the FY94 Mixed Waste Operations (MWO) project, a treatable waste item is defined as a homogeneous metal object that has external radioactive or heavy metal hazardous contamination. Surface treatment of some kind would therefore be the treatment method to be investigated. The authors developed sorting and inspection requirements, and assessed viable non-intrusive techniques to meet these requirements. They selected radiography, computed tomography and X-ray fluorescence. They have characterized selected mock waste items, and determined minimum detectable amounts of materials. They have demonstrated the efficiency possible by integrating radiographic with tomographic data. Here, they developed a technique to only use radiographic data where the material is homogeneous (fast), and then switching to tomography in those areas where heterogeneity is detected (slower). They also developed a tomographic technique to quantify the volume of each component of a mixed material. This is useful for such things as determining ash content. Lastly, they have developed a document in MOSAIC, an Internet multi-media browser. This document is used to demonstrate the ability to share data and information world-wide

  19. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    Science.gov (United States)

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  20. Development and Physicochemical Characterization of Sirolimus Solid Dispersions Prepared by Solvent Evaporation Method

    Directory of Open Access Journals (Sweden)

    Shahram Emami

    2014-12-01

    Full Text Available Purpose: The aim of the present investigation was preparation and characterization of sirolimus solid dispersions by solvent evaporation technique to improve its dissolution properties. Methods: Polyvinylpyrrolidone (PVP, Poloxamer 188 and Cremophore RH40 were used to prepare the solid dispersions of sirolimus. In vitro dissolution study using USP type I apparatus, were performed in distilled water (containing SLS 0.4% for pure sirolimus, physical mixtures, Rapamune and prepared solid dispersions. The characterization of solid dispersions was performed using Fourier Transform Infrared (FTIR Spectroscopy and Differential Scanning Calorimetry (DSC. Results: More than 75% of sirolimus was released within 30 minutes from all prepared solid dispersions. The dissolution rate of all prepared solid dispersion powders were more than physical mixtures. The absence of sirolimus peak in the DSC spectrum of solid dispersions indicated the conversion of crystalline form of sirolimus into amorphous form. The results from FT-IR spectroscopy showed that there was no significant change in the FT-IR spectrum of solid dispersions indicating absence of well-defined interaction between drug and carriers. Conclusion: It was concluded that solid dispersion method, using PVP, Poloxamer 188 and Cremophore RH40 can improve dissolution rate of sirolimus.

  1. Integration of Magnetic and Geotechnical methods for Shallow Subsurface Soil Characterization at Sungai Batu, Kedah, Malaysia

    Science.gov (United States)

    Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.

    2018-04-01

    Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.

  2. Pulsed magnetic flux leakage method for hairline crack detection and characterization

    Science.gov (United States)

    Okolo, Chukwunonso K.; Meydan, Turgut

    2018-04-01

    The Magnetic Flux leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Testing (NDT), extensively used for evaluating defects both on the surface and far-surface of pipeline structures. However the conventional techniques are not capable of estimating their approximate size, location and orientation, hence an additional transducer is required to provide the extra information needed. This research is aimed at solving the inevitable problem of granular bond separation which occurs during manufacturing, leaving pipeline structures with miniature cracks. It reports on a quantitative approach based on the Pulsed Magnetic Flux Leakage (PMFL) method, for the detection and characterization of the signals produced by tangentially oriented rectangular surface and far-surface hairline cracks. This was achieved through visualization and 3D imaging of the leakage field. The investigation compared finite element numerical simulation with experimental data. Experiments were carried out using a 10mm thick low carbon steel plate containing artificial hairline cracks with various depth sizes, and different features were extracted from the transient signal. The influence of sensor lift-off and pulse width variation on the magnetic field distribution which affects the detection capability of various hairline cracks located at different depths in the specimen is explored. The findings show that the proposed technique can be used to classify both surface and far-surface hairline cracks and can form the basis for an enhanced hairline crack detection and characterization for pipeline health monitoring.

  3. Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Jones, V.D.

    1998-07-01

    The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furnace processing. To support these nuclear material stabilization activities, the SRS Analytical Laboratories Department (ALD) will provide characterization of materials required prior to the dissolution or the high-firing of these materials. Lab renovations to install new analytical instrumentation are underway to support these activities that include glove boxes with simulated-process dissolution and high- pressure microwave dissolution capability. Inductively-coupled plasma atomic emission spectrometry (ICP-AES), inductively- coupled mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) will be used to measure actinide isotopics and metallic impurities. New high-speed actinide separation methods have been developed that will be applied to isotopic characterization of nuclear materials by TIMS and ICP-MS to eliminate isobaric interferences between Pu-238 /U- 238 and Pu-241/Am-241. TEVA Resin, UTEVA Resin, and TRU Resin columns will be used with vacuum-assisted flow rates to minimize TIMS and ICP-MS sample turnaround times. For metallic impurity analysis, rapid column removal methods using UTEVA Resin, AGMP-1 anion resin and AG MP-50 cation resin have also been developed to remove plutonium and uranium matrix interferences prior to ICP-AES and ICP- MS measurements

  4. Characterization of filter cartridges from the IEA-R1 reactor by radiochemical method

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Vicente, Roberto; Ferreira, Robson J.; Goes, Marcos M.; Marumo, Julio T.

    2015-01-01

    The filter cartridges used in water purification system of research nuclear reactor IEA-R1 are considered radioactive wastes after their useful life. The characterization of these wastes is one of the stages of management, which aims to identify and quantify the radionuclides present, including those known as 'difficult to measure' (DTM) radionuclides. Establish a radiochemical analysis methodology for this type of waste is a difficult job, not only by the application of these techniques, but also by the amount of radionuclides that should be analyzed. In the waste produced in a nuclear reactor, the most important radionuclides are fission products, activation products and transuranic elements. Since these radionuclides emit gamma radiation not measurable in its decay process and consequently are difficult to measure, their concentrations can be estimated by indirect methods such as scale factors. This method is used to evaluate the DTM concentration, which is represented by alpha and beta nuclides using the correlation between them and the radionuclide key, a gamma emitter. The objective of this work is to describe a radiochemical analysis methodology for gamma emitter nuclides, present in the filter cartridges, evaluating the activity and concentrations by destructive assays. At the same time, two studies have been performed by non-destructive assays, the first one based on dose rates and the point kernel method to correlate the results and the second one based on calibration efficiency with Monte Carlo method. These studies belong to the radioactive waste characterization program that has been conducted at the Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP. (author)

  5. Characterization of filter cartridges from the IEA-R1 reactor by radiochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca; Vicente, Roberto; Ferreira, Robson J.; Goes, Marcos M.; Marumo, Julio T., E-mail: bgeraldo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The filter cartridges used in water purification system of research nuclear reactor IEA-R1 are considered radioactive wastes after their useful life. The characterization of these wastes is one of the stages of management, which aims to identify and quantify the radionuclides present, including those known as 'difficult to measure' (DTM) radionuclides. Establish a radiochemical analysis methodology for this type of waste is a difficult job, not only by the application of these techniques, but also by the amount of radionuclides that should be analyzed. In the waste produced in a nuclear reactor, the most important radionuclides are fission products, activation products and transuranic elements. Since these radionuclides emit gamma radiation not measurable in its decay process and consequently are difficult to measure, their concentrations can be estimated by indirect methods such as scale factors. This method is used to evaluate the DTM concentration, which is represented by alpha and beta nuclides using the correlation between them and the radionuclide key, a gamma emitter. The objective of this work is to describe a radiochemical analysis methodology for gamma emitter nuclides, present in the filter cartridges, evaluating the activity and concentrations by destructive assays. At the same time, two studies have been performed by non-destructive assays, the first one based on dose rates and the point kernel method to correlate the results and the second one based on calibration efficiency with Monte Carlo method. These studies belong to the radioactive waste characterization program that has been conducted at the Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP. (author)

  6. Methods for detection and characterization of signals in noisy data with the Hilbert-Huang transform

    International Nuclear Information System (INIS)

    Stroeer, Alexander; Cannizzo, John K.; Camp, Jordan B.; Gagarin, Nicolas

    2009-01-01

    The Hilbert-Huang transform is a novel, adaptive approach to time series analysis that does not make assumptions about the data form. Its adaptive, local character allows the decomposition of nonstationary signals with high time-frequency resolution but also renders it susceptible to degradation from noise. We show that complementing the Hilbert-Huang transform with techniques such as zero-phase filtering, kernel density estimation and Fourier analysis allows it to be used effectively to detect and characterize signals with low signal-to-noise ratios.

  7. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    Science.gov (United States)

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING AND CHARACTERIZATION FACILITY

    International Nuclear Information System (INIS)

    Douglas, J.G.; Meznarich, H.K.; Olsen, J.R.; Ross, G.A.; Stauffer, M.

    2009-01-01

    Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-S46 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (SGRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a ''blind'' sample to the laboratory. Feedback from the SGRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 200Sa). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively

  9. SHORT COMMUNICATION EFFECT OF HEATING METHOD ON ...

    African Journals Online (AJOL)

    Preferred Customer

    employed or not: catalytic reduction and catalytic decomposition. The latter method has ... attention owing to their acidity, redox properties, and pseudo-liquid phase [6]. HPAs, in ... Reactor set-up and gas composition. .... min) was obtained, where it should be noted that by virtue of the design, this heating method will never ...

  10. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  11. Expeditious Methods for Site Characterization and Risk Assessment at Department of Defense Hazardous Waste Sites in the Republic of Korea

    National Research Council Canada - National Science Library

    Hartman, Dean

    1999-01-01

    ...) with preferred innovative site characterization technologies and risk assessment methods to meet their needs in obtaining hazardous waste site data and then prioritizing those sites for remediation based upon risk...

  12. Big Hitters: Important Factors Characterizing Team Effectiveness in Professional Cricket

    Directory of Open Access Journals (Sweden)

    Leonie V. Webster

    2017-07-01

    Full Text Available While organizational psychology attests to the multidimensional nature of team effectiveness, insight regarding the most important factors contributing to the effectiveness of sports teams, especially elite teams, is lacking. An abductive method of qualitative enquiry was adopted to capture participants' construal of team effectiveness, drawing on the extant literature in both sport and organizational psychology. Semi-structured interviews were conducted with 21 players, coaches, and psychologists involved in elite cricket, with resultant data analyzed inductively initially, before being reanalyzed deductively. Although, the narratives endorsed the value of many of the deductively derived factors, other constructs more prominent in organizational psychology (e.g., trust and intra-group conflict appeared to be more important than traditional sport psychology group factors. The results revealed six broad themes; culture and environment, values, communication, understanding, leadership, and unique individuals, with some gender differences apparent throughout. Based on our elite sample's construal of team effectiveness, we propose a new model representing a practical, parsimonious, and novel conceptualization of the most important attributes of team effectiveness in cricket, with conceivable transferability to other team sports.

  13. Materials Characterization Center. Second workshop on irradiation effects in nuclear waste forms. Summary report

    International Nuclear Information System (INIS)

    Weber, W.J.; Turcotte, R.P.

    1982-01-01

    The purpose of this second workshop on irradiations effects was to continue the discussions initiated at the first workshop and to obtain guidance for the Materials Characterization Center in developing test methods. The following major conclusions were reached: Ion or neutron irradiations are not substitutes for the actinide-doping technique, as described by the MCC-6 Method for Preparation and Characterization of Actinide-Doped Waste Forms, in the final evaluation of any waste form with respect to the radiation effects from actinide decay. Ion or neutron irradiations may be useful for screening tests or more fundamental studies. The use of these simulation techniques as screening tests for actinide decay requires that a correlation between ion or neutron irradiations and actinide decay be established. Such a correlation has not yet been established and experimental programs in this area are highly recommended. There is a need for more fundamental studies on dose-rate effects, temperature dependence, and the nature and importance of alpha-particle effects relative to the recoil nucleus in actinide decay. There are insufficient data presently available to evaluate the potential for damage from ionizing radiation in nuclear waste forms. No additional test methods were recommended for using ion or neutron irradiations to simulate actinide decay or for testing ionization damage in nuclear waste forms. It was recognized that additional test methods may be required and developed as more data become available. An American Society for Testing and Materials (ASTM) Task Group on the Simulation of Radiation Effects in Nuclear Waste Forms (E 10.08.03) was organized to act as a continuing vehicle for discussions and development of procedures, particularly with regard to ion irradiations

  14. Effective Educational Methods In Educational Video Games

    OpenAIRE

    Van Zyl, Abraham

    2014-01-01

    This thesis examines the teaching methods used in three successful educational video games with the goal to provide a concise, practical guide for the proper implementation of educational learning into video games. The main source for analysing the teaching methods of educational games in this thesis is James Paul Gee’s book What Video Games Have To Teach Us About Learning And Literacy (2004). Gee expresses 36 learning principles existing in good games (chapter 4.2). This ideology serves ...

  15. Characterization of the effects of macronutrient deficiencies in mangabeira seedlings

    Directory of Open Access Journals (Sweden)

    Layara Alexandre Bessa

    2012-12-01

    Full Text Available Knowledge of the mineral nutrition requirements of mangabeira (Hancornia speciosa Gomes is relatively scarce and rudimentary because there is a lack of consistent data concerning its nutritional demands at different developmental stages. The aim of this research was to characterize the visual symptoms of macronutrient deficiencies and to evaluate the effects of these deficiencies on the growth, the production of dry matter, and the leaf content of mangabeira. To achieve this goal, a greenhouse experiment was conducted at the Goiano Federal Institute (Instituto Federal Goiano in Rio Verde - GO, from January to June 2011 in which mangabeira plants were arranged in a random block design and grown in nutrient solutions. This experiment was replicated four times. The plants were treated with either a complete nutrient solution or a nutrient solution from which the individual macronutrient of interest (nitrogen (N, phosphorous (P, potassium (K, magnesium (Mg, calcium (Ca, or sulfur (S had been omitted. The omission of a macronutrient from the nutrient solution resulted in morphological alterations that were characteristic symptoms of the particular nutritional deficiency and caused decreases in growth and dry matter mass production. The accumulation of macronutrients displayed the following order in mangabeira leaves: N>K>Ca>P>S>Mg.

  16. Effective dielectric mixture model for characterization of diesel contaminated soil

    International Nuclear Information System (INIS)

    Al-Mattarneh, H.M.A.

    2007-01-01

    Human exposure to contaminated soil by diesel isomers can have serious health consequences like neurological diseases or cancer. The potential of dielectric measuring techniques for electromagnetic characterization of contaminated soils was investigated in this paper. The purpose of the research was to develop an empirical dielectric mixture model for soil hydrocarbon contamination application. The paper described the basic theory and elaborated in dielectric mixture theory. The analytical and empirical models were explained in simple algebraic formulas. The experimental study was then described with reference to materials, properties and experimental results. The results of the analytical models were also mathematically explained. The proposed semi-empirical model was also presented. According to the result of the electromagnetic properties of dry soil contaminated with diesel, the diesel presence had no significant effect on the electromagnetic properties of dry soil. It was concluded that diesel had no contribution to the soil electrical conductivity, which confirmed the nonconductive character of diesel. The results of diesel-contaminated soil at saturation condition indicated that both dielectric constant and loss factors of soil were decreased with increasing diesel content. 15 refs., 2 tabs., 9 figs

  17. Characterization of non equilibrium effects on high quality critical flows

    International Nuclear Information System (INIS)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-01-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness

  18. Characterization of non equilibrium effects on high quality critical flows

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  19. Characterization of a method for quantitating food consumption for mutation assays in Drosophila

    International Nuclear Information System (INIS)

    Thompson, E.D.; Reeder, B.A.; Bruce, R.D.

    1991-01-01

    Quantitation of food consumption is necessary when determining mutation responses to multiple chemical exposures in the sex-linked recessive lethal assay in Drosophila. One method proposed for quantitating food consumption by Drosophila is to measure the incorporation of 14C-leucine into the flies during the feeding period. Three sources of variation in the technique of Thompson and Reeder have been identified and characterized. First, the amount of food consumed by individual flies differed by almost 30% in a 24 hr feeding period. Second, the variability from vial to vial (each containing multiple flies) was around 15%. Finally, the amount of food consumed in identical feeding experiments performed over the course of 1 year varied nearly 2-fold. The use of chemical consumption values in place of exposure levels provided a better means of expressing the combined mutagenic response. In addition, the kinetics of food consumption over a 3 day feeding period for exposures to cyclophosphamide which produce lethality were compared to non-lethal exposures. Extensive characterization of lethality induced by exposures to cyclophosphamide demonstrate that the lethality is most likely due to starvation, not chemical toxicity

  20. Loregic: A Method to Characterize the Cooperative Logic of Regulatory Factors

    Science.gov (United States)

    Wang, Daifeng; Yan, Koon-Kiu; Sisu, Cristina; Cheng, Chao; Rozowsky, Joel; Meyerson, William; Gerstein, Mark B.

