Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen, Xing-Le; Lei, Yin-Zhao
2015-03-01
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters, it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate. Project supported by the National Defense Basic Technology Research Program of China (Grant No. Z132013T001).
Validation of Finite Element Solutions of Nonlinear, Periodic Eddy Current Problems
Plasser René
2014-12-01
Full Text Available An industrial application is presented to validate a finite element analysis of 3-dimensional, nonlinear eddy-current problems with periodic excitation. The harmonic- balance method and the fixed-point technique are applied to get the steady state solution using the finite element method. The losses occurring in steel reinforcements underneath a reactor due to induced eddy-currents are computed and compared to measurements.
CONVERGENCE OF AN ALTERNATING A-φ SCHEME FOR QUASI-MAGNETOSTATIC EDDY CURRENT PROBLEM
Chang-feng Ma
2004-01-01
We propose in this paper an alternating A-φ method for the quasi-magnetostatic eddy current problem by means of finite element approximations. Bounds for continuous and discrete error in finite time are given. And it is verified that provided the time step τ is sufficiently small, the proposed algorithm yields for finite time T an error of (h + τ1/2)in the L2-norm for the magnetic field H(=μ-1△× A), where h is the mesh size, μ the magnetic permeability.
Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)
2004-02-15
Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.
The transition matrix method for a 2D eddy current interaction problem
Larsson, Lars; Rosell, Anders
2012-05-01
A 2D model of the eddy current interaction problem that consists of an inhomogeneity in a conductive half space is presented. The applied analytical method of solution is the transition (T) matrix method. This involves use of the free space Green's function to generate a system of boundary integral relations. In this way, it is easy to identify the contributions to the total solution from each different scattering surface. The different parts are separated also in the computation of the impedance. This leads to low cost simulations in terms of computation time and qualify the method to be used to obtain probability of detection (POD) curves. The T matrix method is a building block method and the possibility to extend the geometry with several inhomogeneities and extra layers will be discussed. The model is compared with a Finite Element (FE) model and numerical examples for the case with a cylindrical inhomogeneity are given.
Advanced model of eddy-current NDE inverse problem with sparse grid algorithm
Zhou, Liming; Sabbagh, Harold A.; Sabbagh, Elias H.; Murphy, R. Kim; Bernacchi, William
2017-02-01
In model-based inverse problem, some unknown parameters need to be estimated. These parameters are used not only to characterize the physical properties of cracks, but also to describe the position of the probes (such as lift off and angles) in the calibration. After considering the effect of the position of the probes in the inverse problem, the accuracy of the inverse result will be improved. With increasing the number of the parameters in the inverse problems, the burden of calculations will increase exponentially in the traditional full grid method. The sparse grid algorithm, which was introduced by Sergey A. Smolyak, was used in our work. With this algorithm, we obtain a powerful interpolation method that requires significantly fewer support nodes than conventional interpolation on a full grid. In this work, we combined sparse grid toolbox TASMANIAN, which is produced by Oak Ridge National Laboratory, and professional eddy-current NDE software, VIC-3D R◯, to solve a specific inverse problem. An advanced model based on our previous one is used to estimate length and depth of the crack, lift off and two angles of the position of probes. Considering the calibration process, pseudorandom noise is considered in the model and statistical behavior is discussed.
A discrete geometric formulation for eddy-current problems in fusion devices
Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben
2014-03-01
All thermonuclear controlled fusion devices under construction or design have such high performances to require a special care in the dimensioning of various components, specifically from the electromagnetic point of view. To this purpose, it is fundamental to develop models which are both accurate (i.e. able to describe the physical phenomena) and predictive (i.e. useful not only to explain what happens in running experiments, but also to reliably extrapolate to other range of parameters). The dynamics of fusion plasmas is often conveniently described by Magneto-Hydro-Dynamics (MHD) equations, which predict that some unstable evolution modes may exist. On the other hand, the complexity of the intrinsically 3D model of the interactions between a realistic unstable plasma, the surrounding passive structures (important to guarantee a good MHD stability) and the active conductors (coils) require the numerical solution of challenging electromagnetic problems. In this work a discrete geometric formulation for eddy-current problems in the frequency domain is developed; the magnetic fields produced by a typical active coil system is calculated in the presence of 3D conductive structures.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
石文泽; 吴运新; 龚海; 赵志然; 范吉志; 谭良辰
2016-01-01
Three differential equations based on different definitions of current density are compared. FormulationⅠ is based on an incomplete equation for total current density (TCD). FormulationsⅡ andⅢ are based on incomplete and complete equations for source current density (SCD), respectively. Using the weak form of finite element method (FEM), three formulations were applied in a spiral coil electromagnetic acoustic transducer (EMAT) example to solve magnetic vector potential (MVP). The input impedances calculated by Formulation III are in excellent agreement with the experimental measurements. Results show that the errors for Formulations I & II vary with coil diameter, coil spacing, lift-off distance and external excitation frequency, for the existence of eddy-current and skin & proximity effects. And the current distribution across the coil conductor also follows the same trend. It is better to choose Formulation I instead of Formulation III to solve MVP when the coil diameter is less than twice the skin depth for Formulation I is a low cost and high efficiency calculation method.
Transient eddy current flow metering
Forbriger, Jan
2015-01-01
Measuring local velocities or entire flow rates in liquid metals or semiconductor melts is a notorious problem in many industrial applications, including metal casting and silicon crystal growth. We present a new variant of an old technique which relies on the continuous tracking of a flow-advected transient eddy current that is induced by a pulsed external magnetic field. This calibration-free method is validated by applying it to the velocity of a spinning disk made of aluminum. First tests at a rig with a flow of liquid GaInSn are also presented.
Transient eddy current flow metering
Forbriger, J.; Stefani, F.
2015-10-01
Measuring local velocities or entire flow rates in liquid metals or semiconductor melts is a notorious problem in many industrial applications, including metal casting and silicon crystal growth. We present a new variant of an old technique which relies on the continuous tracking of a flow-advected transient eddy current that is induced by a pulsed external magnetic field. This calibration-free method is validated by applying it to the velocity of a spinning disk made of aluminum. First tests at a rig with a flow of liquid GaInSn are also presented.
Tong Kang; Zheng-peng Wu; De-hao Yu
2004-01-01
In this paper, we investigate the finite element A - φ method to approximate the eddy current equations with discontinuous coefficients in general three-dimensional Lipschitz polyhedral eddy current region. Nonmatching finite element meshes on the interface are considered and optimal error estimates are obtained.
A. O. Abramovych
2014-06-01
Full Text Available Introduction. At present there are many electrical schematic metal detectors (the most common kind of ground penetrating radar, which are differ in purpose. Each scheme has its own advantages and disadvantages compared to other schemes. Designing metal detector problem of optimal selection of functional units most schemes can only work with a narrow range of special purpose units. Functional units used in circuits can be replaced by better ones, but specialization schemes do not provide such a possibility. Description of problem. Author has created a "complex for research of functional units of metal detectors" that is the universal system that meets the task. With this set of studies conducted on the practical implementation of radar-eddy current method of distinguishing non-ferrous metals (gold, copper, etc. is based. Description of method. Mathematical tools using have to be treated as a signal metal detector to distinguish metals: gold, copper and others. Conclusions. Processing of partial pulses may have information about beforehand signal loss during propagation in heterogeneous media with lossy nonuniform distribution parameters. Using eddy currents To calculate the value of the input voltage depending on the conductivity of the metal in the receiving antenna.Combining two different methods for processing the received signal theoretically it could be proved that with high probability can distinguish non-ferrous metals - gold, copper etc.
White, D; Fasenfest, B; Rieben, R; Stowell, M
2006-09-08
We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be accelerated via a low-rank QR approximation of the discretized Biot-Savart law.
Remote field eddy current testing
Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M
2001-03-01
The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included.
Eddy current thickness measurement apparatus
Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.
2015-06-16
A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.
Observed eddy dissipation in the Agulhas Current
Braby, Laura; Backeberg, Björn C.; Ansorge, Isabelle; Roberts, Michael J.; Krug, Marjolaine; Reason, Chris J. C.
2016-08-01
Analyzing eddy characteristics from a global data set of automatically tracked eddies for the Agulhas Current in combination with surface drifters as well as geostrophic currents from satellite altimeters, it is shown that eddies from the Mozambique Channel and south of Madagascar dissipate as they approach the Agulhas Current. By tracking the offshore position of the current core and its velocity at 30°S in relation to eddies, it is demonstrated that eddy dissipation occurs through a transfer of momentum, where anticyclones consistently induce positive velocity anomalies, and cyclones reduce the velocities and cause offshore meanders. Composite analyses of the anticyclonic (cyclonic) eddy-current interaction events demonstrate that the positive (negative) velocity anomalies propagate downstream in the Agulhas Current at 44 km/d (23 km/d). Many models are unable to represent these eddy dissipation processes, affecting our understanding of the Agulhas Current.
Spineanu, A.; Zorgati, R.
1995-12-31
Eddy current non-destructive testing is used by EDF to detect faults affecting conductive objects such as steam generator tubes. A new technique, known as eddy current imaging, is being developed to facilitate diagnosis in this context. The first stage in this work, discussed in the present paper, consists in solving the direct problem. This entails determining the measurable quantities, on the basis of a thorough knowledge of the material considered. This was done by formulating the direct problem in terms of eddy currents in general 3D geometry context, applying distribution theory and Maxwell equations. Since no direct problem code was available we resorted to simplified situations. Taking care not to interfere with previous developments or those to be attempted in an inversion context, we studied the case of a flaw affecting a 2D structure, illuminated by a plane wave type probe. For this configuration, we studied the exact model and compared results with those of a linearized simplified model. This study emphasizes the ill-posed situation of the eddy current inverse problem related with the severe electromagnetic field attenuation. This means that regularization of the inverse problem, although absolutely necessary, will not be sufficient. Owing to the simplicity of the models available and implemented during the inversion process, processing real data would not yet be possible. We must first focus all our efforts on the direct 3 D problem, in conformity with the requirements of the inverse procedure ad describing a realistic eddy current NDT situation. At the same time, consideration should be given to the design of a specific probe customized for eddy current imaging. (authors). 9 refs., 5 figs., 3 appends.
Conformable eddy current array delivery
Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes
2016-02-01
The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.
EDDY CURRENT CHARACTERIZATION OF NANOMATERIALS
A YOUNES
2015-06-01
Full Text Available NDT Magnetic measurements as impedance in Eddy currents, corecitif and residual field in hysteresis loop are used to study the different stages of mechanical alloying in the Fe–Co system. In this paper, we changed the electromagnetic properties of Fe-Co, by developing their metallurgical parameters such as grain size. For this we are used a planetary ball mill, we are milled the FeCo alloy for different milling times until to obtain nanostructure, the lamellar structure with some small particles embedded in them was observed during the first stage of mechanical alloying. XRD patterns show after 10 h of milling the formation of a disordered solid solution having a body-centered cubic (bcc structure. After 40h of milling, morphological studies indicated that the average crystallites size is around 15 nm.
Conjugate spectrum filters for eddy current signal processing
Stepinski, T.; Maszi, N. (Univ. of Uppsala (Sweden). Dept. of Technology.)
1993-07-01
The paper addresses the problem of detection and classification of material defects during eddy current inspection. Digital signal processing algorithms for detection and characterization of flaws are considered and a new type of filter for classification of eddy current data is proposed. In the first part of the paper the signal processing blocks used in modern eddy current instruments are presented and analyzed in terms of information transmission. The processing usually consists of two steps: detection by means of amplitude-phase detectors and filtering of the detector output signals by means of analog signal filters. Distortion introduced by the signal filters is considered and illustrated using real eddy current responses. The nature of the distortion is explained and the way to avoid it is indicated. A novel method for processing the eddy current responses is presented in the second part of the paper. The method employs two-dimensional conjugate spectrum filters (CSFs) that are sensitive both to the phase angle and the shape of the eddy current responses. First the theoretical background of the CSF is presented and then two different ways of application, matched filters and orthogonal conjugate spectrum filters, are considered. The matched CSFs can be used for attenuation of all signals with the phase angle different from the selected prototype. The orthogonal filters are able to suppress completely a specific interference, e.g. the response of supporting plate when testing heat exchanger tubes. The performance of the CSFs is illustrated by means of real and simulated eddy current signals.
A western boundary current eddy characterisation study
Ribbe, Joachim; Brieva, Daniel
2016-12-01
The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.
Hamman, E.; Zorgati, R.
1995-12-31
Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an `optimization` type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append.
Eddy Current Testing, RQA/M1-5330.17.
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Introduction, Eddy Current Principles, Eddy Current Equipment, Eddy Current Methods,…
About Eddy Currents in Induction Melting Processes
Gafiţa Nicolae-Bogdan
2008-05-01
Full Text Available In this paper we present a method forcomputing the eddy currents in induction meltingprocesses for non-ferrous alloys. We take intoconsideration the situation when only the crucible ismoving, inside the coils. This fact makes differentialcomputation methods to be hard to apply, because isnecessary to generate a new mesh and a new systemmatrix for every for every new position of the cruciblerelated to the coils. Integral methods cancel thisdrawback because the mesh is generated only for thedomains with eddy currents. For integral methods, themesh and the inductance matrix remain unchangedduring the movement of the crucible; only the free termsof the equation system will change.
Investigation on a new inducer of pulsed eddy current thermography
He, Min; Zhang, Laibin; Zheng, Wenpei; Feng, Yijing
2016-09-01
In this paper, a new inducer of pulsed eddy current thermography (PECT) is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR) camera's view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.
Investigation on a new inducer of pulsed eddy current thermography
Min He
2016-09-01
Full Text Available In this paper, a new inducer of pulsed eddy current thermography (PECT is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR camera’s view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.
Eddy current NDE performance demonstrations using simulation tools
Maurice, L. [EDF - CEIDRE, 2 rue Ampere, 93206 Saint-Denis Cedex 1 (France); Costan, V.; Guillot, E.; Thomas, P. [EDF - R and D, THEMIS, 1, avenue du General de Gaulle, 92141 Clamart (France)
2013-01-25
To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.
Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.
Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin
2011-01-01
In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects.
Analysis of eddy currents in the two-half isolated vacuum vessel of an iron core tokamak
Liu, L.J., E-mail: liulongjian001@yeah.net [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Rao, B.; Zhang, M.; Yu, K.X.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2015-12-15
Eddy currents in the vacuum vessel can cause many problems in plasma diagnostics and control, the fast analysis of eddy current is very important. In this paper, the characteristic of eddy currents in the thin shell of a two-half isolated vacuum vessel and the iron core's effect on eddy currents are analyzed, then an analytical method is used to calculate toroidal eddy currents in the vacuum vessel. Using this method, the eddy currents can be calculated rapidly which will benefit more accurate plasma reconstruction and real-time control. The calculated results by this method agree well with finite element method simulations based on J-TEXT configuration.
Swiderski, Waldemar
2016-10-01
Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.
Essential parameters in eddy current inspection
Stepinski, T. [Uppsala Univ. (Sweden). Signals and Systems
2000-05-01
Our aim was to qualitatively analyze a number of variables that may affect the result of eddy current (EC) inspection but because of various reasons are not considered as essential in common practice. In the report we concentrate on such variables that can vary during or between inspections but their influence is not determined during routine calibrations. We present a qualitative analysis of the influence of the above-mentioned variables on the ability to detect and size flaws using mechanized eddy current testing (ET). ET employs some type of coil or probe, sensing magnetic flux generated by eddy currents induced in the tested specimen. An amplitude-phase modulated signal (with test frequency f0 ) from the probe is sensed by the EC instrument. The amplitude-phase modulated signal is amplified and demodulated in phase-sensitive detectors removing carrier frequency f0 from the signal. The detectors produce an in-phase and a quadrature component of the signal defining it as a point in the impedance plane. Modern instruments are provided with a screen presenting the demodulated and filtered signal in complex plane. We focus on such issues, related to the EC equipment as, probe matching, distortion introduced by phase discriminators and signal filters, and the influence of probe resolution and lift-off on sizing. The influence of different variables is investigated by means of physical reasoning employing theoretical models and demonstrated using simulated and real EC signals. In conclusion, we discuss the way in which the investigated variables may affect the result of ET. We also present a number of practical recommendations for the users of ET and indicate the areas that are to be further analyzed.
Magnetoresistive flux focusing eddy current flaw detection
Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Numeral eddy current sensor modelling based on genetic neural network
Yu A-Long
2008-01-01
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.
IVA Ultrasonic and Eddy Current NDE for ISS Project
National Aeronautics and Space Administration — Phased array ultrasonic testing (PAUT) instruments and array eddy current testing instruments were tested on hypervelocity impact damaged aluminum plates simulating...
Eddy-current-damped microelectromechanical switch
Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)
2007-10-30
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Eddy-current-damped microelectromechanical switch
Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)
2009-12-15
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Eddy Currents: Levitation, Metal Detectors, and Induction Heating
Wouch, G.; Lord, A. E., Jr.
1978-01-01
A simple and accessible calculation is given of the effects of eddy currents for a sphere in the field of a single circular loop of alternating current. These calculations should help toward the inclusion of eddy current effects in upper undergraduate physics courses. (BB)
Calculation of Eddy currents in the ETE spherical torus
Ludwig, Gerson Otto
2002-07-01
A circuit model based on a Green's function method was developed to evaluate the currents induced during startup in the vessel of ETE (Spherical Tokamak Experiment). The eddy currents distribution is calculated using a thin shell approximation for the vacuum vessel and local curvilinear coordinates. The results are compared with values of the eddy currents measured in ETE. (author)
Simulation of Cracks Detection in Tubes by Eddy Current Testing
S Bennoud
2016-12-01
Full Text Available The eddy current testing can be used such as a perfect tool to characterize defects in conducting materials. However, in the latest years, an important progress was made in the development of software for the eddy current testing simulations. Evaluation of the NDT modeling tools is the principal goal of this study. Main concerns of the aeronautic industry and the potential contribution of modeling are discussed and illustrated. Simulation by finite element method is realized with the aim to calculate the electromagnetic energy of interaction between coil and tested part that enables to deduce the impedance response. The objective of this work is the development of a code for efficient resolution of an electromagnetic problem modeling, especially, for the analysis of probe response due to the eddy current process. The validation of developed code was made. The obtained results converge quickly towards the solution given by the (FEMM code with an average error of 0.018 for real parts of impedance and 0.004 for imaginary parts. The presented results in this work serve to illustrate that the proposed method is practical and they are also of some intrinsic interest especially in the control of aluminum tubes used in aeronautics.
Biogeochemical properties of eddies in the California Current System
Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent
2016-06-01
The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1 year (800 km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their ~6 month lifetime as they propagate 400 km offshore. At any given time ~8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain ~50 and 20% of the transport of nitrate and plankton, respectively.
Wind changes above warm Agulhas Current eddies
Rouault, M
2016-01-01
Full Text Available speeds above the eddies at the instantaneous scale; 20 % of cases had incomplete data due to partial global coverage by the scatterometer for one path. For cases where the wind is stronger above warm eddies, there is no relationship between the increase...
Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S
2013-01-01
Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...
Advanced Eddy current NDE steam generator tubing.
Bakhtiari, S.
1999-03-29
As part of a multifaceted project on steam generator integrity funded by the U.S. Nuclear Regulatory Commission, Argonne National Laboratory is carrying out research on the reliability of nondestructive evaluation (NDE). A particular area of interest is the impact of advanced eddy current (EC) NDE technology. This paper presents an overview of work that supports this effort in the areas of numerical electromagnetic (EM) modeling, data analysis, signal processing, and visualization of EC inspection results. Finite-element modeling has been utilized to study conventional and emerging EC probe designs. This research is aimed at determining probe responses to flaw morphologies of current interest. Application of signal processing and automated data analysis algorithms has also been addressed. Efforts have focused on assessment of frequency and spatial domain filters and implementation of more effective data analysis and display methods. Data analysis studies have dealt with implementation of linear and nonlinear multivariate models to relate EC inspection parameters to steam generator tubing defect size and structural integrity. Various signal enhancement and visualization schemes are also being evaluated and will serve as integral parts of computer-aided data analysis algorithms. Results from this research will ultimately be substantiated through testing on laboratory-grown and in-service-degraded tubes.
Eddy Current Flexible Probes for Complex Geometries
Gilles-Pascaud, C.; Decitre, J. M.; Vacher, F.; Fermon, C.; Pannetier, M.; Cattiaux, G.
2006-03-01
The inspection of materials used in aerospace, nuclear or transport industry is a critical issue for the safety of components exposed to stress or/and corrosion. The industry claims for faster, more sensitive, and more flexible techniques. Technologies based on Eddy Current (EC) flexible array probe and magnetic sensor with high sensitivity such as giant magneto-resistance (GMR) could be a good solution to detect surface-breaking flaws in complex shaped surfaces. The CEA has recently developed, with support from the French Institute for Radiological Protection and Nuclear Safety (IRSN), a flexible array probe based on micro-coils etched on Kapton. The probe's performances have been assessed for the inspection of reactor residual heat removal pipes, and for aeronautical applications within the framework of the European project VERDICT. The experimental results confirm the very good detection of narrow cracks on plane and curve shaped surfaces. This paper also describes the recent progresses concerning the application of GMR sensors to EC testing, and the results obtained for the detection of small surface breaking flaws.
Ramiro Acevedo
2013-03-01
Full Text Available The eddy current model is obtained from Maxwell’s equations by neglecting the displacement currents in the Amp`ere-Maxwell’s law and it is commonly used in many problems in sciences, engineering and industry (e.g, in induction heating, electromagnetic braking, and power transformers. The so-called “A, V −A potential formulation” (B´ır´o & Preis [1] is nowadays one of the most accepted formulations to solve the eddy current equations numerically, and B´ır´o & Valli [2] have recently provided its well-posedness and convergence analysis for the time-harmonic eddy current problem. The aim of this paper is to extend the analysis performed by B´ır´o & Valli to the general transient eddy current model. We provide a backward-Euler fully-discrete approximation based on nodal ﬁnite elements and we show that the resulting discrete variational problem is well posed. Furthermore, error estimates that prove optimal convergence are settled.El modelo de corrientes inducidas se obtiene a partir de las ecuaciones de Maxwell, despreciando las corrientes de desplazamiento de la Ley de AmpèreMaxwell. Bíró & Valli realizaron recientemente el análisis de existencia y unicidad de solución y el análisis teórico de convergencia para una de las formulaciones más populares del problema de corrientes inducidas en regimen armónico, conocida como “formulación en potenciales A; V A”. En el presente artículo se extiende el análisis realizado por Bíró & Valli al modelo evolutivo general de corrientes inducidas. Presentamos un esquema completamente discreto para la formulación, basado en una aproximación temporal usando un método de Euler implícito y una aproximación espacial a través del método de elementos ﬁnitos. Además, demostramos que el problema discreto resultante es un problema bien planteado y obtenemos estimaciones del error que muestran convergencia óptima.
A novel eddy current damper: theory and experiment
Ebrahimi, Babak; Khamesee, Mir Behrad [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Golnaraghi, Farid, E-mail: khamesee@mecheng1.uwaterloo.c [Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, V3T 0A3 (Canada)
2009-04-07
A novel eddy current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed eddy current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional eddy currents. Since the eddy currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The eddy current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed eddy current damper. A prototype eddy current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The eddy current damper model has a 0.1 m s{sup -2} (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m{sup -1} is achievable with the fabricated prototype. This novel eddy current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.
Eddy-Current Inspection Of Tab Seals On Beverage Cans
Bar-Cohen, Yoseph
1994-01-01
Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.
Wind changes above warm Agulhas Current eddies
Roualt, M
2016-10-01
Full Text Available )C to the surrounding ocean. The analysis of 960 twice daily instantaneous charts of equivalent stability neutral wind speed estimates from the SeaWinds scatterometer onboard the QuikScat satellite collocated with SST during the lifespan of six warm eddies show stronger...
Ladislav Janousek
2006-01-01
Full Text Available The paper deals with variation of eddy current density distribution along material depth and investigates an effect of the variation on a crack signal in eddy current non-destructive testing. Four coaxial rectangular tangential coils are used to induce eddy currents in a tested conductive object. The exciting coils are driven independently by phase-shifted AC currents; a ratio of amplitudes of the exciting currents is continuously changed to vary the distribution of eddy current density along material depth under a circular pick-up coil positioned in centre between the exciting coils. Dependences of a crack signal amplitude and its phase on the ratio are evaluated and special features are extracted. It is revealed that the dependences are strongly influenced by depth of a crack, and thus the extracted features can enhance evaluation of a detected crack.
Eddy current pulsed phase thermography and feature extraction
He, Yunze; Tian, GuiYun; Pan, Mengchun; Chen, Dixiang
2013-08-01
This letter proposed an eddy current pulsed phase thermography technique combing eddy current excitation, infrared imaging, and phase analysis. One steel sample is selected as the material under test to avoid the influence of skin depth, which provides subsurface defects with different depths. The experimental results show that this proposed method can eliminate non-uniform heating and improve defect detectability. Several features are extracted from differential phase spectra and the preliminary linear relationships are built to measure these subsurface defects' depth.
Eddy Current Sensing of Torque in Rotating Shafts
Varonis, Orestes J.; Ida, Nathan
2013-12-01
The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.
Eddy currents in the vacuum vessel of the ETE spherical tokamak
Ludwig, G. O.; DelBosco, E.; Ferreira, J. G.
2005-07-01
A Green's function method is developed to evaluate the currents induced during startup in the vacuum vessel of ETE (Experimento Tokamak Esférico). The non-homogeneous integral equation for the axisymmetric eddy currents distribution is determined using a thin shell approximation for the vacuum vessel and local curvilinear coordinates. This problem is reduced to a circuit model by adopting spectral representations both for the centreline of the vacuum vessel and the surface current density. Results of this model are compared with the distribution of eddy currents measured in ETE.
Non-Destructive Techniques Based on Eddy Current Testing
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754
Non-Destructive Techniques Based on Eddy Current Testing
Ernesto Vázquez-Sánchez
2011-02-01
Full Text Available Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.
Exact temporal eddy current compensation in magnetic resonance imaging systems.
Morich, M A; Lampman, D A; Dannels, W R; Goldie, F D
1988-01-01
A step-response method has been developed to extract the properties (amplitudes and decay time constants) of intrinsic-eddy-current-sourced magnetic fields generated in whole-body magnetic resonance imaging systems when pulsed field gradients are applied. Exact compensation for the eddy-current effect is achieved through a polynomial rooting procedure and matrix inversion once the 2 N properties of the N-term decay process are known. The output of the inversion procedure yields the required characteristics of the filter for spectrum magnitude and phase equalization. The method is described for the general case along with experimental results for one-, two-, and three-term inversions. The method's usefulness is demonstrated for the usually difficult case of long-term (200-1000-ms) eddy-current compensation. Field-gradient spectral flatness measurements over 30 mHz-100 Hz are given to validate the method.
Eddy current pulsed thermography for fatigue evaluation of gear
Tian, Gui Yun; Yin, Aijun; Gao, Bin; Zhang, Jishan; Shaw, Brian
2014-02-01
The pulsed eddy current (PEC) technique generates responses over a wide range of frequencies, containing more spectral coverage than traditional eddy current inspection. Eddy current pulsed thermography (ECPT), a newly developed non-destructive testing (NDT) technique, has advantages such as rapid inspection of a large area within a short time, high spatial resolution, high sensitivity and stand-off measurement distance. This paper investigates ECPT for the evaluation of gear fatigue tests. The paper proposes a statistical method based on single channel blind source separation to extract details of gear fatigue. The discussion of transient thermal distribution and patterns of fatigue contact surfaces as well as the non-contact surfaces have been reported. In addition, the measurement for gears with different cycles of fatigue tests by ECPTand the comparison results between ECPT with magnetic Barkhausen noise (MBN) have been evaluated. The comparison shows the competitive capability of ECPT in fatigue evaluation.
Non-destructive techniques based on eddy current testing.
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.
Stray Capacitances of an Air-Cored Eddy Current Sensor
Yi Jia
2009-12-01
Full Text Available Stray capacitance of an air-cored eddy current sensor is one of the most crucial issues for successful development of an eddy current based residual stress assessment technology at frequency above 50 MHz. A two dimensional finite element model and an equivalent lumped capacitance network have been developed to accurately quantify overall stray capacitances of an air-cored eddy current sensor with specimen being tested. A baseline model was used to evaluate sensor design parameters, including the effects of pitch distance, trace width, trace thickness, number of turns, inner diameter, substrate thickness, lift-off distance, and dielectric constant of shim on the stray capacitances of the sensor. The results clearly indicate that an appropriate sensor design parameters could reduce the stray capacitance and improve the sensor performance. This research opens up a new design space to minimize stray capacitance effect and improve the sensor sensitivity and its lift-off uncertainty at elevated high frequencies.
无
2001-01-01
The paper is mainly concerned with the penalty incurred in finiteelement analysis of the eddy-current loss problem in a fully established multi-filamentary superconducting wire. A finite element model with 4-node quadrilateral isoparametric elements is formulated for the present problem. Unlike the conventional vector potential scheme in use for electromagnetic field problem, the present work features a direct computational approach to eddy current loss. Simplicity and remarkable enhancement in computational accuracy can be obtained with the proposed method.
Defect detection in conducting materials using eddy current testing techniques
Brauer Hartmut
2014-01-01
Full Text Available Lorentz force eddy current testing (LET is a novel nondestructive testing technique which can be applied preferably to the identification of internal defects in nonmagnetic moving conductors. The LET is compared (similar testing conditions with the classical eddy current testing (ECT. Numerical FEM simulations have been performed to analyze the measurements as well as the identification of internal defects in nonmagnetic conductors. The results are compared with measurements to test the feasibility of defect identification. Finally, the use of LET measurements to estimate of the electrical conductors under test are described as well.
U.S. Geological Survey, Department of the Interior — The maximum potential area of eddy bars (MPAEB) represents the cumulative area of the eddy occupied by sand at different times within the photographic record...
Sato, K; Uchimoto, T; Takagi, T
2003-01-01
This paper demonstrates the crack detection of thick-walled non-magnetic metal plates by eddy current testing, which is difficult because of Kelvin skin effect generally. The purpose of this research is the development of an new eddy current testing probe for cracks in thick-walled plates and crack shapes quantitative evaluation. The probe was designed, based on the numerical computation using 3D fast eddy current code. The advantages of this new probe are strong eddy current on the back of specimens and gentle decrement of eddy current in the thickness direction. Through experiments, we confirmed that this probe can detect the back artificial defect with 0.5 mm thickness on IN-CONEL 718 specimen with 7.0 mm thickness. Reconstruction of crack shapes was performed based on the experimental results with the inverse problem code developed by authors. The length and depth of reconstructed defects approximately agree with those of real crack. (author)
Physical interpretation and separation of eddy current pulsed thermography
Yin, Aijun; Gao, Bin; Yun Tian, Gui; Woo, W. L.; Li, Kongjing
2013-02-01
Eddy current pulsed thermography (ECPT) applies induction heating and a thermal camera for non-destructive testing and evaluation (NDT&E). Because of the variation in resultant surface heat distribution, the physical mechanism that corresponds to the general behavior of ECPT can be divided into an accumulation of Joule heating via eddy current and heat diffusion. However, throughout the literature, the heating mechanisms of ECPT are not given in detail in the above two thermal phenomena and they are difficult to be separated. Nevertheless, once these two physical parameters are separated, they can be directly used to detect anomalies and predict the variation in material properties such as electrical conductivity, magnetic permeability and microstructure. This paper reports physical interpretation of these two physical phenomena that can be found in different time responses given the ECPT image sequences. Based on the phenomenon and their behaviors, the paper proposes a statistical method based on single channel blind source separation to decompose the two physical phenomena using different stages of eddy current and thermal propagation from the ECPT images. Links between mathematical models and physical models have been discussed and verified. This fundamental understanding of transient eddy current distribution and heating propagation can be applied to the development of feature extraction and pattern recognition for the quantitative analysis of ECPT measurement images and defect characterization.
Subminiature eddy current transducers for studying boride coatings
Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.
2016-07-01
Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.
A Laboratory Activity on the Eddy Current Brake
Molina-Bolivar, J. A.; Abella-Palacios, A. J.
2012-01-01
The aim of this paper is to introduce a simple and low-cost experimental setup that can be used to study the eddy current brake, which considers the motion of a sliding magnet on an inclined conducting plane in terms of basic physical principles. We present a set of quantitative experiments performed to study the influence of the geometrical and…
Grade and Recovery Prediction for Eddy Current Separation Processes
Rem, P.C.; Beunder, E.M.; Kuilman, W.
1998-01-01
Grade and recovery of eddy current separation can be estimated on the basis of trajectory simulations for particles of simple shapes. In order to do so, the feed is characterized in terms of a small set of test-particles, each test-particle representing a fraction of the feed of a given size, shape
A Novel Interface for Eddy Current Displacement Sensors
Nabavi, M.R.; Nihtianov, S.
2009-01-01
In this paper, we propose a novel interface concept for eddy current displacement sensors. A measurement method and a new front-end circuit are also proposed. The front-end circuit demonstrates excellent thermal stability, high resolution, and low-power consumption. The proposed idea is analytically
A study of eddy current measurement (1986-1987)
Ramachandran, R.S.; Armstrong, K.P.
1989-06-22
A study was conducted in 1986 to evaluate a modified eddy current system for measuring copper thickness on Kapton. Results showed a measurement error of 0.42 {mu}in. for a thickness range of 165 to 170 {mu}in. and a measurement variability of 3.2 {mu}in.
Probability of detection models for eddy current NDE methods
Rajesh, S.N.
1993-04-30
The development of probability of detection (POD) models for a variety of nondestructive evaluation (NDE) methods is motivated by a desire to quantify the variability introduced during the process of testing. Sources of variability involved in eddy current methods of NDE include those caused by variations in liftoff, material properties, probe canting angle, scan format, surface roughness and measurement noise. This thesis presents a comprehensive POD model for eddy current NDE. Eddy current methods of nondestructive testing are used widely in industry to inspect a variety of nonferromagnetic and ferromagnetic materials. The development of a comprehensive POD model is therefore of significant importance. The model incorporates several sources of variability characterized by a multivariate Gaussian distribution and employs finite element analysis to predict the signal distribution. The method of mixtures is then used for estimating optimal threshold values. The research demonstrates the use of a finite element model within a probabilistic framework to the spread in the measured signal for eddy current nondestructive methods. Using the signal distributions for various flaw sizes the POD curves for varying defect parameters have been computed. In contrast to experimental POD models, the cost of generating such curves is very low and complex defect shapes can be handled very easily. The results are also operator independent.
Eddy-Current Sensors with Asymmetrical Point Spread Function
Janusz Gajda
2016-10-01
Full Text Available This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution, is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm.
NEW ALGORITHM OF IDENTIFYING SHAPE OF FLAWS OR CRACKS IN EDDY CURRENT TESTING
ZHUANG Hong-wei; MA Yi-chen; ZHANG Zhi-bin; WANG Ying-xi; CAO Jian-feng
2005-01-01
Eddy-current inverse technique is a very important method to reconstruct the shape of flaws or cracks. Using the domain derivative of the far-field pattern for eddy-current inverse problem with Dirichlet boundary condition, a new algorithm to recover the shape of cracks was constructed and some numerical examples were given.The algorithm demonstrates that the algorithm is feasible and correct for obtaining a reasonable reconstruction of a shape of flaws or cracks from the far-field measurements even though using less data of directions of incidence and observations for fewer wave numbers are gived.
Eddy current testing of metallic sheets with defects using force measurements
Brauer Hartmut
2008-01-01
Full Text Available The problem of determining defects in structures using eddy current methods was investigated. The goal of this work is to demonstrate that the forces generated by the eddy currents and acting back on the magnet system can be used to detect defects in the object. Numerical simulations and experimental investigations have been performed. This novel technique has been found to be sensitive enough to detect even deep defects in an Aluminium bar moving relative to the field-generating magnet system.
Three dimensional boundary element solutions for eddy current nondestructive evaluation
Yang, Ming; Song, Jiming; Nakagawa, Norio
2014-02-01
The boundary integral equations (BIE) method is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations. It can be applied in many areas of engineering and science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics. The eddy current problem is formulated by the BIE and discretized into matrix equations by the method of moments (MoM) or the boundary element method (BEM). The three dimensional arbitrarily shaped objects are described by a number of triangular patches. The Stratton-Chu formulation is specialized for the conductive medium. The equivalent electric and magnetic surface currents are expanded in terms of Rao-Wilton-Glisson (RWG) vector basis function while the normal component of magnetic field is expanded in terms of the pulse basis function. Also, a low frequency approximation is applied in the external medium. Additionally, we introduce Auld's impedance formulas to calculate impedance variation. There are very good agreements between numerical results and those from theory and/or experiments for a finite cross-section above a wedge.
A perturbation method for the A-χ geometric eddy-current formulation
Specogna, R.; Dular, P.; Trevisan, F.
2010-11-01
A perturbation method for the A-χ geometric formulation to solve eddy-current problems is introduced. The proposed formulation is applied to the feasibility design of a non-destructive evaluation device suitable to detect “long” longitudinal flaws in hot steel bars.
EDGE EFFECT INFLUENCE TO REFLECTED IMPEDANCE OF EDDY-CURRENT PROBE
О. Закревський
2012-04-01
Full Text Available This work is dedicated to solve analytically the edge effect Eddy-Current Probe (ECP problem which helpto carry out mathematical research the edge effect influence to ECP precision and sensitivity ultrasonictransducer mechanical amplitude oscillation measurement mathematical research, pointed to cylindricalconductive objects radius control possibility with superimposed ECP.
Eddy Current Separation of Fine Non-Ferrous Particles from Bulk Streams
Settimo, F.; Bevilacqua, P.; Rem, P.
2004-01-01
Recovery of fine non-ferrous metals from waste streams is a notoriously difficult problem in eddy current separation technology. Existing processes either have a low capacity or an incomplete recovery for particle sizes below 5 mm. In a new process, the particles are fed slightly wet to make them st
Eddy Current Separation of Fine Non-Ferrous Particles from Bulk Streams
Settimo, F.; Bevilacqua, P.; Rem, P.
2004-01-01
Recovery of fine non-ferrous metals from waste streams is a notoriously difficult problem in eddy current separation technology. Existing processes either have a low capacity or an incomplete recovery for particle sizes below 5 mm. In a new process, the particles are fed slightly wet to make them
Eddy Surface properties and propagation at Southern Hemisphere western boundary current systems
G. S. Pilo
2015-02-01
Full Text Available Oceanic eddies occur in all world oceans, but are more energetic when associated to western boundary currents (WBC systems. In these regions, eddies play an important role on mixing and energy exchange. Therefore, it is important to quantify and qualify eddies occurring within these systems. Previous studies performed eddy censuses in Southern Hemisphere WBC systems. However, important aspects of local eddy population are still unknown. Main questions to be answered relate to eddies' spatial distribution, propagation and lifetime within each system. Here, we use a global eddy dataset to qualify eddies based on their surface characteristics at the Agulhas Current (AC, the Brazil Current (BC and the East Australian Current (EAC Systems. We show that eddy propagation within each system is highly forced by the local mean flow and bathymetry. In the AC System, eddy polarity dictates its propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC System eddies from both polarities cross south of Tasmania, but only anticyclonics reach the Great Australian Bight. Eddies in all systems and from both polarities presented a geographical segregation according to size. Large eddies occur along the Agulhas Retroflection, the Agulhas Return Current, the Brazil-Malvinas Confluence and the Coral Sea. Small eddies occur in the systems southernmost domains. Understanding eddies' propagation helps to establish monitoring programs, and to better understand how these features would affect local mixing.
王艳芳; 陈涛; 吴红梅; 康彤
2011-01-01
Fully discrete potential-based finite element methods called A- methods are used to solve a transient eddy current problem in a three-dimensional convex bounded polyhedron.Using A- methods,fully discrete coupled Crank-Nicholson numerical scheme is developed.The existence and uniqueness of solution for this scheme together with the energy-norm error estimates are provided.To verify the validity of this scheme,some computer simulations are performed for the model from TEAM Workshop Problem 7.%基于势的全离散有限元法常用于解决三维凸有界多边形区域的瞬时涡流问题。本文采用A-法的全离散Crank-Nicholson格式耦合算法,给出能量模误差估计下其解的存在唯一性,并通过TEAM Workshop问题7的数值结果,验证此算法的有效性。
Mathematical and numerical models for eddy currents and magnetostatics with selected applications
Rappaz, Jacques
2013-01-01
This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem
Rem, P.C.; Bakker, M.C.M.; Berkhout, S.P.M.; Rahman, M.A.
