WorldWideScience

Sample records for eeg activation induced

  1. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity

    Directory of Open Access Journals (Sweden)

    Chung Yong-An

    2011-03-01

    Full Text Available Abstract Background Epilepsy is a common neurological disorder, which is attributed to uncontrollable abnormal hyper-excitability of neurons. We investigated the feasibility of using low-intensity, pulsed radiation of focused ultrasound (FUS to non-invasively suppress epileptic activity in an animal model (rat, which was induced by the intraperitonial injection of pentylenetetrazol (PTZ. Results After the onset of induced seizures, FUS was transcranially administered to the brain twice for three minutes each while undergoing electroencephalographic (EEG monitoring. An air-backed, spherical segment ultrasound transducer (diameter: 6 cm; radius-of-curvature: 7 cm operating at a fundamental frequency of 690 KHz was used to deliver a train of 0.5 msec-long pulses of sonication at a repetitive rate of 100 Hz to the thalamic areas of the brain. The acoustic intensity (130 mW/cm2 used in the experiment was sufficiently within the range of safety guidelines for the clinical ultrasound imaging. The occurrence of epileptic EEG bursts from epilepsy-induced rats significantly decreased after sonication when it was compared to the pre-sonication epileptic state. The PTZ-induced control group that did not receive any sonication showed a sustained number of epileptic EEG signal bursts. The animals that underwent sonication also showed less severe epileptic behavior, as assessed by the Racine score. Histological analysis confirmed that the sonication did not cause any damage to the brain tissue. Conclusions These results revealed that low-intensity, pulsed FUS sonication suppressed the number of epileptic signal bursts using acute epilepsy model in animal. Due to its non-invasiveness and spatial selectivity, FUS may offer new perspectives for a possible non-invasive treatment of epilepsy.

  2. Rapid EEG desynchronization and EMG activation induced by intravenous cocaine in freely moving rats: a peripheral, nondopamine neural triggering.

    Science.gov (United States)

    Kiyatkin, Eugene A; Smirnov, Michael S

    2010-02-01

    Many important physiological, behavioral, and psychoemotional effects of intravenous (IV) cocaine (COC) are too fast and transient compared with pharmacokinetic predictions, suggesting a possible involvement of peripheral neural mechanisms in their triggering. In the present study, we examined changes in cortical electroencephalogram (EEG) and neck electromyogram (EMG) induced in freely moving rats by IV COC administration at low, reinforcing doses (0.25-1.0 mg/kg) and compared them with those induced by an auditory stimulus and IV COC methiodide, which cannot cross the blood-brain barrier. We found that COC induces rapid, strong, and prolonged EEG desynchronization, associated with decrease in alpha and increase in beta and gamma activities, and EMG activation and that both begin within 2-6 s following the start of a 10-s injection; immediate components of this effect were dose independent. The rapid COC-induced changes in EEG and EMG resembled those induced by an auditory stimulus; the latter effects had shorter onset latencies and durations and were fully blocked during urethane anesthesia. Although urethane anesthesia completely blocked COC-induced EMG activation and rapid components of EEG response, COC still induced EEG desynchronization that was much weaker, greatly delayed (approximately 60 s), and associated with tonic decreases in delta and increases in alpha, beta, and gamma activities. Surprisingly, IV saline delivered during slow-wave sleep (but not quite wakefulness) also induced a transient EEG desynchronization but without changes in EMG activity; these effects were also fully blocked during anesthesia. Peripherally acting COC methiodide fully mimicked rapid EEG and EMG effects of regular COC, but the effects at an equimolar dose were less prolonged than those with regular COC. These data suggest that in awake animals IV COC, like somato-sensory stimuli, induces cortical activation and a subsequent motor response via its action on peripheral neural

  3. EEG frequency analysis of cortical brain activities induced by effect of light touch.

    Science.gov (United States)

    Ishigaki, Tomoya; Ueta, Kozo; Imai, Ryota; Morioka, Shu

    2016-06-01

    In human postural control, touching a fingertip to a stable object with a slight force (postural sway independent of mechanical support, which is referred to as the effect of light touch (LT effect). The LT effect is achieved by the spatial orientation according to haptic feedback acquired from an external spatial reference. However, the neural mechanism of the LT effect is incompletely understood. Therefore, the purpose of this study was to employ EEG frequency analysis to investigate the cortical brain activity associated with the LT effect when attentional focus was strictly controlled with the eyes closed during standing (i.e., control, fixed-point touch, sway-referenced touch, and only fingertip attention). We used EEG to measure low-alpha (about 8-10 Hz) and high-alpha rhythm (about 10-12 Hz) task-related power decrease/increase (TRPD/TRPI). The LT effect was apparent only when the subject acquired the stable external spatial reference (i.e., fixed-point touch). Furthermore, the LT-specific effect increased the high-alpha TRPD of two electrodes (C3, P3), which were mainly projected from cortical brain activities of the left primary sensorimotor cortex area and left posterior parietal cortex area. Furthermore, there was a negative correlation between the LT effect and increased TRPD of C3. In contrast, the LT effect correlated positively with increased TRPD of P3. These results suggest that central and parietal high-alpha TRPD of the contralateral hemisphere reflects the sensorimotor information processing and sensory integration for the LT effect. These novel findings reveal a partial contribution of a cortical neural mechanism for the LT effect.

  4. Intensive Training Induces Longitudinal Changes in Meditation State-related EEG Oscillatory Activity

    Directory of Open Access Journals (Sweden)

    Manish eSaggar

    2012-09-01

    Full Text Available The capacity to focus one’s attention for an extended period of time can be increased through training in contemplative practices. However, the cognitive processes engaged during meditation that support trait changes in cognition are not well characterized. We conducted a longitudinal wait-list controlled study of intensive meditation training. Retreat participants practiced focused attention meditation techniques for three months during an initial retreat. Wait-list participants later undertook formally identical training during a second retreat. Dense-array scalp-recorded electroencephalogram (EEG data were collected during six minutes of mindfulness of breathing meditation at three assessment points during each retreat. Second-order blind source separation, along with a novel semi-automatic artifact removal tool, was used for data preprocessing. We observed replicable reductions in meditative state-related beta-band power bilaterally over anteriocentral and posterior scalp regions. In addition, individual alpha frequency decreased across both retreats and in direct relation to the amount of meditative practice. These findings provide evidence for replicable longitudinal changes in brain oscillatory activity during meditation and increase our understanding of the cortical processes engaged during meditation that may support long-term improvements in cognition.

  5. Age-induced differences in brain neural activation elicited by visual emotional stimuli: A high-density EEG study.

    Science.gov (United States)

    Tsolaki, Anthoula C; Kosmidou, Vasiliki E; Kompatsiaris, Ioannis Yiannis; Papadaniil, Chrysa; Hadjileontiadis, Leontios; Tsolaki, Magda

    2017-01-06

    Identifying the brain sources of neural activation during processing of emotional information remains a very challenging task. In this work, we investigated the response to different emotional stimuli and the effect of age on the neuronal activation. Two negative emotion conditions, i.e., 'anger' and 'fear' faces were presented to 22 adult female participants (11 young and 11 elderly) while acquiring high-density electroencephalogram (EEG) data of 256 channels. Brain source localization was utilized to study the modulations in the early N170 event-related-potential component. The results revealed alterations in the amplitude of N170 and the localization of areas with maximum neural activation. Furthermore, age-induced differences are shown in the topographic maps and the neural activation for both emotional stimuli. Overall, aging appeared to affect the limbic area and its implication to emotional processing. These findings can serve as a step toward the understanding of the way the brain functions and evolves with age which is a significant element in the design of assistive environments. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Spontaneous EEG activity and spontaneous emotion regulation.

    Science.gov (United States)

    Tortella-Feliu, M; Morillas-Romero, A; Balle, M; Llabrés, J; Bornas, X; Putman, P

    2014-12-01

    Variability in both frontal and parietal spontaneous EEG activity, using α and β band power and θ/β and δ/β ratios, was explored in a sample of 96 healthy volunteers as a potential correlate of individual differences in spontaneous emotion regulation (SER). Following a baseline EEG recording, participants were asked to continuously rate their discomfort while looking at affective pictures, as well as for a period of time after exposure. Greater spontaneous β band power in parietal locations, lower frontal and parietal δ/β ratios, and lower parietal θ/β ratio were associated with lower ratings of discomfort after the offset of unpleasant pictures. Moreover, lower parietal δ/β ratio was also related to less time needed to recover from discomfort after exposure to aversive pictures, while only a greater frontal and parietal α band power appeared to be associated with faster recovery from discomfort induced by normative-neutral pictures. However, parietal δ/β ratio was the only predictor of both minimum discomfort ratings and time needed to downregulate following exposure to unpleasant pictures, and frontal α band power the only spontaneous EEG index that predicted variability in spontaneous down-regulation after the exposure to normative-neutral pictures. Results are discussed focusing on the utility of diverse spontaneous EEG measures in several cortical regions when capturing trait-like individual differences in emotion regulation capabilities and processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality.

    Science.gov (United States)

    Singer, Neomi; Podlipsky, Ilana; Esposito, Fabrizio; Okon-Singer, Hadas; Andelman, Fani; Kipervasser, Svetlana; Neufeld, Miri Y; Goebel, Rainer; Fried, Itzhak; Hendler, Talma

    2014-11-01

    Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific 'affective' and 'cognitive' processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0-500 msec) increase in gamma power (61-69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1-12 sec) suppression of low frequency power (2.3-24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. DIFFERENTIAL DIAGNOSTICS OF PAROXYSMAL ACTIVITY ON EEG

    Directory of Open Access Journals (Sweden)

    S. A. Gulaev

    2013-01-01

    Full Text Available According to the literature, the overdiagnosis of epilepsy is 20-25% of all newly diagnosed cases of epilepsy, which is associated mainly with the erroneous interpretation of clinical and electroencephalographic data, including an incorrect interpretation of some types of paroxysmal activity on the EEG, of non-epileptic nature. Based on own observations the author presents the examples of differential diagnosis of different paroxysmal conditions and describes their differences from epilepsy.

  9. Chaos analysis of EEG during isoflurane-induced loss of righting in rats

    Directory of Open Access Journals (Sweden)

    Bruce eMaciver

    2014-10-01

    Full Text Available It has long been known that electroencephalogram (EEG signals generate chaotic strange attractors and the shape of these attractors correlate with depth of anesthesia. We applied chaos analysis to frontal cortical and hippocampal micro-EEG signals from implanted microelectrodes (layer 4 and CA1, respectively. Rats were taken to and from loss of righting reflex (LORR with isoflurane and behavioral measures were compared to attractor shape. Resting EEG signals at LORR differed markedly from awake signals, more similar to slow wave sleep signals, and easily discerned in raw recordings (high amplitude slow waves, and in fast Fourier transform analysis (FFT; increased delta power, in good agreement with previous studies. EEG activation stimulated by turning rats on their side, to test righting, produced signals quite similar to awake resting state EEG signals. That is, the high amplitude slow wave activity changed to low amplitude fast activity that lasted for several seconds, before returning to slow wave activity. This occurred regardless of whether the rat was able to right itself, or not. Testing paw pinch and tail clamp responses produced similar EEG activations, even from deep anesthesia when burst suppression dominated the spontaneous EEG. Chaotic attractor shape was far better at discerning between these awake-like signals, at loss of responses, than was FFT analysis. Comparisons are provided between FFT and chaos analysis of EEG during awake walking, slow wave sleep, and isoflurane-induced effects at several depths of anesthesia. Attractors readily discriminated between natural sleep and isoflurane-induced ‘delta’ activity. Chaotic attractor shapes changed gradually through the transition from awake to LORR, indicating that this was not an on/off like transition, but rather a point along a continuum of brain states.

  10. [Seizure activity in the EEG of rats sensitive and resistant to pentylenetetrazol kindling].

    Science.gov (United States)

    Pavlova, T V; Fesenko, G N; Gekht, A B; Gulieva, N V; Koval'zon, V M

    2009-01-01

    Rats were subjected to pentylenetetrazol kindling and divided into 2 groups according to their ability to demonstrate convulsions: the "sensitive" and "tresistant" rats groups. Both groups demonstrated EEG afterdischarges; however, the number of the EEG seizures in "sensitive" rats was 60% higher, the latency by 45 sec longer, and the total duration during the first 45 min after injection 70% longer as compared to the "resistant" rats. The average duration of a single EEG seizure did not differ in these groups. The average EEG frequency power peak at 7.2 Hz was more pronounced in the "resistant" group. Thus, pentylenetetrazol kindling induces epileptiform activity in the rat EEG irrespective of the appearance of behavioral seizures; however, characteristics of this activity differ significantly between the "sensitive" and "resistant" rats.

  11. Synchronization of EEG activity in patients with bipolar disorder

    Science.gov (United States)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  12. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  13. Mozart Effect on Seizure Activity in The EEG

    OpenAIRE

    J Gordon Millichap

    1998-01-01

    The “Mozart Effect” on epileptiform activity in the EEG of 29 patients, ages 3-47 years, was investigated using brain maps and computerized analyses at the University of Illinois Medical Center, Chicago, IL.

  14. Modification of EEG asymmetry induced by auditory biofeedback loop during REM sleep in man.

    Science.gov (United States)

    Sockeel, P; Mouze-Amady, M; Leconte, P

    1987-12-01

    Several studies have emphasized the relationship between (1) rapid eye movement sleep (REM sleep) and learning, and (2) between REM sleep and asymmetry in EEG activity. Since we have shown that obtaining operant conditioned responses via auditory biofeedback during REM sleep is feasible, we demonstrate here that REM contingent auditory stimulations (white noise stimulation or interruption of a continuous white noise stimulation) lead to differential changes in phasic and tonic components of REM sleep. Whereas during baseline nights a relative right activation is found in the medium bands of EEG frequencies, our procedure seems to induce a systematic interhemispheric change during experimental nights. A new approach to the information processing hypothesis during REM sleep is proposed in terms of functional lateralized modifications of the EEG.

  15. Cannabinoid antagonist SLV326 induces convulsive seizures and changes in the interictal EEG in rats.

    Science.gov (United States)

    Perescis, Martin F J; de Bruin, Natasja; Heijink, Liesbeth; Kruse, Chris; Vinogradova, Lyudmila; Lüttjohann, Annika; van Luijtelaar, Gilles; van Rijn, Clementina M

    2017-01-01

    Cannabinoid CB1 antagonists have been investigated for possible treatment of e.g. obesity-related disorders. However, clinical application was halted due to their symptoms of anxiety and depression. In addition to these adverse effects, we have shown earlier that chronic treatment with the CB1 antagonist rimonabant may induce EEG-confirmed convulsive seizures. In a regulatory repeat-dose toxicity study violent episodes of "muscle spasms" were observed in Wistar rats, daily dosed with the CB1 receptor antagonist SLV326 during 5 months. The aim of the present follow-up study was to investigate whether these violent movements were of an epileptic origin. In selected SLV326-treated and control animals, EEG and behavior were monitored for 24 hours. 25% of SLV326 treated animals showed 1 to 21 EEG-confirmed generalized convulsive seizures, whereas controls were seizure-free. The behavioral seizures were typical for a limbic origin. Moreover, interictal spikes were found in 38% of treated animals. The frequency spectrum of the interictal EEG of the treated rats showed a lower theta peak frequency, as well as lower gamma power compared to the controls. These frequency changes were state-dependent: they were only found during high locomotor activity. It is concluded that long term blockade of the endogenous cannabinoid system can provoke limbic seizures in otherwise healthy rats. Additionally, SLV326 alters the frequency spectrum of the EEG when rats are highly active, suggesting effects on complex behavior and cognition.

  16. A Pharmacokinetics-Neural Mass Model (PK-NMM) for the Simulation of EEG Activity during Propofol Anesthesia.

    Science.gov (United States)

    Liang, Zhenhu; Duan, Xuejing; Su, Cui; Voss, Logan; Sleigh, Jamie; Li, Xiaoli

    2015-01-01

    Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding anesthesia mechanisms. The aim of this study was to set up a combined model to relate actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthesia. We proposed a new combined theoretical model based on a pharmacokinetics (PK) model and a neural mass model (NMM), which we termed PK-NMM--with the aim of simulating electroencephalogram (EEG) activity during propofol-induced general anesthesia. The PK model was used to derive propofol effect-site drug concentrations (C(eff)) based on the actual drug infusion regimen. The NMM model took C(eff) as the control parameter to produce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG (rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment. To see how well the sEEG could describe the dynamic changes of neural activity during anesthesia, the rEEG data and the sEEG data were compared with respect to: power-frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFastSlow (SFS) parameters. We found that the PK-NMM model was able to reproduce anesthesia EEG-like signals based on the estimated drug concentration and patients' condition. The frequency spectrum indicated that the frequency power peak of the sEEG moved towards the low frequency band as anesthesia deepened. Different anesthetic states could be differentiated by the PE index. The correlation coefficient of PE was 0.80 ± 0.13 (mean ± standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a correlation coefficient of 0.77 ± 0.13. The PK-NMM model could simulate EEG activity and might be a useful tool for understanding the action of propofol on brain activity.

  17. SVM detection of epileptiform activity in routine EEG.

    LENUS (Irish Health Repository)

    Kelleher, Daniel

    2010-01-01

    Routine electroencephalogram (EEG) is an important test in aiding the diagnosis of patients with suspected epilepsy. These recordings typically last 20-40 minutes, during which signs of abnormal activity (spikes, sharp waves) are looked for in the EEG trace. It is essential that events of short duration are detected during the routine EEG test. The work presented in this paper examines the effect of changing a range of input values to the detection system on its ability to distinguish between normal and abnormal EEG activity. It is shown that the length of analysis window in the range of 0.5s to 1s are well suited to the task. Additionally, it is reported that patient specific systems should be used where possible due to their better performance.

  18. Finasteride improves motor, EEG, and cellular changes in rat brain in thioacetamide-induced hepatic encephalopathy.

    Science.gov (United States)

    Mladenović, Dušan; Hrnčić, Dragan; Petronijević, Nataša; Jevtić, Gordana; Radosavljević, Tatjana; Rašić-Marković, Aleksandra; Puškaš, Nela; Maksić, Nebojša; Stanojlović, Olivera

    2014-11-01

    Neurosteroids are involved in the pathogenesis of hepatic encephalopathy (HE). This study evaluated the effects of finasteride, inhibitor of neurosteroid synthesis, on motor, EEG, and cellular changes in rat brain in thioacetamide-induced HE. Male Wistar rats were divided into the following groups: 1) control; 2) thioacetamide-treated group, TAA (300 mg·kg(-1)·day(-1)); 3) finasteride-treated group, FIN (50 mg·kg(-1)·day(-1)); and 4) group treated with FIN and TAA (FIN + TAA). Daily doses of TAA and FIN were administered in three subsequent days intraperitoneally, and in the FIN + TAA group FIN was administered 2 h before every dose of TAA. Motor and reflex activity was determined at 0, 2, 4, 6, and 24 h, whereas EEG activity was registered about 24 h after treatment. The expressions of neuronal (NeuN), astrocytic [glial fibrilary acidic protein (GFAP)], microglial (Iba1), and oligodendrocyte (myelin oligodendrocyte glycoprotein) marker were determined 24 h after treatment. While TAA decreased all tests, FIN pretreatment (FIN + TAA) significantly improved equilibrium, placement test, auditory startle, head shake reflex, motor activity, and exploratory behavior vs. the TAA group. Vital reflexes (withdrawal, grasping, righting and corneal reflex) together with mean EEG voltage were significantly higher (P EEG changes in TAA-induced HE and completely prevents the development of hepatic coma. Copyright © 2014 the American Physiological Society.

  19. Source localization of rhythmic ictal EEG activity

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana

    2013-01-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal ...

  20. Single pulse TMS-induced modulations of resting brain neurodynamics encoded in EEG phase.

    Science.gov (United States)

    Stamoulis, Catherine; Oberman, Lindsay M; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro

    2011-06-01

    Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS.

  1. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.

  2. Relating induced changes in EEG signals to orientation of visual stimuli using the ESI-256 machine.

    Science.gov (United States)

    Suarez, E; Viegas, M D; Adjouadi, M; Barreto, A

    2000-01-01

    The focus of this study is to investigate the relations that exist between changes in the orientation of simple visual stimuli displayed to a subject and the induced changes in brain activity recorded as EEG signals. These signals are recorded using the Electric Source Imaging with 256 electrodes (ESI-256). The 256-channel EEG signals of four subjects were measured monopolarly. Each subject was stimulated visually for approximately 7.5 minutes. The stimuli consisted of a series of 300 images depicting four basic orientations of a simple graphical element: a white bar on a black background, with each one of the four orientations (horizontal, vertical, +45 degrees and -45 degrees) shown a total of 75 times in a random order. The notion of missing information under certain orientations is not addressed at this juncture. The EEG signals produced by each subject were recorded in a continuous mode using a sampling rate of 1 kHz. Pre-processing of the raw EEG data obtained consisted of epoching, exclusion of faulty electrodes, and reduction of electro-oculogram (EOG) noise due to eye blinks. Topographical maps displaying brain activities and their individual electrode recordings are used as two different means for assessing these changes. It is important to note that the simplicity of the visual stimuli was considered in view of the massive data collected for interpretation. Our goal is to observe and determine new measures that would allow for the quantification and interpretation of such EEG brain activities. Such findings might prove useful for the later use of more complex stimuli and the potential development of size and orientation independent algorithms in image processing.

  3. Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS-EEG.

    Science.gov (United States)

    Vernet, Marine; Bashir, Shahid; Yoo, Woo-Kyoung; Perez, Jennifer M; Najib, Umer; Pascual-Leone, Alvaro

    2013-02-01

    Transcranial magnetic stimulation (TMS) is a useful tool to induce and measure plasticity in the human brain. However, the cortical effects are generally indirectly evaluated with motor-evoked potentials (MEPs) reflective of modulation of cortico-spinal excitability. In this study, we aim to provide direct measures of cortical plasticity by combining TMS with electroencephalography (EEG). Continuous theta-burst stimulation (cTBS) was applied over the primary motor cortex (M1) of young healthy adults, and we measured modulation of (i) MEPs, (ii) TMS-induced EEG evoked potentials (TEPs), (iii) TMS-induced EEG synchronization and (iv) eyes-closed resting EEG. Our results show the expected cTBS-induced decrease in MEP size, which we found to be paralleled by a modulation of a combination of TEPs. Furthermore, we found that cTBS increased the power in the theta band of eyes-closed resting EEG, whereas it decreased single-pulse TMS-induced power in the theta and alpha bands. In addition, cTBS decreased the power in the beta band of eyes-closed resting EEG, whereas it increased single-pulse TMS-induced power in the beta band. We suggest that cTBS acts by modulating the phase alignment between already active oscillators; it synchronizes low-frequency (theta and/or alpha) oscillators and desynchronizes high-frequency (beta) oscillators. These results provide novel insight into the cortical effects of cTBS and could be useful for exploring cTBS-induced plasticity outside of the motor cortex. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. EEG activity in Carmelite nuns during a mystical experience.

    Science.gov (United States)

    Beauregard, Mario; Paquette, Vincent

    2008-10-17

    Mystical experiences relate to a fundamental dimension of human existence. These experiences, which are characterized by a sense of union with God, are commonly reported across all cultures. To date, no electroencephalography (EEG) study has been conducted to identify the neuroelectrical correlates of such experiences. The main objective of this study was to measure EEG spectral power and coherence in 14 Carmelite nuns during a mystical experience. EEG activity was recorded from 19 scalp locations during a resting state, a control condition and a mystical condition. In the mystical condition compared to control condition, electrode sites showed greater theta power at F3, C3, P3, Fz, Cz and Pz, and greater gamma1 power was detected at T4 and P4. Higher delta/beta ratio, theta/alpha ratio and theta/beta ratio were found for several electrode sites. In addition, FP1-C3 pair of electrodes displayed greater coherence for theta band while F4-P4, F4-T6, F8-T6 and C4-P4 pairs of electrodes showed greater coherence for alpha band. These results indicate that mystical experiences are mediated by marked changes in EEG power and coherence. These changes implicate several cortical areas of the brain in both hemispheres.

  5. EFFICACY OF ACTIVATION PROCEDURES TO ILLUSTRATE EEG CHANGES IN EPILEPSY

    Directory of Open Access Journals (Sweden)

    Rimpy Bhuyan

    2017-04-01

    Full Text Available BACKGROUND EEG or Electroencephalogram, which is the most important diagnostic procedure to evaluate Epilepsy patients, may sometimes fall short of accurate sensitivity and may require few Activation Procedures such as ‘Hyperventilation’ and ‘Sleep’ to bring out the active changes of an Epileptic brain. The present study was done with the aim of knowing the efficacy of such Activation Procedures like ‘Hyperventilation’ and ‘Sleep’ in illustrating the EEG wave pattern changes of an Epileptic brain during the interictal period. MATERIALS AND METHODS The present study was done in the Department of Physiology in association with the Department of Neurology, Assam Medical College & Hospital, Dibrugarh, Assam from June 2014 to May 2015. ‘113’ clinically diagnosed cases of Epilepsy were studied and analysed through Electroencephalogram using the internationally accepted 10-20 electrode placement method. Hyperventilation was used in 28 Epilepsy cases and Sleep was used in 14 Epilepsy cases. History & Physical examination findings were recorded in a Proforma. Chi-square analysis was done through GraphPad Prism 6 software to assess the significance of the activation procedures used. RESULTS Our study found that EEG of 42 cases out of the total 113 cases required Activation Procedures to elicit the wave pattern changes of the Epileptic brain. Hyperventilation was helpful in adult age group and sleep was useful in children age group. Hyperventilation had overall 53.57% sensitivity in detecting Epilepsy, and Sleep had 64.29% sensitivity in detecting Epilepsy. Hyperventilation was specifically helpful to elicit absence seizures where it had 75% sensitivity. CONCLUSION The sensitivity of EEG in detecting Epilepsy can thus be increased by using activation procedures like sleep & Hyperventilation to ensure that no epilepsy cases are missed out in diagnosis & treatment.

  6. Reduction of TMS induced artefacts in EEG using principal component analysis

    NARCIS (Netherlands)

    Spanjer-ter Braack, Esther Maria; Jonge, Benjamin; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    Co-registration of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a new, promising method for assessing cortical excitability and connectivity. Using this technique, a TMS evoked potential (TEP) can be induced and registered with the EEG. However, the TEP contains an

  7. [EEG spatial organization and activation of creative processes].

    Science.gov (United States)

    Sviderskaia, N E; Dashchinskaia, T N; Taratynova, G V

    2001-01-01

    Characteristic features of the spatino-temporal EEG organization of 24 right-handed children (aged from 8 to 13 years) were studied after stimulation of creative activity by the method of self-regulation of the brain functional state (Russian Inventor's Certificate no. 2157707, 01.06.1999). The multiparametric analysis of baseline recordings derived from 24 cortical points made it possible to find the most probable pattern of changes in the spatial synchronization of biopotentials, including increase in activity in the right anterior and left posterior cortical regions. These changes were accompanied by a rise in the information-energy parameter (the ratio between coherence and spectral power of potentials). This phenomenon may testify to a transition to the "economic" condition of information processing. Differences in EEG frequency characteristics corresponding to different levels of imagination and creative intuition were revealed.

  8. Patterns of EEG Activity in Individuals with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Zhukova M.A.,

    2016-10-01

    Full Text Available The article reviews most recent findings on neural activity in children and adults with autism spectrum disorders (ASD. Most of the studies demonstrate decreased connectivity in cortical regions, excitatory/inhibitory imbalance and atypical processing of language in people with ASD. It is argued that difficulties in semantic integration are connected to selective insensitivity to language, which is manifested in atypical N400 ERP component. In the article we analyze the data suggesting a strong relationship between ASD and epilepsy and argue that the comorbidity is more prevalent among individuals who have cognitive dysfunction. The EEG profile of people with ASD suggests U-shaped alterations with excess in high- and low-frequency EEG bands. We critically analyze the “broken mirror” hypothesis of ASD and demonstrate findings which challenge this theory.

  9. Complexity of Multi-Dimensional Spontaneous EEG Decreases during Propofol Induced General Anaesthesia

    Science.gov (United States)

    Schartner, Michael; Seth, Anil; Noirhomme, Quentin; Boly, Melanie; Bruno, Marie-Aurelie; Laureys, Steven; Barrett, Adam

    2015-01-01

    Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia. PMID:26252378

  10. EEG-based recognition of video-induced emotions: selecting subject-independent feature set.

    Science.gov (United States)

    Kortelainen, Jukka; Seppänen, Tapio

    2013-01-01

    Emotions are fundamental for everyday life affecting our communication, learning, perception, and decision making. Including emotions into the human-computer interaction (HCI) could be seen as a significant step forward offering a great potential for developing advanced future technologies. While the electrical activity of the brain is affected by emotions, offers electroencephalogram (EEG) an interesting channel to improve the HCI. In this paper, the selection of subject-independent feature set for EEG-based emotion recognition is studied. We investigate the effect of different feature sets in classifying person's arousal and valence while watching videos with emotional content. The classification performance is optimized by applying a sequential forward floating search algorithm for feature selection. The best classification rate (65.1% for arousal and 63.0% for valence) is obtained with a feature set containing power spectral features from the frequency band of 1-32 Hz. The proposed approach substantially improves the classification rate reported in the literature. In future, further analysis of the video-induced EEG changes including the topographical differences in the spectral features is needed.

  11. EEG activity during the performance of complex mental problems.

    Science.gov (United States)

    Jausovec, N; Jausovec, K

    2000-04-01

    This study investigated differences in cognitive processes related to problem complexity. It was assumed that these differences would be reflected in respondents' EEG activity--spectral power and coherence. A second issue of the study was to compare differences between the lower (alpha(1) = 7.9-10.0 Hz), and upper alpha band (alpha(2) = 10.1-12.9 Hz). In the first experiment two well-defined problems with two levels of complexity were used. Only minor differences in EEG power and coherence measures related to problem complexity were observed. In the second experiment divergent production problems resembling tasks on creativity tests were compared with dialectic problems calling for creative solutions. Differences in EEG power measures were mainly related to the form of problem presentation (figural/verbal). In contrast, coherence was related to the level of creativity needed to solve a problem. Noticeable increased intra- and interhemispheric cooperation between mainly the far distant brain regions was observed in the EEG activity of respondents while solving the dialectic problems. These results are explained by the more intense involvement of the long cortico-cortical fiber system in creative thinking. Differences between the lower and upper alpha band were significant for the power and coherence measures. In Experiment 2, fewer differences were observed in power measures in the upper alpha band than in the lower alpha band. A reverse pattern was observed for the coherence measures. These results hint to a functional independence of the two alpha bands, however, they do not allow to draw firm conclusions about their functional meanings. The study showed that it is unlikely that individuals solve well- and ill-defined problems by employing similar cognitive strategies.

  12. The urban brain: analysing outdoor physical activity with mobile EEG.

    Science.gov (United States)

    Aspinall, Peter; Mavros, Panagiotis; Coyne, Richard; Roe, Jenny

    2015-02-01

    Researchers in environmental psychology, health studies and urban design are interested in the relationship between the environment, behaviour settings and emotions. In particular, happiness, or the presence of positive emotional mindsets, broadens an individual's thought-action repertoire with positive benefits to physical and intellectual activities, and to social and psychological resources. This occurs through play, exploration or similar activities. In addition, a body of restorative literature focuses on the potential benefits to emotional recovery from stress offered by green space and 'soft fascination'. However, access to the cortical correlates of emotional states of a person actively engaged within an environment has not been possible until recently. This study investigates the use of mobile electroencephalography (EEG) as a method to record and analyse the emotional experience of a group of walkers in three types of urban environment including a green space setting. Using Emotiv EPOC, a low-cost mobile EEG recorder, participants took part in a 25 min walk through three different areas of Edinburgh. The areas (of approximately equal length) were labelled zone 1 (urban shopping street), zone 2 (path through green space) and zone 3 (street in a busy commercial district). The equipment provided continuous recordings from five channels, labelled excitement (short-term), frustration, engagement, long-term excitement (or arousal) and meditation. A new form of high-dimensional correlated component logistic regression analysis showed evidence of lower frustration, engagement and arousal, and higher meditation when moving into the green space zone; and higher engagement when moving out of it. Systematic differences in EEG recordings were found between three urban areas in line with restoration theory. This has implications for promoting urban green space as a mood-enhancing environment for walking or for other forms of physical or reflective activity. Published

  13. A Active Micromachined Scalp Electrode Array for Eeg Signal Recording.

    Science.gov (United States)

    Alizadeh-Taheri, Babak

    This thesis describes the design, microfabrication, and testing of an active scalp EEG (electroencephalograph) electrode that has several distinct advantages over existing technologies. These advantages are: (1) no electrolyte used, (2) no skin preparation, (3) significantly reduced sensor size, and (4) compatibility with EEG monitoring systems. The active electrode array is an integrated system made of an array of capacitive sensors with local integrated circuitry housed in a package with batteries to power the circuitry. This level of integration was required to achieve the functional performance obtained by the electrode. The electrode consists of a silicon sensor substrate fabricated at UCD and a custom circuit substrate fabricated at Orbit Semiconductors, using a 2 μm analog CMOS technology. The circuitry was designed for low 1/f noise. One side of the sensor substrate holds four capacitive sensors with rm Si_3N _4 as the dielectric material. The opposite side holds aluminum pads for bonding to the circuit substrate. A via hole technology was developed to make electrical contact to both sides of the sensor substrate. The via holes are 200 μm square openings etched through the silicon by a reactive ion etching (RIE) process using an rm SF_6/O_2 gas mixture, oxidized, and then filled with sputtered aluminum for contacts through the substrate. The via holes have an aspect ratio of 2:1 (length of opening to depth of hole). Silicon RIE etch rates of up to 18 mu/hr were obtained under optimum conditions, using a 0.8 μm aluminum mask. The circuit and sensor substrates were bonded with silver adhesive, and wire bonding was used to make electrical contacts between the substrates. The two substrates were then integrated in a custom package for testing. The electrode was tested on an electrical test bench and on human subjects in four modalities of EEG activity, namely: (1) spontaneous EEG, (2) sensory event-related potentials, (3) brain stem potentials, and (4

  14. Amphetamine and haloperidol modulatory effects on Purkinje cell activity and on EEG power spectra in the acute rat model of epilepsy.

    Science.gov (United States)

    Culić, M; Saponjić, J; Janković, B; Rakić, L

    1994-12-05

    The modulation of cerebellar Purkinje cell activity and EEG from parietal cortex was studied in the rat model of epilepsy induced by penicillin under acute haloperidol and amphetamine treatment. The discharge pattern of Purkinje cells showed tendency towards inhibition and EEG power spectra increased after parenteral administration of penicillin (1000000 IU/kg, i.p.). Acute haloperidol treatment (1 mg/kg, i.p.), performed after the development of penicillin induced epileptic episodes, elicited a prominent excitation of Purkinje cell discharges associated with parallel increase in mean EEG power spectra. However, acute DL-amphetamine treatment induced marked suppression of Purkinje cell discharges as well as outstanding decrease of the mean EEG power spectra. These results indicate that cerebellar Purkinje cells may be important in the control of seizure activity and that noradrenergic influences are relevant.

  15. [Detection of mental task-induced changes in EEG patterns by detrended fluctuation analysis (DFA)].

    Science.gov (United States)

    Imai, Ryuko; Okamoto, Yasuyuki

    2008-05-01

    The detection of mental task-induced changes in electroencephalograms (EEGs) is a challenge. We herein attempted to identify such changes with a long-range correlation parameter, represented as a scaling exponent estimated by detrended fluctuation analysis (DFA). Each of ten volunteers (6 males and 4 females, aged from 23 to 59 years old) was asked to perform two different one minute tasks with an interval between the two while EEGs were recorded: one was to a serial multiplication by 2 (2, 4, 8, 16 ....), and the other, imaginary drawing of a landscape. Five-second segments of EEG data recorded before, during, and after each of the two mental tasks were applied to DFA. The scaling exponent significantly decreased at the right occipital position while imagining the drawing (p = 0.026, by paired t test). Our results suggest that the DFA scaling exponent may be a useful parameter to detect mental task-induced EEG changes.

  16. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    Science.gov (United States)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  17. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs.

    Science.gov (United States)

    Sabir, Hemmen; Wood, Thomas; Gill, Hannah; Liu, Xun; Dingley, John; Thoresen, Marianne

    2016-04-15

    Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pigs. Five healthy newborn pigs, receiving intravenous fentanyl sedation, were ventilated for 24 h with 50%Xenon, 30%O2 and 20%N2 at normothermia. The upper and lower voltage-range of the aEEG was continuously monitored together with cardiovascular parameters throughout a 1 h baseline period with fentanyl sedation only, followed by 24 h of Xenon administration. The median (IQR) upper and lower aEEG voltage during 1 h baseline was 48.0 μV (46.0-50.0) and 25.0 μV (23.0-26.0), respectively. The median (IQR) aEEG upper and lower voltage ranges were significantly depressed to 21.5 μV (20.0-26.5) and 12.0 μV (12.0-16.5) from 10 min after the onset of 50% Xenon administration (p=0.002). After the initial Xenon induced depression in background aEEG voltage, no further aEEG changes were seen over the following 24h of ventilation with 50% xenon under fentanyl sedation. Mean arterial blood pressure and heart rate remained stable. Mean arterial blood pressure and heart rate were not significantly influenced by 24h Xenon ventilation. 50% Xenon rapidly depresses background aEEG voltage to a steady ~50% lower level in sedated healthy newborn pigs. Therefore, care must be taken when interpreting the background voltage in neonates also receiving Xenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Telemetry EEG of parietal association cortex in heroin-induced CPP rats].

    Science.gov (United States)

    Pan, Qun-Wan; Zhu, Zai-Man; Li, Jing; Li, Min; Zhou, Hong-Min

    2014-01-01

    To determine the relationship between EEG changes of parietal association cortex (PtA) and drug-seeking behaviors of heroin-induced conditioned place preference (CPP) rats. Stereotaxic electrode was buried in the PtA of rats, which were then divided randomly into heroin-induced CPP group and operation-only control group. A CPP video system in combination with EEG wireless telemetry was used for recording PtA EEG and the behaviors of the rats-staying in black or white chamber of the video box; shuttling between black-white chambers or between white-black chambers. No significant difference in percentage of the telemetry EEG waves was found between the two groups of rats when they stayed in the black or white chambers. The heroin-induced CPP rats had increased percentage of delta waves (P rats shuttled between white-black chambers. EEG changes on PtA of heroin-induced CPP rats differ between staying and shuttling states. Such changes may not be associated with drug-seeking behaviors.

  19. Comparison of EEG and MEG in source localization of induced human gamma-band oscillations during visual stimulus.

    Science.gov (United States)

    Mideksa, K G; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2015-08-01

    High frequency gamma oscillations are indications of information processing in cortical neuronal networks. Recently, non-invasive detection of these oscillations have become one of the main research areas in magnetoencephalography (MEG) and electroencephalography (EEG) studies. The aim of this study, which is a continuation of our previous MEG study, is to compare the capability of the two modalities (EEG and MEG) in localizing the source of the induced gamma activity due to a visual stimulus, using a spatial filtering technique known as dynamic imaging of coherent sources (DICS). To do this, the brain activity was recorded using simultaneous MEG and EEG measurement and the data were analyzed with respect to time, frequency, and location of the strongest response. The spherical head modeling technique, such as, the three-shell concentric spheres and an overlapping sphere (local sphere) have been used as a forward model to calculate the external electromagnetic potentials and fields recorded by the EEG and MEG, respectively. Our results from the time-frequency analysis, at the sensor level, revealed that the parieto-occipital electrodes and sensors from both modalities showed a clear and sustained gamma-band activity throughout the post-stimulus duration and that both modalities showed similar strongest gamma-band peaks. It was difficult to interpret the spatial pattern of the gamma-band oscillatory response on the scalp, at the sensor level, for both modalities. However, the source analysis result revealed that MEG3 sensor type, which measure the derivative along the longitude, showed the source more focally and close to the visual cortex (cuneus) as compared to that of the EEG.

  20. Neural dynamics necessary and sufficient for transition into pre-sleep induced by EEG neurofeedback.

    Science.gov (United States)

    Kinreich, Sivan; Podlipsky, Ilana; Jamshy, Shahar; Intrator, Nathan; Hendler, Talma

    2014-08-15

    The transition from being fully awake to pre-sleep occurs daily just before falling asleep; thus its disturbance might be detrimental. Yet, the neuronal correlates of the transition remain unclear, mainly due to the difficulty in capturing its inherent dynamics. We used an EEG theta/alpha neurofeedback to rapidly induce the transition into pre-sleep and simultaneous fMRI to reveal state-dependent neural activity. The relaxed mental state was verified by the corresponding enhancement in the parasympathetic response. Neurofeedback sessions were categorized as successful or unsuccessful, based on the known EEG signature of theta power increases over alpha, temporally marked as a distinct "crossover" point. The fMRI activation was considered before and after this point. During successful transition into pre-sleep the period before the crossover was signified by alpha modulation that corresponded to decreased fMRI activity mainly in sensory gating related regions (e.g. medial thalamus). In parallel, although not sufficient for the transition, theta modulation corresponded with increased activity in limbic and autonomic control regions (e.g. hippocampus, cerebellum vermis, respectively). The post-crossover period was designated by alpha modulation further corresponding to reduced fMRI activity within the anterior salience network (e.g. anterior cingulate cortex, anterior insula), and in contrast theta modulation corresponded to the increased variance in the posterior salience network (e.g. posterior insula, posterior cingulate cortex). Our findings portray multi-level neural dynamics underlying the mental transition from awake to pre-sleep. To initiate the transition, decreased activity was required in external monitoring regions, and to sustain the transition, opposition between the anterior and posterior parts of the salience network was needed, reflecting shifting from extra- to intrapersonal based processing, respectively. Copyright © 2014 Elsevier Inc. All rights

  1. Acute effects of exercise on mood and EEG activity in healthy young subjects: a systematic review.

    Science.gov (United States)

    Lattari, Eduardo; Portugal, Eduardo; Moraes, Helena; Machado, Sérgio; Santos, Tony M; Deslandes, Andrea C

    2014-01-01

    Electroencephalography has been used to establish the relationship among cortical activity, exercise and mood, such as asymmetry, absolute and relative power. The purpose of this study was to systematically review the influence of cortical activity on mood state induced by exercise. The Preferred Reporting Items in Systematic reviews and Meta-Analyses was followed in this study. The studies were retrieved from MEDLINE/PubMed, ISI Web of Knowledge and SciELO. Search was conducted in all databases using the following terms: EEG asymmetry, sLORETA, exercise, with affect, mood and emotions. Based on the defined criteria, a total of 727 articles were found in the search conducted in the literature (666 in Pubmed, 54 in ISI Web of Science, 2 in SciELO and 5 in other data sources). Total of 11 studies were selected which properly met the criteria for this review. Nine out of 11 studies used the frontal asymmetry, four used absolute and relative power and one used sLORETA. With regard to changes in cortical activity and mood induced by exercise, six studies attributed this result to different intensities, one to duration, one to type of exercise and one to fitness level. In general, EEG measures showed contradictory evidence of its ability to predict or modulate psychological mood states through exercise intervention.

  2. EEG Projekt

    OpenAIRE

    Fogh, Kasper Wandahl; Greve, Marc

    2014-01-01

    This project is investigating EEG-technology, and how this can be used in games. Specificly, we are investigating how EEG measures brain activity, how you can interact with the technology and how good it works. Furthermore we investigate how the interaction can be used in a game. We investigate through theory on EEG, classification algorithms, Emotivs software and our own game working with both active and passive interaction. We found that even though the technology is new at a consumerlev...

  3. Multichannel EEG Visualization

    NARCIS (Netherlands)

    Caat, Michael ten

    2008-01-01

    Electroencephalography (EEG) measures electrical brain activity by electrodes attached to the scalp. Multichannel EEG refers to a measurement with a large number of electrodes. EEG has clinical as well as scientific applications, including neurology, psychology, pharmacy, linguistics, and biology.

  4. Relation Between EEG Activity and Brain Oxygenation in Preterm Neonates.

    Science.gov (United States)

    Caicedo, Alexander; Thewissen, Liesbeth; Smits, Anne; Naulaers, Gunnar; Allegaert, Karel; Van Huffel, Sabine

    2017-01-01

    This study investigates the relationship between brain oxygenation, assessed by means of near infrared spectroscopy (NIRS), and brain function, assessed by means of electroencephalography (EEG). Using NIRS signals measuring the regional cerebral oxygen saturation (rScO2) and computing the fractional tissue oxygen extraction (FTOE), we compared how these variables relate to different features extracted from the EEG, such as the inter-burst interval (IBI) duration and amplitude, the amplitude of the EEG, and the amplitude of the burst. A cohort of 22 neonates undergoing sedation by propofol was studied and a regression of the NIRS-derived values to the different EEG features was made. We found that higher values of FTOE were related to higher values of EEG amplitude. These results might be of used in the monitoring of proper brain function in neonates.

  5. Emotion processing biases and resting EEG activity in depressed adolescents

    Science.gov (United States)

    Auerbach, Randy P.; Stewart, Jeremy G.; Stanton, Colin H.; Mueller, Erik M.; Pizzagalli, Diego A.

    2015-01-01

    Background While theorists have posited that adolescent depression is characterized by emotion processing biases (greater propensity to identify sad than happy facial expressions), findings have been mixed. Additionally, the neural correlates associated with putative emotion processing biases remain largely unknown. Our aim was to identify emotion processing biases in depressed adolescents and examine neural abnormalities related to these biases using high-density resting EEG and source localization. Methods Healthy (n = 36) and depressed (n = 23) female adolescents, aged 13–18 years, completed a facial recognition task in which they identified happy, sad, fear, and angry expressions across intensities from 10% (low) to 100% (high). Additionally, 128-channel resting (i.e., task-free) EEG was recorded and analyzed using a distributed source localization technique (LORETA). Given research implicating the dorsolateral prefrontal cortex (DLPFC) in depression and emotion processing, analyses focused on this region. Results Relative to healthy youth, depressed adolescents were more accurate for sad and less accurate for happy, particularly low-intensity happy faces. No differences emerged for fearful or angry facial expressions. Further, LORETA analyses revealed greater theta and alpha current density (i.e., reduced brain activity) in depressed versus healthy adolescents, particularly in the left DLPFC (BA9/BA46). Theta and alpha current density were positively correlated, and greater current density predicted reduced accuracy for happy faces. Conclusion Depressed female adolescents were characterized by emotion processing biases in favor of sad emotions and reduced recognition of happiness, especially when cues of happiness were subtle. Blunted recognition of happy was associated with left DLPFC resting hypoactivity. PMID:26032684

  6. Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions.

    Science.gov (United States)

    Aftanas, Ljubomir; Golosheykin, Semen

    2005-06-01

    The main objective of the present investigation was to examine how long-term meditation practice is manifested in EEG activity under conditions of non-emotional arousal (eyes-closed and eyes-open periods, viewing emotionally neutral movie clip) and while experiencing experimentally induced negative emotions (viewing aversive movie clip). The 62-channel EEG was recorded in age-matched control individuals (n=25) and Sahaja Yoga meditators (SYM, n=25). Findings from the non-emotional continuum show that at the lowest level of arousal (eyes closed) SYM manifested larger power values in theta-1 (4-6 Hz), theta-2 (6-8 Hz) and alpha-1 (8-10 Hz) frequency bands. Although increasing arousal desynchronized activity in these bands in both groups, the theta-2 and alpha-1 power in the eyes-open period and alpha-1 power while viewing the neutral clip remained still higher in the SYM. During eyes-closed and eyes-open periods the controls were marked by larger right than left hemisphere power, indexing relatively more active left hemisphere parieto-temporal cortex whereas meditators manifested no hemisphere asymmetry. When contrasted with the neutral, the aversive movie clip yielded significant alpha desynchronization in both groups, reflecting arousing nature of emotional induction. In the control group along with alpha desynchronization affective movie clip synchronized gamma power over anterior cortical sites. This was not seen in the SYM. Overall, the presented report emphasizes that the revealed changes in the electrical brain activity associated with regular meditation practice are dynamical by nature and depend on arousal level. The EEG power findings also provide the first empirical proof of a theoretical assumption that meditators have better capabilities to moderate intensity of emotional arousal.

  7. EEG frequency tagging to explore the cortical activity related to the tactile exploration of natural textures.

    Science.gov (United States)

    Moungou, Athanasia; Thonnard, Jean-Louis; Mouraux, André

    2016-02-08

    When sliding our fingertip against a textured surface, complex vibrations are produced in the skin. It is increasingly recognised that the neural transduction and processing of these vibrations plays an important role in the dynamic tactile perception of textures. The aim of the present study was to develop a novel means to tag the cortical activity related to the processing of these vibrations, by periodically modulating the amplitude of texture exploration-induced vibrations such as to record a steady-state evoked potential (SS-EP). The EEG was recorded while the right index fingertip was scanned against four different textures using a constant exploration velocity. Amplitude modulation of the elicited vibrations was achieved by periodically modulating the force applied against the finger. Frequency analysis of the recorded EEG signals showed that modulation of the vibrations induced by the fingertip-texture interactions elicited an SS-EP at the frequency of modulation (3 Hz) as well as its second harmonic (6 Hz), maximal over parietal regions contralateral to the stimulated side. Textures generating stronger vibrations also generated SS-EPs of greater magnitude. Our results suggest that frequency tagging using SS-EPs can be used to isolate and explore the brain activity related to the tactile exploration of natural textures.

  8. Parametric and Nonparametric EEG Analysis for the Evaluation of EEG Activity in Young Children with Controlled Epilepsy

    Directory of Open Access Journals (Sweden)

    Vangelis Sakkalis

    2008-01-01

    Full Text Available There is an important evidence of differences in the EEG frequency spectrum of control subjects as compared to epileptic subjects. In particular, the study of children presents difficulties due to the early stages of brain development and the various forms of epilepsy indications. In this study, we consider children that developed epileptic crises in the past but without any other clinical, psychological, or visible neurophysiological findings. The aim of the paper is to develop reliable techniques for testing if such controlled epilepsy induces related spectral differences in the EEG. Spectral features extracted by using nonparametric, signal representation techniques (Fourier and wavelet transform and a parametric, signal modeling technique (ARMA are compared and their effect on the classification of the two groups is analyzed. The subjects performed two different tasks: a control (rest task and a relatively difficult math task. The results show that spectral features extracted by modeling the EEG signals recorded from individual channels by an ARMA model give a higher discrimination between the two subject groups for the control task, where classification scores of up to 100% were obtained with a linear discriminant classifier.

  9. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R

    2009-01-01

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes...

  10. Positive Emotional Experience: Induced by Vibroacoustic Stimulation Using a Body Monochord in Patients with Psychosomatic Disorders: Is Associated with an Increase in EEG-Theta and a Decrease in EEG-Alpha Power.

    Science.gov (United States)

    Sandler, H; Tamm, S; Fendel, U; Rose, M; Klapp, B F; Bösel, R

    2016-07-01

    Relaxation and meditation techniques are generally characterized by focusing attention, which is associated with an increase of frontal EEG Theta. Some studies on music perception suggest an activation of Frontal Midline Theta during emotionally positive attribution, others display a lateralization of electrocortical processes in the attribution of music induced emotion of different valence. The present study examined the effects of vibroacoustic stimulation using a Body Monochord and the conventional relaxation music from an audio CD on the spontaneous EEG of patients suffering from psychosomatic disorders (N = 60). Each treatment took about 20 min and was presented to the patients in random order. Subjective experience was recorded via self-rating scale. EEG power spectra of the Theta, Alpha-1 and Alpha-2 bands were analysed and compard between the two treatment conditions. There was no lateralization of electrocortical activity in terms of the emotional experience of the musical pieces. A reduction in Alpha-2 power occurred during both treatments. An emotionally positive attribution of the experience of the vibroacoustically induced relaxation state is characterized by a more pronounced release of control. In the context of focused attention this is interpreted as flow experience. The spontaneous EEG showed an increase in Theta power, particularly in the frontal medial and central medial area, and a greater reduction in Alpha-2 power. The intensity of positive emotional feelings during the CD music showed no significant effect on the increase in Theta power.

  11. Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy.

    Science.gov (United States)

    Salek-Haddadi, Afraim; Mayer, Thomas; Hamandi, Khalid; Symms, Mark; Josephs, Oliver; Fluegel, Dominique; Woermann, Friedrich; Richardson, Mark P; Noppeney, Uta; Wolf, Peter; Koepp, Matthias J

    2009-02-01

    To characterize the spatial relationship between activations related to language-induced seizure activity, language processing, and motor control in patients with reading epilepsy. We recorded and simultaneously monitored several physiological parameters [voice-recording, electromyography (EMG), electrocardiography (ECG), electroencephalography (EEG)] during blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in nine patients with reading epilepsy. Individually tailored language paradigms were used to induce and record habitual seizures inside the MRI scanner. Voxel-based morphometry (VBM) was used for structural brain analysis. Reading-induced seizures occurred in six out of nine patients. One patient experienced abundant orofacial reflex myocloni during silent reading in association with bilateral frontal or generalized epileptiform discharges. In a further five patients, symptoms were only elicited while reading aloud with self-indicated events. Consistent activation patterns in response to reading-induced myoclonic seizures were observed within left motor and premotor areas in five of these six patients, in the left striatum (n = 4), in mesiotemporal/limbic areas (n = 4), in Brodmann area 47 (n = 3), and thalamus (n = 2). These BOLD activations were overlapping or adjacent to areas physiologically activated during language and facial motor tasks. No subtle structural abnormalities common to all patients were identified using VBM, but one patient had a left temporal ischemic lesion. Based on the findings, we hypothesize that reflex seizures occur in reading epilepsy when a critical mass of neurons are activated through a provoking stimulus within corticoreticular and corticocortical circuitry subserving normal functions.

  12. Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms

    NARCIS (Netherlands)

    Hindriks, Rikkert; van Putten, Michel Johannes Antonius Maria

    2012-01-01

    During the maintenance period of propofol-induced general anesthesia, specific changes in spontaneous EEG rhythms can be observed. These comprise increased delta and theta power and the emergence of alpha oscillations over frontal regions. In this study we use a meanfield model of the

  13. An EEG study on the effects of induced spiritual experiences on somatosensory processing and sensory suppresion

    NARCIS (Netherlands)

    van Elk, M.

    2014-01-01

    In the present EEG study a placebo God Helmet was used to induce spiritual experiences in the lab, by boosting the expectations and suggestibility of participants. At a behavioral level it was found that instructions regarding whether the helmet was turned on or off were not effective, but that

  14. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research

    Science.gov (United States)

    Lachaux, Jean-Philippe; Axmacher, Nikolai; Mormann, Florian; Halgren, Eric; Crone, Nathan E.