    2015-01-01

    The topology of the gene-regulatory network has been extensively analyzed. Now, given the large amount of available functional genomic data, it is possible to go beyond this and systematically study regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating a common target. We attempt to find the gate that best matches each triplet’s observed gene expression pattern across many conditions. We make Loregic available as a general-purpose tool (github.com/gersteinlab/loregic). We validate it with known yeast transcription-factor knockout experiments. Next, using human ENCODE ChIP-Seq and TCGA RNA-Seq data, we are able to demonstrate how Loregic characterizes complex circuits involving both proximally and distally regulating transcription factors (TFs) and also miRNAs. Furthermore, we show that MYC, a well-known oncogenic driving TF, can be modeled as acting independently from other TFs (e.g., using OR gates) but antagonistically with repressing miRNAs. Finally, we inter-relate Loregic’s gate logic with other aspects of regulation, such as indirect binding via protein-protein interactions, feed-forward loop motifs and global regulatory hierarchy. PMID:25884877

  1. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    Science.gov (United States)

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  2. Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Alexandre H. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, UFSCar-Universidade Federal de Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil); Souza, Flavio L., E-mail: flavio.souza@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, Bangu, Santo Andre, SP 09210-170 (Brazil); Chiquito, Adenilson J., E-mail: chiquito@df.ufscar.br [Departamento de Fisica, UFSCar-Federal University of Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil); Longo, Elson, E-mail: elson@iq.unesp.br [Instituto de Quimica de Araraquara, UNESP-Universidade Estadual Paulista, Rua Francisco Degni, CP 355 Araraquara, SP 14801-907 (Brazil); Leite, Edson R., E-mail: derl@power.ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, UFSCar-Universidade Federal de Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil); Camargo, Emerson R., E-mail: camargo@ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, UFSCar-Universidade Federal de Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil)

    2010-12-01

    Nanosized powders of lead lanthanum titanate (Pb{sub 1-x}La{sub x}TiO{sub 3}) were synthesized by means of the oxidant-peroxo method (OPM). Lanthanum was added from 5 to 30% in mol through the dissolution of lanthanum oxide in nitric acid, followed by the addition of lead nitrate to prepare a solution of lead and lanthanum nitrates, which was dripped into an aqueous solution of titanium peroxo complexes, forming a reactive amorphous precipitate that could be crystallized by heat treatment. Crystallized powders were characterized by FT-Raman spectroscopy and X-ray powder diffraction, showing that tetragonal perovskite structure is obtained for samples up to 25% of lanthanum and cubic perovskite for samples with 30% of lanthanum. Powders containing 25 and 30% in mol of lanthanum were calcined at 700 deg. C for 2 h, and in order to determine the relative dielectric permittivity and the phase transition behaviour from ferroelectric-to-paraelectric, ceramic pellets were prepared and sintered at 1100 or 1150 deg. C for 2 h and subjected to electrical characterization. It was possible to observe that sample containing 25% in mol of La presented a normal behaviour for the phase transition, whereas the sample containing 30% in mol of La presented a diffuse phase transition and relaxor behaviour.

  3. Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Pinto, Alexandre H.; Souza, Flavio L.; Chiquito, Adenilson J.; Longo, Elson; Leite, Edson R.; Camargo, Emerson R.

    2010-01-01

    Nanosized powders of lead lanthanum titanate (Pb 1-x La x TiO 3 ) were synthesized by means of the oxidant-peroxo method (OPM). Lanthanum was added from 5 to 30% in mol through the dissolution of lanthanum oxide in nitric acid, followed by the addition of lead nitrate to prepare a solution of lead and lanthanum nitrates, which was dripped into an aqueous solution of titanium peroxo complexes, forming a reactive amorphous precipitate that could be crystallized by heat treatment. Crystallized powders were characterized by FT-Raman spectroscopy and X-ray powder diffraction, showing that tetragonal perovskite structure is obtained for samples up to 25% of lanthanum and cubic perovskite for samples with 30% of lanthanum. Powders containing 25 and 30% in mol of lanthanum were calcined at 700 deg. C for 2 h, and in order to determine the relative dielectric permittivity and the phase transition behaviour from ferroelectric-to-paraelectric, ceramic pellets were prepared and sintered at 1100 or 1150 deg. C for 2 h and subjected to electrical characterization. It was possible to observe that sample containing 25% in mol of La presented a normal behaviour for the phase transition, whereas the sample containing 30% in mol of La presented a diffuse phase transition and relaxor behaviour.

  4. Study of ceramics from circular archaeological sites of Amazonic Basin by geochemical methods: dating and characterization

    International Nuclear Information System (INIS)

    Nicoli, Ieda Gomes

    2000-09-01

    The aim of this work is to examine by means of characterization and dating pottery recently discovery inside archaeological sites recognized with circular earth structure in Acre State - Brazil which may contribute to the research in the reconstruction of part of the pre-history of the Amazonic Basin. These sites are located mainly in the Hydrographic Basin of High Purus River. Three of them were strategic chosen which provide the ceramics: Lobao, in Sena Madureira County at north; Alto Alegre, in Rio Branco County at east and Xipamanu I, in Xapuri County at south. The X-ray diffraction mineral analysis made possible to identify two types of crystal structures of ceramic minerals: quartz and M-Kaolinite. Neutron activation analysis in conjunction with multivariate statistical methods were applied for the ceramic characterization and classification. An homogeneous group was established by all sherds collected from Alto Alegre and was distinct from all the other two groups analyzed. Some of the sherds collected from Xipamanu I appeared in Lobao's urns, probably because they had the same fabrication process. The Lobao's urns presented a homogeneous group. Geochronology of these materials was carried out by Thermoluminescence. The Xipamanu I was the oldest site and Lobao the youngest. The average age of Xipamanu I and Alto Alegre were 2600 and 2070 years respectively. The average age of of occupation was 400 years to Alto Alegre and 970 years to Xipamanu I. The most probably date for Lobao was 1880 years. (author)

  5. Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method

    International Nuclear Information System (INIS)

    Ahmed, Faheem; Kumar, Shalendra; Arshi, Nishat; Anwar, M.S.; Su-Yeon, Lee; Kil, Gyung-Suk; Park, Dae-Won; Koo, Bon Heun; Lee, Chan Gyu

    2011-01-01

    Polyaniline (PANI)-ZnO nanoparticles composites film has been successfully fabricated by solution casting technique on glass substrate in which ZnO nanopowder was prepared via auto combustion method and used as inorganic materials. The as-grown nanocomposites film has been characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and Atomic Force Microscopy (AFM) for their structural and morphological characterizations. X-ray diffraction studies of as-grown film showed the reflection of ZnO nanoparticles along with a broad peak of PANI. The AFM study of the film shows the incorporation of ZnO nanoparticles into the polymer matrix which was further supported by roughness measurement. TEM images showed that the size of ZnO nanoparticles in the nanocomposites increase from ∼ 35 nm to ∼ 45 nm, indicating the interaction of nanoparticles with PANI molecular chains. FTIR spectra showed a band at 501 cm -1 due to ZnO nanoparticles while the hydrogen bonding between the amine group of PANI and ZnO nanoparticles had been confirmed from the presence of the absorption band at 1148 cm -1 .

  6. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    Science.gov (United States)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  7. The Quantified Characterization Method of the Micro-Macro Contacts of Three-Dimensional Granular Materials on the Basis of Graph Theory.

    Science.gov (United States)

    Guan, Yanpeng; Wang, Enzhi; Liu, Xiaoli; Wang, Sijing; Luan, Hebing

    2017-08-03

    We have attempted a multiscale and quantified characterization method of the contact in three-dimensional granular material made of spherical particles, particularly in cemented granular material. Particle contact is defined as a type of surface contact with voids in its surroundings, rather than a point contact. Macro contact is a particle contact set satisfying the restrictive condition of a two-dimensional manifold with a boundary. On the basis of graph theory, two dual geometrical systems are abstracted from the granular pack. The face and the face set, which satisfies the two-dimensional manifold with a boundary in the solid cell system, are extracted to characterize the particle contact and the macro contact, respectively. This characterization method is utilized to improve the post-processing in DEM (Discrete Element Method) from a micro perspective to describe the macro effect of the cemented granular material made of spherical particles. Since the crack has the same shape as its corresponding contact, this method is adopted to characterize the crack and realize its visualization. The integral failure route of the sample can be determined by a graph theory algorithm. The contact force is assigned to the weight value of the face characterizing the particle contact. Since the force vectors can be added, the macro contact force can be solved by adding the weight of its corresponding faces.

  8. Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods.

    Science.gov (United States)

    Yuliarti, Oni; Matia-Merino, Lara; Goh, Kelvin K T; Mawson, John; Williams, Martin A K; Brennan, Charles

    2015-01-01

    Studies on gold kiwifruit pectins are limited. In this work, the characterization of pectin isolated from two different stages of maturity of gold kiwifruit, namely early harvested fruit (EHF) and main harvested fruit (MHF) isolated by three methods (acid, water, enzymatic) was carried out. Pectins isolated from MHF were higher in galacturonic acid content (52-59% w/w) and weight-average molecular weights (Mw, 1.7-3.8 × 10(6)g/mol) compared with EHF pectins (29-49% w/w and 0.2-1.7 × 10(6)g/mol respectively). Enzymatic treatment gave the highest yield but lowest in Mw, viscosity and mechanical spectra for both maturities. The pectin of both maturities was classified as high-methoxyl pectin with the degree of esterification ranged from 82% to 90%. Water-extracted MHF pectin molecules had the highest RMS radius (182.7 nm) and Mw (3.75 × 10(6)g/mol). The water extraction method appeared to retain the native state of pectin molecules compared with acid and enzymatic extraction methods based on the Mw and viscosity data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.

    Science.gov (United States)

    Shashilov, Victor A; Sikirzhytski, Vitali; Popova, Ludmila A; Lednev, Igor K

    2010-09-01

    Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Manufacturing of Electrolyte and Cathode Layers SOFC Using Atmospheric Spraying Method and Its Characterization

    Directory of Open Access Journals (Sweden)

    S. Sulistyo

    2012-12-01

    Full Text Available The use of Solid Oxide Fuel Cell (SOFC has created various interest in many parties, due to its capability to convert gases into electricity. The main requirement of SOFC cell components is to be produced as thin as possible to minimize the losses of electrical resistance, as well as able to support internal and external loads. This paper discusses the procedure of making a thin electrolyte layer, as well as a porous thin layer cathode using atmospheric spraying technique. The procedure of spraying was in room temperature with the process of sintering at temperature of 13500 C held for 3 hours. The SOFC characterization of electrolyte and cathode microstructure was determined by using the SEM, FESEM, XRD and impedance spectroscopy, to measure the impedance of SOFC cells. The results show that the thickness of thin layer electrolyte and porous cathode obtained of about 20 µm and 4 µm, respectively. Also the SOFC cell impedance was measured of 2.3726 x 106 Ω at room temperature. The finding also demonstrated that although the materials (anode, cathode and electrolyte possess different coefficient thermal expansion, there was no evidence of flaking layers which seen the materials remain intact. Thus, the atmospheric spraying method can offer an alternative method to manufacturing of SOFC thin layer electrolyte and cathode. [Key words: SOFC; spraying method; electrolyte; cathode

  11. Method for Determining the Time Constants Characterizing the Intensity of Steel Mixing in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Pieprzyca J.

    2015-04-01

    Full Text Available A common method used in identification of hydrodynamics phenomena occurring in Continuous Casting (CC device's tundish is to determine the RTD curves of time. These curves allows to determine the way of the liquid steel flowing and mixing in the tundish. These can be identified either as the result of numerical simulation or by the experiments - as the result of researching the physical models. Special problem is to objectify it while conducting physical research. It is necessary to precisely determine the time constants which characterize researched phenomena basing on the data acquired in the measured change of the concentration of the tracer in model liquid's volume. The mathematical description of determined curves is based on the approximate differential equations formulated in the theory of fluid mechanics. Solving these equations to calculate the time constants requires a special software and it is very time-consuming. To improve the process a method was created to calculate the time constants with use of automation elements. It allows to solve problems using algebraic method, which improves interpretation of the research results of physical modeling.

  12. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    Science.gov (United States)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  13. Chemical and isotopic methods for characterization of pollutant sources in rain water

    International Nuclear Information System (INIS)

    Verma, M.P.

    1996-01-01

    The acid rain formation is related with industrial pollution. An isotopic and chemical study of the spatial and temporary distribution of the acidity in the rain gives information about the acidity source. The predominant species in the acid rain are nitrates and sulfates. For the rain monitoring is required the determination of the anion species such as HCO 3 , Cl, SO 4 , NO 3 and p H. So it was analyzed the cations Na + , K + , Ca 2+ and Mg 2+ to determine the quality analysis. All of them species can be determined with enough accuracy, except HCO 3 by modern equipment such as, liquid chromatograph, atomic absorption, etc. The HCO 3 concentration is determined by traditional methods like acid-base titration. This work presents the fundamental concepts of the titration method for samples with low alkalinity (carbonic species), for rain water. There is presented a general overview over the isotopic methods for the characterization of the origin of pollutant sources in the rain. (Author)

  14. The CACAO Method for Smoothing, Gap Filling, and Characterizing Seasonal Anomalies in Satellite Time Series

    Science.gov (United States)

    Verger, Aleixandre; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E.

    2013-01-01

    Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction.

  15. The effect of Pilates method on elderly flexibility

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães

    Full Text Available Introduction Pilates as physical exercise practice brings countless benefits, such as improvement of motor aptitudes and skills.Objective To look into the effect of the Pilates method on the hip and shoulder girdle flexibility levels in the elderly.Methods Experimental study composed of 30 elderly subjects of the control group and 30 of the Pilates group within a 12 week training time. A form was used to characterize the sample and to assess hip flexibility and shoulder girdle. Descriptive and inferential statistics were used, under a significance level of p < 0.05.Results On hip flexibility, the 30 elderly individuals from the control group remained under normal and inferior classification, not presenting any differences between the variables (p = 0.180 from the pretest to the retest. In the intervention group, 60% of the elderly subjects were assessed as normal. In the retest, such percentage increased to 66.7%. In the pretest, 10% of the elderly subjects were given the superior classification, and in the retest, it increased to 33%, not presenting significance between the variables (p = 0.180. On shoulder flexibility in the intervention group, 63% of the elderly subjects were graded as normal, and 17% as superior. In the shoulder retest the number of elderly individuals decreased to 47% in the normal classification, and increased to 33% in the superior classification, presenting a significant difference (p = 0.001.Conclusion The elderly subjects who did not take part into the Pilates method presented a lower flexibility degree, considering that, the latter reduces in aging. As a preventive way of improving such limitation, the practice of the Pilates method is suggested.

  16. Synthesis and characterization of large WO{sub 3} sheets synthesized by resistive heating method

    Energy Technology Data Exchange (ETDEWEB)

    Filippo, Emanuela, E-mail: emanuela.filippo@unisalento.it [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Tepore, Marco [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Baldassarre, Francesca [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy); Quarta, Gianluca; Calcagnile, Lucio [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Guascito, Maria Rachele [DiSTeBA, University of Salento, Lecce I-73100 Italy (Italy); Tepore, Antonio [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy)

    2015-09-01

    A simple, low-cost method is presented to grow tungsten oxide large sheets simply by resistively heating a pure tungsten filament under air/water vapor flow. The obtained structures were studied using scanning and transmission electron microscopy, selected area diffraction, X Ray diffraction, Raman and X-ray photoelectron spectroscopy, photoluminescence and zeta potential measurements. SEM observations revealed that sheets formed by broadening of the wires/belts over longer growth period. Photoluminescence measurements showed that tungsten oxide sheets had an intense visible emission band. - Highlights: • WO{sub 3} large sheets were prepared by resistively heating a W filament. • WO{sub 3} sheets were carefully characterized. • Formation mechanism of sheets was studied. • WO{sub 3} sheets had an intense visible emission band at 462 nm.

  17. Preparation and characterization of amorphous manganese sulfide thin films by SILAR method

    International Nuclear Information System (INIS)

    Pathan, H.M.; Kale, S.S.; Lokhande, C.D.; Han, Sung-Hwan; Joo, Oh-Shim

    2007-01-01

    Manganese sulfide thin films were deposited by a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method using manganese acetate as a manganese and sodium sulfide as sulfide ion sources, respectively. Manganese sulfide films were characterized for their structural, surface morphological and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The as-deposited film on glass substrate was amorphous. The optical band gap of the film was found to be thickness dependent. As thickness increases optical band gap was found to be increase. The water angle contact was found to be 34 o , suggesting hydrophilic nature of manganese sulfide thin films. The presence of Mn and S in thin film was confirmed by energy dispersive X-ray analysis

  18. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    International Nuclear Information System (INIS)

    Ngo, Vo Ke Thanh; Huynh, Trong Phat; Nguyen, Dang Giang; Nguyen, Hoang Phuong Uyen; Lam, Quang Vinh; Huynh, Thanh Dat

    2015-01-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO_3 as capping agents. The product was characterized by ultraviolet–visible spectroscopy (UV–vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found. (paper)

  19. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    Science.gov (United States)

    Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-12-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.

  20. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Science.gov (United States)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  1. Characterization of ZnO nanostructures: A challenge to positron annihilation spectroscopy and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Gerhard; Anwand, Wolfgang; Grambole, Dieter; Skorupa, Wolfgang [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Egger, Werner; Sperr, Peter [Institut fuer Angewandte Physik und Messtechnik LRT2, Fakultaet fuer Luft- und Raumfahrttechnik, Werner-Heisenberg-Weg 39, Universitaet der Bundeswehr, Neubiberg (Germany); Beinik, Igor; Wang, Lin; Teichert, Christian [Institut fuer Physik, Montanuniversitaet Leoben (Austria); Kuriplach, Jan; Lang, Jan [Department of Low Temperature Physics, Charles University, Prague (Czech Republic); Zviagin, Sergei; Cizmar, Erik [Institut Hochfeld-Magnetlabor, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Ling, Chi Chung; Hsu, Yuk Fan; Xi, Yan Yan; Chen, Xinyi; Djurisic, Aleksandra B. [Department of Physics, University of Hong Kong, Hong Kong (China)

    2009-11-15

    ZnO nanostructures are of special interest for device applications. However, their structural characterization remains an ongoing challenge. This paper reviews recent efforts and latest achievements in this direction. Results comprise PAS in the form of Slow Positron Implantation Spectroscopy (SPIS) and Pulsed Low Energy Positron Lifetime Spectroscopy (PLEPS), Nuclear Reaction Analysis (NRA), Atomic Force Microscopy (AFM), conductive AFM (C-AFM), Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR), Photoluminescence (PL) spectroscopy, and latest theoretical investigations of structure-related and positron properties of selected defects. The fundamental importance of a relationship between fabrication conditions, native defect formation, and resulting optical and electronic properties is demonstrated by getting either inferior (nanorods) or significantly improved (tetrapods) optical properties compared to single crystal samples, depending on the nanostructure fabrication method. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens.