2012-01-01
Eddy current separation apparatus (1) for separating particles (20) from a particle stream (w), wherein the apparatus (1) comprises a separator drum (4) adapted to create a first particle fraction (21) and a second particle fraction (23), a feeding device (2) upstream of the separator drum (4) for s
ARRAY PULSED EDDY CURRENT IMAGING SYSTEM USED TO DETECT CORROSION
Yang Binfeng; Luo Feilu; Cao Xiongheng; Xu Xiaojie
2005-01-01
A theory model is established to describe the voltage-current response function. The peak amplitude and the zero-crossing time of the transient signal is extracted as the imaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The test results show that this system has the advantage of fast scanning speed, different imaging mode and quantitative detection, it has a broad application in the aviation nondestructive testing.
Observed eddy dissipation in the Agulhas Current
Braby, L
2016-08-01
Full Text Available Ruijter et al., 1999; Schouten et al., 2002; Tsugawa andHasumi, 2010]. These pulses have been shown to propagate poleward along the offshore edge of the Agulhas Current [van Leeuwen et al., 2000; Backeberg et al., 2008], occasionally affecting the...), Mesoscale activity in the Comoros Basin from satellite altimetry and a high resolution ocean circulation model, J. Geophys. Res. Oceans, 119, 4570–4760, doi:10.1002/2014JC010008. de Ruijter, W. P. M., P. J. van Leeuwen, and J. R. E. Lutjeharms (1999...
Modeling and strain gauging of eddy current repulsion deicing systems
Smith, Samuel O.
1993-01-01
Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.
Investigation of casing inspection through tubing with pulsed eddy current
Fu, Yuewen; Yu, Runqiao; Peng, Xuewen; Ren, Shangkun
2012-12-01
Corrosion and cracks of casing string in oil wells is a serious problem on which little research has been done when inspecting casing through tubing. In this study, inspecting casing through tubing with pulsed eddy current is investigated. Longitudinal and transverse probes are centred inside the tubing to detect wall thinnings and cracks in casing. A time slice of induced voltage in the receiving coil of the probe is used as the feature to recognise defects. The experimental results show that large area wall thinnings and long cracks in casing are detected successfully through the tubing with appropriate inspection parameters. The probe's orientation to the crack is important and a particular discovery is that the transverse probe should be parallel to the transverse crack and not be perpendicular to it when inspecting. A method based on linear regression is proposed to estimate flaws in casing while wall thinning in the tubing occurs at the same location. The method is effective for large area thinning in casing when tubing thinning is wide.
Detection of localized damage by eddy currents technique
Aoukili A.
2014-01-01
Full Text Available Non destructive evaluation techniques based on eddy currents (EC are largely used for quality control of the castings in a lot of industries. The principle of detection by EC consists in using an adequate inductive coil to generate them by a variable magnetic field, and measuring their effects by using one or several sensors. These effects result from the interaction between the induced magnetic field and the excited conductive material. A local variation of the physical properties or geometry of the tested sample, due to a singularity or a flaw, causes a modification of the EC distribution, enabling thus detection. In order to optimize the capacity of defect revealing by means of EC based probes, an accurate modelling of the problem is essential. This can be used to perform simulation of the EC distribution under different circumstances and to analyze the EC sensitivity to the various implicated parameters. In this work, the modelling of EC is made by using the finite element method. Using a B-scan strategy was used, detection of a small defect having the shape of an open cavity is shown to be correctly indicated via monitoring variations of the induced voltage in the receiver coil.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements
Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn
2016-07-01
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring
Comparative performance of image fusion methodologies in eddy current testing
S. Thirunavukkarasu
2012-12-01
Full Text Available Image fusion methodologies have been studied for improving the detectability of eddy current Nondestructive Testing (NDT. Pixel level image fusion has been performed on C-scan eddy current images of a sub-surface defect at two different frequencies. Multi-resolution analysis based Laplacian pyramid and wavelet fusion methodologies, statistical inference based Bayesian fusion and Principal Component Analysis (PCA based fusion methodologies have been studied towards improving the detectability of defects. The performance of the fusion methodologies has been compared using image metrics such as SNR and entropy. Bayesian based fusion methodology has shown better performance as compared to other methodologies with 33.75 dB improvement in the SNR and an improvement of 3.22 in the entropy.
Eddy current analysis of thin film recording heads
Shenton, D.; Cendes, Z. J.
1984-03-01
Due to inherently thin pole tips which enhance the sharpness of read/write pulses, thin-film magnetic recording heads provide a unique potential for increasing disk file capacity. However, the very feature of these heads which makes them attractive in the recording process, namely, their small size, also makes thin-film heads difficult to study experimentally. For this reason, a finite element simulation of the thin-film head has been developed to provide the magnetic field distribution and the resistance/inductance characteristics of these heads under a variety of conditions. A study based on a one-step multipath eddy current procedure is reported. This procedure may be used in thin film heads to compute the variation of magnetic field with respect to frequency. Computations with the IBM 3370 head show that a large phase shift occurs due to eddy currents in the frequency range 1-10 MHz.
Eddy current characterization of magnetic treatment of materials
Chern, E. James
1992-01-01
Eddy current impedance measuring methods have been applied to study the effect that magnetically treated materials have on service life extension. Eddy current impedance measurements have been performed on Nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in a material's electromagnetic properties and does exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic-field processing effect on machine tool service life.
Practical Application of Eddy Currents Generated by Wind
Dirba, I; Kleperis, J, E-mail: imants.dirba@gmail.com [Institute of Solid State Physics of University of Latvia, 8 Kengaraga Street, Riga, LV-1063 (Latvia)
2011-06-23
When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).
Limitations of eddy current testing in a fast reactor environment
Wu, Tao; Bowler, John R.
2016-02-01
The feasibility of using eddy current probes for detecting flaws in fast nuclear reactor structures has been investigated with the aim of detecting defects immersed in electrically conductive coolant including under liquid sodium during standby. For the inspections to be viable, there is a need to use an encapsulated sensor system that can be move into position with the aid of visualization tools. The initial objective being to locate the surface to be investigated using, for example, a combination of electromagnetic sensors and sonar. Here we focus on one feature of the task in which eddy current probe impedance variations due to interaction with the external surface of a tube are evaluated in order to monitor the probe location and orientation during inspection.
Practical Application of Eddy Currents Generated by Wind
Dirba, I.; Kleperis, J.
2011-06-01
When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).
Analytical Modeling for the Grating Eddy Current Displacement Sensors
Lv Chunfeng
2015-02-01
Full Text Available As a new type of displacement sensor, grating eddy current displacement sensor (GECDS combines traditional eddy current sensors and grating structure in one. The GECDS performs a wide range displacement measurement without precision reduction. This paper proposes an analytical modeling approach for the GECDS. The solution model is established in the Cartesian coordinate system, and the solving domain is limited to finite extents by using the truncated region eigenfunction expansion method. Based on the second order vector potential, expressions for the electromagnetic field as well as coil impedance related to the displacement can be expressed in closed-form. Theoretical results are then confirmed by experiments, which prove the suitability and effectiveness of the analytical modeling approach.
Eddy current testing probe optimization using a parallel genetic algorithm
Dolapchiev Ivaylo
2008-01-01
Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.
Recent Improvements in High-Frequency Eddy Current Conductivity Spectroscopy
Abu-Nabah, Bassam A.; Nagy, Peter B.
2008-02-01
Due to its frequency-dependent penetration depth, eddy current measurements are capable of mapping near-surface residual stress profiles based on the so-called piezoresistivity effect, i.e., the stress-dependence of electric conductivity. To capture the peak compressive residual stress in moderately shot-peened (Almen 4-8A) nickel-base superalloys, the eddy current inspection frequency has to go as high as 50-80 MHz. Recently, we have reported the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz. Unfortunately, spurious self- and stray-capacitance effects render the complex coil impedance variation with lift-off more nonlinear as the frequency increases, which makes it difficult to achieve accurate apparent eddy current conductivity (AECC) measurements with the standard four-point linear interpolation method beyond 25 MHz. In this paper, we will demonstrate that reducing the coil size reduces its sensitivity to capacitive lift-off variations, which is just the opposite of the better known inductive lift-off effect. Although reducing the coil size also reduces its absolute electric impedance and relative sensitivity to conductivity variations, a smaller coil still yields better overall performance for residual stress assessment. In addition, we will demonstrate the benefits of a semi-quadratic interpolation scheme that, together with the reduced lift-off sensitivity of the smaller probe coil, minimizes and in some cases completely eliminates the sensitivity of AECC measurements to lift-off uncertainties. These modifications allow us to do much more robust measurements up to as high as 80-100 MHz with the required high relative accuracy of +/-0.1%.
Nondestructive examination of PHWR pressure tube using eddy current technique
Lee, Hee Jong; Choi, Sung Nam; Cho, Chan Hee; Yoo, Hyun Joo; Moon, Gyoon Young [KHNP Central Research Institute, Daejeon (Korea, Republic of)
2014-06-15
A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter x 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the D2O heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.
Potential and limitations of eddy current lockin-thermography
Riegert, G.; Gleiter, A.; Busse, G.
2006-04-01
Eddy current thermography uses an induction coil to induce eddy currents in conductive materials. The involved resistive losses heat the sample. By modulation of the eddy current amplitude, thermal waves are generated which interact with boundaries thereby revealing defects. Conventional eddy current testing has only a limited depth range due to the skin effect of metal samples. In Induction-Lockin-Thermography (ILT) the depth range is extended by the thermal penetration depth. An infrared camera monitors the modulation of the temperature field on the surface as a response to the coded excitation thereby allowing for fast imaging of defects in larger areas without the need of slow point-by-point mapping. This response is decoded by a Fourier analysis at the modulation frequency. So the extracted information is displayed by just two images where one displays local amplitude and the other local phase. ILT has significant advantages as compared to inductive heating with visual inspection of the thermographic sequence: Phase angle images are independent of most artifacts like reflections, variation in emission coefficient, or inhomogeneous heating. Due to the performed Fourier analysis of the temperature image sequence, the signal-to-noise ratio in the amplitude and phase images is significantly better than in single temperature images of the sequence. Induction heating is confined to conductive materials. However, it is applicable not only to metals but also to carbon fiber reinforced laminates (CFRP) or carbon fiber reinforced ceramics (C/C-SiC). The presented examples for applications of ILT illustrate the potential and limitations of this new non-destructive inspection method.
Comparison of analytical eddy current models using principal components analysis
Contant, S.; Luloff, M.; Morelli, J.; Krause, T. W.
2017-02-01
Monitoring the gap between the pressure tube (PT) and the calandria tube (CT) in CANDU® fuel channels is essential, as contact between the two tubes can lead to delayed hydride cracking of the pressure tube. Multifrequency transmit-receive eddy current non-destructive evaluation is used to determine this gap, as this method has different depths of penetration and variable sensitivity to noise, unlike single frequency eddy current non-destructive evaluation. An Analytical model based on the Dodd and Deeds solutions, and a second model that accounts for normal and lossy self-inductances, and a non-coaxial pickup coil, are examined for representing the response of an eddy current transmit-receive probe when considering factors that affect the gap response, such as pressure tube wall thickness and pressure tube resistivity. The multifrequency model data was analyzed using principal components analysis (PCA), a statistical method used to reduce the data set into a data set of fewer variables. The results of the PCA of the analytical models were then compared to PCA performed on a previously obtained experimental data set. The models gave similar results under variable PT wall thickness conditions, but the non-coaxial coil model, which accounts for self-inductive losses, performed significantly better than the Dodd and Deeds model under variable resistivity conditions.
Nondestructive Testing Eddy Current Basic Principles RQA/M1-5330.12 (V-I).
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
As one in the series of programmed instruction handbooks, prepared by the U.S. space program, home study material is presented in this volume concerning familiarization and orientation on basic eddy current principles. The subject is presented under the following headings: Basic Eddy Current Concepts, Eddy Current Generation and Distribution,…
Magnetic Flux Fluctuations Due to Eddy Currents and Thermal Noise in Metallic Disks
Uzunbajakau, S.; Rijpma, A.P.; Dolfsma, J.; Krooshoop, H.J.G.; Brake, ter H.J.M.; Peters, M.J.; Rogalla, H.
2003-01-01
We derive expressions for the magnetic flux in a circular loop due to eddy currents and thermal noise in coaxial metallic disks. The eddy currents are induced by an applied field that changes sinusoidally in time. We give expressions for the eddy current noise when the frequency of the applied field
Magnetic Flux Fluctuations Due to Eddy Currents and Thermal Noise in Metallic Disks
Uzunbajakau, S.; Rijpma, A.P.; Dolfsma, J.; Krooshoop, Hendrikus J.G.; ter Brake, Hermanus J.M.; Peters, M.J.; Rogalla, Horst
2003-01-01
We derive expressions for the magnetic flux in a circular loop due to eddy currents and thermal noise in coaxial metallic disks. The eddy currents are induced by an applied field that changes sinusoidally in time. We give expressions for the eddy current noise when the frequency of the applied field
Determining confounding sensitivities in eddy current thin film measurements
Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn
2017-02-01
Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.
Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear
Zhang, Yuqiu; Lu, Kaiyuan; Ye, Yunyue
2012-01-01
In this paper, a new motor integrated permanent magnet gear (MIPMG) is discussed. The focus is on eddy current loss analysis associated to permanent magnets (PMs). A convenient model of MIPMG is provided based on 2-D field-motion coupled time-stepping finite element method for transient eddy...... current analysis. The model takes the eddy current effect of PMs into account in determination of the magnetic field in the air-gap and in the magnet regions. The eddy current losses generated in the magnets are properly interpreted. Design improvements for reducing the eddy current losses are suggested...
Eddy current heating of irregularly shaped plates by slow ramped fields
Dresner, L.
1979-09-01
Eddy current heating of thin conducting plates of various shapes by a perpendicular field is studied, assuming that the magnetic field created by the eddy currents is negligible in comparison with the external field. The method is to introduce the stream function of the eddy currents, which is shown to satisfy Poisson's equation, and then employ a pair of complementary variational principles (i.e., a minimum principle and a maximum principle), the extrema of which equal the eddy current heating. Two such complementary principles give not only an estimate of the eddy current heating, but a bound on the error of the estimate as well.
Stray Field Reduction in ALS Eddy Current Septum Magnets
Shuman, Derek; Prestemon, Soren; Schlüter, Ross D; Steier, Christoph; Stover, Gregory D
2005-01-01
Stray field from an eddy current septum magnet adversely affects the circulating beam and can be reduced using several techniques. The stray field time history typically has a fast rise section followed by a long exponential decay section when pulsed with a half sine drive current. Changing the drive current pulse to a full sine has the effect of both reducing peak stray field magnitude by ~3x, and producing a quick decay from this peak to a lower field level which then has a similar long decay time constant as that from the half sine only drive current pulse. A method for tuning the second half sine (reverse) drive current pulse to eliminate the long exponential decay section is given.
Eddy current pulsed phase thermography for subsurface defect quantitatively evaluation
He, Yunze; Pan, Mengchun; Tian, GuiYun; Chen, Dixiang; Tang, Ying; Zhang, Hong
2013-09-01
This Letter verified eddy current pulse phase thermography through numerical and experimental studies. During the numerical studies, two characteristic features, blind frequency and min phase, were extracted from differential phase spectra, and their monotonic relationships with defects' depth under different heating time were compared. According to the numerical studies, 100 ms was employed as heating time during the improved experimental studies. The experimental results agreed with the numerical results. Based on their linear relationship with defects' depths, both features can be used to measure the defect's depth.
Thickness Evaluation of Aluminium Plate Using Pulsed Eddy Current Technique
Singh, Gurpartap; Bapat, Harsh Madhukar; Singh, Bhanu Pratap; Bandyopadhyay, Manojit; Puri, Rakesh Kumar; Badodkar, Deepak Narayanrao
2013-10-01
This paper describes a pulsed eddy current (PEC) based non-destructive testing system used for detection of thickness variation in aluminium plate. A giant magneto-resistive sensor has been used instead of pick up coil for detecting resultant magnetic field. The PEC response signals obtained from 1 to 5 mm thickness change in aluminium plate were investigated. Two time domain features, namely peak value and time to peak, of PEC response were used for extracting information about thickness variation in aluminium plate. The variation of peak value and time to peak with thickness was compared. A program was developed to display the thickness variation of the tested sample.
Eddy current system for inspection of train hollow axles
Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard; Kowalczyk, Jacek; Spychalski, Ireneusz [Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin (Poland)
2014-02-18
The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.
Response of the Kuroshio Current to Eddies in the Luzon Strait
ZHAO Jie; LUO De-Hai
2010-01-01
The impact of eddies on the Kuroshio Current in the Luzon Strait(LS)area is investigated by using the sea surface height anomaly(SSHA)satellite observation data and the sea surface height(SSH)assimilation data.The influence of the eddies on the mean current depends upon the type of eddies and their relative position.The mean current is enhanced(weakened)as the cyclonic(anticyclonic)eddy becomes slightly far from it,whereas it is weakened(enhanced)as the cyclonic(anticyclonic)eddy moves near or within the position of the mean current;this is explained as the eddy-induced meridional velocity and geostrophic flow relationship.The anticyclonic(cyclonic)eddy can increase(decrease)the mean meridional flow due to superimposition of the eddy-induced meridional flow when the eddy is within the region of the mean current.However,when the eddy is slightly far from the mean current region,the anticyclonic(cyclonic)eddy tends to decrease(increase)the zonal gradient of the SSH,which thus results in weakening(strengthening)of the mean current in the LS region.
无
2000-01-01
The pricing of electricity trasmission requires determining how much use each generator is making of a transmission line and what is each generator's contribution to the system losses. Such problems cannot be solved by only using Kirchoff's laws. This paper proposes two current decomposition axioms based on which the theories and models are established for the current trace problem. To create an efficient algorithm the graph theory is employed. It is proved that there is no directed circuit in a directed current distribution graph. According to this theorem a very simple and efficient algorithm based on recursive elimination process is suggested. A simple example is used to explain the algorithm.
Bayesian flaw characterization from eddy current measurements with grain noise
McMahan, Jerry A.; Aldrin, John C.; Shell, Eric; Oneida, Erin
2017-02-01
The Bayesian approach to inference from measurement data has the potential to provide highly reliable characterizations of flaw geometry by quantifying the confidence in the estimate results. The accuracy of these confidence estimates depends on the accuracy of the model for the measurement error. Eddy current measurements of electrically anisotropic metals, such as titanium, exhibit a phenomenon called grain noise in which the measurement error is spatially correlated even with no flaw present. We show that the most commonly used statistical model for the measurement error, which fails to account for this correlation, results in overconfidence in the flaw geometry estimates from eddy current data, thereby reducing the effectiveness of the Bayesian approach. We then describe a method of modeling the grain noise as a Gaussian process (GP) using spectral mixture kernels, a type of non-parametric model for the covariance kernel of a GP This provides a broadly applicable, data-driven way of modeling correlation in measurement error. Our results show that incorporation of this noise model results in a more reliable estimate of the flaw and better agreement with the available validation data.
Design and optimization of a flexible arrayed eddy current sensor
Sun, Zhenguo; Cai, Dong; Zou, Cheng; Zhang, Wenzeng; Chen, Qiang
2017-04-01
The inspection of the hollow axle inner surfaces is a key process to guarantee the safety of high-speed trains. A novel flexible arrayed eddy current sensor was developed to improve the reliability of the non-destructive testing of the hollow axle inner surfaces, whose main innovative aspect was the new design of excitation/sensing traces to achieve a differential and arrayed configuration. Only two independent excitation traces were used in the sensor to induce eddy currents, which can be detected by 16 differential sensing elements. The lift-off effects and the influence of the excitation frequency and geometrical parameters of the proposed sensor was investigated and presented in this paper. Finite element models were built to analyze the effects of each parameter on the sensor response amplitude. Experimental validations were conducted using a representative set of sensors. Results from experiments and simulations were consistent with each other, which showed that the sensor design can substantially suppress the lift-off effects and modifications of the studied parameters can substantially improve the sensor performance.
Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System
Ren He
2013-01-01
Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.
A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor
Along Yu; Zheng Li
2006-01-01
In this paper, we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method,the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line scaling and high precision. The maximum nonlinearity error can be reduced to 0.037% using GNN. However, the maximum nonlinearity error is 0.075% using least square method (LMS).
Analysis of an eddy-current brake considering finite radius and induced magnetic flux
Lee, Kapjin; Park, Kyihwan
2002-11-01
Since the eddy-current problem usually depends on the geometry of the moving conductive sheet and the pole shape, there is no general method to find an analytical solution. The analysis of the eddy currents in a rotating disk with an electromagnet is performed in the case of time-invariant field with the consideration of the boundary conditions of the rotating disk and induced magnetic flux. First, the concept of Coulomb's law and the method of images are introduced with the consideration of the boundary conditions. Second, the induced magnetic flux density is calculated by using Ampere's law. Third, the net magnetic flux density is introduced by defining the magnetic Reynolds number Rm as the ratio of the induced magnetic flux density to the applied magnetic flux density. Finally, the braking torque is calculated by applying the Lorentz force law and the computed results are compared with experimental ones.
Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets
Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B
2015-01-01
The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.
Study of eddy current power loss in an RCS vacuum chamber
XU Shou-Yan; WANG Sheng
2012-01-01
In a Rapid Cycling Synchrotron (RCS),power loss due to an eddy current on the metal vacuum chamber would cause heating of the vacuum chamber.It is important to study the effect for estimating eddy current induced power loss and temperature growth.Analytical formulas for eddy current power loss for various types of vacuum chambers are derived for dipole and quadrupole repectively.By using the prototype of dipole of CSNS/RCS,an experiment was done to test the analytical formula.The derived formulas were applied to calculating the eddy current power loss on some special structures of an RCS vacuum chamber.
王锡凡; 王秀丽
2000-01-01
The pricing of electricity trasmission requires determining how much use each generator is making of a transmission line and what is each generator’s contribution to the system losses. Such problems cannot be solved by only using Kirchoff’s laws. This paper proposes two current decomposition axioms based on which the theories and models are established for the current trace problem. To create an efficient algorithm the graph theory is employed. It is proved that there is no directed circuit in a directed current distribution graph. According to this theorem a very simple and efficient algorithm based on recursive elimination process is suggested. A simple example is used to explain the algorithm .
Gas turbine coatings eddy current quantitative and qualitative evaluation
Ribichini, Remo; Giolli, Carlo; Scrinzi, Erica
2017-02-01
Gas turbine blades (buckets) are among the most critical and expensive components of the engine. Buckets rely on protective coatings in order to withstand the harsh environment in which they operate. The thickness and the microstructure of coatings during the lifespan of a unit are fundamental to evaluate their fitness for service. A frequency scanning Eddy Current instrument can allow the measurement of the thickness and of physical properties of coatings in a Non-Destructive manner. The method employed relies on the acquisition of impedance spectra and on the inversion of the experimental data to derive the coating properties and structure using some assumptions. This article describes the experimental validation performed on several samples and real components in order to assess the performance of the instrument as a coating thickness gage. The application of the technique to support residual life assessment of serviced buckets is also presented.
Eddy current characterization of magnetic treatment of nickel 200
Chern, E. J.
1993-01-01
Eddy current methods have been applied to characterize the effect of magnetic treatments on component service-life extension. Coil impedance measurements were acquired and analyzed on nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in electromagnetic properties of nickel 200 that then exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic field processing effect on machine-tool service life.
Eddy Current Examination of Spent Nuclear Fuel Canister Closure Welds
Arthur D. Watkins; Dennis C. Kunerth; Timothy R. McJunkin
2006-04-01
The National Spent Nuclear Fuel Program (NSNFP) has developed standardized DOE SNF canisters for handling and interim storage of SNF at various DOE sites as well as SNF transport to and SNF handling and disposal at the repository. The final closure weld of the canister will be produced remotely in a hot cell after loading and must meet American Society of Mechanical Engineers (ASME) Section III, Division 3 code requirements thereby requiring volumetric and surface nondestructive evaluation to verify integrity. This paper discusses the use of eddy current testing (ET) to perform surface examination of the completed welds and repair cavities. Descriptions of integrated remote welding/inspection system and how the equipment is intended function will also be discussed.
A laboratory activity on the eddy current brake
Molina-Bolívar, J. A.; Abella-Palacios, A. J.
2012-05-01
The aim of this paper is to introduce a simple and low-cost experimental setup that can be used to study the eddy current brake, which considers the motion of a sliding magnet on an inclined conducting plane in terms of basic physical principles. We present a set of quantitative experiments performed to study the influence of the geometrical and electromagnetic properties of the magnet on the magnetic drag force. This video-based experiment is ideal for the study of kinematic graphs and the application of Newton's laws. Video motion analysis software enables students to make precise measurements of the magnet's position at incremental times during its motion, thus allowing them to quantify electromagnetic induction phenomena. The equipment needed for this experiment and data collection software are present in most physics teaching laboratories or are inexpensive and available.
Defect Automatic Identification of Eddy Current Pulsed Thermography
Kai Chen
2014-01-01
Full Text Available Eddy current pulsed thermography (ECPT is an effective nondestructive testing and evaluation (NDT&E technique, and has been applied for a wide range of conductive materials. Manual selected frames have been used for defects detection and quantification. Defects are indicated by high/low temperature in the frames. However, the variation of surface emissivity sometimes introduces illusory temperature inhomogeneity and results in false alarm. To improve the probability of detection, this paper proposes a two-heat balance states-based method which can restrain the influence of the emissivity. In addition, the independent component analysis (ICA is also applied to automatically identify defect patterns and quantify the defects. An experiment was carried out to validate the proposed methods.
A sub-surface eddy at inertial current layer in the Canada Basin, Arctic Ocean
无
2007-01-01
An Arctic Ocean eddy in sub-surface layer is analyzed in this paper by use of temperature, salinity and current profiles data obtained at an ice camp in the Canada Basin during the second Chinese Arctic Expedition in summer of 2003.In the vertical temperature section, the eddy shows itself as an isolated cold water block at depth of 60 m with a minimum temperature of-1.5℃, about 0.5℃ colder than the ambient water.Isopycnals in the eddy form a pattern of convex, which indicates the eddy is anticyclonic.Although maximum velocity near O.4 m s-1 occurs in the current records observed synchronously, the current pattern is far away from a typical eddy.By further analysis, inertial frequency oscillations with amplitudes comparable with the eddy velocity are found in the sub-surface layer currents.After filter the inertial current and mean current, an axisymmetric current pattern of an eddy with maximum velocity radius of 5 km is obtained.The analysis of the T-S characteristics of the eddy core water and its ambient waters supports the conclusion that the eddy was formed on the Chukchi Shelf and migrated northeastward into the northern Canada Basin.
Calculation of Skin Depths and Eddy-Current Power Losses for Magnetic Position Sensors
2000-01-01
We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current ex citation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.
Eddy-Induced Ekman Pumping from Sea-Surface Temperature and Surface Current Effects
Gaube, P.; Chelton, D. B.; O'Neill, L. W.
2011-12-01
Numerous past studies have discussed the biological importance of upwelling of nutrients into the interiors of nonlinear eddies. Such upwelling can occur during the transient stages of formation of cyclones from shoaling of the thermocline. In their mature stages, upwelling can occur from Ekman pumping driven by eddy-induced wind stress curl. Previous investigations of ocean-atmosphere interaction in regions of persistent sea-surface temperature (SST) frontal features have shown that the wind field is locally stronger over warm water and weaker over cold water. Spatial variability of the SST field thus results in a wind stress curl and an associated Ekman pumping in regions of crosswind temperature gradients. It can therefore be anticipated that any SST anomalies associated with eddies can generate Ekman pumping in the eddy interiors. Another mechanism for eddy-induced Ekman pumping is the curl of the stress on the sea surface that arises from the difference between the surface wind velocity and the surface ocean velocity. While SST-induced Ekman upwelling can occur over eddies of either polarity surface current effects on Ekman upwelling occur only over anticyclonic eddies The objective of this study is to determine the spatial structures and relative magnitudes of the two mechanisms for eddy-induced Ekman pumping within the interiors of mesoscale eddies. This is achieved by collocating satellite-based measurements of SST, surface winds and wind stress curl to the interiors of eddies identified and tracked with an automated procedure applied to the sea-surface height (SSH) fields in the Reference Series constructed by AVISO from the combined measurements by two simultaneously operating altimeters. It is shown that, on average, the wind stress curl from eddy-induced surface currents is largest at the eddy center, resulting in Ekman pumping velocities of order 10 cm day-1. While this surface current-induced Ekman pumping depends only weakly on the wind direction
Study on Eddy-current of Disc Permanent-magnet Eddy-current Couplings%盘式永磁涡流耦合器涡流研究
上官璇峰; 杨帅
2015-01-01
本文旨在研究盘式涡流耦合器涡流分布特点。采用解析法得到了涡流密度的函数表达式；利用三维有限元法分别计算正常工作状态和起动状态下涡流径向分量和周向分量沿径向和周向分布的三维图形并总结涡流沿周向、径向、轴向的分布特点。根据涡流密度的函数表达式着重分析了导体盘材料、气隙长度和转差率三个重要因素对涡流的影响。通过对盘式永磁涡流耦合器涡流特点的把握，合理的解释了轴向磁力随转差率变化的规律。%The purpose of this paper is to study the changing discipline of eddy-current of disc permanent-magnet eddy-current coupling.Analytical method was adopted to get expression of the eddy-current density. 3D FEMwas adopted to obtain the 3D distribution graph along with radial and circumferential direction of eddy-current on radial and circumferential components.And the characteristics of distribution of eddy-current along with radial,circumferential and axial directions were summarized.Three important factors of the influence of eddy-current,conductor plate material,air-gap length and slip were analyzed according to the expression of eddy-current density.Through the grasp of the characteristics of eddy-current,the law of the axial magnetic force changing with slip was explained reasonably.
NONE
2000-02-29
The ultra-low inertia dynamometer equivalent to engines in inertia adopts a rare earth element magnet with large energy product, and simulates engine torque fluctuation by superimposing harmonic current on a stator coil. Since temperature rise is thus predicted by generation of fluctuating magnetic field due to the harmonic current or eddy current due to normal slot harmonics, sufficient study on eddy current loss is necessary for designs to prevent such performance drop. Eddy current analysis is under investigation by 3-D FEM for various size and shape magnets. The analysis example of an eddy current density distribution is illustrated for the one-pole section of the magnet stuck on a rotor surface which is divided into 4 parts along a rotor periphery. More precise analysis of such eddy current loss is scheduled for higher-reliability product design. (translated by NEDO)
Pulsed eddy current inspection of CF-188 inner wing spar
Horan, Peter Francis
Royal Canadian Air Force (RCAF) CF-188 Hornet aircraft engineering authorities have stated a requirement for a Non-Destructive Evaluation (NDE) technique to detect Stress Corrosion Cracking (SCC) in the inner wing spars without fastener or composite wing skin removal. Current radiographic inspections involve significant aircraft downtime, and Pulsed Eddy Current (PEC) inspection is proposed as a solution. The aluminum inner wing spars of CF-188 Hornet aircraft may undergo stress corrosion cracking (SCC) along the spar between the fasteners that secure carbon-fiber/ epoxy composite skin to the wing. Inspection of the spar through the wing skin is required to avoid wing disassembly. The thickness of the wing skin varies between 8 and 20 mm (0.3 to 0.8 inch) and fasteners may be either titanium or ferrous. PEC generated by a probe centered over a fastener, demonstrates capability of detecting simulated cracks within spars with the wing skin present. Comparison of signals from separate sensors, mounted to either side of the excitation coil, is used to detect differences in induced eddy current fields, which arise in the presence of cracks. To overcome variability in PEC signal response due to variation in 1) skin thickness, 2) fastener material and size, and 3) centering over fasteners, a large calibration data set is acquired. Multi-dimensional scores from a Modified Principal Components Analysis (PCA) of the data are reduced to one dimension (1D) using a Discriminant Analysis method. Under inspection conditions, calibrated PCA scores combined with discriminant analysis permit rapid real time go/no-go PEC detection of cracks in CF-188 inner wing spar. Probe designs using both pickup coils and Giant Magnetoresistive (GMR) sensors were tested on samples with the same ferrous and titanium fasteners found on the CF-188. Flaws were correctly detected at lift-offs of up to 21mm utilizing a variety of insulating skin materials simulating the carbon-fibre reinforced polymer
Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan
2016-02-26
Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
Damhuji Rifai
2016-02-01
Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
Ladislav Janousek
2015-01-01
Full Text Available This paper deals with a three-dimensional non-destructive evaluation of partially conductive cracks from eddy current testing signals. An SUS316L plate specimen containing a crack is non-destructively inspected by the eddy current method using numerical simulations. An extensive database of eddy current response signals is prepared while dimensional parameters of a crack together with its partial conductivity are varied in wide ranges. A Support Vector Machine classification algorithm is employed to solve the electromagnetic inverse problem. The acquired signals are employed for training the algorithm and for testing its performance. It is demonstrated that the Support Vector Machine algorithm is able to properly classify detected defects into proper classes with very high probability even the partial conductivity of a detected crack together with its width are unknown.
Svatoš, J.
2016-11-01
This paper describes the design of a measuring chain for polyharmonic metal detectors used for education in laboratory exercises at Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Measurement. The Measuring chain is composed of DDS signal generator, Digitiser and PC with software programmed in Labview. Eddy current principles or more specifically eddy current metal detectors are an important part of nondestructive testing, instrumentations and measurement. A short introduction to the background and principles of eddy current metal detectors are presented. Next part of the article deals with a brief description of the most common methods, as well as, non-traditional polyharmonic methods for eddy current metal detection. The following part contains an implementation of the proposed algorithms in LabVIEW graphical programming language. Finally, the created program for education of eddy current metal detectors and results obtained on the metal detector ATMID are discussed.
An ink-jet printed eddy current position sensor.
Jeranče, Nikola; Bednar, Nikola; Stojanović, Goran
2013-04-18
An eddy current sensor with an ink-jet printed flexible inductor has been designed and fabricated. The inductor has been designed by means of software developed in-house. It has been fabricated by ink-jet printing with silver ink on a flexible substrate. The inductor is a part of the oscillator circuit whose oscillating frequency is measured by a microcontroller. The sensor characteristics have been analyzed for two types of application. The first considered application is the displacement of a large conductive target in a direction perpendicular to the inductor plane. The second considered application is the displacement of a small steel ball parallel to the inductor plane. Inductance and oscillating frequency have been measured in order to completely characterize the sensor. The obtained results validate the use of the sensor for both considered applications, and are in good agreement with the simulations. The advantages of this type of sensor are low cost, the possibility for the inductor to match any curved surface and flexibility and precision of the inductor design.
An Ink-Jet Printed Eddy Current Position Sensor
Goran Stojanović
2013-04-01
Full Text Available An eddy current sensor with an ink-jet printed flexible inductor has been designed and fabricated. The inductor has been designed by means of software developed in-house. It has been fabricated by ink-jet printing with silver ink on a flexible substrate. The inductor is a part of the oscillator circuit whose oscillating frequency is measured by a microcontroller. The sensor characteristics have been analyzed for two types of application. The first considered application is the displacement of a large conductive target in a direction perpendicular to the inductor plane. The second considered application is the displacement of a small steel ball parallel to the inductor plane. Inductance and oscillating frequency have been measured in order to completely characterize the sensor. The obtained results validate the use of the sensor for both considered applications, and are in good agreement with the simulations. The advantages of this type of sensor are low cost, the possibility for the inductor to match any curved surface and flexibility and precision of the inductor design.
Diffusion of electromagnetic eddy currents in unconsolidated alluvium
Gilliland, E. S.; Weiss, C. J.
2007-12-01
Recent studies on the diffusive transport of electromagnetic eddy currents in complex geologic materials have invited speculation on novel theoretical frameworks to encapsulate the macroscopic effects of multi-scale geologic complexity. These ideas have been based on a limited amount of data from a restricted suite of geologic environments. To test the veracity of the various diffusion theories proposed in the literature, a new data set is presented here which consists of transient electromagnetic data collected over an alluvial fill aquifer in the Estancia Basin of central New Mexico. Geologic mapping and correlation of historical well-log data show the experiment site to consist of mainly unconsolidated felsic alluvium with intermittent cobble horizons. Analysis of the electromagnetic data in terms of its diagnostic move-out behavior of the source wavelet shows some similarity to previously obtained results in floodplain environments. Further analysis of the data shows that this behavior is dominated by the alluvial texture and not influenced by the underlying basement rock.
Eddy current septum magnets for injection and extraction at SSRF
Ouyang, Lian-Hua; Gu, Ming; Liu, Bo; Chen, Rong
2010-03-01
There are 6 in-vacuum eddy current septum magnets used for booster injection, extraction, and storage ring injection in SSRF. Special attention was paid to coils and their support designs because of the shock force they bear in the magnetic fields and the high heat which is hard to be dissipated in vacuum environment. For the storage ring magnets, good transverse homogeneity in the gap was achieved by careful design, precise machining and accurate assembly; and an extremely low leakage field on the stored beam is another key feature thanks to the high permeability Mu metal. Magnetic field measurement was conducted with both a point coil and a long integral coil, and the results agree well with the OPERA-2d/3d simulations. An inner tube is added to keep the continuity of impedance for the circulating beam with two RF finger flanges at each end. There is no vacuum separation between the inner tube and the magnet chamber. Sputter ion pumps integrated with NEG are used to acquire the UHV for the chamber.
Eddy current testing system for bottom mounted instrumentation welds
Kobayashi Noriyasu
2015-01-01
Full Text Available The capability of eddy current testing (ECT for the bottom mounted instrumentation (BMI weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on the BMI mock-up. The multi-axis robot was used to move the probe on the mock-up. Each motion-axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. In the mock-up test, the probe was properly contacted with most of the weld surfaces. The artificial stress corrosion cracking of approximately 6 mm in length and the electrical-discharge machining slit of 0.5 mm in length, 1 mm in depth and 0.2 mm in width given on the weld surface were detected. From the probe output voltage, it was estimated that the average probe tilt angle on the surface under scanning was 2.6°.
Combination of Maximin and Kriging Prediction Methods for Eddy-Current Testing Database Generation
Bilicz, Sandor; Lambert, Marc; Vazquez, Emmanuel; Gyimothy, Szabolcs, E-mail: sandor.bilicz@lss.supelec.fr
2010-11-01
Eddy-current testing (ECT) is a widely used nondestructive evaluation technique. The numerical simulation of ECT methods involves high complexity and computational load. However, one needs reliable solutions (within a reasonable CPU time) for these problems to be able to solve the related inverse problem. One possible approach is to build a configuration-specific database, consisting of well-chosen samples (corresponding input data - output signal pairs). Once the database has been constructed, the sought information can be retrieved practically in no time. However, the optimal choice of samples raises complex optimization problems. This paper presents a sampling method which aims to achieve databases being optimal in a certain sense. The goal of our approach is to spread out the output samples in the whole conceivable output domain. The method is formalized as a maximin problem which is solved step-by-step using the kriging prediction.
ANALYSIS OF THE HARMONIC ORDER AFFECTING THE EDDY CURRENT BRAKING FORCE IN ELECTRICAL
Amer M. Kado
2013-05-01
Full Text Available This paper presents a computer analysis of the eddy current brake in electric machines. It presents a formula for the braking force when the actual width of the pole is considered. This formula is suitable for both thin and thick discs and may be employed for a wide range of working speed. For this purpose, a mathematical analysis of the problem is presented together with the formula achieved for the braking force. The brake is first represented by a mathematical model based on certain assumptions and then the braking force is obtained as a result of solving a field problem. The problem is simplified to a one-dimensional problem, where a solution for the magnetic vector potential is obtained, and by employing Lorentz force equation, a formula for the braking force of the nth harmonic order is obtained.
Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear
Zhang, Yuqiu; Lu, Kaiyuan; Ye, Yunyue
2012-01-01
In this paper, a new motor integrated permanent magnet gear (MIPMG) is discussed. The focus is on eddy current loss analysis associated to permanent magnets (PMs). A convenient model of MIPMG is provided based on 2-D field-motion coupled time-stepping finite element method for transient eddy...
Analysis of eddy current induced in track on medium-low speed maglev train
Li, Guanchun; Jia, Zhen; He, Guang; Li, Jie
2017-06-01
Electromagnetic levitation (EMS) maglev train relies on the attraction between the electromagnets and rails which are mounted on the train to achieve suspension. During the movement, the magnetic field generated by the electromagnet will induce the eddy current in the orbit and the eddy current will weaken the suspended magnetic field. Which leads to the attenuation of the levitation force, the increases of suspension current and the degradation the suspension performance. In this paper, the influence of eddy current on the air gap magnetic field is solved by theoretical analysis, and the correction coefficient of air gap magnetic field is fitted according to the finite element data. The levitation force and current are calculated by the modified formula, and the velocity curves of the levitation force and current are obtained. The results show that the eddy current effect increases the load power by 61.9% in the case of heavy loads.