    2013-01-01

    Human intracranial EEG (iEEG) recordings are primarily performed in epileptic patients for presurgical mapping. When patients perform cognitive tasks, iEEG signals reveal high-frequency neural activities (HFA, between around 40 Hz and 150 Hz) with exquisite anatomical, functional and temporal specificity. Such HFA were originally interpreted in the context of perceptual or motor binding, in line with animal studies on gamma-band (‘40Hz’) neural synchronization. Today, our understanding of HFA has evolved into a more general index of cortical processing: task-induced HFA reveals, with excellent spatial and time resolution, the participation of local neural ensembles in the task-at-hand, and perhaps the neural communication mechanisms allowing them to do so. This review promotes the claim that studying HFA with iEEG provides insights into the neural bases of cognition that cannot be derived as easily from other approaches, such as fMRI. We provide a series of examples supporting that claim, drawn from studies on memory, language and default-mode networks, and successful attempts of real-time functional mapping. These examples are followed by several guidelines for HFA research, intended for new groups interested by this approach. Overall, iEEG research on HFA should play an increasing role in cognitive neuroscience in humans, because it can be explicitly linked to basic research in animals. We conclude by discussing the future evolution of this field, which might expand that role even further, for instance through the use of multi-scale electrodes and the fusion of iEEG with MEG and fMRI. PMID:22750156

  15. Bayesian Correlated Component Analysis for inference of joint EEG activation

    DEFF Research Database (Denmark)

    Poulsen, Andreas Trier; Kamronn, Simon Due; Parra, Lucas

    2014-01-01

    We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset.......We propose a probabilistic generative multi-view model to test the representational universality of human information processing. The model is tested in simulated data and in a well-established benchmark EEG dataset....

  16. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs

    OpenAIRE

    Thoresen, Marianne; Wood, Thomas Ragnar; Gill, Hannah; Hemmen, Sabir; Liu, Xun; Dingley, John

    2016-01-01

    Background Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pig...

  17. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  18. Detection of epileptiform activity in EEG signals based on time-frequency and nonlinear analysis

    Directory of Open Access Journals (Sweden)

    Dragoljub eGajic

    2015-03-01

    Full Text Available We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using nonlinear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved.

  19. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations.

    Science.gov (United States)

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria; Kluge, Götz; Griefahn, Barbara

    2008-09-01

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean+/-SD age 37.9+/-13 years), 985 nights and 23,855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure-response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep.

  20. Cross-conditional entropy and coherence analysis of pharmaco-EEG changes induced by alprazolam.

    Science.gov (United States)

    Alonso, J F; Mañanas, M A; Romero, S; Rojas-Martínez, M; Riba, J

    2012-06-01

    Quantitative analysis of electroencephalographic signals (EEG) and their interpretation constitute a helpful tool in the assessment of the bioavailability of psychoactive drugs in the brain. Furthermore, psychotropic drug groups have typical signatures which relate biochemical mechanisms with specific EEG changes. To analyze the pharmacological effect of a dose of alprazolam on the connectivity of the brain during wakefulness by means of linear and nonlinear approaches. EEG signals were recorded after alprazolam administration in a placebo-controlled crossover clinical trial. Nonlinear couplings assessed by means of corrected cross-conditional entropy were compared to linear couplings measured with the classical magnitude squared coherence. Linear variables evidenced a statistically significant drug-induced decrease, whereas nonlinear variables showed significant increases. All changes were highly correlated to drug plasma concentrations. The spatial distribution of the observed connectivity changes clearly differed from a previous study: changes before and after the maximum drug effect were mainly observed over the anterior half of the scalp. Additionally, a new variable with very low computational cost was defined to evaluate nonlinear coupling. This is particularly interesting when all pairs of EEG channels are assessed as in this study. Results showed that alprazolam induced changes in terms of uncoupling between regions of the scalp, with opposite trends depending on the variables: decrease in linear ones and increase in nonlinear features. Maps provided consistent information about the way brain changed in terms of connectivity being definitely necessary to evaluate separately linear and nonlinear interactions.

  1. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    Science.gov (United States)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  2. EEG activity in Muslim prayer: A pilot study

    Directory of Open Access Journals (Sweden)

    Haider H. Alwasiti

    2010-12-01

    Full Text Available Almost all religions incorporate some form of meditation. Muslim prayer is the meditation of Islam. It is an obligatory prayer for all Muslims that is performed five times a day. Although a large body of literature exists on EEG changes in meditation, to date there has been no research published in a peer-reviewed journal on EEG changes during Muslim prayer. The purpose of this pilot study is to encourage further investigation on this type of meditation. Results of EEG analysis in twenty-five trials of Muslim prayer are reported. Some of the findings are consistent with the majority of the previous meditation studies (alpha rhythm slowing, increased alpha rhythm coherence. However, Muslim prayer does not show an increase in alpha and/or theta power like most of the results of other meditation studies. The possible cause of this discrepancy in meditation-related studies is highlighted and a systematic and standardised roadmap for future Muslim prayer EEG research is proposed.

  3. Spectral characteristics of the newborn rhesus macaque EEG reflect functional cortical activity.

    Science.gov (United States)

    Vanderwert, Ross E; Ferrari, Pier F; Paukner, Annika; Bower, Seth B; Fox, Nathan A; Suomi, Stephen J

    2012-12-05

    Brain electrical activity is one means of assessing neural development in awake, reactive infants. The development of the electroencephalogram (EEG) in the first week of infant rhesus macaque life is poorly understood though recent work has demonstrated the utility of using this measure to assess neural responses to biologically meaningful stimuli. Here we report on the emergence of EEG rhythms in one-week-old infant rhesus macaques under both light and dark conditions. Our data show that the 5-7Hz frequency band responds reliably to changes in illumination. As well, we found EEG in higher frequencies (12-20Hz) that significantly increase between dark and light conditions similar to the increase in the beta band of humans during cognitive tasks. These findings demonstrate similarities between infant human and infant monkey EEG and suggest approaches for future translational research in developmental psychobiology. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Measuring Brain Stimulation Induced Changes in Cortical Properties Using TMS-EEG.

    Science.gov (United States)

    Chung, Sung Wook; Rogasch, Nigel C; Hoy, Kate E; Fitzgerald, Paul B

    2015-01-01

    Neuromodulatory brain stimulation can induce plastic reorganization of cortical circuits that persist beyond the period of stimulation. Most of our current knowledge about the physiological properties has been derived from the motor cortex. The integration of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a valuable method for directly probing excitability, connectivity and oscillatory dynamics of regions throughout the brain. Offering in depth measurement of cortical reactivity, TMS-EEG allows the evaluation of TMS-evoked components that may act as a marker for cortical excitation and inhibition. A growing body of research is using concurrent TMS and EEG (TMS-EEG) to explore the effects of different neuromodulatory techniques such as repetitive TMS and transcranial direct current stimulation on cortical function, particularly in non-motor regions. In this review, we outline studies examining TMS-evoked potentials and oscillations before and after, or during a single session of brain stimulation. Investigating these studies will aid in our understanding of mechanisms involved in the modulation of excitability and inhibition by neuroplasticity following different stimulation paradigms. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Analyzing EEG signals under insulin-induced hypoglycemia in type 1 diabetes patients.

    Science.gov (United States)

    Nguyen, Lien B; Nguyen, Anh V; Ling, Sai Ho; Nguyen, Hung T

    2013-01-01

    Hypoglycemia is dangerous and considered as a limiting factor of the glycemic control therapy for patients with type 1 diabetes mellitus (T1DM). Nocturnal hypoglycemia is especially feared because early warning symptoms are unclear during sleep so an episode of hypoglycemia may lead to a fatal effect on patients. The main objective of this paper is to explore the correlation between hypoglycemia and electroencephalography (EEG) signals. To do this, the EEG of five T1DM adolescents from an overnight insulin-induced study is analyzed by spectral analysis to extract four different parameters. We aim to explore the response of these parameters during the clamp study which includes three main phases of normal, hypoglycemia and recovery. We also look at data at the blood glucose level (BGL) of 3.3-3.9 mmol/l to find a threshold to distinguish between non-hypoglycemia and hypoglycemia states. The results show that extracted EEG parameters are highly correlated with patients' conditions during the study. It is also shown that at the BGL of 3.3 mmol/l, responses to hypoglycemia in EEG signals start to significantly occur.

  6. Identification of resting and active state EEG features of Alzheimer's disease using discrete wavelet transform.

    Science.gov (United States)

    Ghorbanian, Parham; Devilbiss, David M; Verma, Ajay; Bernstein, Allan; Hess, Terry; Simon, Adam J; Ashrafiuon, Hashem

    2013-06-01

    Alzheimer's disease (AD) is associated with deficits in a number of cognitive processes and executive functions. Moreover, abnormalities in the electroencephalogram (EEG) power spectrum develop with the progression of AD. These features have been traditionally characterized with montage recordings and conventional spectral analysis during resting eyes-closed and resting eyes-open (EO) conditions. In this study, we introduce a single lead dry electrode EEG device which was employed on AD and control subjects during resting and activated battery of cognitive and sensory tasks such as Paced Auditory Serial Addition Test (PASAT) and auditory stimulations. EEG signals were recorded over the left prefrontal cortex (Fp1) from each subject. EEG signals were decomposed into sub-bands approximately corresponding to the major brain frequency bands using several different discrete wavelet transforms and developed statistical features for each band. Decision tree algorithms along with univariate and multivariate statistical analysis were used to identify the most predictive features across resting and active states, separately and collectively. During resting state recordings, we found that the AD patients exhibited elevated D4 (~4-8 Hz) mean power in EO state as their most distinctive feature. During the active states, however, the majority of AD patients exhibited larger minimum D3 (~8-12 Hz) values during auditory stimulation (18 Hz) combined with increased kurtosis of D5 (~2-4 Hz) during PASAT with 2 s interval. When analyzed using EEG recording data across all tasks, the most predictive AD patient features were a combination of the first two feature sets. However, the dominant discriminating feature for the majority of AD patients were still the same features as the active state analysis. The results from this small sample size pilot study indicate that although EEG recordings during resting conditions are able to differentiate AD from control subjects, EEG activity

  7. EEG activities during elicited sleep onset REM and NREM periods reflect different mechanisms of dream generation. Electroencephalograms. Rapid eye movement.

    Science.gov (United States)

    Takeuchi, Tomoka; Ogilvie, Robert D; Murphy, Timothy I; Ferrelli, Anthony V

    2003-02-01

    To be the first to compare EEG power spectra during sleep onset REM periods (SOREMP) and sleep onset NREM periods (NREMP) in normal individuals and relate this to dream appearance processes underlying these different types of sleep periods. Eight healthy undergraduates spent 7 consecutive nights in the sleep lab including 4 nights for SOREMP elicitation using the Sleep Interruption Technique. This enabled us to control preceding sleep processes between SOREMP and NREMP. EEG power spectra when participants did and did not report 'dreams' were compared between both types of sleep. Sleep stages, subjective measurements including dream property scores, sleepiness, mood, and tiredness after awakenings were also examined to determine their consistency with EEG findings. Increased alpha EEG activities (11.72-13.67 Hz) observed mainly in the central area were related to the absence of SOREMP dreams and appearance of NREMP dreams. Analyses of sleep stages combining two studies (16 participants) also supported the Fast Fourier Transform findings, showing that when dreams were reported there were decreased amounts of stage 2 and increased stage REM in SOREMP and increased stage W in NREMP. SOREMP dreams were more bizarre than NREMP dreams. Participants felt more tired after SOREMP with dreams than without dreams, while the opposite was observed after NREMP episodes. EEG power spectra patterns reflected different physiological mechanisms underlying generation of SOREMP and NREMP dreams. The same relationships were also reflected by sleep stage analyses as well as subjective measurements including dream properties and tiredness obtained after awakenings. This study not only supports the hypothesized relationships between REM mechanisms and REM dreams as well as arousal processes and NREM dreams, it also provides a new perspective to dream research due to its unique techniques to awaken participants and collect REM dreams during experimentally induced SOREMP.

  8. High-frequency EEG oscillations in hyperthermia-induced seizures of Scn1a mutant rats.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Ohmori, Iori; Hayashi, Keiichiro; Kitagawa, Yuichiro; Ouchida, Mamoru; Inoue, Takushi; Ohtsuka, Yoko

    2013-02-01

    We examined high-frequency oscillations (HFOs) in the ictal cortical EEGs of hyperthermia-induced seizures in a rat model of febrile seizures with an SCN1A mutation as a means of investigating the pathophysiological mechanisms underlying the generation of febrile seizures. We used 13 male homozygous Scn1a-N1417H mutant rats (F344/NSlc-Scn1a(Kyo811)) and 10 wild-type control rats. Generalized tonic-clonic seizures were induced in all mutant rats, and HFOs with frequencies ranging from 200 to 400 Hz were found to precede spikes during the clonic phases of these seizures in the ictal EEGs. The proportion of all spikes in each seizure that were associated with HFOs increased with age. In time-frequency spectra of the EEG data, the HFOs had a mean peak frequency of 301.1 ± 65.4 Hz (range: 156.3-468.8Hz) and a mean peak power of 24.6 ± 3.8 dB (range: 11.4-33.4 dB); the peak power increased with age. Regarding the wild-type rats, a brief seizure without unmistakable HFOs was exceptionally induced in only one rat. The generation mechanism of febrile seizures is still an unanswered question. The detection of HFOs from the ictal EEGs of hyperthermia-induced seizures may provide a cue to answering this open question, although in this research we were unable to provide sufficient evidence to prove that the generation of HFOs depended on the mutation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Baclofen and gamma-hydroxybutyrate differentially altered behavior, EEG activity and sleep in rats.

    Science.gov (United States)

    Hodor, A; Palchykova, S; Gao, B; Bassetti, C L

    2015-01-22

    Animal and human studies have shown that sleep may have an impact on functional recovery after brain damage. Baclofen (Bac) and gamma-hydroxybutyrate (GHB) have been shown to induce physiological sleep in humans, however, their effects in rodents are unclear. The aim of this study is to characterize sleep and electroencelphalogram (EEG) after Bac and GHB administration in rats. We hypothesized that both drugs would induce physiological sleep. Adult male Sprague-Dawley rats were implanted with EEG/electromyogram (EMG) electrodes for sleep recordings. Bac (10 or 20 mg/kg), GHB (150 or 300 mg/kg) or saline were injected 1 h after light and dark onset to evaluate time of day effect of the drugs. Vigilance states and EEG spectra were quantified. Bac and GHB induced a non-physiological state characterized by atypical behavior and an abnormal EEG pattern. After termination of this state, Bac was found to increase the duration of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep (∼90 and 10 min, respectively), reduce sleep fragmentation and affect NREM sleep episode frequency and duration (pEEG power density in NREM sleep in the frequencies 1.5-6.5 and 9.5-21.5 Hz compared to saline (psleep was enhanced 1.5-3-fold during the first 1-2 h following termination of the non-physiological state. The magnitude of drug effects was stronger during the dark phase. While both Bac and GHB induced a non-physiological resting state, only Bac facilitated and consolidated sleep, and promoted EEG delta oscillations thereafter. Hence, Bac can be considered a sleep-promoting drug and its effects on functional recovery after stroke can be evaluated both in humans and rats. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Brain activity and learning of mathematical rules--effects on the frequencies of EEG.

    Science.gov (United States)

    Skrandies, Wolfgang; Klein, Alexander

    2015-04-07

    We investigated the change of evoked EEG frequencies induced by learning to solve mathematical tasks by applying divisibility rules. The performance on easy (divisibility by 2, 3, or 5) and hard tasks (divisibility by 9 or by 11) was compared. In a behavioral experiment on 52 adults we found a significant increase in performance from 67% to 90% correct responses induced by rule learning. Subsequently, the EEG data recorded from 30 additional volunteers were analyzed. EEG recordings were performed in two parts: First, subjects had to solve 200 tasks without knowing the divisibility rules. Then the rules were explained, followed by another set of 200 tasks. EEG was measured simultaneously in 30 channels, artifacts were removed offline, and the data before and after rule learning were compared. A wavelet transformation with the Morlet-5 wavelet was computed, and the scalp topography of the maximal frequency and its occurrence time was compared. Largest effects were observed with frequencies between about 6 and 18 Hz. In the frequency band between 12 and 30 Hz maximal frequencies were significantly different after successful learning over frontal and centro-parietal scalp areas of the right hemisphere. These changes were paralleled by decreased response times. In summary, our data illustrate a significant relation between successful learning divisibility rules and changes in the frequency content of the task-related EEG. Significant effects were observed after a very short training period of less than 10 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Utility of EEG Activation Procedures in Epilepsy: A Population-Based Study.

    Science.gov (United States)

    Baldin, Elisa; Hauser, W A; Buchhalter, Jeffrey R; Hesdorffer, Dale C; Ottman, Ruth

    2017-11-01

    No previous population-based study has addressed the contribution of activation procedures to the yield of epileptiform abnormalities on serial EEGs. We assessed yield of activation-related epileptiform abnormalities and predictors of finding an activation-related abnormality with multiple EEGs in a population-based study of newly diagnosed epilepsy. We used the resources of the Rochester Epidemiology Project to identify 449 residents of Rochester, Minnesota with a diagnosis of newly diagnosed epilepsy at age 1 year or older, between 1960 and 1994, who had at least one EEG. Information on all activation procedures (i.e., sleep, hyperventilation, and photic activation) and seizure/epilepsy characteristics was obtained by comprehensive review of medical records. At the first EEG, the yield of epileptiform abnormalities was greatest for individuals 1 to 19 years of age at diagnosis, for each activation procedure. The yield in patients aged 1 to 19 versus ≥20 years was 21.6% versus 10.3% for sleep, 6.5% versus 3.3% for photic stimulation, and 10.3% versus 5% for hyperventilation. Among young people (aged 1-19 years), sleep was associated with an increased likelihood of finding an activation-related abnormality on any EEG. The likelihood of finding an activation-related abnormality on any EEG was decreased for postnatal symptomatic and for unknown etiology. Among activation procedures, sleep showed the highest yield of epileptiform abnormalities. There was a low yield for photic stimulation and hyperventilation. Within each activation procedure, younger age at diagnosis had the greatest yield. Sleep is the most effective activation procedure, especially in younger patients, and should be performed when possible.

  12. Rhythmic activity in EEG and sleep in rats with absence epilepsy.

    Science.gov (United States)

    Sitnikova, Evgenia; Hramov, Alexander E; Grubov, Vadim; Koronovsky, Alexey A

    2016-01-01

    This study examines the hypothesis that absence epilepsy is accompanied by disturbances of rhythmic activity in EEG during sleep. Sleep-wake architecture and time-frequency parameters of EEG were analyzed during drowsiness and sleep in WAG/Rij rats with genetic predisposition to absence epilepsy. The incidence of seizures varied in a group of 10 rats, in which 5 individuals did not develop epileptic discharges in their EEG (asymptomatic rats). In contrast to asymptomatic, symptomatic subjects (1) displayed less percentage of wakefulness EEG pattern and more non-REM sleep, (2) showed higher beta and less delta EEG power in frontal cortex during non-REM sleep. Mid-frequency oscillations, such as sleep spindles and 5-9 Hz oscillations, were detected in EEG automatically and underwent time-frequency analysis by means of skeletons of wavelet surfaces. Some mid-frequency oscillations showed "complex" frequency structure, consisting of the dominant and subdominant components. "Complex" sleep spindles more frequently appeared in asymptomatic rats than in symptomatic, whereas the dominant frequency of these spindles in symptomatic rats was higher than in asymptomatic (12.7 vs 11.9 Hz). In general, low-frequency components were readily integrated in sleep spindles in asymptomatic WAG/Rij rats, and decrease in number of "complex" sleep spindles may be associated with epileptic phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evaluation of the association of menopausal status with delta and beta EEG activity during sleep.

    Science.gov (United States)

    Campbell, Ian G; Bromberger, Joyce T; Buysse, Daniel J; Hall, Martica H; Hardin, Kimberly A; Kravitz, Howard M; Matthews, Karen A; Rasor, Marianne O'Neill; Utts, Jessica; Gold, Ellen

    2011-11-01

    Women report increasing sleep difficulties during menopause, but polysomnographic measures do not detect sleep disturbances. We examined whether two spectral analysis sleep measures, delta and beta power, were related to menopausal status. The Study of Women's Health Across the Nation (SWAN) Sleep Study compared cross-sectionally spectral sleep measures in women in different stages of menopause. Sleep EEG was recorded in the participants' homes with ambulatory recorders. A multi-ethnic cohort of premenopausal and early perimenopausal (n = 189), late perimenopausal (n = 73), and postmenopausal (n = 59) women. EEG power in the delta and beta frequency bands was calculated for all night NREM and all night REM sleep. Physical, medical, psychological, and socioeconomic data were collected from questionnaires and diaries. Beta EEG power in NREM and REM sleep in late perimenopausal and postmenopausal women exceeded that in pre- and early perimenopausal women. Neither all night delta power nor the trend in delta power across the night differed by menopausal status. In a multivariate model that controlled for the physical, demographic, behavioral, psychological, and health-related changes that accompany menopause, beta power in both NREM and REM sleep EEG was significantly related to menopausal status. The frequency of hot flashes explained part but not all of the relation of beta power to menopausal status. Elevated beta EEG power in late perimenopausal and postmenopausal women provides an objective measure of disturbed sleep quality in these women. Elevated beta EEG activity suggests that arousal level during sleep is higher in these women.

  14. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback.

    Science.gov (United States)

    Zotev, Vadim; Phillips, Raquel; Yuan, Han; Misaki, Masaya; Bodurka, Jerzy

    2014-01-15

    Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neurofeedback (rtfMRI-EEG-nf). It is based on a novel system for real-time integration of simultaneous rtfMRI and EEG data streams. We applied the rtfMRI-EEG-nf to training of emotional self-regulation in healthy subjects performing a positive emotion induction task based on retrieval of happy autobiographical memories. The participants were able to simultaneously regulate their BOLD fMRI activation in the left amygdala and frontal EEG power asymmetry in the high-beta band using the rtfMRI-EEG-nf. Our proof-of-concept results demonstrate the feasibility of simultaneous self-regulation of both hemodynamic (rtfMRI) and electrophysiological (EEG) activities of the human brain. They suggest potential applications of rtfMRI-EEG-nf in the development of novel cognitive neuroscience research paradigms and enhanced cognitive therapeutic approaches for major neuropsychiatric disorders, particularly depression. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Constitutive spectral EEG peaks in the gamma range: suppressed by sleep, reduced by mental activity and resistant to sensory stimulation

    Directory of Open Access Journals (Sweden)

    Tyler Samuel Grummett

    2014-11-01

    Full Text Available Objective: In a systematic study of gamma activity in neuro-psychiatric disease, we unexpectedly observed distinctive, apparently persistent, electroencephalogram (EEG spectral peaks in the gamma range (25-100 Hz. Our objective, therefore, was to examine the incidence, distribution and some of the characteristics of these peaks.Methods: High sample-rate, 128-channel, EEG was recorded in 603 volunteers (510 with neuropsychiatric disorders, 93 controls, whilst performing cognitive tasks, and converted to power spectra. Peaks of spectral power, including in the gamma range, were determined algorithmically for all electrodes. To determine if peaks were stable, 24-hour ambulatory recordings were obtained from 16 subjects with peaks. In 10 subjects, steady-state responses to stimuli at peak frequency were compared with off-peak-frequency stimulation to determine if peaks were a feature of underlying network resonances and peaks were evaluated with easy and hard versions of oddball tasks to determine if peaks might be influenced by mental effort.Results: 57 % of subjects exhibited peaks > 2 dB above trough power at or above 25 Hz. Larger peaks (> 5 dB were present in 13 % of subjects. Peaks were distributed widely over the scalp, more frequent centrally. Peaks were present through the day and were suppressed by slow-wave-sleep. Steady-state responses were the same with on- or off-peak sensory stimulation. In contrast, mental effort resulted in reductions in power and frequency of gamma peaks, although the suppression did not correlate with level of effort.Conclusions: Gamma EEG can be expressed constitutively as concentrations of power in narrow or wide frequency bands that play an, as yet, unknown role in cognitive activity.Significance: These findings expand the described range of rhythmic EEG phenomena. In particular, in addition to evoked, induced and sustained gamma band activity, gamma activity can be present constitutively in spectral peaks.

  16. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.

    Science.gov (United States)

    Iacoviello, Daniela; Petracca, Andrea; Spezialetti, Matteo; Placidi, Giuseppe

    2015-12-01

    The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. The obtained

  17. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    Directory of Open Access Journals (Sweden)

    Mara eKottlow

    2015-05-01

    Full Text Available Working memory (WM processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health.We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods.Four temporally coherent networks - the default mode network (DMN, the dorsal attention, the right and the left WM network - were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks’ pre-stimulus activation upon retention-related EEG activity in the theta, alpha and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing.We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be online synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals.

  18. Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

    Directory of Open Access Journals (Sweden)

    Samantha J Broyd

    Full Text Available BACKGROUND: The default-mode network (DMN is characterised by coherent very low frequency (VLF brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. METHODOLOGY/PRINCIPAL FINDINGS: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. CONCLUSIONS/SIGNIFICANCE: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of

  19. Generalized paroxysmal fast activity in EEG: An unrecognized finding in genetic generalized epilepsy.

    Science.gov (United States)

    Sagi, Vishwanath; Kim, Inyup; Bhatt, Amar B; Sonmezturk, Hasan; Abou-Khalil, Bassel W; Arain, Amir M

    2017-11-01

    To study generalized paroxysmal fast activity (GPFA) in patients with genetic generalized epilepsy (GGE). GPFA is an electroencephalographic (EEG) finding in patients with symptomatic generalized epilepsy consisting of 15-25Hz bifrontally predominant generalized fast activity seen predominantly in sleep. Historically GPFA is linked to epileptic encephalopathy with drug resistant epilepsy and intellectual disability. However, GPFA has been rarely described as an atypical finding in patients with GGE without negative prognostic implication. We report cognitive profile and seizure characteristics in seven patients with GGE and GPFA. The Vanderbilt EMU and EEG reports were searched for the keywords "idiopathic generalized epilepsy", "GPFA"and "generalized spike and wave discharges (GSWD)". We reviewed the EEG tracings and the electronic medical records of patients thus identified. The seizure type, frequency, neurological work-up, clinical profile and imaging data were recorded. Awake and sleep states were captured on EEGs of all patients. On EEG tracing review six patients were confirmed to have GSWD and GPFA; one patient had GPFA but no GSWD. All patients had normal cognitive function. Four had a normal brain MRI and one a normal head CT (two were never imaged). None of the patients had tonic seizures. The main seizure type was generalized tonic-clonic seizures (GTCS) in five patients, absence in two. Age at onset of epilepsy ranged from 4 to 24years. The mean GTC seizure frequency at the time of EEG was 3; two patients were seizure free on two antiepileptic drugs (AEDs). GPFA can be an unrecognized electrographic finding in patients with genetic generalized epilepsy. While GPFA remains an important diagnostic EEG feature for epileptic encephalopathy (Lennox-Gastaut syndrome) it is not specific for this diagnosis. Thus, GPFA may have a spectrum of variable phenotypic expression. The finding of GPFA is not necessarily indicative of unfavorable outcome. Copyright

  20. Frontal EEG alpha activity and obsessive-compulsive behaviors in non-clinical young adults: a pilot study

    OpenAIRE

    Michael eWong; Woody, Erik Z.; Schmidt, Louis A; Michael eVan Ameringen; Noam eSoreni; Henry eSzechtman

    2015-01-01

    Previous studies have shown that the resting electroencephalogram (EEG) alpha patterns of non-clinical participants who score high on measures of negative affect, such as depression and shyness, are different from those who score low. However, we know relatively little about patterns of resting EEG alpha patterns in a non-clinical sample of individuals with high levels of obsessive-compulsive behaviors indicative of obsessive-compulsive disorder (OCD). Here we measured resting EEG alpha activ...

  1. A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem

    DEFF Research Database (Denmark)

    Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Pontil, Massimiliano

    2014-01-01

    We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured...... matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios...

  2. Frontal EEG alpha activity and obsessive-compulsive behaviors in nonclinical young adults: A pilot study

    Directory of Open Access Journals (Sweden)

    Michael eWong

    2015-09-01

    Full Text Available Previous studies have shown that the resting electroencephalogram (EEG alpha patterns of nonclinical participants who score high on measures of negative affect, such as depression and shyness, are different from those who score low. However, we know relatively little about patterns of resting EEG alpha patterns in a nonclinical sample of individuals with high levels of obsessive-compulsive behaviors indicative of OCD. Here we measured resting EEG alpha activity in frontal and parietal regions of nonclinical participants who scored high and low on the Padua-R, a measure of the severity of OCD-related behaviors. We found that participants who scored high on the Padua-R exhibited decreased overall activity in frontal regions relative to individuals who scored low on the measure. We speculate that frontal hypoactivity may be a possible marker and/or index of risk for OCD.

  3. Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG.

    Science.gov (United States)

    Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Babadi, Behtash; Iglesias, Juan Eugenio; Hämäläinen, Matti S; Purdon, Patrick L

    2017-11-14

    Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. Copyright © 2017 the Author(s). Published by PNAS.

  4. Detection of epileptic activity in fMRI without recording the EEG

    Science.gov (United States)

    Lopes, R.; Lina, J.M.; Fahoum, F.; Gotman, J.

    2013-01-01

    EEG–fMRI localizes epileptic foci by detecting cerebral hemodynamic changes that are correlated to epileptic events visible in EEG. However, scalp EEG is insensitive to activity restricted to deep structures and recording the EEG in the scanner is complex and results in major artifacts that are difficult to remove. This study presents a new framework for identifying the BOLD manifestations of epileptic discharges without having to record the EEG. The first stage is based on the detection of epileptic events for each voxel by sparse representation in the wavelet domain. The second stage is to gather voxels according to proximity in time and space of detected activities. This technique was evaluated on data generated by superposing artificial responses at different locations and responses amplitude in the brain for 6 control subject runs. The method was able to detect effectively and consistently for responses amplitude of at least 1% above baseline. 46 runs from 15 patients with focal epilepsy were investigated. The results demonstrate that the method detected at least one concordant event in 37/41 runs. The maps of activation obtained from our method were more similar to those obtained by EEG–fMRI than to those obtained by the other method used in this context, 2D-Temporal Cluster Analysis. For 5 runs without event read on scalp EEG, 3 runs showed an activation concordant with the patient’s diagnostic. It may therefore be possible, at least when spikes are infrequent, to detect their BOLD manifestations without having to record the EEG. PMID:22306797

  5. Anticonvulsant effect of Marsilea quadrifolia Linn. on pentylenetetrazole induced seizure: a behavioral and EEG study in rats.

    Science.gov (United States)

    Sahu, Surajit; Dutta, Goutam; Mandal, Nilotpal; Goswami, Ananda Raj; Ghosh, Tusharkanti

    2012-05-07

    Marsilea quadrifolia Linn (MQ) extract has been used traditionally as sedative and antiepileptic drug in India. To investigate the anticonvulsive potential of MQ extracts by using behavior and electroencephalographic (EEG) analysis on pentylenetetrazole (PTZ) induced seizure model in rats. For anticonvulsant effect, 60minutes after administration of MQ, behavior and EEG were analyzed during PTZ (60mg/kg) induced seizures. Changes of EEG power, latency of onset of seizure, seizure severity score, and duration of epileptic seizure were determined. Both the water and ethanol extract of MQ increased the latency of seizure but also decreased duration of epileptic seizure and seizure severity score. This reduction of seizure severity was also observed in EEG recording and EEG power analysis. The effectiveness of MQ ethanol extract is better than MQ water extract. Both water and ethanol extract of MQ were effective in reducing the severity of behavioral and EEG seizures induced by PTZ in rats. This study justifies the traditional use of this plant in epilepsy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Tonic and phasic EEG and behavioral changes induced by arousing feedback.

    Science.gov (United States)

    Lin, Chin-Teng; Huang, Kuan-Chih; Chao, Chih-Feng; Chen, Jian-Ann; Chiu, Tzai-Wen; Ko, Li-Wei; Jung, Tzyy-Ping

    2010-08-15

    This study investigates brain dynamics and behavioral changes in response to arousing auditory signals presented to individuals experiencing momentary cognitive lapses during a sustained-attention task. Electroencephalographic (EEG) and behavioral data were simultaneously collected during virtual-reality (VR) based driving experiments, in which subjects were instructed to maintain their cruising position and compensate for randomly induced lane deviations using the steering wheel. 30-channel EEG data were analyzed by independent component analysis and the short-time Fourier transform. Across subjects and sessions, intermittent performance during drowsiness was accompanied by characteristic spectral augmentation or suppression in the alpha- and theta-band spectra of a bilateral occipital component, corresponding to brief periods of normal (wakeful) and hypnagogic (sleeping) awareness and behavior. Arousing auditory feedback was delivered to the subjects in half of the non-responded lane-deviation events, which immediately agitated subject's responses to the events. The improved behavioral performance was accompanied by concurrent spectral suppression in the theta- and alpha-bands of the bilateral occipital component. The effects of auditory feedback on spectral changes lasted 30s or longer. The results of this study demonstrate the amount of cognitive state information that can be extracted from noninvasively recorded EEG data and the feasibility of online assessment and rectification of brain networks exhibiting characteristic dynamic patterns in response to momentary cognitive challenges. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition.

    Science.gov (United States)

    Amo, Carlos; de Santiago, Luis; Barea, Rafael; López-Dorado, Almudena; Boquete, Luciano

    2017-04-29

    The purpose of this paper is to determine whether gamma-band activity detection is improved when a filter, based on empirical mode decomposition (EMD), is added to the pre-processing block of single-channel electroencephalography (EEG) signals. EMD decomposes the original signal into a finite number of intrinsic mode functions (IMFs). EEGs from 25 control subjects were registered in basal and motor activity (hand movements) using only one EEG channel. Over the basic signal, IMF signals are computed. Gamma-band activity is computed using power spectrum density in the 30-60 Hz range. Event-related synchronization (ERS) was defined as the ratio of motor and basal activity. To evaluate the performance of the new EMD based method, ERS was computed from the basic and IMF signals. The ERS obtained using IMFs improves, from 31.00% to 73.86%, on the original ERS for the right hand, and from 22.17% to 47.69% for the left hand. As EEG processing is improved, the clinical applications of gamma-band activity will expand.

  8. The EEG Correlates of the TMS Induced EMG Silent Period in Humans

    Science.gov (United States)

    Farzan, Faranak; Barr, Mera S.; Hoppenbrouwers, Sylco S.; Fitzgerald, Paul B.; Chen, Robert; Pascual-Leone, Alvaro; Daskalakis, Zafiris J.

    2014-01-01

    Application of magnetic or electrical stimulation to the motor cortex can result in a period of electromyography (EMG) silence in a tonically active peripheral muscle. This period of EMG silence is referred to as the silent period (SP). The duration of SP shows intersubject variability and reflects the integrity of cortical and corticospinal pathways. A non-invasive technique for assessing the duration of SP is the combination of Transcranial Magnetic Stimulation (TMS) with EMG. Utilizing TMS-EMG, several studies have reported on the shortening or lengthening of SP in neuropsychiatric disorders such as schizophrenia, bipolar disorder, depression, obsessive compulsive disorder, epilepsy, Parkinson’s disease, and stroke. However, cortical, corticospinal and peripheral components are difficult to disentangle from EMG alone. Here, we use the multimodal neuroimaging technique of TMS-EMG combined with concurrent electroencephalography (EEG) recording to further examine the cortical origin of SP and the cortical oscillatory activity that underlies SP genesis. We demonstrate that the duration of SP is related to the temporal characteristics of the cortical reactivity and the power of delta to alpha oscillations in both local and remote areas ipsilateral and contralateral to the stimulation site, and beta oscillations locally. We illustrate that, compared to EMG, the EEG indices of the SP provide additional information about the brain dynamics and propose that the EEG measures of SP may be used in future clinical and research investigations to more precisely delineate the mechanisms underlying inhibitory impairments. PMID:23800790

  9. The EEG correlates of the TMS-induced EMG silent period in humans.

    Science.gov (United States)

    Farzan, Faranak; Barr, Mera S; Hoppenbrouwers, Sylco S; Fitzgerald, Paul B; Chen, Robert; Pascual-Leone, Alvaro; Daskalakis, Zafiris J

    2013-12-01

    Application of magnetic or electrical stimulation to the motor cortex can result in a period of electromyography (EMG) silence in a tonically active peripheral muscle. This period of EMG silence is referred to as the silent period (SP). The duration of SP shows intersubject variability and reflects the integrity of cortical and corticospinal pathways. A non-invasive technique for assessing the duration of SP is the combination of Transcranial Magnetic Stimulation (TMS) with EMG. Utilizing TMS-EMG, several studies have reported on the shortening or lengthening of SP in neuropsychiatric disorders such as schizophrenia, bipolar disorder, depression, obsessive compulsive disorder, epilepsy, Parkinson's disease, and stroke. However, cortical, corticospinal and peripheral components are difficult to disentangle from EMG alone. Here, we use the multimodal neuroimaging technique of TMS-EMG combined with concurrent electroencephalography (EEG) recording to further examine the cortical origin of SP and the cortical oscillatory activity that underlies SP genesis. We demonstrate that the duration of SP is related to the temporal characteristics of the cortical reactivity and the power of delta to alpha oscillations in both local and remote areas ipsilateral and contralateral to the stimulation site, and beta oscillations locally. We illustrate that, compared to EMG, the EEG indices of the SP provide additional information about the brain dynamics and propose that the EEG measures of SP may be used in future clinical and research investigations to more precisely delineate the mechanisms underlying inhibitory impairments. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Vitamin A deficiency induces a decrease in EEG delta power during sleep in mice.

    Science.gov (United States)

    Kitaoka, Kazuyoshi; Hattori, Atsushi; Chikahisa, Sachiko; Miyamoto, Ken-Ichi; Nakaya, Yutaka; Sei, Hiroyoshi

    2007-05-30

    Recent report (Maret, S., Franken, P., Dauvilliers, Y., Ghyselinck, N.B., Chambon, P., Tafti, M., 2005. Retinoic acid signaling affects cortical synchrony during sleep. Science 310, 111-113.) has suggested that vitamin A (retinol and its derivatives) is genetically involved in the electroencephalogram (EEG) delta oscillation during sleep. However, this finding has not yet been confirmed by other studies. In this study, we attempted to record the sleep EEG and behavior, and to quantify striatal monoamines in mice fed a vitamin A-deficient (VAD) diet for 4 weeks, in order to clarify the linkage between the delta oscillation and vitamin A. VAD mice demonstrated a significant decrease in the delta power of the EEG. However, 6-h sleep deprivation caused the recovery of the delta power in VAD mice to a level similar to that of the control. VAD also caused the decrease of spontaneous activity throughout 24-h period. Furthermore, dihydroxyphenylacetic acid, a metabolite of dopamine, was decreased significantly in the striatal tissue of VAD mice. Our present results suggest that the deficiency of vitamin A causes the attenuation of delta power in NREM sleep and spontaneous activity. These attenuations may be related to the alteration of striatal dopaminergic function.

  11. Motion-related artefacts in EEG predict neuronally plausible patterns of activation in fMRI data

    Science.gov (United States)

    Jansen, Marije; White, Thomas P.; Mullinger, Karen J.; Liddle, Elizabeth B.; Gowland, Penny A.; Francis, Susan T.; Bowtell, Richard; Liddle, Peter F.

    2012-01-01

    The simultaneous acquisition and subsequent analysis of EEG and fMRI data is challenging owing to increased noise levels in the EEG data. A common method to integrate data from these two modalities is to use aspects of the EEG data, such as the amplitudes of event-related potentials (ERP) or oscillatory EEG activity, to predict fluctuations in the fMRI data. However, this relies on the acquisition of high quality datasets to ensure that only the correlates of neuronal activity are being studied. In this study, we investigate the effects of head-motion-related artefacts in the EEG signal on the predicted T2*-weighted signal variation. We apply our analyses to two independent datasets: 1) four participants were asked to move their feet in the scanner to generate small head movements, and 2) four participants performed an episodic memory task. We created T2*-weighted signal predictors from indicators of abrupt head motion using derivatives of the realignment parameters, from visually detected artefacts in the EEG as well as from three EEG frequency bands (theta, alpha and beta). In both datasets, we found little correlation between the T2*-weighted signal and EEG predictors that were not convolved with the canonical haemodynamic response function (cHRF). However, all convolved EEG predictors strongly correlated with the T2*-weighted signal variation in various regions including the bilateral superior temporal cortex, supplementary motor area, medial parietal cortex and cerebellum. The finding that movement onset spikes in the EEG predict T2*-weighted signal intensity only when the time course of movements is convolved with the cHRF, suggests that the correlated signal might reflect a BOLD response to neural activity associated with head movement. Furthermore, the observation that broad-spectral EEG spikes tend to occur at the same time as abrupt head movements, together with the finding that abrupt movements and EEG spikes show similar correlations with the T2

  12. Stage 2 Sleep EEG Sigma Activity and Motor Learning in Childhood ADHD: A Pilot Study.

    Science.gov (United States)

    Saletin, Jared M; Coon, William G; Carskadon, Mary A

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is associated with deficits in motor learning and sleep. In healthy adults, overnight improvements in motor skills are associated with sleep spindle activity in the sleep electroencephalogram (EEG). This association is poorly characterized in children, particularly in pediatric ADHD. Polysomnographic sleep was monitored in 7 children with ADHD and 14 typically developing controls. All children were trained on a validated motor sequence task (MST) in the evening with retesting the following morning. Analyses focused on MST precision (speed-accuracy trade-off). NREM Stage 2 sleep EEG power spectral analyses focused on spindle-frequency EEG activity in the sigma (12-15 Hz) band. The ADHD group demonstrated a selective decrease in power within the sigma band. Evening MST precision was lower in ADHD, yet no difference in performance was observed following sleep. Moreover, ADHD status moderated the association between slow sleep spindle activity (12-13.5 Hz) and overnight improvement; spindle-frequency EEG activity was positively associated with performance improvements in children with ADHD but not in controls. These data highlight the importance of sleep in supporting next-day behavior in ADHD while indicating that differences in sleep neurophysiology may contribute to deficits in this population.

  13. A social conflict increases EEG slow-wave activity during subsequent sleep

    NARCIS (Netherlands)

    Meerlo, P; de Bruin, EA; Strijkstra, AM; Daan, S

    2001-01-01

    Electroencephalogram (EEG) slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep is widely viewed as an indicator of sleep debt and sleep intensity. In a previous study, we reported a strong increase in SWA during NREM sleep after a social conflict in rats. To test whether this

  14. Human scalp recorded sigma activity is modulated by slow EEG oscillations during deep sleep.

    NARCIS (Netherlands)

    Fell, J.; Elfadil, H.; Roschke, J.; Burr, W.; Klaver, P.; Elger, C.E.; Fernandez, G.S.E.

    2002-01-01

    The EEG during deep sleep exhibits a distinct cortically generated slow oscillation of around and below 1 Hz which can be distinguished from other delta (0.5-3.5 Hz) activity. Intracranial studies showed that this slow oscillation triggers and groups cortical network firing. In the present study, we

  15. Ultradian rhythms in spike-wave activity in eegs of wag/rij rats

    NARCIS (Netherlands)

    Midzyanovskaya, I.S.; Strelkov, V.V.; Kuznetsova, G.D.; Luijtelaar, E.L.J.M. van; Luijtelaar, E.L.J.M. van; Kuznetsova, G.D.; Coenen, A.M.L.; Chepurnov, S.A.

    2004-01-01

    Long-term EEG studies in WAG/Rij rats revealed the existence of ultradian rhythms in the daily pattern of appearance of spike-wave discharges (SWDs), the electrophysiological hallmark of absence epilepsy. A polymodal pattern of regulation was found for the index of spike-wave activity (iSWD , amount

  16. EEG activations during intentional inhibition of voluntary action: An electrophysiological correlate of self-control?

    NARCIS (Netherlands)

    Walsh, E.; Kühn, S.; Brass, M.; Wenke, D.; Haggard, P.

    2010-01-01

    An important aspect of volition is the internal decision whether to act or to withhold an action. We used EEG frequency analysis of sensorimotor rhythms to investigate brain activity when people prepare and then cancel a voluntary action. Participants used a rotating clock-hand to report when they

  17. Cortical activities of single-trial P300 amplitudes modulated by memory load using simultaneous EEG-fMRI

    Science.gov (United States)

    Zhang, Qiushi; Zhao, Xiaojie; Zhu, Chaozhe; Yang, Xueqian; Yao, Li

    2015-03-01

    The functional magnetic resonance imaging (fMRI) researches on working memory have found that activation of cortical areas appeared dependent on memory load, and event-related potentials (ERP) studies have demonstrated that amplitudes of P300 decreased significantly when working memory load increased. However, the cortical activities related with P300 amplitudes under different memory loads remains unclear. Joint fMRI and EEG analysis which fusions the time and spatial information in simultaneous EEG-fMRI recording can reveal the regional activation at each ERP time point. In this paper, we first used wavelet transform to obtain the single-trial amplitudes of P300 caused by a digital N-back task in the simultaneous EEG-fMRI recording as the ERP feature sequences. Then the feature sequences in 1-back condition and 3-back condition were introduced into general linear model (GLM) separately as parametric modulations to compare the cortical activation under different memory loads. The results showed that the average amplitudes of P300 in 3-back significantly decreased than that in 1-back, and the activities induced by ERP feature sequences in 3-back also significantly decreased than that in the 1-back, including the insular, anterior cingulate cortex, right inferior frontal gyrus, and medial frontal gyrus, which were relevant to the storage, monitoring, and manipulation of information in working memory task. Moreover, the difference in the activation caused by ERP feature showed a positive correlation with the difference in behavioral performance. These findings demonstrated the locations of P300 amplitudes differences modulated by the memory load and its relationship with the behavioral performance.

  18. Trait anxiety impact on posterior activation asymmetries at rest and during evoked negative emotions: EEG investigation.

    Science.gov (United States)

    Aftanas, Ljubomir I; Pavlov, Sergey V

    2005-01-01

    The main objective of the present investigation was to examine how high trait anxiety would influence cortical EEG asymmetries under non-emotional conditions and while experiencing negative emotions. The 62-channel EEG was recorded in control (n=21) and high anxiety (HA, n=18) non-patient individuals. Results showed that in HA subjects, the lowest level of arousal (eyes closed) was associated with stronger right-sided parieto-temporal theta-1 (4-6 Hz) and beta-1 (12-18 Hz) activity, whereas increased non-emotional arousal (eyes open, viewing neutral movie clip) was marked by persisting favored right hemisphere beta-1 activity. In turn, viewing aversive movie clip by the HA group led to significant lateralized decrease of the right parieto-temporal beta-1 power, which was initially higher in the emotionally neutral conditions. The EEG data suggests that asymmetrical parieto-temporal theta-1 and beta-1 EEG activity might be better interpreted in terms of Gray's BAS and BIS theory.

  19. Analysis of spontaneous EEG activity in Alzheimer's disease using cross-sample entropy and graph theory.

    Science.gov (United States)

    Gomez, Carlos; Poza, Jesus; Gomez-Pilar, Javier; Bachiller, Alejandro; Juan-Cruz, Celia; Tola-Arribas, Miguel A; Carreres, Alicia; Cano, Monica; Hornero, Roberto

    2016-08-01

    The aim of this pilot study was to analyze spontaneous electroencephalography (EEG) activity in Alzheimer's disease (AD) by means of Cross-Sample Entropy (Cross-SampEn) and two local measures derived from graph theory: clustering coefficient (CC) and characteristic path length (PL). Five minutes of EEG activity were recorded from 37 patients with dementia due to AD and 29 elderly controls. Our results showed that Cross-SampEn values were lower in the AD group than in the control one for all the interactions among EEG channels. This finding indicates that EEG activity in AD is characterized by a lower statistical dissimilarity among channels. Significant differences were found mainly for fronto-central interactions (p graph theory measures revealed diverse neural network changes, i.e. lower CC and higher PL values in AD group, leading to a less efficient brain organization. This study suggests the usefulness of our approach to provide further insights into the underlying brain dynamics associated with AD.

  20. Research of brain activation regions of "yes" and "no" responses by auditory stimulations in human EEG

    Science.gov (United States)

    Hu, Min; Liu, GuoZhong

    2011-11-01

    People with neuromuscular disorders are difficult to communicate with the outside world. It is very important to the clinician and the patient's family that how to distinguish vegetative state (VS) and minimally conscious state (MCS) for a disorders of consciousness (DOC) patient. If a patient is diagnosed with VS, this means that the hope of recovery is greatly reduced, thus leading to the family to abandon the treatment. Brain-computer interface (BCI) is aiming to help those people by analyzing patients' electroencephalogram (EEG). This paper focus on analyzing the corresponding activated regions of the brain when a subject responses "yes" or "no" to an auditory stimuli question. When the brain concentrates, the phase of the related area will become orderly from desultorily. So in this paper we analyzed EEG from the angle of phase. Seven healthy subjects volunteered to participate in the experiment. A total of 84 groups of repeatability stimulation test were done. Firstly, the frequency is fragmented by using wavelet method. Secondly, the phase of EEG is extracted by Hilbert. At last, we obtained approximate entropy and information entropy of each frequency band of EEG. The results show that brain areas are activated of the central area when people say "yes", and the areas are activated of the central area and temporal when people say "no". This conclusion is corresponding to magnetic resonance imaging technology. This study provides the theory basis and the algorithm design basis for designing BCI equipment for people with neuromuscular disorders.

  1. Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Analysis

    OpenAIRE

    Zhang, Xiang; Yao, Lina; Zhang, Dalin; Wang, Xianzhi; Sheng, Quan Z.; Gu, Tao

    2017-01-01

    An electroencephalography (EEG) based brain activity recognition is a fundamental field of study for a number of significant applications such as intention prediction, appliance control, and neurological disease diagnosis in smart home and smart healthcare domains. Existing techniques mostly focus on binary brain activity recognition for a single person, which limits their deployment in wider and complex practical scenarios. Therefore, multi-person and multi-class brain activity recognition h...

  2. Human scalp recorded sigma activity is modulated by slow EEG oscillations during deep sleep.

    Science.gov (United States)

    Fell, Jürgen; Elfadil, Hakim; Röschke, Joachim; Burr, Wieland; Klaver, Peter; Elger, Christian E; Fernández, Guillén

    2002-07-01

    The EEG during deep sleep exhibits a distinct cortically generated slow oscillation of around and below 1 Hz which can be distinguished from other delta (0.5-3.5 Hz) activity. Intracranial studies showed that this slow oscillation triggers and groups cortical network firing. In the present study, we examined whether the phases of the slow oscillation during sleep stage 4 are correlated with the magnitude of sigma (12-16 Hz) and gamma (> 20 Hz) scalp activity. For this purpose, 10-min segments of uninterrupted stage 4 sleep EEG from 9 subjects were analyzed by applying wavelet techniques. We found that scalp recorded sigma, but not gamma, activity is modulated by the phases of the slow oscillation during deep sleep. Enhancement of sigma activity was observed to be triggered by the peak of the surface positive slow wave component, whereas reduction of sigma activity started around the peak of the negative component.

  3. Exercise-induced changes in EEG alpha power depend on frequency band definition mode.

    Science.gov (United States)

    Gutmann, Boris; Hülsdünker, Thorben; Mierau, Julia; Strüder, Heiko K; Mierau, Andreas

    2017-10-18

    In the majority of studies investigating cortical alpha oscillations the alpha frequency is defined as a fixed band thus, neglecting recommendations in the EEG literature to adjust the alpha band according to the individual alpha peak frequency (iAPF). Based on our previous findings indicating exhaustive exercise induces an increase of the post-exercise iAPF, we scrutinized the influence of exercise on post-exercise alpha power by comparing fixed and iAPF-adjusted alpha frequency bands. Resting EEG was recorded from 13 scalp locations in nine subjects before, immediately after as well as ten minutes following an exhaustive exercise protocol on a cycle ergometer. Lower and upper band alpha power was calculated for fixed and iAPF-adjusted frequency bands. Post-exercise lower alpha power increased in both fixed and individually defined bands while a higher upper alpha power was only observed in the fixed frequency band condition. Further, the increase in iAPF was positively related to the changes in fixed-band upper alpha power. It is concluded that lower alpha power is significantly increased following exhaustive exercise whereas the results for upper alpha power are substantially influenced by the method of frequency band definition. Therefore, caution is indicated when analyzing and interpreting exercise-induced changes in alpha power. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback

    CERN Document Server

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Bodurka, Jerzy

    2014-01-01

    Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neurofeedback (rtfMRI-EEG-nf). It is based on a novel system for real-time integration of simultaneous rtfMRI and EEG data streams. We applied the rtfMRI-EEG-nf to training of emotional self-regulation in healthy subjects performing a positive emotion induction task based on retrieval of happy autobiographical memories. The participants were able to simultaneously regulate their BOLD fMRI activation of the left amygdala and frontal EEG power asymmetry in the high-beta band using the rtfMRI-EEG-nf. Our proof-of-concept results...

  5. Sleep misperception, EEG characteristics and autonomic nervous system activity in primary insomnia: a retrospective study on polysomnographic data.

    Science.gov (United States)

    Maes, J; Verbraecken, J; Willemen, M; De Volder, I; van Gastel, A; Michiels, N; Verbeek, I; Vandekerckhove, M; Wuyts, J; Haex, B; Willemen, T; Exadaktylos, V; Bulckaert, A; Cluydts, R

    2014-03-01

    Misperception of Sleep Onset Latency, often found in Primary Insomnia, has been cited to be influenced by hyperarousal, reflected in EEG- and ECG-related indices. The aim of this retrospective study was to examine the association between Central Nervous System (i.e. EEG) and Autonomic Nervous System activity in the Sleep Onset Period and the first NREM sleep cycle in Primary Insomnia (n=17) and healthy controls (n=11). Furthermore, the study examined the influence of elevated EEG and Autonomic Nervous System activity on Stage2 sleep-protective mechanisms (K-complexes and sleep spindles). Confirming previous findings, the Primary Insomnia-group overestimated Sleep Onset Latency and this overestimation was correlated with elevated EEG activity. A higher amount of beta EEG activity during the Sleep Onset Period was correlated with the appearance of K-complexes immediately followed by a sleep spindle in the Primary Insomnia-group. This can be interpreted as an extra attempt to protect sleep continuity or as a failure of the sleep-protective role of the K-complex by fast EEG frequencies following within one second. The strong association found between K-alpha (K-complex within one second followed by 8-12 Hz EEG activity) in Stage2 sleep and a lower parasympathetic Autonomic Nervous System dominance (less high frequency HR) in Slow-wave sleep, further assumes a state of hyperarousal continuing through sleep in Primary Insomnia. © 2013.

  6. [Wavelet packet extraction and entropy analysis of telemetry EEG from the prelimbic cortex of medial prefrontal cortex in morphine-induced CPP rats].

    Science.gov (United States)

    Bai, Yu; Bai, Jia-Ming; Li, Jing; Li, Min; Yu, Ran; Pan, Qun-Wan

    2014-12-25

    The purpose of the present study is to analyze the relationship between the telemetry electroencephalogram (EEG) changes of the prelimbic (PL) cortex and the drug-seeking behavior of morphine-induced conditioned place preference (CPP) rats by using the wavelet packet extraction and entropy measurement. The recording electrode was stereotactically implanted into the PL cortex of rats. The animals were then divided randomly into operation-only control and morphine-induced CPP groups, respectively. A CPP video system in combination with an EEG wireless telemetry device was used for recording EEG of PL cortex when the rats shuttled between black-white or white-black chambers. The telemetry recorded EEGs were analyzed by wavelet packet extraction, Welch power spectrum estimate, normalized amplitude and Shannon entropy algorithm. The results showed that, compared with operation-only control group, the left PL cortex's EEG of morphine-induced CPP group during black-white chamber shuttling exhibited the following changes: (1) the amplitude of average EEG for each frequency bands extracted by wavelet packet was reduced; (2) the Welch power intensity was increased significantly in 10-50 Hz EEG band (P EEG (P EEG changes in morphine-induced CPP group rat may be related to animals' drug-seeking motivation and behavior launching.