    Science.gov (United States)

    Fernandes, Telmo J R; Costa, Joana; Carrapatoso, Isabel; Oliveira, Maria Beatriz P P; Mafra, Isabel

    2017-10-13

    Gadiform order includes several fish families, from which Gadidae and Merlucciidae are part of, comprising the most commercially important and highly appreciated fish species, such as cod, pollock, haddock, and hake. Parvalbumins, classified as calcium-binding proteins, are considered the main components involved in the majority of fish allergies. Nine and thirteen parvalbumins were identified in different fish species from Gadidae and Merlucciidae families, respectively. This review intends to describe their molecular characterization and the clinical relevance, as well as the prevalence of fish allergy. In addition, the main protein- and DNA-based methods to detect fish allergens are fully reviewed owing to their importance in the safeguard of sensitized/allergic individuals.

  3. Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2016-07-01

    Full Text Available In this research zinc sulfide (ZnS nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The crystallite size of ZnS nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the scanning electron microscopy. The grain size of zinc sulfide nanoparticles were in suitable agreement with the crystalline size calculated by X-ray diffraction results. The optical properties of particles were studied with ultraviolet-visible absorption spectrum.

  4. Synthesis and characterization of copper nanoparticles by using the exploding wire method

    International Nuclear Information System (INIS)

    Das, Rashmita; Das, Basanta Kumar; Shyam, Anurag

    2012-01-01

    During the past few years, the synthesis of copper nanoparticles has attracted much attention because of their huge potential for replacing the expensive nano silver inks utilized in conductive printing. This opens a new possibility in printed electronics. Copper-based inkjet inks can be used to form various devices such as solar cells, RF identification tags and electroluminescence devices. This paper describes controlled synthesis of pure copper nanoparticles, mainly by using the exploding wire method. A wire of 0.26 mm in diameter was exploded in a nitrogen environment. The sample was characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD revealed the presence of pure copper and AFM revealed the presence of nanoparticles with an average size of 55 nm.

  5. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  6. Structural characterization of complex systems by applying a combination of scattering and spectroscopic methods

    International Nuclear Information System (INIS)

    Klose, G.

    1999-01-01

    Lyotropic mesophases possess lattice dimensions of the order of magnitude of the length of their molecules. Consequently, the first Bragg reflections of such systems appear at small scattering angles (small angle scattering). A combination of scattering and NMR methods was applied to study structural properties of POPC/C 12 E n mixtures. Generally, the ranges of existence of the liquid crystalline lamellar phase, the dimension of the unit-cell of the lamellae and important structural parameters of the lipid and surfactant molecules in the mixed bilayers were determined. With that the POPC/C 12 E 4 bilayer represents one of the best structurally characterized mixed model membranes. It is a good starting system for studying the interrelation with other e.g. dynamic or thermodynamic properties. (K.A.)

  7. Physical-mechanical characterization of hydroxyapatite-titanium oxide composites made by the polymeric sponge method

    International Nuclear Information System (INIS)

    Galdino, A.G.S.; Zavaglia, C.A.C.

    2011-01-01

    Bioceramics have been used as bone reconstruction materials since last decades, where hydroxyapatite is one of the most used for this purpose. However, hydroxyapatite's mechanical strength is not so high when compared to other bioceramics. This work aimed on characterizing physically and mechanically composites of HA-TiO_2. Samples were made by the polymeric sponge method with 70% - 30% wt., 60% - 40% wt. and 50% - 50% wt. of HA - TiO_2, calcined at 550 deg C for sponge burning and sintered at 1250 deg C, 1300 deg C and 1350 deg C. Samples were submitted to mechanical essays of compression and Hardness Vickers and to physical essays of water absorption, apparent density, burning linear retraction and apparent density. Results showed relatively better than those of pure hydroxyapatite and they are in accordance with the literature. (author)

  8. The fingerprint method for characterization of radioactive waste in hadron accelerators

    CERN Document Server

    Magistris, M

    2008-01-01

    Beam losses are responsible for material activation in most of the components of particle accelerators. The activation is caused by several nuclear processes and varies with the irradiation history and the characteristics of the material (namely chemical composition and size). Once at the end of their operational lifetime, these materials require radiological characterization. The radionuclide inventory depends on the particle spectrum, the irradiation history and the chemical composition of the material. As long as these factors are known and the material cross-sections are available, the induced radioactivity can be calculated analytically. However, these factors vary widely among different items of waste and sometimes they are only partially known. The European Laboratory for Particle Physics (CERN, Geneva) has been operating accelerators for high-energy physics for 50 years. Different methods for the evaluation of the radionuclide inventory are currently under investigation at CERN, including the so-calle...

  9. Synthesis and characterization of NiO nanoparticles by Pechini method

    International Nuclear Information System (INIS)

    Nascimento, A.; Ribeiro, M.A.; Costa, A.C.F.M.; Gama, L.; Bernardi, M.I.B.

    2009-01-01

    In recent years, ultrafine magnetic particles of NiO have attracting the attention because of its unknown behavior, enormous scientific potential and technological application. Some of its more important properties are accented magnetic moments, double dynamic exchange, quantization of wave of spin and etc. In this context, this work has for objective to synthesize and to characterize nanoparticles of NiO for the Pechini method. The powder was analyzed by X-rays diffraction. The results of scanning electron microscopy, adsorption of nitrogen. The analysis of X-rays diffraction of the sample showed single-phase peaks of NiO, with crystallite size close to 38 nm. The surface area was 6.44 m 2 /g. The image from scanning electron microscopy shows soft homogeneous agglomerates. The Pechini synthesis was efficient in the production of powders of NiO nano metrics and single-phase. (author)

  10. Physicochemical characterization of modified clay based composites obtained by a novel method

    Science.gov (United States)

    Kalra, Swati; Dudi, D.; Singh, G. P.; Verma, S. K.; Bhojak, N.

    2018-05-01

    Material science is one of the important fields where, absorption spectra of lanthanide ions have been a subject of several investigations because of their possible use as laser materials, diagnostic tools and sensors. Study of absorption spectra in visible and near infrared regions yields useful information regarding energy and intensity parameters, and nature and probabilities of transitions. Chemical physics provides fundamental tool to develop lanthanide chemistry, which has been increasingly significant in the last few years due to the wide variety of potential applications of their complexes in many important areas of biology and medicines. The present work describes the development of a novel method of composite preparation based on clay and its physiochemical characterization. Simultaneous measurement of some thermal properties has made study more useful. Results match with accepted models.

  11. MO-FG-BRA-03: A Novel Method for Characterizing Gating Response Time in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, R; McCabe, B; Belcher, A; Jenson, P [The University of Chicago, Chicago, IL (United States); Smith, B [University Illinois at Chicago, Orland Park, IL (United States); Aydogan, B [The University of Chicago, Chicago, IL (United States); University Illinois at Chicago, Orland Park, IL (United States)

    2016-06-15

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Current film based methods to assess gating response have poor temporal resolution and are highly qualitative. We describe a novel method to precisely measure gating lag times at high temporal resolutions and use it to characterize the temporal response of several gating systems. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz (0.4 millisecond (ms) sampling interval) with an analogue-to-digital converter (ADC). The techniques was used on three commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted using a polynomial fit method. Results: A Varian RPM system with a monoscopic IR camera was measured to have mean beam ON and OFF lag times of 98.2 ms and 89.6 ms, respectively. A Varian RPM system with a stereoscopic IR camera was measured to have mean beam ON and OFF lag times of 86.0 ms and 44.0 ms, respectively. A Calypso magnetic fiducial tracking system was measured to have mean beam ON and OFF lag times of 209.0 ms and 60.0 ms, respectively. Conclusions: A novel method allowed for quantitative determination of gating timing accuracy for several clinically used gating systems. All gating systems met the 100 ms TG-142 criteria for mean beam OFF times. For beam ON response, the Calypso system exceeded the recommended response time.

  12. CHARACTERIZATION OF THE ELECTROPHYSICAL PROPERTIES OF SILICON-SILICON DIOXIDE INTERFACE USING PROBE ELECTROMETRY METHODS

    Directory of Open Access Journals (Sweden)

    V. А. Pilipenko

    2017-01-01

    Full Text Available Introduction of submicron design standards into microelectronic industry and a decrease of the gate dielectric thickness raise the importance of the analysis of microinhomogeneities in the silicon-silicon dioxide system. However, there is very little to no information on practical implementation of probe electrometry methods, and particularly scanning Kelvin probe method, in the interoperational control of real semiconductor manufacturing process. The purpose of the study was the development of methods for nondestructive testing of semiconductor wafers based on the determination of electrophysical properties of the silicon-silicon dioxide interface and their spatial distribution over wafer’s surface using non-contact probe electrometry methods.Traditional C-V curve analysis and scanning Kelvin probe method were used to characterize silicon- silicon dioxide interface. The samples under testing were silicon wafers of KEF 4.5 and KDB 12 type (orientation <100>, diameter 100 mm.Probe electrometry results revealed uniform spatial distribution of wafer’s surface potential after its preliminary rapid thermal treatment. Silicon-silicon dioxide electric potential values were also higher after treatment than before it. This potential growth correlates with the drop in interface charge density. At the same time local changes in surface potential indicate changes in surface layer structure.Probe electrometry results qualitatively reflect changes of interface charge density in silicon-silicon dioxide structure during its technological treatment. Inhomogeneities of surface potential distribution reflect inhomogeneity of damaged layer thickness and can be used as a means for localization of interface treatment defects.

  13. Dysfunctional methods and the effective potential

    International Nuclear Information System (INIS)

    Dannenberg, A.; California Univ., Berkeley

    1988-01-01

    The effective potential is a useful and much-studied object. It is known to be both real and convex, but a perturbative calculation often gives a complex and nonconvex result. In this letter we address the apparent conflict between perturbation theory and the convexity of the effective potential. (orig.)

  14. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  15. Diluted melt proton exchange slab waveguides in LiNbO3: A new fabrication and characterization method

    DEFF Research Database (Denmark)

    Veng, Torben; Skettrup, Torben

    1997-01-01

    A method of dilute-melt proton exchange employing a mixture of glycerol and KHSO4 with lithium benzoate added is used to fabricate planar waveguides in c-cut LiNbO3. With this exchange melt system the waveguide refractive index profiles can be fabricated with a high degree of reproducibility...... the waveguide refractive index profile from the measured mode indices is introduced. The main advantage of this characterization method compared with other methods is that it also applies to single-mode waveguides. Using the new characterization method we investigate in detail the relation between waveguide...

  16. Suggestology as an Effective Language Learning Method.

    Science.gov (United States)

    MaCoy, Katherine W.

    The methods used and the results obtained by means of the accelerated language learning techniques developed by Georgi Lozanov, Director of the Institute of Suggestology in Bulgaria, are discussed. The following topics are included: (1) discussion of hypermnesia, "super memory," and the reasons foreign languages were chosen for purposes…

  17. Study of measurement methods of ultrafine aerosols surface-area for characterizing occupational exposure

    International Nuclear Information System (INIS)

    Bau, S.

    2008-12-01

    This work aims at improving knowledge on ultrafine aerosols surface-area measurement. Indeed, the development of nano-technologies may lead to occupational exposure to airborne nano-structured particles, which involves a new prevention issue. There is currently no consensus concerning what parameter (mass, surface-area, number) should be measured. However, surface-area could be a relevant metric, since it leads to a satisfying correlation with biological effects when nano-structured particles are inhaled. Hence, an original theoretical work was performed to position the parameter of surface-area in relation to other aerosol characteristics. To investigate measurement techniques of nano-structured aerosols surface-area, the experimental facility CAIMAN (Characterization of Instruments for the Measurement of Aerosols of Nano-particles) was designed and built. Within CAIMAN, it is possible to produce nano-structured aerosols with varying and controlled properties (size, concentration, chemical nature, morphology, state-of-charge), stable and reproducible in time. The generated aerosols were used to experimentally characterize the response of the instruments in study (NSAM and AeroTrak 9000 TSI, LQ1-DC Matter Engineering). The response functions measured with monodisperse aerosols show a good agreement with the corresponding theoretical curves in a large size range, from 15 to 520 nm. Furthermore, hypotheses have been formulated to explain the reasonable biases observed when measuring poly-disperse aerosols. (author)

  18. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig (Turkey); Al Orainy, R.H. [Physics Department, Sciences of Faculty for Girls, King Abdulaziz University, Jeddah (Saudi Arabia); Ates, Tankut [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Physics Department, Sciences of Faculty for Girls, King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-02-01

    The synthesis and characterization of sol–gel derived hydroxyapatite (HAp) were investigated with the effects of the addition of polyvinyl alcohol (PVA) to the structural and material in vitro behavior. All samples were soaked in simulated body fluid (SBF) for 14 and 28 days. The characterization of bioceramics before and after immersing in SBF was carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. After the simulated body fluid period, the crystal structure and phase of HAp samples did not change significantly. The characteristic bands of hydroxyl, phosphate and carbonate groups were detected. HAp exhibited a thermal stability of room temperature to 1000 °C. The surface morphologies of the samples show an evident change with the soaking period in SBF. - Highlights: • The soaking period in SBF affects the surface morphology. • The Ca/P molar ratios change with the immersion time. • The as-prepared samples thermally stable from ∼ 25 to 1000 °C.

  19. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol–gel method

    International Nuclear Information System (INIS)

    Kaygili, Omer; Keser, Serhat; Al Orainy, R.H.; Ates, Tankut; Yakuphanoglu, Fahrettin

    2014-01-01

    The synthesis and characterization of sol–gel derived hydroxyapatite (HAp) were investigated with the effects of the addition of polyvinyl alcohol (PVA) to the structural and material in vitro behavior. All samples were soaked in simulated body fluid (SBF) for 14 and 28 days. The characterization of bioceramics before and after immersing in SBF was carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. After the simulated body fluid period, the crystal structure and phase of HAp samples did not change significantly. The characteristic bands of hydroxyl, phosphate and carbonate groups were detected. HAp exhibited a thermal stability of room temperature to 1000 °C. The surface morphologies of the samples show an evident change with the soaking period in SBF. - Highlights: • The soaking period in SBF affects the surface morphology. • The Ca/P molar ratios change with the immersion time. • The as-prepared samples thermally stable from ∼ 25 to 1000 °C

  20. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2011-07-01

    Nano-sized nickel selenide powders have been successfully synthesized via an improved hydrothermal route based on the reaction between NiCl{sub 2}.6H{sub 2}O, SeCl{sub 4} and hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) in water, in present of cetyltrimethyl ammonium bromide (CTAB) as surfactant, at various conditions. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy analysis. Effects of temperature, reaction time and reductant agent on the morphology, the particle sizes and the phase of the final products have been investigated. It was found that the phase and morphology of the products could be greatly influenced by these parameters. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  1. Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.

    Science.gov (United States)

    Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong

    2014-09-01

    The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.

  2. Detailed characterizations of a Comparative Reactivity Method (CRM) instrument: experiments vs. modelling

    Science.gov (United States)

    Michoud, V.; Hansen, R. F.; Locoge, N.; Stevens, P. S.; Dusanter, S.

    2015-04-01

    The Hydroxyl radical (OH) is an important oxidant in the daytime troposphere that controls the lifetime of most trace gases, whose oxidation leads to the formation of harmful secondary pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). In spite of the importance of OH, uncertainties remain concerning its atmospheric budget and integrated measurements of the total sink of OH can help reducing these uncertainties. In this context, several methods have been developed to measure the first-order loss rate of ambient OH, called total OH reactivity. Among these techniques, the Comparative Reactivity Method (CRM) is promising and has already been widely used in the field and in atmospheric simulation chambers. This technique relies on monitoring competitive OH reactions between a reference molecule (pyrrole) and compounds present in ambient air inside a sampling reactor. However, artefacts and interferences exist for this method and a thorough characterization of the CRM technique is needed. In this study, we present a detailed characterization of a CRM instrument, assessing the corrections that need to be applied on ambient measurements. The main corrections are, in the order of their integration in the data processing: (1) a correction for a change in relative humidity between zero air and ambient air, (2) a correction for the formation of spurious OH when artificially produced HO2 react with NO in the sampling reactor, and (3) a correction for a deviation from pseudo first-order kinetics. The dependences of these artefacts to various measurable parameters, such as the pyrrole-to-OH ratio or the bimolecular reaction rate constants of ambient trace gases with OH are also studied. From these dependences, parameterizations are proposed to correct the OH reactivity measurements from the abovementioned artefacts. A comparison of experimental and simulation results is then discussed. The simulations were performed using a 0-D box model including either (1) a

  3. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    International Nuclear Information System (INIS)

    Rather, Sami ullah

    2014-01-01

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough, all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO

  4. A new mechanical characterization method for thin film microactuators and its application to NiTiCi shape memory alloy

    International Nuclear Information System (INIS)

    Seward, K P

    1999-01-01

    In an effort to develop a more full characterization tool of shape memory alloys, a new technique is presented for the mechanical characterization of microactuators and applied to SMA thin films. A test instrument was designed to utilize a spring-loaded transducer in measuring displacements with resolution of 1.5 pm and forces with resolution of 0.2 mN. Employing an out-of-plane loading method for freestanding SMA thin films, strain resolution of 30(mu)(epsilon) and stress resolution of 2.5 MPa were achieved. This new testing method is presented against previous SMA characterization methods for purposes of comparison. Four mm long, 2(micro)m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. The fabrication process used to micromachine the ligaments is presented step-by-step, alongside methods of fabrication that failed to produce testable ligaments. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. In terms of recoverable stress and recoverable strain, the ligaments achieved maximum recovery of 700 MPa and 3.0% strain. No permanent deformations were seen in any ligament during deflection measurements. Maximum actuation forces and displacements produced by the 4 mm ligaments situated on 1 cm square test chips were 56 mN and 300(micro)m, respectively. Fatigue analysis of the ligaments showed degradation in recoverable strain from 0.33% to 0.24% with 200,000 cycles, corresponding to deflections of 90(micro)m and forces of 25 mN. Cycling also produced a wavering shape memory effect late in ligament life, leading to broad inconsistencies of as much as 35% deviation from average. Unexpected phenomena like stress-induced martensitic twinning that leads to less recoverable stress and the shape memory behavior of long life devices are addressed. Finally, a model for design of microactuators using shape memory

  5. A chlorophyll fluorescence-based method for the integrated characterization of the photophysiological response to light stress.