Key factors of eddy current separation for recovering aluminum from crushed e-waste.
Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming
2017-02-01
Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and Sp. There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. Sp/Sm of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of Sp/Sm. This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater Sp of aluminum particles brought positive impact on separation efficiency. Greater Sp could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste.
Pulsed Excitation in Eddy Current Non-Destructive Testing of Conductive Materials
Ladislav Janousek
2008-01-01
Full Text Available The paper deals with eddy current non-destructive testing of conductive materials. Basic principle of the method is explained. Two types of eddy current excitation, the harmonic one and the pulsed one, are discussed. The characteristics, advantages as well as disadvantages of the two excitation methods are compared. It is explained that the pulsed excitation gives more complex information about a tested object. Experimental results of the pulsed eddy current testing of a defect in an Aluminium plate are presented
Development of eddy current testing system using magnetic saturation in ferromagnetic materials
Sung, Je Joong; Ahn, Hyung Keun; Shin, Yong Hoon [Sae An Engineering Corperation, Seoul (Korea, Republic of); Seo, Dong Man [Kunjang College, Kunsan (Korea, Republic of)
2002-11-15
Ferromagnetic materials have difficulties of eddy current test using traditional eddy current equipment due to their electric character of high permeability and anomalous magnetic flux. Development of on-line eddy current test equipment for ferromagnetic materials is a goal of this research. as the first step for it, in this paper, a prove for ferromagnetic materials was developed and practical test was performed with it at a manufactory. For magnetic saturation of inside of ferromagnetic material, DC power supply was used. As increasement of applied voltage, signals of defects were distinguished.
Behavior of magnetic field and eddy current in a magnetostriction based bi-layered composite
Kewei Zhang
2016-12-01
Full Text Available In this paper, we presented a theoretical method for studying the behavior of magnetic field intensity and eddy current inside a magnetostriction based bi-layered composite. Firstly, the mathematical model for the electromagnetic field in the composite was established. Then, the governing equation for determining the magnetic field intensity and eddy current was solved. Furthermore, the effect of the composite’s conductivity on the magnetic field intensity and eddy current were discussed. Lastly, by comparing with the well known R.L. Stoll’s equation, the magnetic field intensity calculated based on our equation showed a less than 0.5% error.
Behavior of magnetic field and eddy current in a magnetostriction based bi-layered composite
Zhang, Kewei; Zhang, Kehao; Liu, Huifeng; Li, Junlin
2016-12-01
In this paper, we presented a theoretical method for studying the behavior of magnetic field intensity and eddy current inside a magnetostriction based bi-layered composite. Firstly, the mathematical model for the electromagnetic field in the composite was established. Then, the governing equation for determining the magnetic field intensity and eddy current was solved. Furthermore, the effect of the composite's conductivity on the magnetic field intensity and eddy current were discussed. Lastly, by comparing with the well known R.L. Stoll's equation, the magnetic field intensity calculated based on our equation showed a less than 0.5% error.
Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder
2017-03-09
UNCLASSIFIED UNCLASSIFIED AD-E403 855 Technical Report ARMET-TR-16045 TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A ...any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN...August 2014 4. TITLE AND SUBTITLE TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A SPINNING CONDUCTING CYLINDER 5a. CONTRACT NUMBER 5b
Heat balance and eddies in the Peru-Chile current system
Colas, Francois; McWilliams, James C.; Kurian, Jaison [University of California, Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States); Capet, Xavier [Laboratoire de Physique des Oceans, Ifremer, Plouzane (France)
2012-07-15
The Peru-Chile current System (PCS) is a region of persistent biases in global climate models. It has strong coastal upwelling, alongshore boundary currents, and mesoscale eddies. These oceanic phenomena provide essential heat transport to maintain a cool oceanic surface underneath the prevalent atmospheric stratus cloud deck, through a combination of mean circulation and eddy flux. We demonstrate these behaviors in a regional, quasi-equilibrium oceanic model that adequately resolves the mesoscale eddies with climatological forcing. The key result is that the atmospheric heating is large (>50 W m{sup -2}) over a substantial strip >500 km wide off the coast of Peru, and the balancing lateral oceanic flux is much larger than provided by the offshore Ekman flux alone. The atmospheric heating is weaker and the coastally influenced strip is narrower off Chile, but again the Ekman flux is not sufficient for heat balance. The eddy contribution to the oceanic flux is substantial. Analysis of eddy properties shows strong surface temperature fronts and associated large vorticity, especially off Peru. Cyclonic eddies moderately dominate the surface layer, and anticyclonic eddies, originating from the nearshore poleward Peru-Chile Undercurrent (PCUC), dominate the subsurface, especially off Chile. The sensitivity of the PCS heat balance to equatorial intra-seasonal oscillations is found to be small. We demonstrate that forcing the regional model with a representative, coarse-resolution global reanalysis wind product has dramatic and deleterious consequences for the oceanic circulation and climate heat balance, the eddy heat flux in particular. (orig.)
Mathematical Modeling of Eddy-Current Loss for a New Induction Heating Device
Hai Du
2014-01-01
Full Text Available A new induction heating device is presented in this paper. This device can convert mechanical energy into heat energy by utilizing eddy currents, which are induced by rotating permanent magnets. A mathematical model is established for estimating eddy-current loss of the device. The distribution of induced currents and the resultant magnetic field intensity are considered in the process of modeling the eddy-current loss and so is the mutual influence of the electric field between neighborhood pole projection areas. Particularly, the skin effect is considered by correcting the numerical integral domain of eddy current density, which has great effect on the calculating results. Based on specific examples, the effectiveness and correctness of proposed model are proved by finite element analysis. The results show that the mathematical model can provide important reference for design and structure optimization of the device.
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT
Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn; Zhuang, G.; Li, X.; Yuan, T.; Rao, B.; Zhao, Q. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2016-01-15
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.
Scott, Robert B.
2010-01-01
We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.
Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.
2017-01-01
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399
Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A
2017-03-13
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
Damhuji Rifai
2017-03-01
Full Text Available The use of the eddy current technique (ECT for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM. The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
Current Social Problem Novels.
Kenney, Donald J.
This review of social problem novels for young adults opens with a brief background of the genre, then lists the dominant themes of social problem fiction and nonfiction novels that have been published in the last two years, such as alcoholism, alienation, death, growing up and self-awarness, drugs, and divorce. Other themes mentioned are…
Eddy current imaging for electrical characterization of silicon solar cells and TCO layers
Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning
2015-03-01
Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.
Eddy current loss calculation and thermal analysis of axial-flux permanent magnet couplers
Di Zheng
2017-02-01
Full Text Available A three-dimensional magnetic field analytical model of axial-flux permanent magnet couplers is presented to calculate the eddy current loss, and the prediction of the copper plate temperature under various loads is analyzed. The magnetic field distribution is calculated, and then the eddy current loss is obtained, with the magnetic field analytical model established in cylindrical coordinate. The influence of various loads on eddy current loss is analyzed. Furthermore, a thermal model of axial-flux permanent magnet couplers is established by taking the eddy current loss as the heat source, using the electromagnetic-thermal coupled method. With the help of the thermal model, the influence of various loads on copper plate temperature rise is also analyzed. The calculated results are compared with the results of finite element method and measurement. The comparison results confirm the validity of the magnetic field analytical model and thermal model.
High Temperature, Through the Case Eddy Current Sensor for Blade Vibration Measurements Project
National Aeronautics and Space Administration — Preliminary results have shown that low temperature eddy current sensors can provide excellent resolution for blade tip timing, and have the ability to see ?through...
An eddy-current model for three-dimensional nondestructive evaluation of advanced composites
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.
2015-03-01
We have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we apply rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. We will give examples of the solution of forward problems using this model.
Modeling Studies of Eddies in the Leeuwin Current: The Role of Thermal Forcing
Batteen, Mary L.; Rutherford, Martin J.
1990-01-01
A high resolution, multilevel, primitive equation (PE) model is used to investigate the generation and stability of the Leeuwin Current and eddies off the west coast of Australia. Two numerical experiments are conducted to investigate the roles of the Indian Ocean temperature field and the North West (NW) Shelf waters in generating both the current and eddies. In the first experiment an alongshore temperature gradient, typical of the Indian Ocean temperature field, is imposed, whi...
2014-10-01
coatings using eddy current techniques”, AIP Conference Proceedings , Vol. 1430, 2012, pp 441. 7. F. M. Smits, “Measurement of sheet resistivities with... Conference 2014: 27 October - 30 October, Charleston, SC, USA. “High-Frequency Eddy Current System for Analyzing Wet Conductive Coatings during...Processing”. 3. QNDE 2014 (ORAL PRESENTATION), 41st Annual Review of Progress in Quantitative Nondestructive Evaluation: Conference Boise Centre
Tilt-shift eddy current probe impact on information value of response signal
Chudacik Vladimir; Smetana Milan
2016-01-01
This article deals with the possibility for increasing of the informational value of a response signal using tilt-shift eddy current probe. Numerical simulations based on the FEM method using the OPERA 3D software as well as gained experimental results are presented. The simulated cracks are evaluated at the selected eddy current probe tilts and shifts with respect to conductive plate to obtain additional data needed for its evaluation and localization. Obtained simulation results are compare...
A novel hybrid FEM-BEM method for 3D eddy current field calculation using current density J
LIU; Zhizhen(刘志珍); WANG; Yanzhang(王衍章); JIA; Zhiping(贾智平); SUN; Yingming(孙英明)
2003-01-01
This paper introduces a novel hybrid FEM-BEM method for calculating 3D eddy current field. In the eddy current region, the eddy current density J is solved by the finite element method (FEM) which is discretized by brick finite element mesh, while in the eddy current free region, the magnetic field intensity H is solved by the boundary element method (BEM) which is discretized by rectangular boundary element mesh. Under the boundary conditions, an algebraic equation group is obtained that only includes J by eliminating H. This method has many advantages over traditional ones, such as fewer variables, more convenient coupling between the FEM and the BEM and wider application to multiply-connected regions. The calculated values of two models are in good agreement with experimental results. This shows the validity of our method.
Eddy Current Inversion Models for Estimating Dimensions of Defects in Multilayered Structures
Bo Ye
2014-01-01
Full Text Available In eddy current nondestructive evaluation, one of the principal challenges is to determine the dimensions of defects in multilayered structures from the measured signals. It is a typical inverse problem which is generally considered to be nonlinear and ill-posed. In the paper, two effective approaches have been proposed to estimate the defect dimensions. The first one is a partial least squares (PLS regression method. The second one is a kernel partial least squares (KPLS regression method. The experimental research is carried out. In experiments, the eddy current signals responding to magnetic field changes are detected by a giant magnetoresistive (GMR sensor and preprocessed for noise elimination using a wavelet packet analysis (WPA method. Then, the proposed two approaches are used to construct the inversion models of defect dimension estimation. Finally, the estimation results are analyzed. The performance comparison between the proposed two approaches and the artificial neural network (ANN method is presented. The comparison results demonstrate the feasibility and validity of the proposed two methods. Between them, the KPLS regression method gives a better prediction performance than the PLS regression method at present.
Eddy Current Analysis of Thin Metal Container in Induction Heating by Line Integral Equations
Fujita, Hagino; Ishibashi, Kazuhisa
In recent years, induction-heating cookers have been disseminated explosively. It is wished to commercialize flexible and disposable food containers that are available for induction heating. In order to develop a good quality food container that is heated moderately, it is necessary to analyze accurately eddy currents induced in a thin metal plate. The integral equation method is widely used for solving induction-heating problems. If the plate thickness approaches zero, the surface integral equations on the upper and lower plate surfaces tend to become the same and the equations become ill conditioned. In this paper, firstly, we derive line integral equations from the boundary integral equations on the assumption that the electromagnetic fields in metal are attenuated rapidly compared with those along the metal surface. Next, so as to test validity of the line integral equations, we solve the eddy current induced in a thin metal container in induction heating and obtain power density given to the container and impedance characteristics of the heating coil. We compare computed results with those by FEM.
Eddy currents in the anisotropy of out-of-phase magnetic susceptibility measurement - A model study
Jezek, Josef; Hrouda, Frantisek
2016-04-01
Analytical solutions of Maxwell equations for eddy currents caused by AC field in a conductive sphere, known from 1950s, provide a general formula for magnetic susceptibility. It contains the parameters describing the sphere (its size, conductivity and permeability), surrounding medium (permeability) and the applied field (frequency). The formula is complex and without numerical evaluation it is difficult to distinguish the real (in-phase) and imaginary (out-of-phase) part of susceptibility. Representing all the parameters by only two, relative permeability (sphere vs. medium) and skin ratio (summarizing the effect of sphere size, conductivity and permeability, and frequency of the field), we derive approximate formulas for both phases and the phase angle. These are valid for a reasonable range of parameters (from rock magnetism point of view) and enable us to study their influence. The in-phase susceptibility depends very weakly on the fourth power of the skin ratio while the out-of-phase susceptibility depends more strongly on its second power. The coefficients of the dependence are expressed by means of relative permeability. The approximations of in-phase and out-of-phase susceptibilities provide a possibility to assess possible effects of eddy currents in rocks in case of low content of conductive minerals and solve problems of the type by which size one piece of a mineral in the measured sample can produce a phase shift that is observed by measurement. Examples of magnetite and pyrrhotite are given.
Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates
Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin
2013-12-01
Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.
Eddy-Mean Flow Interactions in Western Boundary Current Jets
2009-02-01
relevance to the atmosphere, the enstrophy variance budget (assuming eddy en- strophy advection, a triple correlation term, is small) reduces to a two-term...producing an increase in the barotropic component of the zonal jet. The other term however, v′2 − u′2, the term producing the quadrupole pattern that...shooting technique ” that varies the complex phase speed until the numerical solutions in the interior match the exterior analytic solutions at the edge of
Zhang, S.; Rem, P.C.; Forssberg, E.
1999-01-01
Owing to the growing emergence of the end-of-life electrical and electronic products with complex material structures and an ever-diminishing particle size of the valuable metals involved, development of eddy current separators (ECS) has been targeting selective separation of small non-ferrous metal
A LARGE EDDY SIMULATION TURBULENCE MODEL FOR COASTAL SEAS AND SHALLOW WATER PROBLEMS
无
2001-01-01
In large scale motions of circulations in coastal seas and shallow-water problems, different characteristics of flow in the horizontal plane and in the vertical direction are expected. In this paper, a new large eddy simulation model was proposed. There are some differences between the present method and the other LES models. The philosophy of the large eddy simulation and the directional eddy viscosity method were applied in the horizontal plane and in the vertical direction, respectively. Comparied with the other LES models in which there is no difference between horizontal viscosity and vertical viscosity, the proposed method is resonable.
Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John
2014-03-01
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.
Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John
2014-03-14
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.
Rail temperature rise characteristics caused by linear eddy current brake of high-speed train
Xiaoshan Lu
2014-12-01
Full Text Available The rail temperature rises when the linear eddy current brake of high-speed train is working, which may lead to a change of rail physical characteristics or an effect on train operations. Therefore, a study concerning the characteristics of rail temperature rise caused by eddy current has its practical necessity. In the research, the working principle of a linear eddy current brake is introduced and its FEA model is established. According to the generation mechanism of eddy current, the theoretical formula of the internal energy which is produced by the eddy current is deduced and the thermal load on the rail is obtained. ANSYS is used to simulate the rail temperature changes under different conditions of thermal loads. The research result shows the main factors which contribute to the rising of rail temperature are the train speed, brake gap and exciting current. The rail temperature rises non-linearly with the increase of train speed. The rail temperature rise curve is more sensitive to the exciting current than the air gap. Moreover, the difference stimulated by temperature rising between rails of 60 kg/m and 75 kg/m is presented as well.
Pulsed eddy current and ultrasonic data fusion applied to stress measurement
Habibalahi, A.; Safizadeh, M. S.
2014-05-01
Stress measurement and its variation are key problems in the operating performance of materials. Stress can affect the material properties and the life of components. There are several destructive and nondestructive techniques that are used to measure stress. However, no single nondestructive testing (NDT) technique or method is satisfactory to fully assess stress. This paper presents an NDT data fusion method to improve stress measurement. An aluminum alloy 2024 specimen subjected to stress simulation is nondestructively inspected using pulsed eddy current and ultrasonic techniques. Following these nondestructive examinations, the information gathered from these two NDT methods has been fused using a suitable fuzzy combination operator. The results obtained with these processes are presented in this paper and their efficiency is discussed. It is shown that the fusion of NDT data with a suitable fuzzy operator can be adequate to improve the reliability of stress measurements.
M. S. MANNA
2011-12-01
Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.
Modelling of eddy-current interaction with cracks in the thin-skin regime. Two approaches
Mastorchio, S. [Electricite de France, 78 - Chatou (France). Research and Development Div.; Harfield, N. [Surrey Univ. (United Kingdom). Dept. of Physics
1998-02-01
EDF uses TRIFOU code for eddy current testing modelling. This general electromagnetic code is to be further adapted to Non Destructive Testing applications, not only for nuclear NDT but also in other fields such as aeronautical. This paper compares experimental data for aluminium and steel specimens with two methods of solving the forward problem in the thin-skin regime. The first approach is a 3D Finite Element / Boundary Integral Element method (TRIFOU) developed by EDF/RD Division (France). The second approach is specialized for the treatment of surface cracks in the thin-skin regime developed by the University of Surrey (England). In the thin-skin regime, the electromagnetic skin-depth is small compared with the depth of the crack. Such conditions are common in tests on steels and sometimes on aluminium. (K.A.) 4 refs.
Application of Multidimensional Chain classifiers to Eddy Current Images for Defect Characterization
S. Shuaib Ahmed
2012-12-01
Full Text Available Multidimensional learning problem deals with learning a function that maps a vector of input features to a vector of class labels. Dependency between the classes is not taken into account while constructing independent classifiers for each component class of vector. To counteract this limitation, Chain Classifiers (CC approach for multidimensional learning is proposed in this study. In this approach, the information of class dependency is passed along a chain. Radial Basis Functions (RBF and Support Vector Machines (SVM are used as core for CC. Studies on multidimensional dataset of images obtained from simulated eddy current non-destructive evaluation of a stainless steel plate with sub-surface defects clearly indicate that the performance of the chain classifier is superior to the independent classifiers.
Bo Ye
2014-01-01
Full Text Available Accurate evaluation and characterization of defects in multilayered structures from eddy current nondestructive testing (NDT signals are a difficult inverse problem. There is scope for improving the current methods used for solving the inverse problem by incorporating information of uncertainty in the inspection process. Here, we propose to evaluate defects quantitatively from eddy current NDT signals using Bayesian networks (BNs. BNs are a useful method in handling uncertainty in the inspection process, eventually leading to the more accurate results. The domain knowledge and the experimental data are used to generate the BN models. The models are applied to predict the signals corresponding to different defect characteristic parameters or to estimate defect characteristic parameters from eddy current signals in real time. Finally, the estimation results are analyzed. Compared to the least squares regression method, BNs are more robust with higher accuracy and have the advantage of being a bidirectional inferential mechanism. This approach allows results to be obtained in the form of full marginal conditional probability distributions, providing more information on the defect. The feasibility of BNs presented and discussed in this paper has been validated.
Characteristic Analysis and Control of a Hybrid Excitation Linear Eddy Current Brake
Baoquan Kou
2015-07-01
Full Text Available In this paper, a novel hybrid excitation linear eddy current brake is presented as a braking system for high-speed road and rail vehicles. The presence of the permanent magnets (PMs, whose flux lines in the primary core are oppositely directed with respect to the flux lines by the excitation windings, has the effect of mitigating the saturation of the iron in the teeth of the primary core. This allows the brake to be fed with more intense currents, improving the braking force. First, using the magnetic equivalent circuit method and the layer theory approach, the analytical model of the hybrid excitation linear eddy current brake was developed, which can account for the saturation effects occurring in the iron parts. The saturation effects make the design and control of eddy current brakes more difficult. Second, the relationship between the braking force characteristics and the design parameters were analyzed to provide useful information to the designers of eddy current brakes. Then, the controller of the hybrid excitation linear eddy current brake was designed to control the amplitude of the braking force. Finally, experimental measurements were conducted to verify the validity of the theoretical analysis.
Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico
Gopalakrishnan, Ganesh
2013-07-01
Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of
Numerical Study of Eddy Shedding By The Loop Current With Ogcm
Tanahara, S.; Crèpon, M.
The high resolution CLIPPER model for the Atlantic Ocean running at 1/6o was used to study the dynamic of the Gulf of Mexico. The model was daily forced with the ECMWF re-analysis air-sea fluxes during 20 years. A spin-up phase of 10 years is done in the experience. The results show the formation of the Loop Current in the interior of the Gulf of Mexico. This loop detach an anticyclonic eddy northward to Yucatan shelf Peninsula. The size of the eddy is close to 290 Km and 1000 m depth. The eddy shedding periodicity is between 7 to 9 months for the 5 first years of numer- ical forcing simulation. After that, the eddy shedding is blocked and an intensification and deepening of the loop happens. It is found that barotropic transport through Yu- catan channel and vertical structure of cross velocity's Yucatan current are important for eddy shedding process. A hypothesis for the generation and blocking of westward propagation of eddies in the Gulf of Mexico is proposed according to the numerical results.
2013-09-30
layer the eddy flux is significantly diabatic with a shallow eddy-induced (Lagrangian) circulation cell and down-gradient lateral diapycnal flux. These...3D Schematic representation of the eddy effects on the mean buoyancy field decomposed between adiabatic eddy-induced advection and diabatic ...plane). The diabatic component acts to smooth out surface buoyancy extrema and is shown as sinuous arrows in the top plane. Interior diabatic fluxes
The R and D of half-sine pulser for eddy-current septum magnet
Fu Lu Xin; Kang Wen
2002-01-01
The SSRF requires high-amplitude half-sine pulse current (10kA) and relatively narrow pulse width (approx 60 mu s) for its eddy-current septum magnets. Moreover the machine will need a very high level of performance from the pulsers, particularly in terms of pulse amplitude stability and regulating range. For the convenience of maintenance the pulsers will be installed in the power supply hall and cabled to their eddy-current septum magnets by RG220/U. The author presents the pulser design and R and D results
3D computation of non-linear eddy currents: Variational method and superconducting cubic bulk
Pardo, Enric; Kapolka, Milan
2017-09-01
Computing the electric eddy currents in non-linear materials, such as superconductors, is not straightforward. The design of superconducting magnets and power applications needs electromagnetic computer modeling, being in many cases a three-dimensional (3D) problem. Since 3D problems require high computing times, novel time-efficient modeling tools are highly desirable. This article presents a novel computing modeling method based on a variational principle. The self-programmed implementation uses an original minimization method, which divides the sample into sectors. This speeds-up the computations with no loss of accuracy, while enabling efficient parallelization. This method could also be applied to model transients in linear materials or networks of non-linear electrical elements. As example, we analyze the magnetization currents of a cubic superconductor. This 3D situation remains unknown, in spite of the fact that it is often met in material characterization and bulk applications. We found that below the penetration field and in part of the sample, current flux lines are not rectangular and significantly bend in the direction parallel to the applied field. In conclusion, the presented numerical method is able to time-efficiently solve fully 3D situations without loss of accuracy.
Observational evidence of seasonality in the timing of loop current eddy separation
Hall, Cody A.; Leben, Robert R.
2016-12-01
Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated
The early stage wheel fatigue crack detection using eddy current pulsed thermography
Peng, Jianping; Zhang, Kang; Yang, Kai; He, Zhu; Zhang, Yu; Peng, Chaoyong; Gao, Xiaorong
2017-02-01
The in-service wheel-set quality is one of critical challenges for railway safety, especially for the high-speed train. The defect in wheel tread, initiated by rolling contact fatigue (RCF) damage, is one of the most significant phenomena and has serious influence on rail industry. Eddy current pulsed thermography is studied to compensate the UT method for detection these early stage of fatigue cracks in wheel tread surface. This paper proposes approximately uniform magnetic field, excited by Helmholtz coils, based pulsed eddy current thermography to achieve open-view image and meet the irregular surface in wheel tread through numerical way. Some features are extracted and studied also to quantify the fatigue crack in term of eddy current pulsed thermography. The proposed method enhances the capability for cracks detection and quantitative evaluation compared with previous NDT method in railway.
Contribution of the Magnetic Field of Eddy Currents to the Gilbert Damping Parameter
S.I. Denisov
2014-06-01
Full Text Available We study the role of the magnetic field of eddy currents, which are induced in conducting single-domain particles of spherical form, in the magnetization dynamics. To describe the dynamic behavior of magnetization and electromagnetic field generating by the time-dependent magnetization, we use the coupled system of the Landau-Lifshitz-Gilbert (LLG and Maxwell equations. Assuming that the magnetization direction depends on time in an arbitrary way, we find the solution of the Maxwell equations in the quasi-stationary approximation and calculate the averaged (over the particle volume magnetic field of eddy currents. Considering this field as an extra contribution to the effective magnetic field acting on the particle magnetic moment, we derive the LLG equation in which the influence of eddy currents is completely accounted for by introducing an additional Gilbert damping parameter of electrodynamic origin.
Motion-induced eddy current thermography for high-speed inspection
Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian
2017-08-01
This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.
Nondestructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method
Mi, Bao; Zhao, Xiaoliang (George); Bayles, Robert
2007-03-01
Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with various surface preparation conditions or spray process parameters. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that different surface preparation conditions and varied process parameters can be successfully differentiated by the impedance value observed from the eddy current probe. The measurement is fairly robust and consistent. This non-contact, nondestructive, easy-to-use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.
Thickness measuring of electroconductive pipe walls using the dual-frequency eddy-current method
Yakimov, Evgeny; Galtseva, Olga; Ustyugov, Daniil
2017-01-01
The paper describes a dual-frequency method for reducing the impact of changes in the gap size between the eddy-current transducer and the pipe, as well as the pipe electrical conductivity on the eddy-current thickness gauge readings. A block-diagram of the dual-frequency eddy-current thickness gauge is proposed for light-alloy drill pipes. The amplitude and signal phase dependencies on the wall thickness in the range from 6 to 17 mm and the gap in the range from 0 to 13.5 mm were studied, the results are presented. The digital signal processing algorithms based on the piecewise-linear approximation of low-frequency and high-frequency signal phase dependencies on the wall thickness are proposed. It is shown that the proposed correction algorithms can reduce the error caused by variations of electrical conductivity and the gap between the transducer and the pipe.
Eddy current braking experiment using brake disc from aluminium series of A16061 and A17075
Baharom, M. Z.; Nuawi, M. Z.; Priyandoko, G.; Harris, S. M.
2012-09-01
The electromagnetic braking using eddy current was studied, focused on two series of aluminium as the brake disc which are A16061 and A17075. This paper presents the comparison for both series in a few varied parameters related to eddy current braking such as air-gap, number of turns and brake disc thickness. Optical tachometer has been used along with PULSE analyzer to capture the speed (rpm) and time (s). The findings shows that the smaller the air-gap, the larger of electromagnet turns and the thicker disc thickness is, will generate higher braking torque to stop the rotational motion of disc brake and give great performance for eddy current braking. Thos parameters that been evaluated also addressed a potential on expanding this knowledge to develop an electromagnetic braking system to replace the conventional braking system.
Multifrequency eddy-current inspection of seam weld in steel sheath
Smith, J.H.; Dodd, C.V.; Chitwood, L.D.
1985-04-01
Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs.
Transient Eddy Current Response Due to a Subsurface Crack in a Conductive Plate
Fu, Fangwei [Iowa State Univ., Ames, IA (United States)
2006-01-01
Eddy current nondestructive evaluation (NDE) is usually carried out by exciting a time harmonic field using an inductive probe. However, a viable alternative is to use transient eddy current NDE in which a current pulse in a driver coil produces a transient .eld in a conductor that decays at a rate dependent on the conductivity and the permeability of the material and the coil configuration. By using transient eddy current, it is possible to estimate the properties of the conductive medium and to locate and size potential .aws from the measured probe response. The fundamental study described in this dissertation seeks to establish a theoretical understanding of the transient eddy current NDE. Compared with the Fourier transform method, the derived analytical formulations are more convenient when the transient eddy current response within a narrow time range is evaluated. The theoretical analysis provides a valuable tool to study the effect of layer thickness, location of defect, crack opening as well as the optimization of probe design. Analytical expressions have been developed to evaluate the transient response due to eddy currents in a conductive plate based on two asymptotic series. One series converges rapidly for a short time regime and the other for a long time regime and both of them agree with the results calculated by fast Fourier transform over all the times considered. The idea of asymptotic expansion is further applied to determine the induced electromotive force (EMF) in a pick-up coil due to eddy currents in a cylindrical rod. Starting from frequency domain representation, a quasi-static time domain dyadic Green's function for an electric source in a conductive plate has been derived. The resulting expression has three parts; a free space term, multiple image terms and partial reflection terms. The dyadic Green's function serves as the kernel of an electric field integral equation which defines the interaction of an ideal crack with the
Tilt-shift eddy current probe impact on information value of response signal
Chudacik Vladimir
2016-03-01
Full Text Available This article deals with the possibility for increasing of the informational value of a response signal using tilt-shift eddy current probe. Numerical simulations based on the FEM method using the OPERA 3D software as well as gained experimental results are presented. The simulated cracks are evaluated at the selected eddy current probe tilts and shifts with respect to conductive plate to obtain additional data needed for its evaluation and localization. Obtained simulation results are compared and discussed with the experimental results.
Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa
Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces eddy current and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the eddy current and Joule heat.
Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.
1989-01-01
A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.
Eddy current inspection of tubing; Inspeccion de tubos por corrientes de Foucault
Bauza, J. L. R.; Herrero, J.; Diaz, J.
1966-07-01
The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)
Finite Element Analysis of a BLDC Motor Considering the Eddy Current in Rotor Steel Shell
Park, Seung Chan; Yoon, Tae Ho; Kwon Byung Il [Hanyang University (Korea, Republic of); Yoon, Hee Soo; Won, Sung Hong [Samsung Electro-Mechanics R and D Center (Korea, Republic of)
1999-03-01
This paper describes the effect of eddy currents in the rotor steel shell of exterior-rotor permanent magnet BLDC motor of which rotor is revolving at a high speed. A two-dimensional time-stepping finite element method is used for analyzing electromagnetic field and computing performances of the motor. As a result, the effect of the eddy currents in the rotor steel shell is shown by comparing the analysis results from both the proposed method and the conventional one. (author). 7 refs., 11 figs., 1 tab.
The Application of Eddy Current Transducer for Testing Movement Locus of Shaker Screen
Zhu Pingyu; Lao Chuanjun; Zhang Wei; Li Xuejun
2007-01-01
Shaker screen is one of important equipments in the industry of oil, metallurgy, coal and timbering. The movement locus of shaker screen affects the capacity and efficiency of shaker screen to split the solid particle from crude ore directly .To test movement of shaker locus, two eddy current transducers are employed. A discussion of the usage of these eddy current transducer to test and acceleration sensors will be made. The experiment results from a real elliptic shaker screen have good agree with the design requirements.
Egorov, Alexander; Kucheryavskiy, Sergey V.; Polyakov, Viktor
2017-01-01
The effect of eddy currents is widely used for diagnostics of conductive materials. It allows to create very simple and inexpensive systems for non-destructive measurements. However, the results of the measurements depend on many factors, including first of all, a conductivity of material...... and a margin between a sample and a measurement sensor. If both are unknown, it is not possible to evaluate them. The present paper thoroughly reports on an attempt to resolve the influence of the two factors by applying chemometric methods to the eddy current measurements obtained for a set of frequencies....
Compulsory Checking of Nuclear Power Engineering Materials by Direct and Eddy Current
Larionov, V. V.; Lider, A. M.; Sednev, D. A.; Xu, Shupeng
2016-08-01
The testing technology of copper parts designed for dry storage of spent nuclear fuel with application of direct and eddy current has been developed. Measurements results of flaw quantity caused hydrogenation and oxidation processes are presented. Evolution of copper M 001 flaw structure during hydrogenation from gaseous medium is analyzed. It has been demonstrated that the dependence of copper p electrical resistance on number of flaws in its structure has dome shaped character and changes with eddy current frequency change. Number of flaws formed by hydrogen depends on direction (100) or (200) of the crystal structure of copper lattice.
Coupled circuit numerical analysis of eddy currents in an open MRI system.
Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi
2014-08-01
We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation
Eddy Current Tomography Based on a Finite Difference Forward Model with Additive Regularization
Trillon, A.; Girard, A.; Idier, J.; Goussard, Y.; Sirois, F.; Dubost, S.; Paul, N.
2010-02-01
Eddy current tomography is a nondestructive evaluation technique used for characterization of metal components. It is an inverse problem acknowledged as difficult to solve since it is both ill-posed and nonlinear. Our goal is to derive an inversion technique with improved tradeoff between quality of the results, computational requirements and ease of implementation. This is achieved by fully accounting for the nonlinear nature of the forward problem by means of a system of bilinear equations obtained through a finite difference modeling of the problem. The bilinear character of equations with respect to the electric field and the relative conductivity is taken advantage of through a simple contrast source inversion-like scheme. The ill-posedness is dealt with through the addition of regularization terms to the criterion, the form of which is determined according to computational constraints and the piecewise constant nature of the medium. Therefore an edge-preserving functional is selected. The performance of the resulting method is illustrated using 2D synthetic data examples.
Computer programs for the acquisition and analysis of eddy-current array probe data
Pate, J.R.; Dodd, C.V.
1996-07-01
Objective of the Improved Eddy-Curent ISI (in-service inspection) for Steam Generators Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for ISI of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC`s mobile NDE laboratory and staff. This report documents computer programs that were developed for acquisition of eddy-current data from specially designed 16-coil array probes. Complete code as well as instructions for use are provided.
Chandrasekar, Ramya
The goal of this thesis was to determine the dependency of swept frequency eddy current (SFEC) measurements on the microstructure of the Ni-based alloy, Inconel 718 as a function of heat treatment and shot peening. This involved extensive characterization of the sample using SEM and TEM coupled with measurements and analysis of the eddy current response of the various sample conditions using SFEC data. Specific objectives included determining the eddy current response at varying depths within the sample, and this was accomplished by taking SFEC measurements in frequencies ranging from 100 kHz to 50 MHz. Conductivity profile fitting of the resulting SFEC signals was obtained by considering influencing factors (such as surface damage). The problems associated with surface roughness and near surface damage produced by shot peening were overcome by using an inversion model. Differences in signal were seen as a result of precipitation produced by heat treatment and by residual stresses induced due to the shot peening. Hardness of the material, which is related both to precipitation and shot peening, was seen to correlate with the measured SFEC signal. Surface stress measurement was carried out using XRD giving stress in the near surface regions, but not included in the calculations due to shallow depth information provided by the technique compared to SFEC. By comparing theoretical SFEC signal computed using the microstructural values (precipitate fraction) and experimental SFEC data, dependency of the SFEC signals on microstructure and residual stress was obtained.
Numerical Simulation of the Eddy Current Effects on the Arc Splitting Process
杨飞; 荣命哲; 吴翊; 孙昊; 马瑞光; 纽春萍
2012-01-01
This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-hydrodynamic (MHD) theory, a thin layer of nonlinear electrical resistance elements is used in the model to represent the voltage drop of plasma sheath and the formation of new arc root in order to include the arc splitting process in the simulation. In the arcing process, eddy currents in metal parts are generated by a time-varying magnetic field. The arc model is calculated with the time-varying magnetic field term, so that the eddy current effects can be considered. The effect of nonlinear permeability of a ferromagnetic material is also involved in the calculation. Using the simulation results for the temperature, velocity and current density distribution, the arc splitting process is analyzed in detail. The calculated results are compared with the simulation neglecting eddy currents.
Eddy heat fluxes from direct current measurements of the Antarctic Polar Front in Shag Rocks Passage
Walkden, GJ; Heywood, Kj; Stevens, DP
2008-01-01
Determining meridional heat flux in the Southern Ocean is critical to the accurate understanding and model simulation of the global ocean. Mesoscale eddies provide a significant but poorly-defined contribution to this transport. An eighteen-month deep-water current meter array deployment in Shag Rocks Passage (53°S, 48°W) between May 2003 and November 2004 provides estimates of the eddy flux of heat across the Polar Front. We calculate a statistically nonzero (99% level), vertically coherent ...
Akuetevi, C. Q. C.; Barnier, B.; Verron, J.; Molines, J.-M.; Lecointre, A.
2016-02-01
Three hindcast simulations of the global ocean circulation differing by resolution (1/4 or 1/12°) or parametrization or atmospheric forcing are used to describe the interactions between the large anticyclonic eddies generated by the Somali Current system during the Southwest Monsoon. The present investigation of the Somalian coherent eddy structures allows us to identify the origin and the subsequent development of the cyclones flanked upon the Great Whirl (GW) previously identified by Beal and Donohue (2013) in satellite observations and to establish that similar cyclones are also flanked upon the Southern Gyre (SG). These cyclones are identified as potential actors in mixing water masses within the large eddies and offshore the coast of Somalia. All three simulations bring to light that during the period when the Southwest Monsoon is well established, the SG moves northward along the Somali coast and encounters the GW. The interaction between the SG and the GW is a collision without merging, in a way that has not been described in observations up to now. During the collision the GW is pushed to the east of Socotra Island, sheds several smaller patches of anticyclonic vorticity, and often reforms into the Socotra Eddy, thus proposing a formation mechanism for that eddy. During this process the GW gives up its place to the SG. This process is robust throughout the three simulations.
A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss
Jin Liu
2016-11-01
Full Text Available This paper proposes a novel flux focusing magnetically geared (MG machine for wind power generation, considering the permanent magnets (PMs eddy current loss and the balance between the pull-out torque of MG machine and the back-electromotive force (EMFof the PM brushless machine. The PM eddy current loss in the two rotors of the conventional surface-mounted MG machine is calculated and analyzed by using finite-element method. By adopting serial-spoke structure in the inner rotor, a novel rotor structure for a MG machine is proposed to reduce the PM eddy current loss. Moreover, in order to balance the pull-out torque and the back-EMF, several serial-spoke structures and the main design parameters are investigated. Then, a quantitative comparison between the proposed topology and the conventional surface-mounted MG machine is performed. The analysis results indicate that the PM eddy current loss of the proposed MG machine can be significantly reduced and its pull-out torque and back-EMF can be balanced well.
Dual-frequency eddy-current NDE based on high-T{sub c} rf SQUID
He, D.F.; Yoshizawa, M
2002-12-15
We developed a dual-frequency eddy-current NDE system based on High-T{sub c} RF superconducting quantum interference devices. This method could be used to decrease the unwanted signals caused by the variance of lift-off, to estimate the depth of crack flaw or to detect the thickness of metal structures by choosing appropriate excitation frequencies.
Low eddy current RF shielding enclosure designs for 3T MR applications.
Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S
2017-06-06
Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Evaluation of eddy-current probe signals due to cracks in ferromagnetic parts of fast reactor
Wu, Tao; Bowler, John R.
2017-02-01
Eddy current testing to evaluate the condition of metallic parts in a sodium cooled fast reactor under standby conditions is challenging due to the presence of liquid sodium at 250 °C. The eddy current test system should be sensitive enough to capture small signal changes and hence an advanced inspection systems is needed. We have developed new hardware and improved numerical models to predict the eddy current probe signal due to cracks in metallic fast reactor parts by using volume integral equation method. The analytical expressions are derived for the quasi-static time-harmonic electromagnetic fields of a circular eddy current coil which interacts with conductive plate. Naturally, the method of moment is used to approximate the integral equation and obtain the discrete approximation of the field in the crack domain. A simple and accurate analytical method for dealing with the hyper-singularity element evaluation is also provided. An accurate controlled experiment is carried out on the ferromagnetic stainless steel plate with precision made notch to obtain reference impedance changes for comparison with the theoretical model predictions. Good agreement between predictions and experiment is obtained.
Exact solution of eddy current losses produced by a domain wall with nonzero thickness
Real, R.P. del [Laboratorio de Optoelectronica, Area de Cargas Utiles e Instrumentacion, Departamento de Ciencias del Espacio y Tecnologias Electronicas, Instituto Nacional de Tecnica Aeroespacial (INTA), Torrejon de Ardoz 28850 (Spain)]. E-mail: perezrr@inta.es
2006-08-15
The influence of the domain wall thickness on eddy current losses has been calculated. It is shown that, for samples with low magnetic anisotropy and small thickness, the reduction of magnetic losses with respect to the zero thickness domain wall must be seriously taken into account.