  7. Time course of EEG activities in continuous tracking task: a pilot study.

    Science.gov (United States)

    Yang, Limin; Shen, Liyi; Nan, Wenya; Tang, Qi; Wan, Feng; Zhu, Frank; Hu, Yong

    2017-12-01

    Motor learning is crucial to surgical skills enhancement, but its neural mechanism has been investigated only using some simple tasks with limited motor involvement. This study aimed to gain more understanding of the neural dynamics during motor learning by investigating the time course of electroencephalogram (EEG) activities in the continuous tracking task that involves more motor components. One participant performed 16 trials of the continuous tracking task on Day1 and Day2 respectively. The 16-channel EEG signals were recorded and analyzed in both the resting and active states. Results showed that the tracking performance improved from Day1 to Day2. Regarding the EEG, it was found that the relative amplitude in the individual alpha band (IAB) decreased locally over primary motor cortex from the resting state to the active state on both days, and this reduction was more focused on the left primary motor cortex on Day2 compared to Day1. Moreover, in the active state the alpha coherence between central and frontal areas also significantly increased from Day1 to Day2. Time course of alpha activities may explain the tracking performance enhancement from Day1 to Day2. Future work will include more participants to extend the validity of current results.

  8. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals

    Science.gov (United States)

    Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha

    2016-02-01

    Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.

  9. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study.

    Directory of Open Access Journals (Sweden)

    Kei Omata

    Full Text Available The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04-0.167 Hz and slow fluctuation (0-0.04 Hz. Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.

  10. Reduction of EEG theta power and changes in motor activity in rats treated with ceftriaxone.

    Science.gov (United States)

    Bellesi, Michele; Vyazovskiy, Vladyslav V; Tononi, Giulio; Cirelli, Chiara; Conti, Fiorenzo

    2012-01-01

    The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7-9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation.

  11. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers.

    Science.gov (United States)

    Fink, Andreas; Graif, Barbara; Neubauer, Aljoscha C

    2009-07-01

    Neuroscientific research on creativity has revealed valuable insights into possible brain correlates underlying this complex mental ability domain. However, most of the studies investigated brain activity during the performance of comparatively simple (verbal) type of tasks and the majority of studies focused on samples of the normal population. In this study we investigate EEG activity in professional dancers (n=15) who have attained a high level of expertise in this domain. This group was compared with a group of novices (n=17) who have only basic experience in dancing and completed no comprehensive training in this field. The EEG was recorded during performance of two different dancing imagery tasks which differed with respect to creative demands. In the first task participants were instructed to mentally perform a dance which should be as unique and original as possible (improvisation dance). In the waltz task they were asked to imagine dancing the waltz, a standard dance which involves a sequence of monotonous steps (lower creative demands). In addition, brain activity was also measured during performance of the Alternative Uses test. We observed evidence that during the generation of alternative uses professional dancers show stronger alpha synchronization in posterior parietal brain regions than novice dancers. During improvisation dance, professional dancers exhibited more right-hemispheric alpha synchronization than the group of novices did, while during imagining dancing the waltz no significant group differences emerged. The findings complement and extend existing findings on the relationship between EEG alpha activity and creative thinking.

  12. Assessing human mirror activity with EEG mu rhythm: A meta-analysis.

    Science.gov (United States)

    Fox, Nathan A; Bakermans-Kranenburg, Marian J; Yoo, Kathryn H; Bowman, Lindsay C; Cannon, Erin N; Vanderwert, Ross E; Ferrari, Pier F; van IJzendoorn, Marinus H

    2016-03-01

    A fundamental issue in cognitive neuroscience is how the brain encodes others' actions and intentions. In recent years, a potential advance in our knowledge on this issue is the discovery of mirror neurons in the motor cortex of the nonhuman primate. These neurons fire to both execution and observation of specific types of actions. Researchers use this evidence to fuel investigations of a human mirror system, suggesting a common neural code for perceptual and motor processes. Among the methods used for inferring mirror system activity in humans are changes in a particular frequency band in the electroencephalogram (EEG) called the mu rhythm. Mu frequency appears to decrease in amplitude (reflecting cortical activity) during both action execution and action observation. The current meta-analysis reviewed 85 studies (1,707 participants) of mu that infer human mirror system activity. Results demonstrated significant effect sizes for mu during execution (Cohen's d = 0.46, N = 701) as well as observation of action (Cohen's d = 0.31, N = 1,508), confirming a mirroring property in the EEG. A number of moderators were examined to determine the specificity of these effects. We frame these meta-analytic findings within the current discussion about the development and functions of a human mirror system, and conclude that changes in EEG mu activity provide a valid means for the study of human neural mirroring. Suggestions for improving the experimental and methodological approaches in using mu to study the human mirror system are offered. (c) 2016 APA, all rights reserved).

  13. [Perinatal brain injury in infants with depressed EEG activities immediately after birth].

    Science.gov (United States)

    Hayakawa, F; Okumura, A; Kuno, K; Watanabe, K

    1996-01-01

    We investigated the developmental outcome and features of brain imaging in 33 infants with moderate or severe depression of background EEG activities immediately after birth. Lesions due to perinatal injury were observed in 25 infants on neonatal ultrasonography and/or childhood MRI. These findings strongly correlated with their gestational age. Periventricular leukomalacia and posthermorrhagic porencephaly were observed in preterm infants. On the other hand, perinatal injury of mature brain type, such as multicystic encephalomalacia, parasagittal infarct, bilateral basal ganglia/thalamic lesion, and subcortical leukomalacia, were observed in full-term infants. Periventricular leukomalacia rather correlated with moderate depression of EEG activities than severe depression like observed in full-term neonates who have brain lesions due to perinatal asphyxia.

  14. Quantitative EEG Monitoring of Vigilance: Effects of Sleep Deprivation, Circadian Phase and Sympathetic Activation

    Science.gov (United States)

    Dijk, Derk-Jan

    1999-01-01

    Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine

  15. Resting-State Fluctuations of EEG Sensorimotor Rhythm Reflect BOLD Activities in the Pericentral Areas: A Simultaneous EEG-fMRI Study

    Directory of Open Access Journals (Sweden)

    Shohei Tsuchimoto

    2017-07-01

    Full Text Available Blockade of the scalp electroencephalographic (EEG sensorimotor rhythm (SMR is a well-known phenomenon following attempted or executed motor functions. Such a frequency-specific power attenuation of the SMR occurs in the alpha and beta frequency bands and is spatially registered at primary somatosensory and motor cortices. Here, we hypothesized that resting-state fluctuations of the SMR in the alpha and beta frequency bands also covary with resting-state sensorimotor cortical activity, without involving task-related neural dynamics. The present study employed functional magnetic resonance imaging (fMRI to investigate the neural regions whose activities were correlated with the simultaneously recorded SMR power fluctuations. The SMR power fluctuations were convolved with a canonical hemodynamic response function and correlated with blood-oxygen-level dependent (BOLD signals obtained from the entire brain. Our findings show that the alpha and beta power components of the SMR correlate with activities of the pericentral area. Furthermore, brain regions with correlations between BOLD signals and the alpha-band SMR fluctuations were located posterior to those with correlations between BOLD signals and the beta-band SMR. These results are consistent with those of event-related studies of SMR modulation induced by sensory input or motor output. Our findings may help to understand the role of the sensorimotor cortex activity in contributing to the amplitude modulation of SMR during the resting state. This knowledge may be applied to the diagnosis of pathological conditions in the pericentral areas or the refinement of brain–computer interfaces using SMR in the future.

  16. The Track of Brain Activity during the Observation of TV Commercials with the High-Resolution EEG Technology

    OpenAIRE

    Astolfi, Laura; Vecchiato, Giovanni; De Vico Fallani, Fabrizio; Salinari, Serenella; Cincotti, Febo; Aloise, Fabio; Mattia, Donatella; Marciani, Maria Grazia; Bianchi, Luigi; Soranzo, Ramon; Babiloni, Fabio

    2009-01-01

    We estimate cortical activity in normal subjects during the observation of TV commercials inserted within a movie by using high-resolution EEG techniques. The brain activity was evaluated in both time and frequency domains by solving the associate inverse problem of EEG with the use of realistic head models. In particular, we recover statistically significant information about cortical areas engaged by particular scenes inserted within the TV commercial proposed with respect to the brain acti...

  17. On the need of objective vigilance monitoring: Effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI

    Directory of Open Access Journals (Sweden)

    Michael eCzisch

    2012-04-01

    Full Text Available Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation are not fully understood. Previous neuroimaging studies of sleep deprivation have not been able to exclude the effects of reduced arousal and vigilance when examining cerebral responses to cognitive challenges. Here, we used a simultaneous electroencephalography (EEG and functional magnetic resonance imaging (fMRI approach to study the effects of 36 hours of total sleep deprivation (TSD. Specifically, we focused on changes in selective attention processes as induced by an active acoustic oddball task, with the ability to isolate runs with objective EEG signs of high or reduced vigilance. At high vigilance, task-related activity appears to be sustained by compensatory co-activation of insular regions, but task-negative activity in the right posterior node of the default mode network is altered following TSD. When EEG shows signs of reduced vigilance, task-positive activity was massively impaired, but task-negative activation was showing levels comparable with the control condition after a well-rested night. Our results suggest that loss of strict anti-correlation between task-positive and task-negative activation reflects the effects of TSD, while the actual state of vigilance and task performance either affects task-related or task-negative activity.

  18. New electroencephalogram (EEG) neuroimaging methods of analyzing brain activity applicable to the study of human sexual response.

    Science.gov (United States)

    Ortigue, Stephanie; Patel, Nisa; Bianchi-Demicheli, Francesco

    2009-07-01

    Electroencephalogram (EEG) combined with brain source localization algorithms is becoming a powerful tool in the neuroimaging study of human cerebral functions. The present article provides a tutorial on the various EEG methods currently used to study the human brain activity, notably during sexual response. Review of published literature on standard EEG waveform analyses and most recent electrical neuroimaging techniques (microstate approach and two methods of brain source localization). Retrospective overview of pertinent literature. Although the standard EEG waveform analyses enable millisecond time-resolution information about the human sexual responses in the brain, less is clear about their related spatial information. Nowadays, the improvement of EEG techniques and statistical approaches allows the visualization of the dynamics of the human sexual response with a higher spatiotemporal resolution. Here, we describe these enhanced techniques and summarize along with an overview of what we have learned from them in terms of chronoarchitecture of sexual response in the human brain. Finally, the speculation on how we may be able to use other enhanced approaches, such as independent component analysis, are also presented. EEG neuroimaging has already been proven as a strong worthwhile research tool. Combining this approach with standard EEG waveform analyses in sexual medicine may provide a better understanding of the neural activity underlying the human sexual response in both healthy and clinical populations.

  19. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis.

    Science.gov (United States)

    Gajic, Dragoljub; Djurovic, Zeljko; Gligorijevic, Jovan; Di Gennaro, Stefano; Savic-Gajic, Ivana

    2015-01-01

    We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using non-linear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG) signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved.

  20. Improved Early Postresuscitation EEG Activity for Animals Treated with Hypothermia Predicted 96 hr Neurological Outcome and Survival in a Rat Model of Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Bihua Chen

    2013-01-01

    Full Text Available Purpose. To investigate the effect of hypothermia on 96 hr neurological outcome and survival by quantitatively characterizing early postresuscitation EEG in a rat model of cardiac arrest. Materials and Methods. In twenty male Sprague-Dawley rats, cardiac arrest was induced through high frequency transesophageal cardiac pacing. Cardiopulmonary resuscitation was initiated after 5 mins untreated arrest. Immediately after resuscitation, animals were randomized to either 2 hrs of hypothermia (N=10 or normothermia (N=10. EEG, ECG, aortic pressure, and core temperature were continuously recorded for 6 hrs. Neurological outcome was evaluated daily during the 96 hrs postresuscitation period. Results. No differences in the baseline measurements and resuscitation outcome were observed between groups. However, 96 hr neurological deficit score (204 ± 255 versus 500 ± 0, P=0.005 and survival (6/10 versus 0/10, P=0.011 were significantly better in the hypothermic group. Quantitative analysis of early postresuscitation EEG revealed that burst frequency and spectrum entropy were greatly improved in the hypothermic group and correlated with 96 hr neurological outcome and survival. Conclusion. The improved burst frequency during burst suppression period and preserved spectrum entropy after restoration of continuous background EEG activity for animals treated with hypothermia predicted favorable neurological outcome and survival in this rat model of cardiac arrest.

  1. Improved early postresuscitation EEG activity for animals treated with hypothermia predicted 96 hr neurological outcome and survival in a rat model of cardiac arrest.

    Science.gov (United States)

    Chen, Bihua; Song, Feng-Qing; Sun, Lei-Lei; Lei, Ling-Yan; Gan, Wei-Ni; Chen, Meng-Hua; Li, Yongqin

    2013-01-01

    To investigate the effect of hypothermia on 96 hr neurological outcome and survival by quantitatively characterizing early postresuscitation EEG in a rat model of cardiac arrest. In twenty male Sprague-Dawley rats, cardiac arrest was induced through high frequency transesophageal cardiac pacing. Cardiopulmonary resuscitation was initiated after 5 mins untreated arrest. Immediately after resuscitation, animals were randomized to either 2 hrs of hypothermia (N = 10) or normothermia (N = 10). EEG, ECG, aortic pressure, and core temperature were continuously recorded for 6 hrs. Neurological outcome was evaluated daily during the 96 hrs postresuscitation period. No differences in the baseline measurements and resuscitation outcome were observed between groups. However, 96 hr neurological deficit score (204 ± 255 versus 500 ± 0, P = 0.005) and survival (6/10 versus 0/10, P = 0.011) were significantly better in the hypothermic group. Quantitative analysis of early postresuscitation EEG revealed that burst frequency and spectrum entropy were greatly improved in the hypothermic group and correlated with 96 hr neurological outcome and survival. The improved burst frequency during burst suppression period and preserved spectrum entropy after restoration of continuous background EEG activity for animals treated with hypothermia predicted favorable neurological outcome and survival in this rat model of cardiac arrest.

  2. Neuropsychological-EEG Activation in Genetic Generalized Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2015-03-01

    Full Text Available Investigators from Lithuanian University of Health Sciences, Kaunas, evaluated the effects of neuropsychological activation (NPA tasks on epileptiform discharges (ED in adolescents with idiopathic generalized epilepsy (IGE and in comparison with hyperventilation and photic stimulation.

  3. EEG biofeedback

    OpenAIRE

    Dvořáček, Michael

    2010-01-01

    Vznik EEG aktivity v mozku, rozdělení EEG vln podle frekvence, způsob měření EEG, přístroje pro měření EEG. Dále popis biofeedback metody, její možnosti a návrh biofeedback her. Popis zpracování naměřených EEG signálů. EEG generation, brain rhythms, methods of recording EEG, EEG recorder. Description of biofeedback, potentialities of biofeedback, proposal of biofeedback games. Description of processing measured EEG signals. B

  4. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity

    OpenAIRE

    Morairty, Stephen R.; Dittrich, Lars; Pasumarthi, Ravi K.; Valladao, Daniel; Heiss, Jaime E.; Gerashchenko, Dmitry; Kilduff, Thomas S.

    2013-01-01

    Sleep is a homeostatically regulated process. Slow wave sleep is characterized by slow waves detectable from the cerebral cortex by EEG. When homeostatic sleep “drive” is manipulated by varying durations of sleep deprivation, the intensity of EEG slow waves proportionally increases. The neural circuitry underlying this homeostatic response is little understood. In this study we describe a systematic relationship between homeostatic sleep drive and activation of cortical neurons that express n...

  5. The relationship of theory and methodology in EEG studies of mental activity.

    Science.gov (United States)

    Lazarev, Vladimir V

    2006-12-01

    Due to the multidisciplinary character of psychophysiology, the problem of comparability of psychological and physiological phenomena of different natures and levels of organization has always been raised. This requires the interaction of theory and methodology to appropriately address the specifics of the psychophysiological paradigm, all the while maintaining their grounding in the actual psychological and physiological concepts. The history of EEG studies of mental activity shows that a weak theoretical basis at certain stages can result not only in methodological crises but can also affect empirical data collection and interpretation. An adequate theory can lend strong support to the methodology with "brain-oriented" structuring of psychological tasks and such a theory improves the neurophysiological informative value of the EEG parameters referring to the psychological characteristics of mental processes etc. On the other hand, the great importance of the EEG recording and processing techniques can result in overrating technological progress, hence frequently holding back meaningful interpretation and construction of a comprehensive psychophysiological conceptual framework. This in turn causes demands for higher material and intellectual outlays, due to overspecialization in research, and results in work duplication as well as the creation of a fragmentary knowledge structure. This article illustrates how the multidisciplinary interaction of theory and methodology, when focused on theoretical problems, can yield a series of concepts with escalating levels of integration, bringing together such different branches of psychophysiology as the study of functional states and of individual differences. As a result, this extends the theoretical model based on normal material to encompass borderline constitutional psychopathology.

  6. Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle Inhibition

    Science.gov (United States)

    2015-09-01

    and neural activity, as measured with electroencephalography ( EEG ). One of the hallmarks of rapid eye movement (REM) sleep is muscle inhibition and is...than the prior studies previously cited that relied on pharmaceuticals to induce REM sleep . Building on this known literature, we have generated pilot... sleep /wake component we may need to alter our experimental paradigm and test whether we can influence EEG activity after the animal is already in SWS

  7. [EEG changes and stress reactions in rat induced by millimeter wave].

    Science.gov (United States)

    Xie, Taorong; Pei, Jian; Li, Fen; Huang, Xin; Chen, Shude; Qiao, Dengjiang

    2011-02-01

    The present paper is aimed to study the processes of stress reaction and their judgment bases in rat induced by 35 GHz millimeter wave quantitatively. The relative change in the average energy of each EEG frequency band decomposed by wavelet analysis was calculated for extracting the stress indicator for the purpose. The rat would experience quiet period, guarding period, deadlock period and prostrating period in sequence. The judgment bases of different stress periods in rat induced by millimeter wave were obtained by analyzing the skin temperature, skin injury and changes of blood biochemical indexes during each stress period. The stress period changed from quiet period to guarding period when the skin temperature of irradiated area reached the thermal pain threshold. It was from guarding period to deadlock period when the skin had gotten serious injury. Then the rat reaction sensitivity decreased, and injury of its visceral organs occurred. The rat got to prostrating period when the sustained irradiation caused the rat's visceral organs to get more serious injury. The further sustained irradiation finally induced death of the rat.

  8. EEG-fMRI fusion of paradigm-free activity using Kalman filtering.

    Science.gov (United States)

    Deneux, Thomas; Faugeras, Olivier

    2010-04-01

    We address here the use of EEG and fMRI, and their combination, in order to estimate the full spatiotemporal patterns of activity on the cortical surface in the absence of any particular assumptions on this activity such as stimulation times. For handling such a high-dimension inverse problem, we propose the use of (1) a global forward model of how these measures are functions of the "neural activity" of a large number of sources distributed on the cortical surface, formalized as a dynamical system, and (2) adaptive filters, as a natural solution to solve this inverse problem iteratively along the temporal dimension. This estimation framework relies on realistic physiological models, uses EEG and fMRI in a symmetric manner, and takes into account both their temporal and spatial information. We use the Kalman filter and smoother to perform such an estimation on realistic artificial data and demonstrate that the algorithm can handle the high dimensionality of these data and that it succeeds in solving this inverse problem, combining efficiently the information provided by the two modalities (this information being naturally predominantly temporal for EEG and spatial for fMRI). It performs particularly well in reconstructing a random temporally and spatially smooth activity spread over the cortex. The Kalman filter and smoother show some limitations, however, which call for the development of more specific adaptive filters. First, they do not cope well with the strong nonlinearity in the model that is necessary for an adequate description of the relation between cortical electric activities and the metabolic demand responsible for fMRI signals. Second, they fail to estimate a sparse activity (i.e., presenting sharp peaks at specific locations and times). Finally their computational cost remains high. We use schematic examples to explain these limitations and propose further developments of our method to overcome them.

  9. Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry.

    Directory of Open Access Journals (Sweden)

    Sreekanth Puttachary

    Full Text Available The C57BL/6J mouse as a model of seizure/epilepsy is challenging due to high mortality and huge variability in response to kainate. We have recently demonstrated that repeated administration of a low dose of kainate by intraperitoneal route can induce severe status epilepticus (SE with 94% survival rate. In the present study, based on continuous video-EEG recording for 4-18 weeks from epidurally implanted electrodes on the cortex, we demonstrate that this method also induces immediate epileptogenesis (<1-5 days post-SE. This finding was based on identification of two types of spontaneous recurrent seizures; behavioral convulsive seizures (CS and electrographic nonconvulsive seizures (NCS. The identification of the spontaneous CS, stage 3-5 types, was based on the behaviors (video that were associated with the EEG characteristics (stage 3-5 epileptiform spikes, the power spectrum, and the activity counts. The electrographic NCS identification was based on the stage 1-2 epileptiform spike clusters on the EEG and their associated power spectrum. Severe SE induced immediate epileptogenesis in all the mice. The maximum numbers of spontaneous CS were observed during the first 4-6 weeks of the SE and they decreased thereafter. Mild SE also induced immediate epileptogenesis in some mice but the CS were less frequent. In both the severe and the mild SE groups, the spontaneous electrographic NCS persisted throughout the 18 weeks observation period, and therefore this could serve as a chronic model for complex seizures. However, unlike rat kainate models, the C57BL/6J mouse kainate model is a unique regressive CS model of epilepsy. Further studies are required to understand the mechanism of recovery from spontaneous CS in this model, which could reveal novel therapeutic targets for epilepsy.

  10. Decrease of EEG Coherence during hypoglycemia in type 1 diabetic subjects

    DEFF Research Database (Denmark)

    Rubega, M.; Sparacino, G.; Sejling, A. S.

    2015-01-01

    Hypoglycemic events have been proven to be associated with measurable EEG changes. Several works in the literature have evaluated these changes by considering approaches at the single EEG channel level, but multivariate analyses have been scarcely investigated in Type 1 diabetes (T1D) subjects....... The aim of the present work is to assess if and how hypoglycemia affects EEG coherence in a subset of EEG channels acquired in a hospital setting where eye- and muscle activation-induced artifacts are virtually absent. In particular, EEG multichannel data, acquired in 19 T1D hospitalized subjects...

  11. Fractal Dimension of EEG Activity Senses Neuronal Impairment in Acute Stroke

    Science.gov (United States)

    Zappasodi, Filippo; Olejarczyk, Elzbieta; Marzetti, Laura; Assenza, Giovanni; Pizzella, Vittorio; Tecchio, Franca

    2014-01-01

    The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD’s ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4–10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures’ activities in stroke recovery. PMID:24967904

  12. Characterization of fluoxetine effects on ethanol withdrawal-induced cortical hyperexcitability by EEG spectral power in rats.

    Science.gov (United States)

    Cheaha, Dania; Sawangjaroen, Kitja; Kumarnsit, Ekkasit

    2014-02-01

    Antidepressants have been used for treatment of ethanol withdrawal symptoms mainly in observational studies. However, cortical frequency oscillation of ethanol withdrawal treatment with antidepressants remained to be elucidated. This study aimed to identify surrogate biomarkers that represent intact biological or ethanol withdrawal processes and response to pretreatment with fluoxetine, a selective serotonin reuptake inhibitor, with quantitative methods. Adult male Wistar rats implanted with electrodes over the frontal and parietal cortices were rendered dependent on ethanol via modified liquid diet (MLD) containing ethanol. Then, ethanol-containing MLD was replaced with isocaloric ethanol-free MLD to induce ethanol withdrawal symptoms. Locomotor activity, sleep-wakefulness and spectral frequencies of electroencephalographic (EEG) pattern during ethanol-withdrawal period were analyzed. One-way ANOVA confirmed significant increases in locomotor activity and time spent in awake state and decreases time spent in non-rapid eye movement (NREM) sleep and REM-sleep during ethanol withdrawal period. Fast Fourier Transformation also revealed predominant increases in gamma spectral powers within both the frontal and parietal cortices during ethanol withdrawal. However, these changes, except sleep-wake disturbances, were significantly attenuated by fluoxetine pretreatment (10 mg/kg). The present study supports the hypothesis that serotonergic hypofunction may underlie most of ethanol withdrawal symptoms and proposes that electroencephalographic patterns are valid biomarkers for ethanol withdrawal evaluation and treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat.

    Science.gov (United States)

    Cerri, Matteo; Del Vecchio, Flavia; Mastrotto, Marco; Luppi, Marco; Martelli, Davide; Perez, Emanuele; Tupone, Domenico; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation.

  14. Transmeningeal muscimol can prevent focal EEG seizures in the rat neocortex without stopping multineuronal activity in the treated area.

    Science.gov (United States)

    Ludvig, Nandor; Tang, Hai M; Artan, N Sertac; Mirowski, Piotr; Medveczky, Geza; Baptiste, Shirn L; Darisi, Sindhu; Kuzniecky, Ruben I; Devinsky, Orrin; French, Jacqueline A

    2011-04-18

    Muscimol has potent antiepileptic efficacy after transmeningeal administration in animals. However, it is unknown whether this compound stops local neuronal firing at concentrations that prevent seizures. The purpose of this study was to test the hypothesis that epidurally administered muscimol can prevent acetylcholine (Ach)-induced focal seizures in the rat neocortex without causing cessation of multineuronal activity. Rats were chronically implanted with a modified epidural cup over the right frontal cortex, with microelectrodes positioned underneath the cup. In each postsurgical experimental day, either saline or 0.005-, 0.05-, 0.5- or 5.0-mM muscimol was delivered through the cup, followed by a 20-min monitoring of the multineuronal activity and the subsequent delivery of Ach in the same way. Saline and muscimol pretreatment in the concentration range of 0.005-0.05 mM did not prevent EEG seizures. In contrast, 0.5-mM muscimol reduced the average EEG Seizure Duration Ratio value from 0.30±0.04 to 0. At this muscimol concentration, the average baseline multineuronal firing rate of 10.9±4.4 spikes/s did not change significantly throughout the 20-min pretreatment. Muscimol at 5.0mM also prevented seizures, but decreased significantly the baseline multineuronal firing rate of 7.0±1.8 to 3.7±0.9 spikes/s in the last 10 min of pretreatment. These data indicate that transmeningeal muscimol in a submillimolar concentration range can prevent focal neocortical seizures without stopping multineuronal activity in the treated area, and thus this treatment is unlikely to interrupt local physiological functions. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat.

    Directory of Open Access Journals (Sweden)

    Matteo Cerri

    Full Text Available Neurons within the lateral hypothalamus (LH are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C and at a low (10°C ambient temperature (Ta, a condition which is known to depress sleep occurrence. Here we show that: 1 at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2 LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation.

  16. Correlated alpha activity with the facial expression processing network in a simultaneous EEG-fMRI experiment.

    Science.gov (United States)

    Simoes, Marco; Direito, Bruno; Lima, Joao; Castelhano, Joao; Ferreira, Carlos; Couceiro, Ricardo; Carvalho, Paulo; Castelo-Branco, Miguel

    2017-07-01

    The relationship between EEG and fMRI data is poorly covered in the literature. Extensive work has been conducted in resting-state and epileptic activity, highlighting a negative correlation between the alpha power band of the EEG and the BOLD activity in the default-mode-network. The identification of an appropriate task-specific relationship between fMRI and EEG data for predefined regions-of-interest, would allow the transfer of interventional paradigms (such as BOLD-based neurofeedback sessions) from fMRI to EEG, enhancing its application range by lowering its costs and improving its flexibility. In this study, we present an analysis of the correlation between task-specific alpha band fluctuations and BOLD activity in the facial expressions processing network. We characterized the network ROIs through a stringent localizer and identified two clusters on the scalp (one frontal, one parietal-occipital) with marked alpha fluctuations, related to the task. We then check whether such power variations throughout the time correlate with the BOLD activity in the network. Our results show statistically significant negative correlations between the alpha power in both clusters and for all the ROIs of the network. The correlation levels have still not met the requirements for transferring the protocol to an EEG setup, but they pave the way towards a better understand on how frontal and parietal-occipital alpha relates to the activity of the facial expressions processing network.

  17. Does power mobility training impact a child's mastery motivation and spectrum of EEG activity? An exploratory project.

    Science.gov (United States)

    Kenyon, Lisa K; Farris, John P; Aldrich, Naomi J; Rhodes, Samhita

    2017-08-30

    The purposes of this exploratory project were: (1) to evaluate the impact of power mobility training with a child who has multiple, severe impairments and (2) to determine if the child's spectrum of electroencephalography (EEG) activity changed during power mobility training. A single-subject A-B-A-B research design was conducted with a four-week duration for each phase. Two target behaviours were explored: (1) mastery motivation assessed via the dimensions of mastery questionnaire (DMQ) and (2) EEG data collected under various conditions. Power mobility skills were also assessed. The participant was a three-year, two-month-old girl with spastic quadriplegic cerebral palsy, gross motor function classification system level V. Each target behaviour was measured weekly. During intervention phases, power mobility training was provided. Improvements were noted in subscale scores of the DMQ. Short-term and long-term EEG changes were also noted. Improvements were noted in power mobility skills. The participant in this exploratory project demonstrated improvements in power mobility skill and function. EEG data collection procedures and variability in an individual's EEG activity make it difficult to determine if the participant's spectrum of EEG activity actually changed in response to power mobility training. Additional studies are needed to investigate the impact of power mobility training on the spectrum of EEG activity in children who have multiple, severe impairments. Implications for Rehabilitation Power mobility training appeared to be beneficial for a child with multiple, severe impairments though the child may never become an independent, community-based power wheelchair user. Electroencephalography may be a valuable addition to the study of power mobility use in children with multiple, severe impairments. Power mobility training appeared to impact mastery motivation (the internal drive to solve complex problems and master new skills) in a child who has multiple

  18. Validation of a neurofeedback paradigm: manipulating frontal EEG alpha-activity and its impact on mood.

    Science.gov (United States)

    Peeters, Frenk; Ronner, Jacco; Bodar, Lonneke; van Os, Jim; Lousberg, Richel

    2014-07-01

    It is claimed that neurofeedback (NF) is an effective treatment for a variety of psychiatric disorders. NF, within an operant conditioning framework, helps individuals to regulate cortical electroencephalographic (EEG) activity while receiving feedback from a visual or acoustic signal. For example, changing asymmetry between left and right frontal brain alpha activity by NF, is claimed to be an efficacious treatment for major depressive disorder. However, the specificity of this intervention in occasioning electrophysiological changes at target locations and target wave-frequencies, and its relation to changes in mood, has not been established. During a single session of NF, it was tested if the balance between left and right frontal alpha-activity could be changed, regardless of direction, in 40 healthy females. Furthermore, we investigated whether this intervention was electrophysiologically specific and if it was associated with changes in mood. Participants were able to decrease or increase frontal alpha-asymmetry during the intervention. However, no changes in mood were observed. Changes in EEG activity were specific in terms of location and wave-frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Learning from M/EEG data with variable brain activation delays.

    Science.gov (United States)

    Zaremba, Wojciech; Kumar, M Pawan; Gramfort, Alexandre; Blaschko, Matthew B

    2013-01-01

    Magneto- and electroencephalography (M/EEG) measure the electromagnetic signals produced by brain activity. In order to address the issue of limited signal-to-noise ratio (SNR) with raw data, acquisitions consist of multiple repetitions of the same experiment. An important challenge arising from such data is the variability of brain activations over the repetitions. It hinders statistical analysis such as prediction performance in a supervised learning setup. One such confounding variability is the time offset of the peak of the activation, which varies across repetitions. We propose to address this misalignment issue by explicitly modeling time shifts of different brain responses in a classification setup. To this end, we use the latent support vector machine (LSVM) formulation, where the latent shifts are inferred while learning the classifier parameters. The inferred shifts are further used to improve the SNR of the M/EEG data, and to infer the chronometry and the sequence of activations across the brain regions that are involved in the experimental task. Results are validated on a long-term memory retrieval task, showing significant improvement using the proposed latent discriminative method.

  20. Hippocampal EEG and motor activity in the cat: The role of eye movements and body acceleration

    NARCIS (Netherlands)

    Kamp, A.; Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Boeijinga, P.; Aitink, W.

    1984-01-01

    In cat the relation between various behaviours and the spectral properties of the hippocampal EEG was investigated. Both EEG and behaviour were quantified and results were evaluated statistically. Significant relationships were found between the properties of the hippocampal EEG and motor acts

  1. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper.

    Science.gov (United States)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio; Soekadar, Surjo R; Brittain, John-Stuart; Valero-Cabré, Antoni; Sack, Alexander T; Miniussi, Carlo; Antal, Andrea; Siebner, Hartwig Roman; Ziemann, Ulf; Herrmann, Christoph S

    2017-05-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. Modafinil Increases Awake EEG Activation and Improves Performance in Obstructive Sleep Apnea during Continuous Positive Airway Pressure Withdrawal

    Science.gov (United States)

    Wang, David; Bai, Xiao Xue; Williams, Shaun C.; Hua, Shu Cheng; Kim, Jong-Won; Marshall, Nathaniel S.; D'Rozario, Angela; Grunstein, Ronald R.

    2015-01-01

    Objectives: We examined the changes in waking electroencephalography (EEG) biomarkers with modafinil during continuous positive airway pressure (CPAP) withdrawal in patients with obstructive sleep apnea (OSA) to investigate neurophysiological evidence for potential neurocognitive improvements. Design: Randomized double-blind placebo-controlled crossover study. CPAP was used for the first night and then withdrawn for 2 subsequent nights. Each morning after the 2 CPAP withdrawal nights, patients received either 200 mg modafinil or placebo. After a 5-w washout, the procedure repeated with the crossover drug. Setting: University teaching hospital. Participants: Stable CPAP users (n = 23 men with OSA) Measurement and Results: Karolinska Drowsiness Test (KDT) (awake EEG measurement with eyes open and closed), Psychomotor Vigilance Task (PVT), and driving simulator Performance were assessed bihourly during the 3 testing days following CPAP treatment and CPAP withdrawal nights. Compared to placebo, modafinil significantly increased awake EEG activation (faster EEG frequency) with increased alpha/delta (A/D) ratio (P EEG band power of alpha, beta, theta, and delta did not correlate with any neurocognitive performance. Conclusions: Modafinil administration during continuous positive airway pressure (CPAP) withdrawal increased awake EEG activation, which correlated to improved performance. This study provides supporting neurophysiological evidence that modafinil is a potential short-term treatment option during acute CPAP withdrawal. Citation: Wang D, Bai XX, Williams SC, Hua SC, Kim JW, Marshall NS, D'Rozario A, Grunstein RR. Modafinil increases awake EEG activation and improves performance in obstructive sleep apnea during continuous positive airway pressure withdrawal. SLEEP 2015;38(8):1297–1303. PMID:26158894

  3. Hypoglycemia-Induced Decrease of EEG Coherence in Patients with Type 1 Diabetes

    DEFF Research Database (Denmark)

    Rubega, Maria; Sparacino, Giovanni; Sejling, A. S.

    2016-01-01

    BACKGROUND: Hypoglycemic events in patients with type 1 diabetes (T1D) are associated with measurable electroencephalography (EEG) changes. Previous studies have, however, evaluated these changes on a single EEG channel level, whereas multivariate analysis of several EEG channels has been scarcely......: In passing from eu- to hypoglycemia, absolute values of the iPDC function tend to decrease in both bands in all combinations of the considered channels. In particular, the scalar indicator [Formula: see text], which summarizes iPDC information, significantly decreased (P 

  4. Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition

    Directory of Open Access Journals (Sweden)

    Wu Chi-Hsun

    2010-06-01

    Full Text Available Abstract Background Brain oscillatory activities are stochastic and non-linearly dynamic, due to their non-phase-locked nature and inter-trial variability. Non-phase-locked rhythmic signals can vary from trial-to-trial dependent upon variations in a subject's performance and state, which may be linked to fluctuations in expectation, attention, arousal, and task strategy. Therefore, a method that permits the extraction of the oscillatory signal on a single-trial basis is important for the study of subtle brain dynamics, which can be used as probes to study neurophysiology in normal brain and pathophysiology in the diseased. Methods This paper presents an empirical mode decomposition (EMD-based spatiotemporal approach to extract neural oscillatory activities from multi-channel electroencephalograph (EEG data. The efficacy of this approach manifests in extracting single-trial post-movement beta activities when performing a right index-finger lifting task. In each single trial, an EEG epoch recorded at the channel of interest (CI was first separated into a number of intrinsic mode functions (IMFs. Sensorimotor-related oscillatory activities were reconstructed from sensorimotor-related IMFs chosen by a spatial map matching process. Post-movement beta activities were acquired by band-pass filtering the sensorimotor-related oscillatory activities within a trial-specific beta band. Signal envelopes of post-movement beta activities were detected using amplitude modulation (AM method to obtain post-movement beta event-related synchronization (PM-bERS. The maximum amplitude in the PM-bERS within the post-movement period was subtracted by the mean amplitude of the reference period to find the single-trial beta rebound (BR. Results The results showed single-trial BRs computed by the current method were significantly higher than those obtained from conventional average method (P Conclusions The EMD-based method is effective for artefact removal and extracting

  5. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control

    Science.gov (United States)

    Huang, Dandan; Lin, Peter; Fei, Ding-Yu; Chen, Xuedong; Bai, Ou

    2009-08-01

    This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive EEG in order to control a discrete two-dimensional cursor movement for a potential multidimensional brain-computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at an average accuracy of 85.5 ± 4.65%; the subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multidimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.

  6. Neural activity based biofeedback therapy for Autism spectrum disorder through wearable wireless textile EEG monitoring system

    Science.gov (United States)

    Sahi, Ahna; Rai, Pratyush; Oh, Sechang; Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2014-04-01

    Mu waves, also known as mu rhythms, comb or wicket rhythms are synchronized patterns of electrical activity involving large numbers of neurons, in the part of the brain that controls voluntary functions. Controlling, manipulating, or gaining greater awareness of these functions can be done through the process of Biofeedback. Biofeedback is a process that enables an individual to learn how to change voluntary movements for purposes of improving health and performance through the means of instruments such as EEG which rapidly and accurately 'feedback' information to the user. Biofeedback is used for therapeutic purpose for Autism Spectrum Disorder (ASD) by focusing on Mu waves for detecting anomalies in brain wave patterns of mirror neurons. Conventional EEG measurement systems use gel based gold cup electrodes, attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. To remedy this, sensors can be incorporated with skull cap and baseball cap that are commonly used for infants and children. Feasibility of Textile based Sensor system has been investigated here. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission has been seamlessly integrated into fabric of these items for continuous detection of Mu waves. Textile electrodes were placed on positions C3, CZ, C4 according to 10-20 international system and their capability to detect Mu waves was tested. The system is ergonomic and can potentially be used for early diagnosis in infants and planning therapy for ASD patients.

  7. Ethanol modulates cortical activity: direct evidence with combined TMS and EEG.

    Science.gov (United States)

    Kähkönen, S; Kesäniemi, M; Nikouline, V V; Karhu, J; Ollikainen, M; Holi, M; Ilmoniemi, R J

    2001-08-01

    The motor cortex of 10 healthy subjects was stimulated by transcranial magnetic stimulation (TMS) before and after ethanol challenge (0.8 g/kg resulting in blood concentration of 0.77 +/- 0.14 ml/liter). The electrical brain activity resulting from the brief electromagnetic pulse was recorded with high-resolution electroencephalography (EEG) and located using inversion algorithms. Focal magnetic pulses to the left motor cortex were delivered with a figure-of-eight coil at the random interstimulus interval of 1.5-2.5 s. The stimulation intensity was adjusted to the motor threshold of abductor digiti minimi. Two conditions before and after ethanol ingestion (30 min) were applied: (1) real TMS, with the coil pressed against the scalp; and (2) control condition, with the coil separated from the scalp by a 2-cm-thick piece of plastic. A separate EMG control recording of one subject during TMS was made with two bipolar platinum needle electrodes inserted to the left temporal muscle. In each condition, 120 pulses were delivered. The EEG was recorded from 60 scalp electrodes. A peak in the EEG signals was observed at 43 ms after the TMS pulse in the real-TMS condition but not in the control condition or in the control scalp EMG. Potential maps before and after ethanol ingestion were significantly different from each other (P = 0.01), but no differences were found in the control condition. Ethanol changed the TMS-evoked potentials over right frontal and left parietal areas, the underlying effect appearing to be largest in the right prefrontal area. Our findings suggest that ethanol may have changed the functional connectivity between prefrontal and motor cortices. This new noninvasive method provides direct evidence about the modulation of cortical connectivity after ethanol challenge. Copyright 2001 Academic Press.

  8. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.

    Science.gov (United States)

    Huang, Dandan; Lin, Peter; Fei, Ding-Yu; Chen, Xuedong; Bai, Ou

    2009-08-01

    This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive EEG in order to control a discrete two-dimensional cursor movement for a potential multidimensional brain-computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at an average accuracy of 85.5 +/- 4.65%; the subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multidimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.

  9. Developmental alterations in noxious-evoked EEG activity recorded from rat primary somatosensory cortex.

    Science.gov (United States)

    Devonshire, I M; Greenspon, C M; Hathway, G J

    2015-10-01

    Primary somatosensory cortex (S1) contains a nociceptive map that localizes potential tissue damage on the body and encodes stimulus intensity. An objective and specific biomarker of pain however is currently lacking and is urgently required for use in non-verbal clinical populations as well as in the validation of pre-clinical pain models. Here we describe studies to see if the responses of the S1 in juvenile rats are different to those in the adult. We recorded electroencephalogram (EEG) responses from S1 of lightly-anesthetized Sprague-Dawley rats at either postnatal day 21 or postnatal day 40 during the presentation of noxious (55 °C) or innocuous (30 °C) thermal stimuli applied to the plantar surface of the left hindpaw. The total EEG power across the recording period was the same in both ages after stimulation but the frequency distribution was significantly affected by age. Noxious heat evoked a significant increase in theta band (4-8 Hz) activity in adults only (PEEG responses to innocuous thermal stimuli. These data show that there are significant alterations in the processing of nociceptive inputs within the maturing cortex and that cortical theta activity is involved only in the adult cortical response to noxious stimulation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Towards the measurement of event-related EEG activity in real-life working environments.

    Science.gov (United States)

    Wascher, Edmund; Heppner, Holger; Hoffmann, Sven

    2014-01-01

    In applied contexts, psychophysiological measures have a long tradition to evaluate the user state. EEG correlates that indicate mechanisms of information processing, however, are hardly accessible since discrete time stamps that are necessary for this approach are commonly not available in natural situations. However, eye blinks may close this gap. Eye blinks are assumed to mark distinct points in information processing, necessary to segment the incoming data stream. By using mobile EEG in a simulated working situation we demonstrate that eye-blink-related potentials provide reliable information about cognitive processing in distinct working environments. During cognitive tasks, an increase in the fronto-central N2 component as well as evoked theta activity can be shown, both indices of enhanced cognitive control. The posterior P3 is reduced during physical tasks (sorting of boxes), probably reflecting the more continuous nature of this task. The data are discussed within a model of dopaminergic modulation of blink activity that involves both task specific aspects like executive control and modulating influences of motivation or fatigue. © 2013.

  11. Modafinil Increases Awake EEG Activation and Improves Performance in Obstructive Sleep Apnea during Continuous Positive Airway Pressure Withdrawal.

    Science.gov (United States)

    Wang, David; Bai, Xiao Xue; Williams, Shaun C; Hua, Shu Cheng; Kim, Jong-Won; Marshall, Nathaniel S; D'Rozario, Angela; Grunstein, Ronald R

    2015-08-01

    We examined the changes in waking electroencephalography (EEG) biomarkers with modafinil during continuous positive airway pressure (CPAP) withdrawal in patients with obstructive sleep apnea (OSA) to investigate neurophysiological evidence for potential neurocognitive improvements. Randomized double-blind placebo-controlled crossover study. CPAP was used for the first night and then withdrawn for 2 subsequent nights. Each morning after the 2 CPAP withdrawal nights, patients received either 200 mg modafinil or placebo. After a 5-w washout, the procedure repeated with the crossover drug. University teaching hospital. Stable CPAP users (n = 23 men with OSA). Karolinska Drowsiness Test (KDT) (awake EEG measurement with eyes open and closed), Psychomotor Vigilance Task (PVT), and driving simulator Performance were assessed bihourly during the 3 testing days following CPAP treatment and CPAP withdrawal nights. Compared to placebo, modafinil significantly increased awake EEG activation (faster EEG frequency) with increased alpha/delta (A/D) ratio (P Modafinil administration during continuous positive airway pressure (CPAP) withdrawal increased awake EEG activation, which correlated to improved performance. This study provides supporting neurophysiological evidence that modafinil is a potential short-term treatment option during acute CPAP withdrawal. © 2015 Associated Professional Sleep Societies, LLC.

  12. Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device Reveals Distinct Deep Sleep Stages With Differential Electrodermal Activity

    OpenAIRE

    Julie A Onton; Kang, Dae Y.; Coleman, Todd P.

    2016-01-01

    Brain activity during sleep is powerful marker of overall health, but sleep lab testing is prohibitively expensive and only indicated for major sleep disorders. This report demonstrates that mobile 2-channel in-home electroencephalogram (EEG) recording devices provided sufficient information to detect and visualize sleep EEG. Displaying whole-night sleep EEG in a spectral display allowed for quick assessment of general sleep stability, cycle lengths, stage lengths, dominant frequencies, and o...

  13. Combining EEG and MEG for the reconstruction of epileptic activity using a calibrated realistic volume conductor model.

    Directory of Open Access Journals (Sweden)

    Ümit Aydin

    Full Text Available To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP and field (SEF data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data.

  14. Combining EEG and MEG for the reconstruction of epileptic activity using a calibrated realistic volume conductor model.

    Science.gov (United States)

    Aydin, Ümit; Vorwerk, Johannes; Küpper, Philipp; Heers, Marcel; Kugel, Harald; Galka, Andreas; Hamid, Laith; Wellmer, Jörg; Kellinghaus, Christoph; Rampp, Stefan; Wolters, Carsten Hermann

    2014-01-01

    To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP) and field (SEF) data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data.

  15. Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model

    Science.gov (United States)

    Aydin, Ümit; Vorwerk, Johannes; Küpper, Philipp; Heers, Marcel; Kugel, Harald; Galka, Andreas; Hamid, Laith; Wellmer, Jörg; Kellinghaus, Christoph; Rampp, Stefan; Wolters, Carsten Hermann

    2014-01-01

    To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP) and field (SEF) data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data. PMID:24671208

  16. Incidence of epileptiform EEG activity in children during mask induction of anaesthesia with brief administration of 8% sevoflurane.

    Directory of Open Access Journals (Sweden)

    Barbara Schultz

    Full Text Available BACKGROUND: A high incidence of epileptiform activity in the electroencephalogram (EEG was reported in children undergoing mask induction of anaesthesia with administration of high doses of sevoflurane for 5 minutes and longer. This study was performed to investigate whether reducing the time of exposure to a high inhaled sevoflurane concentration would affect the incidence of epileptiform EEG activity. It was hypothesized that no epileptiform activity would occur, when the inhaled sevoflurane concentration would be reduced from 8% to 4% immediately after the loss of consciousness. METHODOLOGY/PRINCIPAL FINDINGS: 70 children (age 7-96 months, ASA I-II, premedication with midazolam were anaesthetized with 8% sevoflurane in 100% oxygen via face mask. Immediately after loss of consciousness, the sevoflurane concentration was reduced to 4%. EEGs were recorded continuously and were later analyzed visually with regard to epileptiform EEG patterns. Sevoflurane at a concentration of 8% was given for 1.2 ± 0.4 min (mean ± SD. In 14 children (20% epileptiform EEG patterns without motor manifestations were observed (delta with spikes (DSP, rhythmic polyspikes (PSR, epileptiform discharges (PED in 10, 10, 4 children (14%, 14%, 6%. 38 children (54% had slow, rhythmic delta waves with high amplitudes (DS appearing on average before DSP. CONCLUSIONS/SIGNIFICANCE: The hypothesis that no epileptiform potentials would occur during induction of anaesthesia with a reduction of the inspired sevoflurane concentration from 8% to 4% directly after LOC was not proved. Even if 8% sevoflurane is administered only briefly for induction of anaesthesia, epileptiform EEG activity may be observed in children despite premedication with midazolam.

  17. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset

    Science.gov (United States)

    Wendling, Fabrice; Bartolomei, Fabrice; Bellanger, Jean-Jacques; Bourien, Jérôme; Chauvel, Patrick

    2003-01-01

    Low-voltage rapid discharges (or fast EEG ictal activity) constitute a characteristic electrophysiological pattern in focal seizures of human epilepsy. They are characterized by a decrease of signal voltage with a marked increase of signal frequency (typically beyond 25 Hz). They have long been observed in stereoelectroencephalographic (SEEG) signals recorded with intra-cerebral electrodes, generally occurring at seizure onset and simultaneously involving distinct brain regions. Spectral properties of rapid ictal discharges as well as spatial correlations measured between SEEG signals generated from distant sites before, during and after these discharges were studied. Cross-correlation estimates within typical EEG sub-bands and statistical tests performed in ten patients suffering from partial epilepsy (frontal, temporal or fronto-temporal) reveal that SEEG signals are significantly de-correlated during the discharge period compared to periods that precede and follow this discharge. These results can be interpreted as a functional decoupling of distant brain sites at seizure onset followed by an abnormally high re-coupling when the seizure develops. They lead to the concept of “disruption” that is complementary of that of “activation” (revealed by significantly high correlations between signals recorded during seizures), both giving insights into our understanding of pathophysiological processes involved in human partial epilepsies as well as in the interpretation of clinical semiology. PMID:12764064

  18. EEG Analysis of the Brain Activity during the Observation of Commercial, Political, or Public Service Announcements

    Directory of Open Access Journals (Sweden)

    Giovanni Vecchiato

    2010-01-01

    Full Text Available The use of modern brain imaging techniques could be useful to understand what brain areas are involved in the observation of video clips related to commercial advertising, as well as for the support of political campaigns, and also the areas of Public Service Announcements (PSAs. In this paper we describe the capability of tracking brain activity during the observation of commercials, political spots, and PSAs with advanced high-resolution EEG statistical techniques in time and frequency domains in a group of normal subjects. We analyzed the statistically significant cortical spectral power activity in different frequency bands during the observation of a commercial video clip related to the use of a beer in a group of 13 normal subjects. In addition, a TV speech of the Prime Minister of Italy was analyzed in two groups of swing and “supporter” voters. Results suggested that the cortical activity during the observation of commercial spots could vary consistently across the spot. This fact suggest the possibility to remove the parts of the spot that are not particularly attractive by using those cerebral indexes. The cortical activity during the observation of the political speech indicated a major cortical activity in the supporters group when compared to the swing voters. In this case, it is possible to conclude that the communication proposed has failed to raise attention or interest on swing voters. In conclusions, high-resolution EEG statistical techniques have been proved to able to generate useful insights about the particular fruition of TV messages, related to both commercial as well as political fields.

  19. The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI.

    Science.gov (United States)

    Fink, Andreas; Grabner, Roland H; Benedek, Mathias; Reishofer, Gernot; Hauswirth, Verena; Fally, Maria; Neuper, Christa; Ebner, Franz; Neubauer, Aljoscha C

    2009-03-01

    Cortical activity in the EEG alpha band has proven to be particularly sensitive to creativity-related demands, but its functional meaning in the context of creative cognition has not been clarified yet. Specifically, increases in alpha activity (i.e., alpha synchronisation) in response to creative thinking can be interpreted in different ways: As a functional correlate of cortical idling, as a sign of internal top-down activity or, more specifically, as selective inhibition of brain regions. We measured brain activity during creative thinking in two studies employing different neurophysiological measurement methods (EEG and fMRI). In both studies, participants worked on four verbal tasks differentially drawing on creative idea generation. The EEG study revealed that the generation of original ideas was associated with alpha synchronisation in frontal brain regions and with a diffuse and widespread pattern of alpha synchronisation over parietal cortical regions. The fMRI study revealed that task performance was associated with strong activation in frontal regions of the left hemisphere. In addition, we found task-specific effects in parietotemporal brain areas. The findings suggest that EEG alpha band synchronisation during creative thinking can be interpreted as a sign of active cognitive processes rather than cortical idling.

  20. Goal-directed EEG activity evoked by discriminative stimuli in reinforcement learning.

    Science.gov (United States)

    Luque, David; Morís, Joaquín; Rushby, Jacqueline A; Le Pelley, Mike E

    2015-02-01

    In reinforcement learning (RL), discriminative stimuli (S) allow agents to anticipate the value of a future outcome, and the response that will produce that outcome. We examined this processing by recording EEG locked to S during RL. Incentive value of outcomes and predictive value of S were manipulated, allowing us to discriminate between outcome-related and response-related activity. S predicting the correct response differed from nonpredictive S in the P2. S paired with high-value outcomes differed from those paired with low-value outcomes in a frontocentral positivity and in the P3b. A slow negativity then distinguished between predictive and nonpredictive S. These results suggest that, first, attention prioritizes detection of informative S. Activation of mental representations of these informative S then retrieves representations of outcomes, which in turn retrieve representations of responses that previously produced those outcomes. © 2014 Society for Psychophysiological Research.

  1. EEG: Origin and measurement

    NARCIS (Netherlands)

    Lopes da Silva, F.; Mulert, C.; Lemieux, L.

    2010-01-01

    The existence of the electrical activity of the brain (i.e. the electroencephalogram or EEG) was discovered more than a century ago by Caton. After the demonstration that the EEG could be recorded from the human scalp by Berger in the 1920s, it made a slow start before it became accepted as a method

  2. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    Directory of Open Access Journals (Sweden)

    Mette Thrane Foged

    Full Text Available Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI. There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF related heating, the effect of EEG on cortical signal-to-noise ratio (SNR in fMRI, and assess EEG data quality.The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years and 13 patients with epilepsy (8 males, age range 21-67 years. Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients.RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05. No significant differences in the visually analyzed EEG data quality were found between

  3. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    Science.gov (United States)

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan

    2017-01-01

    Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG

  4. Early and late components of EEG delay activity correlate differently with scene working memory performance.

    Science.gov (United States)

    Ellmore, Timothy M; Ng, Kenneth; Reichert, Chelsea P

    2017-01-01

    Sustained and elevated activity during the working memory delay period has long been considered the primary neural correlate for maintaining information over short time intervals. This idea has recently been reinterpreted in light of findings generated from multiple neural recording modalities and levels of analysis. To further investigate the sustained or transient nature of activity, the temporal-spectral evolution (TSE) of delay period activity was examined in humans with high density EEG during performance of a Sternberg working memory paradigm with a relatively long six second delay and with novel scenes as stimuli. Multiple analyses were conducted using different trial window durations and different baseline periods for TSE computation. Sensor level analyses revealed transient rather than sustained activity during delay periods. Specifically, the consistent finding among the analyses was that high amplitude activity encompassing the theta range was found early in the first three seconds of the delay period. These increases in activity early in the delay period correlated positively with subsequent ability to distinguish new from old probe scenes. Source level signal estimation implicated a right parietal region of transient early delay activity that correlated positively with working memory ability. This pattern of results adds to recent evidence that transient rather than sustained delay period activity supports visual working memory performance. The findings are discussed in relation to synchronous and desynchronous intra- and inter-regional neural transmission, and choosing an optimal baseline for expressing temporal-spectral delay activity change.