    Science.gov (United States)

    Serôdio, João; Schmidt, William; Frankenbach, Silja

    2017-02-01

    This work introduces a new experimental method for the comprehensive description of the physiological responses to light of photosynthetic organisms. It allows the integration in a single experiment of the main established manipulative chlorophyll fluorescence-based protocols. It enables the integrated characterization of the photophysiology of samples regarding photoacclimation state (generating non-sequential light-response curves of effective PSII quantum yield, electron transport rate or non-photochemical quenching), photoprotection capacity (running light stress-recovery experiments, quantifying non-photochemical quenching components) and the operation of photoinactivation and photorepair processes (measuring rate constants of photoinactivation and repair for different light levels and the relative quantum yield of photoinactivation). The new method is based on a previously introduced technique, combining the illumination of a set of replicated samples with spatially separated actinic light beams of different intensity, and the simultaneous measurement of the fluorescence emitted by all samples using an imaging fluorometer. The main novelty described here is the independent manipulation of light intensity and duration of exposure for each sample, and the control of the cumulative light dose applied. The results demonstrate the proof of concept for the method, by comparing the responses of cultures of Chlorella vulgaris acclimated to low and high light regimes, highlighting the mapping of light stress responses over a wide range of light intensity and exposure conditions, and the rapid generation of paired light-response curves of photoinactivation and repair rate constants. This approach represents a chlorophyll fluorescence 'protocol of everything', contributing towards the high throughput characterization of the photophysiology of photosynthetic organisms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental

  6. Development of new non destructive methods for bituminized radioactive waste drums characterization; Developpement de nouvelles methodes de caracterisation non destructive pour des dechets radioactifs enrobes dans du bitume

    Energy Technology Data Exchange (ETDEWEB)

    Pin, P

    2004-10-15

    Radioactive waste constitute a major issue for the nuclear industry. One of the key points is their characterization to optimize their management: treatment and packaging, orientation towards the suited disposal. This thesis proposes an evaluation method of the low-energy photon attenuation, based on the gamma-ray spectra Compton continuum. Effectively, the {sup 241}Am measurement by gamma-ray spectrometry is difficult due to the low energy of its main gamma-ray (59.5 keV). The photon attenuation strongly depends on the bituminous mix composition, which includes very absorbing elements. As the Compton continuum also depends on this absorption, it is possible to link the 59.5 keV line attenuation to the Compton level. Another technique is proposed to characterize uranium thanks to its fluorescence X-rays induced by the gamma emitters already present in the waste. The uranium present in the drums disturbs the neutron measurements and its measurement by self-induced X-ray fluorescence allows to correct this interference. Due to various causes of error, the total uncertainty is around 50 % on the activity of the radioisotope {sup 241}Am, corrected by the peak to Compton technique. The same uncertainty is announced on the uranium mass measured by self induced X-ray fluorescence. As a consequence of these promising results, the two methods were included in the industrial project of the 'Marcoule Sorting Unit'. One major advantage is that they do not imply any additional material because they use information already present in the gamma-ray spectra. (author)

  7. Synthesis and Characterization of Mass Produced High Quality Few Layered Graphene Sheets via a Chemical Method

    KAUST Repository

    Khenfouch, Mohammed

    2014-04-01

    Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb lattice. It is a zero band gap semimetal with very unique physical and chemical properties which make it useful for many applications such as ultra-high-speed field-effect transistors, p-n junction diodes, terahertz oscillators, and low-noise electronic, NEMS and sensors. When the high quality mass production of this nanomaterial is still a big challenge, we developed a process which will be an important step to achieve this goal. Atomic Force Microscopy, Scanning Electron Microscopy, Scanning tunneling microscopy, High Resolution Transmission Electron Microscopy, X-Ray Diffraction, Raman spectroscopy, Energy Dispersive X-ray system were investigated to characterize and examine the quality of this product.

  8. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method

    Directory of Open Access Journals (Sweden)

    Xueliang Jiang

    2016-04-01

    Full Text Available Uniform rare-earth gadolinium oxide (Gd2O3 hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd2O3 phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd2O3 hollow microspheres exhibited a superior photooxidation activity to that of Gd2O3 powder and an effect similar to P25, significantly broadening the potential of Gd2O3 hollow microspheres for many practical applications.

  9. Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods.

    Science.gov (United States)

    Palla, Michela; Cristani, Caterina; Giovannetti, Manuela; Agnolucci, Monica

    2017-06-05

    Sourdough fermentation has been increasingly used worldwide, in accordance with the demand of consumers for tasty, natural and healthy food. The high diversity of lactic acid bacteria (LAB) and yeast species, detected in sourdoughs all over the world, may affect nutritional, organoleptic and technological traits of leavened baked goods. A wide regional variety of traditional sourdough breads, over 200 types, has been recorded in Italy, including special types selected as worthy of either Protected Geographical Indication (PGI) or Protected Designation of Origin (PDO), whose sourdough microbiota has been functionally and molecularly characterized. As, due to the very recent designation, the microbiota of Tuscan bread sourdough has not been investigated so far, the aim of the present work was to isolate and characterize the species composition of LAB and yeasts of PDO Tuscan bread sourdough by culture-independent and dependent methods. A total of 130 yeasts from WLN medium and 193 LAB from both mMRS and SDB media were isolated and maintained to constitute the germplasm bank of PDO Tuscan bread. Ninety six LAB from mMRS medium and 68 yeasts from WLN medium were randomly selected and molecularly identified by ARDRA (Amplified Ribosomal DNA Restriction Analysis) and PCR-RFLP analysis of the ITS region, respectively, and sequencing. The yeast identity was confirmed by 26S D1/D2 sequencing. All bacterial isolates showed 99% identity with Lactobacillus sanfranciscensis, 65 yeast isolates were identified as Candida milleri, and 3 as Saccharomyces cerevisiae. Molecular characterization of PDO Tuscan bread sourdough by PCR-DGGE confirmed such data. The distinctive tripartite species association, detected as the microbiota characterizing the sourdough used to produce PDO Tuscan bread, encompassed a large number of L. sanfranciscensis and C. milleri strains, along with a few of S. cerevisiae. The relative composition and specific physiological characteristics of such microbiota

  10. Characterizing the marker-dye correction for Gafchromic(®) EBT2 film: a comparison of three analysis methods.

    Science.gov (United States)

    McCaw, Travis J; Micka, John A; Dewerd, Larry A

    2011-10-01

    Gafchromic(®) EBT2 film has a yellow marker dye incorporated into the active layer of the film that can be used to correct the film response for small variations in thickness. This work characterizes the effect of the marker-dye correction on the uniformity and uncertainty of dose measurements with EBT2 film. The effect of variations in time postexposure on the uniformity of EBT2 is also investigated. EBT2 films were used to measure the flatness of a (60)Co field to provide a high-spatial resolution evaluation of the film uniformity. As a reference, the flatness of the (60)Co field was also measured with Kodak EDR2 films. The EBT2 films were digitized with a flatbed document scanner 24, 48, and 72 h postexposure, and the images were analyzed using three methods: (1) the manufacturer-recommended marker-dye correction, (2) an in-house marker-dye correction, and (3) a net optical density (OD) measurement in the red color channel. The field flatness was calculated from orthogonal profiles through the center of the field using each analysis method, and the results were compared with the EDR2 measurements. Uncertainty was propagated through a dose calculation for each analysis method. The change in the measured field flatness for increasing times postexposure was also determined. Both marker-dye correction methods improved the field flatness measured with EBT2 film relative to the net OD method, with a maximum improvement of 1% using the manufacturer-recommended correction. However, the manufacturer-recommended correction also resulted in a dose uncertainty an order of magnitude greater than the other two methods. The in-house marker-dye correction lowered the dose uncertainty relative to the net OD method. The measured field flatness did not exhibit any unidirectional change with increasing time postexposure and showed a maximum change of 0.3%. The marker dye in EBT2 can be used to improve the response uniformity of the film. Depending on the film analysis method used

  11. Characterizations of maghemite thin films prepared by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Lau, L. N., E-mail: lau7798@gmail.com; Ibrahim, N. B., E-mail: baayah@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor. Malaysia (Malaysia)

    2015-09-25

    Iron is one of the abundant elements of Mother Nature and its compound, iron oxide is an interesting material to study since its discovery in the form of magnetite. It can exist in many phases such as hematite and maghemite, this unique nature has put it as a potential candidate in various applications. The aim of this work is to study the influence of different precursor concentrations on the microstructural and magnetic properties of iron oxide thin film. All samples were prepared via the sol-gel method followed by a spin coating technique on quartz substrates. Iron oxide films were confirmed as maghemite phase from X-ray diffraction patterns. The film morphology was examined by a field emission scanning electron microscope and it showed non-systematic value of average grain size and film thickness throughout the study. Hysteresis loop further confirmed that maghemite is a magnetic material when it was characterized by a vibrating sample magnetometer. The coercivity did not show any correlation with molarity. Nevertheless, it increased as the precursor concentration of the film increased due to the domain behaviour. In conclusion, maghemite thin films were successfully synthesized by the sol-gel method with different precursor concentrations in this work.

  12. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    Energy Technology Data Exchange (ETDEWEB)

    Xue, M.H.; Su, M.X.; Dong, L.L.; Shang, Z.T.; Cai, X.S. [Shanghai University of Science & Technology, Shanghai (China)

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluated on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.

  13. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  14. Two-Photon Polymerization Metrology: Characterization Methods of Mechanisms and Microstructures

    Directory of Open Access Journals (Sweden)

    Christopher N. LaFratta

    2017-03-01

    Full Text Available The ability to create complex three-dimensional microstructures has reached an unprecedented level of sophistication in the last 15 years. For the most part, this is the result of a steady development of the additive manufacturing technique named two-photon polymerization (TPP. In a short amount of time, TPP has gone from being a microfabrication novelty employed largely by laser specialists to a useful tool in the hands of scientists and engineers working in a wide range of research fields including microfluidics. When used in combination with traditional microfabrication processes, TPP can be employed to add unique three-dimensional components to planar platforms, thus enabling the realization of lab-on-a-chip solutions otherwise impossible to create. To take full advantage of TPP, an in-depth understanding is required of the materials photochemistry and the fabricated microstructures’ mechanical and chemical properties. Thus, we review methods developed so far to investigate the underling mechanism involved during TPP and analytical methods employed to characterize TPP microstructures. Furthermore, we will discuss potential opportunities for using optofluidics and lab-on-a-chip systems for TPP metrology.

  15. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    Science.gov (United States)

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  16. Production and characterization of carbon nano colloid via one-step electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doohyun; Hwang, Yujin; Cheong, Seong Ir; Lee, Jae Keun [Pusan National University, Department of Mechanical Engineering (Korea, Republic of); Hong, Daeseung; Moon, Seongyong [N-BARO TECH CO., LTD, Institute of SamchangTsinghua Nano Application (Korea, Republic of); Lee, Jung Eun [Pusan National University, Industrial Liaison Innovation Cluster (Korea, Republic of); Kim, Soo H., E-mail: sookim@pusan.ac.k [Pusan National University, Department of Nanosystem and Nanoprocess Engineering (Korea, Republic of)

    2008-10-15

    We present a one-step electrochemical method to produce water-based stable carbon nano colloid (CNC) without adding any surfactants at the room temperature. The physical, chemical, and thermal properties of CNC prepared were characterized by using various techniques, such as particle size analyzer, zeta potential meter, TEM, XRD, FT-IR, turbidity meter, viscometer, and transient hot-wire method. The average primary size of the suspended spherical-shaped nanoparticles in the CNC was found to be {approx}15 nm in diameter. The thermal conductivity of CNC compared with that of water was observed to increase up to {approx}14% with the CNC concentration of {approx}4.2 wt%. The CNC prepared in this study was considerably stable over the period of 600 h. With the assistance of FT-IR spectroscopy analysis, we confirmed the presence of carboxyl group (i.e., O-H stretching (3,458 cm{sup -1}) and C=O stretching (1,712 cm{sup -1})) formed in the outer atomic layer of carbon nanoparticles, which (i) made the carbon particles hydrophilic and (ii) prevented the aggregation among primary nanoparticles by increasing the magnitude of zeta potential over the long period.

  17. Self-cleaning Foliar Surfaces Characterization using RIMAPS Technique and Variogram Method

    International Nuclear Information System (INIS)

    Rosi, Pablo E.

    2002-01-01

    Along the last ten years many important studies about characterization of self-cleaning foliar surfaces have been done and focused new interest on this kind of surfaces.These studies were possible due to the development of a novel preparation technique for this biological material that let us observe the delicate structures of a foliar surface under scanning electron microscope (S.E.M.).This technique consists of replacing the natural water of the specimen by glycerol. Digital S.E.M. images from both self-cleaning and non-self-cleaning foliar surfaces were obtained and analyzed using RIMAPS technique and Variograms method. Our results revealed the existence of a common and exclusive geometrical pattern that is found in species which present self-cleaning foliar surfaces.This pattern combines at least nine different directions.The results from the Variograms method showed that the stomata play a key role in the determination of foliar surface roughness. In addition, spectra from RIMAPS technique constitute a fingerprint of a foliar surface so they can be used to find evolutionary relationships among species.Further studies will provide more detailed information to fully elucidate the self-cleaning pattern, so it might be possible to reproduce it on an artificial surface and make it self-cleaning

  18. Production and characterization of carbon nano colloid via one-step electrochemical method

    International Nuclear Information System (INIS)

    Kim, Doohyun; Hwang, Yujin; Cheong, Seong Ir; Lee, Jae Keun; Hong, Daeseung; Moon, Seongyong; Lee, Jung Eun; Kim, Soo H.

    2008-01-01

    We present a one-step electrochemical method to produce water-based stable carbon nano colloid (CNC) without adding any surfactants at the room temperature. The physical, chemical, and thermal properties of CNC prepared were characterized by using various techniques, such as particle size analyzer, zeta potential meter, TEM, XRD, FT-IR, turbidity meter, viscometer, and transient hot-wire method. The average primary size of the suspended spherical-shaped nanoparticles in the CNC was found to be ∼15 nm in diameter. The thermal conductivity of CNC compared with that of water was observed to increase up to ∼14% with the CNC concentration of ∼4.2 wt%. The CNC prepared in this study was considerably stable over the period of 600 h. With the assistance of FT-IR spectroscopy analysis, we confirmed the presence of carboxyl group (i.e., O-H stretching (3,458 cm -1 ) and C=O stretching (1,712 cm -1 )) formed in the outer atomic layer of carbon nanoparticles, which (i) made the carbon particles hydrophilic and (ii) prevented the aggregation among primary nanoparticles by increasing the magnitude of zeta potential over the long period.

  19. The use of gravity methods in the internal characterization of landfills—a case study

    International Nuclear Information System (INIS)

    Mantlík, František; Matias, Manuel; Grangeia, Carlos; Tareco, Hélder; Lourenço, Jose

    2009-01-01

    Some examples of the use of gravity exploration methods in landfills were published recently. However, density contrast between the landfill and the host media as well as the cost involved may be limiting factors to the application of gravimetry to this problem. Herein a case study of the application of gravity methods to the internal characterization of a sealed landfill is presented. This landfill is installed in recent low-density quaternary sand formations. Two north–south gravity profiles were carried out. The first profile crossed the landfill at its centre, whilst a second profile was done some distance away from the landfill to provide general regional information. The first profile was modelled in order to obtain lateral variations of density within the landfill that might be caused by different types of waste and/or the age of the waste deposits. Gravity modelling and interpretation were supported with data from resistivity profiles carried out in the immediate vicinity of the gravity measurements, i.e. the resistivity profiles interpretation results constrained the thickness of landfill deposits

  20. The characterization of high quality multicrystalline silicon by the electron beam induced current method

    International Nuclear Information System (INIS)

    Chen, J; Sekiguchi, T; Nara, S; Yang, D

    2004-01-01

    Multicrystalline silicon (mc-Si) manufactured by a multi-stage solidification control casting method has been characterized by the electron beam induced current (EBIC) method. The average diffusion length of the ingot was over 250 μm, which was much longer than that of conventional mc-Si. The EBIC study revealed that the electrical activities of grain boundaries (GBs) varied with the ingot position due to the impurity contamination level. The main impurity detected was iron. The concentration of iron in the central position was much lower than that at the bottom and top positions. GBs in the central position showed no significant EBIC contrast at 300 K, suggesting low contamination level. GBs in the top and bottom positions, however, showed strong EBIC contrast at 300 K, suggesting high contamination level. At 100 K, a denuded zone with bright contrast developed around GBs in the top and bottom positions. The existence of the denuded zone suggested that impurities were gettered at the GBs. It was considered that the variation of the diffusion length in the ingot was related to the variation of recombination activities of GBs in the different positions, which mainly depended on the impurity contamination

  1. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Directory of Open Access Journals (Sweden)

    Radu Alexandru Roşu

    2012-03-01

    Full Text Available Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS and High Velocity Oxy-Fuel (HVOF. The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO42. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings.