Zhu, X X; Macdonald, P M
1995-05-01
An empirical compensation function for the correction of eddy current effects in the Stejskal-Tanner pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiments has been established. Eddy currents may arise as a result of the application of sharp and strong gradient pulses and may cause severe distortion of the NMR signals. In this method, the length of one gradient pulse is altered to compensate for the eddy current effects. The compensation is considered to be ideal when the position and the phase of the spin-echo maximum obtained from an aqueous solution of poly(ethylene glycol) (PEG) is the same in the presence and absence of a gradient pulse in the PGSE pulse sequence. We first characterized the functional dependence of the length of the required compensation on the three principal variables in the PGSE experiment: the gradient strength, the duration of the gradient pulse, and the interval between the two gradient pulses. Subsequently, we derived a model which successfully describes the general relationship between these variables and the size of the induced eddy current. The parameters extracted from fitting the model to the experimental compensation data may be used to predict the correct compensation for any combination of the three principal variables.
Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.
Dade County Public Schools, Miami, FL.
This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…
Reduction of lift-off effect in high-frequency apparent eddy current conductivity spectroscopy
Abu-Nabah, Bassam A.
2017-05-01
Eddy current spectroscopy is capable of mapping conductivities and thicknesses of layered structures due to its frequency-dependent penetration depth. High-frequency apparent eddy current conductivity (AECC) spectroscopy applications typically mandate covering a frequency range beyond 10 MHz to capture depth-dependent conductivity profiles. Following the standard four-point linear system calibration method beyond 10 MHz makes it difficult to achieve accurate AECC measurements due to spurious self- and stray-capacitive effects where complex eddy current coil impedance variation with lift-off becomes more nonlinear. In this study, two different approaches are presented to reduce AECC measurement sensitivity to lift-off. First, a nonlinear lift-off correction is developed as a function of measured apparent eddy current lift-off. Second, a semi-quadratic system calibration is developed to capture the lift-off curvature as a function of frequency and hence minimizes the measurement sensitivity to lift-off variations. Presented calibration techniques allow more robust AECC measurements up to 80-100 MHz with one-order of magnitude improvement in accuracy in comparison to the use of standard four-point linear system calibration in a lift-off range of ±25.4 µm.
Predicting the influence of plate geometry on the eddy-current pendulum
Weigel, Catherine; Wachter, Jeremy M.; Wagoner, Paul; Atherton, Timothy J.
2016-09-01
We quantitatively analyze a familiar classroom demonstration, Van Waltenhofen's eddy current pendulum, to predict the damping effect for a variety of plate geometries from first principles. Results from conformal mapping, finite element simulations, and a simplified model suitable for introductory classes are compared with experiments.
Predicting the Influence of Plate Geometry on the Eddy Current Pendulum
Weigel, Catherine; Wagoner, Paul; Atherton, Timothy J
2015-01-01
We quantitatively analyze a familiar classroom demonstration, Van Waltenhofen's eddy current pendulum, to predict the damping effect for a variety of plate geometries from first principles. Results from conformal mapping, finite element simulations and a simplified model suitable for introductory classes are compared with experiments.
Eddy Current Loss Modeling for Design of PM Generators for Wind Turbines
Jassal, A.
2014-01-01
This thesis deals with analysis, calculation and validation of eddy current loss models for Permanent Magnet (PM) direct drive generators for wind turbines. The modelling approach is a mixed use of analytical and Finite Element (FE) methods. The models are validated experimentally and design guideli
Zhang Lei
2015-01-01
Full Text Available The paper gives detailed systematic researches on the mechanism and key factors of eddy-current losses in rotor magnets of high power-density permanent magnet synchronous motors(PMSMs. Firstly, this paper establishes quantitative mathematic model of eddy-current losses for surface-mounted PMSM based on eddy current field model and Maxwell equations. Then, a scaling index is put forward to weigh the key factors relevant to the eddy-current losses in magnets. At the same time, the principles of eddy-current losses in prototype PMSM are analyzed by the finite element analysis (FEA software. The contents researched in the paper have practical reference values for design and reliability analysis of PMSMs.
A detective method of mapping eddy currents%成像涡流的检测方法
章世全
2000-01-01
A detective method of mapping eddy currents in magnetic resonance imaging apparatus by phantom is proposed in this paper. The method of mapping eddy currents can be used to detect magnitude and spatial distribution of eddy currents. The method of mapping eddy currents can be used to determine result of compensate for eddy currents.%提出了一种在磁共振成像装置中用水模成像来作图涡流的检测方法．该方法可用于检测涡流的大小和空间分布．该方法也可用于测定涡流补偿调试的结果．
Vourc'h, Eric; Joubert, Pierre-Yves; Le Gac, Guillaume; larzabal, Pascal
2013-12-01
This paper considers the problem of the evaluation of metallic assemblies in an aeronautical context, by means of a non-invasive method. The problems lies in the estimation of the distance separating two aluminum plates representative of a loose assembly (up to 300 µm), the top plate being possibly of unknown thickness ranging from 1 to 8 mm. To do so, the eddy current (EC) method is chosen, because it allows non-contact evaluation of conducting media to be carried out, which is sensitive to electrical conductivity changes in the part under evaluation, and hence to the presence of an air gap between parts. The problem falls into the category of evaluation of a multilayered conductive structure starting from EC data, which is an ill-posed problem. In order to bypass these difficulties, as well as to deal with the uncertainties that may be introduced by the experimental set-up, a ‘non-model’ approach is implemented by means of an artificial neural network (ANN). The latter is elaborated in a statistical learning approach starting from the experimental EC data provided by a ferrite cored coil EC probe used to investigate an assembly mockup of adjustable configuration. Moreover, in order to build a learning database allowing a robust and accurate ANN to be elaborated, as well as to deal with assemblies of unknown thicknesses, we consider EC data obtained at different frequencies chosen in an adjusted frequency bandwidth, experimentally determined so as to optimize the sensitivity toward the presence of an air gap between parts. The implementation of the proposed approach for distances between parts ranging from 60 to 300 µm provided estimated root mean square errors ranging from 7 μm up to 50 µm for the estimation of the distance between parts, and ranging from 20 µm up to 1.4 mm for the estimation of the top plates, ranging from 1 to 8 mm, respectively.
Study of eddy current power loss from outer-winding coils of a magnetic position sensor
Liu, C P; Chang, Y H; Yu, C S; Wu, K T; Wang, S J; Ying, T F; Huang, D R
2000-01-01
The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model.
A new model of repulsive force in eddy current separation for recovering waste toner cartridges.
Ruan, Jujun; Xu, Zhenming
2011-08-15
Eddy current separation (ECS) is an efficient method for separating aluminum from plastic in crushed waste toner cartridge (TCs). However, in China, ECS quality of aluminum from plastic is rather low in production practice. Repeating separation even manual sorting is required in the production. Improving separation quality of aluminum has been the pressing problem in the recovery of waste TCs. Furthermore, improving ECS quality can reduce the secondary-pollution (furan and dioxin) brought by plastic in later smelting process for the purification of recovered aluminum. Thus, a new model of repulsive force containing impact factors (machine: B(r), k, R, S(m), B(m); material: S(p), V, γ; and operation: ω(m), v, δ) of the separation process was constructed for guiding the ECS process of waste TCs recovering in this paper. For testing whether the model of repulsive force was suitable to guide the ECS, calculation and experiment of detachment angle of aluminum flake were studied. The calculation results of the detachment angles were agreed with the testing experiment. It indicates that the model is suitable for guiding the ECS of waste TCs recovering. Copyright © 2011 Elsevier B.V. All rights reserved.
Validation of a pulsed eddy current system for measuring wall thinning through insulation
Brett, Colin R.; de Raad, Jan A.
1996-11-01
There have been several failures in power plant feedwater piping systems due to wall thinning caused by flow- accelerated corrosion of the inner surface. Detection of wastage in susceptible pipes is costly as traditional NDE methods such as ultrasonic testing entail removal and reinstallation of insulation over many meters of pipework. Radiography is one solution to this problem, but it is slow to apply and requires careful attention to safety. The RTD Incotest system uses pulsed eddy current technology to measure pipewall thickness through insulation and external cladding. The technology has been licensed from Arco, Inc., who originally developed the technique for large diameter pipelines and storage tanks where the area interrogated was made deliberately large. This paper describes an optimized Incotest systems which can detect and measure internal or external wall wastage which is more localized and typical of flow-accelerated corrosion. Improvements have also been made to the inspection and data acquisition in order to increase the inspection rate and overall productivity. Ultimately the performance of the optimized Incotest system has been verified on samples which contain artificial and real corrosion.
B. Sasi
2004-10-01
Full Text Available Eddy current non-destructive testing is used to inspect the critical aircraft components. The shortcomings of the inspection method identified, based on a few accidents, necessitatethe development of high sensitive and reliable testing procedures for inspecting the critical safety related aircraft components. This paper discusses a dual-frequency eddy current testingprocedure developed for inspection of compressor discs of aero engines for detecting fatigue cracks with high sensitivity and reliability. This procedure is capable of detecting fatigue crackssmaller than 2 mm in comparison to 4 mm cracks that can be detected with the currently practiced eddy current testing procedure.
Midtgaard, Ole-Morten
1997-12-31
This thesis considers the feasibility of doing calculations to optimize electrical machines without the need to build expensive prototypes. It deals with the construction and assessment of new, hierarchical, hexahedral edge elements for three-dimensional computations of eddy currents with the electric vector potential formulation. The new elements, five in all, gave up to second-order approximations for both the magnetic field and the current density. Theoretical arguments showed these elements to be more economical for a given polynomial order of the approximated fields than the serendipity family of nodal elements. Further it was pointed out how the support of a source field computed by using edge elements could be made very small provided that a proper spanning tree was used in the edge element mesh. This was exploited for the voltage forcing technique, where source fields were used as basis functions, with unknown total currents in voltage forced conductors as degrees of freedom. The practical assessment of the edge elements proved the accuracy to improve with increasing polynomial order, both for local and global quantities. The most economical element was, however, one giving only complete first-order approximations for both fields. Further, the edge elements turned out to be better than the nodal elements also in practice. For the voltage forcing technique, source field basis functions which had small support, resulted in large reduction of the CPU-time for solving the main equation system, compared to source fields which had large support. The new elements can be used in a p-type adaptive scheme, and they should also be applicable for other tangentially continuous field problems. 67 refs., 34 figs., 10 tabs.
Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.
2010-12-10
The lithium tokamak experiment LTX is a modest-sized spherical tokamak R0=0.4 m and a =0.26 m designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 oC. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.
Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze
2016-06-08
This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.
Gui Yun Tian
2016-06-01
Full Text Available This paper reviews recent developments of eddy current pulsed thermography (ECPT for material characterization and nondestructive evaluation (NDE. Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.
Design of Diaphragm and Coil for Stable Performance of an Eddy Current Type Pressure Sensor.
Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan
2016-07-01
The aim of this work was to develop an eddy current type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for eddy current detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.
Mechanical impacts of poloidal eddy currents on the continuous vacuum vessel of a tokamak
In, Sang Ryul; Yoon, Byung Joo
1996-11-01
Poloidal eddy currents are induced on the continuous torus vacuum vessel by changes of the toroidal field during the machine start-up (toroidal field coil charge), shut-down (toroidal field coil discharge) and plasma disruption (plasma diamagnetism change). Analytic forms for the eddy currents flowing on the vessel, consequent pressures and forces acting on it are presented in this report. The results are applied to typical operation modes of the KT-2 tokamak. Stress analysis for two typical operation modes of toroidal field damping during a machine shut-gown and plasma energy quench during a plasma disruption were carried out using 3D FEM code (ANSYS 5.2). (author). 5 tabs., 22 figs., 9 refs.
Ultra-Thin Flexible Eddy Current Sensor Array for Gap Measurements
丁天怀; 陈祥林; 黄毅平
2004-01-01
An ultra-thin flexible eddy current proximity sensor array was developed for online measurements of tiny gaps between large smooth metallic and nonmetallic surfaces of arbitrary shapes. The probe of the flexible eddy current sensor array, which includes a set of sensor coils, is fabricated on a thin flexible substrate using the flexible printed circuit board process which allows the probe to be very thin and flexible so that it can conform to the surface geometry of the measured objects. The sensor coils are connected to an inductance-capacitance oscillator, which converts the distance between the sensor coil and the metallic target to a frequency output. Experimental results show that the measurement accuracy of the sensor system can reach ±0.5% for a 2-mm gap and the sensor system is suitable for online gap measurements.
Parametric study of rectangular coil for Eddy Current Testing of lamination
Wang, Peng Fei; Zeng, Zhi Wei [School of Aerospace Engineering, Xiamen University, Xiamen (China)
2016-04-15
Eddy current testing (ECT) is an important nondestructive testing technology for the inspection of flaws in conductive materials. However, this widely used technology is not suitable for inspecting lamination when a conventional pancake coil is used because the eddy current (EC) generated by the pancake coil is parallel to the lamination and will not be perturbed. A new method using a rectangular coil placed vertical to the work piece is proposed for lamination detection. The vertical sections of the rectangular coil induce ECs that are vertical to the lamination and can be perturbed by the lamination. A parametric study of a rectangular coil by finite element analysis was performed in order to examine the capability of generating vertical EC sent data 1221-1237.
Eddy Current Modeling and Measuring in Fast-Pulsed Resistive Magnets
Arpaia, P; Gollucio, G; Montenero, G
2010-01-01
A method for modeling and measuring electromagnetic transients due to eddy currents in fast-pulsed resistive magnets is proposed. In particular, an equivalent-circuit model and a method for time-domain measurements of eddy currents are presented. The measurements are needed for an accurate control of the magnetic field quality to ensure adequate stability and performance of the particle beam in particle accelerators in dynamic conditions (field ramps up to about 700 T/s). In the second part, the results of experiments for model definition, identification, and validation are discussed. The tests were carried out on a quadrupole of Linac4, a new linear particle accelerator under construction at CERN (European Organization for Nuclear Research).
Dufour, Isabelle; Placko, Dominique
1993-06-01
This article deals with the study of a process based on the principle of eddy current sensors for the nondestructive evaluation of graphite composite plates. This research has been carried out in the Laboratoire d'Electricitd Signaux et Robotique by the team working on datacollecting sensors for robotics in collaboration with Aerospatiale. Eddy current sensors are characterized by their impedance, which varies when a conducting material is approached in their sensitive area. For a given sensor, the output signal depends directly on the electrical and geometrical properties of the object. In the case discussed here, the interesting data are the distance between the sensor and the object, and its local conductivity. In order to invert the relationships between the sensor signal and the properties of the material, an external parametrical model has been developed. A scanning of the surface with a sensor designed for good spatial resolution measurements gives two accurate maps of the useful data.
Jinji, Sun; Dong, Chen
2013-08-01
This paper analyses the eddy current loss in Homopolar magnetic bearings with laminated rotor cores produced by the high speed rotation in order to reduce the power loss for the aerospace applications. The analytical model of rotational power loss is proposed in Homopolar magnetic bearings with laminated rotor cores considering the magnetic circuit difference between Homopolar and Heteropolar magnetic bearings. Therefore, the eddy current power loss can be calculated accurately using the analytical model by magnetic field solutions according to the distribution of magnetic fields around the pole surface and boundary conditions at the surface of the rotor cores. The measurement method of rotational power loss in Homopolar magnetic bearing is proposed, and the results of the theoretical analysis are verified by experiments in the prototype MSCMG. The experimental results show the correctness of calculation results.
Coupling method of magnetic memory and eddy current nondestructive testing for retired crankshafts
Ni, Chen; Hua, Lin; Wang, Xiaokai; Wang, Zhou; Qin, Xunpeng; Fang, Zhou [Wuhan University of Technology, Wuhan (Korea, Republic of)
2016-07-15
To verify the validity of the Coupling method of magnetic memory and eddy current (CMMEC) testing for crankshafts, we use this technique to test a 12-cylinder V-design diesel crankshaft. First, the stress distribution in the crankshaft was obtained under 12 working conditions using a Finite element (FE) model that complied with the commercial FE code ABAQUS. Second, Magnetic memory testing (MMT) and Eddy current testing (ECT) were adopted to detect the regions of stress concentration in the crankshaft and the specific location of cracks based on simulation results. Lastly, magnetic particle testing was conducted to detect and display the corresponding crack to verify the CMMEC testing results. The MMT and ECT results can provide basis and guidance for the remanufacture and life evaluation of retired crankshafts.
NUMERICAL ANALYSIS AND EXPERIMENT OF UNSTEADY THERMAL FIELDOF ROTOR PLATE FOR EDDY CURRENT RETARDER
LIU Chengye; HE Ren
2008-01-01
The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.
Hong-li QI; Hui ZHAO; Wei-wen LIU
2009-01-01
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection
SONG Jin-Xing; KANG Wen; HUO Li-Hua; HAO Yao-Dou; WANG Lei
2011-01-01
The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spallar tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV)magnets. The BH magnets are operated at a repetition rate of 25 Hz and are excited with a trapezoid rectangle waveform with about 1.6 milliseconds duration. The eddy current is induced in BH magnets and in the end plates it is expected to be large, so the heat generation is of our great concern. In this paper, the eddy current loss of the BH magnet has been investigated and calculated by using a coupling method of 3D electromagnetic and thermal analysis. The accuracy of the analysis is confirmed by testing the prototype BH magnet. The end plate temperature of the BH magnet provided with slit cuts has been decreased obviously and met the requirements.
Magnetic damping: Analysis of an eddy current brake using an airtrack
Cadwell, Louis H.
1996-07-01
A simple theory is proposed using Faraday's law and the Lorentz force to analyze the effect of magnetic damping on an aluminum plate moving on a horizontal air track as it passes between the poles of a horseshoe magnet. The position, velocity, and acceleration of the nonmagnetic conducting plate are measured as a function of time using a motion detector. Using some simplifying assumptions, a theoretical model is obtained in which a single free parameter is used to fit the experimental data. This parameter corresponds to an effective length (LR) in which the eddy current encounters resistance as it moves around a closed path in the conductor. This leads to some interesting, but unexpected, results about the shape and magnitude of induced eddy currents.
Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model
Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei
2012-04-01
A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.
Kuo, Yi-Chun; Chern, Ching-Sheng; Zheng, Zhe-Wen
2017-02-01
The Luzon Strait (LS) connects the northwestern Pacific Ocean and the South China Sea (SCS) and is the western boundary gap for the Kuroshio current (KC). Satellite observations indicate that a cyclonic mesoscale eddy can trigger westward extension of the KC into the SCS and shed a smaller anticyclonic eddy to the west of the LS. We used a nonlinear reduced-gravity (primitive equation) model to study this phenomenon and analyzed the dynamic process. The location of the collision between the eddy and the KC could be critical for varying the circulation in the LS. The eddy's deformation rate, associated with its decaying speed, is also closely related to the location of the eddy during collision. When a cyclonic eddy moved from a region to the east of the Luzon Island toward the LS, the KC intruded into the SCS with growing negative vorticity during the collision of the eddy and KC. This tendency for negative vorticity is attributed to the beta effect and squeezing of the planetary vorticity caused by the flow divergence. As the eddy dissipated, the KC in the LS recovered its original pattern. When the collision of the eddy occurred at the center of the LS, the momentum balance of the KC loop was dominated by the inertial term, and the circulation in the LS remained in a leaping state.
Multi-element eddy current probe. For inspecting steam generator tubes
Savin, E.; Sartre, B. [FRAMATOME, 92 - Paris-La-Defense (France); Placko, D.; Premel, D. [Ecole Nationale Superieure de Cachan, 94 (France)
2000-10-01
Framatome and the Ecole Normale Superieure de Cachan are developing a multi-element eddy current probe for inspecting steam generator tubes of 900 MWe PWR reactors. The device is intended to replace much slower rotating probes. Using its measurements, the conductivity image of any point in the tube can be reconstructed, thanks to a numerical, thanks to a numerical model, thus allowing diagnosis. The first trial results on mockups seem already competitive with those obtained using a rotary probe. (authors)
Libby, Hugo L.; Hildebrand, Bernard P.
1978-01-01
An eddy current testing device for measuring variable characteristics of a sample generates a signal which varies with variations in such characteristics. A signal expander samples at least a portion of this generated signal and expands the sampled signal on a selected basis of square waves or Walsh functions to produce a plurality of signal components representative of the sampled signal. A network combines these components to provide a display of at least one of the characteristics of the sample.
Eddy current testing with high penetration; WS-Pruefungen mit grosser Eindringtiefe
Becker, R.; Kroening, M. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)
1999-08-01
The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [Deutsch] Das Niederfrequenz(NF)-Wirbelstrom(WS)-Verfahren wird eingesetzt, um eine grosse Eindringtiefe zu erzielen. Die erreichbare Tiefenreichweite wird u.a. durch die niedrigste Prueffrequenz bestimmt, die zusammen mit dem Wirbelstrom-Sensor realisiert werden kann. Bei Einsatz von induktiven Sensoren geht mit abnehmender Prueffrequenz der Messeffekt proportional zurueck (Induktionswirkung). Eine weitere Absenkung der Prueffrequenzen macht den Einsatz von andersartigen Sensoren notwendig, z.B. den GMR (Giant Magnetic Resistance), der eine gleichmaessige Messempfindlichkeit bis zum Gleichfeld besitzt. Das eingesetzte Mehrfrequenz-Wirbelstrom-Pruefverfahren MFEC 3 des IZFP arbeitet mit drei gleichzeitig eingespeisten Prueffrequenzen. Dabei werden zwei Varianten von WS-Sensoren eingesetzt. Beide besitzen auf der Senderseite eine induktive Wicklung in der Art einer Tastsonde. Die Empfaengerseite ist entweder ebenfalls eine induktive Wicklung oder ein magnetfeldempfindlicher Widerstand (GMR). (orig./DGE)
Eddy current testing with high penetration; WS-Pruefungen mit grosser Eindringtiefe
Becker, R.; Kroening, M. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)
1999-08-01
The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [Deutsch] Das Niederfrequenz(NF)-Wirbelstrom(WS)-Verfahren wird eingesetzt, um eine grosse Eindringtiefe zu erzielen. Die erreichbare Tiefenreichweite wird u.a. durch die niedrigste Prueffrequenz bestimmt, die zusammen mit dem Wirbelstrom-Sensor realisiert werden kann. Bei Einsatz von induktiven Sensoren geht mit abnehmender Prueffrequenz der Messeffekt proportional zurueck (Induktionswirkung). Eine weitere Absenkung der Prueffrequenzen macht den Einsatz von andersartigen Sensoren notwendig, z.B. den GMR (Giant Magnetic Resistance), der eine gleichmaessige Messempfindlichkeit bis zum Gleichfeld besitzt. Das eingesetzte Mehrfrequenz-Wirbelstrom-Pruefverfahren MFEC 3 des IZFP arbeitet mit drei gleichzeitig eingespeisten Prueffrequenzen. Dabei werden zwei Varianten von WS-Sensoren eingesetzt. Beide besitzen auf der Senderseite eine induktive Wicklung in der Art einer Tastsonde. Die Empfaengerseite ist entweder ebenfalls eine induktive Wicklung oder ein magnetfeldempfindlicher Widerstand (GMR). (orig./DGE)
Sergio Saludes-Rodil
2015-04-01
Full Text Available An unsupervised approach to classify surface defects in wire rod manufacturing is developed in this paper. The defects are extracted from an eddy current signal and classified using a clustering technique that uses the dynamic time warping distance as the dissimilarity measure. The new approach has been successfully tested using industrial data. It is shown that it outperforms other classification alternatives, such as the modified Fourier descriptors.
Analysis of a Permanent Magnet Eddy Current Heater Driven by a Wind Turbine
TUDORACHE, T.; MELCESCU, L.; Predescu, M.
2015-01-01
This paper deals with the numerical analysis and optimal design of a Permanent Magnet Eddy Current Heater (PMECH) driven by a wind turbine. This study includes a preliminary sizing of the wind turbine, an optimal design of the PMECH from cost reduction point of view, a heat transfer analysis of the device and a study of the dynamic response of the wind system. The electromagnetic and heat transfer analysis is based on Finite Element Method (FEM) implemented in the Flux sof...
[An automatic torque control system for a bicycle ergometer equipped with an eddy current brake].
Kikinev, V V
2007-01-01
The main elements of the loading device of a bicycle ergometer, including an eddy current brake and a torque sensor, are described. The automatic torque control system, which includes the loading device, is equipped with a stabilizing feedback controller that optimally approximates the closed-loop transfer function of the target model. The reduced transfer function model of the controller is of the fourth order. A method featuring a modulation-demodulation loop is suggested for implementation of the control system.
Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel
Grzegorz Psuj
2012-01-01
Full Text Available The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS. Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.
Deeds, W E; Dodd, C V; Scott, G W
1979-10-01
Our program is part of a larger project designed to develop multifrequency eddy-current inspection techniques for multilayered conductors with parallel planar boundaries. To reduce the need to specially program each new problem, a family of programs that handle a large class of related problems with only minor editorial and interactive changes were developed. Programs for two types of cylindrical coil probes were developed: the reflection probe, which contains the driver and pickup coils and is used from one side of the specimen, and the through-transmission probe set, which places the driver and pickup coils on opposite sides of the conductor stack. The programs perform the following basic functions: (1) simulation of an ideal instrument's response to specific conductor and defect configurations, (2) control of an eddy-current instrument interfaced to a minicomputer to acquire and record actual instrument responses to test specimens, (3) construction of complex function expansions to relate instrument response to conductor and defect properties by using measured or computed responses and properties, and (4) simulation of a microcomputer on board the instrument by the interfaced minicomputer to test the analytical programming for the microcomputer. The report contains the basic equations for the computations, the main and subroutine programs, instructions for editorial changes and program execution, analyses of the main programs, file requirements, and other miscellaneous aids for the user.
Development, computer simulation and performance testing in sodium of an eddy current flowmeter
Sharma, Prashant, E-mail: pacific@igcar.gov.i [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Suresh Kumar, S.; Nashine, B.K.; Veerasamy, R.; Krishnakumar, B.; Kalyanasundaram, P.; Vaidyanathan, G. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)
2010-03-15
Sodium is used as a coolant in Liquid Metal Fast Breeder Reactor (LMFBR). Sodium flow measurement is of prime importance both from the operational and safety aspects of a fast reactor. Various types of flowmeters namely permanent magnet, saddle type and eddy current flowmeters are used in FBRs. From the safety point of view flow through the core should be assured under all operating conditions. This requires a flow sensor which can withstand the high temperature sodium environment and can meet the dimensional constraints and be amenable to maintenance. Eddy current flowmeter (ECFM) is one such device which meets these requirements. It is meant for measuring flow in PFBR primary pump and also at the outlets of the fuel sub-assemblies to detect flow blockage. A simulation model of ECFM was made and output of ECFM was predicted for various flowrates and temperatures. The simulation model was validated by testing in a sodium loop. This paper deals with the design, simulation and tests conducted in sodium for the eddy current flowmeter for use in the Prototype Fast Breeder Reactor (PFBR).
Open-loop correction for an eddy current dominated beam-switching magnet
Koseki, K.; Nakayama, H.; Tawada, M.
2014-04-01
A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10-4 to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10-3. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10-4, which is an acceptable value, was achieved.
Open-loop correction for an eddy current dominated beam-switching magnet
Koseki, K., E-mail: kunio.koseki@kek.jp; Nakayama, H.; Tawada, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)
2014-04-15
A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10{sup −4} to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10{sup −3}. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10{sup −4}, which is an acceptable value, was achieved.
Jialong Wu
2014-01-01
Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.
Nadai, A.
2016-02-01
The HF ocean surface radar (HFOSR) is one of the powerful tools to measure the ocean current parameters like surface currents. Three observations of the Kuroshio current in the Tokara straight using HFOSR had done by the National Institute of Information and Comunications Technology (NICT: the former name is the Communications Research Laboratory). The first-order echoes on Doppler spectra of HFOSR shows broaden and splitting shape in the region of the border between the Kuroshio currents and coastal waters. The surface velocity maps show the existence of eddy on the border. The investigation of the mechanism of broadening first order-echoes by Nadai (2006) revealed that the modulation of wave fields from surface currents like eddy is the cause of broadening and the measured current fields also influenced the modulated wave fields. Moreover, Nadai (2006) also suggested that the influence is able to reduce using the average of two radial velocities extracted by the first-order echoes. In this paper, the results of current field observation around the border between the Kuroshio current and coastal waters are presented. Many small scale eddies are observed at the border of the Kuroshio current and coastal waters. The typical radius of the eddies is about 10km. Usury the observation of such a small scale eddy is difficult, but the eddies with same scale are observed by airborne synthetic aperture radar in the same area at different time. The eddies shows strong rotation as the typical tangential speed is about 1m/s. While the typical speed of the Kuroshio current is about 1.5m/s, the typical speed of the eddy movements is about 0.7m/s. No eddies generated in the radar coverage, but one or two eddies entered in the radar coverage a day. Therefore the origin of these eddies will exist in the upstream area of the radar coverage. Using the compensation method for the influence of the modulated wave field suggested by Nadai (2006), the eddies shows weak divergence. It is
Singh, Surendra; Greving, Dan; Kinney, Andy; Vensel, Fred; Ohm, Jim; Peeler, Mike
2013-01-01
An eddy current (EC) technique was developed to determine the corrosion depth on a bare flange face of a cast aluminum A356-T6 aircraft engine structure. The EC response and the corrosion depths determined through metallurgical cross sections were used to develop an empirical relation between EC response and depth. The EC technique and depth determination are used to inspect the engine structures during overhaul to determine if they are fit for continued service. An accurate and reliable Non-Destructive Inspection is required to ensure that structures returned to service are safe for continued operation. NDE system reliability demonstrations of the eddy current technique are traditionally reported in terms of Probability of Detection (POD) data using MIL-HDBK-1823A. However, the calculation of POD data is based on a simple linear predictive model that is valid only if certain criteria are met. These are: 1) NDE system response is measurable (i.e. continuous data), 2) Flaw size is known and measurable (i.e. continuous data), 3) relationship between the NDE system response and flaw size is linear (or linear on a log scale), 4) variation in measured responseresponse around a predicted response for a given flaw size is normally distributed, 5) the variation around the predicted response is constant (i.e. variation does not change with flaw size), and 6) inherent variability in the NDE system is known and fully understood. In this work, a Measurement System Evaluation (MSE) of the Eddy Current System was used to address some of these concerns. This work was completed on two aircraft structures having varying corrosion depths. The data were acquired in a random manner at fifty regions of interests (ROIs). Three operators participated in this study, and each operator measured Eddy Current response three times in each ROI. In total, there were four hundred and fifty data points collected. Following this, the two structures were sectioned for measuring corrosion depth. The
Observed air-sea interactions in tropical cyclone Isaac over Loop Current mesoscale eddy features
Jaimes, Benjamin; Shay, Lynn K.; Brewster, Jodi K.
2016-12-01
Air-sea interactions during the intensification of tropical storm Isaac (2012) into a hurricane, over warm oceanic mesoscale eddy features, are investigated using airborne oceanographic and atmospheric profilers. Understanding these complex interactions is critical to correctly evaluating and predicting storm effects on marine and coastal facilities in the Gulf of Mexico, wind-driven mixing and transport of suspended matter throughout the water column, and oceanic feedbacks on storm intensity. Isaac strengthened as it moved over a Loop Current warm-core eddy (WCE) where sea surface warming (positive feedback mechanism) of ∼0.5 °C was measured over a 12-h interval. Enhanced bulk enthalpy fluxes were estimated during this intensification stage due to an increase in moisture disequilibrium between the ocean and atmosphere. These results support the hypothesis that enhanced buoyant forcing from the ocean is an important intensification mechanism in tropical cyclones over warm oceanic mesoscale eddy features. Larger values in equivalent potential temperature (θE = 365 ∘K) were measured inside the hurricane boundary layer (HBL) over the WCE, where the vertical shear in horizontal currents (δV) remained stable and the ensuing cooling vertical mixing was negligible; smaller values in θE (355 ∘K) were measured over an oceanic frontal cyclone, where vertical mixing and upper-ocean cooling were more intense due to instability development in δV . Thus, correctly representing oceanic mesoscale eddy features in coupled numerical models is important to accurately reproduce oceanic responses to tropical cyclone forcing, as well as the contrasting thermodynamic forcing of the HBL that often causes storm intensity fluctuations over these warm oceanic regimes.
National Aeronautics and Space Administration — This project will perform real-time collection of prognostic valve operational data by deploying smart eddy-current probes with the use of the MTconnect® system,...
B. Sasi; B.P.C. Rao; T. Jayakumar
2004-01-01
... related aircraft components. This paper discusses a dual-frequency eddy current testing procedure developed for inspection of compressor discs of aero engines for detecting fatigue cracks with high sensitivity and reliability...
Cahl, D.; Voulgaris, G.
2015-12-01
Sub-mesoscale eddies on the shoreward front of the Gulf Stream (GS) are thought to play a critical role in controlling cross-shelf transport and momentum flux in the South Atlantic Bight (SAB) but cannot be observed continuously from satellites due to cloud cover. Non-linear eddies have the ability to trap and transport water as they propagate, which make them a potential source of cross-shelf transport. Long Bay, SC, just downstream of the Charleston Bump is the area of highest eddy activity in the SAB. Surface currents in Long Bay have been observed since 2012 using HF radars. The accuracy of three eddy detection methods (Okubo-Weiss, Vector-geometry, Winding-angle) are compared in this area of high shear on the shoreward front of the GS. The Okubo-Weiss parameter does not perform well in this area due to the high shear environment where eddies propagate. The Vector-Geometry method has good successful detection rates but suffers in shape analysis from inaccurate Stream Function contours in this area due to divergent surface currents. The Winding-Angle method performs well and was used to detect eddies and their propagation paths in Long Bay for years 2013 and 2014. Detected eddies propagate predominantly along-shelf, with cyclonic (anticyclonic) eddies propagating downstream (upstream) with respect the GS. Few eddies with the ability to trap and transport water propagating in the across-shelf direction were observed, leading to the conclusion that most of the influence of these eddies is confined to the shoreward front of the GS, near the shelf break.
Jialong Wu; Deqiang Zhou; Jun Wang
2014-01-01
Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed ed...
B. C. Backeberg
2009-02-01
Full Text Available A 4th order advection scheme is applied in a nested eddy-resolving Hybrid Coordinate Ocean Model (HYCOM of the greater Agulhas Current system for the purpose of testing advanced numerics as a means for improving the model simulation for eventual operational implementation. Model validation techniques comparing sea surface height variations, sea level skewness and variogram analyses to satellite altimetry measurements quantify that generally the 4th order advection scheme improves the realism of the model simulation. The most striking improvement over the standard 2nd order momentum advection scheme, is that the Southern Agulhas Current is simulated as a well-defined meandering current, rather than a train of successive eddies. A better vertical structure and stronger poleward transports in the Agulhas Current core contribute toward a better southwestward penetration of the current, and its temperature field, implying a stronger Indo-Atlantic inter-ocean exchange. It is found that the transport, and hence this exchange, is sensitive to the occurrences of mesoscale features originating upstream in the Mozambique Channel and Southern East Madagascar Current, and that the improved HYCOM simulation is well suited for further studies of these inter-actions.
Eddies and a mesoscale deflection of the slope current in the Faroe Shetland Channel
Sherwin, T. J.; Turrell, W. R.; Jeans, D. R. G.; Dye, S.
1999-03-01
The mesoscale dynamics of the Scottish side of the Faroe-Shetland Channel have been investigated using synoptic in situ and remote sensing observations. A cold core cyclonic eddy, identified from an AVHRR image, had a diameter of about 50 km and surface current speeds of up to 50 cm s -1; it appeared to be attached to the 800 m isobath as it moved north-eastward along the edge of the channel at about 8 cm s -1. Speeds in the slope current were about 50 cm s -1 but increased to 70 cm s -1 where the current was compressed by the eddy. Offshore, over the 1000 m isobath in the cooler water, speeds in the current were slower (ca. 20 cm s -1). North-west of the Shetlands the offshore edge of the slope current was deflected across the channel for a distance of about 70 km from the shelf edge. The speed of drifters in the slope current increased to over 60 cm s -1 as they moved anti-cyclonically around this deflection. CTD profiles suggest that the movement of the surface waters was mirrored in the deep water of the channel. The deflection carried a very large quantity of North Atlantic Water into the central part of the channel; its cause and ultimate fate are not known, although it is likely to have had a significant impact on the dynamics of the channel.
Changes in the Loop Current's Eddy Shedding in the Period 2001–2010
Fred M. Vukovich
2012-01-01
Full Text Available A major change in the Loop Current's eddy shedding was found in the decade 2001–2010. Sixteen (16 rings separated from the Loop Current in that decade, whereas in two previous decades, 11 rings separated in each decade. More than half the rings (i.e., 56% that separated from the Loop Current in the decade 2001–2010 had separation periods ≤8 months. In the period prior to 2001, only 26% of the rings had separation periods ≤8 months. Furthermore, the dataset average period for ring separation for the period prior to 2001, an average over a 29-year period, was about 11 months, and the dataset average Loop Current's westward tilt angle—a factor that indicates whether the Loop Current will soon shed an eddy or not—was about 16°. After the year 2000, the dataset average period for ring separation, an average over a 39-year period, decreased by about 1 month and was about 10 months. The average ring-separation period in the decade 2001–2010 was about 9 months. The dataset average of the Loop Current's westward tilt angle increased by about 5° in the period 1998–2008 and was about 20° in 2010. Potential causes for these changes are discussed.
Woo, Byungki; Andringa, Matthew; Wood, Sharon; Neikirk, Dean P.
2006-03-01
Eddy current sensing has been successfully used in various applications from testing heat exchange tubes for nuclear power plants to assessing dielectric thickness on printed circuit boards. However, in civil infrastructures cosmetic or cementitious surface material often keeps the probe or reader coil from accessing conductive medium inside the structure, resulting in reduced coupling as the distance increases between the DUT (device under test) and probe. Thus, the direct application of existing eddy current sensing technique is not very useful to detect flaws in civil infrastructures. To address this weak coupling problem, a simple scheme is proposed in which a resonant passive repeater tag is placed between the reader coil and the conducting test target. In this paper, the feasibility of detecting defects like cracks or fractures in conductive medium using a passive resonant tag and remote inductive pick-up as a method of interrogation is shown. Experimental data taken from simple setups to demonstrate the advantage of the proposed scheme are presented.
A. M. Treguier
2007-07-01
Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. In the upper layers, the meridional circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. The same calculation in a zonal average gives a completely different view and underestimates the eddy effects. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by some recent theoretical studies: even the sign of the residual circulation cannot be inferred from the buoyancy forcing. Heat and salt transports by the time-mean flow are important even in the streamline framework. Streamline-averaged, two-dimensional models cannot account quantitatively for the complex three-dimensional structure of the ACC. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.
A. M. Treguier
2007-12-01
Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive poleward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.
Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak
Li, G.; Tan, Y.; Liu, Y. Q.
2015-08-01
Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.
无
2010-01-01
In this paper the analytical expressions for the magnetic field H and induction B in iron-pole plates generated by MRI gradient coil are given using line-current and the multilayer dielectric plate model with the mirror-image method.Eddy current emanates from the magnetic flux in the iron-pole plates.In order to fully suppress the eddy current,this magnetic flux should be fully eliminated.The research results indicate the magnetic permeability of the resist-eddy plate must be bigger than that of magnetic pole material,i.e.pure iron,and that the resist-eddy plate should be thick enough to be far away from its magnetic saturation.
Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.
2013-01-01
Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDT) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding angular cracks, fundamental knowledge about the induced current density distribution in the component under test is required. Further, this information enables us to find the amount of heat produced at those locations and how it diffuses to the surface. This paper describes simulation work done for cracks set at an angle to the surface in flat and bent aluminum plates. The investigation is implemented by the simulating transient thermal distribution for 2D angular cracks via finite element package COMSOL multi-physics with AC/DC module and general heat transfer. At crack edges, induced current is seen concentrated thus indicating a localized high heating in those areas relative to other regions. A numerical study was also carried out by varying parameters like crack angle (0°, 22.5°, 45°, 67.5°) and crack length (0.6mm, 1.2mm, 1.8mm) the transient thermal distributions were compared for different plate bend angles (180°, 120°, 90°, 60°, 30°). TBET method was found well suited for the detection of service induced cracks, usually caused by either rolling contact fatigue or stress corrosion, with a high degree of sensitivity.
Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-01-01
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique. PMID:26473871
Bare PCB inspection system with SV-GMR sensor eddy-current testing probe
Chomsuwan, K.; Yamada, Sotoshi; Iwahara, Masayoshi
2007-01-01
This paper describes bare printed circuit board (PCB) inspection based on eddy-current testing (ECT) technique with high scanning speed. A high-frequency ECT probe composed of a meander coil as an exciting coil and the spin-valve giant magnetoresistance (SV-GMR) sensor was fabricated and is proposed. The ECT probe was designed based on crack inspection over flat surface, especially suitable for microdefect detection on high-density bare PCB. The ECT signal detected by the SV-GMR sensor was ac...