  5. Characterization of sleep need dissipation using EEG based slow-wave activity analysis in two age groups

    NARCIS (Netherlands)

    Garcia-Molina, G.; Baehr, K.; Steele, B.; Tsoneva, T.K.; Pfundtner, S.; Mahadevan, A.; Papas, N.; Riedner, B.; Tononi, G.; White, D.

    2017-01-01

    Introduction: In the two-process model of sleep regulation, slow-wave activity (SWA, EEG power in the 0.5–4 Hz band) is a direct indicator of sleep need. SWA builds up during NREM sleep, declines before the onset of REM sleep, remains low during REM and the level of increase in successive NREM

  6. Electroencephalographic recordings in dogs suffering from idiopathic and symptomatic epilepsy: diagnostic value of interictal short time EEG protocols supplemented by two activation techniques.

    Science.gov (United States)

    Brauer, Christina; Kästner, Sabine B R; Rohn, Karl; Schenk, Henning C; Tünsmeyer, Julia; Tipold, Andrea

    2012-07-01

    The diagnostic value of interictal short time electroencephalographic (EEG) recordings in epileptic dogs under general anaesthesia with propofol and the muscle relaxant rocuronium bromide was investigated. Two activation techniques, namely photic stimulation and hyperventilation, were evaluated for their potential to enhance the diagnostic validity of these recordings. Sixty-one dogs suffering from idiopathic epilepsy and 28 dogs suffering from symptomatic epilepsy were included. Electroencephalograms were recorded using five subdermal EEG electrodes (F3, F4, Cz, O1 and O2). All 89 EEGs were analysed visually and 61 were also evaluated quantitatively with fast Fourier transformation. Interictal paroxysmal epileptiform activity was found in 25% of idiopathic and in 29% of symptomatic epileptic dogs. Quantitative analysis of the EEGs (qEEGs) detected significant differences of frequency analysis in single reading points without any continuous changes of frequency bands. A comparison between healthy and affected brain hemispheres in seven dogs with focal lesions of one hemisphere did not show any significant differences in qEEG analysis. qEEG was not more sensitive than visual evaluation. Despite the use of activation techniques, the results showed that short time EEG recordings in epileptic dogs can detect interictal epileptic activity in less than one third of all seizuring dogs and is not a useful screening method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy

    Science.gov (United States)

    Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.

    2014-01-01

    Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…

  8. EMOTION-PROCESSING BIASES AND RESTING EEG ACTIVITY IN DEPRESSED ADOLESCENTS.

    Science.gov (United States)

    Auerbach, Randy P; Stewart, Jeremy G; Stanton, Colin H; Mueller, Erik M; Pizzagalli, Diego A

    2015-09-01

    Although theorists have posited that adolescent depression is characterized by emotion-processing biases (greater propensity to identify sad than happy facial expressions), findings have been mixed. Additionally, the neural correlates associated with putative emotion-processing biases remain largely unknown. Our aim was to identify emotion-processing biases in depressed adolescents and examine neural abnormalities related to these biases using high-density resting EEG and source localization. Healthy (n = 36) and depressed (n = 23) female adolescents, aged 13-18 years, completed a facial recognition task in which they identified happy, sad, fear, and angry expressions across intensities from 10% (low) to 100% (high). Additionally, 128-channel resting (i.e., task-free) EEG was recorded and analyzed using a distributed source localization technique (low-resolution electromagnetic tomography (LORETA)). Given research implicating the dorsolateral prefrontal cortex (DLPFC) in depression and emotion processing, analyses focused on this region. Relative to healthy youth, depressed adolescents were more accurate for sad and less accurate for happy, particularly low-intensity happy faces. No differences emerged for fearful or angry facial expressions. Further, LORETA analyses revealed greater theta and alpha current density (i.e., reduced brain activity) in depressed versus healthy adolescents, particularly in the left DLPFC (BA9/BA46). Theta and alpha current density were positively correlated, and greater current density predicted reduced accuracy for happy faces. Depressed female adolescents were characterized by emotion-processing biases in favor of sad emotions and reduced recognition of happiness, especially when cues of happiness were subtle. Blunted recognition of happy was associated with left DLPFC resting hypoactivity. © 2015 Wiley Periodicals, Inc.

  9. Kinesthetic and Vestibular Information Modulate Alpha Activity during Spatial Navigation: A Mobile EEG Study

    Directory of Open Access Journals (Sweden)

    Benedikt Valerian Ehinger

    2014-02-01

    Full Text Available In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG. Participants traversed one leg of a triangle, turned on the spot, continued along the second leg and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information or not at all within a 2x2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing, and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas, we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.

  10. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study.

    Science.gov (United States)

    Ehinger, Benedikt V; Fischer, Petra; Gert, Anna L; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter

    2014-01-01

    In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.

  11. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards.

    Science.gov (United States)

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-10-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward

  12. Differences in eeg oscillations during vasoactive stress reactions in extroverts and introverts

    OpenAIRE

    Kustubayeva, A.; Matthews, Gerald

    2012-01-01

    Hyperventilation (HV) and breath-holding (BH) are informative psychophysiological tests resulting in rapidly changing cerebral blood flow. The aim of our research was to determine differential EEG spectra of introverts/extroverts with induced HV and BH. Introverts revealed more intensive EEG reaction during HV, which was specifically shown by increased theta and gamma activity in all cortical areas.

  13. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.

    Science.gov (United States)

    Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon

    2017-03-01

    To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P EEG to aEEG. aEEG recordings in high-risk premature neonates reflect reliably EEG background information related to continuity and amplitude.

  14. The transliminal brain at rest: baseline EEG, unusual experiences, and access to unconscious mental activity.

    Science.gov (United States)

    Fleck, Jessica I; Green, Deborah L; Stevenson, Jennifer L; Payne, Lisa; Bowden, Edward M; Jung-Beeman, Mark; Kounios, John

    2008-01-01

    Transliminality reflects individual differences in the threshold at which unconscious processes or external stimuli enter into consciousness. Individuals high in transliminality possess characteristics such as magical ideation, belief in the paranormal, and creative personality traits, and also report the occurrence of manic/mystic experiences. The goal of the present research was to determine if resting brain activity differs for individuals high versus low in transliminality. We compared baseline EEG recordings (eyes-closed) between individuals high versus low in transliminality, assessed using The Revised Transliminality Scale of Lange et al. (2000). Identifying reliable differences at rest between high- and low-transliminality individuals would support a predisposition for transliminality-related traits. Individuals high in transliminality exhibited lower alpha, beta, and gamma power than individuals low in transliminality over left posterior association cortex and lower high alpha, low beta, and gamma power over the right superior temporal region. In contrast, when compared to individuals low in transliminality, individuals high in transliminality exhibited greater gamma power over the frontal-midline region. These results are consistent with prior research reporting reductions in left temporal/parietal activity, as well as the desynchronization of right temporal activity in schizotypy and related schizophrenia spectrum disorders. Further, differences between high- and low-transliminality groups extend existing theories linking altered hemispheric asymmetries in brain activity to a predisposition toward schizophrenia, paranormal beliefs, and unusual experiences.

  15. The feeling of movement: EEG evidence for mirroring activity during the observations of static, ambiguous stimuli in the Rorschach cards.

    Science.gov (United States)

    Giromini, Luciano; Porcelli, Piero; Viglione, Donald J; Parolin, Laura; Pineda, Jaime A

    2010-10-01

    The mirror neuron system (MNS) is considered the best explanation for the neural basis of embodied simulation. To date no study has investigated if it may be activated not only by actual but by the "feeling of movement". The Rorschach test cards were used to investigate evidence of EEG mu wave suppression at central areas, an index of MNS activity, since human movement responses (M) to the Rorschach elicit such feelings of movement. Nineteen healthy volunteers observed different sets of Rorschach stimuli during attribution, identification, and observation of human movements and different scenarios while their EEG were recorded. Significant mu suppression occurred when subjects perceived movement, regardless of the experimental condition. These results show that mirroring can be activated by static, ambiguous stimuli such as Rorschach cards, suggesting that internal representation of the "feeling of movement" may be sufficient to trigger MNS activity even when minimal external cues are present. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording

    Directory of Open Access Journals (Sweden)

    de Souza Ana Cláudia Silva

    2013-01-01

    Full Text Available Abstract Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning.

  17. Willing to Wait: Elevated Reward-Processing EEG Activity Associated with a Greater Preference for Larger-But-Delayed Rewards

    OpenAIRE

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-01-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation an...

  18. Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: a pilot study.

    Science.gov (United States)

    Lustenberger, Caroline; Mouthon, Anne-Laure; Tesler, Noemi; Kurth, Salome; Ringli, Maya; Buchmann, Andreas; Jenni, Oskar G; Huber, Reto

    2017-01-01

    Reliable markers for brain maturation are important to identify neural deviations that eventually predict the development of mental illnesses. Recent studies have proposed topographical EEG-derived slow wave activity (SWA) during NREM sleep as a mirror of cortical development. However, studies about the longitudinal stability as well as the relationship with behavioral skills are needed before SWA topography may be considered such a reliable marker. We examined six subjects longitudinally (over 5.1 years) using high-density EEG and a visuomotor learning task. All subjects showed a steady increase of SWA at a frontal electrode and a decrease in central electrodes. Despite these large changes in EEG power, SWA topography was relatively stable within each subject during development indicating individual trait-like characteristics. Moreover, the SWA changes in the central cluster were related to the development of specific visuomotor skills. Taken together with the previous work in this domain, our results suggest that EEG sleep SWA represents a marker for motor skill development and further supports the idea that SWA mirrors cortical development during childhood and adolescence. © 2016 Wiley Periodicals, Inc.

  19. Discrimination of Motor Imagery-Induced EEG Patterns in Patients with Complete Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    G. Pfurtscheller

    2009-01-01

    Full Text Available EEG-based discrimination between different motor imagery states has been subject of a number of studies in healthy subjects. We investigated the EEG of 15 patients with complete spinal cord injury during imagined right hand, left hand, and feet movements. In detail we studied pair-wise discrimination functions between the 3 types of motor imagery. The following classification accuracies (mean ± SD were obtained: left versus right hand 65.03% ± 8.52, left hand versus feet 68.19% ± 11.08, and right hand versus feet 65.05% ± 9.25. In 5 out of 8 paralegic patients, the discrimination accuracy was greater than 70% but in only 1 out of 7 tetraplagic patients. The present findings provide evidence that in the majority of paraplegic patients an EEG-based BCI could achieve satisfied results. In tetraplegic patients, however, it is expected that extensive training-sessions are necessary to achieve a good BCI performance at least in some subjects.

  20. Development of a novel robust measure for interhemispheric synchrony in the neonatal EEG: activation synchrony index (ASI).

    Science.gov (United States)

    Räsänen, Okko; Metsäranta, Marjo; Vanhatalo, Sampsa

    2013-04-01

    The degree of interhemispheric synchrony in the neonatal EEG assessment refers to the co-occurrence of activity bouts during quiet sleep or burst suppression, and it has been widely considered as a key component in assessing background activity. However, no objective measures have been published for measuring it, and all conventionally used visual criteria suffer from significant ambiguities. Our present study aimed to develop such a quantitative measure of (a)synchrony, called activation synchrony index (ASI). We developed the ASI paradigm based on the testing of statistical independence between two quantized amplitude envelopes of wideband-filtered signals where higher frequencies had been pre-emphasized. The core parameter settings of ASI paradigm were defined using a smaller EEG dataset, and the final ASI paradigm was tested using a visually classified dataset of EEG records from 33 fullterm and 25 preterm babies, which showed varying grades of asynchrony. Our findings show that ASI could distinguish all EEG recordings with normal synchrony from those with modest or severe asynchrony at individual level, and there was a highly significant correlation (pASI and the visually assessed grade of asynchrony. In addition, we showed that i) ASI is stable in recordings over several hours in duration, such as the typical neonatal brain monitoring, that ii) ASI values are sensitive to sleep stage, and that iii) they correlate with age in the preterm babies. Comparison of ASI to other three potential paradigms demonstrated a significant competitive advantage. Finally, ASI was found to be remarkably resistant to common artefacts as tested by adding significant level of real EEG artefacts from noisy recordings. An objective and reliable measure of (a)synchrony may open novel avenues for using ASI as a putative early functional biomarker in the neonatal brain, as well as for building proper automated classifiers of neonatal EEG background. Notably, the signature of synchrony

  1. Detecting epileptic seizure activity in the EEG by independent component analysis

    NARCIS (Netherlands)

    Hoeve, Maarten-Jan; van der Zwaag, B.J.; van Burik, M.J.; Slump, Cornelis H.; Jones, Richard

    Manually reviewing EEG (Electroencephalogram) recordings, for detection of electrographical patterns, is a time consuming business. Therefore, the ability to automate the classification of interesting electrographical patterns is a good supplement to the wide range of detection algorithms currently

  2. Using EEG to Discriminate Cognitive Workload and Performance Based on Neural Activation and Connectivity

    Science.gov (United States)

    2016-05-31

    in memory. Cognitive efficacy is assessed based on accuracy in recalling digits from memory. A Gaussian classifier is used to discriminate cognitive...passed filtered with a lower edge at 1 Hz using EEGLAB’s default FIR filter (EEGLAB). Additionally a notch filter was applied between 59.75 and 60.25...coherences between a single EEG channel and all 64 EEG channels. The pattern of coherences for one of these rows can be viewed using a head map image

  3. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Directory of Open Access Journals (Sweden)

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  4. The changes in relation of auditory and visual input activity between hemispheres analized in cartographic EEG in a child with hyperactivity syndrome

    Directory of Open Access Journals (Sweden)

    Radičević Zoran

    2015-01-01

    Full Text Available The paper discusses the changes in relations of visual and auditory inputs between the hemispheres in a child with hyperactive syndrome and its effects which may lead to better attention engagement in auditory and visual information analysis. The method included the use of cartographic EEG and clinical procedure in a 10-year-old boy with hyperactive syndrome and attention deficit disorder, who has theta dysfunction manifested in standard EEG. Cartographic EEG patterns was performed on NihonKohden Corporation, EEG - 1200K Neurofax apparatus in longitudinal bipolar electrode assembly schedule by utilizing10/20 International electrode positioning. Impedance was maintained below 5 kΩ, with not more than 1 kΩ differences between the electrodes. Lower filter was set at 0.53 Hz and higher filter at 35 Hz. Recording was performed in a quiet period and during stimulation procedures that include speech and language basis. Standard EEG and Neurofeedback (NFB treatment indicated higher theta load, alpha 2 and beta 1 activity measured in the cartographic EEG which was done after the relative failure of NFB treatment. After this, the NFB treatment was applied which lasted for six months, in a way that when the boy was reading, the visual input was enhanced to the left hemisphere and auditory input was reduced to the right hemisphere. Repeated EEG mapping analysis showed that there was a significant improvement, both in EEG findings as well as in attention, behavioural and learning disorders. The paper discusses some aspects of learning, attention and behaviour in relation to changes in the standard EEG, especially in cartographic EEG and NFB findings.

  5. Mating signals indicating sexual receptiveness induce unique spatio-temporal EEG theta patterns in an anuran species.

    Directory of Open Access Journals (Sweden)

    Guangzhan Fang

    Full Text Available Female mate choice is of importance for individual fitness as well as a determining factor in genetic diversity and speciation. Nevertheless relatively little is known about how females process information acquired from males during mate selection. In the Emei music frog, Babina daunchina, males normally call from hidden burrows and females in the reproductive stage prefer male calls produced from inside burrows compared with ones from outside burrows. The present study evaluated changes in electroencephalogram (EEG power output in four frequency bands induced by male courtship vocalizations on both sides of the telencephalon and mesencephalon in females. The results show that (1 both the values of left hemispheric theta relative power and global lateralization in the theta band are modulated by the sexual attractiveness of the acoustic stimulus in the reproductive stage, suggesting the theta oscillation is closely correlated with processing information associated with mate choice; (2 mean relative power in the beta band is significantly greater in the mesencephalon than the left telencephalon, regardless of reproductive status or the biological significance of signals, indicating it is associated with processing acoustic features and (3 relative power in the delta and alpha bands are not affected by reproductive status or acoustic stimuli. The results imply that EEG power in the theta and beta bands reflect different information processing mechanisms related to vocal recognition and auditory perception in anurans.

  6. Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment?

    Science.gov (United States)

    Massar, Stijn A A; Kenemans, J Leon; Schutter, Dennis J L G

    2014-03-01

    Increased theta (4-7 Hz)-beta (13-30 Hz) power ratio in resting state electroencephalography (EEG) has been associated with risky disadvantageous decision making and with impaired reinforcement learning. However, the specific contributions of theta and beta power in risky decision making remain unclear. The first aim of the present study was to replicate the earlier found relationship and examine the specific contributions of theta and beta power in risky decision making using the Iowa Gambling Task. The second aim of the study was to examine whether the relation were associated with differences in reward or punishment sensitivity. We replicated the earlier found relationship by showing a positive association between theta/beta ratio and risky decision making. This correlation was mainly driven by theta oscillations. Furthermore, theta power correlated with reward motivated learning, but not with punishment learning. The present results replicate and extend earlier findings by providing novel insights into the relation between thetabeta ratios and risky decision making. Specifically, findings show that resting-state theta activity is correlated with reinforcement learning, and that this association may be explained by differences in reward sensitivity. © 2013.

  7. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients.

    Science.gov (United States)

    Sarasola-Sanz, Andrea; Irastorza-Landa, Nerea; Lopez-Larraz, Eduardo; Bibian, Carlos; Helmhold, Florian; Broetz, Doris; Birbaumer, Niels; Ramos-Murguialday, Ander

    2017-07-01

    Including supplementary information from the brain or other body parts in the control of brain-machine interfaces (BMIs) has been recently proposed and investigated. Such enriched interfaces are referred to as hybrid BMIs (hBMIs) and have been proven to be more robust and accurate than regular BMIs for assistive and rehabilitative applications. Electromyographic (EMG) activity is one of the most widely utilized biosignals in hBMIs, as it provides a quite direct measurement of the motion intention of the user. Whereas most of the existing non-invasive EEG-EMG-hBMIs have only been subjected to offline testings or are limited to one degree of freedom (DoF), we present an EEG-EMG-hBMI that allows the simultaneous control of 7-DoFs of the upper limb with a robotic exoskeleton. Moreover, it establishes a biologically-inspired hierarchical control flow, requiring the active participation of central and peripheral structures of the nervous system. Contingent visual and proprioceptive feedback about the user's EEG and EMG activity is provided in the form of velocity modulation during functional task training. We believe that training with this closed-loop system may facilitate functional neuroplastic processes and eventually elicit a joint brain and muscle motor rehabilitation. Its usability is validated during a real-time operation session in a healthy participant and a chronic stroke patient, showing encouraging results for its application to a clinical rehabilitation scenario.

  8. Effects of bupropion sustained release on task-related EEG alpha activity in smokers: Individual differences in drug response.

    Science.gov (United States)

    Zhu, Jian; Coppens, Ryan P; Rabinovich, Norka E; Gilbert, David G

    2017-02-01

    The mechanisms underlying bupropion's efficacy as an antidepressant and a smoking cessation aid are far from being fully characterized. The present study is the first to examine the effects of bupropion on visuospatial task-related parietal EEG alpha power asymmetry-an asymmetry that has previously been found to be associated with severity of depressive symptoms (i.e., the more depressive symptoms, the greater alpha power in the right vs. left parietal area [Henriques & Davidson, 1997; Rabe, Debener, Brocke, & Beauducel, 2005]). Participants, all of whom were smokers and none of whom were clinically depressed, were randomly assigned to the Placebo group (n = 79) or Bupropion group (n = 31) in a double-blind study. EEG during the performance of the visuospatial task was collected before and after 14 days on placebo or bupropion sustained-release capsules. Relative to the Placebo group, the Bupropion group (especially, the Bupropion subgroup who had a positive right versus left parietal alpha power asymmetry at pretreatment) had a reduction in the parietal alpha asymmetry (driven largely by a decrease in right parietal alpha power). These findings support the hypothesis that bupropion can induce changes in parietal EEG asymmetry that have been shown in previous literature to be associated with a reduction in depressive states and traits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Directory of Open Access Journals (Sweden)

    Claudia Domnick

    2009-03-01

    Full Text Available Claudia Domnick1, Michael Hauck1,2,3, Kenneth L Casey3, Andreas K Engel1, Jürgen Lorenz1,3,41Department of Neurophysiology and Pathophysiology; 2Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3Department of Neurology, University of Michigan, Ann Arbor, MI, USA; 4Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, GermanyAbstract: Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG data. Comparison of phase-locked (evoked and non-phase-locked (total EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage.Keywords: C-fibers, oscillations, EEG, laser, capsaicin, inflammatory pain

  10. Evaluating virtual reality mood induction procedures with portable EEG devices.

    Science.gov (United States)

    Rodríguez, Alejandro; Rey, Beatriz; Alcañiz, Mariano

    2013-01-01

    Virtual Environments (VEs) have been used as mood induction procedures. In this context, it is necessary to have instruments to analyze the emotional state during VE exposure. Objective techniques such as EEG should be evaluated for this purpose. The aim in this work was to study the changes in the brain activity with a portable EEG device during a negative mood induction based on a VE. A virtual park was used to induce a negative mood (sadness) in ten participants. Changes in the brain activity of subjects were compared between two moments (before and after emotional induction). Obtained results were in accordance with previous scientific literature regarding frontal EEG asymmetry, which supports the possibility of using the portable EEG as a reliable instrument to measure emotions in VE.

  11. Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging.

    Science.gov (United States)

    Januszko, Piotr; Niemcewicz, Szymon; Gajda, Tomasz; Wołyńczyk-Gmaj, Dorota; Piotrowska, Anna Justyna; Gmaj, Bartłomiej; Piotrowski, Tadeusz; Szelenberger, Waldemar

    2016-01-01

    To investigate local arousal fluctuations in adults who received ICSD-2 diagnosis of somnambulism. EEG neuroimaging (eLORETA) was utilized to compare current density distribution for 4s epochs immediately preceding sleepwalking episode (from -4.0 s to 0 s) to the distribution during earlier 4s epochs (from -8.0 s to -4.0 s) in 20 EEG segments from 15 patients. Comparisons between eLORETA images revealed significant (t>4.52; psleepwalking, with greater current density within beta 3 frequency range (24-30 Hz) in Brodmann areas 33 and 24. Sleepwalking motor events are associated with arousal-related activation of cingulate motor area. These results support the notion of blurred boundaries between wakefulness and NREM sleep in sleepwalking. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation.

    Science.gov (United States)

    Chi, Yu M; Cauwenberghs, Gert

    2009-01-01

    A non-contact EEG electrode with input capacitance neutralization and common-mode noise suppression circuits is presented. The coin sized sensor capacitively couples to the scalp without direct contact to the skin. To minimize the effect of signal attenuation and channel gain mismatch, the input capacitance of each sensor is actively neutralized using positive feedback and bootstrapping. Common-mode suppression is achieved through a single conductive sheet to establish a common mode reference. Each sensor electrode provides a differential gain of 60 dB. Signals are transmitted in a digital serial daisy-chain directly from a local 16-bit ADC, minimizing the number of wires required to establish a high density EEG sensor network. The micropower electrode consumes only 600 microW from a single 3.3 V supply.

  13. Acute intermittent porphyria presenting with posterior reversible encephalopathy syndrome and lateralized periodic discharges plus fast activity on EEG.

    Science.gov (United States)

    Silveira, Diosely C; Bashir, Mahrukh; Daniel, Joshua; Lucena, Michelle H; Bonpietro, Frank

    2016-01-01

    We report on a 20-year-old patient with a 6-month history of recurrent abdominal pain and a 3-day history of vomiting, hypertension, seizures, and encephalopathy. The brain MRI showed posterior reversible encephalopathy syndrome, and continuous EEG (cEEG) monitoring showed lateralized periodic discharges plus fast activity. Comprehensive CSF studies were negative. Because of severe abdominal pain without a definite etiology, we requested urine porphobilinogen and serum and fecal porphyrins, which suggested acute intermittent porphyria (AIP). The patient had a complete resolution of her symptoms with carbohydrate loading and high caloric diet. Acute intermittent porphyria is potentially life-threatening without proper management and prevention of triggers if it is not recognized.

  14. Whole scalp resting state EEG of oscillatory brain activity shows no parametric relationship with psychoacoustic and psychosocial assessment of tinnitus: A repeated measures study.

    Science.gov (United States)

    Pierzycki, Robert H; McNamara, Adam J; Hoare, Derek J; Hall, Deborah A

    2016-01-01

    Tinnitus is a perception of sound that can occur in the absence of an external stimulus. A brief review of electroencephalography (EEG) and magnetoencephalography (MEG) literature demonstrates that there is no clear relationship between tinnitus presence and frequency band power in whole scalp or source oscillatory activity. Yet a preconception persists that such a relationship exists and that resting state EEG could be utilised as an outcome measure for clinical trials of tinnitus interventions, e.g. as a neurophysiological marker of therapeutic benefit. To address this issue, we first examined the test-retest correlation of EEG band power measures in tinnitus patients (n = 42). Second we examined the evidence for a parametric relationship between numerous commonly used tinnitus variables (psychoacoustic and psychosocial) and whole scalp EEG power spectra, directly and after applying factor reduction techniques. Test-retest correlation for both EEG band power measures and tinnitus variables were high. Yet we found no relationship between whole scalp EEG band powers and psychoacoustic or psychosocial variables. We conclude from these data that resting state whole scalp EEG should not be used as a biomarker for tinnitus and that greater caution should be exercised in regard to reporting of findings to avoid confirmation bias. The data was collected during a randomised controlled trial registered at ClinicalTrials.gov (Identifier: NCT01541969). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. EEG reactions of the human brain in the gradient magnetic field zone of the active geological fault (pilot study)

    Science.gov (United States)

    Pobachenko, S. V.; Shitov, A. V.; Grigorjev, P. E.; Sokolov, M. V.; Zubrilkin, A. I.; Vypiraylo, D. N.; Solovjev, A. V.

    2016-12-01

    This paper presents the results of experimental studies of the dynamics of the functional state of a person within the zone of an active geological fault characterized by abnormal spatial distribution of the magnetic- field vector values. It is shown that these geophysical modifications have a pronounced effect on the fluctuations of the electrical activity of the human brain. When the person gets into a zone with abnormal levels of gradient magnetic field in the absence of any subjective sensations, a nonspecific orientation activation reaction is observed, which is characterized by a significant increase in the levels of peak performance in key functional EEG frequency bands.

  16. Sustained meaning activation for polysemous but not homonymous words: evidence from EEG.

    Science.gov (United States)

    MacGregor, Lucy J; Bouwsema, Jennifer; Klepousniotou, Ekaterini

    2015-02-01

    Theoretical linguistic accounts of lexical ambiguity distinguish between homonymy, where words that share a lexical form have unrelated meanings, and polysemy, where the meanings are related. The present study explored the psychological reality of this theoretical assumption by asking whether there is evidence that homonyms and polysemes are represented and processed differently in the brain. We investigated the time-course of meaning activation of different types of ambiguous words using EEG. Homonyms and polysemes were each further subdivided into two: unbalanced homonyms (e.g., "coach") and balanced homonyms (e.g., "match"); metaphorical polysemes (e.g., "mouth") and metonymic polysemes (e.g., "rabbit"). These four types of ambiguous words were presented as primes in a visual single-word priming delayed lexical decision task employing a long ISI (750 ms). Targets were related to one of the meanings of the primes, or were unrelated. ERPs formed relative to the target onset indicated that the theoretical distinction between homonymy and polysemy was reflected in the N400 brain response. For targets following homonymous primes (both unbalanced and balanced), no effects survived at this long ISI indicating that both meanings of the prime had already decayed. On the other hand, for polysemous primes (both metaphorical and metonymic), activation was observed for both dominant and subordinate senses. The observed processing differences between homonymy and polysemy provide evidence in support of differential neuro-cognitive representations for the two types of ambiguity. We argue that the polysemous senses act collaboratively to strengthen the representation, facilitating maintenance, while the competitive nature of homonymous meanings leads to decay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Taking off the training wheels: Measuring auditory P3 during outdoor cycling using an active wet EEG system.

    Science.gov (United States)

    Scanlon, Joanna E M; Townsend, Kimberley A; Cormier, Danielle L; Kuziek, Jonathan W P; Mathewson, Kyle E

    2017-12-14

    Mobile EEG allows the investigation of brain activity in increasingly complex environments. In this study, EEG equipment was adapted for use and transportation in a backpack while cycling. Participants performed an auditory oddball task while cycling outside and sitting in an isolated chamber inside the lab. Cycling increased EEG noise and marginally diminished alpha amplitude. However, this increased noise did not influence the ability to measure reliable event related potentials (ERP). The P3 was similar in topography, and morphology when outside on the bike, with a lower amplitude in the outside cycling condition. There was only a minor decrease in the statistical power to measure reliable ERP effects. Unexpectedly, when biking outside significantly decreased P2 and increased N1 amplitude were observed when evoked by both standards and targets compared with sitting in the lab. This may be due to attentional processes filtering the overlapping sounds between the tones used and similar environmental frequencies. This study established methods for mobile recording of ERP signals. Future directions include investigating auditory P2 filtering inside the laboratory. Copyright © 2017. Published by Elsevier B.V.

  18. Evaluation of the workload and drowsiness during car driving by using high resolution EEG activity and neurophysiologic indices.

    Science.gov (United States)

    Maglione, A; Borghini, G; Aricò, P; Borgia, F; Graziani, I; Colosimo, A; Kong, W; Vecchiato, G; Babiloni, F

    2014-01-01

    Sleep deprivation and/or a high workload situation can adversely affect driving performance, decreasing a driver's capacity to respond effectively in dangerous situations. In this context, to provide useful feedback and alert signals in real time to the drivers physiological and brain activities have been increasingly investigated in literature. In this study, we analyze the increase of cerebral workload and the insurgence of drowsiness during car driving in a simulated environment by using high resolution electroencephalographic techniques (EEG) as well as neurophysiologic variables such as heart rate (HR) and eye blinks rate (EBR). The simulated drive tasks were modulated with five levels of increasing difficulty. A workload index was then generated by using the EEG signals and the related HR and EBR signals. Results suggest that the derived workload index is sensitive to the mental efforts of the driver during the different drive tasks performed. Such workload index was based on the estimation the variation of EEG power spectra in the theta band over prefrontal cortical areas and the variation of the EEG power spectra over the parietal cortical areas in alpha band. In addition, results suggested as HR increases during the execution of the difficult driving tasks while instead it decreases at the insurgence of the drowsiness. Finally, the results obtained showed as the EBR variable increases of its values when the insurgence of drowsiness in the driver occurs. The proposed workload index could be then used in a near future to assess on-line the mental state of the driver during a drive task.

  19. Non-Ceruloplasmin Copper Distinguishes A Distinct Subtype of Alzheimer's Disease: A Study of EEG-Derived Brain Activity.

    Science.gov (United States)

    Tecchio, Franca; Vecchio, Fabrizio; Ventriglia, Mariacarla; Porcaro, Camillo; Miraglia, Francesca; Siotto, Mariacristina; Rossini, Paolo M; Rongioletti, Mauro; Squitti, Rosanna

    2016-01-01

    Meta-analyses show that percentages of non-Cp-Cu-copper that is not bound to ceruloplasmin (also known as 'free' copper)-in serum are higher in Alzheimer's disease (AD) patients. Genetic heterogeneity in AD patients stratified on the basis of non-Cp-Cu cut-off sustains the existence of a copper AD metabolic subtype. Non-Cp-Cu abnormalities correlated with alterations of electroencephalographic rhythms (EEG). We aimed to determine whether an EEG-derived brain cortical rhythm's heterogeneity between two AD groups stratified on the basis of a copper marker. We assessed levels of copper, ceruloplasmin, Non-Cp-Cu, and the APOE4 genotype in 67 AD patients and compared resting EEG-derived eLORETA cortical rhythms between AD groups stratified in terms of 'Normal' and 'High' non-Cp-Cu. The High non-Cp-Cu group experienced a lower power in all bands (0.2-48 Hz) in the parietal cortices (p=0.019) and a more limited alpha band (8-13 Hz) power in the sensory lobes (temporal, occipital, and parietal p>0.05 consistently) than the Normal non-Cp-Cu AD group. When corrected for MMSE, the non-Cp-Cu levels correlated with a reduction of high-frequency brain activity (from high alpha to gamma, 10.5-48 Hz). This neurophysiological heterogeneity in EEG-derived brain cortical rhythms between the two AD groups sustains a copper AD metabolic subtype; Non-Cp-Cu is a marker of this copper AD.

  20. Pharmacological classification of herbal extracts by means of comparison to spectral EEG signatures induced by synthetic drugs in the freely moving rat.

    Science.gov (United States)

    Dimpfel, Wilfried

    2013-09-16

    Herbal extracts targeting at the brain remain a continuous challenge to pharmacology. Usually, a number of different animal tests have to be performed in order to find a potential clinical use. Due to manifold possibly active ingredients biochemical approaches are difficult. A more holistic approach using a neurophysiological technique has been developed earlier in order to characterise synthetic drugs. Stereotactic implantation of four semi-microelectrodes into frontal cortex, hippocampus, striatum and reticular formation of rats allowed continuous wireless monitoring of field potentials (EEG) before and after drug intake. After frequency analysis (Fast Fourier Transformation) electric power was calculated for 6 ranges (delta, theta, alpha1, alpha2, beta1 and beta2). Data from 14 synthetic drugs - tested earlier and representative for different clinical indications - were taken for construction of discriminant functions showing the projection of the frequency patterns in a six-dimensional graph. Quantitative analysis of the EEG frequency pattern from the depth of the brain succeeded in discrimination of drug effects according to their known clinical indication (Dimpfel and Schober, 2003). Extracts from Valerian root, Ginkgo leaves, Paullinia seed, Hop strobile, Rhodiola rosea root and Sideritis scardica herb were tested now under identical conditions. Classification of these extracts based on the matrix from synthetic drugs revealed that Valerian root and hop induced a pattern reminiscent of physiological sleep. Ginkgo and Paullinia appeared in close neighbourhood of stimulatory drugs like caffeine or to an analgesic profile (tramadol). Rhodiola and Sideritis developed similar frequency patterns comparable to a psychostimulant drug (methylphenidate) as well to an antidepressive drug (paroxetine). © 2013 The Author. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    Science.gov (United States)

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  2. Decoding motor responses from the EEG during altered states of consciousness induced by propofol

    Science.gov (United States)

    Blokland, Yvonne; Farquhar, Jason; Lerou, Jos; Mourisse, Jo; Scheffer, Gert Jan; van Geffen, Geert-Jan; Spyrou, Loukianos; Bruhn, Jörgen

    2016-04-01

    Objective. Patients undergoing general anesthesia may awaken and become aware of the surgical procedure. Due to neuromuscular blocking agents, patients could be conscious yet unable to move. Using brain-computer interface (BCI) technology, it may be possible to detect movement attempts from the EEG. However, it is unknown how an anesthetic influences the brain response to motor tasks. Approach. We tested the offline classification performance of a movement-based BCI in 12 healthy subjects at two effect-site concentrations of propofol. For each subject a second classifier was trained on the subject’s data obtained before sedation, then tested on the data obtained during sedation (‘transfer classification’). Main results. At concentration 0.5 μg ml-1, despite an overall propofol EEG effect, the mean single trial classification accuracy was 85% (95% CI 81%-89%), and 83% (79%-88%) for the transfer classification. At 1.0 μg ml-1, the accuracies were 81% (76%-86%), and 72% (66%-79%), respectively. At the highest propofol concentration for four subjects, unlike the remaining subjects, the movement-related brain response had been largely diminished, and the transfer classification accuracy was not significantly above chance. These subjects showed a slower and more erratic task response, indicating an altered state of consciousness distinct from that of the other subjects. Significance. The results show the potential of using a BCI to detect intra-operative awareness and justify further development of this paradigm. At the same time, the relationship between motor responses and consciousness and its clinical relevance for intraoperative awareness requires further investigation.

  3. Resting and reactive frontal brain electrical activity (EEG among a non-clinical sample of socially anxious adults: Does concurrent depressive mood matter?

    Directory of Open Access Journals (Sweden)

    Elliott A Beaton

    2008-03-01

    Full Text Available Elliott A Beaton1, Louis A Schmidt2, Andrea R Ashbaugh2,5, Diane L Santesso2, Martin M Antony1,3,4, Randi E McCabe1,31Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; 2Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada; 3Anxiety Treatment and Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada; 4Department of Psychology, Ryerson University, Toronto, Ontario, Canada; 5Concordia University, Montreal, Quebec, CanadaAbstract: A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality.Keywords: social anxiety, shyness, sociability

  4. Inter-hemispheric EEG coherence analysis in Parkinson's disease: assessing brain activity during emotion processing.

    Science.gov (United States)

    Yuvaraj, R; Murugappan, M; Ibrahim, Norlinah Mohamed; Sundaraj, Kenneth; Omar, Mohd Iqbal; Mohamad, Khairiyah; Palaniappan, R; Satiyan, M

    2015-02-01

    Parkinson's disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3-AF4, F7-F8, F3-F4, FC5-FC6, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities.

  5. Comparison of Brain Activity during Drawing and Clay Sculpting: A Preliminary qEEG Study

    Science.gov (United States)

    Kruk, Kerry A.; Aravich, Paul F.; Deaver, Sarah P.; deBeus, Roger

    2014-01-01

    A preliminary experimental study examined brain wave frequency patterns of female participants (N = 14) engaged in two different art making conditions: clay sculpting and drawing. After controlling for nonspecific effects of movement, quantitative electroencephalographic (qEEG) recordings were made of the bilateral medial frontal cortex and…

  6. Discrete wavelet transform EEG features of Alzheimer'S disease in activated states.

    Science.gov (United States)

    Ghorbanian, P; Devilbiss, D M; Simon, A J; Bernstein, A; Hess, T; Ashrafiuon, H

    2012-01-01

    In this study, electroencephalogram (EEG) signals obtained by a single-electrode device from 24 subjects - 10 with Alzheimer's disease (AD) and 14 age-matched Controls (CN) - were analyzed using Discrete Wavelet Transform (DWT). The focus of the study is to determine the discriminating EEG features of AD patients while subjected to cognitive and auditory tasks, since AD is characterized by progressive impairments in cognition and memory. At each recording block, DWT extracts EEG features corresponding to major brain frequency bands. T-test and Kruskal-Wallis methods were used to determine the statistically significant features of EEG signals from AD patients compared to Controls. A decision tree algorithm was then used to identify the dominant features for AD patients. It was determined that the mean value of the low-δ (1 - 2 Hz) frequency band during the Paced Auditory Serial Addition Test with 2.0 (s) interval and the mean value of the δ frequency band (12 - 30 Hz) during 6 Hz auditory stimulation have higher mean values in AD patients than Controls. Due to artifacts, the less reliable low-δ features were removed and it was determined that the mean value of β frequency band during 6 Hz auditory stimulation followed by the standard deviation of θ (4 - 8 Hz) frequency band of one card learning cognitive task are higher for AD patients compared to Controls and thus the most dominant discriminating features of the disease.

  7. Recording EEG in immature rats with a novel miniature telemetry system.

    Science.gov (United States)

    Zayachkivsky, A; Lehmkuhle, M J; Fisher, J H; Ekstrand, J J; Dudek, F E

    2013-02-01

    Serial EEG recordings from immature rat pups are extremely difficult to obtain but important for analyzing animal models of neonatal seizures and other pediatric neurological conditions as well as normal physiology. In this report, we describe the features and applications of a novel miniature telemetry system designed to record EEG in rat pups as young as postnatal day 6 (P6). First, we have recorded electrographic seizure activity in two animal models of neonatal seizures, hypoxia- and kainate-induced seizures at P7. Second, we describe a viable approach for long-term continuous EEG monitoring of naturally reared rat pups implanted with EEG at P6. Third, we have used serial EEG recordings to record age-dependent changes in the background EEG signal as the animals matured from P7 to P11. The important advantages of using miniature wireless EEG technology are: 1) minimally invasive surgical implantation; 2) a device form-factor that is compatible with housing of rat pups with the dam and littermates; 3) serial recordings of EEG activity; and 4) low power consumption of the unit, theoretically allowing continuous monitoring for up to 2 yr without surgical reimplantation. The miniature EEG telemetry system provides a technical advance that allows researchers to record continuous and serial EEG recordings in neonatal rodent models of human neurological disorders, study the progression of the disease, and then assess possible therapies using quantitative EEG as an outcome measure. This new technical approach should improve animal models of human conditions that rely on EEG monitoring for diagnosis and therapy.

  8. Changes during pentetrazol-induced epilepsy in rat recorded by simultaneous EEG/MRI at 7T

    Science.gov (United States)

    Verhoye, Marleen; Michiels, Ive; Sijbers, Jan; Eelen, Jan; Peeters, Ronald; Van Audekerke, Johan; D'hooge, Rudi; De Deyn, P. P.; Van der Linden, Anne-Marie

    2000-04-01

    Simultaneously acquired EEG and BOLD (Blood Oxygenation level dependent contrast) MRI allowed to study on line the neurophysiological changes in rat brain during epileptic seizures. MRI and EEG data were acquired with a specially designed high quality MR RF-antenna with incorporated non- invasive carbon EEG electrodes. The problem of severe pollution of the EEG data due to MR gradient switching during simultaneous EEG/MRI acquisitions was solved by a specially designed automated effective filtering algorithm. We measured continuously EEG data, and T2*-weighted coronal MRI sections of rat brain before and after the injection of pentetrazol (43 mg/(kg body weight) PTZ; convulsive dose 97%), an epilepsy inductor. In this way, we could correlate the abnormalities in the EEG traces, with changes in the MRI BOLD signal intensities. Immediately after PTZ induction and before epileptic discharges were observed on the EEG traces, the cortex displayed an increase in BOLD signal intensity (increase in blood flow). Much later and correlated with epileptic discharges on the EEG traces, the ventromedial hypothalamic nuclei showed an increased BOLD signal while the BOLD signal intensity dropped in the entire brain, except for the hypothalamus. The decreased BOLD signal reflected general hypoxia and subsequent ischemia as a consequence of the sustained depolarization of neurons during the seizure.

  9. EEG Controlled Wheelchair

    Directory of Open Access Journals (Sweden)

    Swee Sim Kok

    2016-01-01

    Full Text Available This paper describes the development of a brainwave controlled wheelchair. The main objective of this project is to construct a wheelchair which can be directly controlled by the brain without requires any physical feedback as controlling input from the user. The method employed in this project is the Brain-computer Interface (BCI, which enables direct communication between the brain and the electrical wheelchair. The best method for recording the brain’s activity is electroencephalogram (EEG. EEG signal is also known as brainwaves signal. The device that used for capturing the EEG signal is the Emotiv EPOC headset. This headset is able to transmit the EEG signal wirelessly via Bluetooth to the PC (personal computer. By using the PC software, the EEG signals are processed and converted into mental command. According to the mental command (e.g. forward, left... obtained, the output electrical signal is sent out to the electrical wheelchair to perform the desired movement. Thus, in this project, a computer software is developed for translating the EEG signal into mental commands and transmitting out the controlling signal wirelessly to the electrical wheelchair.

  10. Cortical plasticity induced by transcranial magnetic stimulation during wakefulness affects electroencephalogram activity during sleep.

    Directory of Open Access Journals (Sweden)

    Luigi De Gennaro

    Full Text Available BACKGROUND: Sleep electroencephalogram (EEG brain oscillations in the low-frequency range show local signs of homeostatic regulation after learning. Such increases and decreases of slow wave activity are limited to the cortical regions involved in specific task performance during wakefulness. Here, we test the hypothesis that reorganization of motor cortex produced by long-term potentiation (LTP affects EEG activity of this brain area during subsequent sleep. METHODOLOGY/PRINCIPAL FINDINGS: By pairing median nerve stimulation with transcranial magnetic stimulation over the contralateral motor cortex, one can potentiate the motor output, which is presumed to reflect plasticity of the neural circuitry. This paired associative stimulation increases M1 cortical excitability at interstimulus intervals of 25 ms. We compared the scalp distribution of sleep EEG power following paired associative stimulation at 25 ms to that following a control paradigm with 50 ms intervals. It is shown that the experimental manipulation by paired associative stimulation at 25 ms induces a 48% increase in amplitude of motor evoked potentials. This LTP-like potentiation, induced during waking, affects delta and theta EEG power in both REM and non-REM sleep, measured during the following night. Slow-wave activity increases in some frontal and prefrontal derivations and decreases at sites neighboring and contralateral to the stimulated motor cortex. The magnitude of increased amplitudes of motor evoked potentials by the paired associative stimulation at 25 ms predicts enhancements of slow-wave activity in prefrontal regions. CONCLUSIONS/SIGNIFICANCE: An LTP-like paradigm, presumably inducing increased synaptic strength, leads to changes in local sleep regulation, as indexed by EEG slow-wave activity. Enhancement and depression of slow-wave activity are interpreted in terms of a simultaneous activation of both excitatory and inhibitory circuits consequent to the paired

  11. Brain Topography of Emf-Induced Eeg-Changes in Restful Wakefulness: Tracing Current Effects, Targeting Future Prospects.

    Science.gov (United States)

    Gjoneska, Biljana; Markovska-Simoska, Simona; Hinrikus, Hiie; Pop-Jordanova, Nada; Pop-Jordanov, Jordan

    2015-01-01

    Covering a handful of decades but spanning across two centuries, mobile phones announced the dawn of the technological revolution, standing at the forefront as its' most prominent symbol. Over the course of their sovereign dominance, human generations born with the birth of the mobile phone reached the age of maturity, while scientific community started reaching for experience-based perceptivity. The following review serves as a short-cut across a half-decade old research gap, and a clear-cut analysis on the cutting-edge knowledge of the EMF induced EEG changes. The selection covers 28 articles about mobile phone effects on resting wakeful EEG in humans conducted over the last two decades, across three continents and 12 countries, of which 75% had positive findings. At present, the general protocol of a typical study includes investigations on adults (20-60 yrs) grouped in smaller samples and exposed to shorter intervals of GSM-like pulse-modulated signal (10-30 subjects/minutes). The assessment usually involves linear methods for quantitative analysis, while the results mostly revolve around posterior increase in alpha and beta frequency range. The qualitative variations, however, remain open to interpretation. Future research may benefit from multiplication of sub-specific studies leading to replication of more consistent results. The long-term and large-size epidemiologic studies, stratified by age and gender, may also improve the expected outcomes. Regarding the interpretation, non-linear methods could be employed for assessment of individual variations. The emphasis should be placed on theories/measures for better understanding of the subtle interplay between the spectral individualities and mobile phone radiation specifics.

  12. Effects of object color stimuli on human brain activities in perception and attention referred to EEG alpha band response.

    Science.gov (United States)

    Yoto, Ai; Katsuura, Tetsuo; Iwanaga, Koichi; Shimomura, Yoshihiro

    2007-05-01

    This study was designed to investigate the physiological effects of color in terms of blood pressure and the results of electroencephalogram (EEG) as subjects looked at the sheets of paper of various colors. A questionnaire was also used to assess psychological effects. Three colors (red, green, blue) were shown to each subject in randomized order. The various colors showed distinctly different effects on the mean power of the alpha band, theta band, and on the total power in the theta-beta EEG bandwidth and alpha attenuation coefficient (AAC). Scores of the subjective evaluations concerning heavy, excited, and warm feelings also indicated significant differences between red and blue conditions. Against to our prediction, blue elicited stronger arousal than did red as expressed by the results of AAC and the mean power of the alpha band, which conflicted with the results of the subjective evaluations scores. This phenomenon might be caused by bluish light's biological activating effect. The powers of the alpha band, and the theta band, and the total power of the theta-beta bandwidth as measured by EEG showed larger values while the subjects looked at red paper than while they looked at blue paper. This indicated that red possibly elicited an anxiety state and therefore caused a higher level of brain activity in the areas of perception and attention than did the color blue. Red paper's effect to activate the central cortical region with regard to perception and attention was considerably more distinguishable than was the biological activating effect of bluish light in our study.

  13. Validation of a low-cost EEG device for mood induction studies.

    Science.gov (United States)

    Rodríguez, Alejandro; Rey, Beatriz; Alcañiz, Mariano

    2013-01-01

    New electroencephalography (EEG) devices, more portable and cheaper, are appearing on the market. Studying the reliability of these EEG devices for emotional studies would be interesting, as these devices could be more economical and compatible with Virtual Reality (VR) settings. Therefore, the aim in this work was to validate a low-cost EEG device (Emotiv Epoc) to monitor brain activity during a positive emotional induction procedure. Emotional pictures (IAPS) were used to induce a positive mood in sixteen participants. Changes in the brain activity of subjects were compared between positive induction and neutral conditions. Obtained results were in accordance with previous scientific literature regarding frontal EEG asymmetry, which supports the possibility of using this low-cost EEG device in future mood induction studies combined with VR.

  14. The acute effect of low-dose alcohol on working memory during mental arithmetic: II. Changes of nonlinear and linear EEG-complexity in the theta band, heart rate and electrodermal activity.

    Science.gov (United States)

    Molnár, Márk; Boha, Roland; Czigler, Balázs; Gaál, Zsófia Anna; Benyovszky, Máté; Róna, Kálmán; Klausz, Gabriella

    2009-08-01

    Nonlinear and linear methods of EEG-complexity analysis and autonomic measures were used to characterize processes accompanying performance in a mental arithmetic task challenged by low ("social") alcohol doses. It was expected that alcohol in such doses will dampen changes of task-related EEG-synchronization in the theta band, and those of heart rate and electrodermal activity (EDA). In the mental arithmetic task addition and working memory, effort was required. The EEG, ECG and EDA were recorded in 5 conditions: task, placebo-task, low dose-task (0.2 g/kg alcohol), high dose-task (0.4 g/kg alcohol). Omega-complexity and synchronization likelihood (SL) were computed of the theta band of the EEG. Task-related decrease of the Omega-complexity and increase of the SL was found in the theta frequency band. Following alcohol consumption, these changes did not develop as seen especially for SL in the anterior area, although the significant effects were elicited by task performance. Conspicuous task-evoked increases were observed for ECG and EDA which were even more enhanced by alcohol. Task-induced significant changes of the Omega-complexity and that of SL indicate increased synchrony in the theta band, probably corresponding to working memory effort. Both of these measures proved to be sensitive for the effect of low alcohol dose although these alcohol-elicited changes were not statistically significant. Task-induced heart rate and EDA increases were further intensified by alcohol probably indicating its activating effect on these autonomic measures in the dose range studied.

  15. Analysis of brain activity and response to colour stimuli during learning tasks: an EEG study

    Science.gov (United States)

    Folgieri, Raffaella; Lucchiari, Claudio; Marini, Daniele

    2013-02-01

    The research project intends to demonstrate how EEG detection through BCI device can improve the analysis and the interpretation of colours-driven cognitive processes through the combined approach of cognitive science and information technology methods. To this end, firstly it was decided to design an experiment based on comparing the results of the traditional (qualitative and quantitative) cognitive analysis approach with the EEG signal analysis of the evoked potentials. In our case, the sensorial stimulus is represented by the colours, while the cognitive task consists in remembering the words appearing on the screen, with different combination of foreground (words) and background colours. In this work we analysed data collected from a sample of students involved in a learning process during which they received visual stimuli based on colour variation. The stimuli concerned both the background of the text to learn and the colour of the characters. The experiment indicated some interesting results concerning the use of primary (RGB) and complementary (CMY) colours.

  16. Ischemic injury suppresses hypoxia-induced electrographic seizures and the background EEG in a rat model of perinatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Zayachkivsky, A; Lehmkuhle, M J; Ekstrand, J J; Dudek, F E

    2015-11-01

    The relationship among neonatal seizures, abnormalities of the electroencephalogram (EEG), brain injury, and long-term neurological outcome (e.g., epilepsy) remains controversial. The effects of hypoxia alone (Ha) and hypoxia-ischemia (HI) were studied in neonatal rats at postnatal day 7; both models generate EEG seizures during the 2-h hypoxia treatment, but only HI causes an infarct with severe neuronal degeneration. Single-channel, differential recordings of acute EEG seizures and background suppression were recorded with a novel miniature telemetry device during the hypoxia treatment and analyzed quantitatively. The waveforms of electrographic seizures (and their behavioral correlates) appeared virtually identical in both models and were identified as discrete events with high power in the traditional delta (0.1-4 Hz) and/or alpha (8-12 Hz) bands. Although the EEG patterns during seizures were similar in Ha- and HI-treated animals at the beginning of the hypoxic insult, Ha caused a more severe electrographic seizure profile than HI near the end. Analyses of power spectral density and seizure frequency profiles indicated that the electrographic seizures progressively increased during the 2-h Ha treatment, while HI led to a progressive decrease in the seizures with significant suppression of the EEG background. These data show that 1) the hypoxia component of these two models drives the seizures; 2) the seizures during Ha are substantially more robust than those during HI, possibly because ongoing neuronal damage blunts the electrographic activity; and 3) a progressive decrease in background EEG, rather than the presence of electrographic seizures, indicates neuronal degeneration during perinatal HI. Copyright © 2015 the American Physiological Society.

  17. Kv7 potassium channel activation with ICA-105665 reduces photoparoxysmal EEG responses in patients with epilepsy.

    Science.gov (United States)

    Kasteleijn-Nolst Trenité, Dorotheé G A; Biton, Victor; French, Jacqueline A; Abou-Khalil, Bassel; Rosenfeld, William E; Diventura, Bree; Moore, Elizabeth L; Hetherington, Seth V; Rigdon, Greg C

    2013-08-01

    To assess the effects of ICA-105665, an agonist of neuronal Kv7 potassium channels, on epileptiform EEG discharges, evoked by intermittent photic stimulation (IPS), the so-called photoparoxysmal responses (PPRs) in patients with epilepsy. Male and female patients aged 18-60 years with reproducible PPRs were eligible for enrollment. The study was conducted as a single-blind, single-dose, multiple-cohort study. Four patients were enrolled in each of the first three cohorts. Six patients were enrolled in the fourth cohort and one patient was enrolled in the fifth cohort. PPR responses to 14 IPS frequencies (steps) were used to determine the standard photosensitivity range (SPR) following placebo on day 1 and ICA-105665 on day 2. The SPR was quantified for three eye conditions (eyes closing, eyes closed, and eyes open), and the most sensitive condition was used for assessment of efficacy. A partial response was defined as a reduction in the SPR of at least three units at three separate time points following ICA-105665 compared to the same time points following placebo with no time points with more than three units of increase. Complete suppression was defined by no PPRs in any eye condition at one or more time points. Six individual patients participated in the first three cohorts (100, 200, and 400 mg). Six patients participated in the fourth cohort (500 mg), and one patient participated in the fifth cohort (600 mg). Decreases in SPR occurred in one patient at 100 mg, two patients receiving 400 mg ICA-105665 (complete abolishment of SPR occurred in one patient at 400 mg), and in four of six patients receiving 500 mg. The most common adverse events (AEs) were those related to the nervous system, and dizziness appeared to be the first emerging AE. The single patient in the 600 mg cohort developed a brief generalized seizure within 1 h of dosing, leading to the discontinuation of additional patients at this dose, per the predefined protocol stopping rules. ICA-105665

  18. Classification of EEG recordings in auditory brain activity via a logistic functional linear regression model.

    OpenAIRE

    Gannaz, Irène

    2014-01-01

    International audience; We want to analyse EEG recordings in order to investigate the phonemic categorization at a very early stage of auditory processing. This problem can be modelled by a supervised classification of functional data. Discrimination is explored via a logistic functional linear model, using a wavelet representation of the data. Different procedures are investigated, based on penalized likelihood and principal component reduction or partial least squares reduction.