  2. A hybrid CFD/characteristics method for fast characterization of hypersonic blunt forebody/inlet flow

    Science.gov (United States)

    Gao, WenZhi; Li, ZhuFei; Yang, JiMing

    2015-10-01

    A hybrid CFD/characteristic method (CCM) was proposed for fast design and evaluation of hypersonic inlet flow with nose bluntness, which targets the combined advantages of CFD and method of characteristics. Both the accuracy and efficiency of the developed CCM were verified reliably, and it was well demonstrated for the external surfaces design of a hypersonic forebody/inlet with nose bluntness. With the help of CCM method, effects of nose bluntness on forebody shock shapes and the flowfield qualities which dominate inlet performance were examined and analyzed on the two-dimensional and axisymmetric configurations. The results showed that blunt effects of a wedge forebody are more substantial than that of related cone cases. For a conical forebody with a properly blunted nose, a recovery of the shock front back to that of corresponding sharp nose is exhibited, accompanied with a gradually fading out of entropy layer effects. Consequently a simplification is thought to be reasonable for an axisymmetric inlet with a proper compression angle, and a blunt nose of limited radius can be idealized as a sharp nose, as the spillage and flow variations at the entrance are negligible, even though the nose scale increases to 10% cowl lip radius. Whereas for two-dimensional inlets, the blunt effects are substantial since not only the inlet capturing/starting capabilities, but also the flow uniformities are obviously degraded.

  3. Characterizing the effects of free carriers in fully etched, dielectric-clad silicon waveguides

    Science.gov (United States)

    Sharma, Rajat; Puckett, Matthew W.; Lin, Hung-Hsi; Vallini, Felipe; Fainman, Yeshaiahu

    2015-06-01

    We theoretically characterize the free-carrier plasma dispersion effect in fully etched silicon waveguides, with various dielectric material claddings, due to fixed interface charges and trap states at the silicon-dielectric interfaces. The values used for these charges are obtained from the measured capacitance-voltage characteristics of SiO2, SiNx, and Al2O3 thin films deposited on silicon substrates. The effect of the charges on the properties of silicon waveguides is then calculated using the semiconductor physics tool Silvaco in combination with the finite-difference time-domain method solver Lumerical. Our results show that, in addition to being a critical factor in the analysis of such active devices as capacitively driven silicon modulators, this effect should also be taken into account when considering the propagation losses of passive silicon waveguides.

  4. Characterization of GLP-1 effects on beta-cell function after meal ingestion in humans

    DEFF Research Database (Denmark)

    Ahrén, Bo; Holst, Jens Juul; Mari, Andrea

    2003-01-01

    OBJECTIVE: Glucagon-like peptide 1 (GLP-1) is an incretin that augments insulin secretion after meal intake and is developed for treatment of type 2 diabetes. As a novel therapeutic agent, characteristics of its beta-cell effects are important to establish. Previously, beta-cell effects of GLP-1...... have been characterized in humans during graded intravenous infusions of glucose, whereas its effects after more physiological stimuli, like meal intake, are not known. RESEARCH DESIGN AND METHODS: Eight women (aged 69 years, fasting glucose 3.7-10.3 mmol/l, BMI 22.4-43.9 kg/m(2)) who had fasted...... meal augments insulin secretion in humans by a dose...

  5. EFFECTS OF COWPEA FORTIFICATION, DEHYDRATION METHOD ...

    African Journals Online (AJOL)

    Fortification of cereal-based traditional foods with legume protein can improve their nutritional value. It is, however, important to find out the extent to which the addition of cowpea affects the desirable quality characteristics of traditional weaning foods prepared from fermented maize and also to assess the effect of ...

  6. Use of improved hydrologic testing and borehole geophysical logging methods for aquifer characterization

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Hall, S.H.; Vermeul, V.R.

    1996-01-01

    Depth-discrete aquifer information was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and bulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of time and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge test data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology. The bioremediation study site is located on the US Department of Energy's Hanford site. The study is being conducted by the Pacific Northwest National Laboratory to demonstrate in situ bioremediation of carbon tetrachloride (CCl 4 ). Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity. Tracer test and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated to be 73 ft/d, approximately three times higher than that calculated using the full length of the screened test interval

  7. Study of ultrasonic non destructive testing methods adapted to the sizing and the characterization of defects located in low thickness materials: analysis of the corner effect; Etude de methodes ultrasonores adaptees au dimensionnement et a la caracterisation des defauts dans des structures de faibles epaisseurs: analyse de l`effet de coin

    Energy Technology Data Exchange (ETDEWEB)

    Roy, O.

    1994-12-14

    This work is devoted to the enhancement of non destructive testing using ultrasound. It concerns especially the inspection of steam generator tubes located in water pressure reactors. The study motivation is the sizing of defects such as surface breaking cracks. Because of the low thickness of tubes, at least two corner echoes result from an inspection: one comes from the reflection of the ultrasonic beam on the defect and on the inner surface, the other comes from the reflection on the defect and on the outer surface. In order to size the defect, we consider the corner echo related to the surface opposite to the defect. We present experimental results showing that this corner echo depends on the position and the size of the defect. Then we carry out a theoretical model in order to predict the corner effect echographic response. A simplified version of that model only considers the amplitude distribution in the ultrasonic beam. It allows to calculate the amplitude recorded by the transducer during its displacement, for different sizes of defect. The echo-dynamic curves we obtain are quite representative of the experimental curves. We explain how to size the ligament by minimizing the difference between experiment and simulation. A second version of the model is based on the impulse response formalism. It allows to understand and to predict changes on waveforms resulting from corner effect for different positions of the transducer. (Author). 41 refs., 76 figs., 8 tabs.

  8. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  9. Automated Gait Analysis Through Hues and Areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait

    Science.gov (United States)

    Kloefkorn, Heidi E.; Pettengill, Travis R.; Turner, Sara M. F.; Streeter, Kristi A.; Gonzalez-Rothi, Elisa J.; Fuller, David D.; Allen, Kyle D.

    2016-01-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns. PMID:27554674

  10. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es; Navas, Javier, E-mail: javier.navas@uca.es; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  11. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization

    International Nuclear Information System (INIS)

    Santos, Desireé M. de los; Navas, Javier; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-01-01

    Highlights: • Highly Al-doped TiO 2 nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO 2 nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti 4+ ions by Al 3+ in the TiO 2 lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature

  12. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  13. Mechanical characterization of YBCO thin films using nanoindentation and finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weixing [The Ministry of Education of China (China). Key Lab. of Mechanics on Environment and Disaster in Western China; Lanzhou Univ. (China). College of Civil Engineering and Mechanics

    2017-09-15

    The mechanical properties of YBCO thin film deposited on SrTiO{sub 3} (100) substrates by magnetron sputtering were determined using Berkovich nanoindentation and scanning electron microscopy. Hardness and elastic modulus were determined via the Oliver-Pharr method from indentation load-depth curves. The hardness values of the YBCO thin film show depth dependence, i. e., indentation size effect, which arose from the surface roughness as detected by scanning electron microscopy. Multiple pop-in events were observed on the loading curves, however, no obvious pop-out takes place during the elastic recovery. In addition, an effective analytical method accommodating the indenter imperfection was proposed and validated against experimental data in terms of elastic modulus, yield stress and friction angle using the Drucker-Prager yield criterion for the YBCO thin film.

  14. Comparison between sampling and analytical methods in characterization of pollutants in biogas.

    Science.gov (United States)

    Mariné, Sílvia; Pedrouzo, Marta; Marcé, Rosa Maria; Fonseca, Ignacio; Borrull, Francesc

    2012-10-15

    Different sampling methods involving the collection of biogas by Tedlar bags or adsorption tubes, and different GC-MS injection systems, loop injection or cold trap injection (with bags or by tube desorption), were compared to establish the best method to determine the minority compounds in biogas from sewage treatment plants (STPs). A study of parameters is included, such as the stability of compounds in Tedlar bags or cartridges and the adsorption effect of some less volatile compounds in the thermal desorption system (TD). The optimized methods allowed to determine most compounds at low mgm(-3) levels. Among them, maximum values of D5 (4.84 mg m(-3)), decane (95-118 mg m(-3)) and H(2)S (2223 mg m(-3)) were found in biogas samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effective implementation of wavelet Galerkin method

    Science.gov (United States)

    Finěk, Václav; Šimunková, Martina

    2012-11-01

    It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.

  16. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Latorre, C., E-mail: carlos.herrero@usc.es; Álvarez-Méndez, J.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.

    2015-01-01

    Highlights: • Analytical techniques for characterization of CNTs: classification, description and examples. • Determination methods for CNTs in biological and environmental samples. • Future trends and perspectives for characterization and determination of CNTs. - Abstract: In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented.

  17. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  18. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    Science.gov (United States)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    marked decrease in water permeability at 0.04, 0.20, or 0.40 m depth. Soil isotope profiles indicated that percolation beneath the root zone and groundwater recharge ranges from 21.7 mm/y to 29.7 mm/y. The recharge rate was positively related to mean annual rainfall and soil organic matter, and interestingly, increased with aridity and desertification. The difference between mean annual rainfall and percolation was positively related to plant cover and in inverse proportion to the aridity index. Our results highlight the importance of combining different methods of site characterization by soil physics, soil water isotopes and soil water chemistry (chloride) with vegetation data, providing a more specific analysis of ecohydrological conditions and their relation to ecosystem functioning and recovery potential. The field protocol applied can provide relevant information for guiding restoration strategies. Costantini, E. A. C., Urbano, F., Aramini, G., Barbetti, R., Bellino, F., Bocci, M., & Tascone, F. (2009). Rationale and methods for compiling an atlas of desertification in Italy. Land Degradation & Development, 20(3), 261-276. Garvelmann, J., Külls, C., & Weiler, M. (2012). A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16(2), 631-640.

  19. Design of a QA method to characterize submillimeter-sized PBS beam properties using a 2D ionization chamber array

    Science.gov (United States)

    Lin, Yuting; Bentefour, Hassan; Flanz, Jacob; Kooy, Hanne; Clasie, Benjamin

    2018-05-01

    Pencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties. The motivation is to use standard equipment, which may have pixel spacing coarser than the pencil beam size, and simplify QA workflow. The MatriXX pixels are cylindrical in shape with 4.5 mm diameter and are spaced 7.62 mm from center to center. Two major effects limit the ability of using the MatriXX to measure the spot position and width accurately. The first effect is that too few pixels sample the Gaussian shaped pencil beam profile and the second effect is volume averaging of the Gaussian profile over the pixel sensitive volumes. We designed a method that overcomes both limitations and hence enables the use of the MatriXX to characterize sub-millimeter-sized PBS beam properties. This method uses a cross-like irradiation pattern that is designed to increase the number of sampling data points and a modified Gaussian fitting technique to correct for volume averaging effects. Detector signals were calculated in this study and random noise and setup errors were added to simulate measured data. With the techniques developed in this work, the MatriXX detector can be used to characterize the position and width of sub-millimeter, σ  =  0.7 mm, sized pencil beams with uncertainty better than 3% relative to σ. With the irradiation only covering 60% of the MatriXX, the position and width of σ  =  0.9 mm sized pencil beams can be determined with uncertainty better than 3% relative to σ. If one were to not use a cross-like irradiation pattern, then the position and width of σ  =  3.6 mm sized pencil beams

  20. Cooking quality of upland and lowland rice characterized by different methods

    Directory of Open Access Journals (Sweden)

    Diva Mendonça Garcia

    2011-06-01

    Full Text Available Rice cooking quality is usually evaluated by texture and stickiness characteristics using many different methods. Gelatinization temperature, amylose content, viscosity (Brookfield viscometer and Rapid Visco Analyzer, and sensory analysis were performed to characterize culinary quality of rice grains produced under two cropping systems and submitted to different technologies. All samples from the upland cropping system and two from the irrigated cropping system presented intermediate amylose content. Regarding stickiness, BRS Primavera, BRS Sertaneja, and BRS Tropical showed loose cooked grains. Irrigated cultivars presented less viscosity and were softer than upland cultivars. Upland grain samples had similar profile on the viscoamylografic curve, but the highest viscosity peaks were observed for BRS Alvorada, IRGA 417, and SCS BRS Piracema among the irrigated cropping system samples. In general, distinct grain characteristics were observed between upland and irrigated samples by cluster analysis. The majority of the upland cultivars showed soft and loose grains with adequate cooking quality confirmed by sensory tests. Most of the irrigated cultivars, however, presented soft and sticky grains. Different methodologies allowed to improve the construction of the culinary profile of the varieties studied.

  1. Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.

    Science.gov (United States)

    Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M

    2018-01-01

    The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.

  2. Characterization and Neutron Shielding Behavior of Dehydrated Magnesium Borate Minerals Synthesized via Solid-State Method

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2013-01-01

    Full Text Available Magnesium borates are one of the major groups of boron minerals that have good neutron shielding performance. In this study, dehydrated magnesium borates were synthesized by solid-state method using magnesium oxide (MgO and boron oxide (B2O3, in order to test their ability of neutron shielding. After synthesizing the dehydrated magnesium borates, characterizations were done by X-ray Diffraction (XRD, fourier transform infrared (FT-IR, Raman spectroscopy, and scanning electron microscopy (SEM. Also boron oxide (B2O3 contents and reaction yields (% were calculated. XRD results showed that seven different types of dehydrated magnesium borates were synthesized. 1000°C reaction temperature, 240 minutes of reaction time, and 3 : 2, 1 : 1 mole ratios of products were selected and tested for neutron transmission. Also reaction yields were calculated between 84 and 88% for the 3 : 2 mole ratio products. The neutron transmission experiments revealed that the 3 : 2 mole ratio of MgO to B2O3 neutron transmission results (0.618–0.655 was better than the ratio of 1 : 1 (0.772–0.843.

  3. Characterization for Ceramic-coated magnets using E-beam and thermal annealing methods

    International Nuclear Information System (INIS)

    Kim, Hyug Jong; Kim, Hee Gyu; Kang, In Gu; Kim, Min Wan; Yang, Ki Ho; Lee, Byung Cheol; Choi, Byung Ho

    2009-01-01

    Hard magnet was usually used by coating SiO 2 ceramic thick films followed by the thermal annealing process. In this work, the alternative annealing process for NdFeB magnets using e-beam sources(1∼2 MeV, 50∼400 kGy) was investigated. NdFeB magnets was coated with ceramic thick films using the spray method. The optimal annealing parameter for e-beam source reveals to be 1 MeV and 300 kGy. The sample prepared at 1 MeV and 300 kGy was characterized by the analysis of the surface morphology, film hardness, adhesion and chemical stability. The mechanical property of thick film, especially film hardness, is better than that of thermal annealed samples at 180 .deg. C. As a result, e-beam annealing process will be one of candidate and attractive heat treatment process. In future, manufacturing process will be carried out in cooperation with the magnet company

  4. Synthesis and Characterization of ZNO/MN Nanocomposite by using Sol-Gel Method

    Science.gov (United States)

    Ningsih, S. K. W.; Bahrizal, B.; Nasra, E.; Nizar, U. K.; Farisya, R.

    2018-04-01

    Zink oxide doped Mn nanocomposites were synthesized by simple sol-gel method at low temperature by using combination of aquadest with methanol as the solvent and ethylene glycol as the additive. Zink acetate dehydrate and manganese chloride tetrahydrate were used as the precursors. Composition dopants were 1,3,5,and 7%. The crystals were formed by drying at 110°C for 1 hour, after which they were heated at ± 500°C for 2 hours. The as-prepared ZnO/Mn nanocomposites were characterized by X-ray diffraction (XRD) and UV Diffuse Reflectance Spectrometer (UVDRS). The XRD patterns of the ZnO nanocrystals showed that they are mostly hexagonal wurtzite with specific peaks at 2θ = 31, 34, 36, 47, 56, 63, 66 dan 69. The sizes of the ZnO doped Mn particles produced with 1%, 3%, 5% and 7% were18-95; 17-87; 18-96 19-98 nm, respectively. UVDRS analysis showed that the band gap of the ZnO were 2,60; 2,90; 2,99 dan 3,01 eV for 1%, 3%, 5% and 7% Mn respectively.

  5. Microbial ecology-based methods to characterize the bacterial communities of non-model insects.

    Science.gov (United States)

    Prosdocimi, Erica M; Mapelli, Francesca; Gonella, Elena; Borin, Sara; Crotti, Elena

    2015-12-01

    Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material

    Directory of Open Access Journals (Sweden)

    Zuobing XIAO

    Full Text Available Abstract Linalool has been extensively applied in various fields, such as flavoring agent, perfumes, cosmetics and medical science. However, linalool is unstable, volatile and readily oxidizable. A sensitive substance can be encapsulated in a capsule, so encapsulation technology can solve these problems. In this paper, linalool-loaded nanocapsules (Lin-nanocapsules were prepared via the ionic gelation method and Lin-nanocapsules were characterized. The results of Fourier transformation infrared spectroscopy (FTIR showed that linalool was successfully encapsulated in the wall materials. Scanning electron microscopy (SEM results demonstrated that the shapes of Lin-nanocapsules, with smooth surfaces, were nearly spherical. Lin-nanocapsule average particle size was 352 nm and its polydispersity index (PDI was proved to be 0.214 by the results of dynamic light scattering (DLC. Thermogravimetric results indicated that linalool loading capacity (LC was 15.17%, and encapsulation could decrease linalool release and increase linalool retaining time under the high temperature. Oscillatory shear and steady-state shear measurements of Lin-nanocapsule emulsions were systematically investigated. The results of steady-state shear showed that Lin-nanocapsule emulsion, which was Newtonian only for high shear rate, was non-Newtonian. It was proved by oscillatory shear that when oscillation frequency changed from low to high, Lin-nanocapsules emulsion changed from viscous into elastic.

  7. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Emerson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: camargo@ufscar.br; Leite, Edson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: derl@power.ufscar.br; Longo, Elson [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP, Sao Paulo State University Rua Francisco Degni, CP 355 Araraquara SP, 14801-907 Brazil (Brazil)], E-mail: elson@iq.unesp.br

    2009-02-05

    Lead zirconate titanate (PbZr{sub 1-x}Ti{sub x}O{sub 3}) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio.