Influence of sodium deposits in steam generator tubes on remote field eddy current signals
Thirunavukkarasu, S. [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Rao, B.P.C. [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)], E-mail: bpcrao@igcar.gov.in; Vaidyanathan, S.; Jayakumar, T.; Raj, Baldev [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)
2008-04-15
The presence of sodium deposits in defective regions of steam generator (SG) tubes of fast-breeder reactors is expected to influence the remote field eddy current (RFEC) signals. By exposing five SG tubes having uniform wall loss grooves to a sodium environment in a specially designed test vessel, changes in the shape of RFEC signals were observed and it was possible to approximate the volume of sodium deposited in defects. An invariant signal parameter was determined for quantitative characterization of defects despite the presence of sodium in the defects.
Simulation of Eddy-Current Corrosion Detection Using a Sensor Array
Katyal, V.; Bowler, J. R.
2003-03-01
A computer simulation has been developed to evaluate eddy-current probes containing magnetic field sensor arrays for the detection and evaluation of hidden corrosion. The simulation is used to assess probes that incorporate magneto-resistive or Hall devices in a closely-spaced, linear array. These probes will allow rapid data acquisition over a track width determined by the length of the array. The benefit of the simulation is that adjustments to the virtual probe parameters are easily made allowing improvements in sensitivity, imaging capability and resolution. A number of probe designs have been studied in this way including the "racetrack" probe.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.
Research on defects inspection of solder balls based on eddy current pulsed thermography.
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-10-13
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography
Xiuyun Zhou
2015-10-01
Full Text Available In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT. Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
Naidjate, Mohammed; Helifa, Bachir; Feliachi, Mouloud; Lefkaier, Iben-Khaldoun; Heuer, Henning; Schulze, Martin
2017-08-31
This paper propose a new concept of an eddy current (EC) multi-element sensor for the characterization of carbon fiber-reinforced polymers (CFRP) to evaluate the orientations of plies in CFRP and the order of their stacking. The main advantage of the new sensors is the flexible parametrization by electronical switching that reduces the effort for mechanical manipulation. The sensor response was calculated and proved by 3D finite element (FE) modeling. This sensor is dedicated to nondestructive testing (NDT) and can be an alternative for conventional mechanical rotating and rectangular sensors.
Non-destructive testing of nanomaterials by using subminiature eddy current transducers
Dmitriev, S. F.; Ishkov, A. V.; Katasonov, A. O.; Malikov, V. N.; Sagalakov, A. M.; Shevtsova, L. I.
2017-02-01
A sensor for studying nanomaterials has been developed on the basis of a transformer-type eddy-current transducer. The basic technical data are stated (the number of windings is 100-400 turns, and the value of the initial permeability of the core is µmax = 36000). Measurements technique which allows high-precision measuring the electrical conductivity in thin film Ce-Nb. The electrical conductivity of Niobium-Selenium varies from 3.3·105 to 3.7·105 MS/m in the ratio of four from 4 to 60 nm.
Kunckel, S.; Klaus, G.; Liese, M.
2003-04-01
This paper deals with a calculation method of eddy current losses and temperature rises at the stator end teeth of hydro generators. It can be used for analysing and evaluating different design variants when optimising the stator core end portion. The calculation method simulates the three-dimensional local core end field, but uses only a two-dimensional calculation model. Amongst all the stator teeth it treats the tooth with the highest axial and radial magnetic flux impact. The paper presents a collection of calculation algorithms of the method and provides some results gained for two different stator core end designs. (Author)
Zhang, Dejun; Yu, Yating; Lai, Chao; Tian, Guiyun
2016-07-01
To ensure the key structural performance in high-temperature and high-stress environments, thermal barrier coatings (TBCs) are often adopted in engineering. The thickness of these multi-layer conductive coatings is an important quality indicator. In order to measure the thickness of multi-layer conductive coatings, a new measurement approach is presented using eddy current testing techniques, and then, an inversion algorithm is proposed and proved efficient and applicable, of which the maximum experimental relative error is within 10%. Therefore, the new approach can be effectively applied to thickness measurement of multi-layer conductive coatings such as TBCs.
Analysis of a Permanent Magnet Eddy Current Heater Driven by a Wind Turbine
TUDORACHE, T.
2015-08-01
Full Text Available This paper deals with the numerical analysis and optimal design of a Permanent Magnet Eddy Current Heater (PMECH driven by a wind turbine. This study includes a preliminary sizing of the wind turbine, an optimal design of the PMECH from cost reduction point of view, a heat transfer analysis of the device and a study of the dynamic response of the wind system. The electromagnetic and heat transfer analysis is based on Finite Element Method (FEM implemented in the Flux software package and the dynamic response of the wind system is analyzed using a dedicated model developed under Matlab/Simulink environment.
Inversion of thicknesses of multi-layered structures from eddy current testing measurements
黄平捷; 吴昭同
2004-01-01
Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.
CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3D EDDY CURRENTS EQUATIONS
R.H.W. Hoppe; J. Sch(o)berl
2009-01-01
We consider an Adaptive Edge Finite Element Method (AEFEM) for the 3D eddy cur-rents equations with variable coefficients using a residual-type a posteriori error estimator. Both the components of the estimator and certain oscillation terms, due to the occurrence of the variable coefficients, have to be controlled properly within the adaptive loop which is taken care of by appropriate bulk criteria. Convergence of the AEFEM in terms of reductions of the energy norm of the discretization error and of the oscillations is shown. Numerical results are given to illustrate the performance of the AEFEM.
涡流阵列检测技术%Detecting technology of eddy current array
徐可北
2004-01-01
涡流阵列(Eddy Current Arrays)技术是近10年内出现的一项新的涡流检测技术,它是通过涡流检测线圈结构的特殊设计,并借助于计算化的涡流仪强大的分析、计算及处理功能,实现对材料和零件的快速、有效地检测.……
Inversion of thicknesses of multi-layered structures from eddy current testing measurements
HUANG Ping-jie(黄平捷); WU Zhao-tong(吴昭同)
2004-01-01
Luquire et al.'s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.
Identification of rebars in a reinforced mesh using eddy current method
Frankowski, P. K.; Sikora, R.; Chady, T.
2016-02-01
The aim of this paper is to present an expert system for identification of the basic reinforcement concrete structures parameters like: rebars diameter, thickness of a concrete cover and a kind of rebar's alloy (class). The results of measurement carried out by the eddy current transducers were utilized for the designed system. Measured waveforms are represented by two kinds of attributes, the d-factors represent a waveform shape, and a maximal amplitude. In order to extract an association rules between the specific attributes and the structure parameters a rough set theory was used.
Transient-spatial pattern mining of eddy current pulsed thermography using wavelet transform
Yang, Hailong; Gao, Bin; Tian, Guiyun; Ren, Wenwei; Woo, Wai Lok
2014-07-01
Eddy current pulsed thermography(ECPT) is an emerging Non-destructive testing and evaluation(NDT & E) technique, which uses hybrid eddy current and thermography NDT & E techniques that enhances the detectability from their compensation. Currently, this technique is limited by the manual selection of proper contrast frames and the issue of improving the efficiency of defect detection of complex structure samples remains a challenge. In order to select a specific frame from transient thermal image sequences to maximize the contrast of thermal variation and defect pattern from complex structure samples, an energy driven approach to compute the coefficient energy of wavelet transform is proposed which has the potential of automatically selecting both optimal transient frame and spatial scale for defect detection using ECPT. According to analysis of the variation of different frequency component and the comparison study of the detection performance of different scale and wavelets, the frame at the end of heating phase is automatically selected as an optimal transient frame for defect detection. In addition, the detection capabilities of the complex structure samples can be enhanced through proper spatial scale and wavelet selection. The proposed method has successfully been applied to low speed impact damage detection of carbon fibre reinforced polymer(CFRP) composite as well as providing the guidance to improve the detectability of ECPT technique.
Hrkac, G. [Department of Engineering Materials, University of Sheffield, Western Bank, Sheffield (United Kingdom)]. E-mail: g.hrkac@sheffield.ac.uk; Schrefl, T. [Department of Engineering Materials, University of Sheffield, Western Bank, Sheffield (United Kingdom); Schabes, M. [Hitachi San Jose Research Center, Hitachi Global Storage Technologies, San Jose, CA 95193 (United States)
2006-10-01
A mixed 3D finite element vector and scalar potential method was developed to treat inhomogeneities in coils of recording heads. It is assumed that in the yoke of the recording head the change of magnetization, generates a magnetic field that leads to Eddy current effects in the coil. The problem is separated into two regions, a conducting (the coil) and in a non-conducting one. For the conducting region we solve a vector potential diffusion equation with all contributing currents as a source term, including the Eddy currents produced by the yoke and for the non-conducting region a scalar potential partial differential equation is solved. To combine the vector and the scalar potential method special boundary conditions are implemented. The combined system of partial differential equations are solved simultaneously with a finite element/boundary element method.
Y. S. Androulidakis
2014-07-01
Full Text Available The anticyclonic Loop Current Eddy (LCE shedding events are strongly associated with the evolution of Loop Current Frontal Eddies (LCFEs over the eastern Gulf of Mexico (GoM. A numerical simulation, in tandem with in situ measurements and satellite data, was used to investigate the Loop Current (LC evolution and the surrounding LCFEs formation, structure, growth and migration during the Eddy Ekman and Eddy Franklin shedding events in the summers of 2009 and 2010, respectively. During both events, Northern GoM LCFEs appeared vertically coherent to at least 1500 m in temperature observations. They propagated towards the base of the LC where, together with the migration of Campeche Bank eddies from south of the LC, contributed to its "necking down". Growth of Campeche Bank LCFEs involved in Eddy Franklin was partially attributed to Campeche Bank waters following upwelling events. Slope processes associated with such upwelling include offshore exports of high positive vorticity that may trigger cyclone formation and growth. The advection and growth of LCFEs, originating from the northern and southern GoM, and their interaction with the LC over the LCE detachment area favor shedding conditions and may lead to the final separation of the LCE.
Zhong, Linhao
2016-04-01
In this paper, an ideal model on the role of mesoscale eddies in the Kuroshio intruding into the South China Sea (SCS) is developed, which represents the northwestern Pacific and the SCS by two rectangle basins connected by a gap. In the case of only considering intrinsic ocean variability, a time-dependent western boundary current (WBC) driven by steady wind is modeled under both eddy-resolving and non-eddy-resolving resolutions. Almost all simulated WBC intrudes into the adjacent sea in the form of loop current with multiple-state transitions and eddy-shedding process, which has aperiodic variations on intraseasonal or interannual scales, determined by the eddy-induced WBC variation. For the parameters considered in this paper, the WBC intrusion exhibits a 30~90-day cycle in the presence of the subgrid-scale eddy forcing (SSEF), but a 300~500-day cycle in the absence of SSEF. Moreover, the roles of the resolved (grid-scale) and unresolved (subgrid-scale) eddies in the WBC intrusion are studied. It is found that the unresolved eddy-flow interaction strongly regulates the WBC intrusion through the PV forcing induced by shear flows and baroclinic processes. But the resolved eddy forcing, which is dominated by the eddy-eddy interaction solely through baroclinic processes, shows weak correlation to the WBC intrusion. The associated eddy-induced PV exchange between the two basins is mainly accomplished by isopycnal-thickness eddy fluxes, particularly by the cross-front PV fluxes due to the unresolved eddy. And the unresolved eddy-flow interaction, as well as resolved and unresolved eddy-eddy interactions, mainly governs the PV transport for the WBC intrusion.
Suppressing local hot spots due to eddy currents in magnetic coil systems
Yao, Zhen; Shojinaga, Aaron; Wu, Yong; Shvartsman, Shmaryu; Eagan, Timothy; Chmielewski, Thomas; Brown, Robert
2011-03-01
A particular goal in magnetic field applications is to avoid eddy current heating in coils and shields. It is important, in MRI, for example, to avoid hot spots near the patient to be imaged as well as in the vicinity of soldering joints. We develop effective analytical formulas for the eddy current behavior of sources close to surrounding conductors, we verify these via numerical simulations, and we make successful comparisons to corresponding experimental temperature distributions. Optimized patterns of incisions made in the conductors are discovered for addressing particularly troublesome heating locations. The criteria include the need to minimize the number and length of the cuts. Theory and experiment are in agreement on the efficacy of this method for reducing steady-state temperatures. An example of results in the practical design of commercial coils and shields is that a single cut parallel to the long edge of rectangular conductors reduces the temperatures much more than making multiple cuts parallel to the short edge. Supported by Ohio Third Frontier Program
Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array
Ruifang Xie
2015-12-01
Full Text Available The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM, the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.
An eddy current-induced magnetic plucking for piezoelectric energy harvesting
Do, Nam Ho; Baek, Yoon Su
2016-04-01
Frequency up-conversion is a very efficient method of energy harvesting in order to overcome low, non-periodic, or altered ambient vibration. In order to perform frequency up-conversion and transference of mechanical energy without contact, an eddy current-induced magnetic drag force is used. In this paper, we present a novel configuration of eddy current-induced magnetic plucking for piezoelectric energy harvesting. Our method consists of two permanent magnets, a piezoelectric beam, and a copper disk piece. We design our harvesting method to achieve loading, sudden release, and free vibration using the actuation of the piezoelectric beam through the magnetic mutual coupling between the magnet and copper disk piece. We present the principle of magnetic drag force-generation, characterize the energy harvesting performance of our harvesting method, and demonstrate our harvesting method’s capability of frequency up-conversion and transference of mechanical energy without contact under low, non-periodic, or altered ambient vibration. To that end, we describe the calculation of magnetic drag force with various geometric dimensions and material properties, model of the piezoelectric cantilever beam, comparison between estimation response and measured experiment response, and the measured voltage and power responses.
Reconstruction of stress corrosion cracks using signals of pulsed eddy current testing
Wang, Li; Xie, Shejuan; Chen, Zhenmao; Li, Yong; Wang, Xiaowei; Takagi, Toshiyuki
2013-06-01
A scheme to apply signals of pulsed eddy current testing (PECT) to reconstruct a deep stress corrosion crack (SCC) is proposed on the basis of a multi-layer and multi-frequency reconstruction strategy. First, a numerical method is introduced to extract conventional eddy current testing (ECT) signals of different frequencies from the PECT responses at different scanning points, which are necessary for multi-frequency ECT inversion. Second, the conventional fast forward solver for ECT signal simulation is upgraded to calculate the single-frequency pickup signal of a magnetic field by introducing a strategy that employs a tiny search coil. Using the multiple-frequency ECT signals and the upgraded fast signal simulator, we reconstructed the shape profiles and conductivity of an SCC at different depths layer-by-layer with a hybrid inversion scheme of the conjugate gradient and particle swarm optimisation. Several modelled SCCs of rectangular or stepwise shape in an SUS304 plate are reconstructed from simulated PECT signals with artificial noise. The reconstruction results show better precision in crack depth than the conventional ECT inversion method, which demonstrates the validity and efficiency of the proposed PECT inversion scheme.
Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2016-02-01
Nuclear steam generators (SGs) are a critical component for ensuring safe and efficient operation of a reactor. Life management strategies are implemented in which SG tubes are regularly inspected by conventional eddy current testing (ECT) and ultrasonic testing (UT) technologies to size flaws, and safe operating life of SGs is predicted based on growth models. ECT, the more commonly used technique, due to the rapidity with which full SG tube wall inspection can be performed, is challenged when inspecting ferromagnetic support structure materials in the presence of magnetite sludge and multiple overlapping degradation modes. In this work, an emerging inspection method, pulsed eddy current (PEC), is being investigated to address some of these particular inspection conditions. Time-domain signals were collected by an 8 coil array PEC probe in which ferromagnetic drilled support hole diameter, depth of rectangular tube frets and 2D tube off-centering were varied. Data sets were analyzed with a modified principal components analysis (MPCA) to extract dominant signal features. Multiple linear regression models were applied to MPCA scores to size hole diameter as well as size rectangular outer diameter tube frets. Models were improved through exploratory factor analysis, which was applied to MPCA scores to refine selection for regression models inputs by removing nonessential information.
Stevens, K J [Materials Performance Technologies, Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Trompetter, W J [Rafter Laboratory, Institute of Geological and Nuclear Sciences, PO Box 31-312, Lower Hutt (New Zealand)
2004-02-07
Nuclear reaction analysis using a {sup 12}C(d, p{sub 0}){sup 13}C reaction and a {sup 16}O(d, p{sub 1}){sup 17}O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.
Stevens, K. J.; Trompetter, W. J.
2004-02-01
Nuclear reaction analysis using a 12C(d, p0)13C reaction and a 16O(d, p1)17O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.
Foucault pendulum with eddy-current damping of the elliptical motion
Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.
1984-10-01
A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.
Enhancing pulsed eddy current for inspection of P-3 Orion lap-joint structures
Butt, D. M.; Underhill, P. R.; Krause, T. W.
2016-02-01
During flight, aircraft are subjected to cyclic loading. In the Lockheed P-3 Orion airframe, this cyclic loading can lead to development of fatigue cracks at steel fastener locations in the top and second layers of aluminum wing skin lap-joints. An inspection method that is capable of detecting these cracks, without fastener removal, is desirable as this can minimize aircraft downtime, while subsequently reducing the risk of collateral damage. The ability to detect second layer cracks has been demonstrated using a Pulsed Eddy Current (PEC) probe design that utilizes the ferrous fastener as a flux conduit. This allows for deeper penetration of flux into the lap-joint second layer and consequently, sensitivity to the presence of cracks. Differential pick-up coil pairs are used to sense the eddy current response due to the presence of a crack. The differential signal obtained from pick-up coils on opposing sides of the fastener is analyzed using a Modified Principal Components Analysis (MPCA). This is followed by a cluster analysis of the resulting MPCA scores to separate fastener locations with cracks from those without. Probe design features, data acquisition system parameters and signal post-processing can each have a strong impact on crack detection. Physical probe configurations and signal analysis processes, used to enhance the PEC system for detection of cracks in P-3 Orion lap-joint structures, are investigated and an enhanced probe design is identified.
Eddy current monitoring of fatigue crack growth in Zr-2.5% Nb pressure tube
Krause, T. W.; Martin, A. E.; Sheppard, R. R.; Schankula, J. J.
2000-05-01
Zr-2.5% wt. Nb pressure tubes (PTs) form the core of the heat transport system in CANDU nuclear reactors. These 6 m long, 100 mm diameter tubes are operated at elevated temperatures (nominally 300 °C) and at pressures that produce hoop stresses that are 25% of the ultimate tensile strength of the PT (120 Mpa). Therefore, detection and characterization of flaws in these components becomes crucial for their continued pressure retaining integrity. If a flaw is detected, however, the cost of PT replacement is expensive. Periodic in-service inspection of a flaw that demonstrates no change in flaw characteristics can be used to allow a pressure tube to remain in-service. This requires confidence in the accuracy and reliability of methods used to inter flaw characteristics. Such confidence can only be developed by comparing nondestructive predictions with results from destructive examinations. In this work, eddy current testing was used to monitor the progressive stages of a fatigue crack, grown through pressure cycling from a notch on the inner surface of a PT. Results from a differential lift-off compensated eddy current probe were used to produce sizing estimates of the crack grown between 35% (base of notch) and 74% of the PT wall. A comparison with a destructive examination of the crack demonstrated sensitivity too changes in crack depth accurate to 5% of the tube wall thickness. Such results, combined with similar information obtained from ultrasonics will increase confidence in interpretation of PT inspection data.
Suthers, Iain M.; Young, Jock W.; Baird, Mark E.; Roughan, Moninya; Everett, Jason D.; Brassington, Gary B.; Byrne, Maria; Condie, Scott A.; Hartog, Jason R.; Hassler, Christel S.; Hobday, Alistair J.; Holbrook, Neil J.; Malcolm, Hamish A.; Oke, Peter R.; Thompson, Peter A.; Ridgway, Ken
2011-03-01
The poleward flowing East Australian Current (EAC) is characterised by its separation from the coast, 100-200 nautical miles north of Sydney, to form the eastward flowing Tasman Front and a southward flowing eddy field. The separation zone greatly influences coastal ecosystems for the relatively narrow continental shelf (only 15-50 km wide), particularly between 32-34°S. In this region the continental shelf has a marked shift in the seasonal temperature-salinity relationship and elevated surface nitrate concentrations. This current parallels the portion of the coast where Australia's population is concentrated and has a long history of scientific research. However, understanding of physical and biological processes driven by the EAC, particularly in linking circulation to ecosystems, is limited. In this special issue of 16 papers on the EAC, we examine the effects of climatic wind-stress forced ocean dynamics on EAC transport variability and coastal sea level, from ENSO to multi-decadal time scales; eddy formation and structure; fine scale connectivity and larval retention. Comparisons with the poleward-flowing Leeuwin Current on Australia's west coast show differences in ecosystem productivity that can be attributed to the underlying physics in each region. On average there is double the chlorophyll a concentration on the east coast than the west. In comparison to the Leeuwin, the EAC may have less local retention of larvae and act as a partial barrier to onshore transport, which may also be related to the local spawning and early life history of small pelagic fish on each coast. Inter-annual variations in the EAC transport produce a detectable sea-level signal in Sydney Harbour, which could provide a useful fisheries index as does the Fremantle sea level and Leeuwin Current relationship. The EAC's eddy structure and formation by the EAC are examined. A particular cold-core eddy is shown to have a "tilt" towards the coast, and that during a rotation the flow of
Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori
In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.
Gäbler, Simone; Heuer, Henning; Heinrich, Gert; Kupke, Richard
2015-03-01
Eddy current testing is well-established for non-destructive characterization of electrical conductive materials. The development of high-frequency eddy current technology (with frequency ranges up to 100 MHz) made it even possible to extend the classical fields of application towards less conductive materials like CFRP. Maxwell's equations and recent research show that the use of high-frequency eddy current technology is also suitable for non-conductive materials. In that case the change of complex impedance of the probing coil contains information on sample permittivity. This paper shows that even a quantitative measurement of complex permittivity with high-frequency eddy current device technology is possible using an appropriate calibration. Measurement accuracy is comparable to commercial capacitive dielectric analyzers. If the sample material is electrically conductive, both, permittivity and conductivity influence the complex impedance measured with high-frequency eddy current devices. Depending on the measurement setup and the sheet resistance of the sample a parallel characterization of both parameters is possible on isotropic multi-layer materials. On CFRP the permittivity measurement is much more complex due to the capacitive effects between the carbon rovings. However, first results show that at least the local permittivity variations (like those caused by thermal damages) are detectable.
Buck, Jeremy Andrew
Nondestructive testing is a critical aspect of component lifetime management. Nuclear steam generator (SG) tubes are the thinnest barrier between irradiated primary heat transport system and the secondary heat transport system, whose components are not rated for large radiation fields. Conventional eddy current testing (ECT) and ultrasonic testing are currently employed for inspecting SG tubes, with the former doing most inspections due to speed and reliability based on an understanding of how flaws affect coil impedance parameters when conductors are subjected to harmonically induced currents. However, when multiple degradation modes are present simultaneously near ferromagnetic materials, such as tube fretting, support structure corrosion, and magnetite fouling, ECT reliability decreases. Pulsed eddy current (PEC), which induces transient eddy currents via square wave excitation, has been considered in this thesis to simultaneously examine SG tube and support structure conditions. An array probe consisting of a central driver, coaxial with the tube, and an array of 8 sensing coils, was used in this thesis to perform laboratory measurements. The probe was delivered from the inner diameter (ID) of the SG tube, where support hole diameter, tube frets, and 2D off-centering were varied. When considering two variables simultaneously, scores obtained from a modified principal components analysis (MPCA) were sufficient for parameter extraction. In the case of hole ID variation with two dimensional tube off-centering (three parameters), multiple linear regression (MLR) of the MPCA scores provided good estimates of parameters. However, once a fourth variable, outer diameter tube frets, was introduced, MLR proved insufficient. Artificial neural networks (ANNs) were investigated in order to perform pattern recognition on the MPCA scores to simultaneously extract the four measurement parameters from the data. All models throughout this thesis were created and validated using
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
Georgiadis, Nicholas J.; Rizzetta, Donald P.; Fureby, Christer
2009-01-01
This paper presents the results of an activity by the Large Eddy Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the current capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the current capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered.
Electromagnetic modeling of an eddy-current position sensor for use in a fast reactor
Wu, Tao; Bowler, John R.
2017-02-01
In this article, we proposed a novel theoretical electromagnetic model of an eddy current probe used as a position sensor with respect to a tube in a fast reactor under standby conditions. In these circumstances the coil position cannot be guided by optical aids but electromagnetic sensing can be used. Initially, we derived analytical expressions for the quasi-static time-harmonic electromagnetic field of a circular current filament via the transverse magnetic potential expressed in terms of a single layer potential. This is then used to deduce the field of a circular sensor coil near a conductive tube, the axis of the coil having an arbitrary direction with respect to that of the tube. The fields for an external coil have been determined and can be used to deduce coil impedance variations with frequency, location and orientation. The model predictions can be used to guide the probe to a desire position with respect to the tube.
A 3D Model for Eddy Current Inspection in Aeronautics: Application to Riveted Structures
Paillard, S.; Pichenot, G.; Lambert, M.; Voillaume, H.; Dominguez, N.
2007-03-01
Eddy current technique is currently an operational tool used for fastener inspection which is an important issue for the maintenance of aircraft structures. The industry calls for faster, more sensitive and reliable NDT techniques for the detection and characterization of potential flaws nearby rivet. In order to reduce the development time and to optimize the design and the performances assessment of an inspection procedure, the CEA and EADS have started a collaborative work aiming at extending the modeling features of the CIVA non destructive simulation plat-form in order to handle the configuration of a layered planar structure with a rivet and an embedded flaw nearby. Therefore, an approach based on the Volume Integral Method using the Green dyadic formalism which greatly increases computation efficiency has been developed. The first step, modeling the rivet without flaw as a hole in a multi-stratified structure, has been reached and validated in several configurations with experimental data.
Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation
Dodd, C V; Deeds, W E
1986-07-01
A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.
Developments in near electrical resonance signal enhancement (NERSE) eddy-current methods
Hughes, Robert; Dixon, Steve
2015-03-01
In industry, the detection of small defects above a background noise threshold is always a limiting factor. This is true for even the most sensitivity and reliable of NDT techniques. However, defect signals in eddy-current (EC) inspections have the potential to be boosted above noise thresholds by exploiting the near electrical resonance signal enhancement (NERSE) phenomena, resulting from resonant frequency-shifting of an EC system as the coil passes over a defect. Following on from the observation and characterisation of this phenomenon, NERSE based EC methods are being investigated and developed for the detection of sub-millimeter surface defects in Aerospace superalloys. This paper discusses current advances in the development of such techniques and explores the potential of NERSE exploitation as well as examining its limitations.
Yang, Ruizhen; He, Yunze
2015-06-01
Anisotropy and inhomogeneity of carbon fiber reinforced polymers (CFRPs) result in that many traditional non-destructive inspection techniques are inapplicable on the delamination evaluation. This letter introduces eddy current pulsed phase thermography (ECPPT) for CFRPs evaluation considering volumetric induction heating due to small electrical conductivity, abnormal thermal wave propagation, and Fourier analysis. The proposed methods were verified through experimental studies under transmission and reflection modes. Using ECPPT, the influence of the non-uniform heating effect and carbon fiber structures can be suppressed, and then delamination detectability can be improved dramatically over eddy current pulsed thermography.
Pichenot, G.; Prémel, D.; Sollier, T.; Maillot, V.
2004-02-01
In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws.
Mayhall, D J; Stein, W; Gronberg, J B
2006-05-15
We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.
Displacement currents in geoelectromagnetic problems
Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury
2014-06-01
The influence of displacement currents in conventional geoelectromagnetic (GEM) methods using unimodal transversal electric (TE) or multimodal TE and TM (transversal magnetic) fields is only significant at very high frequencies in the frequency domain or at extremely early times in the time domain. The transient process in the latter includes three stages: the propagation through air, the propagation through earth and the diffusion within the earth. The influence of displacement currents is significant mainly during the former two stages, normally up to several tens to a few hundreds of nanoseconds. The behavior is essentially different in novel GEM methods using a vertical electric dipole (VED) or circular electric dipole (CED) sources of unimodal TM-fields. Under certain geoelectric conditions, the influence of displacement currents in these methods might be crucial at late times as well. This happens, if the model consists of insulating layers. In the absence of displacement currents, such layers would totally mask underlying structures. However, TM-fields including displacement currents depend on geoelectric parameters below insulating layers at late times.
Variables Affecting Probability of Detection in Bolt Hole Eddy Current Inspection
Lemire, H.; Krause, T. W.; Bunn, M.; Butcher, D. J.
2009-03-01
Physical variables affecting probability of detection (POD) in a bolt-hole eddy current inspection were examined. The POD study involved simulated bolt holes in 7075-T6 aluminum coupons representative of wing areas on CC-130 and CP-140 aircraft. The data were obtained from 24 inspectors who inspected 468 coupons, containing a subset of coupons with 45 electric discharge machined notches and 72 laboratory grown fatigue cracks located at the inner surface corner of the bi-layer structures. A comparison of physical features of cracks and notches in light of skin depth effects and probe geometry was used to identify length rather than depth as the significant variable producing signal variation. Probability of detection based on length produced similar results for the two discontinuity types, except at lengths less than 0.4 mm, where POD for cracks was found to be higher than that of notches.
Eddy current NDT: a suitable tool to measure oxide layer thickness in PWR fuel rods
Alencar, Donizete A.; Silva Junior, Silverio F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)], e-mail: daa@cdtn.br, e-mail: silvasf@cdtn.br; Vieira, Andre L.P.S. [Industrias Nucleares do Brasil (INB S.A.), Resende, RJ (Brazil). Fabrica de Combustivel Nuclear], e-mail: andre@inb.gov.br; Soares, Adolpho [Technotest Consultoria e Acessoria Ltda., Belo Horizonte, MG (Brazil)], e-mail: adolpho@technotest.com.br
2009-07-01
Eddy current is a nondestructive test (NDT) widely used in industry to support integrity analysis of components and equipment. In the nuclear area it is frequently applied to inspect tubes installed in tube exchangers, such as steam generators and condensers in PWR plants, as well as turbine blades. Adequately assisted by means of robotic devices, that inspection method has been pointed as a suitable tool to perform accurate oxide layer thickness measurements in PWR fuel rods. This paper shows some theoretical aspects and physical operating principles of the inspection method, as well as test probes construction details, and the calibration reference standards fabrication processes. Furthermore, some data, experimentally obtained at INB laboratories and other technical information obtained from TECNATOM S.A. are presented, showing the accuracy and efficacy of such NDT method. (author)
American Society for Testing and Materials. Philadelphia
2011-01-01
1.1 This practice covers the use of conformable eddy-current sensors for nondestructive characterization of coatings without standardization on coated reference parts. It includes the following: (1) thickness measurement of a conductive coating on a conductive substrate, (2) detection and characterization of local regions of increased porosity of a conductive coating, and (3) measurement of thickness for nonconductive coatings on a conductive substrate or on a conductive coating. This practice includes only nonmagnetic coatings on either magnetic (μ ≠ μ0) or nonmagnetic (μ = μ0) substrates. This practice can also be used to measure the effective thickness of a process-affected zone (for example, shot peened layer for aluminum alloys, alpha case for titanium alloys). For specific types of coated parts, the user may need a more specific procedure tailored to a specific application.
Precise on-machine extraction of the surface normal vector using an eddy current sensor array
Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun
2016-11-01
To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.
Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver
2014-06-01
This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.
T. Aly Saandy
2015-08-01
Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.
Evans, Phillip G.; Dapino, Marcelo J.
2008-03-01
A general framework is developed to model the nonlinear magnetization and strain response of cubic magnetostrictive materials to 3-D dynamic magnetic fields and 3-D stresses. Dynamic eddy current losses and inertial stresses are modeled by coupling Maxwell's equations to Newton's second law through a nonlinear constitutive model. The constitutive model is derived from continuum thermodynamics and incorporates rate-dependent thermal effects. The framework is implemented in 1-D to describe a Tonpilz transducer in both dynamic actuation and sensing modes. The model is shown to qualitatively describe the effect of increase in magnetic hysteresis with increasing frequency, the shearing of the magnetization loops with increasing stress, and the decrease in the magnetostriction with increasing load stiffness.
Moore, D.G.; Sorensen, N.R.
1998-02-01
This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into the Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.
High-Tc planar SQUID gradiometer for eddy current non-destructive evaluation
Zhang Ming-Jian; Lang Pei-Lin; Peng Zhi-Hui; Chen Ying-Fei; Chen Ke; Zheng Dong-Ning
2006-01-01
This paper reports the fabrication and test of a high-Tc SQUID planar gradiometer which is patterned from YBCO thin film deposited on a SrTiOs bicrystal substrate. The measurement of noise spectrum at 77K shows that the white noise at 200 Hz is about 1×10-4Φ0／Hz. The minimal magnetic gradient is measured and the results suggest that the minimal magnetic gradient is 94 pT/m. The planar gradiometer is used in non-destructive evaluation (NDE) experiments to detect the artifacts in conducting aluminium plates by performing eddy current testing in an unshielded environment. The effect of the exciting coil dimension on the NDE results is investigated. By mapping out the induced field distribution, flaws about 10mm below the plate surface can be clearly identified.
Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating
Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)
2016-06-15
A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.
Analysis of Dissimilar Material Defect Based on Eddy Current Conductivity Testing
Zhang, Xiaofan; Li, Lifu
In this experiment, the conductivity distribution of lack of penetration (LOP) in friction stir welding (FSW) of dissimilar materials has been tested, and has been compared with the conductivity distribution of the same kind of material, by using eddy current conductivity meter. CZ state and M state LY12 aluminum alloy has been studied. The results show that when the depth of LOP is small, the conductivity of M state is the highest, the conductivity decreases gradually to the weld center, reduce to the minimum until reach the CZ state base metal. When the depth of LOP is larger, the conductivity of the weld center decreases sharply with the depth of LOP increases gradually. Scilicet, the larger the depth of LOP, the lower the conductivity. The conductivity distribution of other areas is similar to the distribution when the depth of LOP is small.
Complete inspection of friction stir welds in aluminum using ultrasonic and eddy current arrays
Lamarre, A.; Dupuis, O. [R/D Tech, Quebec, Quebec (Canada)]. E-mail: andre.lamarre@rd-tech.com; olivier.dupuis@rd-tech.com; Moles, M. [R/D Tech, Mississauga, Ontario (Canada)]. E-mail: Michael.moles@rd-tech.com
2006-07-15
Ultrasonic phased-array offers tremendous advantages for the inspection of Friction stir welds (FSW), a new method of joining metals using a solid state bonding process. Phased array ultrasonics can reliably detect all internal volumetric defects in FSW, such as cracks, inclusion, porosity and lack-of-penetration. Spot-focused beams improve detection, inspection angles can be optimized electronically and electronic scan of the beam normal to the welds gives rapid one-line scan inspection to assure full coverage. Furthermore, a technique using ultrasonic attenuation measurements shows the presence or absence of conditions for forming kissing bonds (or entrapped oxide defects). Also, eddy current arrays can be used for surface inspection, and can help to detect tight kissing bonds. Using all three approaches, the overall detection capability of kissing bonds is high. (author)
Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes
Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)
1997-02-01
Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual in detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.
Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2017-02-01
Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.
脉冲涡流测厚技术%Thickness Measurement Technique by Pulsed Eddy Current
吴鑫; 李方奇; 石坤; 谢基龙; 李浩
2009-01-01
脉冲涡流检测技术具有频谱宽、信号穿透能力强以及精确度好等优点.对脉冲涡流测厚技术进行了仿真,即针对脉冲涡流测厚系统,建立了有限元分析模型,仿真分析了检测线圈上的电压的衰减规律,得到了检测线圈上的电压随被测体厚度的变化规律,确定了两者之间的定量关系.分析了提离距离、检测线圈参数和脉冲涡流频率对检测结果的影响.该研究为将来进行脉冲涡流测厚仪的研制提供了理论依据和数学模型.%Pulsed eddy current technique had quite a few advantages such as wide spectrum, strong penetration,high accuracy. The experiment was carried out to study the metal thickness measurement of PEC, and a finite element model for the system of the metal thickness measurement of PEC was established. Based on the finite element model established, this thesis analyzed the attenuation law of the voltage in receiving coil By changing the thickness of tested bodies, the relationship between the voltage of receiving coil and the thickness of the testedbodies was analyzed, and also the factors that affected the measuring results such as lift-off distance, parameters of testing coil and frequency of pulsed eddy current were analyzed in detail It provided a theoretical basis and mathematical models for the future development of the PEC gage.
[Current problems in medical entomology].
Alekseev, A N
1999-01-01
The major problems facing medical entomology as a science and practical health care facilities in the Russian Federations allows to outline the tasks to be solved in order of their priority and significance. These include the study and monitoring of tick-borne infections, resurrecting malaria, gnat-induced diseases, acariases, allergosis and pediculosis. It is emphasized that medical entomology as a science cannot develop since the man-made changes of the environment and the predicted global warming of the Earth climate are not taken into account. The present status of medical entomological service is considered to be poor. Governmental support is required.
Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy
Iryna Patsora
2016-12-01
Full Text Available Particle-based films are today an important part of various designs and they are implemented in structures as conductive parts, i.e., conductive paste printing in the manufacture of Li-ion batteries, solar cells or resistive paste printing in IC. Recently, particle based films were also implemented in the 3D printing technique, and are particularly important for use in aircraft, wind power, and the automotive industry when incorporated onto the surface of composite structures for protection against damages caused by a lightning strike. A crucial issue for the lightning protection area is to realize films with high homogeneity of electrical resistance where an in-situ noninvasive method has to be elaborated for quality monitoring to avoid undesirable financial and time costs. In this work the drying process of particle based films was investigated by high-frequency eddy current (HFEC spectroscopy in order to work out an automated in-situ quality monitoring method with a focus on the electrical resistance of the films. Different types of particle based films deposited on dielectric and carbon fiber reinforced plastic substrates were investigated in the present study and results show that the HFEC method offers a good opportunity to monitor the overall drying process of particle based films. Based on that, an algorithm was developed, allowing prediction of the final electrical resistance of the particle based films throughout the drying process, and was successfully implemented in a prototype system based on the EddyCus® HFEC device platform presented in this work. This prototype is the first solution for a portable system allowing HFEC measurement on huge and uneven surfaces.
Hu, Po; Hou, Yijun
2010-03-01
Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.
Zygmunt Piatek
2008-01-01
Full Text Available In the paper we discuss the question of eddy currents induced in screens of a symmetrical three-phase singlepole gas-insulated transmission line (GIL. First, we determine the eddy currents induced in the tubular screen by the magnetic field of self-current of the phase conductor. Then the magnetic field in the external parallel phase conductor is presented by means of a vector magnetic potential as Fourrier series. In the non-conducting external and internal area of the screen we use Laplace equation for the magnetic field strength taking into account the reverse reaction of eddy currents induced in the screen. In the conducting screen we apply Helmholtz equation for eddy currents density. Using classical boundary conditions we determine the density of the currents. The solutions obtained are used to determine the total eddy currents induced in all the screens of the GIL under consideration.
Influenza: A current medical problem
Bojić Ivanko
2007-01-01
Full Text Available Introduction. Acute respiratory infections are the most common infections in the human population. Among them, virus infections, especially those caused by influenza viruses, have an important place. Type A influenza. Type A influenza virus caused three epidemics during the last century. A high percetage of deceased in pandemics of 1918, and 1919 were young, healthy persons, with many of the deaths due to an unusually severe, hemorrhagic pneumonia. At the end of 2003, and the beginning of 2004, an epidemic emerged in South East Asia of poultry influenza caused by animal (avian virus. Later it spread to the human population, with a high death rate of 73% and with a possibility of interhuman transmission. This review article provides an overview of the clinical manifestations, laboratory findings and chest radiographs. Apart from the symptomatic and supportive therapy, there are antiviral drugs and corticosteriods. Conclusion. The use of vaccine containing subtypes of virus hemagglutinins and neuraminidase from an influenza virus currently infecting the population has a great importance. .
A multi-frequency impedance analysing instrument for eddy current testing
Yin, W.; Dickinson, S. J.; Peyton, A. J.