  19. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    Science.gov (United States)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  20. A differentiating empirical linguistic analysis of dreamer activity in reports of EEG-controlled REM-dreams and hypnagogic hallucinations.

    Science.gov (United States)

    Speth, Jana; Frenzel, Clemens; Voss, Ursula

    2013-09-01

    We present Activity Analysis as a new method for the quantification of subjective reports of altered states of consciousness with regard to the indicated level of simulated motor activity. Empirical linguistic activity analysis was conducted with dream reports conceived immediately after EEG-controlled periods of hypnagogic hallucinations and REM-sleep in the sleep laboratory. Reports of REM-dreams exhibited a significantly higher level of simulated physical dreamer activity, while hypnagogic hallucinations appear to be experienced mostly from the point of passive observer. This study lays the groundwork for clinical research on the level of simulated activity in pathologically altered states of subjective experience, for example in the REM-dreams of clinically depressed patients, or in intrusions and dreams of patients diagnosed with PTSD. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Frontal EEG and emotion regulation: electrocortical activity in response to emotional film clips is associated with reduced mood induction and attention interference effects.

    Science.gov (United States)

    Dennis, Tracy A; Solomon, Beylul

    2010-12-01

    Frontal EEG activity is thought to reflect affective dispositions, but may also reflect the emotional demands of a specific context combined with the capability to regulate emotions in that context. The present study examined this hypothesis by testing whether frontal EEG activity during mood inductions versus a resting baseline predicted emotion regulation. EEG was recorded while participants (N=66, 40 females) received a fearful, sad, or neutral mood induction. Emotion regulation was measured following the mood inductions as self-reported change in negative mood and as attention interference in a task with mood-congruent emotional distracters. Greater frontal EEG activity during the mood inductions versus baseline was associated with more effective emotion regulation: less post-induction sadness and anxiety and reduced mood-congruent attention interference effects. Effects did not differ between the left and right hemispheres. Results support the hypothesis that frontal EEG activity reflects both emotional context and emotion-regulatory capabilities. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Asymmetric activation in the prefrontal cortex by sound-induced affect.

    Science.gov (United States)

    Kim, Wuon-Shik; Yoon, Young-Ro; Kim, Kyo-Heon; Jho, Moon-Jae; Lee, Sang-Tae

    2003-12-01

    This study is based on previous information regarding asymmetric activation in the prefrontal cortex by film-induced affects, as well as the inverse proportionality of prefrontal cortex activity to power in the alpha band of EEG. To search for a specific EEG band where the asymmetric activation in the prefrontal cortex by sound-induced affects is mainly reflected, we measured 32 college students' EEGs; 11 bands ranged from 6.5 to 35.0 Hz, at Fp1 and Fp2 sites. The power in the alpha band (8.0 to 13.0 Hz) at Fp2, especially in the alpha-2 band (9.0 to 11.0 Hz) increased while the students listened to music, during which participants reported positive affect. In contrast, the power at Fp1 increased while the students listened to noise, during which participants reported negative affect. These results imply that sound-induced positive affect increases relative left-sided activation in the prefrontal cortex, whereas induced negative affect elicits the opposite pattern of asymmetric activation.

  3. The Influence of Finasteride on Mean and Relative Spectral Density of EEG Bands in Rat Model of Thioacetamide-Induced Hepatic Encephalopathy.

    Science.gov (United States)

    Mladenović, D; Hrnčić, D; Rašić-Marković, A; Macut, Dj; Stanojlović, O

    2016-08-01

    Liver failure is associated with a neuropsychiatric syndrome, known as hepatic encephalopathy (HE). Finasteride, inhibitor of neurosteroid synthesis, may improve the course of HE. The aim of our study was to investigate the influence of finasteride on mean and relative power density of EEG bands, determined by spectral analysis, in rat model of thioacetamide-induced HE. Male Wistar rats were divided into groups: (1) control; (2) thioacetamide-treated group, TAA (900 mg/kg); (3) finasteride-treated group, FIN (150 mg/kg); and (4) group treated with finasteride (150 mg/kg) and thioacetamide (900 mg/kg), FIN + TAA. Daily doses of FIN (50 mg/kg) and TAA (300 mg/kg) were administered during 3 subsequent days, and in FIN + TAA group FIN was administered 2 h before every dose of TAA. EEG was recorded 22-24 h after treatment and analyzed by fast Fourier transformation. While TAA did not induce significant changes in the beta band, mean and relative power in this band were significantly higher in FIN + TAA versus control group (p EEG changes that correspond to mild TAA-induced HE.

  4. Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements.

    Science.gov (United States)

    Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Cincotti, Febo; Mattia, Donatella; Salinari, Serenella; Soranzo, Ramon; Babiloni, Fabio

    2010-06-01

    In this study we were interested to analyse the brain activity occurring during the "naturalistic" observation of commercial ads intermingled in a random order within a documentary. In order to measure both the brain activity and the emotional engage of the 15 healthy subjects investigated, we used simultaneous EEG, Galvanic Skin Response (GSR), Heart Rate (HR) recordings during the whole experiment. We would like to link significant variation of EEG, GSR, HR and Heart Rate Variability (HRV) measurements with the memory and pleasantness of the stimuli presented, as resulted successively from the subject's verbal interview. In order to do that, different indexes were employed to summarize the cerebral and autonomic measurements performed. Such indexes were used in the statistical analysis, performed with the use of Analysis of Variance (ANOVA) and z-score transformation of the estimated cortical activity by solving the associated EEG inverse problem. The results are summarized as follows: (1) in the population analyzed, the cortical activity in the theta band elicited during the observation of the TV commercials that were remembered is higher and localized in the left frontal brain areas when compared to the activity elicited during the vision of the TV commercials that were forgotten (p HR and HRV activity elicited during the observation of the TV commercials that were remembered or judged pleasant is higher than the same activity during the observation of commercials that will be forgotten (p HR and HRV) or were judged unpleasant (p HR and HRV). No statistical differences between the level of the GSR values were observed across the experimental conditions. In conclusion, the TV commercials proposed to the population analyzed have increased the HR values and the cerebral activity mainly in the theta band in the left hemisphere when they will be memorized and judged pleasant. Further research with an extended set of subjects will be necessary to further validate the

  5. Evaluating Virtual Reality Mood Induction Procedures with Portable EEG Devices

    OpenAIRE

    Rodriguez Ortega, Alejandro; Rey Solaz, Beatriz; Alcañiz Raya, Mariano Luis

    2013-01-01

    Virtual Environments (VEs) have been used as mood induction procedures. In this context, it is necessary to have instruments to analyze the emotional state during VE exposure. Objective techniques such as EEG should be evaluated for this purpose. The aim in this work was to study the changes in the brain activity with a portable EEG device during a negative mood induction based on a VE. A virtual park was used to induce a negative mood (sadness) in ten participants. Changes in the brain activ...

  6. A large N400 but no BOLD effect--comparing source activations of semantic priming in simultaneous EEG-fMRI.

    Directory of Open Access Journals (Sweden)

    Sebastian Geukes

    Full Text Available Numerous studies have reported neurophysiological effects of semantic priming in electroencephalography (EEG and in functional magnetic resonance imaging (fMRI. Because of differing methodological constraints, the comparability of the observed effects remains unclear. To directly compare EEG and fMRI effects and neural sources of semantic priming, we conducted a semantic word-picture priming experiment while measuring EEG and fMRI simultaneously. The visually presented primes were pseudowords, words unrelated to the target, semantically related words and the identical names of the target. Distributed source analysis of the event-related potentials (ERPs successfully revealed a large effect of semantic prime-target relatedness (the N400 effect, which was driven by activations in a left-temporal source region. However, no significantly differing activations between priming conditions were found in the fMRI data. Our results support the notion that, for joint interpretations of existing EEG and fMRI studies of semantic priming, we need to fully appreciate the respective methodological limitations. Second, they show that simultaneous EEG-fMRI, including ERP source localization, is a feasible and promising methodological advancement for the investigation of higher-cognitive processes. Third, they substantiate the finding that, compared to fMRI, ERPs are often more sensitive to subtle cognitive effects.

  7. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    CERN Document Server

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D; Feldner, Matthew T; Bodurka, Jerzy

    2014-01-01

    Background: Real-time fMRI neurofeedback (rtfMRI-nf) is a promising approach for studies and treatment of major depressive disorder (MDD). EEG performed simultaneously with rtfMRI-nf procedure allows independent evaluation of rtfMRI-nf effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been related to simultaneously acquired fMRI data. Methods: We performed the first study combining rtfMRI-nf with simultaneous (passive) EEG recordings. MDD patients in the experimental group (n=13) learned to upregulate BOLD activity of the left amygdala using rtfMRI-nf during a positive emotion induction task. MDD patients in the control group (n=11) were provided with sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper-alpha band and BOLD activity across the brain were examined. Results: Participants in the experimental group showed positive average changes in frontal EEG asymmetry during the ...

  8. Detection of Drug Effects on Brain Activity using EEG-P300 with Similar Stimuli

    Science.gov (United States)

    Turnip, Arjon; Dwi Esti, K.; Faizal Amri, M.; Simbolon, Artha I.; Agung Suhendra, M.; IsKandar, Shelly; Wirakusumah, Firman F.

    2017-07-01

    Drug addiction poses a serious problem to our species. The worry that our significant family might be involved in drug use and are concerned to know how to detect drug use. Examinations of thirty taped EEG recordings were performed. The subjects consist of three group: addictive, methadone treatment (rehabilitation), and control (normal) which 10 subjects for each group. Statistical analysis was performed for the relative frequency of wave bands. The higher average amplitude is obtained from the addiction subjects. In the comparison with the signals source, channels P3 provide slightly higher average amplitude than other channels for all of subjects.

  9. Tracking EEG changes during the exposure to hyperbaric oxygen.

    Science.gov (United States)

    Pastena, Lucio; Formaggio, Emanuela; Storti, Silvia Francesca; Faralli, Fabio; Melucci, Massimo; Gagliardi, Riccardo; Ricciardi, Lucio; Ruffino, Giovanni

    2015-02-01

    The aim was to investigate and define possible alterations in cerebral activity during prolonged hyperbaric oxygen exposure and decompression as compared to baseline activity. Thirty-two channel electroencephalography (EEG) was recorded with a Bluetooth EEG system in 11 subjects. A 20-min EEG recording was carried out under three different conditions: breathing air inside a hyperbaric chamber at sea level; breathing oxygen at a simulated depth of 18 msw; breathing air at sea level after decompression. Relative EEG power was estimated in frequency ranges. During oxygen breathing, brain activity showed an early fast delta decrease in the posterior regions, with a synchronous and significant increase in alpha in the same regions. After decompression, the delta relative power decrease was uniformly distributed over the cerebral cortex until minute 8, and the alpha relative power was maximal in the posterior regions during the first 2 min. These results may be relevant for establishing a reference point in future studies on oxygen-sensitive subjects who reported problems during oxygen diving. Significant changes in EEG relative power suggest that it may be possible to define and recognize landmarks of oxygen-induced brain activity, which would be useful in the medical treatment of subjects reporting "oxygen-toxicity diving-related problems". Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Pre- and post-stimulus EEG patterns associated with the touch-induced illusory flash

    NARCIS (Netherlands)

    Erp, J.B.F. van; Philippi, T.G.; Winkel, K.N. de; Werkhoven, P.

    2014-01-01

    Pairing two brief auditory beeps with a single flash can evoke the percept of a second, illusory, flash. Investigations of the underlying neural mechanisms are limited to post-stimulus effects of this sound-induced illusory flash. We investigated whether touch modulates the visual evoked potential

  11. The use of automated system for EEG analysis and feedback cerebral stimulation to stop epileptiform activity in WAG/Rij rats.

    Science.gov (United States)

    Blik, V A; Aristov, A V; Chepurnova, N E

    2015-02-01

    Original software program is described, which revealed EEG activity characteristic of the onset of epileptic seizure and turned on electrical stimulation of the nucleus basalis of Meynert in WAG/Rij rats with congenital absence epilepsy. The program reliably detected the onset of seizure and automatically stopped it with a high-frequency train of electrical impulses (100-150 Hz). Thus, a feedback system of deep brain stimulation has been developed to stop early manifestations of absence epileptiform seizures. The study can be a base to develop an implanted apparatus to automatically analyze EEG and stimulate the brain to stop the epileptic seizures.

  12. [Influence of information over saturation on quality of creative activity and EEG spatial organization].

    Science.gov (United States)

    Sviderskaia, N E

    2011-01-01

    In work the features of the biopotentials spatial organization are surveyed at successful and unsuccessful (abandoning or bad quality of a product) implementation of creative imagination in conditions of information over saturation. Two groups of the examinees have taken part in experiments: "professionals" (23 able-bodied examinees--students of faculty of an art graphics) and "nonprofessionals" (34 men, which specialty were not linked to systematic visual imagination). During experiment the examinees should mentally frame a visual object on the basis of two simple graphics units--right angle and diagonal, and after EEG registration to draw it on a paper and to give a title. The total number of units exceeded 7 +/- 2, i.e. the possibility of information processing at a realized level was unreal that reduced in necessity of connection of mechanisms of not realized information processes. Estimated quality of a framed product from the point of view successful and unsuccessful of implementation of the job and conforming to each of these variants of a feature of the EEG spatial organization, which shunted with the help of portable telemeter installation "SIT-EEG" from 24 items convexital surface of a head. Is shown, that at successful performance of the job in comparison with unsuccessful for "professionals" biopotentials spatial organization parameters--spatial synchronization (linear processes) and spatial disorder (the nonlinear processes) strengthen (in relation to a background) in frontal-temporal areas of the right hemisphere and parietal-occipital left ones. For "nonprofessionals" the value of these parameters was enlarged in an inverse direction: in frontal-temporal areas of the left hemisphere and in the right parietal-occipital. At unsuccessful performance of the jobs for "professionals" the body height ofbiopotentials spatial disorder almost in all cortical zones was marked, for "nonprofessionals" of change were weak. The between group differences in all

  13. Personalization of NonEEG-based seizure detection systems.

    Science.gov (United States)

    Cogan, D; Heydarzadeh, M; Nourani, M

    2016-08-01

    Seizures affect each patient differently, so personalization is a vital part of developing a reliable nonEEG based seizure detection system. This personalization must be done while the patient is undergoing video EEG monitoring in an epilepsy monitoring unit (EMU) because seizure detection by EEG is considered to be the ground truth. We propose the use of confidence interval analysis for determining how many seizures must be captured from a patient before we can reliably personalize such a seizure detection system for him/her. Our analysis indicates that 6 to 8 seizures are required. In addition, we create seizure likelihood tables for future use by said system by comparing the number of times a prespecified biosignal activity level is induced by seizure to the total number of occurrences of that level of activity. We focus on complex partial seizures in this paper because they are more difficult to detect than are generalized seizures.

  14. A randomized controlled trial into the effects of neurofeedback, methylphenidate, and physical activity on EEG power spectra in children with ADHD.

    Science.gov (United States)

    Janssen, Tieme W P; Bink, Marleen; Geladé, Katleen; van Mourik, Rosa; Maras, Athanasios; Oosterlaan, Jaap

    2016-05-01

    The clinical and neurophysiological effects of neurofeedback (NF) as treatment for children with ADHD are still unclear. This randomized controlled trial (RCT) examined electroencephalogram (EEG) power spectra before and after NF compared to methylphenidate (MPH) treatment and physical activity (PA) - as semi-active control group - during resting and active (effortful) task conditions to determine whether NF can induce sustained alterations in brain function. Using a multicentre three-way parallel group RCT design, 112 children with a DSM-IV diagnosis of ADHD, aged between 7 and 13 years, were initially included. NF training consisted of 30 sessions of theta/beta training at Cz over a 10-week period. PA training was a semi-active control group, matched in frequency and duration. Methylphenidate was titrated using a double-blind placebo controlled procedure in 6 weeks, followed by a stable dose for 4 weeks. EEG power spectra measures during eyes open (EO), eyes closed (EC) and task (effortful) conditions were available for 81 children at pre- and postintervention (n = 29 NF, n = 25 MPH, n = 27 PA). Train Your Brain? Exercise and Neurofeedback Intervention for ADHD, https://clinicaltrials.gov/show/;NCT01363544, Ref. No. NCT01363544. Both NF and MPH resulted in comparable reductions in theta power from pre- to postintervention during the EO condition compared to PA (ηp (2)  = .08 and .12). For NF, greater reductions in theta were related to greater reductions in ADHD symptoms. During the task condition, only MPH showed reductions in theta and alpha power compared to PA (ηp (2)  = .10 and .12). This study provides evidence for specific neurophysiological effects after theta/beta NF and MPH treatment in children with ADHD. However, for NF these effects did not generalize to an active task condition, potentially explaining reduced behavioural effects of NF in the classroom. © 2016 Association for Child and Adolescent Mental Health.

  15. Changes of sleep EEG slow-wave activity in response to sleep manipulations : to what extent are they related to changes in REM sleep latency?

    NARCIS (Netherlands)

    Beersma, D.G.M.; Achermann, P.

    1995-01-01

    Sleep interventions may have direct effects on slow-wave activity (SWA, i.e. power of the sleep EEG signal in the 0.75-4.5 Hz range) as well as indirect ones caused by changes in REM sleep (REMS) latency. The effects of changes in REMS latency on SWA were investigated by analysing simulations with a

  16. EEG-based decoding of error-related brain activity in a real-world driving task

    Science.gov (United States)

    Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.

    2015-12-01

    Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.

  17. Source-based neurofeedback methods using EEG recordings: Training altered brain activity in a functional brain source derived from Blind Source Separation

    Directory of Open Access Journals (Sweden)

    David James White

    2014-10-01

    Full Text Available A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation of EEG data obtained during completion of a complex cognitive task (spatial navigation. Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using Blind Source Separation may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes targeting individual brain sources by source-based EEG

  18. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation.

    Science.gov (United States)

    White, David J; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback.

  19. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    Science.gov (United States)

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID

  20. Impact of major and minor mode on EEG frequency range activities of music processing as a function of expertise.

    Science.gov (United States)

    Jenni, Raoul; Oechslin, Mathias S; James, Clara E

    2017-04-24

    Processing western tonal music may yield distinct brain responses depending on the mode of the musical compositions. Although subjective feelings in response to major and minor mode are well described, the underlying brain mechanisms and their development with increasing expertise have not been thoroughly examined. Using high-density electroencephalography, the present study investigated neuronal activities in the frequency domain in response to polyphone musical compositions in major and minor mode in non-musicians, amateurs and experts. During active listening decrease of theta- and gamma-frequency range activities occurred with increasing expertise in right posterior regions, possibly reflecting enhanced processing efficiency. Moreover, minor and major compositions distinctively modulated synchronization of neuronal activities in high frequency ranges (beta and gamma) in frontal regions, with increased activity in response to minor compositions in musicians and in experts in particular. These results suggest that high-frequency electroencephalographic (EEG) activities carry information about musical mode, showing gradual increase of processing efficiency and sensitivity with musical expertise. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Functional neurotoxicity evaluation of noribogaine using video-EEG in cynomolgus monkeys.

    Science.gov (United States)

    Authier, Simon; Accardi, Michael V; Paquette, Dominique; Pouliot, Mylène; Arezzo, Joseph; Stubbs, R John; Gerson, Ronald J; Friedhoff, Lawrence T; Weis, Holger

    2016-01-01

    Continuous video-electroencephalographic (EEG) monitoring remains the gold standard for seizure liability assessments in preclinical drug safety assessments. EEG monitored by telemetry was used to assess the behavioral and EEG effects of noribogaine hydrochloride (noribogaine) in cynomolgus monkeys. Noribogaine is an iboga alkaloid being studied for the treatment of opioid dependence. Six cynomolgus monkeys (3 per gender) were instrumented with EEG telemetry transmitters. Noribogaine was administered to each monkey at both doses (i.e., 160 and 320mg/kg, PO) with an interval between dosing of at least 6days, and the resulting behavioral and EEG effects were evaluated. IV pentylenetetrazol (PTZ), served as a positive control for induced seizures. The administration of noribogaine at either of the doses evaluated was not associated with EEG evidence of seizure or with EEG signals known to be premonitory signs of increased seizure risk (e.g., sharp waves, unusual synchrony, shifts to high-frequency patterns). Noribogaine was associated with a mild reduction in activity levels, increased scratching, licking and chewing, and some degree of poor coordination and related clinical signs. A single monkey exhibited brief myoclonic movements that increased in frequency at the high dose, but which did not appear to generalize, cluster or to be linked with EEG abnormalities. Noribogaine was also associated with emesis and partial anorexia. In contrast, PTZ was associated with substantial pre-ictal EEG patterns including large amplitude, repetitive sharp waves leading to generalized seizures and to typical post-ictal EEG frequency attenuation. EEG patterns were within normal limits following administration of noribogaine at doses up to 320mg/kg with concurrent clinical signs that correlated with plasma exposures and resolved by the end of the monitoring period. PTZ was invariably associated with EEG paroxysmal activity leading to ictal EEG. In the current study, a noribogaine

  2. Emotion-induced higher wavelet entropy in the EEG with depression during a cognitive task.

    Science.gov (United States)

    Wei, Ling; Li, Yingjie; Ye, Jiping; Yang, Xiaoli; Wang, Jijun

    2009-01-01

    This paper presents a study about how emotion influences cognition. We used wavelet entropy as a tool to analyze event-related electroencephalograph during a cognitive task. Emotion and cognition are two major aspects of human mental life that are widely regarded as distinct but interacting. However, the mechanism of this interacting is still not well known. In our study, a recognition task with facial stimuli was utilized in order to address the influence of emotion on working memory. Three expressions of each face (happy-positive, sad-negative, and neutral) were chosen for the experiments. Since depression is characterized as a typical mental disease with emotion processing deficits, sixteen patients with depression and sixteen normal controls were chosen to participate in the experiment. The repeated measure analysis of variance (ANOVA) revealed that the patients with depression had a significantly higher entropies than the normal control overall the brain regions. Although behavior results did not indicate any emotion effect, wavelet entropy told more about it. The emotion effect was found in the right anterior and right center of the brain by the analysis of entropy. We concluded that patients with depression showed much higher emotion-induced disorder than normal persons after about 300ms after stimulus onset. In methodology wavelet entropy can help us to understand the interaction between emotion and cognition.

  3. An EEG study on the somatotopic organisation of sensorimotor cortex activation during action execution and observation in infancy.

    Science.gov (United States)

    de Klerk, Carina C J M; Johnson, Mark H; Southgate, Victoria

    2015-10-01

    Previous studies have shown that sensorimotor cortex activation is somatotopically-organised during action execution and observation in adulthood. Here we aimed to investigate the development of this phenomenon in infancy. We elicited arm and leg actions from 12-month-old infants and presented them, and a control group of adults, with videos of arm and leg actions while we measured their sensorimotor alpha suppression using EEG. Sensorimotor alpha suppression during action execution was somatotopically organised in 12-month-old infants: there was more suppression over the arm areas when infants performed reaching actions, and more suppression over the leg area when they performed kicking actions. Adults also showed somatotopically-organised activation during the observation of reaching and kicking actions. In contrast, infants did not show somatotopically-organised activation during action observation, but instead activated the arm areas when observing both reaching and kicking actions. We suggest that the somatotopic organisation of sensorimotor cortex activation during action observation may depend on infants' understanding of the action goal and their expectations about how this goal will be achieved. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Effect of Low-Level Laser Stimulation on EEG Power in Normal Subjects with Closed Eyes

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2013-01-01

    Full Text Available In a previous study, we found that the low-level laser (LLL stimulation at the palm with a frequency of 10 Hz was able to induce significant brain activation in normal subjects with opened eyes. However, the electroencephalography (EEG changes to LLL stimulation in subjects with closed eyes have not been studied. In the present study, the laser array stimulator was applied to deliver insensible laser stimulations to the palm of the tested subjects with closed eyes (the laser group. The EEG activities before, during, and after the laser stimulation were collected. The EEG amplitude powers of each EEG frequency band at 19 locations were calculated. These power data were then analyzed by SPSS software using repeated-measure ANOVAs and appropriate posthoc tests. We found a pronounced decrease in the EEG power in alpha-bandwidth during laser simulation and then less decrease in the EEG power in delta-bandwidth in normal subjects with laser stimulation. The EEG power in beta-bandwidth in the right occipital area also decreased significantly in the laser group. We suggest that LLL stimulation might be conducive to falling into sleep in patients with sleep problems.

  5. Characterization of EEG patterns in brain-injured subjects and controls after a Snoezelen® intervention

    OpenAIRE

    Gómez Peña, Carlos; Poza Crespo, Jesús; Gutiérrez, María T.; Prada, Esther; Mendoza, Nuria; Hornero Sánchez, Roberto

    2016-01-01

    Producción Científica Background and objective. The aim of this study was to assess the changes induced in electroencephalographic (EEG) activity by a Snoezelen® intervention on individuals with brain-injury and control subjects. Methods: EEG activity was recorded preceding and following a Snoezelen® session in 18 people with cerebral palsy (CP), 18 subjects who have sustained traumatic brain-injury (TBI) and 18 controls. EEG data were analyzed by means of spectral and nonlinear measures: ...

  6. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pmusic induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat.

    Science.gov (United States)

    Vyazovskiy, V V; Tobler, I

    2008-02-01

    Sleep electroencephalographic (EEG) slow-wave activity is increased after wakefulness and decreases during sleep. Regional sleep EEG differences are thought to be a consequence of activation of specific cortical neuronal circuits during waking. We investigated the relationship between handedness and interhemispheric brain asymmetry. Bilateral EEG recordings were obtained from the frontal and occipital cortex in rats with a clear paw preference in a food-reaching task (right, n = 5; left, n = 5). While still naïve to the task, no waking or sleep EEG asymmetry was present. During the food-reaching task, the waking EEG showed significant, substantial power increases in the frontal hemisphere contralateral to the dominant paw in the low theta range (4.5-6.0 Hz). Moreover, the non-REM sleep EEG following feeding bouts was markedly asymmetric, with significantly higher power in the hemisphere contralateral to the preferred paw in frequencies >1.5 Hz. No asymmetry was evident in the occipital EEG. Correlation analyses revealed a positive association between the hemispheric asymmetry during sleep and the degree of preferred use of the contralateral paw during waking in frequencies EEG asymmetry during sleep. Neuronal activity induced by preferential use of a particular forelimb led to a local enhancement of EEG power in frequencies within the delta and sigma ranges, supporting the hypothesis of use-dependent local sleep regulation. We conclude that inherent laterality is manifested when animals are exposed to complex behavioral tasks, and sleep plays a role in consolidating the hemispheric dominance of the brain.

  8. Behavior and EEG concordance of active and quiet sleep in preterm very low birth weight and full-term neonates at matched conceptional age.

    Science.gov (United States)

    Dos Santos, Aline Ávila; Khan, Richard Lester; Rocha, Gibsi; Nunes, Magda Lahorgue

    2014-09-01

    Sleep organization in neonates is an established predictor of neurological outcome and can be evaluated through the concordance between EEG and behavioral parameters. To evaluate the correlation between sleep stages and behavioral states in neonates. Longitudinal study performed in a birth-cohort of preterm low birth weight neonates. Twenty five neonates, 15 preterm (gestational age between 27 and 33 weeks) and low birth weight (800-1500g) and 10 full-term neonates that served as controls. All neonates were submitted to video-electroencephalography of, at least, 60 minute duration. The preterm during the first 15 days of life and, subsequently, at 38-42 weeks of conceptional age. The full-term between the 1st and 2nd days of life. The characterization of sleep stages by EEG parameters and behavioral states (based on Prechtl scale) was performed independently by previously trained researchers. Active sleep (AS) was the predominant sleep stage in the three groups. Preterm neonates had an increase in concordance between state 1 and quiet sleep (QS) from the 1st to the 2nd EEG (pEEG and behavior is lower in QS in preterm and full-term neonates when compared to AS. Extra-uterine development of preterm neonates seems to accelerate concordance in QS. Prechtl behavior scale proved to be useful in preterm as percentage of concordance was similar in AS in the groups studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  10. EEG-based time and spatial interpretation of activation areas for relaxation and words writing between poor and capable dyslexic children.

    Science.gov (United States)

    Mohamad, N B; Lee, Khuan Y; Mansor, W; Mahmoodin, Z; Fadzal, C W N F C W; Amirin, S

    2015-01-01

    Symptoms of dyslexia such as difficulties with accurate and/or fluent word recognition, and/or poor spelling as well as decoding abilities, are easily misinterpreted as laziness and defiance amongst school children. Indeed, 37.9% of 699 school dropouts and failures are diagnosed as dyslexic. Currently, Screening for dyslexia relies heavily on therapists, whom are few and subjective, yet objective methods are still unavailable. EEG has long been a popular method to study the cognitive processes in human such as language processing and motor activity. However, its interpretation is limited to time and frequency domain, without visual information, which is still useful. Here, our research intends to illustrate an EEG-based time and spatial interpretation of activated brain areas for the poor and capable dyslexic during the state of relaxation and words writing, being the first attempt ever reported. From the 2D distribution of EEG spectral at the activation areas and its progress with time, it is observed that capable dyslexics are able to relax compared to poor dyslexics. During the state of words writing, neural activities are found higher on the right hemisphere than the left hemisphere of the capable dyslexics, which suggests a neurobiological compensation pathway in the right hemisphere, during reading and writing, which is not observed in the poor dyslexics.

  11. Effect of Low-Level Laser Stimulation on EEG

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2012-01-01

    Full Text Available Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  12. Strain differences in hippocampal EEG are related to strain differences in behaviour in rats

    NARCIS (Netherlands)

    Lier, H. van; Drinkenburg, W.H.I.M.; Coenen, A.M.L.

    2003-01-01

    To date, EEG studies towards strain differences have focussed on pharmacologically altered or pathological EEG activity, but only few studies have investigated strain differences and normal EEG activity. A strong relation between behaviour and EEG activity has been demonstrated, especially for

  13. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  14. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    Science.gov (United States)

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional

  15. Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI

    Directory of Open Access Journals (Sweden)

    Galina V. Portnova

    2018-01-01

    Full Text Available Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity with neuronal activity obtained by fMRI. We examined the relationships between EEG patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors, we demonstrated a substantial correlation of BOLD signal changes with linear and nonlinear features of EEG. We found the most significant positive correlation of fMRI signal with delta spectral power. Beta and alpha spectral features had no reliable effect on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a significant association with BOLD signal increase in right-hemisphere areas. Additionally, EEG dynamic complexity as measured by the HFD of the 2–20 Hz EEG frequency range significantly correlated with the activation of cortical and subcortical limbic system areas. Our results indicate that both spectral features of EEG frequency bands and nonlinear dynamic properties of spontaneous EEG are strongly associated with fluctuations of the BOLD signal during the resting state condition.

  16. Automatic determination of EMG-contaminated components and validation of independent component analysis using EEG during pharmacologic paralysis.

    Science.gov (United States)

    Fitzgibbon, S P; DeLosAngeles, D; Lewis, T W; Powers, D M W; Grummett, T S; Whitham, E M; Ward, L M; Willoughby, J O; Pope, K J

    2016-03-01

    Validate independent component analysis (ICA) for removal of EMG contamination from EEG, and demonstrate a heuristic, based on the gradient of EEG spectra (slope of graph of log EEG power vs log frequency, 7-70 Hz) from paralysed awake humans, to automatically identify and remove components that are predominantly EMG. We studied the gradient of EMG-free EEG spectra to quantitatively inform the choice of threshold. Then, pre-existing EEG from 3 disparate experimental groups was examined before and after applying the heuristic to validate that the heuristic preserved neurogenic activity (Berger effect, auditory odd ball, visual and auditory steady state responses). (1) ICA-based EMG removal diminished EMG contamination up to approximately 50 Hz, (2) residual EMG contamination using automatic selection was similar to manual selection, and (3) task-induced cortical activity remained, was enhanced, or was revealed using the ICA-based methodology. This study further validates ICA as a powerful technique for separating and removing myogenic signals from EEG. Automatic processing based on spectral gradients to exclude EMG-containing components is a conceptually simple and valid technique. This study strengthens ICA as a technique to remove EMG contamination from EEG whilst preserving neurogenic activity to 50 Hz. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Effect of chronic treatment of Ro 15-1788 and its withdrawal on cortical and hippocampal EEG activity in rats.

    Science.gov (United States)

    Aley, K O; Kulkarni, S K; Mathur, R; Nayar, U

    1990-12-01

    Effect of chronic treatment with Ro 15-1788, a benzodiazepine (BZ) receptor antagonist, and its withdrawal, on the cortical and hippocampal electroencephalogram (EEG) was investigated in rats. Chronic treatment with Ro 15-1788 and its withdrawal (24 and 48 hr) were found to reduce the EEG amplitude in both cortical and hippocampal regions. This reduction in cortical and hippocampal EEG amplitude produced by chronic treatment with Ro 15-1788 and its withdrawal was reversed by gamma aminobutyric acid (GABA), pentobarbitone and picrotoxin, agents known to modulate the GABA/BZ synaptic events by acting at different sites on the complex. Baclofen a GABAB agonist and FG7142, a BZ inverse agonist were found to further reduce the EEG amplitude in the cortical and hippocampal regions of these rats, chronically treated with Ro 15-1788. Diazepam, a BZ agonist was found to have no significant effect on the alteration produced in the cortical and hippocampal EEG amplitude by chronic treatment with Ro 15-1788 or its withdrawal. It is suggested that the conformational changes produced on the GABA/BZ receptor complex by BZ receptor occupation, has a facilitatory effect on the actions of those drugs which act on the GABA/BZ receptor complex and the direction of this enhancement depended on the nature of the drug.

  18. Phase shift in the 24-hour rhythm of hippocampal EEG spiking activity in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Stanley, David A; Talathi, Sachin S; Parekh, Mansi B; Cordiner, Daniel J; Zhou, Junli; Mareci, Thomas H; Ditto, William L; Carney, Paul R

    2013-09-01

    For over a century epileptic seizures have been known to cluster at specific times of the day. Recent studies have suggested that the circadian regulatory system may become permanently altered in epilepsy, but little is known about how this affects neural activity and the daily pattern of seizures. To investigate, we tracked long-term changes in the rate of spontaneous hippocampal EEG spikes (SPKs) in a rat model of temporal lobe epilepsy. In healthy animals, SPKs oscillated with near 24-h period; however, after injury by status epilepticus, a persistent phase shift of ∼12 h emerged in animals that later went on to develop chronic spontaneous seizures. Additional measurements showed that global 24-h rhythms, including core body temperature and theta state transitions, did not phase shift. Instead, we hypothesized that locally impaired circadian input to the hippocampus might be responsible for the SPK phase shift. This was investigated with a biophysical computer model in which we showed that subtle changes in the relative strengths of circadian input could produce a phase shift in hippocampal neural activity. MRI provided evidence that the medial septum, a putative circadian relay center for the hippocampus, exhibits signs of damage and therefore could contribute to local circadian impairment. Our results suggest that balanced circadian input is critical to maintaining natural circadian phase in the hippocampus and that damage to circadian relay centers, such as the medial septum, may disrupt this balance. We conclude by discussing how abnormal circadian regulation may contribute to the daily rhythms of epileptic seizures and related cognitive dysfunction.

  19. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study.

    Science.gov (United States)

    Tyvaert, L; Hawco, C; Kobayashi, E; LeVan, P; Dubeau, F; Gotman, J

    2008-08-01

    Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and ictal zones in eight patients with different types of MCD in order to better understand the generation of these activities: four had nodular heterotopia, two focal cortical dysplasia and two subcortical band heterotopia (double-cortex). We used the non-invasive EEG-fMRI technique to record simultaneously all cerebral structures with a high spatio-temporal resolution. We recorded interictal and ictal events during the same session. Ictal events were either electrical only or clinical with minimal motion. BOLD changes were found in the focal cortical dysplasia during interictal and ictal epileptiform events in the two patients with this disorder. Heterotopic and normal cortices were involved in BOLD changes during interictal and ictal events in the two patients with double cortex, but the maximum BOLD response was in the heterotopic band in both patients. Only two of the four patients with nodular heterotopia showed involvement of a nodule during interictal activity. During seizures, although BOLD changes affected the lesion in two patients, the maximum was always in the overlying cortex and never in the heterotopia. For two patients intracranial recordings were available and confirm our findings. The dysplastic cortex and the heterotopic cortex of band heterotopia were involved in interictal and seizure processes. Even if the nodular gray matter heterotopia may have the cellular substrate to produce interictal events, the often abnormal overlying cortex is more likely to be involved during the seizures. The non-invasive BOLD study of interictal and ictal events in MCD

  20. Transcranial alternating current stimulation enhances individual alpha activity in human EEG

    National Research Council Canada - National Science Library

    Zaehle, Tino; Rach, Stefan; Herrmann, Christoph S

    2010-01-01

    .... Recently, transcranial alternating current stimulation (tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp...

  1. EEG SPECTRA, BEHAVIORAL STATES AND MOTOR ACTIVITY IN RATS EXPOSED TO ACETYLCHOLINESTERASE INHIBITOR CHLORPYRIFOS.

    Science.gov (United States)

    Exposure to organophosphate pesticides (OP) has been associated with sleep disorders: insomnia and ?excessive dreaming'. However neuronal mechanisms of these effects have not been analyzed. OP inhibit acetylcholinesterase activity leading to a hyperativity of the brain cholin...

  2. A Review on Machine Learning Algorithms in Handling EEG Artifacts

    OpenAIRE

    Barua, Shaibal; Begum, Shahina

    2014-01-01

    Brain waves obtained by Electroencephalograms (EEG) recording are an important research area in medical and health and brain computer interface (BCI). Due to the nature of EEG signal, noises and artifacts can contaminate it, which leads to a serious misinterpretation in EEG signal analysis. These contaminations are referred to as artifacts, which are signals of other than brain activity. Moreover, artifacts can cause significant miscalculation of the EEG measurements that reduces the clinical...

  3. Propofol anesthesia and sleep: a high-density EEG study.

    Science.gov (United States)

    Murphy, Michael; Bruno, Marie-Aurélie; Riedner, Brady A; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Mélanie

    2011-03-01

    The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. 256-channel EEG recordings in humans during propofol anesthesia. Hospital operating room. 8 healthy subjects (4 males). N/A. Initially, propofol induced increases in EEG power from 12-25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25-40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity.

  4. Age-Related Changes in Resting-State EEG Activity in Attention Deficit/Hyperactivity Disorder: A Cross-Sectional Study

    Science.gov (United States)

    Giertuga, Katarzyna; Zakrzewska, Marta Z.; Bielecki, Maksymilian; Racicka-Pawlukiewicz, Ewa; Kossut, Malgorzata; Cybulska-Klosowicz, Anita

    2017-01-01

    Numerous studies indicate that attention deficit/hyperactivity disorder (ADHD) is related to some developmental trends, as its symptoms change widely over time. Nevertheless, the etiology of this phenomenon remains ambiguous. There is a disagreement whether ADHD is related to deviations in brain development or to a delay in brain maturation. The model of deviated brain development suggests that the ADHD brain matures in a fundamentally different way, and does not reach normal maturity at any developmental stage. On the contrary, the delayed brain maturation model assumes that the ADHD brain indeed matures in a different, delayed way in comparison to healthy age-matched controls, yet eventually reaches proper maturation. We investigated age-related changes in resting-state EEG activity to find evidence to support one of the alternative models. A total of 141 children and teenagers participated in the study; 67 diagnosed with ADHD and 74 healthy controls. The absolute power of delta, theta, alpha, and beta frequency bands was analyzed. We observed a significant developmental pattern of decreasing absolute EEG power in both groups. Nonetheless, ADHD was characterized by consistently lower absolute EGG power, mostly in the theta frequency band, in comparison to healthy controls. Our results are in line with the deviant brain maturation theory of ADHD, as the observed effects of age-related changes in EEG power are parallel but different in the two groups. PMID:28620288

  5. Age-related changes in slow wave activity rise time and NREM sleep EEG with and without zolpidem in healthy young and older adults

    Science.gov (United States)

    Chinoy, Evan D.; Frey, Danielle J.; Kaslovsky, Daniel N.; Meyer, Francois G.; Wright, Kenneth P.

    2015-01-01

    Objective Whether there are age-related changes in slow wave activity (SWA) rise time, a marker of homeostatic sleep drive, is unknown. Additionally, although sleep medication use is highest among older adults, the quantitative electroencephalographic (EEG) profile of the most commonly prescribed sleep medication, zolpidem, in older adults is also unknown. We therefore quantified age-related and regional brain differences in sleep EEG with and without zolpidem. Methods Thirteen healthy young adults aged 21.9 ± 2.2 years and 12 healthy older adults aged 67.4 ± 4.2 years participated in a randomized, double-blind, within-subject study that compared placebo to 5 mg zolpidem. Results Older adults showed a smaller rise in SWA and zolpidem increased age-related differences in SWA rise time such that age differences were observed earlier after latency to persistent sleep. Age-related differences in EEG power differed by brain region. Older, but not young, adults showed zolpidem-dependent reductions in theta and alpha frequencies. Zolpidem decreased stage 1 in older adults and did not alter other age-related sleep architecture parameters. Conclusions SWA findings provide additional support for reduced homeostatic sleep drive or reduced ability to respond to sleep drive with age. Consequences of reduced power in theta and alpha frequencies in older adults remain to be elucidated. PMID:24980066

  6. Age-Related Changes in Resting-State EEG Activity in Attention Deficit/Hyperactivity Disorder: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Katarzyna Giertuga

    2017-05-01

    Full Text Available Numerous studies indicate that attention deficit/hyperactivity disorder (ADHD is related to some developmental trends, as its symptoms change widely over time. Nevertheless, the etiology of this phenomenon remains ambiguous. There is a disagreement whether ADHD is related to deviations in brain development or to a delay in brain maturation. The model of deviated brain development suggests that the ADHD brain matures in a fundamentally different way, and does not reach normal maturity at any developmental stage. On the contrary, the delayed brain maturation model assumes that the ADHD brain indeed matures in a different, delayed way in comparison to healthy age-matched controls, yet eventually reaches proper maturation. We investigated age-related changes in resting-state EEG activity to find evidence to support one of the alternative models. A total of 141 children and teenagers participated in the study; 67 diagnosed with ADHD and 74 healthy controls. The absolute power of delta, theta, alpha, and beta frequency bands was analyzed. We observed a significant developmental pattern of decreasing absolute EEG power in both groups. Nonetheless, ADHD was characterized by consistently lower absolute EGG power, mostly in the theta frequency band, in comparison to healthy controls. Our results are in line with the deviant brain maturation theory of ADHD, as the observed effects of age-related changes in EEG power are parallel but different in the two groups.

  7. The electrophysiology of neuroHIV: A systematic review of EEG and MEG studies in people with HIV infection since the advent of highly-active antiretroviral therapy.

    Science.gov (United States)

    Fernández-Cruz, Ana Lucia; Fellows, Lesley K

    2017-06-01

    The Human Immunodeficiency Virus (HIV) has an impact on the brain, even when the infection is well-controlled with modern highly-active antiretroviral therapy (HAART). While dementia is rare in those on HAART, milder cognitive impairment is common. The causes, patterns, and evolution of brain dysfunction in people living with HIV remain uncertain. We evaluate whether electrophysiological methods provide informative measures of brain dysfunction in this population. A systematic literature search identified studies that used EEG or MEG to evaluate persons living with HIV published between 1996 (when HAART became available) and 2016. Twenty-eight studies were identified. Most involved small samples, and all but four were cross-sectional. Reduced amplitude of Event Related Potentials and decreased power in the alpha band at rest were the most frequent differences between people with and without HIV infection. Of the 16 studies that also assessed cognitive ability, 13 found a significant relationship between cognition and electrophysiological changes in the HIV+ groups. Five of those studies also reported a significant relationship with current immunosuppression, suggesting a direct effect of HIV on the brain. There were few longitudinal studies; whether these electrophysiological changes progress over time, or respond to treatment, remains unclear. EEG and MEG can provide useful information about brain dysfunction in people with HIV infection, but more consistent assessments of both cognition and EEG patterns, as well as longitudinal studies with larger, better characterized samples are needed. This is the first systematic review of electrophysiological findings in HIV since the availability of HAART. EEG and MEG measures are sensitive to brain dysfunction in this population, and could complement other approaches in improving the assessment, understanding and treatment of neurocognitive disorders in HIV. Copyright © 2017 International Federation of Clinical

  8. Transcranial alternating current stimulation enhances individual alpha activity in human EEG.

    Directory of Open Access Journals (Sweden)

    Tino Zaehle

    Full Text Available Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity.The present findings are the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex. The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at fostering knowledge on the functional significance of brain oscillations and for therapeutic application.

  9. EEG Based Inference of Spatio-Temporal Brain Dynamics

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese

    investigate the extraction of EEG components having bandpower dynamics correlated with fMRI components. We show that adding anatomical information to the inference scheme improves the recovery of correlated components compared to only using functional information. The anatomical information is incorporated......Electroencephalography (EEG) provides a measure of brain activity and has improved our understanding of the brain immensely. However, there is still much to be learned and the full potential of EEG is yet to be realized. In this thesis we suggest to improve the information gain of EEG using three...... different approaches; 1) by recovery of the EEG sources, 2) by representing and inferring the propagation path of EEG sources, and 3) by combining EEG with functional magnetic resonance imaging (fMRI). The common goal of the methods, and thus of this thesis, is to improve the spatial dimension of EEG...

  10. EEG-response consistency across subjects in an active oddball task.

    Directory of Open Access Journals (Sweden)

    Yvonne Höller

    Full Text Available The active oddball paradigm is a candidate task for voluntary brain activation. Previous research has focused on group effects, and has largely overlooked the potential problem of interindividual differences. Interindividual variance causes problems with the interpretation of group-level results. In this study we want to demonstrate the degree of consistency in the active oddball task across subjects, in order to answer the question of whether this task is able to reliably detect conscious target processing in unresponsive patients. We asked 18 subjects to count rare targets and to ignore frequent standards and rare distractors in an auditory active oddball task. Event-related-potentials (ERPs and time-frequency data were analyzed with permutation-t-tests on a single subject level. We plotted the group-average ERPs and time-frequency data, and evaluated the numbers of subjects showing significant differences between targets and distractors in certain time-ranges. The distinction between targets/distractors and standards was found to be significant in the time-range of the P300 in all participants. In contrast, significant differences between targets and distractors in the time-range of the P3a/b were found in 8 subjects, only. By including effects in the N1 and in a late negative component there remained 2 subjects who did not show a distinction between targets and distractors in the ERP. While time-frequency data showed prominent effects for target/distractor vs. standard, significant differences between targets and distractors were found in 2 subjects, only. The results suggest that time-frequency- and ERP-analysis of the active oddball task may not be sensitive enough to detect voluntary brain activation in unresponsive patients. In addition, we found that time-frequency analysis was even less informative than ERPs about the subject's task performance. Despite suggesting the use of more sensitive paradigms and/or analysis techniques, the

  11. Age-related differences in EEG beta activity during an assessment of ankle proprioception.

    Science.gov (United States)

    Toledo, Diana R; Barela, José A; Manzano, Gilberto M; Kohn, André F

    2016-05-27

    The aim of this work was to compare cortical beta oscillatory activity between young (YA) and older (OA) adults during the assessment of ankle proprioception. We analyzed the response time (RT) to kinesthetic perception and beta event-related desynchronization/synchronization (ERD/ERS) in response to passive ankle movement applied at a slow speed, 0.5°/s. The relationship between ERD/ERS and RT was investigated by classifying the signals into fast-, medium-, and slow-RT. The results showed a temporal relationship between beta oscillation changes and RT for both groups, i.e., earlier ERD and ERS were obtained for trials with faster response time. ERD was larger and delayed in OA compared to the YA, and beta ERS was present only for OA. These findings suggest that a less efficient proprioceptive signaling reaching the brain of OA requires a higher level of brain processing and hence the differences in ERD potentials between YA and OA. Furthermore, the occurrence of ERS in OA might represent a compensatory strategy of active cortical resetting for adequate sensorimotor behavior due to the age-related reduced peripheral input and neuromuscular impairments. Altered balance between excitatory and inhibitory intracortical activity in older adults presumably explains the changes in beta oscillations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Coherence of gamma-band EEG activity as a basis for associative learning

    Science.gov (United States)

    Miltner, Wolfgang H. R.; Braun, Christoph; Arnold, Matthias; Witte, Herbert; Taub, Edward

    1999-02-01

    Different regions of the brain must communicate with each other to provide the basis for the integration of sensory information, sensory-motor coordination and many other functions that are critical for learning, memory, information processing, perception and the behaviour of organisms. Hebb suggested that this is accomplished by the formation of assemblies of cells whose synaptic linkages are strengthened whenever the cells are activated or `ignited' synchronously. Hebb's seminal concept has intrigued investigators since its formulation, but the technology to demonstrate its existence had been lacking until the past decade. Previous studies have shown that very fast electroencephalographic activity in the gamma band (20-70Hz) increases during, and may be involved in, the formation of percepts and memory, linguistic processing, and other behavioural and preceptual functions. We show here that increased gamma-band activity is also involved in associative learning. In addition, we find that another measure, gamma-band coherence, increases between regions of the brain that receive the two classes of stimuli involved in an associative-learning procedure in humans. An increase in coherence could fulfil the criteria required for the formation of hebbian cell assemblies, binding together parts of the brain that must communicate with one another in order for associative learning to take place. In this way, coherence may be a signature for this and other types of learning.

  13. The EEG microstate topography is predominantly determined by intracortical sources in the alpha band.

    Science.gov (United States)

    Milz, P; Pascual-Marqui, R D; Achermann, P; Kochi, K; Faber, P L

    2017-11-15

    Human brain electric activity can be measured at high temporal and fairly good spatial resolution via electroencephalography (EEG). The EEG microstate analysis is an increasingly popular method used to investigate this activity at a millisecond resolution by segmenting it into quasi-stable states of approximately 100 ms duration. These so-called EEG microstates were postulated to represent atoms of thoughts and emotions and can be classified into four classes of topographies A through D, which explain up to 90% of the variance of continuous EEG. The present study investigated whether these topographies are primarily driven by alpha activity originating from the posterior cingulate cortex (all topographies), left and right posterior cortices, and the anterior cingulate cortex (topographies A, B, and C, respectively). We analyzed two 64-channel resting state EEG datasets (N = 61 and N = 78) of healthy participants. Sources of head-surface signals were determined via exact low resolution electromagnetic tomography (eLORETA). The Hilbert transformation was applied to identify instantaneous source strength of four EEG frequency bands (delta through beta). These source strength values were averaged for each participant across time periods belonging to a particular microstate. For each dataset, these averages of the different microstate classes were compared for each voxel. Consistent differences across datasets were identified via a conjunction analysis. The intracortical strength and spatial distribution of alpha band activity mainly determined whether a head-surface topography of EEG microstate class A, B, C, or D was induced. EEG microstate class C was characterized by stronger alpha activity compared to all other classes in large portions of the cortex. Class A was associated with stronger left posterior alpha activity than classes B and D, and class B was associated with stronger right posterior alpha activity than A and D. Previous results indicated that EEG

  14. Physiological noise correction using ECG-derived respiratory signals for enhanced mapping of spontaneous neuronal activity with simultaneous EEG-fMRI.

    Science.gov (United States)

    Abreu, Rodolfo; Nunes, Sandro; Leal, Alberto; Figueiredo, Patrícia

    2017-07-01

    The study of spontaneous brain activity based on BOLD-fMRI may be seriously compromised by the presence of signal fluctuations of non-neuronal origin, most prominently due to cardiac and respiratory mechanisms. Methods used for modeling and correction of the so-called physiological noise usually rely on the concurrent measurement of cardiac and respiratory signals. In simultaneous EEG-fMRI recordings, which are primarily aimed at the study of spontaneous brain activity, the electrocardiogram (ECG) is typically measured as part of the EEG setup but respiratory data are not generally available. Here, we propose to use the ECG-derived respiratory (EDR) signal estimated by Empirical Mode Decomposition (EMD) as a surrogate of the respiratory signal, for retrospective physiological noise correction of typical simultaneous EEG-fMRI data. A physiological noise model based on these physiological signals (P-PNM) complemented with fMRI-derived noise regressors was generated, and evaluated, for 17 simultaneous EEG-fMRI datasets acquired from a group of seven epilepsy patients imaged at 3T. The respiratory components of P-PNM were found to explain BOLD variance significantly in addition to the cardiac components, suggesting that the EDR signal was successfully extracted from the ECG, and P-PNM outperformed an image-based model (I-PNM) in terms of total BOLD variance explained. Further, the impact of the correction using P-PNM on fMRI mapping of patient-specific epileptic networks and the resting-state default mode network (DMN) was assessed in terms of sensitivity and specificity and, when compared with an ICA-based procedure and a standard pre-processing pipeline, P-PNM achieved the best performance. Overall, our results support the feasibility and utility of extracting physiological noise models of the BOLD signal resorting to ECG data exclusively, with substantial impact on the simultaneous EEG-fMRI mapping of resting-state networks, and, most importantly, epileptic networks

  15. Slowing of EEG background activity in Parkinson´s and Alzheimer´s Disease with early cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Nina eBenz

    2014-11-01

    Full Text Available Background: Slowing of the electroencephalogram (EEG is frequent in Parkinson’s (PD and Alzheimer’s Disease (AD and correlates with cognitive decline. As overlap pathology plays a role in the pathogenesis of dementia, it is likely that demented patients in PD show similar physiological alterations as in AD.Objective: To analyze distinctive quantitative EEG characteristics in early cognitive dysfunction in PD and AD.Methods: Forty patients (20 PD- and 20 AD patients with early cognitive impairment and 20 normal controls (NC were matched for gender, age and education. Resting state EEG was recorded from 256 electrodes. Relative power spectra, median frequency (4-14Hz and neuropsychological outcome were compared between groups.Results: Relative theta power in left temporal region and median frequency separated the three groups significantly (p = .002 and p < .001. Relative theta power was increased and median frequency reduced in patients with both diseases compared to NC. Median frequency was higher in AD than in PD and classified groups significantly (p=.02. Conclusions: Increase of theta power in the left temporal region and a reduction of median frequency were associated with presence of AD or PD. PD patients are characterized by a pronounced slowing as compared to AD patients. Therefore in both disorders EEG slowing might be a useful biomarker for beginning cognitive decline.