  8. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Camargo, Emerson R.; Leite, Edson R.; Longo, Elson

    2009-01-01

    Lead zirconate titanate (PbZr 1-x Ti x O 3 ) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio

  9. Methods and insights from the characterization of osteoprogenitor cells of bats (Mammalia: Chiroptera

    Directory of Open Access Journals (Sweden)

    H.C. Ball

    2016-07-01

    Full Text Available Osteoprogenitor cells contribute to the development and maintenance of skeletal tissues. Bats are unique model taxa whose cellular processes are poorly understood, especially in regards to skeletal biology. Forelimb bones of bats, unlike those of terrestrial mammals, bend during flight and function in controlled deformation. As a first step towards understanding the molecular processes governing deposition of this flexible bone matrix, we provide the first method for isolation and differentiation of cell populations derived from the bone marrow and cortical bone of bats, and compare results with those harvested from C57BL/6J mice. Osteogenic capacity of these cells was assessed via absolute quantitative real-time PCR (qPCR and through quantification of in vitro mineral deposition. Results indicate the differentiated bone cells of bats display significantly lower gene expression of known osteogenic markers (Runt-related transcription factor (RUNX2, osteocalcin (BGLAP and osterix (SP7, and deposit a less-mineralized matrix compared with murine controls. By characterizing the in vitro performance of osteoprogenitor cells throughout differentiation and matrix production, this study lays the ground work for in vitro manipulations of bat stem and osteoprogenitor cells and extends our understanding of the cellular diversity across mammals that occupy different habitats.

  10. Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods.

    Science.gov (United States)

    Usman, Muhammad Sani; Ibrahim, Nor Azowa; Shameli, Kamyar; Zainuddin, Norhazlin; Yunus, Wan Md Zin Wan

    2012-12-14

    Herein we report a synthesis of copper nanoparticles (Cu-NPs) in chitosan (Cts) media via a chemical reaction method. The nanoparticles were synthesized in an aqueous solution in the presence of Cts as stabilizer and CuSO(4)·5H(2)O precursor. The synthesis proceeded with addition of NaOH as pH moderator, ascorbic acid as antioxidant and hydrazine( )as the reducing agent. The characterization of the prepared NPs was done using ultraviolet-visible spectroscopy, which showed a 593 nm copper band. The Field Emission Scanning Electron Microscope (FESEM) images were also observed, and found to be in agreement with the UV-Vis result, confirming the formation of metallic Cu-NPs. The mean size of the Cu-NPs was estimated to be in the range of 35-75 nm using X-ray diffraction. XRD was also used in analysis of the crystal structure of the NPs. The interaction between the chitosan and the synthesized NPs was studied using Fourier transform infrared (FT-IR) spectroscopy, which showed the capping of the NPs by Cts.

  11. Opto-Acoustic Method for the Characterization of Thin-Film Adhesion

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-05-01

    Full Text Available The elastic property of the film-substrate interface of thin-film systems is characterized with an opto-acoustic method. The thin-film specimens are oscillated with an acoustic transducer at audible frequencies, and the resultant harmonic response of the film surface is analyzed with optical interferometry. Polystyrene, Ti, Ti-Au and Ti-Pt films coated on the same silicon substrate are tested. For each film material, a pair of specimens is prepared; one is coated on a silicon substrate after the surface is treated with plasma bombardment, and the other is coated on an identical silicon substrate without a treatment. Experiments indicate that both the surface-treated and untreated specimens of all film materials have resonance in the audible frequency range tested. The elastic constant of the interface corresponding to the observed resonance is found to be orders of magnitude lower than that of the film or substrate material. Observations of these resonance-like behaviors and the associated stiffness of the interface are discussed.

  12. Method to characterize inorganic particulates in lung tissue biopsies using field emission scanning electron microscopy

    Science.gov (United States)

    Lowers, Heather; Breit, George N.; Strand, Matthew; Pillers, Renee M.; Meeker, Gregory P.; Todorov, Todor I.; Plumlee, Geoffrey S.; Wolf, Ruth E.; Robinson, Maura; Parr, Jane; Miller, Robert J.; Groshong, Steve; Green, Francis; Rose, Cecile

    2018-01-01

    Humans accumulate large numbers of inorganic particles in their lungs over a lifetime. Whether this causes or contributes to debilitating disease over a normal lifespan depends on the type and concentration of the particles. We developed and tested a protocol for in situ characterization of the types and distribution of inorganic particles in biopsied lung tissue from three human groups using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive spectroscopy (EDS). Many distinct particle types were recognized among the 13 000 particles analyzed. Silica, feldspars, clays, titanium dioxides, iron oxides and phosphates were the most common constituents in all samples. Particles were classified into three general groups: endogenous, which form naturally in the body; exogenic particles, natural earth materials; and anthropogenic particles, attributed to industrial sources. These in situ results were compared with those using conventional sodium hypochlorite tissue digestion and particle filtration. With the exception of clays and phosphates, the relative abundances of most common particle types were similar in both approaches. Nonetheless, the digestion/filtration method was determined to alter the texture and relative abundances of some particle types. SEM/EDS analysis of digestion filters could be automated in contrast to the more time intensive in situ analyses.

  13. Synthesis and Characterization of Cadmium Sulfide Nanoparticles by Chemical Precipitation Method.

    Science.gov (United States)

    Devi, R Aruna; Latha, M; Velumani, S; Oza, Goldie; Reyes-Figueroa, P; Rohini, M; Becerril-Juarez, I G; Lee, Jae-Hyeong; Yi, Junsin

    2015-11-01

    Cadmium sulfide (CdS) nanoparticles were synthesized by chemical precipitation method using cadmium chloride (CdCl2), sodium sulfide (Na2S) and water as a solvent by varying temperatures from 20-80 degrees C. The nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), High-resolution transmission electron microscopy (HR-TEM) and UV-Visible spectroscopy. XRD pattern revealed cubic crystal structure for all the synthesized CdS nanoparticles. Raman spectra showed first and second order longitudinal optical (LO) phonon vibrational modes of CdS. The size of CdS nanoparticles was found to be in the range of 15-80 nm by FE-SEM analysis, in all cases. The atomic percentage of cadmium and sulfur was confirmed to be 1:1 from EDS analysis. TEM micrograph depicts the spherical shape of the particles and the size is in the range of 15-85 nm while HR-TEM images of CdS nanoparticles exhibit well-resolved lattice fringes of the cubic structure of CdS. The optical properties of CdS were examined by UV-Visible spectroscopy which showed variation in absorption band from 460-480 nm. The band gap was calculated from the absorption edge and found to be in the range of 3.2-3.5 eV which is greater than the bulk CdS.

  14. THE STUDY OF THE CHARACTERIZATION INDICES OF FABRICS BY PRINCIPAL COMPONENT ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    HRISTIAN Liliana

    2017-05-01

    Full Text Available The paper was pursued to prioritize the worsted fabrics type, for the manufacture of outerwear products by characterization indeces of fabrics, using the mathematical model of Principal Component Analysis (PCA. There are a number of variables with a certain influence on the quality of fabrics, but some of these variables are more important than others, so it is useful to identify those variables to a better understanding the factors which can lead the improving of the fabrics quality. A solution to this problem can be the application of a method of factorial analysis, the so-called Principal Component Analysis, with the final goal of establishing and analyzing those variables which influence in a significant manner the internal structure of combed wool fabrics according to armire type. By applying PCA it is obtained a small number of the linear combinations (principal components from a set of variables, describing the internal structure of the fabrics, which can hold as much information as possible from the original variables. Data analysis is an important initial step in decision making, allowing identification of the causes that lead to a decision- making situations. Thus it is the action of transforming the initial data in order to extract useful information and to facilitate reaching the conclusions. The process of data analysis can be defined as a sequence of steps aimed at formulating hypotheses, collecting primary information and validation, the construction of the mathematical model describing this phenomenon and reaching these conclusions about the behavior of this model.

  15. Characterization of an Indian sword: classic and noninvasive methods of investigation in comparison

    Science.gov (United States)

    Barzagli, E.; Grazzi, F.; Williams, A.; Edge, D.; Scherillo, A.; Kelleher, J.; Zoppi, M.

    2015-04-01

    The evolution of metallurgy in history is one of the most interesting topics in Archaeometry. The production of steel and its forging methods to make tools and weapons are topics of great interest in the field of the history of metallurgy. In the production of weapons, we find almost always the highest level of technology. These were generally produced by skilled craftsmen who used the best quality materials available. Indian swords are an outstanding example in this field and one of the most interesting classes of objects for the study of the evolution of metallurgy. This work presents the study of a Shamsheer (a sword with a curved blade with single edge) made available by the Wallace Collection in London. The purpose of this study was to determine the composition, the microstructure, the level and the direction of residual strain and their distribution in the blade. We have used two different approaches: the classical one (metallography) and a nondestructive technique (neutron diffraction): In this way, we can test differences and complementarities of these two techniques. To obtain a good characterization of artifacts studied by traditional analytical methods, an invasive approach is required. However, the most ancient objects are scarce in number, and the most interesting ones are usually in an excellent state of conservation, so it is unthinkable to apply techniques with a destructive approach. The analysis of blades that has been performed by metallographic microscopy has demonstrated the specificity of the production of this type of steel. However, metallographic analysis can give only limited information about the structural characteristics of these artifacts of high quality, and it is limited to the sampled areas. The best approach for nondestructive analysis is therefore to use neutron techniques.

  16. Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents.

    Science.gov (United States)

    Chen, Chao; Leavey, Shannon; Krasner, Stuart W; Mel Suffet, I H

    2014-06-15

    Certain nitrosamines in water are disinfection byproducts that are probable human carcinogens. Nitrosamines have diverse and complex precursors that include effluent organic matter, some anthropogenic chemicals, and natural (likely non-humic) substances. An easy and selective tool was first developed to characterize nitrosamine precursors in treated wastewaters, including different process effluents. This tool takes advantages of the polarity rapid assessment method (PRAM) and ultrafiltration (UF) (molecular weight distribution) to locate the fractions with the strongest contributions to the nitrosamine precursor pool in the effluent organic matter. Strong cation exchange (SCX) and C18 solid-phase extraction cartridges were used for their high selectivity for nitrosamine precursors. The details of PRAM operation, such as cartridge clean-up, capacity, pH influence, and quality control were included in this paper, as well as the main parameters of UF operation. Preliminary testing of the PRAM/UF method with effluents from one wastewater treatment plant gave very informative results. SCX retained 45-90% of the N-nitrosodimethylamine (NDMA) formation potential (FP)-a measure of the precursors-in secondary and tertiary wastewater effluents. These results are consistent with NDMA precursors likely having a positively charged amine group. C18 adsorbed 30-45% of the NDMAFP, which indicates that a substantial portion of these precursors were non-polar. The small molecular weight (MW) (10 kDa) fractions obtained from UF were the primary contributors to NDMAFP. The combination of PRAM and UF brings important information on the characteristics of nitrosamine precursors in water with easy operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.

  18. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    International Nuclear Information System (INIS)

    Lestiani, D.D.; Santoso, M.

    2011-01-01

    Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA) and particles induced X-ray emission (PIXE). Particle samples in the PM 2.5 and PM 2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preferred, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment. (author)

  19. Characterization of Catalytic Fast Pyrolysis Oils: The Importance of Solvent Selection for Analytical Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, Jack R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ware, Anne E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-25

    Two catalytic fast pyrolysis (CFP) oils (bottom/heavy fraction) were analyzed in various solvents that are used in common analytical methods (nuclear magnetic resonance - NMR, gas chromatography - GC, gel permeation chromatography - GPC, thermogravimetric analysis - TGA) for oil characterization and speciation. A more accurate analysis of the CFP oils can be obtained by identification and exploitation of solvent miscibility characteristics. Acetone and tetrahydrofuran can be used to completely solubilize CFP oils for analysis by GC and tetrahydrofuran can be used for traditional organic GPC analysis of the oils. DMSO-d6 can be used to solubilize CFP oils for analysis by 13C NMR. The fractionation of oils into solvents that did not completely solubilize the whole oils showed that miscibility can be related to the oil properties. This allows for solvent selection based on physico-chemical properties of the oils. However, based on semi-quantitative comparisons of the GC chromatograms, the organic solvent fractionation schemes did not speciate the oils based on specific analyte type. On the other hand, chlorinated solvents did fractionate the oils based on analyte size to a certain degree. Unfortunately, like raw pyrolysis oil, the matrix of the CFP oils is complicated and is not amenable to simple liquid-liquid extraction (LLE) or solvent fractionation to separate the oils based on the chemical and/or physical properties of individual components. For reliable analyses, for each analytical method used, it is critical that the bio-oil sample is both completely soluble and also not likely to react with the chosen solvent. The adoption of the standardized solvent selection protocols presented here will allow for greater reproducibility of analysis across different users and facilities.

  20. Effective core potential methods for the lanthanides

    International Nuclear Information System (INIS)

    Cundari, T.R.; Stevens, W.J.

    1993-01-01

    In this paper a complete set of effective core potentials (ECPs) and valence basis sets for the lanthanides (Ce to Lu) are derived. These ECPs are consistent not only within the lanthanide series, but also with the third-row transition metals which bracket them. A 46-electron core was chosen to provide the best compromise between computational savings and chemical accuracy. Thus, the 5s and 5p are included as ''outer'' core while all lower energy atomic orbitals (AOs) are replaced with the ECP. Generator states were chosen from the most chemically relevant +3 and +2 oxidation states. The results of atomic calculations indicate that the greatest error vs highly accurate numerical potential/large, even-tempered basis set calculations results from replacement of the large, even-tempered basis sets with more compact representations. However, the agreement among atomic calculations remains excellent with both basis set sizes, for a variety of spin and oxidation states, with a significant savings in time for the optimized valence basis set. It is expected that the compact representation of the ECPs and valence basis sets will eventually encourage their use by computational chemists to further explore the bonding and reactivity of lanthanide complexes

  1. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    Science.gov (United States)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  2. Effects of Synthesis Method on Electrical Properties of Graphene

    Science.gov (United States)

    Fuad, M. F. I. Ahmad; Jarni, H. H.; Shariffudin, W. N.; Othman, N. H.; Rahim, A. N. Che Abdul

    2018-05-01

    The aim of this study is to achieve the highest reduction capability and complete reductions of oxygen from graphene oxide (GO) by using different type of chemical methods. The modification of Hummer’s method has been proposed to produce GO, and hydrazine hydrate has been utilized in the GO’s reduction process into graphene. There are two types of chemical method are used to synthesize graphene; 1) Sina’s method and 2) Sasha’s method. Both GO and graphene were then characterized using X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The graph patterns obtained from XRD showed that the values of graphene and GO are within their reliable ranges, FT-IR identified the comparison functional group between GO and graphene. Graphene was verified to experience the reduction process due to absent of functional group consist of oxygen has detected. Electrochemical impedance spectrometry (EIS) was then conducted to test the ability of conducting electricity of two batches (each weighted 1.6g) of graphene synthesized using different methods (Sina’s method and Sasha’s method). Sasha’s method was proven to have lower conductivity value compare to Sina’s method, with value of 6.2E+02 S/m and 8.1E+02 S/m respectively. These values show that both methods produced good graphene; however, by using Sina’s method, the graphene produced has better electrical properties.

  3. Effect of cooking methods on the micronutrient profile of selected ...

    African Journals Online (AJOL)

    Effect of cooking methods on the micronutrient profile of selected vegetables: okra fruit ( Abelmoshcus esculentus ), fluted pumpkin ( Telfairia occidentalis ), African spinach ( Amarantus viridis ), and scent leaf ( Ocumum gratissimum.

  4. Development of characterization methods applied to radioactive wastes and waste packages; Le developpement des methodes de caracterisation appliquees aux dechets et colis de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A. [CEA Cadarache (DEN/CAD-DEC/SA3C/LARC), 13 - Saint Paul lez Durance (France); Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F. [CEA Saclay (DRT/SAC-DETECS/SSTM/L2MA), 91 - Gif sur Yvette (France); Moulin, V. [CEA Grenoble (DRT/GRE-LETI/DTBS/STD), 38 (France); Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R. [CEA Cadarache (DEN/CAD-DTN/SMTM/LMN), 13 - Saint Paul lez Durance (France)

    2004-07-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  5. Synthesis, Characterization, and Atenolol Delivery Application of Functionalized Mesoporous Hydroxyapatite Nanoparticles Prepared by Microwave-Assisted Co-precipitation Method.

    Science.gov (United States)

    Mortazavi-Derazkola, Sobhan; Naimi-Jamal, Mohammad Reza; Ghoreishi, Seyedeh Masoumeh

    2016-01-01

    Atenolol has been used to treat angina and hypertension, either alone or with other antihypertensives. Despite its usefulness, it shows some side effects such as diarrhea and nausea in some patients. A method for slow release of atenolol in intestine is helpful to prevent such side effects. A facile co-precipitation microwave-assisted method was used to fabricate mesoporous hydroxyapatite nanoparticles (mHAp). It was then functionalized to have SO3H groups. The synthesized material was used for storage/slow release study of atenolol. Atenolol loaded mHAp shows immediate release of atenolol in pH 8, whileafter functionalizing shows up to ca. 30% release at the beginning. In pH 1, 50% of drug was released after 10 h from AT@mHAp and after 18h the drug was almost completely released.The drug release profiles of functionalized HAp at pH value 1 and 8reveals the complete release of atenolol in intestine pH, while no complete release is observed in stomach environment. The aims of this work were synthesis and characterization of mesoporous HAp through the microwave-assisted co-precipitation method and elucidate the underlying drug release capability of mesoporous HAp nanoparticles. The SO3H group was incorporated into the mesoporous HAp and then used as drug delivery carriers using atenolol as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). Increasing pH value to 8 causes increase in the drug release.