2006-02-01
This paper presents the design of a high-performance multi-frequency impedance analysing instrument (MFIA) for eddy current testing which has been developed primarily for monitoring a steel production process using an inductive sensor. The system consists of a flexible multi-frequency waveform generator and a voltage/current measurement unit. The impedance of the sensor is obtained by cross-spectral analysis of the current and voltage signals. The system contains high-speed digital-to-analogue, analogue-to-digital converters and dual DSPs with one for control and interface and one dedicated to frequency-spectra analysis using fast Fourier transformation (FFT). The frequency span of the signal that can be analysed ranges from 1 kHz to 8 MHz. The system also employs a high-speed serial port interface (USB) to communicate with a personal computer (PC) and to allow for fast transmission of data and control commands. Overall, the system is capable of delivering over 250 impedance spectra per second. Although the instrument has been developed mainly for use with an inductive sensor, the system is not restricted to inductive measurement. The flexibility of the design architecture is demonstrated with capacitive and resistive measurements by using appropriate input circuitry. Issues relating to optimizing the phase of the spectra components in the excitation waveform are also discussed.
Cheprasov, A. I.; Knyazev, S. V.; Usoltsev, A. A.; Dolgopolov, A. E.; Mamedov, R. O.
2016-09-01
The aim of this study was to investigate the possibility of detection of cold cracks in the massive steel products using ultrasonic and eddy-current excitation, as well as the thermal imaging method of temperature recording, that in the perspective should be completed by the development of requirements for the monitoring equipment.
Shim, Hee-Sang; Choi, Myung Sik; Lee, Deok Hyun; Hur, Do Haeng, E-mail: dhhur@kaeri.re.kr
2016-02-15
Highlights: • A corrosion test for the tubes with different levels of eddy current noise was conducted. • A relationship between the corrosion rate and the eddy current noise of tubes was explored. • Corrosion rate was closely correlated to the tube noise of a rotating pancake probe. • Corrosion rate was not related to the tube noise measured using a bobbin probe. - Abstract: The purpose of this work is to develop an eddy current testing method to predict the general corrosion behavior of Alloy 690 steam generator tubes. A corrosion test was conducted for tubes with different levels of eddy current noise in simulated primary water at 330 °C, and their corrosion behavior was correlated with the tube noise measured using bobbin and rotating probes. The corrosion behavior was closely correlated with the tube noise measured using a rotating probe. However, there was no correlation between the corrosion behavior and the tube noise measured using a bobbin probe. The tube noise value measured using a rotating pancake coil probe is suggested to be a significant parameter in estimating the general corrosion behavior of tubes.
1989-01-20
LLAA6 .l iI -SA/TR-2/89 A003: FINAL REPORT * COMPUTER ALGORITHMS AND ARCHITECTURES N FOR THREE-DIMENSIONAL EDDY-CURRENT NONDESTRUCTIVE EVALUATION...Ciasuication) COMPUTER ALGORITHMS AND ARCHITECTURES FOR THREE-DIMENSIONAL EDD~j~~JRRN iv ummary Q PERSONAL AUTriOR(S) SBAHASCAE 1 3a. TYPE Of REPORT
Analysis of the temporal and spatial dependence of the eddy current fields in a 40-cm bore magnet.
Robertson, S; Hughes, D G; Liu, Q; Allen, P S
1992-05-01
Eddy current fields, generated in an animal-size superconducting NMR magnet by a nominally rectangular pulsed transverse gradient applied in the vertical direction, have been studied by measuring the offset frequency of the proton NMR signal obtained from a small spherical sample. Measurements were made, after various time delays, at nine different locations in the sample space. Analysis of the data shows that the time-dependent fields at all nine locations are quite well accounted for by the superposition of only four independent exponentially decaying components that have time constants in the range from 9 to 400 ms. Two of these were found to be caused by eddy currents generated in the magnet structure. They generate primarily linear gradients, though one of them also produces a B0 shift, indicating a significant asymmetry about the isocenter of the conducting structure in which the eddy current flows. The other two exponentially decaying components, which had very different time constants from the eddy currents and also initial amplitudes of the opposite sign, were generated by the preemphasis unit. This calls into question the procedure used to adjust the preemphasis unit and an alternative method is proposed.
Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging
Trong-Kha Truong
2015-01-01
Full Text Available In most diffusion tensor imaging (DTI studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR. However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact. Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2*-weighting (i.e., Type 3 artifact. These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.
Research on Eddy Current Testing System of the Carburized Layer Depth of 20CrMnTi Steel
CHENG Xiao-min; LI Na; WU Xin- wen; FANG Hua-bin
2004-01-01
In this paper the carbon distribution in the carburized layer of 20CrMnTi steel was studied. The relationship between the depth of a carburized layer and the surface carbon distribution was established. Eddy current testing system of the case depth of this carburized steel was built by using ANSYS software as second development platform.
Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei
2015-01-01
In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.
涡流对真空灭弧室开断电流的影响%Eddy Current Influence on Breaking Current of Vacuum Interrupter
司红
2011-01-01
The paper describes the influence on current breaking capability of vacuum interrupter contact by eddy current theoretically. And the cause of forming eddy current is analyzed. It presents the experiments and analyses to prove the conclusion as following: contact body will form eddy current in alternating magnetic field, that lead to magnetic field of contact lags behind current. It will affect the capability of contact current breaking. Eddy current of contact should be minimized even to zero to get the ideal design of contact body.%论述了涡流对真空灭弧室触头开断能力的影响,以及涡流产生的原因,并加以证明,表明了触头体在交变磁场中将产生感应涡流,使触头磁场滞后于电流,影响触头开断能力;要使触头达到理想设计,应将触头涡流减到最小.
Fast Acting Eddy Current Driven Valve for Massive Gas Injection on ITER
Lyttle, Mark S [ORNL; Baylor, Larry R [ORNL; Carmichael, Justin R [ORNL; Combs, Stephen Kirk [ORNL; Ericson, Milton Nance [ORNL; Ezell, N Dianne Bull [ORNL; Meitner, S. J. [Oak Ridge National Laboratory (ORNL); Rasmussen, David A [ORNL; Warmack, Robert J Bruce [ORNL; Maruyama, So [ITER Organization, Cadarache, France; Kiss, Gabor [ITER Organization, Cadarache, France
2015-01-01
Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and eddy currents, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the current decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supply have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.
Measurements of the transverse resistance and eddy current losses in a cable-in-conduit conductor
Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lelekhov, S. A.; Il'in, A. A.; Naumov, A. V.; Shcherbakov, V. I.; Shutov, K. A.
2015-11-01
In the case of plasma current interruption in tokamaks, the conductor of toroidial field (TF) coils experiences the action of a pulsed decreasing magnetic field (PDMF) parallel to the conductor's axis. To estimate the stability of a cable-in-conduit conductor against the PDMF, a new experimental method to study different types of losses is applied. This method exploits a high sensitivity of temperature and gas pressure to input energy in a closed volume. It allows one to measure hysteresis losses with a rather high accuracy (provided that the rate of change of the PDMF is low) and a sum of hysteresis losses and eddy current losses (when the rate of change of the PDMF is high). An experimental setup to measure the transverse (circumferential) resistance and losses has been developed at the National Research Centre Kurchatov Institute. A Russianmade Nb3Sn conductor intended for the TF coils of the International Thermonuclear Experimental Reactor is subjected to a PDMF with different amplitudes and characteristic times. The electromagnetic time constant and the transverse resistivity of the conductor are experimentally determined. The maximum temperature of strands under the action of the PDMF is calculated.
de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D
2015-12-24
This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.
Atkinson, Ian C; Lu, Aiming; Thulborn, Keith R
2009-08-01
Reconstruction of high-quality MR images requires precise knowledge of the dynamic gradient magnetic fields used to perform spatial encoding. System delays and eddy currents can perturb the gradient fields in both time and space and significantly degrade the image quality for acquisitions with an ultrashort echo time or with rapidly varying readout gradient waveforms. A technique for simultaneously characterizing and correcting the system delay and linear- and zero-order eddy currents of an MR system is proposed. A single set of calibration scans were used to compute a set of system constants that describe the effects of system delays and eddy currents to enable accurate reconstruction of data collected before uncorrected eddy currents have decayed. The ability of the proposed technique to reproducibly characterize small fixed delays (<50 micros) and short-time constant (<1 ms) eddy currents is demonstrated.
Patnaik, K.V.K.R.K.; Maneesha, K.; Sadhuram, Y.; Prasad, K.V.S.R.; Murty, T.V.R.; Rao, V.B.
feedback to the atmosphere (Namias and Canyan, 1981). For example the hurricane “Opal” that occurred in 1995 intensified rapidly from Category 1 to Category 4 status within 14 hours as it passed over a warm core eddy and encountered a deeper and warmer...’s negative feedback, helps to maintain and even boost the TC intensity. Though Bay of Bengal is well known for eddies, quantitative analysis on the role of these eddies in the intensification of storms is still lacking. Ali et al. (2007...
Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy
C. Messager
2016-01-01
Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.
Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed
Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.
2017-04-01
Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these
An eddy-current-based sensor for preventing knots in metallic wire drawing processes
Esteban, Bernat; Riba, Jordi-Roger; Baquero, Grau; Ferrater, Cèsar
2011-06-01
During metallic wire drawing processes, the presence of knots and the failure to detect them can lead to long production interruptions, significant economic losses and a lower quality of final product. Consequently, there is a pressing need to develop methods for real-time detection and prevention of this fault. In this paper, a sensor to prevent the formation of knots during the metallic wire drawing process is presented and evaluated by means of experimental data. This fast, inexpensive, non-contact sensor is based on electromagnetic principles such as eddy current induction, magnetic reluctance variations and magnetic coupling. The proposed sensor without direct contact can detect knots in a target metallic wire by measuring the impedance variations of a calibrated sensing coil caused by either a knot or an unwound loop rising from a wire rod. The incorporation of this type of sensor into a wire-drawing machine can avoid the tightening of the knot, thereby reducing downtime and increasing the security and reliability of the process. Experiments were conducted using a scale model of the above proposed system. This allowed highlighting the sensor's potential by carrying out an automatic, real-time knot detection during steel wire drawing.
Automated eddy current inspection of Space Shuttle APU turbine wheel blades
Fisher, Jay L.; Rowland, Stephen N.; Stolte, Jeffrey S.; Salkowski, Charles
1991-01-01
An automated inspection system based on eddy current testing (ET) techniques has been developed to inspect turbine wheel blades on the APU used in NASA's Space Transportation system. The APU is a hydrazine-powered gas turbine with a 15-cm diameter Rene 41 turbine wheel, which has 123 first-stage blades and 123 second-stage blades. The flaw detection capability of the ET system is verified through comparison with fluorescent penetrant test results. Results of the comparison indicate that ET is capable of inspecting surfaces with very restrictive geometries. The ET capability requires development of probes with extremely small coils to allow inspection within 0.4 mm of the blade root and the leading and trailing edges of the blade and within a height restriction of less than 1 mm. The color 2D presentation of the ET data provided crack-growth pattern and length information similar to those found with visual techniques. It also provided visual clues to minimize geometry effects such as generated from blade edges, a neighoring blade, and changes in the blade thickness.
Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Shim, Hee-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
Nickel and its oxides are released from the surface of steam generator tubes into the primary water. Released nickel and cobalt is activated to Co-58 and Co-60 in the reactor core by a neutron flux, respectively. These activated corrosion products are the main source of high radiation fields and occupational radiation exposure. In addition, some of the corrosion products redeposit on the fuel cladding, hinder the heat transfer, increase the corrosion rate of the fuel cladding, and finally induce an axial offset anomaly. This phenomenon can decrease core shutdown margin, and thus lead to a down-rating of a plant. Recently, many researchers have reported that the surface states of Alloy 690 tubes affect the corrosion product formation and its release in simulated primary water environments. Meanwhile, the surface states of steam generator tubes affect the noise level of eddy current testing. Noise signals arising from the tubes degrade the probability of detection and sizing accuracy of the defects. The corrosion behavior was closely correlated to the tube noise measured using a rotating probe, while it was not related to the noise measured using a bobbin probe. It is suggested that the tube noise value measured using a rotating pancake coil probe can be a decisive measure to estimate the corrosion behavior of tubing.
Shin, Young Kil [Dept. of Electircal Engineeirng, Kunsan National University, Kunsan (Korea, Republic of)
2013-12-15
An encircling send-receive type pulsed eddy current (PEC) probe is designed for use in aluminum tube inspection. When bare receive coils located away from the exciter were used, the peak time of the signal did not change although the distance from the exciter increased. This is because the magnetic flux from the exciter coil directly affects the receive coil signal. Therefore, in this work, both the exciter and the sensor coils were shielded in order to reduce the influence of direct flux from the exciter coil. Numerical simulation with the designed shielded encircling PEC probe showed the corresponding increase of the peak time as the sensor distance increased. Ferrite and carbon steel shields were compared and results of the ferrite shielding showed a slightly stronger peak value and a quicker peak time than those of the carbon steel shielding. Simulation results showed that the peak value increased as the defect size (such as depth and length) increased regardless of the sensor location. To decide a proper sensor location, the sensitivity of the peak value to defect size variation was investigated and found that the normalized peak value was more sensitive to defect size variation when the sensor was located closer to the exciter.
Study on signal processing in Eddy current testing for defects in spline gear
Lee, Jae Ho; Park, Tae Sug; Park, Ik Keun [Seoul National University of Science and Technology, Seou (Korea, Republic of)
2016-06-15
Eddy current testing (ECT) is commonly applied for the inspection of automated production lines of metallic products, because it has a high inspection speed and a reasonable price. When ECT is applied for the inspection of a metallic object having an uneven target surface, such as the spline gear of a spline shaft, it is difficult to distinguish between the original signal obtained from the sensor and the signal generated by a defect because of the relatively large surface signals having similar frequency distributions. To facilitate the detection of defect signals from the spline gear, implementation of high-order filters is essential, so that the fault signals can be distinguished from the surrounding noise signals, and simultaneously, the pass-band of the filter can be adjusted according to the status of each production line and the object to be inspected. We will examine the infinite impulse filters (IIR filters) available for implementing an advanced filter for ECT, and attempt to detect the flaw signals through optimization of system design parameters for detecting the signals at the system level.
Application of Hilbert-Huang transform for defect recognition in pulsed eddy current testing
Liu, Baoling; Huang, Pingjie; Hou, Dibo; Chen, Xiao; Zhang, Guangxin
2015-07-01
Defect recognition plays an important role in the structure integrity and health monitor of in-service equipment. However, it is difficult to recognise deep-layer defect or small-size defect in conductive structure during pulsed eddy current (PEC) testing. Aiming at the issue, this article proposes a method based on Hilbert-Huang transform which consists of two modules: data processing and defect recognition. In the data processing module, the PEC response signal is decomposed into a few of intrinsic mode functions (IMFs) using ensemble empirical mode decomposition method. The IMFs whose variance contribution rates are bigger than 1% are chosen to reconstruct signal in order to remove noise. In the defect recognition module, the features based on specific frequency components of marginal spectrum (MS) of the reconstructed signals are extracted to discriminate those defects in surface and subsurface. Furthermore, the normalisation MS energy ratio is proposed to quantify defects which cannot be distinguished using peak value in time domain. Experiments show that the proposed method can achieve better de-noising effect and defect evaluation, which contributes to the recognition of those complicated defects such as deep-layered and small-sized defect.
Investigation of pulsed eddy current probes for detection of defects in riveted structures
Yang, Binfeng; Zhang, Hui; Kang, Zhibin; Wang, Xiaofeng
2013-09-01
The fatigue crack is the threat to integrity and safety of fuselage lap-joints. Quantification of fatigue cracks by designing and utilisation of an optimised electromagnetic nondestructive evaluation probe can insure the flight safety of aircrafts. In this paper, pulsed eddy current (PEC) for detection and characterisation of fatigue cracks is investigated. The principle of PEC is analysed first, from which four different models of PEC probes are simulated in ANSYS. The signal features, namely zero-crossing time, zero-crossing frequency and peak value are extracted from the time and frequency domains in an effort to qualitatively compare the crack detectability of the four models. The sensitivities of the different probes to cracks are analysed quantitatively. The difference in detectability among the probes is investigated based on the working principle. Simulation results show that the probe consisting of two horizontal detecting coils along with a magnetic field shield focusing the flux has the highest detectability. The conclusions derived from the simulation study are also validated by experiments.
Design of encircling send-receive type pulsed eddy current probe
Shin, Young-Kil
2014-02-01
An encircling send-receive type pulsed eddy current (PEC) probe is designed for use in the tube inspection. When bare receive coils, which are located away from the exciter, are used, the peak time of the signal does not change although the distance from the exciter increases. This is because the magnetic fields from exciter coil arrive directly at the receive coil without passing through the tube. Therefore, in this work, both exciter and sensor coils are shielded to reduce the influence of direct fields from the exciter coil. Numerical simulation with the designed shielded encircling PEC probe shows the corresponding increase of peak time as the sensor distance increases. Ferrite and carbon steel shields are compared and found that the ferrite shielding results in slightly stronger peak value and quicker peak time than the carbon steel shielding. Sensitivity of peak value to defect depth variation is also investigated and found that the normalized peak value is more sensitive when the sensor is located closer to the exciter for aluminum tube. In the case of magnetic tube, however, all the characteristics are opposite to those obtained from nonmagnetic aluminum tube.
Approach for removing ghost-images in remote field eddy current testing of ferromagnetic pipes
Luo, Q. W.; Shi, Y. B.; Wang, Z. G.; Zhang, W.; Zhang, Y.
2016-10-01
In the non-destructive testing of ferromagnetic pipes based on remote field eddy currents, an array of sensing coils is often used to detect local defects. While testing, the image that is obtained by sensing coils exhibits a ghost-image, which originates from both the transmitter and sensing coils passing over the same defects in pipes. Ghost-images are caused by transmitters and lead to undesirable assessments of defects. In order to remove ghost-images, two pickup coils are coaxially set to each other in remote field. Due to the time delay between differential signals tested by the two pickup coils, a Wiener deconvolution filter is used to identify the artificial peaks that lead to ghost-images. Because the sensing coils and two pickup coils all receive the same signal from one transmitter, they all contain the same artificial peaks. By subtracting the artificial peak values obtained by the two pickup coils from the imaging data, the ghost-image caused by the transmitter is eliminated. Finally, a relatively highly accurate image of local defects is obtained by these sensing coils. With proposed method, there is no need to subtract the average value of the sensing coils, and it is sensitive to ringed defects.
Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors
Hui Zhao
2012-07-01
Full Text Available A novel three-point method using a grating eddy current absolute position sensor (GECS for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring.
Light, G.M.; Fisher, J.L.; Tennis, R.F.; Stolte, J.S.; Hendrix, G.J. [Southwest Research Inst., San Antonio, TX (United States)
1996-08-01
Over the last two years, concern has been generated about the capabilities of performing nondestructive evaluation (NDE) of the closure-head penetrations in nuclear-reactor pressure vessels. These penetrations are primarily for instrumentation and control rod drive mechanisms (CRDMs) and are usually thick-walled Inconel tubes, which are shrink-fitted into the steel closure head. The penetrations are then welded between the outside surface of the penetration and the inside surface of the closure head. Stress corrosion cracks initiating at the inner surface of the penetration have been reported at several plants. Through-wall cracks in the CRDM penetration or CRDM weld could lead to loss of coolant in the reactor vessel. The CRDM penetration presents a complex inspection geometry for conventional NDE techniques. A thermal sleeve, through which pass the mechanical linkages for operating the control rods, is inserted into the penetration in such a way that only a small annulus (nominally 3 mm) exists between the thermal sleeve and inside surface of the penetration. Ultrasonic (UT) and eddy current testing (ET) techniques that could be used to provide defect detection and sizing capability were investigated. This paper describes the ET and UT techniques, the probes developed, and the results obtained using these probes and techniques on CRDM penetration mock-ups.
A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces
Zhenguo Sun
2016-06-01
Full Text Available A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.
Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others
1994-12-31
A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.
Thermal eddy current testing of metallization quality of printed circuit boards (PCB)
Savushkin, D. G.; Polyahov, M. Y.; Chernov, L. A.
2000-05-01
Today the fissile thermal control methods are used often enough to evaluate the metallization quality of printed circuit boards. However, it is necessary to note that the existing difficulties while exciting a non-steady thermal wave. There was offered the thermal input, which allows us to supply heat through the upper edge of a metallizing tube and to register parameters of thermal disturbance from the opposite side. The thermal input represents a hollow metal cone where the thermal disturbance is suggested to be effectuated by eddy currents induced by a coil situated above the thermal input. The agitating current is a kind of radio pulse with a high frequency filling. The field frequency, thickness and the electromagnetic characteristics of the thermal input were selected so that the field couldn't propagate into space beneath the thermal input. It is possible to evaluate some parameters of the metallizing tube registering from the other side of the printed circuit board the thermal disturbance parameters (e.g. the arrival time of maximum and amplitude). The numerical calculations were made with a specially developed software with the purpose of obtaining the dependence of the arrival time of maximum and the thermal disturbance amplitude upon a printed circuit board metallization layer, the hole diameter, the board thickness, the metallization tube conductivity, the contact pad diameter. The heat exchange with the board material was not taken into account when making calculations because the thermal disturbance propagation time along the metallization tube is too short and this assumption does not make a considerable error.
Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells
Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David
2015-03-01
In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.
Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells
Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)
2015-03-31
In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.
Patsora, Iryna; Hillmann, Susanne; Heuer, Henning; Foos, Bryan C.; Calzada, Juan G.
2015-03-01
Coatings based on wet particles containing pastes are currently used in many industries, such as automotive, aircraft and/or wind-power plants, to protect carbon-fiber reinforced plastic against damages caused by electrical effects, such as a lightning strike. In order to understand and control the percolation behavior during the drying, a non-contact Eddy Current based Impedance Spectroscopy can be used. This technique can be applied in the wet state of the coating and it works non-destructively. Percolation behaviors of the wet conductive coatings are strongly affected by the type of particles used as a filling and the thickness of the coating. Experimental results of Eddy Current measurements on wet conductive coatings based on different conductive particles and deposited with different thicknesses are discussed. Based on High-Frequency Eddy Current measurements, a prognosis of the coating parameters after final curing during the wet state becomes conceivable. This, for example, offers a wide opportunity for process control and repairs.
Babbar, V. K.; Lepine, B.; Buck, J.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2015-03-01
Inspection of steam generator (SG) tubes by conventional eddy current may, in general, involve analysis of indications from volumetric wall loss, cracks, fouling and support-plate degradation; however, it may be difficult to size or quantify effects from support-to-tube gap and tube tilt, especially in the presence of support plates. Pulsed eddy current (PEC) technology is being developed to investigate such complex tube and flaw geometries. The present work employs finite element modeling to investigate the effectiveness of PEC in identifying and sizing the outer diameter wall-loss in SG tubes. The signals analyzed using a modified principal components analysis (PCA) method reveal the potential success of a PEC-PCA combination to produce scores that can be used to size the wall-loss in the presence of support plates. The modeling results are in good agreement with experimental observations.
Choi, Jang-Young; Jang, Seok-Myeong
2012-04-01
This paper reports on analytical magnetic torque calculations and experimental tests of a radial flux permanent magnet (RFPM)-type eddy current brake (ECB). Analytical solutions for permanent magnet-generated magnetic fields that consider the eddy current reaction are obtained by using a magnetic vector potential and a two dimensional (2D) polar coordinate system. On the basis of these solutions, the analytical expressions for a magnetic torque are also derived. All analytical results are validated extensively by non-linear finite element calculations. In particular, magnetic torque measurements are obtained in tests to confirm the analyses. Finally, practical issues related to the analytical study of RFPM-type ECBs are fully discussed.
Vashaee, S; Goora, F; Britton, M M; Newling, B; Balcom, B J
2015-01-01
Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) eddy currents induced by switched magnetic field gradients and (3) radio frequency (RF) induced eddy currents. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced eddy current artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced eddy currents in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect.
Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.
2017-10-01
Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.
1989-01-20
mflC FILE. OOR SA/TR-2/89 A003: FINAL REPORT COMPUTER ALGORITHMS AND ARCHITECTURES FOR THREE-DIMENSIONAL EDDY-CURRENT NONDESTRUCTIVE EVALUATION CD...J., Ullman, J., The Design and Analysis of Computer Algorithms , Addison-Wesley Publishing Company, 1974. [A2] Anderson, B., Moore, J., Optimal...actual data. DC- 17 I I I I [All Aho, A., Hopcroft, J., Ullman, J., The Design and Analysis of Computer Algorithms , Addison-Wesley Publishing Company
2016-02-10
10.1063/1.4940557 14. ABSTRACT (Maximum 200 words) A comprehensive approach is presented to perform model-based inversion of crack characteristics ...thickness crack types, and from both standard eddy current hardware and a prototype BHEC system with z -axis position encoding. Signal processing...algorithms were developed to process and extract features from the 2D data sets, and inversion algorithms using VIC-3D generated surrogate models were used
Reduced Mandated Inspection by Remote Field Eddy Current Inspection of Unpiggable Pipelines
Albert Teitsma; Julie Maupin
2006-09-29
The Remote Field Eddy Current (RFEC) technique is ideal for inspecting unpiggable pipelines because all of its components can be made much smaller than the diameter of the pipe to be inspected. For this reason, RFEC was chosen as a technology for unpiggable pipeline inspections by DOE-NETL with the support of OTD and PRCI, to be integrated with platforms selected by DOENETL. As part of the project, the RFEC laboratory facilities were upgraded and data collection was made nearly autonomous. The resulting improved data collection speeds allowed GTI to test more variables to improve the performance of the combined RFEC and platform technologies. Tests were conducted on 6-, 8-, and 12-inch seamless and seam-welded pipes. Testing on the 6-inch pipes included using seven exciter coils, each of different geometry with an initial focus on preparing the technology for use on an autonomous robotic platform with limited battery capacity. Reductions in power consumption proved successful. Tests with metal components similar to the Explorer II modules were performed to check for interference with the electromagnetic fields. The results of these tests indicated RFEC would be able to produce quality inspections while on the robot. Mechanical constraints imposed by the platform, power requirements, control and communication protocols, and potential busses and connectors were addressed. Much work went into sensor module design including the mechanics and electronic diagrams and schematics. GTI participated in two Technology Demonstrations for inspection technologies held at Battelle Laboratories. GTI showed excellent detection and sizing abilities for natural corrosion. Following the demonstration, module building commenced but was stopped when funding reductions did not permit continued development for the selected robotic platform. Conference calls were held between GTI and its sponsors to resolve the issue of how to proceed with reduced funding. The project was rescoped for 10
Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com [Built Environmental Research Laboratory, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia Bab-Ezzouar, Algiers 16111 (Algeria); Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com [Department of Mathematics, Faculty of Basic Education, PAAET, Al-Aardhia (Kuwait)
2014-12-10
In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.
Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan [Centre for Nondestructive Evaluation, Indian Institute of Technology Madras, Chennai 600036 (India)
2014-02-18
Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.
Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan
2014-02-01
Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.
Koyama, Kiyoshi; Hoshikawa, Hiroshi
Eddy current flaw testing that uses changes in the impedance of the test coil as the electromagnetic field interacts with the test material is a non-destructive testing method. It can be used to inspect test material at high speed without bringing the test coil into contact with the test material. Therefore, it is widely used for product inspection. In the inspection of heat exchanger tubing in power plants and chemical plants, eddy current flaw testing is performed by using an inner probe, because of the structural restrictions of such plants. However, high levels of wobble noise and support plate noise occur in the conventional method using a rotating pancake coil. The authors therefore propose new minimal-noise eddy current inner probes. Two new types of probes have been developed: one for detecting axial flaws, and the other for detecting circumference flaws. These probes can detect flaws with a low level of noise. The phase of the flaw signal by the new probes changes according to the flaw depth. As a result, the signal phase by the new probes can be used for evaluating the depth of surface flaws.
Topographic Effects on the Path and Evolution of Loop Current Eddies
2008-12-01
eddy initialization method by Carton and McWilliams [1989] and Herbette et al. [2003]. The vertical structure of the initial eddy is depicted in...We thank Alan Wallcraft (NRLSSC) for his contribution in the development of HYCOM and the use of ARSC HPC computers. We thank Steven Herbette (JRC...Oceanogr., 11, 755–770, doi:10.1175/1520-0485(1981)011 :ITOANO>2.0.CO;2. Carton, X., and J. C. M. McWilliams (1989), Barotropic and baroclinic
胡珀; 侯一筠
2010-01-01
Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background fl...
Ferreira, C. A.
1990-05-01
Present drive systems which rely on mechanical devices for torque transmission have some negative features: the driven component cannot be isolated from the drive motor, rotating seals have inherent leakage and friction problems, and mechanical failures often occur due to torque overloads. Magnetic couplings are especially well suited for use in isolated-drive systems. This is often the case in military and aerospace applications where pumps and compressors are vital parts of the thermal and fuel operating systems. The application of permanent-magnet couplings in isolated drives requires accurate calculation of the eddy-current losses induced on the hermetic vessel. This is because the losses along with the required output torque dictate the size and efficiency of the permanent-magnet coupling. The vessel isolates the drive member from the driven member of the turbocompressor. The paper will show the formulation of the computational method based on the Poynting-vector theorem and the concept of motional electric field intensity. The eddy-current losses are calculated using two- and three-dimensional magnetostatic finite-element (FE) analysis. A comparison of the results obtained by two- and three-dimensional FE analysis is made. The results of the analysis will be compared to test data for verification. The test-facility setup and procedure will also be described. This state-of-the-art technique for computation of eddy-current losses has several advantages over conventional analysis methods: the nonlinearities of the magnetic circuit are taken into account, magnetic field fringing and end-leakage effects are not neglected, and the method does not rely on the use of empirical factors. The significant benefits of this approach are that trial-and-error experimental design approaches are eliminated and test data provide validation of analytical results.
Lopez, Luiz Antonio Negro Martin [Faculdade de Engenharia Industrial (FEI), Sao Paulo, SP (Brazil). Dept. de Energetica]. E-mail: luizlope@cci.fei.br; Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. Engenharia de Reatores]. E-mail: dksting@net.ipen.br
2000-07-01
This paper presents a worldwide research on the technical and economical impacts due to failure in tube bundles of nuclear power plant steam generators. An Eddy current non destructive test using Foucault currents for the inspection and failure detection on the tubes, and also the main type of defects. The paper also presents the signals generated by a Zetec MIZ-40 test equipment. This paper also presents a brief description of an automatic system for data analysis which is under development by using a fuzzy logic and artificial intelligence.
A Problem with Current Conceptions of Expert Problem Solving
Kuo, Eric; Gupta, Ayush; Elby, Andrew
2011-01-01
Current conceptions of expert problem solving depict physical/conceptual reasoning and formal mathematical reasoning as separate steps: a good problem solver first translates a physical understanding into mathematics, then performs mathematical/symbolic manipulations, then interprets the mathematical solution physically. However, other research suggests that blending conceptual and symbolic reasoning during symbolic manipulations can reflect expertise. We explore the hypothesis that blending conceptual and symbolic reasoning (i) indicates problem-solving expertise more than adherence to "expert" problem-solving steps and (ii) is something some undergraduates do spontaneously, suggesting it's a feasible instructional target. Interviewed students were asked to (1) explain a particular equation and (2) solve a problem using that equation. In-depth analysis of two students, Alex and Pat, revealed a pattern of behavior. All 11 interviews were coded to investigate the generalizability of this pattern. Alex describe...
Steel Pulsed Eddy Current Testing Method%钢板脉冲涡流检测方法
杨理践; 裴磊; 杨继华
2011-01-01
In order to effectively increase the depth of penetration of pulsed eddy current signals to detect cracks in steel plate,this paper presented the method of increasing the excitation current. It used low voltage high current power supply and power MOSFET chopper means to produce a large current pulse. It designed the pulsed eddy current probe which composed of the rectangular coils and two Hall sensors. And the amplifying and filtering circuit was made. It adopted the data acquisition card to acquire signals. It used LabVIEW platform, with peak scanning method, realized pulsed eddy current signals differential detection, to effectively identify the sub-surface cracks in thick steel plate.%为了有效增加脉冲涡流信号的渗透深度以检测较厚钢板裂纹缺陷,提出了增大激励电流的方法.用低压大电流电源和功率MOSFET斩波的方式产生大电流脉冲；设计了由矩形激励线圈和2片霍尔传感器构成的脉冲涡流检测探头并制作放大滤波电路；采用数据采集卡采集信号,以LabVIEW为平台,采用峰值扫描方法,实现脉冲涡流信号的差分检测,达到有效识别较厚钢板亚表面裂纹缺陷.
Eddy Current Sensor Excitation Signal Source Design%电涡流传感器激励信号源设计
孙云
2015-01-01
In eddy current testing system, the eddy current sensor needs to be excited by a sinusoidal signal. The excitation source is one of the key parts in the detection system. The article describes the working principle of the eddy current sensor signal source circuit, which can provide a stable amplitude and frequency of the sinusoidal signal for the eddy current sensor. The experiments re-sult show that the excitation signal source circuit meets the needs of the eddy current sensor. It can make the eddy current sensor operate smoothly.%在电涡流检测系统中，电涡流传感器需正弦信号加以激励。激励信号源是检测系统的关键部分之一。介绍了电涡流传感器信号激励源电路的工作原理，可以给电涡流传感器的并联谐振回路提供稳频稳幅的正弦信号。实验表明，该激励信号源电路能够满足电涡流传感器的需求，使涡流传感器能够稳定地工作。
In-situ calibration of pulsed eddy current detection of cracks at fasteners in CP-140 aircraft
Underhill, Ross; Stott, Colette; Krause, Thomas W.
2016-02-01
The use of the Smallest Half Volume (SHV) robust statistics method and the Mahalanobis distance to blindly distinguish fasteners with cracks from fasteners without is examined. Pulsed eddy current data obtained from CP140 Aurora wing structures is used to test the approach. It is shown that the method can achieve levels of detection very close to those obtained when the same measurement technique is applied with full knowledge of which fasteners have no cracks. The method is applicable to a broad range of similar situations when an objective hit/miss criterion is used.
Wang, M.; O'Rorke, R.; Waite, A. M.; Beckley, L. E.; Thompson, P.; Jeffs, A. G.
2014-03-01
The recent dramatic decline in settlement in the population of the spiny lobster, Panulirus cygnus, may be due to changes in the oceanographic processes that operate offshore of Western Australia. It has been suggested that this decline could be related to poor nutritional condition of the post-larvae, especially lipid which is accumulated in large quantities during the preceding extensive pelagic larval stage. The current study focused on investigations into the lipid content and fatty acid (FA) profiles of lobster phyllosoma larvae from three mid to late stages of larval development (stages VI, VII, VIII) sampled from two cyclonic and two anticyclonic eddies of the Leeuwin Current off Western Australia. The results showed significant accumulation of lipid and energy storage FAs with larval development regardless of location of capture, however, larvae from cyclonic eddies had more lipid and FAs associated with energy storage than larvae from anticyclonic eddies. FA food chain markers from the larvae indicated significant differences in the food webs operating in the two types of eddy, with a higher level of FA markers for production from flagellates and a lower level from copepod grazing in cyclonic versus anticyclonic eddies. The results indicate that the microbial food web operating in cyclonic eddies provides better feeding conditions for lobster larvae despite anticyclonic eddies being generally more productive and containing greater abundances of zooplankton as potential prey for lobster larvae. Gelatinous zooplankton, such as siphonophores, may play an important role in cyclonic eddies by accumulating dispersed microbial nutrients and making them available as larger prey for phyllosoma. The markedly superior nutritional condition of lobster larvae feeding in the microbial food web found in cyclonic eddies, could greatly influence their subsequent settlement and recruitment to the coastal fishery.
DENG Jiang-ming; CHEN Te-fang; CHEN Chun-yang
2015-01-01
An adaptive current compensation control for a single-sided linear induction motor (SLIM) with nonlinear disturbance observer was developed. First, to maintaint-axis secondary component flux constant with consideration of the specially dynamic eddy-effect (DEE) of the SLIM, a instantaneously tracing compensation ofm-axis current component was analyzed. Second, adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer (NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.
Dietze, Heiner; Löptien, Ulrike
2016-08-01
Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth) are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current-wind effects inhibits the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however (e.g. off the southern coast of Sweden and Finland) the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current-wind effects drive substantial local upwelling of cold and nutrient-replete waters.
La, R
1997-12-31
This work deals with the eddy current non-destructive test ing. Its long-term goal is to design an `inverse model` for evaluating the geometry an d the dimensions of steam generator tube flaws from eddy current signals. The approach we adopted requires the preliminary knowledge of a `forward model` that estimates the eddy current signal knowing the geometry and the dimensions of the flaws. A quasi-exhaustive study of the existing forward models showed their inadequacy to solve the inverse problem. Hence, we proposed to build a general forward model, appropriate to the inversion. Using a parametric approach, this model is phenomenological, i.e. it is based on observations made from results of a finite element code. For each position of the coil, the proposed forward model fist discretized the eddy current distribution into `tubes of current`. A parametric description of the shape of these tubes is given according the system constituted of the coil and the tubes of current as a `multi-transformer`, their current signal, can then be deduced. The model was validated in the case of an axisymmetric configuration. Comparisons with both analytical and numerical models showed very good agreements. Then, the proposed model was applied to a three-dimensional configuration. Comparisons with experimental results are sufficiently conclusive to validate the approach to the construction of the phenomenological model. However, before envisaging the inverse problem, the computation time, still too long, ought to be reduced and the parametric description needs to be generalized to other three-dimensional configurations. (author). 92 refs.
Mukherjee, Saptarshi; Rosell, Anders; Udpa, Lalita; Udpa, Satish; Tamburrino, Antonello
2017-02-01
The modeling of U-Bend segment in steam generator tubes for predicting eddy current probe signals from cracks, wear and pitting in this region poses challenges and is non-trivial. Meshing the geometry in the cartesian coordinate system might require a large number of elements to model the U-bend region. Also, since the lift-off distance between the probe and tube wall is usually very small, a very fine mesh is required near the probe region to accurately describe the eddy current field. This paper presents a U-bend model using differential geometry principles that exploit the result that Maxwell's equations are covariant with respect to changes of coordinates and independent of metrics. The equations remain unaltered in their form, regardless of the choice of the coordinates system, provided the field quantities are represented in the proper covariant and contravariant form. The complex shapes are mapped into simple straight sections, while small lift-off is mapped to larger values, thus reducing the intrinsic dimension of the mesh and stiffness matrix. In this contribution, the numerical implementation of the above approach will be discussed with regard to field and current distributions within the U-bend tube wall. For the sake of simplicity, a two dimensional test case will be considered. The approach is evaluated in terms of efficiency and accuracy by comparing the results with that obtained using a conventional FE model in cartesian coordinates.
Hoelzl, M; Merkel, P; Atanasiu, C; Lackner, K; Nardon, E; Aleynikova, K; Liu, F; Strumberger, E; McAdams, R; Chapman, I; Fil, A
2014-01-01
The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realist...
Direct Drive and Eddy Current Septa Magnet Designs for CERN’s PSB Extraction at 2 GeV
Szoke, Zsolt; Balhan, Bruno; Baud, Cedric; Borburgh, Jan; Hourican, Michael; Masson, Thierry; Prost, Antoine
2015-01-01
In the framework of the LIU project, new septa magnets have been designed between CERN’s PS Booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 GeV to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS, the eddy current PS injection septum together with a bumper at injection have been investigated using finite element software. For the recombination magnets an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modelling of the devices, the comparison of the ...
Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)
2015-10-15
An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.
Quan Zhou
2015-01-01
Full Text Available Eddy current brake (ECB is an attractive contactless brake whereas it suffers from braking torque attenuation when the rotating speed increases. To stabilize the ECB’s torque generation property, this paper introduces the concept of anti-magneto-motive force to develop the ECB model on the fundamental of magnetic circles. In the developed model, the eddy current demagnetization and the influence of temperature which make the braking torque attenuation are clearly presented. Using the developed model of ECB, the external and internal characteristics of the ECB are simulated through programming by MATLAB. To find the sensibility of the influences on ECB’s torque generation stability, the stability indexes are defined and followed by a sensibility analysis on the internal parameters of an ECB. Finally, this paper indicates that (i the stability of ECB’s torque generating property could be enhanced by obtaining the optimal combination of “demagnetization speed point and the nominal maximum braking torque.” (ii The most remarkable influencing factor on the shifting the demagnetization speed point of ECB was the thickness of the air-gap. (iii The radius of pole shoe’s cross section area and the distance from the pole shoe center to the rotation center are both the most significant influences on the nominal maximum braking torque.
Tong Wen
2012-08-01
Full Text Available The Eddy Current Displacement Sensor (ECDS is widely used in the Magnetic Suspension Flywheel (MSFW to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.