  16. Asymmetrical hemispheric EEG activation evoked by stimulus position during the Simon task.

    Science.gov (United States)

    Spironelli, Chiara; Tagliabue, Mariaelena; Angrilli, Alessandro

    2006-05-22

    The Simon effect has been previously shown to be asymmetric at both the behavioral and electrophysiological levels. The present investigation was aimed to clarify whether, during a Simon task, hemispheric asymmetry is also observed in the early phases of stimulus processing. In a group of healthy subjects performing the Simon task, we analyzed scalp potentials evoked by the first lateralized cue (left or right), instead of the classical readiness potential preceding the motor response. ERP results showed a significant left cortical activation to stimuli presented in the right visual field at the 140-160 ms time window. Instead, left stimuli elicited a significant activation of the right versus left hemisphere starting at the next 160-180 ms time interval. We linked this asymmetry to that observed in behavioral data: the Simon effect recorded with left stimuli is smaller than the Simon effect recorded with right stimuli. Results confirm the hypothesis that in right handed subjects, left hemisphere is specialized for motor response selection and is able to process right stimuli faster than the right hemisphere does for left stimuli.

  17. Emotion Discrimination using spatially Compact Regions of Interest extracted from Imaging EEG Activity

    Directory of Open Access Journals (Sweden)

    Jorge Ivan Padilla-Buritica

    2016-07-01

    Full Text Available Lately, research on computational models of emotion had been getting much attention due to their potential for understanding the mechanisms of emotions and their promising broad range of applications that potentially bridge the gap between human and machine interactions. We propose a new method for emotion classification that relies on features extracted from those active brain areas that are most likely related to emotions. To this end, we carry out the selection of spatially compact regions of interest that are computed using the brain neural activity reconstructed from electroencephalography data. Throughout this study, we consider three representative feature extraction methods widely applied to emotion detection tasks, including Power spectral density, Wavelet, and Hjorth parameters. Further feature selection is carried out using principal component analysis. For validation purpose, these features are used to feed a support vector machine classifier that is trained under the leave-one-out cross-validation strategy. Obtained results on real affective data show that incorporation of the proposed training method in combination with the enhanced spatial resolution provided by the source estimation allows improving the performed accuracy of discrimination in most of the considered emotions, namely: dominance, valence, and linking.

  18. Emotion Discrimination Using Spatially Compact Regions of Interest Extracted from Imaging EEG Activity.

    Science.gov (United States)

    Padilla-Buritica, Jorge I; Martinez-Vargas, Juan D; Castellanos-Dominguez, German

    2016-01-01

    Lately, research on computational models of emotion had been getting much attention due to their potential for understanding the mechanisms of emotions and their promising broad range of applications that potentially bridge the gap between human and machine interactions. We propose a new method for emotion classification that relies on features extracted from those active brain areas that are most likely related to emotions. To this end, we carry out the selection of spatially compact regions of interest that are computed using the brain neural activity reconstructed from Electroencephalography data. Throughout this study, we consider three representative feature extraction methods widely applied to emotion detection tasks, including Power spectral density, Wavelet, and Hjorth parameters. Further feature selection is carried out using principal component analysis. For validation purpose, these features are used to feed a support vector machine classifier that is trained under the leave-one-out cross-validation strategy. Obtained results on real affective data show that incorporation of the proposed training method in combination with the enhanced spatial resolution provided by the source estimation allows improving the performed accuracy of discrimination in most of the considered emotions, namely: dominance, valence, and liking.

  19. Meditation and the EEG

    OpenAIRE

    West, Michael

    1980-01-01

    Previous research on meditation and the EEG is described, and findings relating to EEG patterns during meditation are discussed. Comparisons of meditation with other altered states are reviewed and it is concluded that, on the basis of existing EEG evidence, there is some reason for differentiating between meditation and drowsing. Research on alpha-blocking and habituation of the blocking response during meditation is reviewed, and the effects of meditation on EEG patterns outside of meditati...

  20. Mobile EEG in epilepsy

    NARCIS (Netherlands)

    Askamp, Jessica; van Putten, Michel Johannes Antonius Maria

    2014-01-01

    The sensitivity of routine EEG recordings for interictal epileptiform discharges in epilepsy is limited. In some patients, inpatient video-EEG may be performed to increase the likelihood of finding abnormalities. Although many agree that home EEG recordings may provide a cost-effective alternative

  1. Multiresolution Analysis of EEG Signals

    Directory of Open Access Journals (Sweden)

    Borowska Marta

    2016-12-01

    Full Text Available This paper reports on a multiresolution analysis of EEG signals. The dominant frequency components of signals with and without observed epileptic discharges were compared. The study showed that there were significant differences in dominant frequency between the signals with epileptic discharges and the signals without discharges. This gives the ability to identify epilepsy during EEG examination. The frequency of the signals coming from the frontal, central, parietal and occipital channels are similar. Multiresolution analysis can be used to describe the activity of brain waves and to try to predict epileptic seizures, thereby contributing to precise medical diagnoses.

  2. Virtual EEG: A Software-Based Electroencephalogram Designed for Undergraduate Neuroscience-Related Courses

    OpenAIRE

    Miller, Benjamin R.; Troyer, Melissa; Busey, Thomas

    2008-01-01

    A current topic in neuroscience addresses the link between brain activity and visual awareness. The electroencephalogram (EEG), which uses non-invasive high temporal resolution scalp recordings to measure brain activity, is a common tool used to probe this question. EEG recordings, however, are difficult to implement in the curriculum of laboratory-based courses. Thus, undergraduate students often lack experience with EEG experiments. We report here an EEG program (Virtual EEG) that can be us...

  3. Multi-modal Patient Cohort Identification from EEG Report and Signal Data

    OpenAIRE

    Goodwin, Travis R.; Harabagiu, Sanda M

    2017-01-01

    Clinical electroencephalography (EEG) is the most important investigation in the diagnosis and management of epilepsies. An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the brain. Because the EEG signal is complex, its interpretation is known to produce moderate inter-observer agreement among neurologists. This problem can be addressed by providing clinical experts with the ability to automatically retrieve similar EEG signals and EEG rep...

  4. Laboratory-induced learned helplessness attenuates approach motivation as indexed by posterior versus frontal theta activity.

    Science.gov (United States)

    Reznik, Samantha J; Nusslock, Robin; Pornpattananangkul, Narun; Abramson, Lyn Y; Coan, James A; Harmon-Jones, Eddie

    2017-08-01

    Research suggests that midline posterior versus frontal electroencephalographic (EEG) theta activity (PFTA) may reflect a novel neurophysiological index of approach motivation. Elevated PFTA has been associated with approach-related tendencies both at rest and during laboratory tasks designed to enhance approach motivation. PFTA is sensitive to changes in dopamine signaling within the fronto-striatal neural circuit, which is centrally involved in approach motivation, reward processing, and goal-directed behavior. To date, however, no studies have examined PFTA during a laboratory task designed to reduce approach motivation or goal-directed behavior. Considerable animal and human research supports the hypothesis put forth by the learned helplessness theory that exposure to uncontrollable aversive stimuli decreases approach motivation by inducing a state of perceived uncontrollability. Accordingly, the present study examined the effect of perceived uncontrollability (i.e., learned helplessness) on PFTA. EEG data were collected from 74 participants (mean age = 19.21 years; 40 females) exposed to either Controllable (n = 26) or Uncontrollable (n = 25) aversive noise bursts, or a No-Noise Condition (n = 23). In line with prediction, individuals exposed to uncontrollable aversive noise bursts displayed a significant decrease in PFTA, reflecting reduced approach motivation, relative to both individuals exposed to controllable noise bursts or the No-Noise Condition. There was no relationship between perceived uncontrollability and frontal EEG alpha asymmetry, another commonly used neurophysiological index of approach motivation. Results have implications for understanding the neurophysiology of approach motivation and establishing PFTA as a neurophysiological index of approach-related tendencies.

  5. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks.

    Science.gov (United States)

    Shin, Yoon Kyum; Lee, Dong Ryul; Hwang, Han Jeong; You, Sung Joshua Hyun; Im, Chang Hwan

    2012-01-01

    The purpose of this study was to compare EEG topographical maps in normal children and children with cerebral palsy (CP) during motor execution and motor imagery tasks. Four normal children and four children with CP (mean age 11.6 years) were recruited from a community medical center. An EEG-based brain mapping system with 30 scalp sites (extended 10--20 system) was used to determine cortical reorganization in the regions of interest (ROIs) during four motor tasks: movement execution (ME), kinesthetic-motor imagery (KMI), observation of movement (OOM), and visual motor imagery (VMI). ROIs included the primary sensorimotor cortex (SMC), premotor cortex (PMC), and supplementary motor area (SMA). Descriptive analysis. Normal children showed increased SMC activation during the ME and KMI aswell as SMC and visual cortex (VC) activation during KMI. Children with CP showed similar activation in the SMC and other motor network areas (PMC, SMA, and VC). During the OOM and VMI tasks, the VC or occipital area were primarily activated in normal children, whereas the VC, SMC, and bilateral auditory areas were activated in children with CP. This is the first study demonstrating different neural substrates for motor imagery tasks in normal and children with CP.

  6. Multisensory integration of dynamic emotional faces and voices: method for simultaneous EEG-fMRI measurements

    Directory of Open Access Journals (Sweden)

    Patrick David Schelenz

    2013-11-01

    Full Text Available Combined EEG-fMRI analysis correlates time courses from single electrodes or independent EEG components with the hemodynamic response. Implementing information from only one electrode, however, may miss relevant information from complex electrophysiological networks. Component based analysis, in turn, depends on a priori knowledge of the signal topography. Complex designs such as studies on multisensory integration of emotions investigate subtle differences in distributed networks based on only a few trials per condition. Thus, they require a sensitive and comprehensive approach which does not rely on a-priori knowledge about the underlying neural processes. In this pilot study, feasibility and sensitivity of source localization-driven analysis for EEG-fMRI was tested using a multisensory integration paradigm. Dynamic audiovisual stimuli consisting of emotional talking faces and pseudowords with emotional prosody were rated in a delayed response task. The trials comprised affectively congruent and incongruent displays.In addition to event-locked EEG and fMRI analyses, induced oscillatory EEG responses at estimated cortical sources and in specific temporo-spectral windows were correlated with the corresponding BOLD responses. EEG analysis showed high data quality with less than 10% trial rejection. In an early time window, alpha oscillations were suppressed in bilateral occipital cortices and fMRI analysis confirmed high data quality with reliable activation in auditory, visual and frontal areas to the presentation of multisensory stimuli. In line with previous studies, we obtained reliable correlation patterns for event locked occipital alpha suppression and BOLD signal time course.Our results suggest a valid methodological approach to investigate complex stimuli using the present source localization driven method for EEG-fMRI. This novel procedure may help to investigate combined EEG-fMRI data from novel complex paradigms with high spatial and

  7. The Impact of Zonisamide on the Development and Course of Alcohol Dependence in Rabbits. A pharmaco-EEG study.

    Science.gov (United States)

    Krupa-Burtnik, Agata; Zwierzynska, Ewa; Kordala, Anna; Pietrzak, Boguslawa

    2017-05-01

    Zonisamide is a new anti-epileptic drug whose mechanism of action is associated with neurotransmission systems also involved in the pathogenesis of addiction. Recently, the role of memory processes and the hippocampus (Hp) is underlined in dependence. In our previous study, we determined that zonisamide decreases changes in hippocampal bioelectric activity induced by a single dose of ethanol. This study uses a pharmaco-EEG method to examine the impact of zonisamide on the development and course of alcohol dependence in rabbits. Quantitative changes in EEG were observed in the midbrain reticular formation, Hp and frontal cortex. Zonisamide was administered p.o. once a day at dose of 30 mg/kg/day during the entire experiment. Solutions with increasing concentrations of ethanol were administered for 6 weeks, followed by a 2-week period of abstinence. The long-term administration of ethanol caused characteristic changes in rabbit EEG recordings, which were associated with a shift toward lower frequencies resulting in a depressive effect on the bioelectric activity of selected brain structures. Co-administration of zonisamide and ethanol caused a reduction of ethanol-induced alterations. Changes in EEG recordings were different during period of abstinence and were associated with potent shift toward the high frequencies. Zonisamide significantly decreased encephalographic features of neuronal hyperactivity when administered during the abstinence. Zonisamide decreases ethanol- and abstinence-induced changes in the EEG recordings. These effects may be a significant part of drug's mechanism of action in alcohol addiction therapy. A pharmaco-EEG method was used to determine the influence of a new anti-epileptic drug zonisamide on the development and course of alcohol dependence in rabbits. The drug co-administered with ethanol decreased alcohol-induced changes in selected brain structures. Zonisamide also decreases abstinence-induced changes in the EEG recordings.

  8. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  9. Time-frequency-topographic analysis of induced power and synchrony of EEG signals during a Go/No-Go task.

    Science.gov (United States)

    Harmony, Thalía; Alba, Alfonso; Marroquín, José Luis; González-Frankenberger, Berta

    2009-01-01

    Induced changes in electroencephalographic power and synchrony between pairs of electrodes were assessed during the Go/No-Go task in 15 young adults. Processes common to both conditions, such as attention, activation of working memory, letter identification, and discrimination processes were characterized by increased power and synchrony in the following frequency ranges: delta band (inhibition of the non-relevant stimuli), theta band (activation of working memory), and low alpha band in occipital regions immediately after the stimulus (withhold or control of the execution of a response), and decreased power in the high alpha band from 300 to 700 ms. However, the most important findings were those specific for each condition. Changes in power in frontal areas were observed immediately after the stimulus in delta and high alpha bands for the Go condition and in the theta band for the No-Go condition. Increased synchrony and power at 1 Hz from 350-500 ms and increased power at 1, 5 and 6 Hz after 300 ms in the No-Go condition may be related to inhibition. Other important difference between conditions was observed in the synchronization increases of the gamma band between 33 and 36 Hz in the Go condition, whereas synchrony decreased at these frequencies in the No-Go condition; these differences may be due to the preparation and execution of the motor response during the Go condition and its inhibition in the No-Go condition.

  10. Artificial neural network based approach to EEG signal simulation.

    Science.gov (United States)

    Tomasevic, Nikola M; Neskovic, Aleksandar M; Neskovic, Natasa J

    2012-06-01

    In this paper a new approach to the electroencephalogram (EEG) signal simulation based on the artificial neural networks (ANN) is proposed. The aim was to simulate the spontaneous human EEG background activity based solely on the experimentally acquired EEG data. Therefore, an EEG measurement campaign was conducted on a healthy awake adult in order to obtain an adequate ANN training data set. As demonstration of the performance of the ANN based approach, comparisons were made against autoregressive moving average (ARMA) filtering based method. Comprehensive quantitative and qualitative statistical analysis showed clearly that the EEG process obtained by the proposed method was in satisfactory agreement with the one obtained by measurements.

  11. Artifact removal from EEG data with empirical mode decomposition

    Science.gov (United States)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.

  12. Mapping brain activity on the verge of a photically induced generalized tonic-clonic seizure

    DEFF Research Database (Denmark)

    Moeller, Friederike; Siebner, Hartwig R; Wolff, Stephan

    2009-01-01

    In a photosensitive patient intermittent photic stimulation (IPS) accidentally provoked a generalized tonic-clonic seizure during simultaneous recordings of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Before seizure onset, IPS consistently induced generalized ph...

  13. Weighted Phase Lag Index Stability as an Artifact Resistant Measure to Detect Cognitive EEG Activity During Locomotion

    Science.gov (United States)

    2012-07-24

    Neuromechanics Laboratory, School of Kinesiology , University of Michigan, Ann Arbor, MI 48109-2214, USA 2 US Army Research Laboratory, Human Research...task during standing and walking (0.8 or 1.2 m/s) on a treadmill. Results Applying Weighted Phase Lag Index across channels we were able to recover a...locked signal was demonstrated. To our knowledge, none of these techniques have been applied to EEG recorded during walking, so it is not known how

  14. The added value of simultaneous EEG and amplitude-integrated EEG recordings in three newborn infants

    NARCIS (Netherlands)

    de Vries, Nathalie K. S.; ter Horst, Hendrik J.; Bos, Arend F.

    2007-01-01

    Amplitude-integrated electroencephalograms (aEEGs) recorded by cerebral function monitors (CFMs) are used increasingly to monitor the cerebral activity of newborn infants with encephalopathy. Recently, new CFM devices became available which also reveal the original EEG signals from the same leads.

  15. Interacting Memory Systems—Does EEG Alpha Activity Respond to Semantic Long-Term Memory Access in a Working Memory Task?

    Directory of Open Access Journals (Sweden)

    Barbara Berger

    2014-12-01

    Full Text Available Memory consists of various individual processes which form a dynamic system co-ordinated by central (executive functions. The episodic buffer as direct interface between episodic long-term memory (LTM and working memory (WM is fairly well studied but such direct interaction is less clear in semantic LTM. Here, we designed a verbal delayed-match-to-sample task specifically to differentiate between pure information maintenance and mental manipulation of memory traces with and without involvement of access to semantic LTM. Task-related amplitude differences of electroencephalographic (EEG oscillatory brain activity showed a linear increase in frontal-midline theta and linear suppression of parietal beta amplitudes relative to memory operation complexity. Amplitude suppression at upper alpha frequency, which was previously found to indicate access to semantic LTM, was only sensitive to mental manipulation in general, irrespective of LTM involvement. This suggests that suppression of upper EEG alpha activity might rather reflect unspecific distributed cortical activation during complex mental processes than accessing semantic LTM.

  16. Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval.

    Science.gov (United States)

    Clemens, Béla; Bánk, József; Piros, Pálma; Bessenyei, Mónika; Veto, Sára; Tóth, Márton; Kondákor, István

    2008-09-01

    Investigating the brain of migraine patients in the pain-free interval may shed light on the basic cerebral abnormality of migraine, in other words, the liability of the brain to generate migraine attacks from time to time. Twenty unmedicated "migraine without aura" patients and a matched group of healthy controls were investigated in this explorative study. 19-channel EEG was recorded against the linked ears reference and was on-line digitized. 60 x 2-s epochs of eyes-closed, waking-relaxed activity were subjected to spectral analysis and a source localization method, low resolution electromagnetic tomography (LORETA). Absolute power was computed for 19 electrodes and four frequency bands (delta: 1.5-3.5 Hz, theta: 4.0-7.5 Hz, alpha: 8.0-12.5 Hz, beta: 13.0-25.0 Hz). LORETA "activity" (=current source density, ampers/meters squared) was computed for 2394 voxels and the above specified frequency bands. Group comparison was carried out for the specified quantitative EEG variables. Activity in the two groups was compared on a voxel-by-voxel basis for each frequency band. Statistically significant (uncorrected P pain-free interval and might be suitable for planning forthcoming investigations.

  17. Cytokinin activity induced by thidiazuron.

    Science.gov (United States)

    Thomas, J C; Katterman, F R

    1986-06-01

    The diphenylurea derivative thidiazuron induces a variety of cytokinin responses. Levels above 5 x 10(-9) molar and 4 x 10(-7) molar stimulate maximum soybean callus growth and radish cotyledon expansion, respectively. A wider range of dose response related effects follows thidiazuron induced tobacco plant regeneration. Analysis of soybean callus extracts strongly suggests that thidiazuron treatment creates an accumulation and/or synthesis of purine cytokinins, able to induce the growth, expansion and regeneration, mentioned above.

  18. Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression

    Science.gov (United States)

    Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.

    2016-01-01

    Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100

  19. A close look at EEG in subacute sclerosing panencephalitis.

    Science.gov (United States)

    Demir, Nurhak; Cokar, Ozlem; Bolukbasi, Feray; Demirbilek, Veysi; Yapici, Zuhal; Yalcinkaya, Cengiz; Direskeneli, Guher Saruhan; Yentur, Sibel; Onal, Emel; Yilmaz, Gulden; Dervent, Aysin

    2013-08-01

    To define atypical clinical and EEG features of patients with subacute sclerosing panencephalitis that may require an overview of differential diagnosis. A total of 66 EEGs belonging to 53 (17 females and 36 males) consecutive patients with serologically confirmed subacute sclerosing panencephalitis were included in this study. Patient files and EEG data were evaluated retrospectively. EEGs included in the study were sleep-waking EEGs and/or sleep-waking video-EEG records with at least 2 hours duration. Cranial MRIs of the patients taken 2 months before or after the EEG records were included. Age range at the onset of the disease was 15 to 192 months (mean age: 80.02 months). Epilepsy was diagnosed in 21 (43%) patients. Among epileptic seizures excluding myoclonic jerks, generalized tonic-clonic type constituted the majority (58%). Tonic seizures were documented during the video-EEG recordings in four patients. Epileptogenic activities were found in 56 (83%) EEG recordings. They were localized mainly in frontal (58%), posterior temporal, parietal, occipital (26%), and centrotemporal (8%) regions. Multiple foci were detected in 26 recordings (39%). Epileptiform activities in the 39 (59%) EEGs appeared as unilateral or bilateral diffuse paroxysmal discharges. Recognition of uncommon clinical and EEG findings of subacute sclerosing panencephalitis, especially in countries where subacute sclerosing panencephalitis has not been eliminated yet, could be helpful in prevention of misdiagnosis and delay in the management of improvable conditions.

  20. Expression of behaviour and psychoactive drugs in the rat EEG

    OpenAIRE

    Lier, Hester van

    2004-01-01

    Brain activity and behaviour are related to each other. Psychoactive drugs can influence both brain activity and behaviour. In order to be able to understand the interplay between brain activity as measured by the electroencephalogram (EEG), behaviour, and psychoactive drugs, it is not sufficient to describe changes in either behaviour or EEG separately. Rather, changes in EEG caused by psychoactive drugs should be described in direct concurrent relation with the subject's ongoing behaviour. ...

  1. EEG recorded from the ear: Characterizing the ear-EEG method

    Directory of Open Access Journals (Sweden)

    Kaare Bjarke Mikkelsen

    2015-11-01

    Full Text Available A method for measuring electroencephalograms (EEG from the outer ear, so-called ear-EEG, has recently been proposed. The method could potentially enable robust recording of EEG in natural environments. The objective of this study was to substantiate the ear-EEG method by using a larger population of subjects and several paradigms. For rigour, we considered simultaneous scalp and ear-EEG recordings with common reference. More precisely, 32 conventional scalp electrodes and 12 ear electrodes allowed a thorough comparison between conventional and ear electrodes, testing several different placements of references.The paradigms probed of auditory onset response, mismatch negativity, auditory steady state response and alpha power attenuation.By comparing event related potential (ERP waveforms from the mismatch response paradigm, the signal measured from the ear electrodes was found to reflect the same cortical activity as that from nearby scalp electrodes. It was also found that referencing the ear-EEG electrodes to another within-ear electrode affects the time-domain recorded waveform (relative to scalp recordings, but not the timing of individual components. It was furthermore found that auditory steady state responses and alpha-band modulation were measured reliably with the ear-EEG modality. Finally, our findings showed that the auditory mismatch response was difficult to monitor with the ear-EEG. We conclude that ear-EEG yields similar performance as conventional EEG for spectrogram-based analysis, similar timing of ERP components, and equal signal strength for sources close to the ear. Ear-EEG can reliably measure activity from regions of the cortex which are located close to the ears, especially in paradigms employing frequency-domain analyses.

  2. Mobile EEG in epilepsy.

    Science.gov (United States)

    Askamp, Jessica; van Putten, Michel J A M

    2014-01-01

    The sensitivity of routine EEG recordings for interictal epileptiform discharges in epilepsy is limited. In some patients, inpatient video-EEG may be performed to increase the likelihood of finding abnormalities. Although many agree that home EEG recordings may provide a cost-effective alternative to these recordings, their use is still not introduced everywhere. We surveyed Dutch neurologists and patients and evaluated a novel mobile EEG device (Mobita, TMSi). Key specifications were compared with three other current mobile EEG devices. We shortly discuss algorithms to assist in the review process. Thirty percent (33 out of 109) of Dutch neurologists reported that home EEG recordings are used in their hospital. The majority of neurologists think that mobile EEG can have additional value in investigation of unclear paroxysms, but not in the initial diagnosis after a first seizure. Poor electrode contacts and signal quality, limited recording time and absence of software for reliable and effective assistance in the interpretation of EEGs have been important constraints for usage, but in recent devices discussed here, many of these problems have been solved. The majority of our patients were satisfied with the home EEG procedure and did not think that our EEG device was uncomfortable to wear, but they did feel uneasy wearing it in public. © 2013.

  3. EEG in Sarcoidosis Patients Without Neurological Findings.

    Science.gov (United States)

    Bilgin Topçuoğlu, Özgür; Kavas, Murat; Öztaş, Selahattin; Arınç, Sibel; Afşar, Gülgün; Saraç, Sema; Midi, İpek

    2017-01-01

    Sarcoidosis is a multisystem granulomatous disease affecting nervous system in 5% to 10% of patients. Magnetic resonance imaging (MRI) is accepted as the most sensitive method for detecting neurosarcoidosis. However, the most common findings in MRI are the nonspecific white matter lesions, which may be unrelated to sarcoidosis and can occur because of hypertension, diabetes mellitus, smoking, and other inflammatory or infectious disorders, as well. Autopsy studies report more frequent neurological involvement than the ante mortem studies. The aim of this study is to assess electroencephalography (EEG) in sarcoidosis patients without neurological findings in order to display asymptomatic neurological dysfunction. We performed EEG on 30 sarcoidosis patients without diagnosis of neurosarcoidosis or prior neurological comorbidities. Fourteen patients (46.7%) showed intermittant focal and/or generalized slowings while awake and not mentally activated. Seven (50%) of these 14 patients with EEG slowings had nonspecific white matter changes while the other half showed EEG slowings in the absence of MRI changes. We conclude that EEG slowings, when normal variants (psychomotor variant, temporal theta of elderly, frontal theta waves) are eliminated, may be an indicator of dysfunction in brain activity even in the absence of MRI findings. Hence, EEG may contribute toward detecting asymptomatic neurological dysfunction or probable future neurological involvement in sarcoidosis patients. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  4. Normalization of EEG activity among previously institutionalized children placed into foster care: A 12-year follow-up of the Bucharest Early Intervention Project

    Directory of Open Access Journals (Sweden)

    Ross E. Vanderwert

    2016-02-01

    Full Text Available Extreme social and cognitive deprivation as a result of institutional care has profound effects on developmental outcomes across multiple domains for many abandoned or orphaned children. The Bucharest Early Intervention Project (BEIP examines the outcomes for children originally placed in institutions who were assessed comprehensively and then randomized to foster care (FCG or care as usual (CAUG and followed longitudinally. Here we report on the brain electrical activity (electroencephalogram: EEG of 12-year-old children enrolled in the BEIP. Previous reports suggested improvement in resting EEG activity for the group of children placed in the foster care intervention, particularly those placed before 24 months of age compared to children who were randomized to CAUG or those placed into families after this age. At 12 years, differences between those in the FCG and those in the CAUG persist in the alpha band (8–13 Hz, but not in higher frequency bands (i.e. in the beta band; 15–30 Hz, except in those children placed into the FCG who remained in high quality care environments over the course of the study. These findings highlight the importance of maintaining a stable high quality caregiving environment, particularly for children exposed to early psychosocial deprivation, for promoting healthy brain development.

  5. Linking EEG signals, brain functions and mental operations: Advantages of the Laplacian transformation.

    Science.gov (United States)

    Vidal, Franck; Burle, Boris; Spieser, Laure; Carbonnell, Laurence; Meckler, Cédric; Casini, Laurence; Hasbroucq, Thierry

    2015-09-01

    Electroencephalography (EEG) is a very popular technique for investigating brain functions and/or mental processes. To this aim, EEG activities must be interpreted in terms of brain and/or mental processes. EEG signals being a direct manifestation of neuronal activity it is often assumed that such interpretations are quite obvious or, at least, straightforward. However, they often rely on (explicit or even implicit) assumptions regarding the structures supposed to generate the EEG activities of interest. For these assumptions to be used appropriately, reliable links between EEG activities and the underlying brain structures must be established. Because of volume conduction effects and the mixture of activities they induce, these links are difficult to establish with scalp potential recordings. We present different examples showing how the Laplacian transformation, acting as an efficient source separation method, allowed to establish more reliable links between EEG activities and brain generators and, ultimately, with mental operations. The nature of those links depends on the depth of inferences that can vary from weak to strong. Along this continuum, we show that 1) while the effects of experimental manipulation can appear widely distributed with scalp potentials, Laplacian transformation allows to reveal several generators contributing (in different manners) to these modulations, 2) amplitude variations within the same set of generators can generate spurious differences in scalp potential topographies, often interpreted as reflecting different source configurations. In such a case, Laplacian transformation provides much more similar topographies, evidencing the same generator(s) set, and 3) using the LRP as an index of response activation most often produces ambiguous results, Laplacian-transformed response-locked ERPs obtained over motor areas allow resolving these ambiguities. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of smoking/nicotine on anxiety, heart rate, and lateralization of EEG during a stressful movie.

    Science.gov (United States)

    Gilbert, D G; Robinson, J H; Chamberlin, C L; Spielberger, C D

    1989-05-01

    The effects of smoking cigarettes with differing FTC nicotine deliveries on anxiety and EEG activity were evaluated in 40 smokers who were compared with 40 non-smokers, matched for age and gender. Following smoking (sham-smoking in the case of the non-smokers), the participants viewed a stress-inducing movie. Smoking higher-nicotine delivery cigarettes during the movie, as compared to smoking low-nicotine control cigarettes, was associated with reductions in anxiety and right hemisphere activation, increased heart rate, and enhancement of the ratio of left-hemisphere parietal EEG activation to right-hemisphere activation. These results are interpreted as indicating that the anxiolytic effects of nicotine may be mediated by the right hemisphere. The EEG activity and emotional responses of non-smokers were more like those of smokers who smoked the lower-nicotine cigarettes than those of smokers of the higher-nicotine cigarettes.

  7. Data mining EEG signals in depression for their diagnostic value

    National Research Council Canada - National Science Library

    Mohammadi, Mahdi; Al-Azab, Fadwa; Raahemi, Bijan; Richards, Gregory; Jaworska, Natalia; Smith, Dylan; de la Salle, Sara; Blier, Pierre; Knott, Verner

    2015-01-01

    .... Quantitative EEGs produce complex data sets derived from digitally analyzed electrical activity at different frequency bands, at multiple electrode locations, and under different vigilance (eyes open vs. closed...

  8. High-Frequency Electroencephalographic Activity in Left Temporal Area Is Associated with Pleasant Emotion Induced by Video Clips

    Directory of Open Access Journals (Sweden)

    Jukka Kortelainen

    2015-01-01

    Full Text Available Recent findings suggest that specific neural correlates for the key elements of basic emotions do exist and can be identified by neuroimaging techniques. In this paper, electroencephalogram (EEG is used to explore the markers for video-induced emotions. The problem is approached from a classifier perspective: the features that perform best in classifying person’s valence and arousal while watching video clips with audiovisual emotional content are searched from a large feature set constructed from the EEG spectral powers of single channels as well as power differences between specific channel pairs. The feature selection is carried out using a sequential forward floating search method and is done separately for the classification of valence and arousal, both derived from the emotional keyword that the subject had chosen after seeing the clips. The proposed classifier-based approach reveals a clear association between the increased high-frequency (15–32 Hz activity in the left temporal area and the clips described as “pleasant” in the valence and “medium arousal” in the arousal scale. These clips represent the emotional keywords amusement and joy/happiness. The finding suggests the occurrence of a specific neural activation during video-induced pleasant emotion and the possibility to detect this from the left temporal area using EEG.

  9. Registration of EEG electrode positions to PET and fMRI images

    Science.gov (United States)

    Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2009-02-01

    Integration and correlation of brain's electrical (EEG) and physiological activity (PET, fMRI) is crucial for the early evaluation of patients with neurophysiological disorders, such as epilepsy. Based on the scalp-recorded EEG signals, the source image of brain's electrical activity can be reconstructed and spatially correlated with tomographic functional images, thereby aiding to the characterization and localization of epileptic foci. However, mis-localization of the electrode positions, with respect to the underlying anatomy, adversely affects the localization precision performed by the interpretation of the source image. In this paper, a novel method for registration of EEG electrode positions to tomographic functional images of the brain is proposed. Accuracy and robustness of the registration were evaluated on three databases of real and simulated PET and real fMRI images. The registration method showed good convergence properties for both PET [>10 mm] and especially fMRI images [>30 mm]. Based on Monte Carlo simulations, the obtained mean registration error of electrode positions in tomographic functional images was in the range of 1-2 corresponding voxel size. In this way, the constant bias in the reconstructed source image, that is due to the mis-registration of EEG electrode positions, can be suppressed with respect to the random errors induced by EEG signal noise. Finally, we aim to improve, or at all enable, the integration and application of the many functional modalities involved in the analysis and evaluation of clinical neurophysiological disorders.

  10. The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study

    Directory of Open Access Journals (Sweden)

    Gounot Daniel

    2003-09-01

    Full Text Available Abstract Background The integration of EEG and fMRI is attractive because of their complementary precision regarding time and space. But the relationship between the indirect hemodynamic fMRI signal and the more direct EEG signal is uncertain. Event-related EEG responses can be analyzed in two different ways, reflecting two different kinds of brain activity: evoked, i.e. phase-locked to the stimulus, such as evoked potentials, or induced, i.e. non phase-locked to the stimulus such as event-related oscillations. In order to determine which kind of EEG activity was more closely related with fMRI, EEG and fMRI signals were acquired together, while subjects were presented with two kinds of rare events intermingled with frequent distractors. Target events had to be signaled by pressing a button and Novel events had to be ignored. Results Both Targets and Novels triggered a P300, of larger amplitude in the Novel condition. On the opposite, the fMRI BOLD response was stronger in the Target condition. EEG event-related oscillations in the gamma band (32–38 Hz reacted in a way similar to the BOLD response. Conclusions The reasons for such opposite differential reactivity between oscillations / fMRI on the one hand, and evoked potentials on the other, are discussed in the paper. Those results provide further arguments for a closer relationship between fast oscillations and the BOLD signal, than between evoked potentials and the BOLD signal.

  11. Using portable EEG devices to evaluate emotional regulation strategies during Virtual Reality exposure.

    Science.gov (United States)

    Rey, Beatriz; Rodríguez, Alejandro; Alcañiz, Mariano

    2012-01-01

    As Virtual Reality (VR) is starting to be used to train emotional regulation strategies, it would be interesting to propose objective techniques to monitor the emotional reactions of participants during the virtual experience. In this work, the main goal is to analyze if portable EEG systems are adequate to monitor brain activity changes caused by the emotional regulation strategies applied by the participants. The EEG signals captured from subjects that navigate through a virtual environment designed to induce a negative mood will be compared between three experimental groups that will receive different instructions about the emotional regulation strategies to apply. The study will allow us to validate the possibilities of portable EEG devices to monitor emotional regulation strategies during VR exposure.

  12. Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study

    Science.gov (United States)

    Al-Shargie, Fares; Tang, Tong Boon; Kiguchi, Masashi

    2017-01-01

    This paper presents an investigation about the effects of mental stress on prefrontal cortex (PFC) subregions using simultaneous measurement of functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) signals. The aim is to explore canonical correlation analysis (CCA) technique to study the relationship among the bi-modality signals in mental stress assessment, and how we could fuse the signals for better accuracy in stress detection. Twenty-five male healthy subjects participated in the study while performing mental arithmetic task under control and stress (under time pressure with negative feedback) conditions. The fusion of brain signals acquired by fNIRS-EEG was performed at feature-level using CCA by maximizing the inter-subject covariance across modalities. The CCA result discovered the associations across the modalities and estimated the components responsible for these associations. The experiment results showed that mental stress experienced by this cohort of subjects is subregion specific and localized to the right ventrolateral PFC subregion. These suggest the right ventrolateral PFC as a suitable candidate region to extract biomarkers as performance indicators of neurofeedback training in stress coping. PMID:28663892

  13. Assessing time-dependent association between scalp EEG and muscle activation: A functional random-effects model approach.

    Science.gov (United States)

    Wang, X F; Yang, Qi; Fan, Zhaozhi; Sun, Chang-Kai; Yue, Guang H

    2009-02-15

    This study investigates time-dependent associations between source strength estimated from high-density scalp electroencephalogram (EEG) and force of voluntary handgrip contraction at different intensity levels. We first estimate source strength from raw EEG signals collected during voluntary muscle contractions at different levels and then propose a functional random-effects model approach in which both functional fixed effects and functional random-effects are considered for the data. Two estimation procedures for the functional model are discussed. The first estimation procedure is a two-step method which involves no iterations. It can flexibly use different smoothing methods and smoothing parameters. The second estimation procedure benefits from the connection between linear mixed models and regression splines and can be fitted using existing software. Functional ANOVA is then suggested to assess the experimental effects from the functional point of view. The statistical analysis shows that the time-dependent source strength function exhibits a nonlinear feature, where a bump is detected around the force onset time. However, there is the lack of significant variations in source strength on different force levels and different cortical areas. The proposed functional random-effects model procedure can be applied to other types of functional data in neuroscience.

  14. EEG Signal Classification: Introduction to the Problem

    OpenAIRE

    A. Stancak; P. Sovka; J. Stastny

    2003-01-01

    The contribution describes the design, optimization and verification of the off-line single-trial movement classification system. Four types of movements are used for the classification: the right index finger extension vs. flexion as well as the right shoulder (proximal) vs. right index finger (distal) movement. The classification system utilizes hidden information stored in the characteristic shapes of human brain activity (EEG signal). The great variability of EEG potentials requires using...

  15. Automated detection of hypoglycemia-induced EEG changes recorded by subcutaneous electrodes in subjects with type 1 diabetes--the brain as a biosensor

    DEFF Research Database (Denmark)

    Juhl, Claus B.; Højlund, Kurt; Elsborg, Rasmus

    2010-01-01

    Hypoglycemia unawareness is a common condition associated with increased risk of severe hypoglycemia. We test the hypothesis that specific changes in the electroencephalogram (EEG) during hypoglycemia can be recorded by subcutaneous electrodes and processed by a general mathematical algorithm...

  16. Comment on the Nanoparticle Conclusions in Crüts et al. (2008, "Exposure to diesel exhaust induces changes in EEG in human volunteers"

    Directory of Open Access Journals (Sweden)

    Long Christopher M

    2008-07-01

    Full Text Available Abstract A recent publication in this journal reported interesting changes in electroencephalographic (EEG waves that occurred in 10 young, male volunteers following inhalation for one hour of elevated levels of diesel-engine exhaust fumes 1. The authors then proposed a chain of causal events that they hypothesized underlay their observed EEG changes. Their reasoning linked the observed results to nanoparticles in diesel-engine exhaust (DEE, and went on to suggest that associations between changes in ambient particulate matter (PM levels and changes in health statistics might be due to the effects of diesel-engine exhaust (DEE nanoparticles on EEG. We suggest that the extrapolations of the Crüts et al. EEG findings to casual mechanisms about how ambient levels of DEE particulate might affect electrical signals in the brain, and subsequently to how DEE particulate might alter disease risk, are premature.

  17. A review of the effects of hypoxia, sleep deprivation and transcranial magnetic stimulation on EEG activity in humans: challenges for drug discovery for Alzheimer's disease.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Lizio, Roberta; Infarinato, Francesco; Blin, Olivier; Bartres-Faz, David; Dix, Sophie L; Bentivoglio, Marina; Soricelli, Andrea; Bordet, Regis; Rossini, Paolo M; Richardson, Jill C

    2014-01-01

    Different kinds of challenge can alter cognitive process and electroencephalographic (EEG) rhythms in humans. This can provide an alternative paradigms to evaluate treatment effects in drug discovery. Here, we report recent findings on the effects of challenges represented by sleep deprivation (SD), transient hypoxia, and transcranial magnetic stimulation (TMS) in healthy volunteers on cognitive processes and EEG rhythms to build a knowledge platform for novel research for drug discovery in AD Alzheimer's disease (AD). Sleep pressure enhanced frontal delta rhythms (EEG rhythms typically recorded in AD patients. However, the relationship between the cognitive and EEG effects of such challenges is poorly understood. TMS reversibly interfered with higher brain functions during EEG recordings, but few studies have investigated the relationship between the cognitive and EEG effects of TMS. In conclusion, SD is the most mature challenge model for testing new drugs for AD. Future investigation is needed to better understand the opportunities offered by TMS and hypoxia challenges.

  18. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L; Egsgaard, L L; Jensen, R

    2010-01-01

    In the present study we used high-density EEG brain mapping to investigate spatio-temporal aspects of brain activity in response to experimentally induced muscle pain in 17 patients with migraine without aura and 15 healthy controls. Painful electrical stimuli were applied to the trapezius muscle...... to the tonic muscle pain condition (z = 29 mm vs. z =¿-13 mm, P aura....

  19. Quantitative EEG and its Correlation with Cardiovascular, Cognition and mood State: an Integrated Study in Simulated Microgravity

    Science.gov (United States)

    Zhang, Jianyuan; Hu, Bin; Chen, Wenjuan; Moore, Philip; Xu, Tingting; Dong, Qunxi; Liu, Zhenyu; Luo, Yuejia; Chen, Shanguang

    2014-12-01

    The focus of the study is the estimation of the effects of microgravity on the central nervous activity and its underlying influencing mechanisms. To validate the microgravity-induced physiological and psychological effects on EEG, quantitative EEG features, cardiovascular indicators, mood state, and cognitive performances data collection was achieved during a 45 day period using a -6°head-down bed rest (HDBR) integrated approach. The results demonstrated significant differences in EEG data, as an increased Theta wave, a decreased Beta wave and a reduced complexity of brain, accompanied with an increased heart rate and pulse rate, decreased positive emotion, and degraded emotion conflict monitoring performance. The canonical correlation analysis (CCA) based cardiovascular and cognitive related EEG model showed the cardiovascular effect on EEG mainly affected bilateral temporal region and the cognitive effect impacted parietal-occipital and frontal regions. The results obtained in the study support the use of an approach which combines a multi-factor influential mechanism hypothesis. The changes in the EEG data may be influenced by both cardiovascular and cognitive effects.

  20. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.

    Directory of Open Access Journals (Sweden)

    Reto Huber

    2007-03-01

    Full Text Available Sleep slow wave activity (SWA is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.To test this hypothesis directly, we used transcranial magnetic stimulation (TMS in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10. Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.These results provide direct evidence for a link between plastic changes and the local regulation of sleep need.

  1. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  2. The EEG in psychiatry

    African Journals Online (AJOL)

    Adele

    2004-05-20

    May 20, 2004 ... Epilepsy is primarily a clinical diagnosis, but the EEG ... seizure onset and the epilepsy syndrome. However, a normal inter-ictal EEG can never refute or exclude a clinical diagno- sis of epilepsy. Organic mental disorders is increasingly an ... to metabolic changes, infections, toxins, trauma and tumours.

  3. Electroencephalogram (EEG) (For Parents)

    Science.gov (United States)

    ... test. If it's necessary for your child to sleep during the EEG, the doctor will suggest ways to help make this easier. The Procedure An EEG can be done in the doctor's office, a lab, or a hospital. Your child will be asked to lie on ...

  4. The EEG in psychiatry

    African Journals Online (AJOL)

    Adele

    2004-05-20

    May 20, 2004 ... 13th National Psychiatry Congress. The EEG in psychiatry. Roland Eastman. Division of Neurology, University of Cape Town, Cape Town, South Africa orders. Epilepsy is primarily a clinical diagnosis, but the EEG may provide strong support by the finding of inter-ictal epi- leptogenic discharges and also be ...

  5. Comparison of background EEG activity of different groups of patients with idiopathic epilepsy using Shannon spectral entropy and cluster-based permutation statistical testing.

    Directory of Open Access Journals (Sweden)

    Jose Antonio Urigüen

    Full Text Available Idiopathic epilepsy is characterized by generalized seizures with no apparent cause. One of its main problems is the lack of biomarkers to monitor the evolution of patients. The only tools they can use are limited to inspecting the amount of seizures during previous periods of time and assessing the existence of interictal discharges. As a result, there is a need for improving the tools to assist the diagnosis and follow up of these patients. The goal of the present study is to compare and find a way to differentiate between two groups of patients suffering from idiopathic epilepsy, one group that could be followed-up by means of specific electroencephalographic (EEG signatures (intercritical activity present, and another one that could not due to the absence of these markers. To do that, we analyzed the background EEG activity of each in the absence of seizures and epileptic intercritical activity. We used the Shannon spectral entropy (SSE as a metric to discriminate between the two groups and performed permutation-based statistical tests to detect the set of frequencies that show significant differences. By constraining the spectral entropy estimation to the [6.25-12.89 Hz range, we detect statistical differences (at below 0.05 alpha-level between both types of epileptic patients at all available recording channels. Interestingly, entropy values follow a trend that is inversely related to the elapsed time from the last seizure. Indeed, this trend shows asymptotical convergence to the SSE values measured in a group of healthy subjects, which present SSE values lower than any of the two groups of patients. All these results suggest that the SSE, measured in a specific range of frequencies, could serve to follow up the evolution of patients suffering from idiopathic epilepsy. Future studies remain to be conducted in order to assess the predictive value of this approach for the anticipation of seizures.

  6. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    Science.gov (United States)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  7. The clinical use of quantitative EEG in cognitive disorders

    Directory of Open Access Journals (Sweden)

    Paulo Afonso de Medeiros Kanda

    Full Text Available Abstract The primary diagnosis of most cognitive disorders is clinically based, but the EEG plays a role in evaluating, classifying and following some of these disorders. There is an ongoing debate over routine use of qEEG. Although many findings regarding the clinical use of quantitative EEG are awaiting validation by independent investigators while confirmatory clinical follow-up studies are also needed, qEEG can be cautiously used by a skilled neurophysiologist in cognitive dysfunctions to improve the analysis of background activity, slow/fast focal activity, subtle asymmetries, spikes and waves, as well as in longitudinal follow-ups.

  8. Emotion Recognition with Eigen Features of Frequency Band Activities Embedded in Induced Brain Oscillations Mediated by Affective Pictures.

    Science.gov (United States)

    Aydin, Serap; Demirtaş, Serdar; Ateş, Kahraman; Tunga, M Alper

    2016-05-01

    In this study, singular spectrum analysis (SSA) has been used for the first time in order to extract emotional features from well-defined electroencephalography (EEG) frequency band activities (BAs) so-called delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta (16-32 Hz), gamma (32-64 Hz). These five BAs were estimated by applying sixth-level multi-resolution wavelet decomposition (MRWD) with Daubechies wavelets (db-8) to single channel nonaveraged emotional EEG oscillations of 6 s for each scalp location over 16 recording sites (Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, T3, T4, T5, T6, O1, O2). Every trial was mediated by different emotional stimuli which were selected from international affective picture system (IAPS) to induce emotional states such as pleasant (P), neutral (N), and unpleasant (UP). Largest principal components (PCs) of BAs were considered as emotional features and data mining approaches were used for the first time in order to classify both three different (P, N, UP) and two contrasting (P and UP) emotional states for 30 healthy controls. Emotional features extracted from gamma BAs (GBAs) for 16 recording sites provided the high classification accuracies of 87.1% and 100% for classification of three emotional states and two contrasting emotional states, respectively. In conclusion, we found the followings: (1) Eigenspectra of high frequency BAs in EEG are highly sensitive to emotional hemispheric activations, (2) emotional states are mostly mediated by GBA, (3) pleasant pictures induce the higher cortical activation in contrast to unpleasant pictures, (4) contrasting emotions induce opposite cortical activations, (5) cognitive activities are necessary for an emotion to occur.

  9. Single Trial Classification of EEG and Peripheral Physiological Signals for Recognition of Emotions Induced by Music Videos

    OpenAIRE

    Koelstra, Sander; Yazdani, Ashkan; Soleymani, Mohammad; Mühl, Christian; Lee, Jong-Seok; Nijholt, Anton; Pun, Thierry; Ebrahimi, Touradj; Patras, Ioannis

    2010-01-01

    Recently, the field of automatic recognition of users' affective states has gained a great deal of attention. Automatic, implicit recognition of affective states has many applications, ranging from personalized content recommendation to automatic tutoring systems. In this work, we present some promising results of our research in classification of emotions induced by watching music videos. We show robust correlations between users' self-assessments of arousal and valence and the frequency pow...

  10. Frontal alpha-delta EEG does not preclude volitional response during anaesthesia: prospective cohort study of the isolated forearm technique.

    Science.gov (United States)

    Gaskell, A L; Hight, D F; Winders, J; Tran, G; Defresne, A; Bonhomme, V; Raz, A; Sleigh, J W; Sanders, R D

    2017-10-01

    The isolated forearm test (IFT) is the gold standard test of connected consciousness (awareness of the environment) during anaesthesia. The frontal alpha-delta EEG pattern (seen in slow wave sleep) is widely held to indicate anaesthetic-induced unconsciousness. A priori we proposed that one responder with the frontal alpha-delta EEG pattern would falsify this concept. Frontal EEG was recorded in a subset of patients from three centres participating in an international multicentre study of IFT responsiveness following tracheal intubation. Raw EEG waveforms were analysed for power-frequency spectra, depth-of-anaesthesia indices, permutation entropy, slow wave activity saturation and alpha-delta amplitude-phase coupling. Volitional responses to verbal command occurred in six out of 90 patients. Three responses occurred immediately following intubation in patients (from Sites 1 and 2) exhibiting an alpha-delta dominant (delta power >20 dB, alpha power >10 dB) EEG pattern. The power-frequency spectra obtained during these responses were similar to those of non-responders (P>0.05) at those sites. A further three responses occurred in (Site 3) patients not exhibiting the classic alpha-delta EEG pattern; these responses occurred later relative to intubation, and in patients had been co-administered ketamine and less volatile anaesthetic compared with Site 1 and 2 patients. None of the derived depth-of-anaesthesia indices could robustly discrimate IFT responders and non-responders. Connected consciousness can occur in the presence of the frontal alpha-delta EEG pattern during anaesthesia. Frontal EEG parameters do not readily discriminate volitional responsiveness (a marker of connected consciousness) and unresponsiveness during anaesthesia. NCT02248623.

  11. Classification of Epileptic EEG Signals by Extreme Learning Machines

    OpenAIRE

    SEZGİN, Necmettin

    2016-01-01

    In this study, the EEG signals obtained from patients that diagnosed with epilepsy seizure, were classified as before, during and after seizures. EEG signals are the non-linear and non-stationary signals that indicate the electrical activity of the brain. Different from normal situation of the brain, in the abnormal neurological, changes are significantly different in the sub-band of EEG signals, and these changes are signs of neurological disease. Since epilepsy starts the dynamic in the bra...

  12. Seizure suppression by EEG-guided repetitive transcranial magnetic stimulation in the rat.

    Science.gov (United States)

    Rotenberg, Alexander; Muller, Paul; Birnbaum, Daniel; Harrington, Michael; Riviello, James J; Pascual-Leone, Alvaro; Jensen, Frances E

    2008-12-01

    To test the anticonvulsive potential of a range of repetitive transcranial magnetic stimulation (rTMS) frequencies by novel methods for simultaneous EEG and rTMS in a rat seizure model. Seizures were triggered by intraperitoneal kainic acid (KA; 10mg/kg). Rats (n=21) were divided into three groups in which individual seizures were treated with rTMS trains at one of three frequencies: 0.25, 0.5 or 0.75 Hz. EEG was continuously viewed by an operator who identified each seizure onset. Consecutive seizures in each animal were (1) treated with active rTMS, (2) treated with sham rTMS, or (3) were untreated. EEG was re-analyzed post hoc by visual inspection, and seizure durations were compared within and between treatment groups. KA-induced seizures were abbreviated by 0.75 Hz (P=0.019) and 0.5 Hz (P=0.033) active EEG-guided rTMS. In contrast, neither active 0.25 Hz rTMS nor the control conditions affected seizure duration (P>0.2). We demonstrate that EEG-guided rTMS can suppress seizures in the rat KA epilepsy model, and that the effect is frequency dependent, with 0.75 and 0.5 Hz rTMS being superior to 0.25 Hz rTMS. These data support the use of rat seizure models in translational research aimed at evaluation and development of effective rTMS anticonvulsive protocols. We also offer a proof of principle that real-time analysis of EEG can be used to guide rTMS to suppress individual seizures.

  13. The Mozart Effect: A quantitative EEG study.

    Science.gov (United States)

    Verrusio, Walter; Ettorre, Evaristo; Vicenzini, Edoardo; Vanacore, Nicola; Cacciafesta, Mauro; Mecarelli, Oriano

    2015-09-01

    The aim of this study is to investigate the influence of Mozart's music on brain activity through spectral analysis of the EEG in young healthy adults (Adults), in healthy elderly (Elderly) and in elderly with Mild Cognitive Impairment (MCI). EEG recording was performed at basal rest conditions and after listening to Mozart's K448 or "Fur Elise" Beethoven's sonatas. After listening to Mozart, an increase of alpha band and median frequency index of background alpha rhythm activity (a pattern of brain wave activity linked to memory, cognition and open mind to problem solving) was observed both in Adults and in Elderly. No changes were observed in MCI. After listening to Beethoven, no changes in EEG activity were detected. This results may be representative of the fact that said Mozart's music is able to "activate" neuronal cortical circuits related to attentive and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Amplified induced neural oscillatory activity predicts musicians' benefits in categorical speech perception.

    Science.gov (United States)

    Bidelman, Gavin M

    2017-04-21

    Event-related brain potentials (ERPs) reveal musical experience refines neural encoding and confers stronger categorical perception (CP) and neural organization for speech sounds. In addition to evoked brain activity, the human EEG can be decomposed into induced (non-phase-locked) responses whose various frequency bands reflect different mechanisms of perceptual-cognitive processing. Here, we aimed to clarify which spectral properties of these neural oscillations are most prone to music-related neuroplasticity and which are linked to behavioral benefits in the categorization of speech. We recorded electrical brain activity while musicians and nonmusicians rapidly identified speech tokens from a sound continuum. Time-frequency analysis parsed evoked and induced EEG into alpha- (∼10Hz), beta- (∼20Hz), and gamma- (>30Hz) frequency bands. We found that musicians' enhanced behavioral CP was accompanied by improved evoked speech responses across the frequency spectrum, complementing previously observed enhancements in evoked potential studies (i.e., ERPs). Brain-behavior correlations implied differences in the underlying neural mechanisms supporting speech CP in each group: modulations in induced gamma power predicted the slope of musicians' speech identification functions whereas early evoked alpha activity predicted behavior in nonmusicians. Collectively, findings indicate that musical training tunes speech processing via two complementary mechanisms: (i) strengthening the formation of auditory object representations for speech signals (gamma-band) and (ii) improving network control and/or the matching of sounds to internalized memory templates (alpha/beta-band). Both neurobiological enhancements may be deployed behaviorally and account for musicians' benefits in the perceptual categorization of speech. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Toward Deep Brain Monitoring with Superficial EEG Sensors Plus Neuromodulatory Focused Ultrasound.