  6. Fabrication and characterization on reduced graphene oxide field effect transistor (RGOFET) based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, A. Diyana [School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh, Perlis (Malaysia); Ruslinda, A. Rahim, E-mail: ruslinda@unimap.edu.my; Fatin, M. F. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis (Malaysia); Hashim, U.; Arshad, M. K. [School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh, Perlis (Malaysia); Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis (Malaysia)

    2016-07-06

    The fabrication and characterization on reduced graphene oxide field effect transistor (RGO-FET) were demonstrated using a spray deposition method for biological sensing device purpose. A spray method is a fast, low-cost and simple technique to deposit graphene and the most promising technology due to ideal coating on variety of substrates and high production speed. The fabrication method was demonstrated for developing a label free aptamer reduced graphene oxide field effect transistor biosensor. Reduced graphene oxide (RGO) was obtained by heating on hot plate fixed at various temperatures of 100, 200 and 300°C, respectively. The surface morphology of RGO were examined via atomic force microscopy to observed the temperature effect of produced RGO. The electrical measurement verify the performance of electrical conducting RGO-FET at temperature 300°C is better as compared to other temperature due to the removal of oxygen groups in GO. Thus, reduced graphene oxide was a promising material for biosensor application.

  7. Fabrication and characterization of NiO thin films prepared by SILAR method

    International Nuclear Information System (INIS)

    Akaltun, Yunus; Çayır, Tuba

    2015-01-01

    Highlights: • NiO thin films have been deposited on glass substrates using SILAR method for the first time. • The electron effective mass, refractive index were calculated by using the energy bandgap values. • The effect of film thickness on the structural, optical and electrical properties were studied. • The bandgap values of the films decreased from 3.71 to 3.67 eV. - Abstract: NiO thin films were synthesised on glass substrates at room temperature using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The effect of film thickness on the structural, morphological, optical and electrical properties of NiO thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline structure are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing film thickness. The energy band gap values were decreased from 3.71 to 3.67 eV depending on the film thickness. The refractive index (n), optical static (ε o ) and high frequency dielectric constant (ε ∞ ) values were calculated by using the energy band gap values as a function of the film thickness. The resistivity of the films varied between 4.1 and 802.1 Ω cm with increasing film thickness at room temperature

  8. Fabrication and characterization of NiO thin films prepared by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Akaltun, Yunus [Department of Electrical and Electronic Engineering, Erzincan University, 24100 Erzincan (Turkey); Çayır, Tuba [Department of Biomedical Engineering, Erzincan University, 24100 Erzincan (Turkey)

    2015-03-15

    Highlights: • NiO thin films have been deposited on glass substrates using SILAR method for the first time. • The electron effective mass, refractive index were calculated by using the energy bandgap values. • The effect of film thickness on the structural, optical and electrical properties were studied. • The bandgap values of the films decreased from 3.71 to 3.67 eV. - Abstract: NiO thin films were synthesised on glass substrates at room temperature using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The effect of film thickness on the structural, morphological, optical and electrical properties of NiO thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline structure are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing film thickness. The energy band gap values were decreased from 3.71 to 3.67 eV depending on the film thickness. The refractive index (n), optical static (ε{sub o}) and high frequency dielectric constant (ε{sub ∞}) values were calculated by using the energy band gap values as a function of the film thickness. The resistivity of the films varied between 4.1 and 802.1 Ω cm with increasing film thickness at room temperature.

  9. Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method

    Science.gov (United States)

    Li, Mingling; Liu, Xiansong; Xu, Taotao; Nie, Yu; Li, Honglin; Zhang, Cong

    2017-10-01

    Nanosized MnZn ferrite particles, with narrow size distribution, regular morphology and high saturation magnetization have been synthesized via a modified hydrothermal method. This modified hydrothermal method involves a chemical co-precipitation of hydroxides under a vacuum condition using potassium hydroxide as precipitating agent, followed by a separate hydrothermal process. The microstructure and magnetic properties of the synthesized nanoparticles were investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The effects of different synthesis conditions (excess ratio of precipitating agent and hydrothermal reaction time) on the microstructure and magnetic properties of the as-synthesized nanoparticles were discussed. The magnetic measurements indicated that the obtained samples were superparamagnetic in nature at room temperature. Moreover, the MnZn ferrite nanoparticles with excellent magnetic performance could be synthesized at 180 °C for a short reaction time (3 h).

  10. Characterization of immobilization methods of antiviral antibodies in serum for electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Tran Quang, E-mail: huytq@nihe.org.vn [National Institute of Hygiene and Epidemiology (NIHE), No1 Yersin St., Hanoi (Viet Nam); International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No1 Dai Co Viet, Hanoi (Viet Nam); Hanh, Nguyen Thi Hong; Van Chung, Pham; Anh, Dang Duc; Nga, Phan Thi [National Institute of Hygiene and Epidemiology (NIHE), No1 Yersin St., Hanoi (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No1 Dai Co Viet, Hanoi (Viet Nam)

    2011-06-01

    In this paper, we describes different methods to immobilize Japanese encephalitis virus (JEV) antibodies in human serum onto the interdigitated surface of a microelectrode sensor for optimizing electrochemical detection: (1) direct covalent binding to the silanized surface, (2) binding to the silanized surface via a cross-linker of glutaraldehyde (GA), (3) binding to glutaraldehyde/silanized surface via goat anti-human IgG polyclonal antibody and (4) binding to glutaraldehyde/silanized surface via protein A (PrA). Field emission scanning electron microscopy, Fourier transform infrared spectrometry, and fluorescence microscopy are used to verify the characteristics of antibodies on the interdigitated surface after the serum antibodies immobilization. The analyzed results indicate that the use of protein A is an effective choice for immobilization and orientation of antibodies in serum for electrochemical biosensors. This study provides an advantageous immobilization method of serum containing antiviral antibodies to develop electrochemical biosensors for preliminary screening of viruses in clinical samples from outbreaks.

  11. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  12. A new method for wideband characterization of resonator-based sensing platforms

    International Nuclear Information System (INIS)

    Munir, Farasat; Wathen, Adam; Hunt, William D.

    2011-01-01

    A new approach to the electronic instrumentation for extracting data from resonator-based sensing devices (e.g., microelectromechanical, piezoelectric, electrochemical, and acoustic) is suggested and demonstrated here. Traditionally, oscillator-based circuitry is employed to monitor shift in the resonance frequency of the resonator. These circuits give a single point measurement at the frequency where the oscillation criterion is met. However, the resonator response itself is broadband and contains much more information than a single point measurement. Here, we present a method for the broadband characterization of a resonator using white noise as an excitation signal. The resonator is used in a two-port filter configuration, and the resonator output is subjected to frequency spectrum analysis. The result is a wideband spectral map analogous to the magnitude of the S21 parameters of a conventional filter. Compared to other sources for broadband excitation (e.g., frequency chirp, multisine, or narrow time domain pulse), the white noise source requires no design of the input signal and is readily available for very wide bandwidths (1 MHz-3 GHz). Moreover, it offers simplicity in circuit design as it does not require precise impedance matching; whereas such requirements are very strict for oscillator-based circuit systems, and can be difficult to fulfill. This results in a measurement system that does not require calibration, which is a significant advantage over oscillator circuits. Simulation results are first presented for verification of the proposed system, followed by measurement results with a prototype implementation. A 434 MHz surface acoustic wave (SAW) resonator and a 5 MHz quartz crystal microbalance (QCM) are measured using the proposed method, and the results are compared to measurements taken by a conventional bench-top network analyzer. Maximum relative differences in the measured resonance frequencies of the SAW and QCM resonators are 0.0004% and 0

  13. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  14. Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method

    International Nuclear Information System (INIS)

    Jbara, Ahmed S.; Othaman, Zulkafli; Ati, Ali A.; Saeed, M.A.

    2017-01-01

    Co-precipitation technique has been used to synthesize gamma-Al 2 O 3 (γ-Al 2 O 3 ) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m 2 /g. Morphology analysis indicates that γ-Al 2 O 3 nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al 2 O 3 may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al 2 O 3 nanopowders. • Pure gamma- Al 2 O 3 phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  15. Simple Method of Preparation and Characterization of New Antifungal Active Biginelli Type Heterocyclic Compounds

    Science.gov (United States)

    Velan, A. Senthilkumara; Joseph, J.; Raman, N.

    2008-01-01

    A simple, efficient and cost effective method is described for the synthesis of Biginelli type heterocyclic compounds of dihydropyrimidinones analogous. They were prepared from a reaction mixture consisting of substituted benzaldehydes, thiourea and ethylacetoacetate using ammonium dihydrogenphosphate as catalyst. The procedure for the preparation of the compounds is environmentally benign and safe which is advantageous in terms of experimentation, catalyst reusability, yields of the products, shorter reaction times and preclusion of toxic solvents. The four new synthesised compounds were tested for their antifungal activity. They have good antifungal activity comparing to the standard (Fluconazole). PMID:23997611

  16. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  17. Characterization uncertainty and its effects on models and performance

    International Nuclear Information System (INIS)

    Rautman, C.A.; Treadway, A.H.

    1991-01-01

    Geostatistical simulation is being used to develop multiple geologic models of rock properties at the proposed Yucca Mountain repository site. Because each replicate model contains the same known information, and is thus essentially indistinguishable statistically from others, the differences between models may be thought of as representing the uncertainty in the site description. The variability among performance measures, such as ground water travel time, calculated using these replicate models therefore quantifies the uncertainty in performance that arises from uncertainty in site characterization

  18. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    Science.gov (United States)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  19. Multi-method characterization of low-level radioactive waste at two Sandia National Laboratories environmental restoration sites

    International Nuclear Information System (INIS)

    Johnson, C.E. Jr.; Galloway, R.B.; Dotson, P.W.

    1999-01-01

    This paper discusses the application of multiple characterization methods to radioactive wastes generated by the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) Project during the excavation of buried materials at the Classified Waste Landfill (CWLF) and the Radioactive Waste Landfill (RWL). These waste streams include nuclear weapon components and other refuse that are surface contaminated or contain sealed radioactive sources with unknown radioactivity content. Characterization of radioactive constituents in RWL and CWLF waste has been problematic, due primarily to the lack of documented characterization data prior to burial. A second difficulty derives from the limited information that ER project personnel have about weapons component design and testing that was conducted in the early days of the Cold War. To reduce the uncertainties and achieve the best possible waste characterization, the ER Project has applied both project-specific and industry-standard characterization methods that, in combination, serve to define the types and quantities of radionuclide constituents in the waste. The resulting characterization data have been used to develop waste profiles for meeting disposal site waste acceptance criteria

  20. Review of experimental methods for evaluating effective delayed neutron fraction

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Yoshihiro [Nagoya Univ. (Japan). School of Engineering

    1997-03-01

    The International Effective Delayed Neutron Fraction ({beta}{sub eff}) Benchmark Experiments have been carried out at the Fast Critical Assembly of Japan Atomic Energy Research Institute since 1995. Researchers from six countries, namely France, Italy, Russia, U.S.A., Korea, and Japan, participate in this FCA project. Each team makes use of each experimental method, such as Frequency Method, Rossi-{alpha} Method, Nelson Number Method, Cf Neutron Source Method, and Covariance Method. In this report these experimental methods are reviewed. (author)

  1. Ambiguous taxa: Effects on the characterization and interpretation of invertebrate assemblages

    Science.gov (United States)

    Cuffney, T.F.; Bilger, Michael D.; Haigler, A.M.

    2007-01-01

    Damaged and immature specimens often result in macroinvertebrate data that contain ambiguous parent-child pairs (i.e., abundances associated with multiple related levels of the taxonomic hierarchy such as Baetis pluto and the associated ambiguous parent Baetis sp.). The choice of method used to resolve ambiguous parent-child pairs may have a very large effect on the characterization of invertebrate assemblages and the interpretation of responses to environmental change because very large proportions of taxa richness (73-78%) and abundance (79-91%) can be associated with ambiguous parents. To address this issue, we examined 16 variations of 4 basic methods for resolving ambiguous taxa: RPKC (remove parent, keep child), MCWP (merge child with parent), RPMC (remove parent or merge child with parent depending on their abundances), and DPAC (distribute parents among children). The choice of method strongly affected assemblage structure, assemblage characteristics (e.g., metrics), and the ability to detect responses along environmental (urbanization) gradients. All methods except MCWP produced acceptable results when used consistently within a study. However, the assemblage characteristics (e.g., values of assemblage metrics) differed widely depending on the method used, and data should not be combined unless the methods used to resolve ambiguous taxa are well documented and are known to be comparable. The suitability of the methods was evaluated and compared on the basis of 13 criteria that considered conservation of taxa richness and abundance, consistency among samples, methods, and studies, and effects on the interpretation of the data. Methods RPMC and DPAC had the highest suitability scores regardless of whether ambiguous taxa were resolved for each sample separately or for a group of samples. Method MCWP gave consistently poor results. Methods MCWP and DPAC approximate the use of family-level identifications and operational taxonomic units (OTU), respectively. Our

  2. Final disposal of spent nuclear fuel-geological, hydrogeological and geophysical methods for site characterization

    International Nuclear Information System (INIS)

    Ahlbom, K.; Carlsson, L.; Olsson, O.

    1983-05-01

    Investigations for the siting of a final repository for high-level radioactive waste are currently being conducted in crystalline rock formations in Sweden. A repository will be located at a depth of about 500 m, and investigations are being carried out in drill holes to below that level. A standard program has been established for the site investigations, comprising a number of phases: 1. General reconnaissance for selection of study site 2. Detailed investigation on the ground surface 3. Depth investigation in drill holes 4. Evaluation and modelling 1. Includes geological and geophysical reconnaissance measurements and drilling of one deep drill hole 2. includes surface and depth investigation within an area of approximately 4-8 km 2 . The surface investigations consist of geophysical measurements including electrical resistivity, magnetization, induced polarization and seismic measurements, and yeild informatin on the composition and fracturing of the bedrock in the superficial parts of the study sites. Mapping of the superficial parts of the bedrock are concluded with short percussion and core drillholes down to 150-250 metres in order to determine the dip and character of fracture zones and rock boundaries. 3. Comprises core drilling to vertical depths of about 600 m, core mapping geophysical well-logging and different hydraulic downhole measurements. In core mapping, the emphasis is placed on fracture characterization of the core. The geophysical logging includes three resistivity methods, natural gamma, induced polarization, spontaneous potential and temperature, salinity, pH and Eh of the drill hole fluid. The hydraulic measurements include: measurements of hydraulic conductivity by single-hole and cross-hole testing, determination of the hydraulic fracture frequency and determination of groundwater head at different levels in the bedrock. (G.B.)

  3. Rapid radiological characterization method based on the use of dose coefficients

    International Nuclear Information System (INIS)

    Dulama, C.; Toma, Al.; Dobrin, R.; Valeca, M.

    2010-01-01

    Intervention actions in case of radiological emergencies and exploratory radiological surveys require rapid methods for the evaluation of the range and extent of contamination. When simple and homogeneous radionuclide composition characterize the radioactive contamination, surrogate measurements can be used to reduce the costs implied by laboratory analyses and to speed-up the process of decision support. A dose-rate measurement-based methodology can be used in conjunction with adequate dose coefficients to assess radionuclide inventories and to calculate dose projections for various intervention scenarios. The paper presents the results obtained for dose coefficients in some particular exposure geometries and the methodology used for deriving dose rate guidelines from activity concentration upper levels specified as contamination limits. All calculations were performed by using the commercial software MicroShield from Grove Software Inc. A test case was selected as to meet the conditions from EPA Federal Guidance Report no. 12 (FGR12) concerning the evaluation of dose coefficients for external exposure from contaminated soil and the obtained results were compared to values given in the referred document. The geometries considered as test cases are: contaminated ground surface; - infinite extended homogeneous surface contamination and soil contaminated to a depth of 15 cm. As shown by the results, the values agree within 50% relative difference for most of the cases. The greatest discrepancies were observed for depth contamination simulation and in the case of radionuclides with complicated gamma emission and this is due to the different approach from MicroShield and FGR12. A case study is presented for validation of the methodology, where both dose rate measurements and laboratory analyses were performed on an extended quasi-homogeneous NORM contamination. The dose rate estimations obtained by applying the dose coefficients to the radionuclide concentrations

  4. Materials characterization center workshop on the irradiation effects in nuclear waste forms

    International Nuclear Information System (INIS)

    Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

    1981-01-01

    The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, 244 Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined

  5. Characterization of an absorbed dose standard in water through ionometric methods

    International Nuclear Information System (INIS)

    Vargas V, M.X.

    2003-01-01

    In this work the unit of absorbed dose at the Secondary Standard Dosimetry Laboratory (SSDL) of Mexico, is characterized by means of the development of a primary standard of absorbed dose to water, D agua . The main purpose is to diminish the uncertainty in the service of dosimetric calibration of ionization chambers (employed in radiotherapy of extemal beams) that offers this laboratory. This thesis is composed of seven chapters: In Chapter 1 the position and justification of the problem is described, as well as the general and specific objectives. In Chapter 2, a presentation of the main quantities and units used in dosimetry is made, in accordance with the recommendations of the International Commission on Radiation Units and Measurements (ICRU) that establish the necessity to have a coherent system with the international system of units and dosimetric quantities. The concepts of equilibrium and transient equilibrium of charged particles (TCPE) are also presented, which are used later in the quantitative determination of D agua . Finally, since the proposed standard of D agua is of ionometric type, an explanation of the Bragg-Gray and Spencer-Attix cavity theories is made. These theories are the foundation of this type of standards. On the other hand, to guarantee the complete validity of the conditions demanded by these theories it is necessary to introduce correction factors. These factors are determined in Chapters 5 and 6. Since for the calculation of the correction factors Monte Carlo (MC) method is used in an important way, in Chapter 3 the fundamental concepts of this method are presented; in particular the principles of the code MCNP4C [Briesmeister 2000] are detailed, making emphasis on the basis of electron transport and variance reduction techniques used in this thesis. Because a phenomenological approach is carried out in the development of the standard of D agua , in Chapter 4 the characteristics of the Picker C/9 unit, the ionization chamber type

  6. Effect of mucin extraction method on some properties of ...

    African Journals Online (AJOL)

    Effect of mucin extraction method on some properties of metronidazole mucoadhesive loaded patches. MI Arhewoh, SO Eraga, PF Builders, MA Ibobiri. Abstract. To evaluate the effects of mucin extraction method and plasticizer concentration on the bioadhesive strength and metronidazole release profile from mucin-based ...

  7. Rosenberg's Self-Esteem Scale: Two Factors or Method Effects.

    Science.gov (United States)

    Tomas, Jose M.; Oliver, Amparo

    1999-01-01

    Results of a study with 640 Spanish high school students suggest the existence of a global self-esteem factor underlying responses to Rosenberg's (M. Rosenberg, 1965) Self-Esteem Scale, although the inclusion of method effects is needed to achieve a good model fit. Method effects are associated with item wording. (SLD)

  8. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    Science.gov (United States)

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2017-09-01

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  9. The effect of Montessori Method on teaching cultural and creative ...

    African Journals Online (AJOL)

    The Effect of the Montessori Method on teaching was investigated among children to discover their artistic development in Zaria, Kaduna State. The problem of the study is that the Montessori Method on teaching cultural and creative arts is not adequately explored in the primary schools, while other teaching methods used, ...

  10. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method

    International Nuclear Information System (INIS)

    Petcharoen, K.; Sirivat, A.

    2012-01-01

    Highlights: ► Size-controlled magnetite nanoparticles were prepared via the chemical co-precipitation method in the range of 10–40 nm. ► The electrical conductivity of the smallest particle size is 1.3 × 10 −3 S/cm which belongs to the semiconductor material group. ► The surface modification of magnetite nanoparticles can provide the suspension stability over 1 week. - Abstract: Magnetite nanoparticles were synthesized via the chemical co-precipitation method using ammonium hydroxide as the precipitating agent. The size of the magnetite nanoparticles was carefully controlled by varying the reaction temperature and through the surface modification. Herein, the hexanoic acid and oleic acid were introduced as the coating agents during the initial crystallization phase of the magnetite. Their structure and morphology were characterized by the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and the field-emission scanning electron microscopy (FE-SEM). Moreover, the electrical and magnetic properties were studied by using a conductivity meter and a vibrating sample magnetometer (VSM), respectively. Both of the bare magnetite and the coated magnetite were of the cubic spinel structure and the spherical-shaped morphology. The reaction temperature and the surface modification critically affected the particle size, the electrical conductivity, and the magnetic properties of these particles. The particle size of the magnetite was increased through the surface modification and reaction temperature. In this study, the particle size of the magnetite nanoparticles was successfully controlled to be in the range of 10–40 nm, suitable for various biomedical applications. The electrical conductivity of the smallest particle size was 1.3 × 10 −3 S/cm, within the semi-conductive materials range, which was higher than that of the largest particle by about 5 times. All of the magnetite nanoparticles showed the superparamagnetic behavior with

  11. Review on characterization methods applied to HTR-fuel element components

    International Nuclear Information System (INIS)

    Koizlik, K.

    1976-02-01

    One of the difficulties which on the whole are of no special scientific interest, but which bear a lot of technical problems for the development and production of HTR fuel elements is the proper characterization of the element and its components. Consequently a lot of work has been done during the past years to develop characterization procedures for the fuel, the fuel kernel, the pyrocarbon for the coatings, the matrix and graphite and their components binder and filler. This paper tries to give a status report on characterization procedures which are applied to HTR fuel in KFA and cooperating institutions. (orig.) [de

  12. Method effects: the problem with negatively versus positively keyed items.

    Science.gov (United States)

    Lindwall, Magnus; Barkoukis, Vassilis; Grano, Caterina; Lucidi, Fabio; Raudsepp, Lennart; Liukkonen, Jarmo; Thøgersen-Ntoumani, Cecilie

    2012-01-01

    Using confirmatory factor analyses, we examined method effects on Rosenberg's Self-Esteem Scale (RSES; Rosenberg, 1965) in a sample of older European adults. Nine hundred forty nine community-dwelling adults 60 years of age or older from 5 European countries completed the RSES as well as measures of depression and life satisfaction. The 2 models that had an acceptable fit with the data included method effects. The method effects were associated with both positively and negatively worded items. Method effects models were invariant across gender and age, but not across countries. Both depression and life satisfaction predicted method effects. Individuals with higher depression scores and lower life satisfaction scores were more likely to endorse negatively phrased items.

  13. Method for effective usage of Google Analytics tools

    Directory of Open Access Journals (Sweden)

    Ирина Николаевна Егорова

    2016-01-01

    Full Text Available Modern Google Analytics tools have been investigated against effective attraction channels for users and bottlenecks detection. Conducted investigation allowed to suggest modern method for effective usage of Google Analytics tools. The method is based on main traffic indicators analysis, as well as deep analysis of goals and their consecutive tweaking. Method allows to increase website conversion and might be useful for SEO and Web analytics specialists

  14. Effect of crumb cellular structure characterized by image analysis on cake softness.

    Science.gov (United States)

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2017-10-04

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image

  15. Habitat characterization of the Tortugas Ecological Reserve south using photographic and quadrat methods

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We supply habitat characterization data along a single randomly oriented transect at each of 16 sampling stations in the Tortugas South Ecological Reserve. This...

  16. Habitat characterization of the Tortugas Ecological Reserve south using photographic and quadrat methods.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We supply habitat characterization data along a single randomly oriented transect at each of 16 sampling stations in the Tortugas South Ecological Reserve. This...

  17. Target Essentiality and Centrality Characterize Drug Side Effects

    OpenAIRE

    Wang, Xiujuan; Thijssen, Bram; Yu, Haiyuan

    2013-01-01

    Author Summary The ultimate goal of medical research is to develop effective treatments for disease with minimal side effects. Currently, about 20% of drug candidates failed at clinical trial phases II and III due to safety issues. Therefore, understanding the determining factors of drug side effects is of paramount importance to human health and the pharmaceutical industry. Here, we present the first systematic study to uncover key factors leading to drug side effects within the framework of...

  18. Numerical modeling of probe velocity effects for electromagnetic NDE methods

    Science.gov (United States)

    Shin, Y. K.; Lord, W.

    The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.

  19. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method

    International Nuclear Information System (INIS)

    Gautam, Sneh; Dinda, Amit Kumar; Mishra, Narayan Chandra

    2013-01-01

    In the present study, composite nanofibrous tissue engineering-scaffold consisting of polycaprolactone and gelatin, was fabricated by electrospinning method, using a new cost-effective solvent mixture: chloroform/methanol for polycaprolactone (PCL) and acetic acid for gelatin. The morphology of the nanofibrous scaffold was investigated by using field emission scanning electron microscopy (FE-SEM) which clearly indicates that the morphology of nanofibers was influenced by the weight ratio of PCL to gelatin in the solution. Uniform fibers were produced only when the weight ratio of PCL/gelatin is sufficiently high (10:1). The scaffold was further characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, and X-ray diffraction (XRD). FT-IR and TG analysis indicated some interactions between PCL and gelatin molecules within the scaffold, while XRD results demonstrated crystalline nature of PCL/gelatin composite scaffold. Cytotoxicity effect of scaffold on L929 mouse fibroblast cells was evaluated by MTT assay and cell proliferation on the scaffold was confirmed by DNA quantification. Positive results of MTT assay and DNA quantification L929 mouse fibroblast cells indicated that the scaffold made from the combination of natural polymer (gelatin) and synthetic polymer (PCL) may serve as a good candidate for tissue engineering applications. - Highlights: ► PCL/Gelatin scaffold was successfully fabricated by electrospinning method. ► PCL in CHCl 3 /CH 3 OH and gelatin in acetic acid: a novel polymer-solvent system. ► The morphology of nanofibers was influenced by the weight ratio of PCL/gelatin. ► Chemical interactions between PCL and gelatin molecules enhanced cell growth. ► Cell culture studies indicate the suitability of scaffold for tissue regeneration

  20. Wafer scale imprint uniformity evaluated by LSPR spectroscopy: a high volume characterization method for nanometer scale structures

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel Nilsson; Vig, Asger Laurberg

    2012-01-01

    numerical simulations of imprinted structures characterized by atomic force microscopy. There is a fair agreement between the two methods and the simulations enable the translation of optical spectra to critical dimensions of the physical structures, a concept known from scatterometry. The results...

  1. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides

    NARCIS (Netherlands)

    van Munster, Jolanda M.; Sanders, Peter; ten Kate, Geralt A.; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.

    2015-01-01

    The abundant polymer chitin can be degraded by chitinases (EC 3.2.1.14) and beta-N-acetyl-hexosaminidases (EC 3.2.1.52) to oligosaccharides and N-acetyl-glucosamine (GlcNAc) monomers. Kinetic characterization of these enzymes requires product quantification by an assay method with a low detection

  2. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Gamby, Jean [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)], E-mail: jean.gamby@upmc.fr; Pailleret, Alain [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France); Clodic, Carol Boucher; Pradier, Claire-Marie [Universite Pierre et Marie Curie - Paris 6, CNRS-UMR 7609, Laboratoire de Reactivite de Surface, 4 Place Jussieu, Case Courrier 178, 75252 Paris Cedex 05 (France); Tribollet, Bernard [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)

    2008-12-01

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 {mu}m in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 {mu}m for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air.

  3. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    International Nuclear Information System (INIS)

    Gamby, Jean; Pailleret, Alain; Clodic, Carol Boucher; Pradier, Claire-Marie; Tribollet, Bernard

    2008-01-01

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 μm in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 μm for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air

  4. Development of a method for the characterization and operation of UV-LED for water treatment.

    Science.gov (United States)

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2017-10-01

    Tremendous improvements in semiconductor technology have made ultraviolet light-emitting diodes (UV-LEDs) a viable alternative to conventional UV sources for water treatment. A robust and validated experimental protocol for studying the kinetics of microorganism inactivation is key to the further development of UV-LEDs for water treatment. This study proposes a protocol to operate UV-LEDs and control their output as a polychromatic radiation source. In order to systematically develop this protocol, the results of spectral power distribution, radiation profile, and radiant power measurements of a variety of UV-LEDs are presented. A wide range of UV-LEDs was selected for this study, covering various UVA, UVB, and UVC wavelengths, viewing angles from 3.5° to 135°, and a variety of output powers. The effects of operational conditions and measurement techniques were investigated on these UV-LEDs using a specially designed and fabricated setup. Operating conditions, such as the UV-LED electrical current and solder temperature, were found to significantly affect the power and peak wavelength output. The measurement techniques and equipment, including the detector size, detector distance from the UV-LED, and potential reflection from the environment, were shown to influence the results for many of the UV-LEDs. The results obtained from these studies were analyzed and applied to the development of a protocol for UV-LED characterization. This protocol is presented as a guideline that allows the operation and control of UV-LEDs in any structure, as well as accurately measuring the UV-LED output. Such information is essential for performing a reliable UV-LED assessment for the inactivation of microorganisms and for obtaining precise kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Comparative Characterization of the HPA-MCM-48 Type Catalysts Produced by the Direct Hydrothermal and Room Temperature Synthesis Methods

    International Nuclear Information System (INIS)

    Gucbilmez, Y.; Calis, I.; Yargic, A. S.

    2012-01-01

    MCM-48 type support materials synthesized by the direct hydrothermal synthesis (HTS) and room temperature synthesis (RTS) methods were incorporated with tungstophosphoric acid (TPA) in the range of 10-40 wt% by using a wet impregnation technique in methanol solutions. Resulting HPA-MCM-48 catalysts were characterized by the XRD, Nitrogen Physisorption, SEM, TEM, EDS, and FT-IR methods in order to determine the effects of different initial synthesis conditions on the catalyst properties. RTS samples were found to have better crystalline structures, higher BET surface areas, and higher BJH pore volumes than HTS samples. They also had slightly higher TPA incorporation, except for the 40 wt% samples, as evidenced by the EDS results. Keggin ion structure was preserved, for both methods, even at the highest acid loading of 40 wt%. It was concluded that the simpler and more economical RTS method was more successful than the HTS method for hetero poly acid incorporation into MCM-48 type materials

  6. Analysis of experts' perception of the effectiveness of teaching methods

    Science.gov (United States)

    Kindra, Gurprit S.

    1984-03-01

    The present study attempts to shed light on the perceptions of business educators regarding the effectiveness of six methodologies in achieving Gagné's five learning outcomes. Results of this study empirically confirm the oft-stated contention that no one method is globally effective for the attainment of all objectives. Specifically, business games, traditional lecture, and case study methods are perceived to be most effective for the learning of application, knowledge acquisition, and analysis and application, respectively.

  7. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    International Nuclear Information System (INIS)

    Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A.R.; Mazinani, M.

    2015-01-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency

  8. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei, S., E-mail: Sadegh.Ghanei@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Vafaeenezhad, H. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Kashefi, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Eivani, A.R. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Mazinani, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency.

  9. Antimicrobial characterization of silver nanoparticle-coated surfaces by “touch test” method

    Directory of Open Access Journals (Sweden)

    Gunell M

    2017-11-01

    Full Text Available Marianne Gunell,1,2 Janne Haapanen,3 Kofi J Brobbey,4 Jarkko J Saarinen,4 Martti Toivakka,4 Jyrki M Mäkelä,3 Pentti Huovinen,1 Erkki Eerola1,2 1Department of Medical Microbiology and Immunology, University of Turku, 2Department of Clinical Microbiology and Immunology, Microbiology and Genetics Service Area, Turku University Hospital, Turku, 3Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, Tampere, 4Laboratory of Paper Coating and Converting, Center for Functional Materials, Åbo Akademi University, Turku, Finland Abstract: Bacterial infections, especially by antimicrobial resistant (AMR bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the “touch test” method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show

  10. Error characterization methods for surface soil moisture products from remote sensing

    International Nuclear Information System (INIS)

    Doubková, M.

    2012-01-01

    To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, especially over Europe (∼2 days). Given the planned high temporal sampling and the operational configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR). To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) datasets was indispensible for their application in models, for extractions of blended SSM products, as well as for their usage in evaluation of other soil moisture datasets. This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of applications of soil moisture datasets is presented and evaluation measures are suggested for each application according to its requirement on the dataset quality. The evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation measures comprises a second objective of the work. To achieve the second objective, the data from the Australian Water Assessment System

  11. Characterization of a new candidate isotopic reference material for natural Pb using primary measurement method.

    Science.gov (United States)

    Nonose, Naoko; Suzuki, Toshihiro; Shin, Ki-Cheol; Miura, Tsutomu; Hioki, Akiharu

    2017-06-29

    A lead isotopic standard solution with natural abundance has been developed by applying a mixture of a solution of enriched 208 Pb and a solution of enriched 204 Pb ( 208 Pb- 204 Pb double spike solution) as bracketing method. The amount-of-substance ratio of 208 Pb: 204 Pb in this solution is accurately measured by applying EDTA titrimetry, which is one of the primary measurement methods, to each enriched Pb isotope solution. Also metal impurities affecting EDTA titration and minor lead isotopes contained in each enriched Pb isotope solution are quantified by ICP-SF-MS. The amount-of-substance ratio of 208 Pb: 204 Pb in the 208 Pb- 204 Pb double spike solution is 0.961959 ± 0.000056 (combined standard uncertainty; k = 1). Both the measurement of lead isotope ratios in a candidate isotopic standard solution and the correction of mass discrimination in MC-ICP-MS are carried out by coupling of a bracketing method with the 208 Pb- 204 Pb double spike solution and a thallium internal addition method, where thallium solution is added to the standard and the sample. The measured lead isotope ratios and their expanded uncertainties (k = 2) in the candidate isotopic standard solution are 18.0900 ± 0.0046 for 206 Pb: 204 Pb, 15.6278 ± 0.0036 for 207 Pb: 204 Pb, 38.0626 ± 0.0089 for 208 Pb: 204 Pb, 2.104406 ± 0.00013 for 208 Pb: 206 Pb, and 0.863888 ± 0.000036 for 207 Pb: 206 Pb. The expanded uncertainties are about one half of the stated uncertainty for NIST SRM 981, for 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, or one eighth, for 208 Pb: 206 Pb and 207 Pb: 206 Pb, The combined uncertainty consists of the uncertainties due to lead isotope ratio measurements and the remaining time-drift effect of mass discrimination in MC-ICP-MS, which is not removed by the coupled correction method. In the measurement of 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, the latter contribution is two or three times larger than the former. When the coupling of

  12. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Science.gov (United States)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  13. Characterization of ZnS nanoparticles synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Iranmanesh Parvaneh; Nourzpoor Mohsen; Saeednia Samira

    2015-01-01

    ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum. (paper)

  14. Chemically synthesis and characterization of MnS thin films by SILAR method

    Science.gov (United States)

    Yıldırım, M. Ali; Yıldırım, Sümeyra Tuna; Cavanmirza, İlke; Ateş, Aytunç

    2016-03-01

    MnS thin films were synthesized on glass substrates using SILAR method. The film thickness effect on structural, morphological, optical and electrical properties of the films was investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies showed that all the films exhibited polycrystalline nature with β-MnS structure and were covered well on glass substrates. The bandgap and resistivity values of the films decreased from 3.39 eV to 2.92 eV and from 11.84 × 106 to 2.21 × 105 Ω-cm as the film thickness increased from 180 to 350 nm, respectively. The refractive index (n) and dielectric constants (ɛo, ɛ∞) values were calculated.

  15. Characterization of the Interaction between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods

    Science.gov (United States)

    Xu, Hongliang; Yao, Nannan; Xu, Haoran; Wang, Tianshi; Li, Guiying; Li, Zhengqiang

    2013-01-01

    This study investigated the interaction between eupatorin and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular modeling at pH 7.4. Results of UV-vis and fluorescence spectroscopies illustrated that BSA fluorescence was quenched by eupatorin via a static quenching mechanism. Thermodynamic parameters revealed that hydrophobic and electrostatic interactions played major roles in the interaction. Moreover, the efficiency of energy transfer, and the distance between BSA and acceptor eupatorin, were calculated. The effects of eupatorin on the BSA conformation were analyzed using UV-vis, CD, and synchronous fluorescence. Finally, the binding of eupatorin to BSA was modeled using the molecular docking method. PMID:23839090

  16. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at