Schreiber, Jürgen; Cikalova, Ulana; Hillmann, Susanne; Meyendorf, Norbert; Hoffmann, Jochen
2013-01-01
Successful determination of residual fatigue life requires a comprehensive understanding of the fatigue related material deformation mechanism. Neither macroscopic continuum mechanics nor micromechanic observations provide sufficient data to explain subsequent deformation structures occurring during the fatigue life of a metallic structure. Instead mesomechanic deformation on different scaling levels can be studied by applying fractal analysis of various means of nondestructive inspection measurements. The resulting fractal dimension data can be correlated to the actual material damage states, providing an estimation of the remaining residual fatigue life before macroscopic fracture develops. Recent efforts were aimed to apply the fractal concept to aerospace relevant materials AA7075-T6 and Ti-6Al-4V. Proven and newly developed fractal analysis methods were applied to eddy current (EC) measurements of fatigued specimens, with the potential to transition this approach to an aircraft for an in-situ nondestructive inspection. The occurrence of mesomechanic deformation at the material surface of both AA7075-T6 and Ti-6Al-4V specimens could be established via topography images using confocal microscopy (CM). Furthermore, a pulsed eddy current (PEC) approach was developed, combined with a sophisticated new fractal analysis algorithm based on short pulse excitation and evaluation of EC relaxation behavior. This paper presents concept, experimental realization, fractal analysis procedures, and results of this effort.
submitter Direct Drive and Eddy Current Septa Magnet Designs for CERN's PSB Extraction at 2 GeV
Szoke, Z; Balhan, B; Baud, C; Borburgh, J; Hourican, M; Masson, T; Prost, A
2016-01-01
In the framework of the LIU project, new septa magnets have been designed between CERN's PS booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS and the eddy current PS injection septum together with a bumper at injection have been investigated using finite-element software. For the recombination magnets, an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements, a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper, and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modeling of the devices, the comparison of the p...
Waidele, H.; Knoch, P. [MPA, Univ. Stuttgart (Germany); Gersinska, R. [BfS Salzgitter (Germany); Brenner, W.; Seidenkranz, T. [TUeV Sued (Germany); Csapo, G.; Just, T. [TUeV Nord (Germany); Weiss, R. [IzfP Saarbruecken (Germany); Rathgeb, W. [IntelligeNDT, Erlangen (Germany)
2004-07-01
The validity of ultrasonic and eddy current testing of austenitic platings of reactor pressure vessels was investigated in the context of a project funded by the Federal Radiation Protection Office (Bundesamt fuer Strahlenschutz). In the first phase, test specimens with natural defects were fabricated at MPA Stuttgart; in the second phase, plating defects were introduced in a MPA large-size vessel. Measurements showed that most plating defects will be detected by standard ultrasonic testing. The highest accuracy was achieved by a combination of ultrasonic and eddy current testing. (orig.) [German] Im Rahmen eines vom Bundesamt fuer Strahlenschutz gefoerderten Vorhabens wurde die Aussagefaehigkeit von Ultraschall- und Wirbelstrompruefungen an austenitischen Plattierungen von Reaktordruckbehaeltern untersucht. In der ersten Phase des Vorhabens wurden an der MPA Stuttgart Testkoerper mit natuerlichen Fehlern im Plattierungsbereich gefertigt, in einer zweiten Phase wurden Plattierungsfehler in den MPA-Grossbehaelter eingebracht. Die Messungen haben gezeigt, dass die meisten Plattierungsfehler mit Ultraschall-Standardprueftechniken nachweisbar sind, wobei die groesste Aussagekraft bei einer Kombination von Ultraschall- und Wirbelstrompruefung gegeben ist. (orig.)
Lee, Dong Hoon; Jung, Hyun Kyu; Yang, Dong Ju; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2004-11-15
The fuel channels including the pressure tube(PT) and the calandria tube(CT) are important components of the pressurized heavy water reactor(PHWR). A sagging of fuel channel increases by heat and radiation exposure with the increasing operation time. The contact of fuel channel to the Horizontal flux Detector(HFD) guide tube is needed for the power plant safety. In order to solve this safety issue, the electromagnetic technique was applied to measure the status of the guide tube. The Horizontal flux Detector(HFD) guide tube and the Calandria tube(CT) in the Pressurized Heavy Water Reactor(PHWR) are cross-aligned horizontally. The remote field eddy current(RFEC) technology is applied for gap measurement between the HFD guide tube and the CT HFD guide tube can be detected by inserting the RFEC probe into pressure tube(PT) at the crossing point directly. The RFEC signals using the volume integral method(VIM) were simulated for obtaining the optimal inspection parameters. This paper shows that the simulated eddy current signals and the experimental results in variance with the CT/HFD gap.
Takashima, Hiroshi; Tomita, Mutuwo; Chen, Zhiqian; Satoh, Mitsuhiko; Doki, Shinji; Okuma, Shigeru
This paper proposes to paste non-magnetic materials on the rotor surface of a cylindrical brushless DC motor and to use the model including the extended e.m.f. for sensorless control. In the proposed method, the inductance changes depending on the rotor position because of eddy currents, which flow on the non-magnetic material at high frequency. The rotor position can be estimated at standstill and at low speeds. The simulation results show that the proposed method is very useful.
Hurlburt, Harley E.; Hogan, Patrick J.
2008-08-01
A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9-47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary
Aguiar, Pedro M; Jacquinot, Jacques-François; Sakellariou, Dimitris
2009-09-01
The application of nuclear magnetic resonance (NMR) to systems of limited quantity has stimulated the use of micro-coils (diameter Foucault (eddy) currents, which generate heat. We report the first data acquired with a 4mm MACS system and spinning up to 10kHz. The need to spin faster necessitates improved methods to control heating. We propose an approximate solution to calculate the power losses (heat) from the eddy currents for a solenoidal coil, in order to provide insight into the functional dependencies of Foucault currents. Experimental tests of the dependencies reveal conditions which result in reduced sample heating and negligible temperature distributions over the sample volume.
Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.
2014-11-01
The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.
林俊明
2012-01-01
对多频涡流与脉冲涡流两种不同的电磁无损检测技术的基本原理分别进行了介绍，进而从脉冲涡流的傅里叶展开式中分析了两者间的关系。指出脉冲涡流检测技术本质上等同于一种衰减型的多频涡流检测技术，而多频涡流可以认为是高频加权的脉冲涡流形式。对这两种涡流检测技术在实际生产中的应用进行了简单介绍。随着涡流检测理论的深入研究，电子技术与计算机技术的迅速发展，多频涡流和脉冲涡流检测技术将成为涡流检测的重要组成部分。%The basic principles of two different eddy current testing techniques, the multi-frequency eddy current and pulsed eddy current testing techniques, are introduced and the relationship between them is presented from the Fourier series of the pulsed input signal. It is indicated that the pulsed eddy current testing technique is equal an attenuation type of multi-frequency eddy current testing in nature. Whereas the multi-frequency eddy current testing could be regard as a high frequency weighted pulsed eddy current testing. Some industry applications of these two eddy current testing techniques are shown. With the developments of eddy current theories and the electronic and computer techniques, the multi-frequency eddy current and pulsed eddy current testing techniques will play more and more important roles in eddy current testing.
Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.
2015-12-01
We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (EDDI)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, EDDI leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests EDDI's robustness as a monitor and leading indicator of drought. To drive EDDI, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. EDDI is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive EDDI indicates drier than normal conditions (and so drought). We use the current historic California drought as a test-case in which to examine EDDI's performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. EDDI's performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to EDDI, we find that EDDI tracks most major
脉冲漏磁检测中的涡流效应%Eddy Current Effect in Pulsed Magnetic Flux Leakage Testing
费骏骉; 左宪章; 田贵云; 张云; 张韬
2012-01-01
In order to comprehend the characteristic of eddy current effect in pulsed magnetic flux leakage testing, this paper lays the foundation to further analyze pulsed magnetic flux leakage testing signal, builds simulating model of finite element in pulsed magnetic flux leakage testing, observes the distribution of transient magnetic field and induced eddy current in the test and analyzes and studies the features of characteristic quantity of induced eddy current and influential factors. The result shows that transient magnetic field and induced eddy current overall correspond with skin effect and affect each other in pulsed magnetic flux leakage testing. Induced eddy current has the feature of shallow penetrating depth and strong induction. Peak time of eddy current density has relative stronger resolution on depth direction. Electrical conductivity and magnetic conductivity affect the penetrating depth of induced eddy current and resolution of peak time of density on depth direction; pulsed stimulating ascendant time constant only affects the penetrating depth of induced eddy current, not relevant to resolution of peak time of density on depth direction.%为了解脉冲漏磁检测中涡流效应的特点，奠定进一步分析脉冲漏磁检测信号的基础，建立了脉冲漏磁检测的有限元仿真模型，观察了检测中瞬态磁场和感生涡流的分布，分析了感生涡流特征量的特点及影响因素。结果表明，脉冲漏磁检测中，瞬态磁场和感生涡流总体上符合集肤效应并相互影响，其中感生涡流具有渗透深度浅、感应强度大的特点，涡流密度峰值时间在深度方向上有较强的分辨率。电导率和磁导率影响感生涡流的渗透深度和密度峰值时间在深度方向上的分辨率；脉冲激励上升时间常数只影响感生涡流的渗透深度，而和密度峰值时间在深度方向上的分辨率无关。
Bai, Libing; Gao, Bin; Tian, Shulin; Cheng, Yuhua; Chen, Yifan; Tian, Gui Yun; Woo, W. L.
2013-10-01
Eddy Current Pulsed Thermography (ECPT), an emerging Non-Destructive Testing and Evaluation technique, has been applied for a wide range of materials. The lateral heat diffusion leads to decreasing of temperature contrast between defect and defect-free area. To enhance the flaw contrast, different statistical methods, such as Principal Component Analysis and Independent Component Analysis, have been proposed for thermography image sequences processing in recent years. However, there is lack of direct and detailed independent comparisons in both algorithm implementations. The aim of this article is to compare the two methods and to determine the optimized technique for flaw contrast enhancement in ECPT data. Verification experiments are conducted on artificial and thermal fatigue nature crack detection.
Joubert, P.-Y.; Le Bihan, Y.; Placko, D. [Ecole Normale Superieure de Cachan (France). Laboratoire d' Electricite Signaux et Robotique
2002-07-01
Steam generator (SG) tubing of pressurized water reactor in nuclear plants must be rapidly and accurately checked in order to detect defects in their early stages. In this paper, the authors present a multi-coil eddy current (EC) probe allowing both high speed inspection and circumferential localization of defects in the tube wall. A method of multi-coil EC signal processing, based on a continuous wavelet transform combined with a maximum likelihood diagnosis, is elaborated in order to enhance the detection performances and to provide automatic localization of defects. The inspection of SG tube samples shows good localization performances for defects as small as 10% deep, 15 mm long and 100 {mu}m wide outer diameter notches, of both circumferential and axial orientations. (author)
The problem of current toxic chemicals management.
Tickner, Joel; Geiser, Ken
2004-01-01
In this article, we explore the limitations of current chemicals management policies worldwide and the evolution of new European, International and U.S. policies to address the problem of toxic chemicals control. It is becoming increasingly apparent that current chemicals management policies in Europe and the United States are inadequate. There is a general lack of toxicity and exposure information on chemicals in commerce and the vast majority of chemicals were considered safe until proven guilty in legislation. Governments must then prove each chemical is dangerous through a slow and resource-intensive risk assessment process. For more than a decade, Nordic countries, such as Denmark and Sweden, have actively promoted integrated chemicals policies to address contamination of critical waterways. They have successfully used a variety of voluntary and mandatory policy tools, such as education, procurement, lists of chemicals of concern, eco-labeling, research and development on safer substitutes, and chemical phase-out requirements, to encourage companies using chemicals to reduce their reliance on harmful substances and to develop safer substitutes. While previously isolated to particular countries, innovative and exciting European-wide policies to promote sustainable chemicals management are now moving forward, including the recently published draft Registration, Evaluation and Authorization of CHemicals (REACH) policy of the European Union. A sweeping change in chemicals management policies in Europe is inevitable and it will ultimately affect manufacturers in the U.S. and globally. The European movement provides an opportunity to initiate a discussion on integrated chemicals policy in the U.S. where some innovative initiatives already are underway.
脉冲涡流信号检测与分析%Pulsed Eddy Current Signal Detection and Analysis
杨理践; 李春华; 裴磊
2013-01-01
为了对较厚钢板进行缺陷检测,采用对低压大功率的电源进行斩波的方式产生大电流脉冲,设计圆柱形探头,采用激励线圈缓慢放电的方式检测钢板表面缺陷；设计矩形探头,采用激励线圈瞬间放电的方式检测钢板亚表面；对脉冲涡流瞬态感应电压信号进行小波滤噪和幅值归一化处理.实验结果表明,小波滤噪可以提高检测精度,对信号幅值进行归一化处理可以更直接地反映不同深度缺陷产生的曲线间的相互关系,大电流激励的脉冲涡流信号幅值能反映较厚钢板表面和亚表面缺陷深度.%In order to detect the defects on thicker steel plate,a high—current pulse was needed,which was generated by chopping the low—voltage high power supply.Moreover,cylindrical probe was designed to detect surface defects of steel plate by slow discharging of exciting coil; rectangular probe was also designed to detect sub—surface defects of steel plate by instant discharging of exciting coil.Then the transient induced voltage signal of pulsed eddy current was processed by the wavelet filtering and amplitude normalization.Experimental results show that the wavelet filtering can improve detecting accuracy and the signals amplitude normalized can reflect the relationship of the defect curves at different depths defects more directly.It is concluded that amplitude of high pulsed eddy current signal excited by high—current can reflect the depths of defects on surface and sub—surface of thicker steel plate effectively.
Design of Pulsed Eddy Current Exciting Source Based on Virtual Instrument%基于虚拟仪器的脉冲涡流激励源设计
邱选兵; 魏计林; 崔小朝; 黄祥康; 刘路路
2013-01-01
Pulsed eddy current testing is a new research field of eddy current testing technology. A square waveform with adjusting duty is employed as exciting source. Combined with virtual instrument technology, the pulsed eddy current exciting source of direct digital synthesizer is designed based on USB interface. The experimental results indicate that the exciting source has the performance of the continuous adjustable frequency (0. 5 — 500 kHz) and duty (10% — 90%), high resolution (0. 011 6 Hz) , stability, friendly interface and so on. It is very suitable for the driving requirements of the pulsed eddy current probe, and has some application prospect.%脉冲涡流检测是电涡流检测技术的一个最新研究,激励源采用一定占空比的方波信号.结合虚拟仪器技术,设计了一种USB接口的直接数字合成的脉冲涡流激励源.实验结果表明该激励源有占空比(10％～90％),频率(0.5 k～500 kHz)连续可调,分辨率高(0.011 6 Hz),稳定可靠,界面友好等优点,能够满足脉冲涡流探头驱动要求,具有一定应用前景.
Asymmetric toroidal eddy currents (ATEC) to explain sideways forces at JET
Roccella, R.; Roccella, M.; Riccardo, V.; Chiocchio, S.; Contributors, JET
2016-10-01
During some JET vertical displacement events (VDEs) plasma current and position are found to be toroidally asymmetric. When asymmetries lock, the vessel has been observed to move horizontally, consequently strong horizontal forces are expected following plasma asymmetries, whether locked or rotating. The cause of horizontal forces is, as already identified in previous works, the asymmetric circulation of current in the structures. The physics mechanism responsible for these asymmetric currents is instead an open issue and it is the object of the present analysis. In particular it will be shown that the asymmetry is not due to a direct exchange of current between plasma and structure (as in the case of halo currents) but to asymmetric conductive paths which arise, in the structures, when the plasma column asymmetrically wets the wall. Simulations of this phenomenon using finite element (FE) models have been conducted to reproduce the JET observation during locked and rotating asymmetric VDEs. Estimated sideways force, asymmetry (I\\text{p}\\text{asym} ) and normalized asymmetry (A\\text{p}\\text{asym} ) of plasma current, vertical position at different toroidal locations during the disruption and halo current asymmetry have been compared with measurements done at JET during upward AVDEs. The substantial match between experiments and simulations confirms the soundness of the assumptions. Furthermore, the same physical model applied to downward VDEs shows that divertor support and coils, together with the geometry of the limiting surfaces, considerably lessen asymmetric loads as experienced at JET after installing those components.
电涡流耗能动力吸振器设计与试验研究%Eddy Current Vibration Absorber Design and Experiments
李斌; 牛文超; 徐兆懿
2016-01-01
针对飞机垂尾抖振抑制的需要，提出一种空间布局紧凑、基于非接触式电涡流耗能机理、阻尼可设计的动力吸振器设计方案。电涡流耗能机制的引入保证该动力吸振器具有良好的环境适应性、耐久性和可靠性。基于电磁场理论，建立了电涡流阻尼力的计算模型，获得电磁阻尼的设计规律，通过与试验结果对比，验证了电涡流阻尼模型的准确性。并以等效悬臂梁结构为对象，应用最优参数设计原理确定动力吸振器参数，设计制造了动力吸振器样机。试验结果表明，该电涡流动力吸振器具有良好的吸振性能，最大减幅比可达98％。%Aiming at the need of vertical tail buffet suppression, a design scheme of dynamic vibration absorber with compact layout and adjustable damping is proposed; this is based on the mechanism of eddy current energy dissipation. Eddy current energy dissipation can ensure that the dynamic vibration absorber has good environmental adaptability, durability and reliability. Based on the electromagnetic theory, the calculation model of eddy current damping force is established and the design rule of eddy damping force is concluded. Through the comparison be⁃tween the calculations and the experiments, the validation and accuracy of eddy current damping force model are verified. Taking an equivalent cantilever beam system as the object of vibration control, and on the basis of the the⁃ory of dynamic vibration absorber optimal design, we determined the optimal parameters of dynamic vibration ab⁃sorber and completed the design and manufacture of eddy current dynamic vibration absorber prototype. Experimen⁃tal results show that the maximum amplitude of cantilever beam can be decreased at most by 98%, and the pro⁃posed eddy current dynamic vibration absorber has obvious vibration-absorption effect.
Yen, P. P. W.; Sydeman, W. J.; Bograd, S. J.; Hyrenbach, K. D.
2006-02-01
We used a 17-year time series of shipboard observations to address the hypothesis that marine birds associate with persistent hydrographic features in the southern California Current System (CCS). Overall, approximately 27,000 km of ocean habitat were surveyed, averaging 1600 km per cruise. We identified mesoscale features (eddy centers and the core of the California Current), based on dynamic height anomalies, and considered habitat associations for seven migratory seabird species: black-footed albatross ( Phoebastria nigripes), Cook's petrel ( Pterodroma cookii), Leach's storm-petrel ( Oceanodroma leucorhoa), dark shearwaters (mainly sooty shearwater Puffinus griseus, with a few short-tailed shearwaters Puffinus tenuirostris), northern fulmar ( Fulmarus glacialis), red phalarope ( Phalaropus fulicaria), and red-necked phalarope ( Phalaropus lobatus). We explored associations (presence/absence and density relationships) of marine birds with mesoscale features (eddies, current jet) and metrics of primary productivity (chlorophyll a and nitrate concentrations). Mesoscale eddies were consistently identified in the study region, but were spatially and temporally variable. The resolved eddies were large-scale features associated with meanders of the equatorward-flowing California Current. Cook's petrel was found offshore with no specific habitat affinities. Black-footed albatross, red phalarope, and Leach's storm petrel were found in association with offshore eddies and/or the core of the California Current, but the functional relationship for these species varied, possibly reflecting differences in flight capabilities. The more coastal species, including the shearwaters, fulmar, and red-necked phalarope, were positively associated with proxies of primary productivity. Of the hydrographic habitats considered, the upwelling region of Point Conception appears to be an important "hotspot" of sustained primary production and marine bird concentrations. Point Conception and
Xiaojie Xu
2014-12-01
Full Text Available Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors’ disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted.
Butt, D.M., E-mail: Dennis.Butt@forces.gc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Underhill, P.R.; Krause, T.W., E-mail: Thomas.Krause@rmc.ca [Royal Military College of Canada, Dept. of Physics, Kingston, Ontario (Canada)
2016-09-15
Ageing aircraft are susceptible to fatigue cracks at bolt hole locations in multi-layer aluminum wing lap-joints due to cyclic loading conditions experienced during typical aircraft operation, Current inspection techniques require removal of fasteners to permit inspection of the second layer from within the bolt hole. Inspection from the top layer without fastener removal is desirable in order to minimize aircraft downtime while reducing the risk of collateral damage. The ability to detect second layer cracks without fastener removal has been demonstrated using a pulsed eddy current (PEC) technique. The technique utilizes a breakdown of the measured signal response into its principal components, each of which is multiplied by a representative factor known as a score. The reduced data set of scores, which represent the measured signal, are examined for outliers using cluster analysis methods in order to detect the presence of defects. However, the cluster analysis methodology is limited by the fact that a number of representative signals, obtained from fasteners where defects are not present, are required in order to perform classification of the data. Alternatively, blind outlier detection can be achieved without having to obtain representative defect-free signals, by using a modified smallest half-volume (MSHV) approach. Results obtained using this approach suggest that self-calibrating blind detection of cyclic fatigue cracks in second layer wing structures in the presence of ferrous fasteners is possible without prior knowledge of the sample under test and without the use of costly calibration standards. (author)
Currents, Eddies, and a "Fish Story" in the Southwestern Japan/East Sea
2007-07-30
AVAILABILITY STATEMENT Approved for public release, distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT As part of the Japan/East Sea (JES...a bottom-moored inistrument that mea- paper treats the long-eriod procese upon e tringth JES,, with portons of sures r~e time required fo n acoustic e...with the only a weak peak in the current spec- time variability displayed by these cur- longest periods. tra, and appears merely to be part of the rent
Krause, T. W.; Babbar, V. K.; Underhill, P. R. [Department of Physics, Royal Military College of Canada, Kingston, ON (Canada)
2014-02-18
Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.
Krause, T. W.; Babbar, V. K.; Underhill, P. R.
2014-02-01
Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.
Unsteady RANS and detached eddy simulation of the multiphase flow in a co-current spray drying☆
Jolius Gimbun; Noor Intan Shafinas Muhammad; Woon Phui Law
2015-01-01
A detached eddy simulation (DES) and a k-ε-based Reynolds-averaged Navier–Stokes (RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Al maras (SA) turbu-lence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the (highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction (with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-εmodels. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as il us-trated by the Q-criterion.
Li, Wei; Wang, Hongbo; Feng, Zhihua
2016-04-01
This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.
Sepponen Raimo E
2010-11-01
Full Text Available Abstract Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA. Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis.
Antibacterial resistance: Current problems and possible solutions
Sharma Rashmi
2005-03-01
Full Text Available Antimicrobial resistance is a natural biological phenomenon of response of microbes to the selective pressure of an antimicrobial drug. Resistance may be inherent, which explains the phenomenon of opportunistic infection or acquired. Concern about the resistance increased in the late 1990′s and since then, many governmental and agency reports have been published regarding the agricultural use of antibacterials, advising less use of antibacterials, appropriate choice of antibacterials and regimens, prevention of cross-infection and development of new antibacterials. The emergence of multidrug resistant strains of Gram-negative bacteria (Pseudomonas, Klebsiella, Enterobacter, Acinetobacter, Salmonella species and Gram-positve organisms (Staphylococcus, Enterococcus, Streptococcus species is the more worrisome in the present therapeutic scenario. Multidrug - resistant tuberculosis is another serious public health problems. Resistance to some agents can be overcome by modifying the dosage regimens (e.g., using high-dose therapy or inhibiting the resistance mechanism (e.g., beta-lactamase inhibitors, whereas other mechanisms of resistance can only be overcome by using an agent from a different class. It is urgently required to ban the sale of antibiotics without prescription, to use antibiotics more judiciously in hospitals by intensive teaching of the principles of the use of antibiotics and to establish better control measures for nosocomial infections. Thus, it is highly recommended that practicing physicians should become aware of the magnitude of existing problem of antibacterial resistance and help in fighting this deadly threat by rational prescribing.
GEM: a dynamic tracking model for mesoscale eddies in the ocean
Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu
2016-12-01
The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
The Recent Developments of Pulsed Eddy Current Nondestructive Testing Technology%脉冲涡流无损检测技术的研究进展
周德强; 田贵云; 王海涛; 尤丽华
2011-01-01
Pulsed eddy current testing（PECT） is a new eddy current testing technology. As the wide spectrum of the excited current or voltage, it is widely used in aerospace, pressure vessels, railways, pipe and so on. The recently research progress including the defect of metal, stress of components, and thermal imaging of pulsed eddy current were discussed. The future trend of development was analyzed.%脉冲涡流检测技术是涡流检测技术的一个新兴分支，其宽频谱的激励方式使得脉冲涡流检测技术在航空航天、压力容器、铁路和管道等领域广泛应用。综述了脉冲涡流检测技术在金属缺陷、应力和热成像等方面的国内外研究进展，分析了脉冲涡流检测技术的发展方向。
柔性涡流阵列传感器的磁场计算分析%Magnetic field computational analysis of flexible eddy current array sensor
曹青松; 毕彬杰; 周继惠
2016-01-01
A flexible eddy current array sensor consists of six array units( spiral coil)is designed,establish electromagnetic field model for flexible eddy current array units based on electromagnetic field theory,the magnetic field strength formula in radial and axial of flexible array unit coil are derived,simulation analysis on relationship between array unit coil magnetic field strength and current,coil gap,inner and outer diameters and other parameters,which have a certain reference value for development of flexible eddy current array sensor.%设计了一种由6个阵列单元（螺旋线圈）所组成的柔性涡流阵列传感器，基于电磁场理论建立柔性涡流阵列单元的电磁场模型，推导出柔性阵列单元线圈径向和轴向的磁场强度计算公式，仿真分析阵列单元线圈磁场强度与电流、线圈间隙、内外径等参数的关系，对柔性涡流阵列传感器的发展具有一定参考价值。
Vacher, F
2007-06-15
This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications.
Barbara Szymanik
2016-02-01
Full Text Available The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.
Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah
2016-02-16
The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.
Park, Min-Gyu; Choi, Jang-Young; Shin, Hyeon-Jae; Jang, Seok-Myeong
2014-05-01
This paper presents the torque analysis and measurements of a permanent magnet (PM) type eddy current brake (ECB) with a Halbach magnet array based on analytical magnetic field calculations. On the basis of a magnetic vector potential and using a two-dimensional (2D) polar coordinate system, the analytical solution for magnetic flux density, including the eddy current reaction is evaluated. Based on these solutions, the magnetic torque is also determined analytically. A 2D finite element analysis is employed to validate the method used. Practical issues in the analytical study of the PM type ECBs, such as the maximum braking torque, the required rotor speed, and the segment-dependent, are fully discussed. Finally, the braking torque as a function of the rotor speed is measured to verify the results of the analytical study.
Neurocysticercosis: Diagnostic problems & current therapeutic strategies
Rajshekhar, Vedantam
2016-01-01
Neurocysticercosis (NCC) is the most common single cause of seizures/epilepsy in India and several other endemic countries throughout the world. It is also the most common parasitic disease of the brain caused by the cestode Taenia solium or pork tapeworm. The diagnosis of NCC and the tapeworm carrier (taeniasis) can be relatively inaccessible and expensive for most of the patients. In spite of the introduction of several new immunological tests, neuroimaging remains the main diagnostic test for NCC. The treatment of NCC is also mired in controversy although, there is emerging evidence that albendazole (a cysticidal drug) may be beneficial for patients by reducing the number of seizures and hastening the resolution of live cysts. Currently, there are several diagnostic and management issues which remain unresolved. This review will highlight some of these issues. PMID:28139530
Neurocysticercosis: Diagnostic problems & current therapeutic strategies
Vedantam Rajshekhar
2016-01-01
Full Text Available Neurocysticercosis (NCC is the most common single cause of seizures/epilepsy in India and several other endemic countries throughout the world. It is also the most common parasitic disease of the brain caused by the cestode Taenia solium or pork tapeworm. The diagnosis of NCC and the tapeworm carrier (taeniasis can be relatively inaccessible and expensive for most of the patients. In spite of the introduction of several new immunological tests, neuroimaging remains the main diagnostic test for NCC. The treatment of NCC is also mired in controversy although, there is emerging evidence that albendazole (a cysticidal drug may be beneficial for patients by reducing the number of seizures and hastening the resolution of live cysts. Currently, there are several diagnostic and management issues which remain unresolved. This review will highlight some of these issues.
Ezer, Tal; Thattai, Deeptha V.; Kjerfve, Björn; Heyman, William D.
2005-12-01
A high resolution (3-8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.
Sartre, B.; Miller, D.; Placko, D.
1995-06-02
In order to control the wear (cracking or thinning) of vapor generator tubes, especially in PWR reactors, due to the friction between the tubes and dampers, an eddy current control system is proposed where the transducer is run through the tubes, and measures the tube wall thickness or tube-block clearance through impedance measurements, taking into account the variation of the sensor-to-tube distance. 8 fig.
脉冲涡流圆柱型探头参数的优化设计%Optimization Design of Pulsed Eddy Current Circular Probe
周德强; 张斌强; 王海涛; 尤丽华; 盛卫峰
2012-01-01
The paper introduced the theory of pulsed eddy current(PEC) testing. Based on Finite Element Method software, the distribution of magnetism and eddy current was presented for PEC circular probe. The results showed that the eddy current of flat excited coils could be effective to penetrate inside the metal sample, and it could improve the sensitivity of the testing system of PEC testing. Through the analysis of the eddy current density and the penetrating depth for the different excited frequency, the best excited frequency could be concluded. It will provide the guide of PEC probe design.%介绍了脉冲涡流检测的工作原理。通过有限元对圆柱型探头不同参数的线圈周围磁场和被检试件中感生涡流的分布进行了仿真，得出了扁平型的激励线圈产生的磁通量能够有效地渗透到被检试件的内部，有利于系统检测灵敏度的提高。通过不同激励频率在试件中的涡流密度、渗透深度的分析，能够根据脉冲涡流检测对象，得到探头中所用的最佳工作频率，为脉冲涡流探头的实际检测奠定基础。
Early Fatigue Damage Evaluation of 321 Stainless Steel by Eddy Current Method%321不锈钢疲劳早期损伤的涡流评估
刘昆鹏; 赵子华; 张峥
2012-01-01
The early fatigue damage of AISI 321 stainless steel was conducted evaluation by eddy current array. In the fatigue test, the change of eddy current amplitude could be divided into three stages: rapid growth, stability and accelerated growth. The relationship between the eddy current amplitude and the logarithmic fatigue life was nearly linear at the first stage. The area of fatigue damage was not changed in the fatigue crack initiation life. Microstructure with different fatigue cycles indicated that the dislocation proliferation and interaction were the main reasons for the increasing of eddy current amplitude at the beginning of fatigue.%采用涡流阵列系统对321不锈钢疲劳早期损伤进行了检测与评估.整个疲劳过程中涡流幅值的变化分为快速增长、稳定和加速增长三个阶段.第一阶段的涡流幅值与循环周次对数之间有近似线性关系.在裂纹萌生寿命内,疲劳损伤区的大小与循环周次无关.对不同循环周次下321不锈钢试样的微结构分析表明疲劳早期涡流幅值变化的主要来源是材料内部位错的增殖和运动,而不是马氏体相转变.
张建平; 戴咏夏
2009-01-01
针对处于多脉冲磁场下感应加热系统装置中的刚性导电薄板,基于麦克斯韦电磁场方程组及导热微分方程,建立了涡电流场和温度场的理论模型.对涡电流初边值问题及由涡电流热效应引起的温度场定解问题的空间部分采用有限元法,时间部分采用Crank-Nicolson法,给出了计算程序的求解步骤,并进行了定量模拟.仿真结果表明,脉冲次数使得构件的涡电流和温度逐步增加,随后其大小趋于稳定的值,而后来的周期性脉冲只不过是保持这个恒定值不衰减.该结论为电磁感应加热设备的革新改造提供了有效的技术参考.%Based on Maxwell's equations and the thermal conduction differential equation, a theoretical model for rigid conductive thin plate of induction-heating system under multi-pulse magnetic field was established with eddy current field and temperature field included. The numerical steps of algorithm routine along with quantitative simulation were given by adopting the finite element method for the spatial part in the eddy current initial boundary-value problem and the determining-solution problem of temperature field arisen from eddy current thermal effect, and the Crank-Nicolson methods for the time part. The simulation results indicate that the eddy current and the temperature increase with the pulse times, and tend to stable values,thereafter seasonal impulses just only to keep this constant value not diminishing. It provides effective technical reference for innovation of the electromagnetic induction-heating equipment.
脉冲涡流阵列成像检测%Study of Pulsed Eddy Current Array Imaging Detection
赖圣; 付跃文
2011-01-01
It is difficult to detect flaw buried in the multi-layer riveted structure of aircraft. This paper designed a pulsed eddy current testing system, including the linear array probes and imaging system. The riveted aluminum alloy sample fabricated with both inner crack and corrosion was tested by the proposed system, and an imaging scan was achieved by the way of time slice applied in getting eigenvalue matrix from characteristic signal. The results of experimentation showed that the use of time slice analysis method can be efficiently used to detect subsurface and inner defects in multi layer structure.%飞机多层铆接结构中内层埋藏缺陷的检测是无损检测领域的一个难点。设计了一套脉冲涡流阵列检测系统，包括线性霍尔阵列探头和软件成像系统。应用该系统对铝合金深层裂缝及铆接结构内层裂纹腐蚀缺陷进行检测，通过时间切片分析法获取缺陷信号特征值，组成特征幅值的矩阵，实现成像扫描。试验结果表明，采用时间切片分析法能够有效地对试件近表面及内层的缺陷进行成像检测。
Research progress of directional pulsed eddy current strain testing%方向性脉冲涡流应力检测研究进展
周德强; 田贵云; 尤丽华; 王海涛
2011-01-01
Directional pulsed eddy current testing(PECT) technology is a new type of pulsed eddy current testing technology. Because of the directional characteristics. It has previous performance in strain testing in anisotropic metal components. The recent research progress including the theory, feature extraction, and strain test of anisotropic metal components of directional pulsed eddy current nondestructive test are reviewed. The future trend of development is analyzed.%方向性脉冲涡流检测技术是一种新型的脉冲涡流检测技术,由于具有方向特性,在脉冲涡流各向异性金属部件应力检测中具有明显的优越性.综述了方向性脉冲涡流无损检测技术在理论、信号特征提取、应力检测等方面的国内外研究进展,分析了方向性脉冲涡流无损检测技术的发展方向.
Wincheski, Russell A.
2008-01-01
As part of the health assessment of flight spare 40in diameter Kevlar composite overwrapped pressure vessels (COPVs) SN002 and SN027 an eddy current characterization of the composite and liner thickness change during pressurization was requested under WSTF-TP-1085-07.A, "Space Shuttle Orbiter Main Propulsion System P/N MC282-0082-0101 S/N 002 and Orbital Maneuvering System P/N MC282-0082-001 S/N 027 COPV Health Assessment." The through the thickness strains have been determined to be an important parameter in the analysis of the reliability and likelihood of stress rupture failure. Eddy current techniques provide a means to measure these thicknesses changes based upon the change in impedance of an eddy current sensor mounted on the exterior of the vessel. Careful probe and technique design have resulted in the capability to independently measure the liner and overwrap thickness changes to better than +/- 0.0005 in. at each sensor location. Descriptions of the inspection system and test results are discussed.
刘丹; 张树波; 刘庆河
2013-01-01
The eddy current distribution and eddy current loss of turbine generator retaining ring are analysed by analytical method in this paper. The common formula to calculate the eddy current loss is obtained.% 本文用解析法分析了汽轮发电机转子护环涡流分布及其涡流损耗，得出了计算汽轮发电机转子护环涡流损耗的一般公式。
Current problems in Russian-Latvian relations
Mezhevich Nikolay
2013-09-01
Full Text Available Current relations between Russia and Latvia are still influenced by a series of mutual claims that appeared after the demise of the USSR. Latvia — as well as Estonia and Lithuania — is both an EU and NATO member state. However, unlike the above mentioned countries, its relations with Russia are developing at a more pragmatic level. Numerous political differences often result in economic losses both for Latvia and Russia. Despite the fact that Latvia has been an independent state for more than 20 years, there are still some unresolved issues in its relations with Russia. Today, relations between the two countries are often viewed through the prism of EU — Russia relations. Nonetheless, they often do not fit this context. Settling differences between Latvia and Russia will contribute to trade relations, which are increasingly important for both parties. In order to prevent and localise emerging conflicts, diplomats, politicians, and experts should interpret Russian-Latvian relations in view of the national features without referring to theoretical models based on the mythological “unity” of the three Baltic States.
Lunin, V. P.; Zhdanov, A. G.; Chegodaev, V. V.; Stolyarov, A. A.
2015-05-01
The problem of defining the criterion for blanking off heat-transfer tubes in the steam generators at nuclear power plants on the basis of signals obtained from the standard multifrequency eddy-current examination is considered. The decision about blanking off one or another tube is presently made with reference to one parameter of the relevant signal at the working frequency, namely, with reference to its phase, which directly depends on the depth of the flaw being detected, i.e., a crack in the tube. The crack depth equal to 60% of the tube wall thickness is regarded to be the critical one, at which a decision about withdrawing such a tube out from operation (blanking off) must be taken. However, since mechanical tensile rupture tests of heat-transfer tubes show the possibility of their further use with such flaws, the secondary parameter of the signal, namely, its amplitude, must be used for determining the blanking-off criterion. The signals produced by the standard flow-type transducers in response to flaws in the form of a longitudinal crack having the depth and length within the limits permitted by the relevant regulations were calculated using 3D finite-element modeling. Based on the obtained results, the values of the eddy-current signal amplitude were determined, which, together with the signal phase value, form a new amplitude-phase criterion for blanking off heat-transfer tubes. For confirming the effectiveness of this technique, the algorithm for revealing the signal indications satisfying the proposed amplitude-phase criterion was tested on real signals obtained from operational eddy-current examination of the state of steam generator heat-transfer tubes carried out within the framework of planned preventive repair.
Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.
1994-01-01
A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments
Emergent eddy saturation from an energy constrained eddy parameterisation
Mak, J.; Marshall, D. P.; Maddison, J. R.; Bachman, S. D.
2017-04-01
The large-scale features of the global ocean circulation and the sensitivity of these features with respect to forcing changes are critically dependent upon the influence of the mesoscale eddy field. One such feature, observed in numerical simulations whereby the mesoscale eddy field is at least partially resolved, is the phenomenon of eddy saturation, where the time-mean circumpolar transport of the Antarctic Circumpolar Current displays relative insensitivity to wind forcing changes. Coarse-resolution models employing the Gent-McWilliams parameterisation with a constant Gent-McWilliams eddy transfer coefficient seem unable to reproduce this phenomenon. In this article, an idealised model for a wind-forced, zonally symmetric flow in a channel is used to investigate the sensitivity of the circumpolar transport to changes in wind forcing under different eddy closures. It is shown that, when coupled to a simple parameterised eddy energy budget, the Gent-McWilliams eddy transfer coefficient of the form described in Marshall et al. (2012) [A framework for parameterizing eddy potential vorticity fluxes, J. Phys. Oceanogr., vol. 42, 539-557], which includes a linear eddy energy dependence, produces eddy saturation as an emergent property.
I.A. Kostiukov
2014-10-01
Full Text Available Criteria for estimation of added inductance and resistance during spiral ferromagnetic wire scanning of single-core power cable armour by means of a parametric electromagnetic converter are proposed. Research into variation of the introduced criteria in the frequency range from 100 Hz up to 100 kHz for different wire spiral steps is done. Possibility of using coils as sensors for determination armour step influence on power losses caused by eddy-currents and circulating currents in power cable line is shown.
A simple model of eddy saturation
Marshall, D. P.; Ambaum, M.; Munday, D. R.; Novak, L.; Maddison, J. R.
2016-02-01
A simple model is developed for eddy saturation of the Antarctic Circumpolar Current (ACC): the relative insensitivity of its volume transport to the magnitude of the surface wind stress in ocean models with explicit eddies. The simple model solves prognostic equations for the ACC volume transport and the eddy energy, forming a 2-dimensional nonlinear dynamical system. In equilibrium, the volume transport is independent of the surface wind stress but scales with the bottom drag, whereas the eddy energy scales with the wind stress but is independent of bottom drag. The magnitude of the eddy energy is controlled by the zonal momentum balance between the surface wind stress and eddy form stress, whereas the baroclinic volume transport is controlled by the eddy energy balance between the mean-to-eddy energy conversion and bottom dissipation. The theoretical predictions are confirmed in eddy-resolving numerical calculations for an idealised reentrant channel. The results suggest that the rate of eddy energy dissipation has a strong impact not only the volume transport of the ACC, but also on global ocean stratification and heat content through the thermal wind relation. Moreover, a vital ingredient in this model is a relation between the eddy form stress and eddy energy derived in the eddy parameterisation framework of Marshall et al. (2012, J. Phys. Oceanogr.), offering the prospect of obtaining eddy saturation in ocean models with parameterised eddies.