    Science.gov (United States)

    Darvas, Felix; Mehić, Edin; Caler, Connor J; Ojemann, Jeff G; Mourad, Pierre D

    2016-08-01

    Noninvasive recordings of electrophysiological activity have limited anatomic specificity and depth. We hypothesized that spatially tagging a small volume of brain with a unique electroencephalography (EEG) signal induced by pulsed focused ultrasound could overcome those limitations. As a first step toward testing this hypothesis, we applied transcranial ultrasound (2 MHz, 200-ms pulses applied at 1050 Hz for 1 s at a spatial peak temporal average intensity of 1.4 W/cm(2)) to the brains of anesthetized rats while simultaneously recording EEG signals. We observed a significant 1050-Hz electrophysiological signal only when ultrasound was applied to a living brain. Moreover, amplitude demodulation of the EEG signal at 1050 Hz yielded measurement of gamma band (>30 Hz) brain activity consistent with direct measurements of that activity. These results represent preliminary support for use of pulsed focused ultrasound as a spatial tagging mechanism for non-invasive EEG-based mapping of deep brain activity with high spatial resolution. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  17. A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition.

    Science.gov (United States)

    Yano, Ken; Suyama, Takayuki

    2016-01-01

    This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI) systems with an application that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and classification, which are often independently tackled in a "bottom-up" manner, under a regularized loss minimization problem. The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of young adult subjects and estimated the emotional states using the proposed method. The advantage of the proposed method is that it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the best CSP-based alternatives.

  18. A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Ken Yano

    2016-01-01

    Full Text Available This paper proposes a novel fixed low-rank spatial filter estimation for brain computer interface (BCI systems with an application that recognizes emotions elicited by movies. The proposed approach unifies such tasks as feature extraction, feature selection, and classification, which are often independently tackled in a “bottom-up” manner, under a regularized loss minimization problem. The loss function is explicitly derived from the conventional BCI approach and solves its minimization by optimization with a nonconvex fixed low-rank constraint. For evaluation, an experiment was conducted to induce emotions by movies for dozens of young adult subjects and estimated the emotional states using the proposed method. The advantage of the proposed method is that it combines feature selection, feature extraction, and classification into a monolithic optimization problem with a fixed low-rank regularization, which implicitly estimates optimal spatial filters. The proposed method shows competitive performance against the best CSP-based alternatives.

  19. Effects of Ketamine on Resting-State EEG Activity and their Relationship to Perceptual/Dissociative Symptoms in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Sara de la Salle

    2016-09-01

    Full Text Available N-methyl-D-aspartate (NMDA receptor antagonists administered to healthy humans results in schizophrenia-like symptoms, which preclinical research suggests are due to glutamatergically altered brain oscillations. Here, we examined resting-state electroencephalographic activity in 21 healthy volunteers assessed in a placebo-controlled, double-blind, randomized study involving administration of either a saline infusion or a sub-anaesthetic dose of ketamine, an NMDA receptor antagonist. Frequency-specific current source density (CSD was assessed at sensor-level and source-level using eLORETA within regions of interest of a triple network model of schizophrenia (this model posits a dysfunctional switching between large-scale Default Mode and Central Executive networks by the monitor-controlling Salience Network. These CSDs were measured in each session along with subjective symptoms as indexed with the Clinician Administered Dissociative States Scale. Ketamine-induced CSD reductions in slow (delta/theta and alpha and increases in fast (gamma frequencies at scalp electrode sites were paralleled by frequency-specific CSD changes in the Default Mode, Central Executive, and Salience networks. Subjective symptoms scores were increased with ketamine and ratings of depersonalization in particular were associated with alpha CSD reductions in general and in specific regions of interest in each of the three networks. These results tentatively support the hypothesis that pathological brain oscillations associated with hypofunctional NMDA receptor activity may contribute to the emergence of the perceptual/dissociate symptoms of schizophrenia.

  20. EEG entropy measures in anesthesia

    Directory of Open Access Journals (Sweden)

    Zhenhu eLiang

    2015-02-01

    Full Text Available Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs’ effect is lacking. In this study, we compare the capability of twelve entropy indices for monitoring depth of anesthesia (DoA and detecting the burst suppression pattern (BSP, in anesthesia induced by GA-BAergic agents.Methods: Twelve indices were investigated, namely Response Entropy (RE and State entropy (SE, three wavelet entropy (WE measures (Shannon WE (SWE, Tsallis WE (TWE and Renyi WE (RWE, Hilbert-Huang spectral entropy (HHSE, approximate entropy (ApEn, sample entropy (SampEn, Fuzzy entropy, and three permutation entropy (PE measures (Shannon PE (SPE, Tsallis PE (TPE and Renyi PE (RPE. Two EEG data sets from sevoflurane-induced and isoflu-rane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, phar-macokinetic / pharmacodynamic (PK/PD modeling and prediction probability analysis were applied. The multifractal detrended fluctuation analysis (MDFA as a non-entropy measure was compared.Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline vari-ability, higher coefficient of determination and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an ad-vantage in computation efficiency compared with MDFA.Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure.Significance: Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA.

  1. Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats.

    Science.gov (United States)

    Páleníček, Tomáš; Fujáková, Michaela; Brunovský, Martin; Horáček, Jiří; Gorman, Ingmar; Balíková, Marie; Rambousek, Lukáš; Syslová, Kamila; Kačer, Petr; Zach, Petr; Bubeníková-Valešová, Věra; Tylš, Filip; Kubešová, Anna; Puskarčíková, Jana; Höschl, Cyril

    2013-01-01

    Behavioral, neurochemical and pharmaco-EEG profiles of a new synthetic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats were examined. Locomotor effects, prepulse inhibition (PPI) of acoustic startle reaction (ASR), dopamine and its metabolite levels in nucleus accumbens (NAc), EEG power spectra and coherence in freely moving rats were analysed. Amphetamine was used as a reference compound. 2C-B had a biphasic effect on locomotion with initial inhibitory followed by excitatory effect; amphetamine induced only hyperlocomotion. Both drugs induced deficits in the PPI; however they had opposite effects on ASR. 2C-B increased dopamine but decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the NAc. Low doses of 2C-B induced a decrease in EEG power spectra and coherence. On the contrary, high dose of 2C-B 50 mg/kg had a temporally biphasic effect with an initial decrease followed by an increase in EEG power; decrease as well as increase in EEG coherence was observed. Amphetamine mainly induced an increase in EEG power and coherence in theta and alpha bands. Increases in the theta and alpha power and coherence in 2C-B and amphetamine were temporally linked to an increase in locomotor activity and DA levels in NAc. 2C-B is a centrally active compound similar to other hallucinogens, entactogens and stimulants. Increased dopamine and decreased DOPAC in the NAc may reflect its psychotomimetic and addictive potential and monoaminoxidase inhibition. Alterations in brain functional connectivity reflected the behavioral and neurochemical changes produced by the drug; a correlation between EEG changes and locomotor behavior was observed.

  2. Methylphenidate Actively Induces Emergence from General Anesthesia

    Science.gov (United States)

    Solt, Ken; Cotten, Joseph F.; Cimenser, Aylin; Wong, Kin F.K.; Chemali, Jessica J.; Brown, Emery N.

    2011-01-01

    Background Although accumulating evidence suggests that arousal pathways in the brain play important roles in emergence from general anesthesia, the roles of monoaminergic arousal circuits are unclear. In this study we tested the hypothesis that methylphenidate (an inhibitor of dopamine and norepinephrine transporters) induces emergence from isoflurane anesthesia. Methods Using adult rats we tested the effect of methylphenidate IV on time to emergence from isoflurane anesthesia. We then performed experiments to test separately for methylphenidate-induced changes in arousal and changes in minute ventilation. A dose-response study was performed to test for methylphenidate–induced restoration of righting during continuous isoflurane anesthesia. Surface electroencephalogram recordings were performed to observe neurophysiological changes. Plethysmography recordings and arterial blood gas analysis were performed to assess methylphenidate-induced changes in respiratory function. Droperidol IV was administered to test for inhibition of methylphenidate's actions. Results Methylphenidate decreased median time to emergence from 280 to 91 s. The median difference in time to emergence without compared to with methylphenidate was 200 [155, 331] s (median, [95% confidence interval]). During continuous inhalation of isoflurane, methylphenidate induced return of righting in a dose-dependent manner, induced a shift in electroencephalogram power from delta to theta, and induced an increase in minute ventilation. Administration of droperidol (0.5 mg/kg IV) prior to methylphenidate (5 mg/kg IV) largely inhibited methylphenidate-induced emergence behavior, electroencephalogram changes, and changes in minute ventilation. Conclusions Methylphenidate actively induces emergence from isoflurane anesthesia by increasing arousal and respiratory drive, possibly through activation of dopaminergic and adrenergic arousal circuits. Our findings suggest that methylphenidate may be clinically

  3. Transcranial Direct Current Stimulation and Power Spectral Parameters: a tDCS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Anna Lisa Mangia

    2014-08-01

    Full Text Available Transcranial direct current stimulation (tDCS delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta and gamma power bands were investigated. Three main findings emerged: 1 an increase in theta band activity during the first minutes of stimulation; 2 an increase in alpha and beta power during and after stimulation; 3 a widespread activation in several brain regions.

  4. Roles of adrenergic α1 and dopamine D1 and D2 receptors in the mediation of the desynchronization effects of modafinil in a mouse EEG synchronization model.

    Science.gov (United States)

    Chen, Chang-Rui; Yang, Su-Rong; Liu, Yuan-Yuan; Qu, Wei-Min; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    Synchronized electroencephalogram (EEG) activity is observed in pathological stages of cognitive impairment and epilepsy. Modafinil, known to increase the release of catecholamines, is a potent wake-promoting agent, and has shown some abilities to desynchronize EEG,but its receptor mechanisms by which modafinil induces desynchoronization remain to be elucidated. Here we used a pharmacological EEG synchronization model to investigate the involvement of adrenergic α1 receptors (R, α1R) and dopamine (DA) D1 and D2 receptors (D1Rs and D2Rs) on modafinil-induced desynchronization in mice. Mice were treated with cholinergic receptor antagonist scopolamine and monoamine depletor reserpine to produce experimental EEG synchronization characterized by continuous large-amplitude synchronized activity, with prominent increased delta and decreased theta, alpha, and beta power density. The results showed that modafinil produced an EEG desynchronization in the model. This was characterized by a general decrease in amplitude of all the frequency bands between 0 and 20 Hz, a prominent reduction in delta power density, and an increase in theta power density. Adrenergic α1R antagonist terazosin (1 mg/kg, i.p.) completely antagonized the EEG desynchronization effects of modafinil at 90 mg/kg. However, DA D1R and D2R blockers partially attenuated the effects of modafinil. The modafinil-induced decrease in the amplitudes of the delta, theta, alpha, and beta waves and in delta power density were completely abolished by pretreatment with a combination of the D1R antagonist SCH 23390 (30 µg/kg) and the D2R antagonist raclopride (2 mg/kg, i.p.). These results suggest that modafinil-mediated desynchronization may be attributed to the activation of adrenergic α1R, and dopaminergic D1R and D2R in a model of EEG synchronization.

  5. Roles of adrenergic α1 and dopamine D1 and D2 receptors in the mediation of the desynchronization effects of modafinil in a mouse EEG synchronization model.

    Directory of Open Access Journals (Sweden)

    Chang-Rui Chen

    Full Text Available BACKGROUND: Synchronized electroencephalogram (EEG activity is observed in pathological stages of cognitive impairment and epilepsy. Modafinil, known to increase the release of catecholamines, is a potent wake-promoting agent, and has shown some abilities to desynchronize EEG,but its receptor mechanisms by which modafinil induces desynchoronization remain to be elucidated. Here we used a pharmacological EEG synchronization model to investigate the involvement of adrenergic α1 receptors (R, α1R and dopamine (DA D1 and D2 receptors (D1Rs and D2Rs on modafinil-induced desynchronization in mice. METHODOLOGY/PRINCIPAL FINDINGS: Mice were treated with cholinergic receptor antagonist scopolamine and monoamine depletor reserpine to produce experimental EEG synchronization characterized by continuous large-amplitude synchronized activity, with prominent increased delta and decreased theta, alpha, and beta power density. The results showed that modafinil produced an EEG desynchronization in the model. This was characterized by a general decrease in amplitude of all the frequency bands between 0 and 20 Hz, a prominent reduction in delta power density, and an increase in theta power density. Adrenergic α1R antagonist terazosin (1 mg/kg, i.p. completely antagonized the EEG desynchronization effects of modafinil at 90 mg/kg. However, DA D1R and D2R blockers partially attenuated the effects of modafinil. The modafinil-induced decrease in the amplitudes of the delta, theta, alpha, and beta waves and in delta power density were completely abolished by pretreatment with a combination of the D1R antagonist SCH 23390 (30 µg/kg and the D2R antagonist raclopride (2 mg/kg, i.p.. CONCLUSIONS/SIGNIFICANCE: These results suggest that modafinil-mediated desynchronization may be attributed to the activation of adrenergic α1R, and dopaminergic D1R and D2R in a model of EEG synchronization.

  6. Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?

    OpenAIRE

    Ravichandran Rajkumar; Elena Rota Kops; Jörg Mauler; Lutz Tellmann; Christoph Lerche; Hans Herzog; N Jon Shah; Irene Neuner

    2017-01-01

    Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of sim...

  7. EEG entropy measures in anesthesia.

    Science.gov (United States)

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J; Sleigh, Jamie W; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R (2)) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation efficiency compared with MDFA. Each

  8. EEG entropy measures in anesthesia

    Science.gov (United States)

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  9. Dynamics of convulsive seizure termination and postictal generalized EEG suppression

    NARCIS (Netherlands)

    Bauer, P.R.; Thijs, R.D.; Lamberts, R.J.; Velis, D.N.; Visser, G.H.; Tolner, E.A.; Sander, J.W.; Lopes da Silva, F.H.; Kalitzin, S.N.

    It is not fully understood how seizures terminate and why some seizures are followed by a period of complete brain activity suppression, postictal generalized EEG suppression. This is clinically relevant as there is a potential association between postictal generalized EEG suppression,

  10. A comparative study of EEG abnormalities among subjects with inter ...

    African Journals Online (AJOL)

    Conclusion: A number of subjects in our sample with inter-ictal psychosis and PWS had EEG epileptiform activities reflecting cerebral insults in early life. Thus, preventive measures such as good antenatal care are advocated to minimize the occurrence of these neuro-psychiatric disorders. Keywords: EEG abnormalities ...

  11. Effects of Fipronil on the EEG of Long Evans Rats

    Science.gov (United States)

    We have reported that the non-stimulus driven EEG is differentially altered by deltamethrin or permethrin (Lyke and Herr, Toxicologist, 114(S-1):265, 2010). In the current study, we examined the ability to detect changes in EEG activity produced by fipronil, a phenylpyrazole pest...

  12. Performance Of Modified Power Spectral Density Features In EEG ...

    African Journals Online (AJOL)

    2017-09-10

    Sep 10, 2017 ... Faculty of Electrical Engineering, Univers. 2. Faculty of Electrical Engineering, Univers ... EEG is signals that provide ample information regarding the electrical activity of human brain. The method requires the process of .... Overall Working Principle for EEG Signal. This section presents on the sequence ...

  13. Induced Gamma-Band Activity and Fixational Eye Movements are Differentially Influenced by Low-and High-Level Factors in a Visual Object Classification Task

    Directory of Open Access Journals (Sweden)

    J Martinovic

    2011-04-01

    Full Text Available Until recently induced high frequency oscillatory activity (gamma-band activity; >30 Hz was considered a neural marker of cortical object representation. However, Yuval-Greenberg et al (2008; Neuron demonstrated that induced gamma-band activity (GBA in the elecetroencephalogram (EEG is susceptible to artifacts caused by miniature eye movements, which account for the major part of the signal in the crucial time window of 200-400 ms after stimulus onset. Is there an underlying cortical-induced gamma-band response that is obscured by ocular artifacts but can still be recorded with EEG? Furthermore, if object-specific modulations of induced GBA in previous studies were caused by ocular artifacts, should we instead study fixational eye movements as a response that can reflect higher-level representational processes in vision? In order to investigate this, we conducted an eye tracking experiment and an EEG experiment using the same design. Participants were asked to classify line drawings of objects or non-objects. To introduce low-level differences, their contours were defined along different directions in cardinal colour space: 1 S-cone-isolating (S, or 2 intermediate isoluminant (S and L-M, or 3 a full-colour stimulus, containing an additional achromatic component (S; L-M; L+M+S. In both experiments, behavioural performance was optimal for full-colour stimuli. In the eye tracking experiment, fixational eye movement rates 200-400 ms after stimulus onset depended on low-level factors, with no difference between objects and non-objects. In the EEG experiment, miniature eye movements were identified and removed using the saccadic filter approach. The artifact-free induced GBA exhibited a lateralised distribution, with enhancements at left and right posterior sites. Activity was higher for full-colour objects on the left, with the opposite effect observed on the right. We conclude that induced GBA can be observed in the EEG. While it showed high

  14. Basal forebrain administration of the somatostatin-analog octreotide does not affect cortical EEG in urethane anaesthetized rats.

    Science.gov (United States)

    Tóth, Attila; Henter, T; Détári, L

    2012-12-01

    Basal forebrain (BF) plays an important role in the regulation of cortical activation. Somatostatin (SOM) is present both in local neurons as well as in fibers in the BF. In previous studies, SOM axons were found to innervate corticopetal cholinergic cells and SOM was found to presynaptically modulate GABA and glutamate release onto cholinergic neurons in the BF. However, no systematic analysis is available about the EEG effects of SOM or its analog, octreotide (OCTR) injected directly into the BF. In the present experiments, EEG changes were examined following an OCTR injection (0.5 microliter, 500 nmol) into the BF areas containing several choline acetyl transferase-immunoreactive neurons of urethane-anaesthetized rats. Fronto-occipital EEG was recorded on both sides and relative EEG power was calculated in the delta (0-3 Hz), theta (3-9 Hz), alpha (9-16 Hz) and beta (16-48 Hz) frequency bands. OCTR injected to the BF failed to induce significant EEG changes and did not affect tail pinch-evoked cortical activation. Lack of effect may be attributed to the urethane anaesthesia as well as to the possible complex interactions between SOM and BF cholinergic and GABAergic neurons.

  15. Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG-based brain-computer interfaces (BCIs often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%, which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%. The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters.

  16. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal

    Directory of Open Access Journals (Sweden)

    Fran López-Caballero

    2017-11-01

    Full Text Available When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma were presented binaurally and acoustically for epochs of 3 min (Beat epochs, preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively. In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR. For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  17. Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia.

    Science.gov (United States)

    Bell, Iris R; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R; Brooks, Audrey J

    2012-07-01

    Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stages 3 and 4 slow wave sleep EEG sampled in artifact-free 2-min segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  18. Is EEG-biofeedback an effective treatment in autism spectrum disorders? A randomized controlled trial

    NARCIS (Netherlands)

    Kouijzer, M.E.J.; Schie, H.T. van; Gerrits, B.J.L.; Buitelaar, J.K.; Moor, J.M.H. de

    2013-01-01

    EEG-biofeedback has been reported to reduce symptoms of autism spectrum disorders (ASD) in several studies. However, these studies did not control for nonspecific effects of EEG-biofeedback and did not distinguish between participants who succeeded in influencing their own EEG activity and

  19. Ischemia/reperfusion in rat: antioxidative effects of enoant on EEG, oxidative stress and inflammation.

    Science.gov (United States)

    Kara, Ihsan; Nurten, Asiye; Aydin, Makbule; Özkök, Elif; Özen, Ilknur; Özerman, Bilge; Tuna, Sevilcan; Karamürsel, Sacit

    2011-01-01

    The present study was undertaken to evaluate whether enoant, which is rich in polyphenols, has any effect on electroencephalogram (EEG), oxidative stress and inflammation in ischemia/reperfusion (I/R) injury. Ischemia was induced by 2-hour occlusion of bilateral common carotid artery. Animals orally received enoant. Group 1 was the ischemic control group. Group 2 was treated with enoant of 1.25 g kg⁻¹ per day for 15 days after I/R. Group 3 received the same concentration of enoant as in group 2 for 15 days before and after I/R. Group 4 was the sham operation group. EEG activities were recorded and the levels of TNF-α, IL-1β and IL-6, TBARS and GSH were measured in the whole brain homogenate. There were significant changes in EEG activity in groups treated with enoant either before or after ischemia when compared with their basal EEG values. TNF-α, IL-6 and IL-1β levels were significantly increased after I/R. GSH levels in group 3 treated with enoant in both pre- and post-ischemic periods were significantly increased and TBARS concentration was decreased compared with the ischemic group. The findings support that both pre-ischemic and post-ischemic administrations of enoant might produce neuroprotective action against cerebral ischemia.

  20. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2017-11-09

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  1. Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration.

    Science.gov (United States)

    Storti, Silvia Francesca; Formaggio, Emanuela; Beltramello, Alberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-03-01

    Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) identifies blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG events. In this study we used EEG-fMRI to determine the possible correlation between topographical movement related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 12 subjects during eyes-closed condition inside a three T magnetic resonance (MR) scanner using an MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used a time-frequency approach to measure time by varying the energy in a signal at a given frequency band by the convolution of the EEG signal with a wavelet family in the alpha and beta bands. The correlation between the BOLD signal associated with the EEG regressor provides that sensory motor region is a source of the EEG. We conclude that combined EEG-fMRI can be used to investigate movement-related oscillations of the human brain inside an MRI scanner and wavelet analysis adds further details on the EEG changes. The movement-related changes in the EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.

  2. A randomized controlled trial into the effects of neurofeedback, methylphenidate, and physical activity on EEG power spectra in children with ADHD

    NARCIS (Netherlands)

    Janssen, T.W.P.; Bink, M.; Gelade, K.; van Mourik, R.; Maras, A.; Oosterlaan, J.

    2016-01-01

    Background The clinical and neurophysiological effects of neurofeedback (NF) as treatment for children with ADHD are still unclear. This randomized controlled trial (RCT) examined electroencephalogram (EEG) power spectra before and after NF compared to methylphenidate (MPH) treatment and physical

  3. EEG deblurring techniques in a clinical context.

    Science.gov (United States)

    Cincotti, F; Babiloni, C; Miniussi, C; Carducci, F; Moretti, D; Salinari, S; Pascual-Marqui, R; Rossini, P M; Babiloni, F

    2004-01-01

    EEG scalp potential distributions recorded in humans are affected by low spatial resolution and by the dependence on the electrical reference used. High resolution EEG technologies are available to drastically increase the spatial resolution of the raw EEG. Such technologies include the computation of surface Laplacian (SL) of the recorded potentials, as well as the use of realistic head models to estimate the cortical sources via linear inverse procedure (low resolution brain electromagnetic tomography, LORETA). However, these deblurring procedures are generally used in conjunction with EEG recordings with 64-128 scalp electrodes and with realistic head models obtained via sequential magnetic resonance images (MRIs) of the subjects. Such recording setup it is not often available in the clinical context, due to both the unavailability of these technologies and the scarce compliance of the patients with them. In this study we addressed the use of SL and LORETA deblurring techniques to analyze data from a standard 10-20 system (19 electrodes) in a group of Alzheimer disease (AD) patients. EEG data related to unilateral finger movements were gathered from 10 patients affected by AD. SL and LORETA techniques were applied for source estimation of EEG data. The use of MRIs for the construction of head models was avoided by using the quasi-realistic head model of the Brain Imaging Neurology Institute of Montreal. A similar cortical activity estimated by the SL and LORETA techniques was observed during an identical time period of the acquired EEG data in the examined population. The results of the present study suggest that both SL and LORETA approaches can be usefully applied in the clinical context, by using quasi-realistic head modeling and a standard 10-20 system as electrode montage (19 electrodes). These results represent a reciprocal cross-validation of the two mathematically independent techniques in a clinical environment.

  4. EEG Suppression Associated with Apneic Episodes in a Neonate

    Directory of Open Access Journals (Sweden)

    Evonne Low

    2012-01-01

    Full Text Available We describe the EEG findings from an ex-preterm neonate at term equivalent age who presented with intermittent but prolonged apneic episodes which were presumed to be seizures. A total of 8 apneic episodes were captured (duration 23–376 seconds during EEG monitoring. The baseline EEG activity was appropriate for corrected gestational age and no electrographic seizure activity was recorded. The average baseline heart rate was 168 beats per minute (bpm and the baseline oxygen saturation level was in the mid-nineties. Periods of complete EEG suppression lasting 68 and 179 seconds, respectively, were recorded during 2 of these 8 apneic episodes. Both episodes were accompanied by bradycardia less than 70 bpm and oxygen saturation levels of less than 20%. Short but severe episodes of apnea can cause complete EEG suppression in the neonate.

  5. Global Manufacturing Research: Experience Exchange Group (EEG) contributions

    DEFF Research Database (Denmark)

    Bruun, Peter

    1998-01-01

    The intention of this paper is to clarify if and how an ExperienceExchange Group (EEG) can be involved in a research process in the areaof industrial management. For exemplification of the topic an ongoingresearch in global manufacturing is referred to. In this research itwas after a series...... of preliminary studies found interesting to set upan EEG composed of representatives from industry and a researcher. Inthe paper some general research methods pertinent to the areaindustrial management is discussed. The EEG concept is introduced andcharacterised in comparison with the other methods. EEG...... activities aredescribed and a tentative coupling to the phases in a research processis proposed. Following this is a discussion of methodological andquality requirements. It is considered how EEG activities couldpossible contribute to an industrial rooted research. The paper endsup looking at future research...

  6. Characterization of EEG patterns in brain-injured subjects and controls after a Snoezelen(®) intervention.

    Science.gov (United States)

    Gómez, Carlos; Poza, Jesús; Gutiérrez, María T; Prada, Esther; Mendoza, Nuria; Hornero, Roberto

    2016-11-01

    The aim of this study was to assess the changes induced in electroencephalographic (EEG) activity by a Snoezelen(®) intervention on individuals with brain-injury and control subjects. EEG activity was recorded preceding and following a Snoezelen(®) session in 18 people with cerebral palsy (CP), 18 subjects who have sustained traumatic brain-injury (TBI) and 18 controls. EEG data were analyzed by means of spectral and nonlinear measures: median frequency (MF), individual alpha frequency (IAF), sample entropy (SampEn) and Lempel-Ziv complexity (LZC). Our results showed decreased values for MF, IAF, SampEn and LZC as a consequence of the therapy. The main changes between pre-stimulation and post-stimulation conditions were found in occipital and parietal brain areas. Additionally, these changes are more widespread in controls than in brain-injured subjects, which can be due to cognitive deficits in TBI and CP groups. Our findings support the notion that Snoezelen(®) therapy affects central nervous system, inducing a slowing of oscillatory activity, as well as a decrease of EEG complexity and irregularity. These alterations seem to be related with higher levels of relaxation of the participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men.

    Science.gov (United States)

    Ahnaou, A; de Boer, P; Lavreysen, H; Huysmans, H; Sinha, V; Raeymaekers, L; Van De Casteele, T; Cid, J M; Van Nueten, L; Macdonald, G J; Kemp, J A; Drinkenburg, W H I M

    2016-04-01

    Alterations in rapid eye movement sleep (REM) have been suggested as valid translational efficacy markers: activation of the metabotropic glutamate receptor 2 (mGluR2) was shown to increase REM latency and to decrease REM duration. The present paper addresses the effects on vigilance states of the mGluR2 positive allosteric modulator (PAM) JNJ-40411813 at different circadian times in rats and after afternoon dosing in humans. Due to its dual mGluR2 PAM/serotonin 2A (5-HT2A) receptor antagonism in rodents, mGlu2R specificity of effects was studied in wild-type (WT) and mGluR2 (-/-) mice. 5-HT2A receptor occupancy was determined in humans using positron emission tomography (PET). Tolerance development was examined in rats after chronic dosing. EEG oscillations and network connectivity were assessed using multi-channel EEG. In rats, JNJ-40411813 increased deep sleep time and latency of REM onset but reduced REM time when administered 2 h after 'lights on' (CT2): this was sustained after chronic dosing. At CT5 similar effects were elicited, at CT10 only deep sleep was enhanced. Withdrawal resulted in baseline values, while re-administration reinstated drug effects. Parieto-occipital cortical slow theta and gamma oscillations were correlated with low locomotion. The specificity of functional response was confirmed in WT but not mGluR2 (-/-) mice. A double-blind, placebo-controlled polysomnographic study in healthy, elderly subjects showed that 500 mg of JNJ-40411813 consistently increased deep sleep time, but had no effect on REM parameters. This deep sleep effect was not explained by 5-HT2A receptor binding, as in the PET study even 700 mg only marginally displaced the tracer. JNJ-40411813 elicited comparable functional responses in rodents and men if circadian time of dosing was taken into account. These findings underscore the translational potential of sleep mechanisms in evaluating mGluR2 therapeutics when administered at the appropriate circadian time. Copyright

  8. Massage and music therapies attenuate frontal EEG asymmetry in depressed adolescents.

    Science.gov (United States)

    Jones, N A; Field, T

    1999-01-01

    EEG asymmetry, specifically greater relative right frontal activation, is associated with negative affect. Depressed adults show stable patterns of this asymmetry. The present study assessed the effects of massage therapy and music therapy on frontal EEG asymmetry in depressed adolescents. Thirty adolescents with greater relative right frontal EEG activation and symptoms of depression were given either massage therapy (n = 14) or music therapy (n = 16). EEG was recorded for three-minute periods before, during, and after therapy. Frontal EEG asymmetry was significantly attenuated during and after the massage and music sessions.

  9. Widespread EEG changes precede focal seizures.

    Directory of Open Access Journals (Sweden)

    Piero Perucca

    Full Text Available The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal, and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline. Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma and high-frequency bands (ripples and fast ripples. At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development, but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures.

  10. Widespread EEG Changes Precede Focal Seizures

    Science.gov (United States)

    Perucca, Piero; Dubeau, François; Gotman, Jean

    2013-01-01

    The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal), and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline). Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma) and high-frequency bands (ripples and fast ripples). At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development), but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures. PMID:24260523

  11. Standardized Computer-based Organized Reporting of EEG: SCORE

    Science.gov (United States)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make

  12. A pharmaco-EEG study of the interaction between ethanol and retigabine in rabbits.

    Science.gov (United States)

    Zwierzyńska, Ewa; Krupa, Agata; Pietrzak, Bogusława

    2015-03-01

    Retigabine is a new antiepileptic drug with multiple mechanisms of action. It may well interact with ethanol, as both have an influence on GABA-ergic and glutamate neurotransmission. To assess the effect of retigabine, administered as single or repeated doses, on ethanol-induced changes in the bioelectric activity of selected brain structures in rabbits. 30 rabbits were used to assess the effect of retigabine on ethanol-induced changes in EEGs using the pharmaco-EEG method. Retigabine was administered p.o. as a single dose (5 mg/kg or 10 mg/kg) or repeatedly at a dose of 5 mg/kg/day for 14 days. Ethanol was injected i.v. at a dose of 0.8 g/kg 60 min after the administration of retigabine. Retigabine, administered as a single high or low dose, increased the depressive effect of an acute dose of ethanol on the bioelectric activity of the frontal cortex in rabbits. These changes were also visible in the recordings from the hippocampus and midbrain reticular formation after administration of a high dose of the drug. Retigabine administered in repeated doses decreased ethanol-induced changes in the rabbit EEG recordings from the hippocampus. Retigabine in multiple doses decreases the sensitivity of the hippocampus to an acute dose of ethanol in rabbits. Given the role of hippocampal-related memory processes to addiction, retigabine may have therapeutic potential.

  13. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    Science.gov (United States)

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  14. Comparative pharmacodynamic studies with the novel serotonin uptake-enhancing tianeptine and -inhibiting fluvoxamine utilizing EEG mapping and psychometry.

    Science.gov (United States)

    Saletu, B; Grünberger, J; Anderer, P; Linzmayer, L; Zyhlarz, G

    1996-01-01

    In a double-blind, placebo-controlled study, the encephalotropic and psychotropic effects of tianeptine (TIA)--a new tricyclic antidepressant, enhancing serotonin reuptake--were investigated as compared with the serotonin reuptake inhibiting antidepressant, fluvoxamine (FLU), utilizing EEG mapping, psychometric and psychophysiological measures. 16 healthy volunteers (8 males, 8 females) aged 21-35 (man 27) years received randomized and at weekly intervals single oral doses of placebo, 12.5 and 25 mg TIA and 50 mg FLU. EEG recordings, psychometric and psychophysiological tests and evaluation of pulse, blood pressure and side effects were carried out at 0, 2, 4, 6 and 8 hours; blood sampling, in addition, at hour 1. TIA plasma levels rose fast to peaks at 1-2 hours and declined rapidly as well, while the MC5 metabolite peaked in the 4th hour and declined more slowly. EEG mapping demonstrated that both TIA and FLU induced significant changes in brain function between the 1st and 8th hour, which, however, differed in their time course. 12.5 mg TIA exhibited, as compared with placebo, slight activating properties in the EEG (decrease of delta and theta, increase of alpha and beta, acceleration of the centroid), parallelled by thymopsychic improvement (mood elevation). 25 mg TIA showed EEG activation up to the 4th hour, later EEG sedation, accompanied by an initial thymopsychic improvement and differential changes thereafter (improved mood, decreased vigility), with the noopsyche improving at all times (attention, Pauli test). 50 mg FLU induced initially sedation and thereafter activation, accompanied by thymopsychic deterioration and subsequent improvement, the latter also being observed in the noopsyche (attention, memory). In pupillary and skin conductance measures, generally a slight activation occurred after placebo, which was attenuated by 25 mg TIA. Correlation maps between plasma levels and EEG changes demonstrated: the higher the TIA plasma levels, the more

  15. Hypoglycemia-Associated EEG Changes in Prepubertal Children With Type 1 Diabetes

    DEFF Research Database (Denmark)

    Hansen, Grith Lærkholm; Foli-Andersen, Pia; Fredheim, Siri

    2016-01-01

    BACKGROUND: The purpose of this study was to explore the possible difference in the electroencephalogram (EEG) pattern between euglycemia and hypoglycemia in children with type 1 diabetes (T1D) during daytime and during sleep. The aim is to develop a hypoglycemia alarm based on continuous EEG...... measurement and real-time signal processing. METHOD: Eight T1D patients aged 6-12 years were included. A hyperinsulinemic hypoglycemic clamp was performed to induce hypoglycemia both during daytime and during sleep. Continuous EEG monitoring was performed. For each patient, quantitative EEG (qEEG) measures...... were calculated. A within-patient analysis was conducted comparing hypoglycemia versus euglycemia changes in the qEEG. The nonparametric Wilcoxon signed rank test was performed. A real-time analyzing algorithm developed for adults was applied. RESULTS: The qEEG showed significant differences...

  16. Facial expression classification using EEG and gyroscope signals.

    Science.gov (United States)

    Toth, Jake; Arvaneh, Mahnaz

    2017-07-01

    In this paper muscle and gyroscope signals provided by a low cost EEG headset were used to classify six different facial expressions. Muscle activities generated by facial expressions are seen in EEG data recorded from scalp. Using the already present EEG device to classify facial expressions allows for a new hybrid brain-computer interface (BCI) system without introducing new hardware such as separate electromyography (EMG) electrodes. To classify facial expressions, time domain and frequency domain EEG data with different sampling rates were used as inputs of the classifiers. The experimental results showed that with sampling rates and classification methods optimized for each participant and feature set, high accuracy classification of facial expressions was achieved. Moreover, adding information extracted from a gyroscope embedded into the used EEG headset increased the performance by an average of 9 to 16%.

  17. Assessment of cognitive engagement in stroke patients from single-trial EEG during motor rehabilitation.

    Science.gov (United States)

    Park, Wanjoo; Kwon, Gyu Hyun; Kim, Da-Hye; Kim, Yun-Hee; Kim, Sung-Phil; Kim, Laehyun

    2015-05-01

    We propose a novel method for monitoring cognitive engagement in stroke patients during motor rehabilitation. Active engagement reflects implicit motivation and can enhance motor recovery. In this study, we used electroencephalography (EEG) to assess cognitive engagement in 11 chronic stroke patients while they executed active and passive motor tasks involving grasping and supination hand movements. We observed that the active motor task induced larger event-related desynchronization (ERD) than the passive task in the bilateral motor cortex and supplementary motor area (SMA). ERD differences between tasks were observed during both initial and post-movement periods . Additionally, differences in beta band activity were larger than differences in mu band activity . EEG data was used to help classify each trial as involving the active or passive motor task. Average classification accuracy was 80.7 ±0.1% for grasping movement and 82.8 ±0.1% for supination movement. Classification accuracy using a combination of movement and post-movement periods was higher than in other cases . Our results support using EEG to assess cognitive engagement in stroke patients during motor rehabilitation.

  18. Music Shifts Frontal EEG in Depressed Adolescents.

    Science.gov (United States)

    Field, Tiffany; Martinez, Alex; Nawrocki, Thomas; Pickens, Jeffrey; Fox, Nathan A.; Schanberg, Saul

    1998-01-01

    Fourteen chronically depressed female adolescents listened to rock music for a 23-minute session. EEG was recorded and saliva samples were collected to determine the effects of the music on stress hormone cortisol levels. No differences were reported for mood state; however, cortisol levels decreased and relative right-frontal activation was…

  19. EEG dynamics during music appreciation.

    Science.gov (United States)

    Lin, Yuan-Pin; Jung, Tzyy-Ping; Chen, Jyh-Horng

    2009-01-01

    This study explores the electroencephalographic (EEG) correlates of emotions during music listening. Principal component analysis (PCA) is used to correlate EEG features with complex music appreciation. This study also applies machine-leaning algorithms to demonstrate the feasibility of classifying EEG dynamics in four subjectively-reported emotional states. The high classification accuracy (81.58+/-3.74%) demonstrates the feasibility of using EEG features to assess emotional states of human subjects. Further, the spatial and spectral patterns of the EEG most relevant to emotions seem reproducible across subjects.

  20. Continuous and routine eeg in intensive care

    OpenAIRE

    Ney, JP; Van Der Goes, DN; Nuwer, MR; Nelson, L; Eccher, MA

    2013-01-01

    Objectives: To evaluate the effect of intensive care unit continuous EEG (cEEG) monitoring on inpatient mortality, hospital charges, and length of stay. Methods: A retrospective cross-sectional study was conducted using the Nationwide Inpatient Sample, a dataset representing 20% of inpatient discharges in nonfederal US hospitals. Adult discharge records reporting mechanical ventilation and EEG (routine EEG or cEEG) were included. cEEG was compared with routine EEG alone in association with th...

  1. Utility of Independent Component Analysis for Interpretation of Intracranial EEG

    Directory of Open Access Journals (Sweden)

    Diane eWhitmer

    2010-11-01

    Full Text Available Electrode arrays are sometimes implanted in the brains of patients with intractable epilepsy to better localize seizure foci before epilepsy surgery. Analysis of intracranial EEG (iEEG recordings is typically performed in the electrode channel domain without explicit separation of the sources that generate the signals. However, intracranial EEG signals, like scalp EEG signals, could be linear mixtures of local activity and volume conducted activity arising in multiple source areas. Independent component analysis (ICA has recently been applied to scalp EEG data, and shown to separate the signal mixtures into independently generated brain and non-brain source signals. Here, we applied ICA to un-mix source signals from intracranial EEG recordings from four epilepsy patients during a visually cued finger movement task in the presence of background pathological brain activity. This ICA decomposition demonstrated that the iEEG recordings were not maximally independent, but rather are linear mixtures of activity from multiple sources. Many of the independent component (IC projections to the iEEG recording grid were consistent with sources from single brain regions, including components exhibiting classic movement-related dynamics. Notably, the largest IC projection to each channel accounted for no more than 20%-80% of the channel signal variance, implying that in general intracranial recordings cannot be accurately interpreted as recordings of independent brain sources. These results suggest that ICA can be used to identify and monitor major field sources of local and distributed functional networks generating iEEG data. ICA decomposition methods are useful for improving the fidelity of source signals of interest, likely including distinguishing the sources of pathological brain activity.

  2. EEG classification approach based on the extreme learning machine and wavelet transform.

    Science.gov (United States)

    Yuan, Qi; Zhou, Weidong; Zhang, Jing; Li, Shufang; Cai, Dongmei; Zeng, Yanjun

    2012-04-01

    Automatic detection and classification of electroencephalogram (EEG) epileptic activity aid diagnosis and relieve the heavy workload of doctors. This article presents a new EEG classification approach based on the extreme learning machine (ELM) and wavelet transform (WT). First, the WT is used to extract useful features when certain scales cover abnormal components of the EEG. Second, the ELM algorithm is used to train a single hidden layer of feedforward neural network (SLFN) features. Finally, the SLFN is tested with interictal and ictal EEGs. The experiments demonstrated that the proposed approach achieved a satisfactory classification rate of 99.25% for interictal and ictal EEGs.

  3. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis.

    Directory of Open Access Journals (Sweden)

    Ümit Aydin

    Full Text Available We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1 sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2 still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes or MEG (275-gradiometers and especially on the benefits of combined EEG/MEG (EMEG source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG (167-contacts and low-density EEG (ldEEG (21-electrodes. To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset, i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply.

  5. Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis.

    Science.gov (United States)

    Aydin, Ümit; Vorwerk, Johannes; Dümpelmann, Matthias; Küpper, Philipp; Kugel, Harald; Heers, Marcel; Wellmer, Jörg; Kellinghaus, Christoph; Haueisen, Jens; Rampp, Stefan; Stefan, Hermann; Wolters, Carsten H

    2015-01-01

    We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1) sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2) still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes) or MEG (275-gradiometers) and especially on the benefits of combined EEG/MEG (EMEG) source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG) (167-contacts) and low-density EEG (ldEEG) (21-electrodes). To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset), i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply.

  6. Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis

    Science.gov (United States)

    Aydin, Ümit; Vorwerk, Johannes; Dümpelmann, Matthias; Küpper, Philipp; Kugel, Harald; Heers, Marcel; Wellmer, Jörg; Kellinghaus, Christoph; Haueisen, Jens; Rampp, Stefan; Stefan, Hermann; Wolters, Carsten H.

    2015-01-01

    We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1) sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2) still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes) or MEG (275-gradiometers) and especially on the benefits of combined EEG/MEG (EMEG) source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG) (167-contacts) and low-density EEG (ldEEG) (21-electrodes). To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset), i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply. PMID:25761059

  7. Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Cauchy Pradhan

    2012-01-01

    Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.

  8. Familiarity effects in EEG-based emotion recognition

    National Research Council Canada - National Science Library

    Thammasan, Nattapong; Moriyama, Koichi; Fukui, Ken-ichi; Numao, Masayuki

    2017-01-01

    Although emotion detection using electroencephalogram (EEG) data has become a highly active area of research over the last decades, little attention has been paid to stimulus familiarity, a crucial subjectivity issue...

  9. Adenovirus vectors can induce activation of endothelial cells: CD40 ...

    African Journals Online (AJOL)

    Adenovirus vectors can induce activation of endothelial cells: CD40-CD40L interactions partly participate in the endothelial cells activation induced by adenovirus vectors in an NF-kappaB-dependent manner.

  10. EEG and intelligence: relations between EEG coherence, EEG phase delay and power.

    Science.gov (United States)

    Thatcher, R W; North, D; Biver, C

    2005-09-01

    There are two inter-related categories of EEG measurement: 1, EEG currents or power and; 2, EEG network properties such as coherence and phase delays. The purpose of this study was to compare the ability of these two different categories of EEG measurement to predict performance on the Weschler Intelligence test (WISC-R). Resting eyes closed EEG was recorded from 19 scalp locations with a linked ears reference from 442 subjects aged 5-52 years. The Weschler Intelligence test was administered to the same subjects but not while the EEG was recorded. Subjects were divided into high IQ (> or = 120) and low IQ ( EEG coherence > EEG amplitude asymmetry > absolute power > relative power and power ratios. The strongest correlations to IQ were short EEG phase delays in the frontal lobes and long phase delays in the posterior cortical regions, reduced coherence and increased absolute power. The findings are consistent with increased neural efficiency and increased brain complexity as positively related to intelligence, and with frontal lobe synchronization of neural resources as a significant contributing factor to EEG and intelligence correlations. Quantitative EEG predictions of intelligence provide medium to strong effect size estimates of cognitive functioning while simultaneously revealing a deeper understanding of the neurophysiological substrates of intelligence.

  11. The clinical EEG and personality in mentally abnormal offenders.

    Science.gov (United States)

    Howard, R C

    1984-08-01

    A retrospective survey was undertaken of the clinical EEG in a series of consecutive admissions to Broadmoor Special Hospital (N = 265). Following reporting of the records by visual inspection, the EEGs were classified according to 4 descriptive categories: predominantly monorhythmic; low voltage fast, 'choppy'; dysrhythmic with excess theta; and dysrhythmic with paroxysmal features. The last 3 categories constituted EEG patterns with atypical or anomalous features. The EEGs of patients with high scores on Welsh's MMPI Anxiety scale ('withdrawers') were compared with those of patients with low scores ('approachers'). Lateralization of paroxysmal EEG features was studied with reference to MMPI personality measures (Blackburn's Impulsivity and Sociability and Welsh's Anxiety), legal diagnosis, type of offence, and relationship to victim. The EEGs were studied in a further sample of 29 admissions who had been assessed, using Hare's Research Scale for the Assessment of Psychopathy (Hare, 1980). While the overall incidence of atypical EEG features reported in the present study (around 60% of cases) was comparable with that reported previously for offender populations, they occurred significantly more frequently in 'withdrawers' than in 'approachers'. This suggests that the high frequency of atypical EEG features in abnormal offenders may be due to the preponderance of 'withdrawers' in this population. Patients who had committed violent offences against strangers, as opposed to people known to them, tended to have bilateral paroxysmal features in their EEG. High scores on Hare's Psychopathy scale were significantly associated with prominent Posterior Temporal Slow Activity. The study offers some prospect that the combined use of EEG and personality assessments may be of potential value in the assessment of dangerousness.

  12. Pharmaco-EEG Studies in Animals: A History-Based Introduction to Contemporary Translational Applications.

    Science.gov (United States)

    Drinkenburg, Wilhelmus H I M; Ahnaou, Abdallah; Ruigt, Gé S F

    2015-01-01

    drugs on arousal and sleep architecture, assessing their neuropharmacological characteristics in vivo, including central exposure and information on kinetics. In view of the clear disadvantages as well as advantages of animal p-EEG as compared to clinical p-EEG, general statements about the usefulness of EEG as a biomarker to demonstrate the translatability of p-EEG effects should be made with caution, however, because they depend on the particular EEG or sleep parameter that is being studied. The contribution of animal p-EEG studies to the translational characterisation of centrally active drugs can be furthered by adherence to guidelines for methodological standardisation, which are presently under construction by the International Pharmaco-EEG Society (IPEG). © 2016 S. Karger AG, Basel.

  13. Multi-modal Patient Cohort Identification from EEG Report and Signal Data.

    Science.gov (United States)

    Goodwin, Travis R; Harabagiu, Sanda M

    2016-01-01

    Clinical electroencephalography (EEG) is the most important investigation in the diagnosis and management of epilepsies. An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the brain. Because the EEG signal is complex, its interpretation is known to produce moderate inter-observer agreement among neurologists. This problem can be addressed by providing clinical experts with the ability to automatically retrieve similar EEG signals and EEG reports through a patient cohort retrieval system operating on a vast archive of EEG data. In this paper, we present a multi-modal EEG patient cohort retrieval system called MERCuRY which leverages the heterogeneous nature of EEG data by processing both the clinical narratives from EEG reports as well as the raw electrode potentials derived from the recorded EEG signal data. At the core of MERCuRY is a novel multimodal clinical indexing scheme which relies on EEG data representations obtained through deep learning. The index is used by two clinical relevance models that we have generated for identifying patient cohorts satisfying the inclusion and exclusion criteria expressed in natural language queries. Evaluations of the MERCuRY system measured the relevance of the patient cohorts, obtaining MAP scores of 69.87% and a NDCG of 83.21%.

  14. Diagnostic Accuracy of microEEG: A Miniature, Wireless EEG Device

    OpenAIRE

    Grant, Arthur C.; Abdel-Baki, Samah G.; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A.; Zehtabchi, Shahriar

    2014-01-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device (“microEEG”) to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). 225 ED patients with AMS underwent 3 EEGs. EEG1 (Nicolet Monitor, “reference”) and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. ...

  15. The role of fast and slow EEG activity during sleep in males and females with major depressive disorder.

    Science.gov (United States)

    Cheng, Philip; Goldschmied, Jennifer; Deldin, Patricia; Hoffmann, Robert; Armitage, Roseanne

    2015-10-01

    Sleep difficulties are highly prevalent in depression, and appear to be a contributing factor in the development and maintenance of symptoms. However, despite the generally acknowledged relationship between sleep and depression, the neurophysiological substrates underlying this relationship still remain unclear. Two main hypotheses were tested in this study. The first hypothesis states that sleep in depression is characterized by inadequate generation of restorative sleep, as indexed by reduced amounts of slow-wave activity. Conversely, the second hypothesis states that poor sleep in depression is due to intrusions of fast-frequency activity that may be reflective of a hyperaroused central nervous system. This study aimed to test both hypotheses in a large sample of individuals with clinically validated depression, as well as to examine sex as a moderator. Results suggest that depression is better characterized by an overall decrease in slow-wave activity, which is related to elevated anxious and depressed mood the following morning. Results also suggest that females may be more likely to experience fast frequency activity related to depression symptom severity. © 2015 Society for Psychophysiological Research.

  16. Fractal Dimension in Epileptic EEG Signal Analysis

    Science.gov (United States)

    Uthayakumar, R.

    Fractal Analysis is the well developed theory in the data analysis of non-linear time series. Especially Fractal Dimension is a powerful mathematical tool for modeling many physical and biological time signals with high complexity and irregularity. Fractal dimension is a suitable tool for analyzing the nonlinear behaviour and state of the many chaotic systems. Particularly in analysis of chaotic time series such as electroencephalograms (EEG), this feature has been used to identify and distinguish specific states of physiological function.Epilepsy is the main fatal neurological disorder in our brain, which is analyzed by the biomedical signal called Electroencephalogram (EEG). The detection of Epileptic seizures in the EEG Signals is an important tool in the diagnosis of epilepsy. So we made an attempt to analyze the EEG in depth for knowing the mystery of human consciousness. EEG has more fluctuations recorded from the human brain due to the spontaneous electrical activity. Hence EEG Signals are represented as Fractal Time Series.The algorithms of fractal dimension methods have weak ability to the estimation of complexity in the irregular graphs. Divider method is widely used to obtain the fractal dimension of curves embedded into a 2-dimensional space. The major problem is choosing initial and final step length of dividers. We propose a new algorithm based on the size measure relationship (SMR) method, quantifying the dimensional behaviour of irregular rectifiable graphs with minimum time complexity. The evidence for the suitability (equality with the nature of dimension) of the algorithm is illustrated graphically.We would like to demonstrate the criterion for the selection of dividers (minimum and maximum value) in the calculation of fractal dimension of the irregular curves with minimum time complexity. For that we design a new method of computing fractal dimension (FD) of biomedical waveforms. Compared to Higuchi's algorithm, advantages of this method include

  17. Demonstration of brain noise on human EEG signals in perception of bistable images

    Science.gov (United States)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  18. Depressive rumination and the emotional control circuit: An EEG localization and effective connectivity study.

    Science.gov (United States)

    Ferdek, Magdalena A; van Rijn, Clementina M; Wyczesany, Miroslaw

    2016-12-01

    Ruminations are repetitive thoughts associated with symptoms, causes, and consequences of one's negative feelings. The objective of this study was to explore the neuronal basis of depressive rumination in a non-clinical population within the context of emotional control. Participants scoring high or low on the tendency to ruminate scale took part in the EEG experiment. Their EEG data were collected during a state of induced depressive ruminations and compared with positive and neutral conditions. We hypothesized that both groups would differ according to the level of activation and effective connectivity among the structures involved in the emotional control circuit. Clustering of independent components, together with effective connectivity (Directed Transfer Function), was performed using the EEG signal. The main findings involved decreased activation of the left dorsolateral prefrontal cortex (DLPFC) and increased activation of the left temporal lobe structures in the highly ruminating group. The latter result was most pronounced during the ruminative condition. Decreased information from the left DLPFC to the left temporal lobe structures was also found, leading to the conclusion that hypoactivation of the left DLPFC and its inability to modulate the activation of the left temporal lobe structures is crucial for the ruminative tendencies.

  19. An event-related analysis of P300 by simultaneous EEG/fMRI

    Science.gov (United States)

    Wang, Li-qun; Wang, Mingshi; Mizuhara, Hiroaki

    2006-09-01

    In this study, P300 that induced by visual stimuli was examined with simultaneous EEG/fMRI. For the purpose of combine the best temporary resolution with the best special resolution together to estimate the brain function, event-related analysis contributed to this methodological trial. A 64 channel MRT-compatible MR EEG amplifier (BrainAmp: made of Brain Production GmbH, Gennany) was used in the measurement simultaneously with fMRI scanning. The reference channel is between Fz, Cz and Pz. Sampling rate of raw EEG was 5 kHz, and the MRT noise reduction was performed. EEG recording synchronized with MRI scan by our original stimulus system, and an oddball paradigm (four-oriented Landolt Ring presentation) was performed in the official manner. After P300 segmentation, the timing of P300 was exported to event-related analysis of fMRI data with SPM99 software. In single subject study, the significant activations appear in the left superior frontal, Broca's area and on both sides of the parietal lobule when P300 occurred. It is suggest that P300 may be an integration carried out by top-down signal from frontal to the parietal lobule, which regulates an Attention-Logical Judgment process. Compared with other current methods, the event related analysis by simultaneous EEG/IMRI is excellent in the point that can describe the cognitive process with reality unifying further temporary and spatial information. It is expected that examination and demonstration of the obtained result will supply with the promotion of this powerful methods.