Martina A. Doblin
2016-04-01
Full Text Available The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC region to sample microbes in a cyclonic (cold-core eddy (CCE and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2–10 times greater Shannon index in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67% by larger micro-plankton $(\\geq 20\\lrm{\\mu }\\mathrm{m}$ ≥ 20 μ m , as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a ‘greening’ effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic eddies increase delivery of nitrogen to the upper ocean to potentially
Doblin, Martina A; Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R; Messer, Lauren F; Brown, Mark V; Norman, Louiza; Everett, Jason D; McInnes, Allison S; Ralph, Peter J; Thompson, Peter A; Hassler, Christel S
2016-01-01
The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-core) eddy (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2-10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton [Formula: see text], as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a 'greening' effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si) and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic eddies increase delivery of nitrogen to the upper ocean to potentially mitigate the negative consequences of increased
Breitzke, Monika; Wiles, Errol; Krocker, Ralf; Watkeys, Michael K.; Jokat, Wilfried
2017-09-01
The Mozambique Channel plays a key role in the exchange of surface water masses between the Indian and Atlantic Oceans and forms a topographic barrier for meridional deep and bottom water circulation due to its northward shoaling water depths. New high-resolution bathymetry and sub-bottom profiler data show that due to these topographic constraints a peculiar seafloor morphology has evolved, which exhibits a large variety of current-controlled bedforms. The most spectacular bedforms are giant erosional scours in the southwest, where northward spreading Antarctic Bottom Water is topographically blocked to the north and deflected to the east forming furrows, channels and steep sediment waves along its flow path. Farther north, in the water depth range of North Atlantic Deep Water, the seafloor is strongly shaped by deep-reaching eddies. Steep, upslope migrating sediment waves in the west have formed beneath the southward flow of anticyclonic Mozambique Channel eddies (MCEs). Arcuate bedforms in the middle evolved through an interaction of the northward flow of MCEs with crevasse splays from a breach in the western Zambezi Channel levee. Hummocky bedforms in the east result from an interplay of East Madagascar Current eddies with overspill deposits of the crevasse and Zambezi Channel. All bedforms are draped with sediments indicating that the present-day current velocities are not strong enough to erode sediments. Hence, it can be concluded that the seafloor morphology developed during earlier times, when bottom-current velocities were stronger. Assuming a sedimentation rate of 20 m/Ma and a drape of at least 50 m thickness the bedforms may have developed during the Pliocene Epoch or earlier.
Pulsed Eddy Current Detecting for Ferromagnetic Specimen with a Cladding Layer%有包覆层铁磁试件的脉冲涡流检测
傅迎光; 王健; 孙明璇; 刘再斌; 范智勇; 石坤
2013-01-01
The extent of corrosion can be obtained by measuring the wall thicknesses of pressure vessels and pipes made of steel plates. When measuring the thicknesses of steel plates and other ferromagnetic materials by using pulsed eddy current technology, the cladding layer which consists of a protective layer and an insulat ing layer could affect the measurement results. In this paper, we mainly study this problem. According to the principle of pulsed eddy current detecting, using the finite element method, we simulated the thickness mea surement of the ferromagnetic specimen with cladding layer, and emphatically analyzed the effects of the clad ding layer on the measurement. The effects of the cladding layer on the measurement are related to the protec tive layer material, the specimen and insulating layer thickness. The effects of aluminum sheet on the mea surement range of the specimen thickness are larger than that of iron sheet. When using aluminum sheet as protective layer, we cannot measure the thickness if the specimen is less than 6 mm thickness. The smaller thickness of the specimen and insulating layer is, the smaller measurement error is. When the specimen thick ness is more than 10 mm, and insulating layer thickness is more than 50 mm, the effect of the cladding layer on the measurement can be neglected.%测量由钢板制作的压力容器和管道的壁厚,可以了解其腐蚀程度.用脉冲涡流检测钢板等铁磁材料的厚度时,由保护层和保温层构成的包覆层会对测厚结果产生影响.根据脉冲涡流检测的工作原理,使用有限元法,对有包覆层铁磁试件的厚度测量进行了仿真研究,重点分析了覆盖层对测量结果的影响.研究结果表明:包覆层对测量的影响与保护层材料、试件厚度和保温层厚度有关；对试件厚度测量范围的影响铝皮比铁皮保护层大,使用铝皮保护层时,不能测量厚度小于6 mm的试件；试件与保温层越厚,测量误
Pulsed Eddy Current Detecting for Ferromagnetic Specimen with a Cladding Layer%有包覆层铁磁试件的脉冲涡流检测
傅迎光; 王健; 孙明璇; 刘再斌; 范智勇; 石坤
2013-01-01
By measuring the wall thicknesses of pressure vessels and pipes made of steel plates,one can determine their extent of corrosion.When the pulsed eddy current technology is used to measure the thicknesses of steel plates and other ferromagnetic materials,the cladding layer which consists of a protective layer and an insulating layer could affect the measurement results.In this paper,we mainly study this problem.According to the principle of pulsed eddy current detecting,using the finite element method,we simulated the thickness measurement of the ferromagnetic specimen with cladding layer,and emphatically analyzed the effects of the cladding layer on the measurement.The effects of the cladding layer on the measurement are related to the protective layer material,the specimen and insulating layer thickness.The effects of aluminum sheet on the measurement range of the specimen thickness are larger than those of iron sheet.When using aluminum sheet as protective layer,we cannot measure the thickness if the specimen is less than 6 mm thickness.The smaller thickness of the specimen and insulating layer is,the smaller measurement error is.When the specimen thickness is more than 10 mm,and insulating layer thickness is more than 50 mm,one can neglect effects of the cladding layer on the measurement.%测量由钢板制作的压力容器和管道的壁厚,可以了解其腐蚀程度.用脉冲涡流检测钢板等铁磁材料的厚度时,由保护层和保温层构成的包覆层,会对测厚结果产生影响.根据脉冲涡流检测的工作原理,使用有限元法,对有包覆层铁磁试件的厚度测量进行了仿真研究,重点分析了覆盖层对测量结果的影响.结果表明,包覆层对测量的影响与保护层材料、试件厚度和保温层厚度有关；对试件厚度测量范围的影响铝皮比铁皮保护层大,使用铝皮保护层时,不能测量厚度小于6mm的试件；试件与保温层越厚,测量误差越小,试件的厚度大于10 mm
E-waste: Environmental Problems and Current Management
D. Aktsoglou; K. Angelakoglou; G. Gaidajis
2010-01-01
..., are reviewed.Moreover, the current and the future production of e-waste, the potential environmental problems associated with theirdisposal and management practices are discussed whereas the existing e-waste...
E-waste: Environmental Problems and Current Management
D. Aktsoglou
2010-01-01
Full Text Available In this paper the environmental problems related with the discarded electronic appliances, known as e-waste, are reviewed.Moreover, the current and the future production of e-waste, the potential environmental problems associated with theirdisposal and management practices are discussed whereas the existing e-waste management schemes in Greece and othercountries (Japan, Switzerland are also quoted.
Basic Requirements of Tuned Mass Damper for Bridges and the Eddy Current TMD%桥梁用TMD的基本要求与电涡流TMD
陈政清; 黄智文; 王建辉; 牛华伟
2013-01-01
The performances of traditional tuned mass damper (TMD) intended for suppressing the vortex-induced oscillation of bridges were invesitgated.In order to improve the robustness of traditional TMD,multiple tuned mass dampers (MTMD) theory was proposed to design TMDs.Furthermore,a new damper,namely the eddy current damper,was developed to repalce traditional oil damper as the damping producer of TMD,so the fatigue life-span of TMD was greatly extended.The parameter design of MTMD was realized by making use of genetic algorithm.And the results of comparison between TMD and MTMD have indicated that MTMD is superior to TMD,when their effectiveness and robustness are of equivalent importance in design.Both experiments and engineering practice of eddy current TMD were successfully conducted,showing a promising future of eddy current TMD in the field of bridge vibration control.%总结了传统调谐质量阻尼器(TMD)在涡激振动控制中的工作性能,提出运用多重调谐质量阻尼器(MTMD)理论进行TMD设计,提高振动控制的鲁棒性;开发了电涡流阻尼器取代传统油阻尼器作为TMD的阻尼发生装置,延长TMD的疲劳寿命.利用遗传算法实现了MTMD的参数优化设计,与TMD的比较表明,MTMD在控制效率和鲁棒性方面具有更优越的综合性能.电涡流TMD在试验和实际工程中的成功应用表明电涡流TMD在桥梁振动控制领域具有广阔的应用前景.
Pulsed Eddy Current Detecting System Based on DDS%基于DDS技术的脉冲涡流检测系统
宋琦华; 毛义梅; 雷华明
2011-01-01
The pulsed eddy current detecting technology is a new branch of the eddy current nondestructive testing and can detect the de-fects in the metal conductor equipments quickly and easily. Based on the characteristics of the pulsed signal generator, a pulsed eddy current detecting system with parameters adjustable pulsed signal generator, using direct frequency synthesis technology, was designed. The PEC testing system is combined of hardware circuit, PC, data acquisition card and relevant software components. With AD9850, a square wave of 1kHz is generated as excitation of defect detection experiment from which eigenvalues are calculated and identification of three quantitative PEC defects were discussed.%脉冲涡流检测技术作为当前无损检测技术中的一种新技术,能够快速方便地检测金属构件中的缺陷；文中根据脉冲涡流检测信号源的特点,采用Direct Digital Frequency Synthesis(直接数字频率合成,简称DDS)技术,设计了一种参数可调式脉冲波形信号源的脉冲涡流检测系统；系统由脉冲涡流检测硬件电路、上位机、数据采集卡和相关软件组成；最后使用AD9850芯片产生1kHz、50％占空比的方波激励对标准缺陷试件进行实验,并提取特征值对试件的三种定量缺陷区分进行了研究.
基于脉冲涡流信号的金属膜厚测量%Thickness measurement of metallic coating from pulsed eddy-current signals
康学福; 陈立晶; 王奔; 尹武良
2012-01-01
As a new branch of the eddy current nondestructive testing, the pulsed eddy current testing technology can detect the thickness of the metal conductor quickly and easily. In order to study the technology in the measuring of the thickness of the metal, the sensor was designed firstly and its operating principal was analyzed. The ANSOFT software was used to get the response signal in different metal thickness. Different thickness of aluminum foils were detected and cubic spline interpolation was used to fit experimental data. The relationship between the thickness and voltage signals was obtained. The conclusion shows that the thickness of the metal can be detected precisely on the pulsed eddy current testing technology.%脉冲涡流检测技术能够快速方便地检测金属导体厚度,为了研究脉冲涡流检测技术在金属膜厚测量中的应用,首先设计了测量系统传感器,并分析了其工作原理；采用ANSOFT软件对不同测试金属厚度下传感器的响应信号进行了仿真计算；然后搭建了实际的测厚系统,对不同厚度的铝箔进行了检测,并对实验数据采用三次样条插值进行了拟合,得到了金属膜厚与电压信号的关系.研究结果表明:采用脉冲涡流技术能够较准确地测量出金属膜的厚度.
Frade, Rangel Teixeira
2015-07-01
Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the
Benedetto, E; Borburgh, J; Carli, C; Martini, M; Forte, V
2014-01-01
The CERN PS Booster will be upgraded with an H- injection system. The chicanemagnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The -beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and correction on beam dynamics.
A. V. Chernyshev
2017-01-01
Full Text Available In carrying out eddy current thickness measurement of two-layer conductive objects one from the interfering factors is the presence of variations in the value of the electrical conductivity of the material of the upper layer (coating when moving from point to point on the surface of object of control or when passing from one object of control to another. The aim of this work is to evaluate the accuracy of determining the thickness of the conductive coating disposed on a conducting ferromagnetic basis, using the phase method of eddy current testing. The reason of the error is variation of the electrical conductivity of the material of coating.Determination of the error is based on calculations using known analytical expressions for the loop with current of sinusoidal form arranged over the infinite half space with a covering as a thin layer. Selected in calculating electromagnetic parameters of coating and substrate approximately correspond to the case -chromium layer on a nickel base. Calculations are performed for different frequencies of current passed through coil.It is shown that at reduction of frequency of the current passes through the coil the error is reduced. The value of the lowest possible operating frequency of the excitation current is determined by the condition of absence influence on the phase introduced into the superimposed transducer emf variations in the thickness of the basis.To reduce the indicated error it is proposed to determine, on the basis of phase method at a relatively high frequency transducer current excitation, conductivity of the material of coating. After this, at a low frequency excitation current and using phase method, the coating thickness is determined, taking into consideration the previously determined value of the conductivity of coating. Also discussed ways to improve the accuracy of phase measurements in the MHz region of the excitation current frequency.
Sun, Liang; Li, Qiu-Yang
2017-04-01
The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for
Analysis of Rotor Eddy-current Loss in High-speed Permanent Magnet Motors%高速永磁电机的转子涡流损耗分析
高鹏飞; 房建成; 韩邦成; 孙津济
2013-01-01
For high-speed permanent magnet motors,the rotor eddy-current loss cannot be underestimated in that it has serious implications on the motors' efficiency or even demagnetizes the permanent magnets because of the overheating problem.The sources of the harmonics which produce the rotor eddy-current loss were put forward,and the analytical calculation was presented,then the loss of different motor structures were analyzed,and the influences of various stator slot numbers,slot opening width,airgap length,the shield and the auxiliary slot were studied.The results show that the rotor eddy-current loss can be reduced by more slots,thinner slot opening width and larger airgap length.It also comes to the conclusion that a shield with high conductivity between the retaining sleeve and permanent magnets can reduce the rotor eddy-current loss,and a proper thickness of the shied can help to minimize the loss.The auxiliary slot is studied,and with proper width,depth angle and type,the auxiliary slot can be used to reduce the rotor eddy-current loss and cool the motors.The research is of great value in theory and engineer applications for high-speed permanent magnet motors.%在高速永磁电机中,转子涡流损耗会使转子温度升高,影响电机效率等性能,甚至导致永磁体过热退磁.针对高速永磁电机中的转子涡流损耗问题,进行了解析分析和有限元计算,分析了产生转子涡流损耗的谐波来源,研究了不同定转子结构电机的转子涡流损耗,分析了定子槽数、槽口宽度、气隙长度、屏蔽层、定子齿开辅助槽对转子涡流损耗的影响.结果表明,增加定子槽数、减小槽口宽度、增加气隙长度可以减小转子涡流损耗；在护套和永磁体中间加一层高电导率屏蔽层能有效减小永磁体的涡流,且选择合适的屏蔽层厚度能够进一步减小转子涡流损耗；提出了使用合适宽度、深度、角度和槽型的辅助槽来减小转子涡流损耗、
Owen, Hazel
2013-01-01
Eddie Reisch is currently working as a policy advisor for Te Reo Maori Operational Policy within the Student Achievement group with the Ministry of Education in New Zealand, where he has implemented and led a range of e-learning initiatives and developments, particularly the Virtual Learning Network (VLN). He is regarded as one of the leading…
微型涡流电导率测量传感器的优化设计%Optimizing design for miniature eddy current conductivity measurement sensor
赵友全; 刘潇; 陈玉榜; 张玉山
2015-01-01
The conductivity of the metallic material is one of the most important physical indexes .Conductivity can effectively reflect the mechanical properties of metals, heat treatment state and corrosion and so on.Especially for aerospace vehicle, conductivity reflects the degree of metal fatigue of materials for the aircraft to ensure the safety of the aircraft, it is extremely important.Eddy current nondestructive testing technology has good electrical conductiv-ity responsibility for non-ferrous metals.This paper describes the design principle of eddy conductivity sensor. Electromagnetic theory is taken as the basis, and the impedance plane phase method is taken as the main method, the structure and parameters of the eddy current conductivity sensor is designed and optimized.The simulation with CIVA and the experimental verification are carried out.The experimental results show that the sensor achieves high precision and high stability for nondestructive eddy conductivity measurement.%电导率是金属材料的重要物理量，电导率能有效的反映出金属的力学性能、热处理状态和腐蚀状态等参数，特别是在航天航空飞行器中，飞行器材料的电导率反映出的金属疲劳程度对于保证飞行器的安全极其重要。无损涡流检测技术对于有色金属电导率有很好的响应。阐述了涡流电导率传感器设计原理，以电磁场理论为基础，以阻抗平面相位法为主要方法，对涡流电导率传感器的结构和参数进行设计和优化，并用CIVA进行了软件仿真和金属样本的实验验证。实验结果表明，实现了高精度，高稳定性的无损涡流电导率测量。
Yin, W.; Li, X.; Withers, P. J.; Peyton, A. J.
2010-10-01
The characterization of hybrid aluminium/carbon-fibre-reinforced plastic (CFRP) sheets using multi-frequency eddy-current sensors is presented in this paper. Both air-cored circular sensors and highly directional ferrite-cored sensors are designed for bulk conductivity measurements and directionality characterization. An analytical model describing the interaction of the circular sensors with the hybrid planar structure is developed. Finite element (FE) models that take into account the anisotropicity of CFRP have also been proposed. Both models are in good agreement with experimental results. The features of the sensor output signals are analysed and explained. It is proved that an anisotropic model (tensor expression for conductivity) is appropriate for the CFRP materials under investigation. A formula to link the bulk conductivity with the conductivity tensor is proposed and verified. Lift-off effects are also discussed. It is believed that this is amongst the first published reports of using eddy-current techniques for characterizing the hybrid aluminium/CFRP material.
Chen, Zhenmao [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-12-01
In this paper, an approach to the reconstruction of an idealized natural crack of non-vanishing conductivity is proposed with use of signals of eddy current testing. Two numerical models are introduced at first for modeling a Stress Corrosion Crack (SCC) in order it possibly to be represented by a set of crack parameters. A method for rapid prediction of the eddy current testing signals arisen from these idealized cracks is given then by extending a knowledge based fast forward solver developed by authors to the case of a non-vanishing conductivity. On the other hand, the inverse algorithm of conjugate gradient method is improved to reconstruct the crack parameters and is implemented with the pick-up signals and gradients calculated by using the rapid forward solver. Several examples are presented finally for validating the proposed strategy. The results verified that both of the models can give reasonable reconstruction results in case of a low noise level. The model concerning the touch of crack surfaces with a conducting band region surrounded by the crack edge, however, is proved more efficient that the model using a conductivity distribution from the point of view of both reconstruction speed and accuracy. (author)
管道远场涡流无损检测技术综述%Remote Field Eddy Current Non-Destructive Testing for Pipes and Tubes
徐小杰
2015-01-01
Remote Field Eddy Current ( RFEC) is an important branch cut of eddy current nondestructive testing ( NDT) technique, and draws more and more attention in the testing and repairing of pipes and tubes. The origin and development history of RFEC technique was described. The research status and hot-spot issues of RFFC technique both inland and overseas were sum-marized and analyzed. The future development direction of RFEC technique was discussed with detail, from the aspects such as axial crack detection ability improvement,mounting plate influence in use and so on.%远场涡流作为涡流无损检测技术的一个重要分支，目前在各个行业的管道日常维护和安全保障中发挥着重要的作用。文中首先详细叙述了远场涡流无损检测技术的发展历史；对目前国内外远场涡流应用的研究现状和研究热点问题进行了总结和论述；从进一步提高轴向裂纹检测能力，解决使用中支撑板影响问题等方面，探讨了远场涡流无损检测技术的应用发展方向。
Emergent eddy saturation from an energy constrained eddy parameterisation
Mak, Julian; Marshall, David P; Bachman, Scott D
2016-01-01
The large-scale features of the global ocean circulation and the sensitivity of these features with respect to forcing changes are critically dependent upon the influence of the mesoscale eddy field. One such feature, observed in numerical simulations whereby the mesoscale eddy field is at least partially resolved, is the phenomenon of eddy saturation, where the time-mean circumpolar transport of the Antarctic Circumpolar Current displays relative insensitivity to wind forcing changes. Coarse-resolution models employing the Gent--McWilliams parameterisation with a constant Gent--McWilliams coefficient seem unable to reproduce this phenomenon. In this article, an idealised model for a wind-forced, zonally symmetric flow in a channel is used to investigate the sensitivity of the circumpolar transport to changes in wind forcing under different eddy closures. It is shown that, when coupled to a simple parameterised eddy energy budget, the Gent--McWilliams coefficient of the form described in Marshall et al. (2012...
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
2002-01-01
This true-color satellite image shows a large phytoplankton bloom, several hundred square kilometers in size, in the Indian Ocean off the west coast of Tasmania. In this scene, the rich concentration of microscopic marine plants gives the water a lighter, more turquoise appearance which helps to highlight the current patterns there. Notice the eddies, or vortices in the water, that can be seen in several places. It is possible that these eddies were formed by converging ocean currents flowing around Tasmania, or by fresh river runoff from the island, or both. Often, eddies in the sea serve as a means for stirring the water, thus providing nutrients that help support phytoplankton blooms, which in turn provide nutrition for other organisms. Effectively, these eddies help feed the sea (click to read an article on this topic). This image was acquired November 7, 2000, by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the Orbview-2 satellite. Tasmania is located off Australia's southeastern coast. Image courtesy SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Hide, Raymond; Moroz, Irene M.
1999-10-01
The elucidation of the behaviour of physically realistic self-exciting Faraday-disk dynamos bears inter alia on attempts by theoretical geophysicists to interpret observations of geomagnetic polarity reversals. Hide [The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos, Phys. Earth Planet. Interiors 103 (1997) 281-291; Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo, Nonlinear Processes in Geophysics 4 (1998) 201-205] has introduced a novel 4-mode set of nonlinear ordinary differential equations to describe such a dynamo in which a nonlinear electric motor is connected in series with the coil. The applied couple, α, driving the disk is steady and the Lorentz couple driving the motor is a quadratic function, x(1-ɛ)+ɛσx 2, of the dynamo-generated current x, with 0≤ɛ≤1. When there are no additional biasing effects due to background magnetic fields etc., the behaviour of the dynamo is determined by eight independent non-negative control parameters. These include ρ, proportional to the resistance of the disk to azimuthal eddy currents, and β, an inverse measure of the moment of inertia of the armature of the motor. When β=0 (the case when the motor is absent and ɛ and σ are redundant) and ρ -1≠0 , the 4-mode dynamo equations reduce to the 3-mode Lorenz equations, which can behave chaotically [E. Knobloch, Chaos in the segmented disc dynamo, Phys. Lett. A 82 (1981) 439-440]. When β≠0 but ρ -1=0 , the 4-mode set of equations reduces to a 3-mode dynamo [R. Hide (1997), see above], which can also behave chaotically when ɛ=0 [R. Hide, A.C. Skeldon, D.J. Acheson, A study of two novel self-exciting single-disk homopolar dynamos: theory, Proc. R. Soc. Lond. A 452 (1996) 1369-1395] but not when ɛ=1 [R. Hide (1998), see above]. In the latter case, however, all persistent fluctuations are completely quenched [R. Hide (1998), see above]. In this paper we investigate
有限厚铁磁性试件脉冲涡流响应研究%Pulsed eddy current response to a ferromagnetic specimen with finite thickness
徐志远; 武新军; 黄琛; 康宜华
2011-01-01
Method for the pulsed eddy current (PEC) response to a specimen based on direct analysis of transient eddy currents and induced magnetic fields was presented. Based on the experimental verification, the PEC response to a ferromagnetic specimen of finite thickness was computed with numerical simulation method. The law of eddy current diffusion in specimen was studied, and thus the PEC response was divided into two stages. The relation between the response and resistivity or permeability of the specimen was obtained by fitting the response curves of different resistivity or permeability models at the same time points, and the relation between the response and time was obtained by fitting the response curves with time. The results show that early PEC response decays with 0. 5 powers to the resistivity, 0. 5 powers to the permeability, and 1. 5 powers to the time. The latter response decays with negative exponent to time, and the exponential decay coefficient is proportional to the resistivity but inversely proportional to the permeability.%提出了通过直接分析瞬变涡流和感应磁场来研究被测试件脉冲涡流响应的方法.在实验验证的基础上,采用数值模拟的方法计算得到了有限厚铁磁性试件的脉冲涡流响应.研究了试件中涡流扩散规律并将脉冲涡流响应分为前后2个阶段,将相同时间点不同电阻率、磁导率模型的响应曲线及感应电压随时间变化的曲线进行拟合,得到了感应电压与电阻率、磁导率及时间的关系.结果表明:脉冲涡流前期感应电压按试件电阻率的0.5次幂、磁导率的0.5次幂进行衰减,按时间的1.5次幂进行衰减;后期感应电压随时间按照负指数规律衰减,指数衰减系数与试件电阻率成正比,与磁导率成反比.
脉冲涡流无损检测提离效应研究%Study of Lift - Off Effects for Pulsed Eddy Current Nondestructive Testing Technique
曹海霞; 王畅; 杨宾峰; 张军潮; 张辉
2011-01-01
In the course of pulsed eddy current testing, the incline of the probe or the roughness of the surface of the tested object will lead to the lift - off effects, which have a bad influence on the result of pulsed eddy current (PEC) nondestructive testing.Based on the analysis of the operating principle of PEC, two different simulation models with the excitation coils of columniform and rectangle structures are established by ANSYS finite element simulation software and the simulations on the specimen of ferromagnetic and non -ferromagnetic materials are done respectively.Through the analysis of the eddy current and rotated magnetic field, the influence effect of response signal with the variation of the lift - off distance and the reason is given.Finally, the results of simulation are verified by experiment methods.The results of the experimental work confirm the correctness of simulation, which will lay the foundation for the elimination of lift - off effects.%在脉冲涡流检测过程中,由于探头倾斜或被测对象表面不光滑会产生提离效应,提离效应严重影响着脉冲涡流无损检测的结果.本文在分析脉冲涡流检测技术工作原理的基础上,采用ANSYS有限元仿真软件建立了激励线圈为圆柱形和矩形两种结构的模型,并分别针对有裂纹缺陷的铁磁性(钢)和非铁磁性(铝)试件进行了仿真研究,通过分析试件中感应涡流和扰动磁场的变化,给出了不同情况下检测信号随提离变化的规律,并从原理上给出了解释.最后,通过实验的方法对仿真结果进行了验证,实验结果表明了仿真结果的正确性,从而为进一步的消除提离效应提供了有价值的参考依据.
Waidele, H.; Maier, H.J.; Just, T.; Seidenkranz, T.; Seydel, O.; Weiss, R.
2000-12-01
In the scope of this project, non-destructive testing methods were carried out on specimens with defects intentionally manufactured in the region of the cladding. The aim of these trials is an evaluation of the performance of ultrasonic and eddy current examinations of austenitic claddings of reactor pressure vessels. A review of the non-destructive testing of claddings showed that the majority of the investigations have been carried out on specimens with artificial defects (notches, holes). Therefore, for the realisation of this project MPA Stuttgart produced specimens with natural defects in the cladding. In detail these are specimens with intergranular stress-corrosion cracking, hot cracks and welding defects in the cladding as well as specimens with underclad cracks. The thickness of the specimens is about 150 mm (BWR-RPV), so that in addition to the testing from the ID (PWR, ultrasonic, eddy current) also the testing from the OD (BWR, ultrasonic) could be examined. The measurements show that most of the cladding defects can be detected with the standard ultrasonic test methods, however, in some cases generate only low echo amplitudes. Favourable results were obtained from the ID testing by means of a phased array probe, in particular in connection with the eddy current technique. Investigations on specimens containing defects not known to the inspection teams (blind tests), which will allow a further evaluation of the performance of non-destructive testing methods under realistic conditions, will be carried out in Phase II of the project. (orig.) [German] Im Rahmen dieses Vorhabens wurden an Testkoerpern mit im Plattierungsbereich gezielt eingebrachten Fehlerbildungen zerstoerungsfreie Pruefungen durchgefuehrt. Ziel der Untersuchungen ist eine Bewertung der Aussagefaehigkeit von Ultraschall- und Wirbelstrompruefungen an austenitischen Plattierungen von Reaktordruckbehaeltern. Bei einer Bestandsaufnahme zur zerstoerungsfreien Pruefung von Plattierungen zeigte
Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.
2013-01-01
Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.
Yit Sen Bull, Christopher; van Sebille, Erik
2016-03-01
The Leeuwin Current is the dominant circulation feature in the eastern Indian Ocean, transporting tropical and subtropical water southward. While it is known that the Leeuwin Current draws its water from a multitude of sources, existing Indian Ocean circulation schematics have never quantified the fluxes of tropical and subtropical source water flowing into the Leeuwin Current. This paper uses virtual Lagrangian particles to quantify the transport of these sources along the Leeuwin Current's mean pathway. Here the pathways and exchange of Leeuwin Current source waters across six coastally bound sectors on the south-west Australian coast are analyzed. This constitutes the first quantitative assessment of Leeuwin Current pathways within an offline, 50 year integration time, eddy-resolving global ocean model simulation. Along the Leeuwin Current's pathway, we find a mean poleward transport of 3.7 Sv in which the tropical sources account for 60-78% of the transport. While the net transport is small, we see large transports flowing in and out of all the offshore boundaries of the Leeuwin Current sectors. Along the Leeuwin Current's pathway, we find that water from the Indonesian Throughflow contributes 50-66% of the seasonal signal. By applying conditions on the routes particles take entering the Leeuwin Current, we find particles are more likely to travel offshore north of 30°S, while south of 30°S, particles are more likely to continue downstream. We find a 0.2 Sv pathway of water from the Leeuwin Current's source regions, flowing through the entire Leeuwin Current pathway into the Great Australian Bight.
Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J
2013-02-28
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.
Churchfield, M. J.; Li, Y.; Moriarty, P. J.
2012-07-01
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.
Churchfield, M. J.; Li, Y.; Moriarty, P. J.
2011-07-01
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.
Applied large eddy simulation.
Tucker, Paul G; Lardeau, Sylvain
2009-07-28
Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier-Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not, given the current technology and knowledge, for an industrial practitioner who is interested in using LES. The use of LES was explored in an application-centred context between diverse fields. The general flow-governing equation form was explored along with various LES models. The errors occurring in LES were analysed. Also, the hybridization of RANS and LES was considered. The importance of modelling relative to boundary conditions, problem definition and other more mundane aspects were examined. It was to an extent concluded that for LES to make most rapid industrial impact, pragmatic hybrid use of LES, implicit LES and RANS elements will probably be needed. Added to this further, highly industrial sector model parametrizations will be required with clear thought on the key target design parameter(s). The combination of good numerical modelling expertise, a sound understanding of turbulence, along with artistry, pragmatism and the use of recent developments in computer science should dramatically add impetus to the industrial uptake of LES. In the light of the numerous technical challenges that remain it appears that for some time to come LES will have echoes of the high levels of technical knowledge required for safe use of RANS but with much greater fidelity.
Quantifying mesoscale eddies in the Lofoten Basin
Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.
2016-07-01
The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.
de Alcantara, Naasson
2013-03-01
This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover.
B. Sasi
2009-03-01
Full Text Available Non-destructive detection of defects in countersunk of rivets in multi-layer air-intake structures is essential for ensuring structural integrity and flight safety. This paper presents an eddy current test procedure developed for reliable detection of simulated fatigue cracks and corrosion products in rivets of air-intake structures. This procedure is capable of reliably detecting 0.25 mm deep defects in 4 mm dia rivets and 0.75 mm deep defects in 5 mm dia rivets. Further, it is not influenced by thickness of the multilayers.Defence Science Journal, 2009, 59(2, pp.106-112, DOI:http://dx.doi.org/10.14429/dsj.59.1497
Ferrite cores for eddy current proximity switch%电涡流式接近开关用铁氧体磁芯
杜成虎; 董生玉; 孙蒋平; 申志刚
2013-01-01
磁芯是电涡流式接近开关的关键元件，介绍了接近开关所用磁芯材料的特点及性能要求，及天通公司研发的不同性能、不同规格铁氧体材料在接近开关中的应用，最后提出了经溅射镀膜后的铁氧体磁芯在接近开关领域的应用优势。%Magnetic core is an important component of eddy current proximity switch. This paper introduces the characteristics and requirement of ferrite core for proximity switch, and application of TDG’s series ferrite materials. Finally we put forward the application advantage of ferrite core with sputter coating.
Shokralla, S., E-mail: shaddy.shokralla@opg.com [Ontario Power Generation, IMS NDE Projects, Ajax, Ontario (Canada); Krause, T.W., E-mail: thomas.krause@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)
2014-01-15
The purpose of inspection qualification of a particular inspection system is to show that it meets applicable inspection specification requirements. Often a requirement of the inspection system is that it meets a particular accuracy. In the case of a system with multiple inputs accompanied by additional influential parameters, calculation of the system's output accuracy can be formidable. Measurement of pressure-tube to calandria tube gap in CANDU reactors using an eddy current based technique is presented as a particular example of a system where multiple essential parameters combine to generate a final uncertainty for the inspection system. This paper outlines two possible methods of calculating such a system's accuracy, and discusses the advantages and disadvantages of each. (author)
Design of Weak Signal Conditioning Circuit for Pulsed Eddy Current%脉冲涡流检测微弱信号调理电路设计
孙思成; 付跃文
2013-01-01
分析了铁磁性材料脉冲涡流检测后期微弱信号的特点,在此基础上进行了脉冲涡流微弱信号调理电路的设计.设计采用了阻抗匹配、对称式限幅差分前置放大、浮空的电压源和屏蔽与接地技术,有效地提高了信号的共模抑制比和信号调理系统的信噪比.试验结果表明:设计的信号调理电路改善了接收系统的信噪比,提高了脉冲涡流晚期微弱信号的分辨能力(有效检测信号为几个微伏),提高了在复杂电磁环境下测量铁磁性材料厚度的检测灵敏度.%This paper analyzed the weak late stage signal of pulsed eddy current testing of the ferromagnetic materials briefly,and signal conditioning circuit was designed based on the analysis.Techniques of the impedance matching,electromagnetism shielding,grounding,floating empty DC voltage source and limited different preamplifying symmetrically are used and the SNR (Signal-to-Noise Rate) of signal conditioning system is improved effectively.The experiment results show that the design of weak signal conditioning circuit for pulsed eddy current improves the SNR and signal of several microvolts can be detected.Effective detection for the small corrosion of ferromagnetic materials in complicated electromagnetic environment is implemented.
Seemann, K., E-mail: klaus.seemann@kit.edu [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Leiste, H.; Krueger, K. [Karlsruhe Institute of Technology KIT (Campus North), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2012-06-15
In the present paper, theoretic investigations of polarisation vector precession trajectories represented by a macro spin in ferromagnetic films with in-plane uniaxial anisotropy were realised. For this purpose, the Landau-Lifschitz-Gilbert differential equation (LLG) in combination with the Maxwell equations were solved for three dimensions by considering a linear progression of the magnetisation or polarisation with an external field. The frequency and time dependent polarisation trajectories illustrate how a magnetic moment precesses if effective damping and eddy-currents impacts its motion. For computation, typical parameter values like the saturation polarisation J{sub s}={mu}{sub 0}{center_dot}M{sub s}=1.4 T and in-plane uniaxial anisotropy {mu}{sub 0}{center_dot}H{sub u}=4.5 mT were employed. The main focus of simulation was on the variation of the effective damping parameter {alpha}{sub eff} between 0.01 and 0.05 and ferromagnetic film thickness t{sub m} between 200 nm and 1200 nm. The frequency-dependent calculations were carried out between 50 MHz and 6 GHz. The time-dependent simulations were done for a duration between 5 and 30 ns. - Highlights: Black-Right-Pointing-Pointer Frequency- and time domain solution of the LLG and Maxwell differential equation. Black-Right-Pointing-Pointer 3D magnetic moment or macro spin trajectories by eddy-current impact. Black-Right-Pointing-Pointer Progression of a magnetic excitation field in thin ferromagnetic films. Black-Right-Pointing-Pointer Transient response evaluation of uniform magnetic moments excited by an r.f. field.
Local Hubble Expansion: Current State of the Problem
Dumin, Yurii V
2016-01-01
We present a brief qualitative overview of the current state of the problem of Hubble expansion at the sufficiently small scales (e.g., in planetary systems or local intergalactic volume). The crucial drawbacks of the available theoretical treatments are emphasized, and the possible ways to avoid them are outlined. Attention is drawn to a number of observable astronomical phenomena that could be naturally explained by the local Hubble expansion.
Current approaches and problems in social crime prevention
Vuković, Slaviša
2011-01-01
In this paper the topic of consideration focuses on current methods and forms of implementation social crime prevention, as well as problems that often arise in practice during its implementation. This is one of the most important areas in crime prevention, which is also known as crime prevention through social development, and often includes legal activities of state and non-state actors aimed at preventing delinquency of children and minors through the weakening and, if possible, eliminatin...
S. M. Liu
2011-04-01
Full Text Available We analyzed the seasonal variations of energy balance components over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy balance components were measured using eddy covariance (EC systems and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site and discussed the differences between the sensible heat fluxes measured with EC and LAS at AR. The results show that the main EC source areas were within a radius of 250 m at all of the sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed with the season at each site, and there were characteristic seasonal variations in the energy balance components at all of the sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the so-called energy imbalance phenomenon, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.
Current problems of close-to-nature silviculture in Italy
Paci M
2004-01-01
Full Text Available The main problems of Italian forests are critically reviewed, considering the ecological as well the socio-economic factors that have been responsable of the main evolutionary processes, i.e., the secondary succession under artificial conifer stands, the ageing of the coppice forest, the post-cultivation evolution on abandoned fields and the increase of wild ungulates, which currently represents one of the most dramatic problems to be faced in forest management. Concepts as biodiversity, multifunctionality and sustainable management are the foundations, nowadays, of forest management. The main elements traditionally characterizing the close-to-nature silviculture are discussed and critically examined, warning against ideology and rigidity. Two concepts are more carefully discussed: natural vegetation dynamics and mixed uneven aged forest. An analysis of the priorities of silviculture in Italy concludes the paper, namely: the importance to take advantage of the “natural opportunities” in the cheapest way (the cost of the thinnings is a first rate problem, nowadays; to consider forests ecosystems in the context of surrounding natural and cultural landscape; to define proper management strategies for secondary successions on abandoned fields and pastures; to aim at re-naturalizing artificial conifer stands and increasing/maintaining forest biodiversity; to tackle effectively the wild ungulates problem.
Zimmerman, Robert A.; Biggs, Douglas C.
1999-03-01
The acoustic backscatter intensity (ABI) reflected from epipelagic zooplankton communities in the central Gulf of Mexico was measured during June 1995 with a vessel-mounted, narrowband-153-kHz acoustic Doppler current profiler (ADCP). Horizontal and vertical variations in ABI were documented in three kinds of mesoscale hydrographic features commonly found in the Gulf of Mexico: the warm-core Loop Current (LC), a warm-core Loop Current eddy (LCE), and a cold-core region that separated the two warm-core features. Since new nitrogen domes close to surface waters in cold-core features whereas surface waters of warm-core features are nutrient depleted, the cold-core region was expected to have higher biological stocks as a result of locally higher primary production. Both ABI and net tow data confirmed that the cold-core region was in fact a zone of local aggregation of zooplankton and micronekton. During both day and night, ABI when integrated for the upper 50 and 100 m in the cold-core region was significantly greater than in the LC or in the LCE, and ABI was positively correlated with standing stock biomass taken by the net tows. Further investigations into the biological differences between Gulf of Mexico divergence and convergence regimes are warranted, and the ADCP will be a useful tool for examination of the distribution of sound scatterers in such features.
侯忠馨; 王庆贤; 祝曦; 司徒国强
2015-01-01
Eddy -current braking is a kind of technology which utilizes electromagnet solenoid coils to generate electromagnetic fields.Rotating conductor cuts magnetic field lines to generate eddy current,and then generate a braking force.Eddy current braking is a new approach to take place of the original reduction gear device which had been used in the railway marshaling yard hump humping speed braking.Considering a low -noise,no me-chanical impact and friction,maintence free,low carbon environmental protection and other factors,eddy current reduction is an ideal new technology for hump humping deceleration and braking.The formulas of disc braking torque of eddy current braking were deduced on the basis of the theory of electromagnetic field.The formulas re-flect the relationship between the different design parameters of disc eddy current braking and can be used for the design and performance analysis of the eddy current braking structure.%涡流制动技术是利用电磁线圈产生电磁场，旋转导体在磁场中切割磁力线产生电涡流，从而产生制动力。所以涡流制动是替代铁路编组场驼峰溜放调速制动原有机械减速装置的新方法。考虑低噪声、无机械撞击与摩擦、免维护、低碳环保等因素，涡流减速是一种理想的驼峰溜放车列减速制动新技术。运用电磁场理论推导出盘形涡流制动装置的制动力矩计算公式，计算公式反映盘形涡流制动器各设计参数之间的相互关系，可用于盘形涡流制动器结构设计和性能分析的参考。