  20. EEG correlates of postural audio-biofeedback.

    Science.gov (United States)

    Pirini, Marco; Mancini, Martina; Farella, Elisabetta; Chiari, Lorenzo

    2011-04-01

    The control of postural sway depends on the dynamic integration of multi-sensory information in the central nervous system. Augmentation of sensory information, such as during auditory biofeedback (ABF) of the trunk acceleration, has been shown to improve postural control. By means of quantitative electroencephalography (EEG), we examined the basic processes in the brain that are involved in the perception and cognition of auditory signals used for ABF. ABF and Fake ABF (FAKE) auditory stimulations were delivered to 10 healthy naive participants during quiet standing postural tasks, with eyes-open and closed. Trunk acceleration and 19-channels EEG were recorded at the same time. Advanced, state-of-the-art EEG analysis and modeling methods were employed to assess the possibly differential, functional activation, and localization of EEG spectral features (power in α, β, and γ bands) between the FAKE and the ABF conditions, for both the eyes-open and the eyes-closed tasks. Participants gained advantage by ABF in reducing their postural sway, as measured by a reduction of the root mean square of trunk acceleration during the ABF compared to the FAKE condition. Population-wise localization analysis performed on the comparison FAKE - ABF revealed: (i) a significant decrease of α power in the right inferior parietal cortex for the eyes-open task; (ii) a significant increase of γ power in left temporo-parietal areas for the eyes-closed task; (iii) a significant increase of γ power in the left temporo-occipital areas in the eyes-open task. EEG outcomes supported the idea that ABF for postural control heavily modulates (increases) the cortical activation in healthy participants. The sites showing the higher ABF-related modulation are among the known cortical areas associated with multi-sensory, perceptual integration, and sensorimotor integration, showing a differential activation between the eyes-open and eyes-closed conditions. Copyright © 2010 Elsevier B.V. All

  1. Absence status associated with focal activity and polydipsia-induced hyponatremia

    Directory of Open Access Journals (Sweden)

    Hideki Azuma

    2008-04-01

    Full Text Available Hideki Azuma, Tatsuo Akechi, Toshi A FurukawaDepartment of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, JapanAbstract: We report a case of de novo absence status associated with focal discharge and polydipsia-induced hyponatremia. Nonconvulsive status epilepticus (NCSE is classified as absence status or complex partial status. Absence status is characterized by bilateral synchronized spike and wave complex bursts and a variety of conscious disturbances. Possible precipitating factors for NCSE include benzodiazepine withdrawal, excessive use of psychotropic drugs, and electrolyte imbalances. Hyponatremia is a rare precipitating factor. In this case, the patient was 59 years old and had suffered from primary insomnia but had no history of epilepsy. NCSE improved by means of saline infusion. However after recovery from NCSE EEG revealed some spikes in the left frontal area. Absence seizures can also show generalized spike and slow waves, and cases of focal lesion-associated absence seizures have been reported. Although absence seizures and absence status are two distinct conditions, they should not be considered together. We assumed that hyponatremia induced by polydipsia precipitated epileptogenicity in the left frontal area, and then focal activity secondarily generalized and resulted in absence status.Keywords: nonconvulsive status epilepticus, absence status, focal activity, hyponatremia

  2. Analysis of Seizure EEG in Kindled Epileptic Rats

    Directory of Open Access Journals (Sweden)

    A. K. Sen

    2007-01-01

    Full Text Available Using wavelet analysis we have detected the presence of chirps in seizure EEG signals recorded from kindled epileptic rats. Seizures were induced by electrical stimulation of the amygdala and the EEG signals recorded from the amygdala were analyzed using a continuous wavelet transform. A time–frequency representation of the wavelet power spectrum revealed that during seizure the EEG signal is characterized by a chirp-like waveform whose frequency changes with time from the onset of seizure to its completion. Similar chirp-like time–frequency profiles have been observed in newborn and adult patients undergoing epileptic seizures. The global wavelet spectrum depicting the variation of power with frequency showed two dominant frequencies with the largest amounts of power during seizure. Our results indicate that a kindling paradigm in rats can be used as an animal model of human temporal lobe epilepsy to detect seizures by identifying chirp-like time–frequency variations in the EEG signal.

  3. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form

    Directory of Open Access Journals (Sweden)

    Antonio Fernández-Caballero

    2017-04-01

    Full Text Available This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  4. EEG-Based Asynchronous BCI Controls Functional Electrical Stimulation in a Tetraplegic Patient

    Directory of Open Access Journals (Sweden)

    Rüdiger Rupp

    2005-11-01

    Full Text Available The present study reports on the use of an EEG-based asynchronous (uncued, user-driven brain-computer interface (BCI for the control of functional electrical stimulation (FES. By the application of FES, noninvasive restoration of hand grasp function in a tetraplegic patient was achieved. The patient was able to induce bursts of beta oscillations by imagination of foot movement. These beta oscillations were recorded in a one EEG-channel configuration, bandpass filtered and squared. When this beta activity exceeded a predefined threshold, a trigger for the FES was generated. Whenever the trigger was detected, a subsequent switching of a grasp sequence composed of 4 phases occurred. The patient was able to grasp a glass with the paralyzed hand completely on his own without additional help or other technical aids.

  5. Music enhances spatial-temporal reasoning: towards a neurophysiological basis using EEG.

    Science.gov (United States)

    Shaw, G L; Bodner, M

    1999-10-01

    Motivated by predictions from the structured trion model of the cortex, based on Mountcastle's columnar organizational principle, behavioral experiments have demonstrated a causal short-term enhancement of spatial-temporal reasoning in college students following listening to a Mozart Sonata (K.448) but not in control conditions. An EEG coherence study reported presence of right frontal and left temporoparietal activity induced by listening to the Mozart Sonata, which carried over into the spatial-temporal tasks in three of the seven subjects. In this paper, we present further predictions from the trion model and discuss how the new SYMMETRIC analysis method can be used in EEG recordings to help determine the neurophysiological basis of specific music enhancing spatial-temporal reasoning. We conclude with potential clinical applications of major significance.

  6. Development of cortical motor circuits between childhood and adulthood: A navigated TMS-HdEEG study.

    Science.gov (United States)

    Määttä, Sara; Könönen, Mervi; Kallioniemi, Elisa; Lakka, Timo; Lintu, Niina; Lindi, Virpi; Ferreri, Florinda; Ponzo, David; Säisänen, Laura

    2017-05-01

    Motor functions improve during childhood and adolescence, but little is still known about the development of cortical motor circuits during early life. To elucidate the neurophysiological hallmarks of motor cortex development, we investigated the differences in motor cortical excitability and connectivity between healthy children, adolescents, and adults by means of navigated suprathreshold motor cortex transcranial magnetic stimulation (TMS) combined with high-density electroencephalography (EEG). We demonstrated that with development, the excitability of the motor system increases, the TMS-evoked EEG waveform increases in complexity, the magnitude of induced activation decreases, and signal spreading increases. Furthermore, the phase of the oscillatory response to TMS becomes less consistent with age. These changes parallel an improvement in manual dexterity and may reflect developmental changes in functional connectivity. Hum Brain Mapp 38:2599-2615, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Word tones cueing morphosyntactic structure: Neuroanatomical substrates and activation time-course assessed by EEG and fMRI.

    Science.gov (United States)

    Roll, Mikael; Söderström, Pelle; Mannfolk, Peter; Shtyrov, Yury; Johansson, Mikael; van Westen, Danielle; Horne, Merle

    2015-11-01

    Previous studies distinguish between right hemisphere-dominant processing of prosodic/tonal information and left-hemispheric modulation of grammatical information as well as lexical tones. Swedish word accents offer a prime testing ground to better understand this division. Although similar to lexical tones, word accents are determined by words' morphosyntactic structure, which enables listeners to use the tone at the beginning of a word to predict its grammatical ending. We recorded electrophysiological and hemodynamic brain responses to words where stem tones matched or mismatched inflectional suffixes. Tones produced brain potential effects after 136 ms, correlating with subject variability in average BOLD in left primary auditory cortex, superior temporal gyrus, and inferior frontal gyrus. Invalidly cued suffixes activated the left inferior parietal lobe, arguably reflecting increased processing cost of their meaning. Thus, interaction of word accent tones with grammatical morphology yielded a rapid neural response correlating in subject variability with activations in predominantly left-hemispheric brain areas. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Sparse asynchronous cortical generators can produce measurable scalp EEG signals.

    Science.gov (United States)

    von Ellenrieder, Nicolás; Dan, Jonathan; Frauscher, Birgit; Gotman, Jean

    2016-09-01

    We investigate to what degree the synchronous activation of a smooth patch of cortex is necessary for observing EEG scalp activity. We perform extensive simulations to compare the activity generated on the scalp by different models of cortical activation, based on intracranial EEG findings reported in the literature. The spatial activation is modeled as a cortical patch of constant activation or as random sets of small generators (0.1 to 3cm(2) each) concentrated in a cortical region. Temporal activation models for the generation of oscillatory activity are either equal phase or random phase across the cortical patches. The results show that smooth or random spatial activation profiles produce scalp electric potential distributions with the same shape. Also, in the generation of oscillatory activity, multiple cortical generators with random phase produce scalp activity attenuated on average only 2 to 4 times compared to generators with equal phase. Sparse asynchronous cortical generators can produce measurable scalp EEG. This is a possible explanation for seemingly paradoxical observations of simultaneous disorganized intracranial activity and scalp EEG signals. Thus, the standard interpretation of scalp EEG might constitute an oversimplification of the underlying brain activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. EEG Source Analysis

    OpenAIRE

    Congedo, Marco

    2013-01-01

    Electroencephalographic data recorded on the human scalp can be modeled as a linear mixture of underlying dipolar source generators. The characterization of such generators is the aim of several families of signal processing methods. In this HDR we consider in several details three of such families, namely 1) EEG distributed inverse solutions, 2) diagonalization methods, including spatial filtering and blind source separation and 3) Riemannian geometry. We highlight our contributions in each ...

  10. The EEG segmentation

    OpenAIRE

    Nečadová, Anežka

    2013-01-01

    Předmětem této bakalářské práce je seznámení se signálem EEG. Jsou zde rozebrány jeho vlastnosti, použití a způsoby zpracování. Hlavní část se zabývá segmentací EEG signálu. Dvě metody segmentace jsou realizovány v programu Matlab, a to adaptivní segmentace na základě míry diference střední amplitudy a míry diference střední frekvence a adaptivní segmentace na základě míry diference odhadnuté z rychlé Fourierovy transformace. Funkčnost algoritmu je ověřena na reálných EEG signálech. Subjec...

  11. Sleep EEG analysis

    OpenAIRE

    Vávrová, Eva

    2014-01-01

    Tato bakalářská práce se zabývá analýzou spánkových EEG, která je provedena pomocí výpočtu vybraných parametrů z časové a frekvenční oblasti. Parametry se počítají z jednotlivých úseků EEG signálů, které odpovídají jednotlivým spánkovým fázím. Na základě analýzy se rozhodne, které parametry EEG jsou vhodné pro automatickou detekci fází a která metoda je vhodnější pro hodnocení dat v hypnogramu. K analýze byl použit program MATLAB, ve kterém byla daná data porovnána. This thesis deals with ...

  12. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  13. Detection of EEG spatial-spectral-temporal signatures of errors: a comparative study of ICA-based and channel-based methods.

    Science.gov (United States)

    Shou, Guofa; Ding, Lei

    2015-01-01

    The present study aimed to investigate the sensitivity of independent component analysis (ICA)- and channel-based methods in detecting electroencephalography (EEG) spatial-spectral-temporal signatures of performance errors. 128-channel EEG signals recorded from 18 subjects, who performed a color-word matching Stroop task, were analyzed. The spatial-spectral-temporal patterns in event-related potentials (ERPs) and oscillatory activities (i.e., power and phase) were measured at four selected channels, i.e., FCz, Pz, O1 and O2, from original EEG data after preprocessing, EEG data after additional current source density (CSD) transform, and back-projected EEG data from individual ICs after additional ICA analysis. Pair-wise correlation coefficient (CC) and mutual information (MI), calculated from three EEG data at four selected channels, were compared to examine mutual correlations in EEG signals obtained through three different means. Thereafter, EEG signatures of errors from these three means were statistically compared at multiple time windows in the contrast of error and correct responses. Significantly decreased CC and MI values were observed in CSD- and ICA-processed EEGs as compared with original EEG, with the smallest CC and MI in ICA EEG. Similar error patterns in ERPs and peri-response oscillatory activities were detected in all three EEGs, whereas the pre-stimulus and post-stimulus error-related oscillatory patterns identified in ICA EEG were either not or only partially detected in both original EEG and CSD EEGs in general. Both CSD and ICA processes can largely reduce signal correlations due to the volume conduction effect in original EEG, and EEG signatures of errors are better detected by ICA-based method than channel-based method (i.e., original and CSD EEGs). ICA provides the best sensitivity to detect EEG signatures linked to specific neural processes via disentangling superimposed channel-level EEG signals into distinct neurocognitive process

  14. Usability of four commercially-oriented EEG systems.

    Science.gov (United States)

    David Hairston, W; Whitaker, Keith W; Ries, Anthony J; Vettel, Jean M; Cortney Bradford, J; Kerick, Scott E; McDowell, Kaleb

    2014-08-01

    Electroencephalography (EEG) holds promise as a neuroimaging technology that can be used to understand how the human brain functions in real-world, operational settings while individuals move freely in perceptually-rich environments. In recent years, several EEG systems have been developed that aim to increase the usability of the neuroimaging technology in real-world settings. Here, the usability of three wireless EEG systems from different companies are compared to a conventional wired EEG system, BioSemi's ActiveTwo, which serves as an established laboratory-grade 'gold standard' baseline. The wireless systems compared include Advanced Brain Monitoring's B-Alert X10, Emotiv Systems' EPOC and the 2009 version of QUASAR's Dry Sensor Interface 10-20. The design of each wireless system is discussed in relation to its impact on the system's usability as a potential real-world neuroimaging system. Evaluations are based on having participants complete a series of cognitive tasks while wearing each of the EEG acquisition systems. This report focuses on the system design, usability factors and participant comfort issues that arise during the experimental sessions. In particular, the EEG systems are assessed on five design elements: adaptability of the system for differing head sizes, subject comfort and preference, variance in scalp locations for the recording electrodes, stability of the electrical connection between the scalp and electrode, and timing integration between the EEG system, the stimulus presentation computer and other external events.

  15. Usability of four commercially-oriented EEG systems

    Science.gov (United States)

    Hairston, W. David; Whitaker, Keith W.; Ries, Anthony J.; Vettel, Jean M.; Cortney Bradford, J.; Kerick, Scott E.; McDowell, Kaleb

    2014-08-01

    Electroencephalography (EEG) holds promise as a neuroimaging technology that can be used to understand how the human brain functions in real-world, operational settings while individuals move freely in perceptually-rich environments. In recent years, several EEG systems have been developed that aim to increase the usability of the neuroimaging technology in real-world settings. Here, the usability of three wireless EEG systems from different companies are compared to a conventional wired EEG system, BioSemi’s ActiveTwo, which serves as an established laboratory-grade ‘gold standard’ baseline. The wireless systems compared include Advanced Brain Monitoring’s B-Alert X10, Emotiv Systems’ EPOC and the 2009 version of QUASAR’s Dry Sensor Interface 10-20. The design of each wireless system is discussed in relation to its impact on the system’s usability as a potential real-world neuroimaging system. Evaluations are based on having participants complete a series of cognitive tasks while wearing each of the EEG acquisition systems. This report focuses on the system design, usability factors and participant comfort issues that arise during the experimental sessions. In particular, the EEG systems are assessed on five design elements: adaptability of the system for differing head sizes, subject comfort and preference, variance in scalp locations for the recording electrodes, stability of the electrical connection between the scalp and electrode, and timing integration between the EEG system, the stimulus presentation computer and other external events.

  16. Independent Component Analysis and Source Localization on Mobile EEG Data Can Identify Increased Levels of Acute Stress.

    Science.gov (United States)

    Schlink, Bryan R; Peterson, Steven M; Hairston, W D; König, Peter; Kerick, Scott E; Ferris, Daniel P

    2017-01-01

    Mobile electroencephalography (EEG) is a very useful tool to investigate the physiological basis of cognition under real-world conditions. However, as we move experimentation into less-constrained environments, the influence of state changes increases. The influence of stress on cortical activity and cognition is an important example. Monitoring of modulation of cortical activity by EEG measurements is a promising tool for assessing acute stress. In this study, we test this hypothesis and combine EEG with independent component analysis and source localization to identify cortical differences between a control condition and a stressful condition. Subjects performed a stationary shooting task using an airsoft rifle with and without the threat of an experimenter firing a different airsoft rifle in their direction. We observed significantly higher skin conductance responses and salivary cortisol levels (p stressful conditions, indicating that we had successfully induced an adequate level of acute stress. We located independent components in five regions throughout the cortex, most notably in the dorsolateral prefrontal cortex, a region previously shown to be affected by increased levels of stress. This area showed a significant decrease in spectral power in the theta and alpha bands less than a second after the subjects pulled the trigger. Overall, our results suggest that EEG with independent component analysis and source localization has the potential of monitoring acute stress in real-world environments.

  17. Donepezil Impairs Memory in Healthy Older Subjects: Behavioural, EEG and Simultaneous EEG/fMRI Biomarkers

    Science.gov (United States)

    Balsters, Joshua H.; O'Connell, Redmond G.; Martin, Mary P.; Galli, Alessandra; Cassidy, Sarah M.; Kilcullen, Sophia M.; Delmonte, Sonja; Brennan, Sabina; Meaney, Jim F.; Fagan, Andrew J.; Bokde, Arun L. W.; Upton, Neil; Lai, Robert; Laruelle, Marc; Lawlor, Brian; Robertson, Ian H.

    2011-01-01

    Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs), by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil) on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL)) and electrophysiological measures (resting EEG power) that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta), right frontal-parietal network (Alpha), and default-mode network (Beta). We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify the precise

  18. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat

    OpenAIRE

    Vyazovskiy, V.V.; Tobler, I.

    2008-01-01

    Sleep electroencephalographic (EEG) slow-wave activity is increased after wakefulness and decreases during sleep. Regional sleep EEG differences are thought to be a consequence of activation of specific cortical neuronal circuits during waking. We investigated the relationship between handedness and interhemispheric brain asymmetry. Bilateral EEG recordings were obtained from the frontal and occipital cortex in rats with a clear paw preference in a food-reaching task (right, n = 5; left, n = ...

  19. A statistically robust EEG re-referencing procedure to mitigate reference effect

    OpenAIRE

    Lepage, Kyle Q.; Kramer, Mark Nathan; Chu, Catherine Jean

    2014-01-01

    Background: The electroencephalogram (EEG) remains the primary tool for diagnosis of abnormal brain activity in clinical neurology and for in vivo recordings of human neurophysiology in neuroscience research. In EEG data acquisition, voltage is measured at positions on the scalp with respect to a reference electrode. When this reference electrode responds to electrical activity or artifact all electrodes are affected. Successful analysis of EEG data often involves re-referencing procedures th...

  20. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI.

    Science.gov (United States)

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG-fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological-haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG-fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG-fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG-fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  1. Influence of dense-array EEG cap on fMRI signal.

    Science.gov (United States)

    Luo, Qingfei; Glover, Gary H

    2012-09-01

    Dense-array (>64 channel) electroencephalography (EEG) systems are increasingly being used in simultaneous EEG-functional magnetic resonance imaging (fMRI) studies. However, with increasing channel count, dense-array EEG caps can induce more severe signal dropout in the MRI images than conventional systems due to the radiofrequency shielding effect of the denser wire bundle. This study investigates the influence of a 256-channel EEG cap on MRI image quality and detection sensitivity of blood oxygen level dependent fMRI signal. A theoretical model is first established to describe the impact of the EEG cap on anatomic signal, noise, signal-to-noise ratio, and contrast-to-noise ratio of blood oxygen level dependent signal. Seven subjects were scanned to measure and compare the T(2)-weighted image quality and fMRI detection sensitivity with and without the EEG cap using an auditory/visual/sensorimotor task. The results show that the dense-array EEG cap can substantially reduce the anatomic signal in the brain areas (visual cortex) near the conducting wires (average percent decrease ≈ 38%). However, the image signal-to-noise ratio with and without the EEG cap was comparable (percent decrease EEG caps in simultaneous EEG-fMRI experiments. Copyright © 2011 Wiley Periodicals, Inc.

  2. Influence of Dense Array EEG Cap on fMRI Signal

    OpenAIRE

    Luo, Qingfei; Glover, Gary H.

    2011-01-01

    Dense-array (>64 channel) EEG systems are increasingly being used in simultaneous EEG-fMRI studies. However, with increasing channel count, dense-array EEG caps can induce more severe signal dropout in the MRI images than conventional systems due to the radio frequency shielding effect of the denser wire bundle. This study investigates the influence of a 256 channel EEG cap on MRI image quality and detection sensitivity of BOLD fMRI signal. A theoretical model is first established to describe...

  3. The effectiveness of EEG-feedback on attention, impulsivity and EEG: a sham feedback controlled study.

    NARCIS (Netherlands)

    Logemann, H.N.; Lansbergen, M.M.; Os, T.W. Van; Bocker, K.B.; Kenemans, J.L.

    2010-01-01

    EEG-feedback, also called neurofeedback, is a training procedure aimed at altering brain activity, and is used as a treatment for disorders like Attention Deficit/Hyperactivity Disorder (ADHD). Studies have reported positive effects of neurofeedback on attention and other dependent variables.

  4. The effectiveness of EEG-feedback on attention, impulsivity and EEG : A sham feedback controlled study

    NARCIS (Netherlands)

    Logemann, H. N. Alexander; Lansbergen, Marieke M.; Van Os, Titus W. D. P.; Bocker, Koen B. E.; Kenemans, J. Leon

    2010-01-01

    EEG-feedback, also called neurofeedback, is a training procedure aimed at altering brain activity, and is used as a treatment for disorders like Attention Deficit/Hyperactivity Disorder (ADHD). Studies have reported positive effects of neurofeedback on attention and other dependent variables.

  5. Hypoglycemia-Associated EEG Changes in Prepubertal Children With Type 1 Diabetes

    DEFF Research Database (Denmark)

    Hansen, Grith Lærkholm; Foli-Andersen, Pia; Fredheim, Siri

    2016-01-01

    BACKGROUND: The purpose of this study was to explore the possible difference in the electroencephalogram (EEG) pattern between euglycemia and hypoglycemia in children with type 1 diabetes (T1D) during daytime and during sleep. The aim is to develop a hypoglycemia alarm based on continuous EEG...... measurement and real-time signal processing. METHOD: Eight T1D patients aged 6-12 years were included. A hyperinsulinemic hypoglycemic clamp was performed to induce hypoglycemia both during daytime and during sleep. Continuous EEG monitoring was performed. For each patient, quantitative EEG (qEEG) measures...... in specific bands comparing hypoglycemia to euglycemia both during daytime and during sleep. In daytime the EEG-based algorithm identified hypoglycemia in all children on average at a blood glucose (BG) level of 2.5 ± 0.5 mmol/l and 18.4 (ranging from 0 to 55) minutes prior to blood glucose nadir. During...

  6. Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study (Using a Brain-Computer Interface).

    Science.gov (United States)

    Fernández-Sotos, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio

    2017-11-13

    For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.

  7. Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems Using ν-SVM and BLDA Algorithms

    Directory of Open Access Journals (Sweden)

    Ali MOMENNEZHAD

    2014-06-01

    Full Text Available In this paper, a linear predictive coding (LPC model is used to improve classification accuracy, convergent speed to maximum accuracy, and maximum bitrates in brain computer interface (BCI system based on extracting EEG-P300 signals. First, EEG signal is filtered in order to eliminate high frequency noise. Then, the parameters of filtered EEG signal are extracted using LPC model. Finally, the samples are reconstructed by LPC coefficients and two classifiers, a Bayesian Linear discriminant analysis (BLDA, and b the υ-support vector machine (υ-SVM are applied in order to classify. The proposed algorithm performance is compared with fisher linear discriminant analysis (FLDA. Results show that the efficiency of our algorithm in improving classification accuracy and convergent speed to maximum accuracy are much better. As example at the proposed algorithms, respectively BLDA with LPC model and υ-SVM with LPC model with8 electrode configuration for subject S1 the total classification accuracy is improved as 9.4% and 1.7%. And also, subject 7 at BLDA and υ-SVM with LPC model algorithms (LPC+BLDA and LPC+ υ-SVM after block 11th converged to maximum accuracy but Fisher Linear Discriminant Analysis (FLDA algorithm did not converge to maximum accuracy (with the same configuration. So, it can be used as a promising tool in designing BCI systems.

  8. Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis.

    Science.gov (United States)

    Xinyang Li; Cuntai Guan; Haihong Zhang; Kai Keng Ang

    2017-08-01

    Electrooculogram (EOG) artifact contamination is a common critical issue in general electroencephalogram (EEG) studies as well as in brain-computer interface (BCI) research. It is especially challenging when dedicated EOG channels are unavailable or when there are very few EEG channels available for independent component analysis based ocular artifact removal. It is even more challenging to avoid loss of the signal of interest during the artifact correction process, where the signal of interest can be multiple magnitudes weaker than the artifact. To address these issues, we propose a novel discriminative ocular artifact correction approach for feature learning in EEG analysis. Without extra ocular movement measurements, the artifact is extracted from raw EEG data, which is totally automatic and requires no visual inspection of artifacts. Then, artifact correction is optimized jointly with feature extraction by maximizing oscillatory correlations between trials from the same class and minimizing them between trials from different classes. We evaluate this approach on a real-world EEG dataset comprising 68 subjects performing cognitive tasks. The results showed that the approach is capable of not only suppressing the artifact components but also improving the discriminative power of a classifier with statistical significance. We also demonstrate that the proposed method addresses the confounding issues induced by ocular movements in cognitive EEG study.

  9. Emotion classification using single-channel scalp-EEG recording.

    Science.gov (United States)

    Jalilifard, Amir; Brigante Pizzolato, Ednaldo; Kafiul Islam, Md

    2016-08-01

    Several studies have found evidence for corticolimbic Theta electroencephalographic (EEG) oscillation in the neural processing of visual stimuli perceived as fear or threatening scene. Recent studies showed that neural oscillations' patterns in Theta, Alpha, Beta and Gamma sub-bands play a main role in brain's emotional processing. The main goal of this study is to classify two different emotional states by means of EEG data recorded through a single-electrode EEG headset. Nineteen young subjects participated in an EEG experiment while watching a video clip that evoked three emotional states: neutral, relaxation and scary. Following each video clip, participants were asked to report on their subjective affect by giving a score between 0 to 10. First, recorded EEG data were preprocessed by stationary wavelet transform (SWT) based denoising to remove artifacts. Afterward, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of energy was calculated for each EEG sub-band. Finally, 46 features, as the mean energy of frequency bands between 4 and 50 Hz, containing 689 instances - for each subject -were collected in order to classify the emotional states. Our experimental results show that EEG dynamics induced by horror and relaxing movies can be classified with average classification rate of 92% using support vector machine (SVM) classifier. We also compared the performance of SVM to K-nearest neighbors (K-NN). The results show that K-NN achieves a better classification rate by 94% accuracy. The findings of this work are expected to pave the way to a new horizon in neuroscience by proving the point that only single-channel EEG data carry enough information for emotion classification.

  10. Somatosensory-evoked spikes on electroencephalography (EEG): longitudinal clinical and EEG aspects in 313 children.

    Science.gov (United States)

    Fonseca, Lineu Corrêa; Tedrus, Gloria M A S

    2012-01-01

    Somatosensory-evoked spikes (ESp) are high-voltage potentials registered on the EEG, which accompany each of the percussions on the feet or hands. The objective of this research was to study the longitudinal clinical and EEG aspects of children with ESp. A total of 313 children, 53.7% male, showing ESp on the EEG and with an average initial age of 6.82 (range from 2 to 14 years) were followed for a mean period of 35.7 months. In the initial evaluation, 118 (37.7%) had a history of nonfebrile epileptic seizures (ES). Epileptiform activity (EA) was observed on the EEG in 61% and showed a significantly greater occurrence in children with ES than in those without (P = .000). Of the 118 showing seizures from the start, 53 (44.9%) continued to have seizures; of the 195 without seizures at the start, only 13 (6.67%) developed them. Thus, only 66 (21.1%) children showed ES during the follow-up. ESp disappeared in 237 (75.7%) cases and EA in 221 (70.6%). In the children with ES, it was found that the presence of EA on the first EEG did not indicate continuation of the ES throughout the remaining period, while the 13 children who presented their first ES in a later period showed a greater occurrence of EA on the initial EEG than those who did not develop ES (P = .001). Evidence of brain injury was observed in 43 (13.7%) children and was associated with a greater continuity of the ES during the study (P = .018). ESp, EA, and ES tend to disappear, suggesting an age-dependent phenomenon. The finding of ESp, particularly in the absence of any evidence of brain injury, indicates a low association with ES and benign outcome.

  11. Comparison of imaging modalities and source-localization algorithms in locating the induced activity during deep brain stimulation of the STN.

    Science.gov (United States)

    Mideksa, K G; Singh, A; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Schmidt, G; Muthuraman, M

    2016-08-01

    One of the most commonly used therapy to treat patients with Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Identifying the most optimal target area for the placement of the DBS electrodes have become one of the intensive research area. In this study, the first aim is to investigate the capabilities of different source-analysis techniques in detecting deep sources located at the sub-cortical level and validating it using the a-priori information about the location of the source, that is, the STN. Secondly, we aim at an investigation of whether EEG or MEG is best suited in mapping the DBS-induced brain activity. To do this, simultaneous EEG and MEG measurement were used to record the DBS-induced electromagnetic potentials and fields. The boundary-element method (BEM) have been used to solve the forward problem. The position of the DBS electrodes was then estimated using the dipole (moving, rotating, and fixed MUSIC), and current-density-reconstruction (CDR) (minimum-norm and sLORETA) approaches. The source-localization results from the dipole approaches demonstrated that the fixed MUSIC algorithm best localizes deep focal sources, whereas the moving dipole detects not only the region of interest but also neighboring regions that are affected by stimulating the STN. The results from the CDR approaches validated the capability of sLORETA in detecting the STN compared to minimum-norm. Moreover, the source-localization results using the EEG modality outperformed that of the MEG by locating the DBS-induced activity in the STN.

  12. EEG activity as an objective measure of cognitive load during effortful listening: A study on pediatric subjects with bilateral, asymmetric sensorineural hearing loss.

    Science.gov (United States)

    Marsella, Pasquale; Scorpecci, Alessandro; Cartocci, Giulia; Giannantonio, Sara; Maglione, Anton Giulio; Venuti, Isotta; Brizi, Ambra; Babiloni, Fabio

    2017-08-01

    Deaf subjects with hearing aids or cochlear implants generally find it challenging to understand speech in noisy environments where a great deal of listening effort and cognitive load are invested. In prelingually deaf children, such difficulties may have detrimental consequences on the learning process and, later in life, on academic performance. Despite the importance of such a topic, currently, there is no validated test for the assessment of cognitive load during audiological tasks. Recently, alpha and theta EEG rhythm variations in the parietal and frontal areas, respectively, have been used as indicators of cognitive load in adult subjects. The aim of the present study was to investigate, by means of EEG, the cognitive load of pediatric subjects affected by asymmetric sensorineural hearing loss as they were engaged in a speech-in-noise identification task. Seven children (4F and 3M, age range = 8-16 years) affected by asymmetric sensorineural hearing loss (i.e. profound degree on one side, mild-to-severe degree on the other side) and using a hearing aid only in their better ear, were included in the study. All of them underwent EEG recording during a speech-in-noise identification task: the experimental conditions were quiet, binaural noise, noise to the better hearing ear and noise to the poorer hearing ear. The subjects' Speech Recognition Thresholds (SRT) were also measured in each test condition. The primary outcome measures were: frontal EEG Power Spectral Density (PSD) in the theta band and parietal EEG PSD in the alpha band, as assessed before stimulus (word) onset. No statistically significant differences were noted among frontal theta power levels in the four test conditions. However, parietal alpha power levels were significantly higher in the "binaural noise" and in the "noise to worse hearing ear" conditions than in the "quiet" and "noise to better hearing ear" conditions (p hearing loss with the purpose of studying the cognitive load during

  13. Tensor-based fusion of EEG and FMRI to understand neurological changes in Schizophrenia

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Levin-Schwartz, Yuri; Calhoun, Vince D.

    2016-01-01

    Neuroimaging modalities such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) provide information about neurological functions in complementary spatiotemporal resolutions; therefore, fusion of these modalities is expected to provide better understanding of brain...... activity. In this paper, we jointly analyze fMRI and multi-channel EEG signals collected during an auditory oddball task with the goal of capturing brain activity patterns that differ between patients with schizophrenia and healthy controls. Rather than selecting a single electrode or matricizing the third......-order tensor that can be naturally used to represent multi-channel EEG signals, we preserve the multi-way structure of EEG data and use a coupled matrix and tensor factorization (CMTF) model to jointly analyze fMRI and EEG signals. Our analysis reveals that (i) joint analysis of EEG and fMRI using a CMTF model...

  14. Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis.

    Science.gov (United States)

    Dubarry, Anne-Sophie; Badier, Jean-Michel; Trébuchon-Da Fonseca, Agnès; Gavaret, Martine; Carron, Romain; Bartolomei, Fabrice; Liégeois-Chauvel, Catherine; Régis, Jean; Chauvel, Patrick; Alario, F-Xavier; Bénar, Christian-G

    2014-10-01

    Electroencephalography (EEG), magnetoencephalography (MEG), and intracerebral stereotaxic EEG (SEEG) are the three neurophysiological recording techniques, which are thought to capture the same type of brain activity. Still, the relationships between non-invasive (EEG, MEG) and invasive (SEEG) signals remain to be further investigated. In early attempts at comparing SEEG with either EEG or MEG, the recordings were performed separately for each modality. However such an approach presents substantial limitations in terms of signal analysis. The goal of this technical note is to investigate the feasibility of simultaneously recording these three signal modalities (EEG, MEG and SEEG), and to provide strategies for analyzing this new kind of data. Intracerebral electrodes were implanted in a patient with intractable epilepsy for presurgical evaluation purposes. This patient was presented with a visual stimulation paradigm while the three types of signals were simultaneously recorded. The analysis started with a characterization of the MEG artifact caused by the SEEG equipment. Next, the average evoked activities were computed at the sensor level, and cortical source activations were estimated for both the EEG and MEG recordings; these were shown to be compatible with the spatiotemporal dynamics of the SEEG signals. In the average time-frequency domain, concordant patterns between the MEG/EEG and SEEG recordings were found below the 40 Hz level. Finally, a fine-grained coupling between the amplitudes of the three recording modalities was detected in the time domain, at the level of single evoked responses. Importantly, these correlations have shown a high level of spatial and temporal specificity. These findings provide a case for the ability of trimodal recordings (EEG, MEG, and SEEG) to reach a greater level of specificity in the investigation of brain signals and functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    Directory of Open Access Journals (Sweden)

    Psyche eLoui

    2014-10-01

    Full Text Available Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG. However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here we describe an algorithm we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determine whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures vs. non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy.

  16. Rapidly learned identification of epileptic seizures from sonified EEG.

    Science.gov (United States)

    Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael

    2014-01-01

    Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient's electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy.

  17. Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers.

    Science.gov (United States)

    Pastena, Lucio; Formaggio, Emanuela; Faralli, Fabio; Melucci, Massimo; Rossi, Marco; Gagliardi, Riccardo; Ricciardi, Lucio; Storti, Silvia F

    2015-07-01

    Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

  18. Toxoplasma gondii Chitinase Induces Macrophage Activation.

    Directory of Open Access Journals (Sweden)

    Fausto Almeida

    Full Text Available Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50 °C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.

  19. Toxoplasma gondii Chitinase Induces Macrophage Activation.

    Science.gov (United States)

    Almeida, Fausto; Sardinha-Silva, Aline; da Silva, Thiago Aparecido; Pessoni, André Moreira; Pinzan, Camila Figueiredo; Alegre-Maller, Ana Claudia Paiva; Cecílio, Nerry Tatiana; Moretti, Nilmar Silvio; Damásio, André Ricardo Lima; Pedersoli, Wellington Ramos; Mineo, José Roberto; Silva, Roberto Nascimento; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50 °C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.

  20. Signal Quality Assessment Model for Wearable EEG Sensor on Prediction of Mental Stress.

    Science.gov (United States)

    Hu, Bin; Peng, Hong; Zhao, Qinglin; Hu, Bo; Majoe, Dennis; Zheng, Fang; Moore, Philip

    2015-07-01

    Electroencephalogram (EEG) plays an important role in E-healthcare systems, especially in the mental healthcare area, where constant and unobtrusive monitoring is desirable. In the context of OPTIMI project, a novel, low cost, and light weight wearable EEG sensor has been designed and produced. In order to improve the performance and reliability of EEG sensors in real-life settings, we propose a method to evaluate the quality of EEG signals, based on which users can easily adjust the connection between electrodes and their skin. Our method helps to filter invalid EEG data from personal trials in both domestic and office settings. We then apply an algorithm based on Discrete Wavelet Transformation (DWT) and Adaptive Noise Cancellation (ANC) which has been designed to remove ocular artifacts (OA) from the EEG signal. DWT is applied to obtain a reconstructed OA signal as a reference while ANC, based on recursive least squares, is used to remove the OA from the original EEG data. The newly produced sensors were tested and deployed within the OPTIMI framework for chronic stress detection. EEG nonlinear dynamics features and frontal asymmetry of theta, alpha, and beta bands have been selected as biological indicators for chronic stress, showing relative greater right anterior EEG data activity in stressful individuals. Evaluation results demonstrate that our EEG sensor and data processing algorithms have successfully addressed the requirements and challenges of a portable system for patient monitoring, as envisioned by the EU OPTIMI project.

  1. Automated EEG signal analysis for identification of epilepsy seizures and brain tumour.

    Science.gov (United States)

    Sharanreddy, M; Kulkarni, P K

    2013-11-01

    Abstract Electroencephalography (EEG) is a clinical test which records neuro-electrical activities generated by brain structures. EEG test results used to monitor brain diseases such as epilepsy seizure, brain tumours, toxic encephalopathies infections and cerebrovascular disorders. Due to the extreme variation in the EEG morphologies, manual analysis of the EEG signal is laborious, time consuming and requires skilled interpreters, who by the nature of the task are prone to subjective judegment and error. Further, manual analysis of the EEG results often fails to detect and uncover subtle features. This paper proposes an automated EEG analysis method by combining digital signal processing and neural network techniques, which will remove error and subjectivity associated with manual analysis and identifies the existence of epilepsy seizure and brain tumour diseases. The system uses multi-wavelet transform for feature extraction in which an input EEG signal is decomposed in a sub-signal. Irregularities and unpredictable fluctuations present in the decomposed signal are measured using approximate entropy. A feed-forward neural network is used to classify the EEG signal as a normal, epilepsy or brain tumour signal. The proposed technique is implemented and tested on data of 500 EEG signals for each disease. Results are promising, with classification accuracy of 98% for normal, 93% for epilepsy and 87% for brain tumour. Along with classification, the paper also highlights the EEG abnormalities associated with brain tumour and epilepsy seizure.

  2. Artifact removal in co-registered EEG/fMRI by selective average subtraction.

    Science.gov (United States)

    Gonçalves, S I; Pouwels, P J W; Kuijer, J P A; Heethaar, R M; de Munck, J C

    2007-11-01

    Co-registration of EEG (electroencephalogram) and fMRI (functional magnetic resonance imaging) remains a challenge due to the large artifacts induced on the EEG by the MR (magnetic resonance) sequence magnetic fields. Thus, we present an algorithm, based on the average-subtraction method, which is able to correct EEG data for gradient and pulse artifacts. MR sequence timing parameters are estimated from the EEG data and both slice and volume artifact templates are subtracted from the data. A clustering algorithm is proposed to account for the variability of the pulse artifact. The algorithm is able to keep the spontaneous EEG as well as visual evoked potentials (VEPs), while removing gradient and pulse artifacts with only a subtraction of selectively averaged data. In the frequency domain, the artifact frequencies are strongly attenuated. Estimated MR sequence time parameters showed that the correction is extremely sensitive to the slice time value. Pulse artifact clustering showed that most of the variability is due to the time jitter of the pulse artifact markers. Selective subtraction of averages in combination with proper time alignment is enough to remove most of the MR-induced artifacts. Clean EEG can be obtained from raw signals that are corrupted by MR-induced artifacts during simultaneous EEG-fMRI scanning without using dedicated hardware to synchronize EEG and fMRI clocks.

  3. Dry EEG Electrodes

    Science.gov (United States)

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  4. Cytokinin Activity Induced by Thidiazuron 1

    Science.gov (United States)

    Thomas, John Calvin; Katterman, Frank Reinald

    1986-01-01

    The diphenylurea derivative thidiazuron induces a variety of cytokinin responses. Levels above 5 × 10−9 molar and 4 × 10−7 molar stimulate maximum soybean callus growth and radish cotyledon expansion, respectively. A wider range of dose response related effects follows thidiazuron induced tobacco plant regeneration. Analysis of soybean callus extracts strongly suggests that thidiazuron treatment creates an accumulation and/or synthesis of purine cytokinins, able to induce the growth, expansion and regeneration, mentioned above. PMID:16664878

  5. EEG Alpha Synchronization Is Related to Top-Down Processing in Convergent and Divergent Thinking

    Science.gov (United States)

    Benedek, Mathias; Bergner, Sabine; Konen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing…

  6. Music perception and imagery in EEG: Alpha band effects of task and stimulus

    NARCIS (Netherlands)

    Schaefer, R.S.; Vlek, R.J.; Desain, P.W.M.

    2011-01-01

    Previous work has shown that mental imagination of sound generally elicits an increase of alpha band activity (8-12Hz) in the electroencephalogram (EEG). In addition, alpha activity has been shown to be related to music processing. In the current study, EEG signatures were investigated for

  7. Atividade lenta posterior: correlação eletro-clínica Posterior EEG slow activity: electro-clinical correlation

    Directory of Open Access Journals (Sweden)

    Salustiano Gomes Lins

    1971-06-01

    Full Text Available Inicialmente é feita breve exposição dos cinco principais tipos de atividade lenta posterior descritas na literatura eletrencefalográfica: variedade lenta do ritmo alfa, ritmo theta posterior, ondas lentas posteriores a 4 hertz, ritmo delta associado ao pequeno mal e ondas Pi. Em seguida o autor expõe seus achados, baseado num material clínico composto por 760 pacientes, colhidos ao acaso, dos dois sexos e com idades variáveis entre 5 e 24 anos. Excetuando a variedade lenta do ritmo alfa, um ou mais dos outros quatro grafo-elementos referidos foram observados em 131 destes pacientes (80 do sexo masculino e 51 do sexo feminino pertencentes aos 3 primeiros grupos etários (5 a 19 anos. Sua predominância no sexo masculino não alcançou nível de significação estatística, mas a maior incidência nos grupos de menor idade foi significativa a 0,01. O ritmo theta posterior associou-se significativamente apenas a distúrbios de conduta com forte agressividade. Dos 131 casos referidos, 10 eram portadores de pequeno mal e destes, 5 apresentavam ritmo delta posterior (3 do sexo masculino e 2 do sexo feminino. Apenas em dois casos foi observado o ritmo lento posterior a 4 hertz, ambos com comemorativos de traumatismo craniano, seguido de distúrbios da conduta e agressividade.The five principal types of posterior slow activity are reviwed: the slow alpha variant rhythm; the posterior theta rhythm; the posterior slow waves at 4 c/s; the delta rhythm associated with petit mal; the so called Pi waves. The results with EEG tracings of 760 patients of both sexes with ages between 5 and 24 years are reviewed. Except for the slow alpha variant, at least one of the four other phenomena as observed in 131 patients (80 males end 51 females. The theta rhythm was observed in 49 cases (29 males and 20 females. This higher frequence among the males is not significant but the higher frequence among the younger and the association with a clinical picture of

  8. Stimulus-dependent spiking relationships with the EEG

    Science.gov (United States)

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  9. EEG Signal Classification: Introduction to the Problem

    Directory of Open Access Journals (Sweden)

    A. Stancak

    2003-09-01

    Full Text Available The contribution describes the design, optimization and verificationof the off-line single-trial movement classification system. Four typesof movements are used for the classification: the right index fingerextension vs. flexion as well as the right shoulder (proximal vs.right index finger (distal movement. The classification systemutilizes hidden information stored in the characteristic shapes ofhuman brain activity (EEG signal. The great variability of EEGpotentials requires using of context information and hence theclassifier based on Hidden Markov Models (HMM. The suitableparameterization, model structure as well as training andclassification process are suggested on the base of spectral analysisresults and experience with the speech recognition. The training andthe classification are performed with the disjoint sets of EEGrealizations. Classification experiments are performed with 10 randomlychosen sets of EEG realizations. The final average score of thedistal/proximal movement classification is 80%; the standard deviationof classification results is 9%. The classification of the extension /flexion gives comparable results.

  10. EEG in connection with coma.

    Science.gov (United States)

    Wilson, John A; Nordal, Helge J

    2013-01-08

    Coma is a dynamic condition that may have various causes. Important changes may take place rapidly, often with consequences for treatment. The purpose of this article is to provide a brief overview of EEG patterns in comas with various causes, and indicate how EEG contributes in an assessment of the prognosis for coma patients. The article is based on many years of clinical and research-based experience of EEG used for patients in coma. A self-built reference database was supplemented by searches for relevant articles in PubMed. EEG reveals immediate changes in coma, and can provide early information on cause and prognosis. It is the only diagnostic tool for detecting a non-convulsive epileptic status. Locked-in- syndrome may be overseen without EEG. Repeated EEG scans increase diagnostic certainty and make it possible to monitor the development of coma. EEG reflects brain function continuously and therefore holds a key place in the assessment and treatment of coma.

  11. Measurement and modification of the EEG and related behavior

    Science.gov (United States)

    Sterman, M. B.

    1991-01-01

    Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we

  12. Seizure semiology and EEG findings in mitochondrial diseases.

    Science.gov (United States)

    Chevallier, Justyna A; Von Allmen, Gretchen K; Koenig, Mary Kay

    2014-05-01

    Seizures constitute a frequent yet under-described manifestation of mitochondrial disorders (MDs). The aim of this study was to describe electroencephalography (EEG) findings and clinical seizure types in a population of children and adults with mitochondrial disease. Retrospective chart review of 165 records of children and adults with mitochondrial disease seen in the University of Texas Houston Mitochondrial Center between 2007 and 2012 was performed; all subjects were diagnosed with confirmed mitochondrial disease. EEG findings and clinical data, including seizure semiology and response to antiepileptic drugs (AEDs), were analyzed and categorized. Sixty-six percent (109/165) of subjects had a routine EEG performed. Sixty-one percent (67/109) of EEG studies were abnormal and 85% (56/67) had epileptiform discharges. The most common EEG finding was generalized slowing (40/67, 60%). The most frequent category of epileptiform activity seen was multifocal discharges (41%), followed by focal (39%) and generalized (39%) discharges. Clinical seizures were seen in 55% of subjects and the most common types of seizures observed were complex partial (37%) and generalized tonic-clonic (GTC; 37%). The most common seizure type in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) was GTC (33%), with generalized or focal discharges seen on EEG. In Leigh syndrome GTC (11%) and complex partial (11%) seizures were the most frequent types. Of 60 subjects with clinical seizures, 28% were intractable to medical treatment. Mitochondrial disorder should be included in the list of differential diagnosis in any child that presents with encephalopathy, seizures, and a fluctuating clinical course. Given the relatively high prevalence of EEG abnormalities in patients with MD, EEG should be performed during initial evaluation in all patients with MD, not only upon clinical suspicion of epilepsy. Wiley Periodicals, Inc. © 2014 International

  13. Slower EEG alpha generation, synchronization and “flow”—possible biomarkers of cognitive impairment and neuropathology of minor stroke

    Directory of Open Access Journals (Sweden)

    Jelena Petrovic

    2017-09-01

    Full Text Available Background We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. Methods We included 10 patients with right middle cerebral artery (MCA ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS, whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA and MoCA memory index (MoCA-MIS. The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8, and corresponding lateral posterior (P3, P4, T5, T6 electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG, the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure, the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs. Statistical analysis was done using a Kruskal–Wallis ANOVA with a post-hoc Mann–Whitney U two-tailed test, and Spearman’s correlation. Results We demonstrated transient cognitive impairment alongside a slower alpha frequency (αAVG in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered “alpha flow”, indicating the sustained augmentation of inter-hemispheric interactions

  14. Generalized Information Equilibrium Approaches to EEG Sleep Stage Discrimination.

    Science.gov (United States)

    Zorick, Todd; Smith, Jason

    2016-01-01

    Recent advances in neuroscience have raised the hypothesis that the underlying pattern of neuronal activation which results in electroencephalography (EEG) signals is via power-law distributed neuronal avalanches, while EEG signals are nonstationary. Therefore, spectral analysis of EEG may miss many properties inherent in such signals. A complete understanding of such dynamical systems requires knowledge of the underlying nonequilibrium thermodynamics. In recent work by Fielitz and Borchardt (2011, 2014), the concept of information equilibrium (IE) in information transfer processes has successfully characterized many different systems far from thermodynamic equilibrium. We utilized a publicly available database of polysomnogram EEG data from fourteen subjects with eight different one-minute tracings of sleep stage 2 and waking and an overlapping set of eleven subjects with eight different one-minute tracings of sleep stage 3. We applied principles of IE to model EEG as a system that transfers (equilibrates) information from the time domain to scalp-recorded voltages. We find that waking consciousness is readily distinguished from sleep stages 2 and 3 by several differences in mean information transfer constants. Principles of IE applied to EEG may therefore prove to be useful in the study of changes in brain function more generally.

  15. A three domain covariance framework for EEG/MEG data.

    Science.gov (United States)

    Roś, Beata P; Bijma, Fetsje; de Gunst, Mathisca C M; de Munck, Jan C

    2015-10-01

    In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. Our covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, like in combined EEG-fMRI experiments in which the correlation between EEG and fMRI signals is investigated. We use a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. We apply our method to real EEG and MEG data sets. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Headache in the paediatrics patients, clinical-EEG Correlation.

    Directory of Open Access Journals (Sweden)

    Marcelino Lizano Rabelo

    2011-12-01

    Full Text Available A descriptive study was made, with the objective to describe to a clinical group of variables epidemiologists and of laboratory of 108 patients to whom it was made to them and EEG and whose fundamental symptom was the headache; in the period January to December of 2009. The data was taken from the registry of patients of the neurophysiology department of Paediatric Hospital. The variables of the study were: age, sex, type of headache, results of the EEG, and characteristics of pathological EEG activity. The results were expressed in graphical and analyzed tables and of percentage form. The patients of 14 to 16 years predominated (40,7%, female patient (53,7%, clinically the observed recurrent acute migraine in 60 cases was the one that prevailed, as well as normality in the EEG (81,5%, the pathological cases we observed focal paroxysms in 15 patients (75% and focal alterations in 80% of the pathological EEG. Conclusions: In our environment the migraine in the paediatric patient is a frequent pathology that motivates the accomplishment of diverse studies among them the EEG, being this normal one in most of the cases and the non-specific alterations, the recurrent acute migraine and female patients prevailed.

  17. Corrected Four-Sphere Head Model for EEG Signals

    Directory of Open Access Journals (Sweden)

    Solveig Næss

    2017-10-01

    Full Text Available The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF, skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM. We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  18. Methodological aspects of EEG and Body dynamics measurements during motion.

    Directory of Open Access Journals (Sweden)

    Pedro eReis

    2014-03-01

    Full Text Available EEG involves recording, analysis, and interpretation of voltages recorded on the human scalp originating from brain grey matter. EEG is one of the favorite methods to study and understand processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements, that are performed in response to the environment. However, there are methodological difficulties when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions of how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determination of real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks.

  19. Eating epilepsy: phenotype, MRI, SPECT and video-EEG observations.

    Science.gov (United States)

    Patel, M; Satishchandra, P; Saini, J; Bharath, R D; Sinha, S

    2013-11-01

    Eating epilepsy is one of the rare forms of reflex epilepsy precipitated by eating. Previous studies have demonstrated lesions due to variable aetiology involving the temporolimbic and suprasylvian regions. To study anatomical correlates of reflex eating epilepsy using multimodality investigations (MR imaging, video-EEG and SPECT). Six patients (M:F=3:3; mean age: 20.7±4.9 years) with eating epilepsy were subjected to MRI of brain, video-EEG studies and SPECT scan. These were correlated with phenotypic presentations. Among the five patients with ictal recording of eating epilepsy during video-EEG, semiology was characterized by behavioural arrest followed by either flexion or extension of trunk and neck and two patients had speech arrest and four had salivation from angle of mouth. Another patient had EEG changes during "thought about eating". Four patients had perisylvian frontal lobe lesions and one had high frontal lesion on MRI. Ictal EEG (n=6) showed ictal rhythmic slowing/fast activity in parieto-temporal (n=2) or fronto-temporal (n=4) regions with subsequent secondary generalization in three. Ictal and interictal SPECT imaging showed changes in frontal lobe (n=1), anterior temporal lobe (n=1), and parieto-insular region (n=1) suggesting it to be seizure onset zone. Three of four patients with structural lesions in MRI had concordant ictal EEG and ictal SPECT changes. Lesions near the perisylvian region might play a major role in eating epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Long-term EEG in adults: sleep-deprived EEG (SDE), ambulatory EEG (Amb-EEG) and long-term video-EEG recording (LTVER).

    Science.gov (United States)

    Michel, V; Mazzola, L; Lemesle, M; Vercueil, L

    2015-03-01

    Long-term EEG in adults includes three modalities: sleep deprived-EEG lasting 1 to 3 hours, 24 hours ambulatory-EEG and continuous prolonged video-EEG lasting from several hours to several days. The main indications of long-term EEG are: syndromic classification of epilepsy; search for interictal discharges when epilepsy is suspected or for the purpose of therapeutic evaluation; positive diagnosis of paroxysmal clinical events; and pre-surgical evaluation of drug-resistant epilepsy. Sleep deprived-EEG and ambulatory-EEG are indicated to detect interictal discharges in order to validate a syndromic classification of epilepsy when standard EEG is negative. These exams can help in evaluating treatment efficacy, especially when clinical evaluation is difficult. Long-term video EEG is indicated for drug-resistant epilepsy, to analyze electro-clinical correlations in a pre-surgical evaluation context, and to refine a positive diagnosis when paroxysmal clinical events are frequent. Copyright © 2015. Published by Elsevier SAS.

  1. Electroencephalogy (EEG) Feedback in Decision-Making

    Science.gov (United States)

    2015-08-26

    Electroencephalogy ( EEG ) Feedback In Decision- Making The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful...feedback when training rapid decision-making. More specifically, EEG will allow us to provide online feedback about the neural decision processes...Electroencephalogy ( EEG ) Feedback In Decision-Making Report Title The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful

  2. Similarity Analysis of EEG Data Based on Self Organizing Map Neural Network

    OpenAIRE

    Ibrahim Salem Jahan; Michal Prilepok; Vaclav Snasel; Marek Penhaker

    2014-01-01

    The Electroencephalography (EEG) is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use the EEG signals to control an external device via Brain Computer Interface (BCI) by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our...

  3. Resting state cortical EEG rhythms in Alzheimer's disease: toward EEG markers for clinical applications: a review.

    Science.gov (United States)

    Vecchio, Fabrizio; Babiloni, Claudio; Lizio, Roberta; Fallani, Fabrizio De Vico; Blinowska, Katarzyna; Verrienti, Giulio; Frisoni, Giovanni; Rossini, Paolo M

    2013-01-01

    The human brain contains an intricate network of about 100 billion neurons. Aging of the brain is characterized by a combination of synaptic pruning, loss of cortico-cortical connections, and neuronal apoptosis that provoke an age-dependent decline of cognitive functions. Neural/synaptic redundancy and plastic remodeling of brain networking, also secondary to mental and physical training, promote maintenance of brain activity and cognitive status in healthy elderly subjects for everyday life. However, age is the main risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) that impact on cognition. Growing evidence supports the idea that AD targets specific and functionally connected neuronal networks and that oscillatory electromagnetic brain activity might be a hallmark of the disease. In this line, digital electroencephalography (EEG) allows noninvasive analysis of cortical neuronal synchronization, as revealed by resting state brain rhythms. This review provides an overview of the studies on resting state eyes-closed EEG rhythms recorded in amnesic mild cognitive impairment (MCI) and AD subjects. Several studies support the idea that spectral markers of these EEG rhythms, such as power density, spectral coherence, and other quantitative features, differ among normal elderly, MCI, and AD subjects, at least at group level. Regarding the classification of these subjects at individual level, the most previous studies showed a moderate accuracy (70-80%) in the classification of EEG markers relative to normal and AD subjects. In conclusion, resting state EEG makers are promising for large-scale, low-cost, fully noninvasive screening of elderly subjects at risk of AD.

  4. Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.

    Science.gov (United States)

    Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L

    2014-10-01

    Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond