WorldWideScience

Sample records for economizer system energy

  1. Economic analysis model for total energy and economic systems

    International Nuclear Information System (INIS)

    Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu

    1980-09-01

    This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)

  2. Techno-economic optimisation of energy systems

    International Nuclear Information System (INIS)

    Mansilla Pellen, Ch.

    2006-07-01

    The traditional approach currently used to assess the economic interest of energy systems is based on a defined flow-sheet. Some studies have shown that the flow-sheets corresponding to the best thermodynamic efficiencies do not necessarily lead to the best production costs. A method called techno-economic optimisation was proposed. This method aims at minimising the production cost of a given energy system, including both investment and operating costs. It was implemented using genetic algorithms. This approach was compared to the heat integration method on two different examples, thus validating its interest. Techno-economic optimisation was then applied to different energy systems dealing with hydrogen as well as electricity production. (author)

  3. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    Science.gov (United States)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  4. An enviro-economic function for assessing energy resources for district energy systems

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    District energy (DE) systems provide an important means of mitigating greenhouse gas emissions and the significant related concerns associated with global climate change. DE systems can use fossil fuels, renewable energy and waste heat as energy sources, and facilitate intelligent integration of energy systems. In this study, an enviro-economic function is developed for assessing various energy sources for a district energy system. The DE system is assessed for the considered energy resources by considering two main factors: CO 2 emissions and economics. Using renewable energy resources and associated technologies as the energy suppliers for a DE system yields environmental benefits which can lead to financial advantages through such instruments as tax breaks; while fossil fuels are increasingly penalized by a carbon tax. Considering these factors as well as the financial value of the technology, an analysis approach is developed for energy suppliers of the DE system. In addition, the proposed approach is modified for the case when thermal energy storage is integrated into a DE system. - Highlights: • Developed a function to assess various energy sources for a district energy system. • Considered CO 2 emissions and economics as two main factors. • Applied renewable energy resources technologies as the suppliers for a DE system. • Yields environmental benefits can lead to financial benefits by tax breaks. • Modified enviro-economic function for the TES integrated into a DE system

  5. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  6. Towards low carbon business park energy systems: Classification of techno-economic energy models

    International Nuclear Information System (INIS)

    Timmerman, Jonas; Vandevelde, Lieven; Van Eetvelde, Greet

    2014-01-01

    To mitigate climate destabilisation, human-induced greenhouse gas emissions urgently need to be curbed. A major share of these emissions originates from the industry and energy sectors. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by maximal exploitation of local renewable energy production, enhanced energy efficiency, and inter-firm heat exchange, combined in a collective energy system. The holistic approach of techno-economic energy models facilitates the design of such systems, while yielding an optimal trade-off between energetic, economic and environmental performances. However, no models custom-tailored for industrial park energy systems are detected in literature. In this paper, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, a practical typology is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, and key model features are compared. Finally, important features for a business park energy model are identified. - Highlights: • A holistic perspective on (low carbon) business park energy systems is introduced. • A new categorisation of techno-economic energy models is proposed. • Model characteristics are described per model category. • Essential model features for business park energy system modelling are identified. • A strategy towards a techno-economic energy model for business parks is proposed

  7. Solar energy system economic evaluation for Colt Pueblo, Pueblo, Colorado

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at Pueblo, Colorado; Yosemite, California; Albuquerque, New Mexico; Fort Worth, Texas; and Washington, D.C. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  8. Solar energy system economic evaluation for Solaron Akron, Akron, Ohio

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.

  9. Solar energy system economic evaluation: Contemporary Newman, Georgia

    Science.gov (United States)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  10. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  11. Solar energy system economic evaluation for Seeco Lincoln, Lincoln, Nebraska

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  12. Solar energy system economic evaluation for IBM System 3, Glendo, Wyoming

    Science.gov (United States)

    1980-01-01

    This analysis was based on the technical and economic models in f-chart design procedures with inputs based on the characteristics of the parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings, and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated.

  13. Economic implications of fusion-fission energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Schulte, S.C.

    1979-04-01

    The principal conclusions that can be made based on the estimated costs reported in this paper are twofold. First, hybrid reactors operating symbiotically with conventional fission reactors are a potentially attractive supply alternative. Estimated hybrid energy system costs are slightly greater than estimated costs of the most attractive alternatives. However, given the technological, economic, and institutional uncertainties associated with future energy supply, differences of such magnitude are of little significance. Second, to be economically viable, hybrid reactors must be both fuel producers and electricity producers. A data point representing each hybrid reactor driver-blanket concept is plotted as a function of net electrical production efficiency and annual fuel production. The plots illustrate that the most economically viable reactor concepts are those that produce both fuel and electricity

  14. Economic MPC for a linear stochastic system of energy units

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura

    2016-01-01

    This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...

  15. Solar energy system economic evaluation for IBM system 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    The economic performance of an operational test site of a solar energy system is described. The viability of the system was tested over a broad range of environmental and economic conditions. Significant results are reported.

  16. Hybrid photovoltaic system control for enhancing sustainable energy. Economic aspects

    International Nuclear Information System (INIS)

    Leva, Sonia; Roscia, Mariacristina; Zaninelli, Dario

    2005-01-01

    The paper introduces hybrid photovoltaic/diesel generation systems for supplying remote power plant taking into account the enhancement of sustainable energy on the economic point of view. In particular, a new monitoring and control device is presented in order to carry out the optimum energy flows and a cost evaluation is performed on a real plant showing the effect and weight of the economical sustainability and economical saving. (authors)

  17. Economic dispatch optimization for system integrating renewable energy sources

    Science.gov (United States)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  18. Technical-economic analysis of electric energy storage systems

    International Nuclear Information System (INIS)

    Stefanescu, Florian; Curuia, Marian; Brad, Sebastian; Anghel, Mihai; Stefanescu, Ioan

    2009-01-01

    Fluctuations in electric energy consumption and changes that affected last years the electric energy market, as well, entail perturbations in transport and distribution systems due to outrunning of their current physical capacities. Consequently, storing the electric energy in buffer systems appears to be a must owing to its strategic and economical importance. Indeed, it can enhance firmly the capacity of fulfilling the electric energy demands in real time and so, avoiding the blackout events caused by disruptions in power supply . Also, of great importance is the role of energy storing systems as backing ancillaries for promoting variable or uncertain renewable sources (like photovoltaic or wind sources). The Superconducting Magnetic Energy Storage (SMES) is a promising system of direct storing of electricity by means of magnetic energy deposing in a short-circuited superconducting loop. However difficulties related to the use o superconducting systems and cryogenic temperatures (concerning construction and maintenance) hinder at present the application of SMES systems on a scale larger than some particular applications. Actually, owing to the lack of alternative solutions the rather high costs are accepted in such cases

  19. Direct and indirect economics of wind energy systems relative to fuel based systems

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, B

    1977-01-01

    It is shown that the addition of an energy-storage system of modest capacity, to a wind energy generator, provides a total-wind-energy electricity-generating system as dependable as current alternative means of producing electricity. It is further shown, based on projections of the mass-production costs of wind-energy generators and energy-storage systems, that such combined systems, as well as fuel-saving generators without storage, appear economically competitive to the alternatives, provided the comparison is made over the entire life cycle of the systems.

  20. Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model

    International Nuclear Information System (INIS)

    Wu, Y.J.; Rosen, M.A.

    1999-01-01

    Energy equilibrium models can be valuable aids in energy planning and decision-making. In such models, supply is represented by a cost-minimizing linear submodel and demand by a smooth vector-valued function of prices. In this paper, we use the energy equilibrium model to study conventional systems and cogeneration-based district energy (DE) systems for providing heating, cooling and electrical services, not only to assess the potential economic and environmental benefits of cogeneration-based DE systems, but also to develop optimal configurations while accounting for such factors as economics and environmental impact. The energy equilibrium model is formulated and solved with software called WATEMS, which uses sequential non-linear programming to calculate the intertemporal equilibrium of energy supplies and demands. The methods of analysis and evaluation for the economic and environmental impacts are carefully explored. An illustrative energy equilibrium model of conventional and cogeneration-based DE systems is developed within WATEMS to compare quantitatively the economic and environmental impacts of those systems for various scenarios. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Economic Model Predictive Control for Large-Scale and Distributed Energy Systems

    DEFF Research Database (Denmark)

    Standardi, Laura

    Sources (RESs) in the smart grids is increasing. These energy sources bring uncertainty to the production due to their fluctuations. Hence,smart grids need suitable control systems that are able to continuously balance power production and consumption.  We apply the Economic Model Predictive Control (EMPC......) strategy to optimise the economic performances of the energy systems and to balance the power production and consumption. In the case of large-scale energy systems, the electrical grid connects a high number of power units. Because of this, the related control problem involves a high number of variables......In this thesis, we consider control strategies for large and distributed energy systems that are important for the implementation of smart grid technologies.  An electrical grid has to ensure reliability and avoid long-term interruptions in the power supply. Moreover, the share of Renewable Energy...

  2. Environmental and economical aspects of selected energy system

    International Nuclear Information System (INIS)

    1991-11-01

    An analysis of environmental and economical aspects of selected renewable energy systems is presented. The aim was to provide a basis for estimating the competitive status in each case, to review the consequences of technological development, to identify attractive markets and to evaluate the effects of various economic conditions. Calculation methods are described and individual solar heating systems are compared to oil-fired boilers, boilers fired with solid fuels are compared to oil-fired boilers and straw-fired cogeneration plants are compared with coal, fuel-oil and straw-fired district heating plants. Results are presented in the form of tables and graphs. (AB)

  3. 100% Renewable energy systems, climate mitigation and economic growth

    DEFF Research Database (Denmark)

    Vad Mathiesen, Brian; Lund, Henrik; Karlsson, Kenneth Bernard

    2011-01-01

    that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socio-economic effects, create employment and potentially lead to large earnings on exports. If externalities such as health effects are included, even more benefits can be expected. 100% Renewable energy......Greenhouse gas mitigation strategies are generally considered costly with world leaders often engaging in debate concerning the costs of mitigation and the distribution of these costs between different countries. In this paper, the analyses and results of the design of a 100% renewable energy...... system by the year 2050 are presented for a complete energy system including transport. Two short-term transition target years in the process towards this goal are analysed for 2015 and 2030. The energy systems are analysed and designed with hour-by-hour energy system analyses. The analyses reveal...

  4. Engineering economics of alternative energy sources

    International Nuclear Information System (INIS)

    Denno, K.

    1990-01-01

    This textbook presents a comprehensive picture of the economic aspects, feasibility and adaptability of alternative energy sources and their interconnections. The author intends for this treatment of energy sources to be total and complete. It therefore includes such topics as low temperature and high temperature fuel cells, rechargeable storage batteries (including lead acid, nickel-cadmium, lithium, and sodium-sulfur), Redox flows cells energy system in compatibility with fuel cells and storage batteries, MHD energy systems using non-fossil renewable fuels, solar energy system using direct thermal units and photovoltaic generators, wind energy conversion systems, tidal ocean wave energy converters, geothermal energy, and ocean thermal energy conversion systems. The book is structured so that each major energy source is given one chapter. Each chapter begins with a discussion of the basic structural components of the energy source, as well as operational and fuel characteristics. This is followed by an economic analysis, which includes incremental energy cost curves and economic coordination equations for each possible system of operation. Where appropriate, economic scheduling of generation is applied to several modes of system consumption (e.g., localized dispersed systems, interconnected load centers, and central systems)

  5. Techno-economic optimisation of energy systems; Contribution a l'optimisation technico-economique de systemes energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla Pellen, Ch

    2006-07-15

    The traditional approach currently used to assess the economic interest of energy systems is based on a defined flow-sheet. Some studies have shown that the flow-sheets corresponding to the best thermodynamic efficiencies do not necessarily lead to the best production costs. A method called techno-economic optimisation was proposed. This method aims at minimising the production cost of a given energy system, including both investment and operating costs. It was implemented using genetic algorithms. This approach was compared to the heat integration method on two different examples, thus validating its interest. Techno-economic optimisation was then applied to different energy systems dealing with hydrogen as well as electricity production. (author)

  6. Economic Impacts of Future Changes in the Energy System - National Perspectives

    DEFF Research Database (Denmark)

    Glynn, James; Fortes, Patrícia; Krook-Riekkola, Anna

    2015-01-01

    climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a national level. The preceding chapter focuses on a global perspective. The modelling studies outlined here show that burden sharing rules...... and national revenue recycling schemes for carbon tax are critical for the long-term viability of economic growth and equitable engagement on combating climate change. Traditional computable general equilibrium models and energy systems models solved in isolation can misrepresent the long run carbon cost...

  7. Economical assessment of a wind-hydrogen energy system using WindHyGen registered software

    International Nuclear Information System (INIS)

    Aguado, Monica; Ayerbe, Elixabete; Garde, Raquel; Rivas, David M.; Azcarate, Cristina; Blanco, Rosa; Mallor, Fermin

    2009-01-01

    This paper considers the problem of analyzing the economical feasibility of a wind-hydrogen energy storage and transformation system. Energy systems based on certain renewable sources as wind power, have the drawback of random input making them a non-reliable supplier of energy. Regulation of output energy requires the introduction of new equipment with the capacity to store it. We have chosen the hydrogen as an energy storage system due to its versatility. The advantage of these energy storage systems is that the energy can be used (sold) when the demand for energy rises, and needs (prices) therefore are higher. There are two disadvantages: (a) the cost of the new equipment and (b) energy loss due to inefficiencies in the transformation processes. In this research we develop a simulation model to aid in the economic assessment of this type of energy systems, which also integrates an optimization phase to simulate optimal management policies. Finally we analyze a wind-hydrogen farm in order to determine its economical viability compared to current wind farms. (author)

  8. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification

    International Nuclear Information System (INIS)

    Deniz, Emrah; Çınar, Serkan

    2016-01-01

    Highlights: • Possibility of suppling all energy consumption from solar energy was tested. • Air and water-heated humidification-dehumidification desalination system was proposed. • Energy, exergy, economic and environmental analysis were performed. • Productivity and performance of the desalination system was analyzed. • Various operational parameters were investigated. - Abstract: A novel humidification-dehumidification (HDH) solar desalination system is designed and tested with actual conditions and solar energy was used to provide both thermal and electrical energy. Energy-exergy analyses of the system are made and economic and enviro-economic properties are investigated using data obtained from experimental studies. In this way, economic and environmental impacts of the HDH solar desalination systems have also been determined. The maximum daily energy efficiency of the system was calculated as 31.54% and the maximum exergy efficiency was found as 1.87%. The maximum fresh water production rate is obtained as 1117.3 g/h. The estimated cost of fresh water produced through the designed HDH system is 0.0981 USD/L and enviro-economic parameter is 2.4041 USD/annum.

  9. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This report is one of a series of reports that investigate the technical and economic aspects of Nuclear-Renewable Hybrid Energy Systems. It provides the results of an analysis of two scenarios. The first is a Texas-synthetic gasoline scenario and the second is an Arizona-desalination scenario. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives in which natural gas provides the energy.

  10. Economic Impacts of Future Changes in the Energy System - Global Perspectives

    DEFF Research Database (Denmark)

    Glynn, James; Fortes, Patrícia; Krook-Riekkola, Anna

    2015-01-01

    climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a global level. The next chapter of this book focuses on a national perspective. The range of economic impacts is regionally dependent upon...... the stage of economic development, the level of industrialisation, energy intensity of exports, and competition effects due to rates of relative decarbonisation. Developed nation’s decarbonisation targets are estimated to result in a manageable GDP loss in the region of 2 % by 2050. Energy intensive export...... driven developing countries such as China and India, and fossil fuel exporting nations can expect significantly higher GDP loss of up to 5 % GDP per year by mid-century....

  11. Economic power schedule and transactive energy through an intelligent centralized energy management system for a DC residential distribution system

    DEFF Research Database (Denmark)

    Yue, Jingpeng; Hu, Zhijian; Li, Chendan

    2017-01-01

    and the demand side. The utilization of distributed generation (DG) requires an economic operation, stability, and an environmentally friendly approach in the whole DC system. This paper not only presents an optimization schedule and transactive energy (TE) approach through a centralized energy management system...... is aligned with the command of the unit power schedule. In this work, a DC RDS is used as a case study to demonstrate the process, the RDS is associated with unit economic models, and a cost minimization objective is proposed that is to be achieved based on the real-time electrical price. The results show...... that the proposed framework and methods will help the targeted DC residential system to reduce the total cost and reach stability and efficiency....

  12. Precautionary principle, economic and energy systems and social equity

    International Nuclear Information System (INIS)

    Carvalho, Joaquim Francisco de; Mercedes, Sonia Seger P.; Sauer, Ildo L.

    2010-01-01

    In this paper the precautionary principle is reviewed alongside the process of international implementation. Adoption of the precautionary principle is advocated to deal with energy choices as a mechanism to account for potential climate change impacts, notwithstanding the debate on scientific uncertainty on the links between solar activity, greenhouse gas concentration and climate. However, it is also recognized that the widespread application of the precautionary principle to energy choices does not seem to be taking place in the real world. Relevant concrete barriers are identified stemming from the intrinsic logic governing the hegemonic economic system, driving the energy choices by economic surplus and rent generation potential, the existence of social asymmetries inside and among societies as well as by the absence of democratic global governance mechanisms, capable of dealing with climate change issues. Such perception seems to have been reinforced by the outcome of the United Nations Climate Change Conference, held in Copenhagen in December 2009.

  13. Economic competitiveness of fuel cell onsite integrated energy systems

    Science.gov (United States)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  14. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  15. Socio-economic overview of wind energy conversion systems

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1992-01-01

    A social scientist's perspective is presented on the socio-economic impacts of wind energy conversion systems (WECS) in Ontario. The main organization for delivering electricity in Ontario is Ontario Hydro. This utility has two WECS, an experimental 3.5 kW generator and a hybrid wind/diesel facility at a remote northern community. Ontario Hydro is reviewing its supply options and anticipates wind power would likely be used in niche applications involving off-grid hybrid systems where the cost of displaced generation is high. On-grid applications would likely be in the form of dispersed non-utility generation. The potential contribution of wind power to Ontario's electricity supply mix could be as little as 1 MW by the year 2000 or as high as 40 MW by the year 2014, depending on costs and technological developments. Socio-economic criteria used by the utility for assessing individual supply options include job creation, regional economic development, local community impacts, social acceptance, and distribution of risks and benefits. Initial observations of potential effects of WECS are discussed, including site selection, manufacturing, construction, and operation. Barriers to implementation of WECS in Ontario include the limited number of good wind sites, the intermittent nature of WECS power, and the currently uneconomic nature of WECS for bulk electricity systems. However, WECS have environmentally attractive features and are socially acceptable. 10 refs., 3 figs

  16. Technical and economic design of photovoltaic and battery energy storage system

    International Nuclear Information System (INIS)

    Bortolini, Marco; Gamberi, Mauro; Graziani, Alessandro

    2014-01-01

    Highlights: • Design of grid connected photovoltaic system integrating battery energy storage system. • A model to manage the energy flows and assess the system profitability is presented. • The model evaluates the effective PV power rate and battery energy system capacity. • An application and multi-scenario analysis based on an Italian context is discussed. • Results show the system technical feasibility and an energy cost save of 52 €/MW h. - Abstract: In the last years, the technological development and the increasing market competitiveness of renewable energy systems, like solar and wind energy power plants, create favorable conditions to the switch of the electricity generation from large centralized facilities to small decentralized energy systems. The distributed electricity generation is a suitable option for a sustainable development thanks to the environmental impact reduction, the load management benefits and the opportunity to provide electricity to remote areas. Despite the current cut off of the national supporting policies to the renewables, the photovoltaic (PV) systems still find profitable conditions for the grid connected users when the produced energy is self-consumed. Due to the intermittent and random nature of the solar source, PV plants require the adoption of an energy storage system to compensate fluctuations and to meet the energy demand during the night hours. This paper presents a technical and economic model for the design of a grid connected PV plant with battery energy storage (BES) system, in which the electricity demand is satisfied through the PV–BES system and the national grid, as the backup source. The aim is to present the PV–BES system design and management strategy and to discuss the analytical model to determine the PV system rated power and the BES system capacity able to minimize the Levelized Cost of the Electricity (LCOE). The proposed model considers the hourly energy demand profile for a reference

  17. A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yanzhe Hu

    2017-03-01

    Full Text Available As a type of renewable energy, wind energy is integrated into the power system with more and more penetration levels. It is challenging for the power system operators (PSOs to cope with the uncertainty and variation of the wind power and its forecasts. A chance-constrained economic dispatch (ED model for the wind-thermal-energy storage system (WTESS is developed in this paper. An optimization model with the wind power and the energy storage system (ESS is first established with the consideration of both the economic benefits of the system and less wind curtailments. The original wind power generation is processed by the ESS to obtain the final wind power output generation (FWPG. A Gaussian mixture model (GMM distribution is adopted to characterize the probabilistic and cumulative distribution functions with an analytical expression. Then, a chance-constrained ED model integrated by the wind-energy storage system (W-ESS is developed by considering both the overestimation costs and the underestimation costs of the system and solved by the sequential linear programming method. Numerical simulation results using the wind power data in four wind farms are performed on the developed ED model with the IEEE 30-bus system. It is verified that the developed ED model is effective to integrate the uncertain and variable wind power. The GMM distribution could accurately fit the actual distribution of the final wind power output, and the ESS could help effectively decrease the operation costs.

  18. Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems

    DEFF Research Database (Denmark)

    Zong, Yi; Böning, Georg Martin; Santos, Rui Mirra

    2016-01-01

    ) strategy for energy management in smart buildings, which can act as active users interacting with smart energy systems. The challenges encountered during the implementation of EMPC for active demand side management are investigated in detail in this paper. A pilot testing study shows energy savings......When there is a high penetration of renewables in the energy system, it requires proactive control of large numbers of distributed demand response resources to maintain the system’s reliability and improve its operational economics. This paper presents the Economic Model Predictive Control (EMPC...

  19. Economic feasibility of thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, B.A. [Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2007-07-01

    This paper investigates the economic feasibility of both building an ice thermal storage and structure a time of rate tariff for the unique air conditioning (A/C) plant of the Grand Holy Mosque of Makkah, Saudi Arabia. The features of the building are unique where the air-conditioned 39,300 m{sup 2} zone is open to the atmosphere and the worshippers fully occupy the building five times a day, in addition hundreds of thousands of worshippers attend the blessed weekend's prayer at noontime, which escalates the peak electricity load. For economic analysis, the objective function is the daily electricity bill that includes the operation cost and the capital investment of the ice storage system. The operation cost is function of the energy imported for operating the plant in which the tariff structure, number of operating hours and the ambient temperature are parameters. The capital recovery factor is calculated for 10% interest rate and payback period of 10 years. Full and partial load storage scenarios are considered. The results showed that with the current fixed electricity rate (0.07 $/kWh), there is no gain in introducing ice storage systems for both storage schemes. Combining energy storage and an incentive time structured rate showed reasonable daily bill savings. For base tariff of 0.07 $/kWh during daytime operation and 0.016 $/kWh for off-peak period, savings were achieved for full load storage scenario. Different tariff structure is discussed and the break-even nighttime rate was determined (varies between 0.008 and 0.03 $/kWh). Partial load storage scenario showed to be unattractive where the savings for the base structured tariff was insignificant. (author)

  20. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  1. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Directory of Open Access Journals (Sweden)

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  2. Design of a novel geothermal heating and cooling system: Energy and economic analysis

    International Nuclear Information System (INIS)

    Angrisani, G.; Diglio, G.; Sasso, M.; Calise, F.; Dentice d’Accadia, M.

    2016-01-01

    Highlights: • A desiccant-based air handling unit is coupled with a geothermal source. • A TRNSYS model is developed to simulate both winter and summer period. • Sensitivity analysis is carried out in order to evaluate the effects of the design parameters. • Pay back period about 1.2 years and Primary Energy Savings higher than 90% were founded. • Economic and energetic performance increase with to the use of Domestic Hot Water. - Abstract: A dynamic simulation study in TRNSYS environment has been carried out to evaluate energy and economic performance of a novel heating and cooling system based on the coupling between a low or medium-enthalpy geothermal source and an Air Handling Unit, including a Desiccant Wheel. During summer season, a Downhole Heat Exchanger supplies heat to regenerate the desiccant material, while a certain amount of geothermal fluid is continuously extracted by the well in order to maintain high operating temperatures. Simultaneously, the extracted geothermal fluid drives an absorption chiller, producing chilled water to the cooling coil of the Air Handling Unit. Conversely, during the winter season, geothermal energy is used to cover a certain amount of the space heating demand. In both summer and winter operation modes, a geothermal energy is also used to supply Domestic Hot Water. A case study was analyzed, in which an existing low-enthalpy geothermal well (96 °C), located in Ischia (an island close to Naples, Southern Italy), is used to drive the geothermal system. Results showed that the performance of the proposed system is significantly affected by the utilization factor of Domestic Hot Water. In fact, considering a range of variation of such parameter between 5% and 100%, Primary Energy Saving increase from 77% to 95% and Pay-Back Period decreases from 14 years to 1.2 years, respectively. The simulations proved the technical and economic viability of the proposed system. In fact, a comparison with similar systems available

  3. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  4. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  5. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  6. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  7. An Economic Analysis of Residential Photovoltaic Systems with and without Energy Storage

    Science.gov (United States)

    Kizito, Rodney

    Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of high solar supply but low consumption. This allows the investor to use the stored energy when the cost of conventional utility power is high, while also allowing for excess stored energy to be sold back to the grid. This paper aims to investigate the overall returns for investor's investing in solely PV and ES-based PV systems by using a return of investment (ROI) economic analysis. The analysis is carried out over three scenarios: (1) residence without a PV system or ES, (2) residence with just a PV system, and (3) residence with both a PV system and ES. Due to the variation in solar exposure across the regions of the United States, this paper performs an analysis for eight of the top solar market states separately, accounting for the specific solar generation capabilities of each state. A Microsoft Excel tool is provided for computation of the ROI in scenario 2 and 3. A benefit-cost ration (BCR) is used to depict the annual economic performance of the PV system (scenario 2) and PV + ES system (scenario 3). The tool allows the user to adjust the variables and parameters to satisfy the users' specific investment situation.

  8. An overview of the political, technical and economical aspects of gas-fired distributed energy system in China

    International Nuclear Information System (INIS)

    Chen, Qiaohui; Wang, Weilong; Lu, Jianfeng; Ding, Jing

    2013-01-01

    The interest in distributed energy system has been increasing in China in recent years due to the environmental and energy policy concerns. The distributed energy system generates power, heating and cooling to residential, commercial and industrial facilities. Due to cascade utilization of energy, it can make good use of energy to improve energy efficiency and to increase energy savings. Furthermore, it consumes less energy and reduces carbon emissions. This paper reviews existing and newly-built gas-fired distributed energy projects in China. The techno-economic assessment of the selected projects has also been discussed and reported. The results show that in Xiamen Jimei DE project, the primary energy ratio of the DES can be as high as 92.9%, and energy-saving rate is 35.5%. Moreover, exergy efficiency reaches 54.3%, and the system can reduce 0.52 million tons of CO 2 annually. -- Highlights: ► The political, technical and economical aspects of gas-fired DES are analyzed. ► The techno-economic assessment of two selected projects is conducted. ► Primary energy ratio can be as high as 92.9% and energy-saving rate is 35.5%. ► Exergy efficiency is 54.3% and the system can reduce a large amount of CO 2 emissions

  9. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.

  10. Nuclear energy and economic competitiveness in several normative systems

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The serious challenge imposed by the necessity of reducing the gases emission of greenhouse effect in the electric generation sector, it has renovated the interest in the new plants construction of nuclear energy. Nevertheless, since the use of the nuclear energy began to descend ago more of 25 years, it is has speculated continually about the possible nuclear rebirth. Are such predictions based in solid basis or are mere groundless prognostics? The objective of the present document is to analyze the economic aspects of the nuclear energy, to identify the key factors that they allow to determine its competitiveness and to sound the possible markets for the new plants of nuclear energy. To achieve this, it is divided in the following sections: Revision of the current state of the nuclear energy, including the location, the type and capacity of the plants; Identification of the variables that determine the economic situation of the nuclear energy; Revision of the recent predictions and of the economic aspects of the Olkiluoto nuclear power plant of Finland; A revision by market of the possible future of the new nuclear facilities in the coming decade. (Author)

  11. Energy efficiency and economic feasibility of CCHP driven by stirling engine

    International Nuclear Information System (INIS)

    Kong, X.Q.; Wang, R.Z.; Huang, X.H.

    2004-01-01

    This paper deals with the problem of energy efficiency evaluation and economic feasibility analysis of a small scale trigeneration system for combined cooling, heating and power generation (CCHP) with an available Stirling engine. Trigeneration systems have a large potential of energy saving and economical efficiency. The decisive values for energetic efficiency evaluation of such systems are the primary energy rate and comparative primary energy saving (Δq), while the economic feasibility analysis of such systems relates the avoided cost, the total annual saving and payback period. The investigation calculates and compares the energy saving and economic efficiency of trigeneration system with Stirling engine against contemporary conventional independent cooling, heating and power, showing that a CCHP system saves fuel resources and has the assurance of economic benefits

  12. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  13. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    International Nuclear Information System (INIS)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg; Jenkin, Thomas

    2016-01-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  14. Economic evaluation of innovative storage technologies in energy systems with a high share of renewable energies

    International Nuclear Information System (INIS)

    Kondziella, Hendrik

    2017-01-01

    This work addresses the question of whether the ongoing transformation to a low-carbon energy system in Germany will also create market opportunities for innovative market participants, in particular for storage operators. The economic effects that occur in energy systems with high levels of variable renewable energy (vEE) can be measured by their integration costs. Scientific research into the additional storage and flexibility needs of such an energy system often addresses imbalances in the system balance sheet. The respective methods are, however, based on different assumptions and framework conditions, so that the results can only be compared with one another to a limited extent. The hourly fluctuating wholesale price on the electricity exchange is an important indicator to signal the need for flexibility. Many analyzes use historical or predicted pricing time series to evaluate storage options. However, while the feedback of the operation of an energy storage on the market prices is left out. Therefore, a method is developed in this work to estimate the impact of an increasing market volume of storage and other flexibility options on spot market prices. The influence of storage use on electricity demand and spot market prices in 2020 and 2030 is examined. The scenarios to be defined for the electricity market are model-based and evaluated. To answer the question, techno-economic models, e.g. The MICOES power market model for power plant deployment planning, the DeSiflex model for smoothing residual load through integrated flexibility options and the Arturflex model for estimating arbitrage gains through the use of flexibility options on the spot market. [de

  15. Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania

    Science.gov (United States)

    1980-01-01

    The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.

  16. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  17. Economic Modeling of Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Rui Bo

    2013-04-01

    Full Text Available Due to the variable nature of wind resources, the increasing penetration level of wind power will have a significant impact on the operation and planning of the electric power system. Energy storage systems are considered an effective way to compensate for the variability of wind generation. This paper presents a detailed production cost simulation model to evaluate the economic value of compressed air energy storage (CAES in systems with large-scale wind power generation. The co-optimization of energy and ancillary services markets is implemented in order to analyze the impacts of CAES, not only on energy supply, but also on system operating reserves. Both hourly and 5-minute simulations are considered to capture the economic performance of CAES in the day-ahead (DA and real-time (RT markets. The generalized network flow formulation is used to model the characteristics of CAES in detail. The proposed model is applied on a modified IEEE 24-bus reliability test system. The numerical example shows that besides the economic benefits gained through energy arbitrage in the DA market, CAES can also generate significant profits by providing reserves, compensating for wind forecast errors and intra-hour fluctuation, and participating in the RT market.

  18. Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle

    International Nuclear Information System (INIS)

    Taheri, M.H.; Mosaffa, A.H.; Farshi, L. Garousi

    2017-01-01

    In this work, a novel integrated biomass based multigeneration energy system is presented and investigated for power, cooling and hydrogen production. The proposed system consists of a combination of biomass integrated gasifier-gas turbine cycle, a Rankine cycle, a cascade organic Rankine cycle, an absorption refrigeration system and a PEM to produce hydrogen. This system uses cold energy of LNG as a thermal sink. Comprehensive thermodynamic and economic analyses as well as an optimization are performed. The effects of operating parameters on thermodynamic performance and total cost rate are investigated for overall system and subsystems. The results show that the fuel mass flow rate is the dominant factor affecting the variation of energy efficiency and total cost rate. An increase in fuel mass flow rate from 4 kg s"−"1 to 10 kg s"−"1 leads to a decrease of 8.5% and an increase of 122.8% overall energy efficiency and total cost rate, respectively. Also, the largest increase in exergy efficiency occurs when gas turbine inlet temperature increases. The results of optimization showed that the highest net power output, mass flow rate of natural gas delivered to city and the flue gas temperature discharged to the environment are obtained for the exergy efficiency optimal design. - Highlights: • A novel multigeneration system is investigated and optimized thermodynamically and economically. • This system is proposed for power, cooling and hydrogen production. • Proposed system uses LNG cold energy thermal sink that can generate power after vaporization. • The effects of operating parameters on energy and exergy efficiencies and total cost rate are investigated. • An optimization is applied based on the energy, exergy and economic viewpoints.

  19. Economic Evaluation of Dual-Level-Residence Solar-Energy System

    Science.gov (United States)

    1982-01-01

    105-page report is one in a series of economic evaluations of different solar-energy installations. Using study results, an optimal collector area is chosen that minimizes life-cycle costs. From this optimal size thermal and economic performance is evaluated.

  20. Analysis of economic characteristics of a tariff system for thermal energy activities

    Energy Technology Data Exchange (ETDEWEB)

    Banovac, Eraldo [Croatian Energy Regulatory Agency, Zagreb (Croatia); Gelo, Tomislav; Simurina, Jurica [University of Zagreb (Croatia). Faculty of Economics and Business

    2007-11-15

    Generally speaking, the creation of tariff systems for energy activities carried out as regulated or public service obligation is becoming professionally challenging. The Croatian Energy Regulatory Agency (CERA) created the methodology of the tariff system for thermal energy activities and passed this tariff system (without tariff element amounts) in May 2006. The background of the tariff system for thermal energy activities (heat generation, heat distribution and heat supply) including a legislative framework relevant for passing the tariff system, terminology, matrix of the tariff models, tariff elements and amounts of tariff entries are analyzed in this paper. Special attention is paid to the economic characteristics of the tariff system, such as the capital asset pricing model (CAPM), which is chosen among several models of the weighted average of cost of capital (WACC). Using the WACC, the regulatory authorities ensure returns to be equal to the opportunity cost of capital. Furthermore, main formulae and procedures for submitting the proposal for changing the amounts of tariff elements are analyzed as well. (author)

  1. Analysis of economic characteristics of a tariff system for thermal energy activities

    International Nuclear Information System (INIS)

    Banovac, Eraldo; Gelo, Tomislav; Simurina, Jurica

    2007-01-01

    Generally speaking, the creation of tariff systems for energy activities carried out as regulated or public service obligation is becoming professionally challenging. The Croatian Energy Regulatory Agency (CERA) created the methodology of the tariff system for thermal energy activities and passed this tariff system (without tariff element amounts) in May 2006. The background of the tariff system for thermal energy activities (heat generation, heat distribution and heat supply) including a legislative framework relevant for passing the tariff system, terminology, matrix of the tariff models, tariff elements and amounts of tariff entries are analyzed in this paper. Special attention is paid to the economic characteristics of the tariff system, such as the capital asset pricing model (CAPM), which is chosen among several models of the weighted average of cost of capital (WACC). Using the WACC, the regulatory authorities ensure returns to be equal to the opportunity cost of capital. Furthermore, main formulae and procedures for submitting the proposal for changing the amounts of tariff elements are analyzed as well

  2. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  3. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-09-01

    Full Text Available Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP and a mechanical compression water chiller system (ACHP to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in experimental working areas of the office buildings in a cigarette factory in Mersin, Turkey. The heating and cooling loads of the cigarette factory building were calculated, and actual thermal data were collected and analyzed. To calculate these loads, the cooling load temperature difference method was used. It was concluded that the geothermal heating and cooling system was more useful and productive and provides substantial economic benefits.

  4. Solar energy`s economic and social benefits

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H. [Bundeshaus, Bonn (Germany)

    1995-08-01

    There are numerous indications that solar energy is far more than a mere stopgap measure to escape from the present environmental crisis. These include the natural as well as the developed, and still developing, technological potential of solar energy; the vast opportunities offered by abandoning destructive energy sources; and, not least, the new industrial perspectives arising from the conversion of our energy system. In addition to the environmental benefits, solar energy will bring about major economic and social gains. The creation of a solar energy system offers an unexpected and unique chance to release industrial society from the harmful consequences of the Industrial Revolution and to make available its positive accomplishments - particularly the social, democratic and cultural opportunities made possible by freeing mankind from slave labour - to all of mankind. Destruction of the environment is the greatest danger for industrialized societies pursuing economic growth, but it is not the only one. The Western high culture of welfare states is evidently a thing of the past. Created by the pressure of social movements that emerged in the Industrial Revolution, they stabilized capitalism by making it more responsive to the social needs in its strongholds. But both old and new contradictions, as well as the growth of welfare costs, lead to the conclusion that the future of the industrial system is increasingly seen only in terms of jettisoning its social obligations. Political democracy will then once more be in danger. Modern history is unable to provide an example of a stable democracy based on permanent mass misery

  5. ERWIN2: User's manual for a computer model to calculate the economic efficiency of wind energy systems

    International Nuclear Information System (INIS)

    Van Wees, F.G.H.

    1992-01-01

    During the last few years the Business Unit ESC-Energy Studies of the Netherlands Energy Research Foundation (ECN) developed calculation programs to determine the economic efficiency of energy technologies, which programs support several studies for the Dutch Ministry of Economic Affairs. All these programs form the so-called BRET programs. One of these programs is ERWIN (Economische Rentabiliteit WINdenergiesystemen or in English: Economic Efficiency of Wind Energy Systems) of which an updated manual (ERWIN2) is presented in this report. An outline is given of the possibilities and limitations to carry out calculations with the model

  6. Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Harajli, Hassan A.; Jones, Craig I.; Winnett, Adrian B.

    2012-01-01

    Energy analysis, environmental life-cycle assessment (LCA) and economic appraisals have been utilised to study the performance of a domestic building integrated photovoltaic (BIPV) system on a ‘whole systems’ basis. Energy analysis determined that the system paid back its embodied energy in just 4.5 years. LCA revealed that the embodied impacts were offset by the electricity generated to provide a net environmental benefit in most categories. Only carcinogens, ecotoxicity and minerals had a small net lifetime burden. A financial analysis was undertaken from the householder's perspective, alongside cost-benefit analysis from a societal perspective. The results of both indicated that the systems are unlikely to pay back their investment over the 25 year lifetime. However, the UK is in an important period (2010/11) of policy transition with a move away from the ‘technology subsidies’ of the Low Carbon Buildings Programme (LCBP) and towards a ‘market development policy’ of feed-in tariffs. Representing the next stage on an innovation S-curve this is expected to facilitate rapid PV uptake, as experienced in countries such as Germany, Denmark, and Spain. The results of the present study clearly demonstrate the importance of the new government support scheme to the future uptake of BIPV. - Highlights: ► LCA and economic appraisals of a UK domestic building integrated PV system. ► Energy analysis determined that the system paid back its embodied energy in 4.5 years. ► UK moved towards a market development policy of feed-in tariffs. ► Financial analysis shows the importance of the new FiT scheme to the uptake of PV.

  7. Economics of fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    The economic analysis of symbiotic energy systems in which U233 (to fuel advanced converters burning U233 fuel) is generated in blankets surrounding fusioning D-T plasma's depends on factors such as the plasma performance parameters, ore costs, and the relative costs of Fusion Breeders (CTR) to Advanced Fission Converters. The analysis also depends on detailed information such as initial, final makeup fuel requirements, fuel isotopics, reprocessing and fabrication costs, reprocessing losses (1%) and delays (2 years), the cost of money, and the effect of the underutilization of the factory thermal installation at the beginning of cycle. In this paper we present the results of calculations of overall fuel cycle and power costs, ore requirements, proliferation resistance and possibilities for grid expansion, based on detailed mass and energy flow diagrams and standard US INFCE cost data and introduction constraints, for realistic symbiotic scenarios involving CTR's (used as drivers) and denatured CANDU's (used as U233 burners). We compare the results with those obtained for other strategies involving heterogeneous LMFBR's which burn Pu to produce U233 for U233-burners such as the advanced CANDU converters

  8. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  9. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    OpenAIRE

    Imal, Muharrem; Yılmaz, Koray; Pınarbaşı, Ahmet

    2015-01-01

    Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP) and a mechanical compression water chiller system (ACHP) to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in ...

  10. Economical investigation of an integrated boiler-solar energy saving system in Jordan

    International Nuclear Information System (INIS)

    Al-Salaymeh, A.; Al-Rawabdeh, I.; Emran, S.

    2010-01-01

    Jordan is relatively poor in conventional energy resources and is basically a non-oil producing country, i.e. its energy supply relies to a very large extent on imports. It is therefore unlikely that any future energy scenario for Jordan will not include a significant proportion of its energy to come from renewable sources such as solar energy. The lack of an integrated energy saving system which utilizes the solar energy for domestic hot water as well as for building space heating was the main motivation for the present study. In Jordan, there is no existing system can provide the integration mechanisms of solar energy and fuel combustion with electrical ones. Also adding new and related products increases sales of current boilers products and can be offered at competitive prices. During our investigations, it has been found that the market demand for boiler-solar integration system in terms of the system acceptability, system feasibility, and system values is very high especially after the increased in oil prices during the last 3 years, i.e. 2006-2008. The market trend shows that even though solar collector is not attractive as an energy source for domestic hot water, but the combined system for space heating and domestic hot water is fully accepted. However, the market demand for such a system is not completely identified yet but the awareness and the discussion of the idea shows a good potential. The economical study about the integration system of boiler and solar energy shows that using solar water heaters to heat space and for domestic water is cost-effective. Payback can be as low as 3 years, and utility bills are much lower than they would be using a conventional heating system. The initial draft and design of a prototype for the boiler-solar-electrical integration system has been carried out.

  11. Three essays on energy and economic growth

    Science.gov (United States)

    Peach, Nathanael David

    2011-12-01

    This dissertation explores the relationship between energy and economic growth. Chapter Two, Three, and Four examine the interaction of energy-related measures and economic outcomes by applying different methodologies across various spatial dimensions. Chapter Two shows that increases in energy consumption are necessary for increases in state level economic growth to occur. Chapter Three estimates a simultaneous supply and demand energy market at the state level. This system allows for estimates of structural elasticities to be obtained. Findings indicate that energy supply is considerably more elastic than energy demand. Energy demand is found to be determined by responses to short run shocks rather than long run processes. Chapter Four estimates the impact of changes in various elements of governance and institutional quality impact genuine investment within an economy. Increases in democracy are predicted to decrease genuine investment in energy-rich nations. The dissertation concludes with Chapter Five.

  12. Energy economics and supply

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This section of the book, Part I, consists of four chapters (1--4). Chapter 1, Energy and the Economic Future, covers the following subjects: general economics of energy; predicting energy demand; a model of energy and the economy; and interpretations. Chapter 2, Uranium and Fossil Fuel Supplies, covers the following subjects: uranium resources; oil and gas supplies; coal resources. Chapter 3, Economics of Nuclear Power, covers information on sources of uncertainty; cost of nuclear power; cost of coal-generated electricity. Chapter 4, Alternative Energy Sources, sums information on solar energy, geothermal energy, fusion power, conservation, and transmission

  13. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system

    International Nuclear Information System (INIS)

    Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen

    2017-01-01

    Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.

  14. Evolution of competition in energy alternative pathway and the influence of energy policy on economic growth

    International Nuclear Information System (INIS)

    Yang, Honglin; Wang, Lin; Tian, Lixin

    2015-01-01

    This work is devoted to the evolution of the competition of energy alternative pathway in China, and the influence of energy policy on economic growth by using a dynamical system method. Firstly, the relation between energy and economic growth is taken into account, and a dynamic evolution model is established. It is observed that Hopf bifurcation and chaotic behavior occurs with the varying investment in renewable energy production. Secondly, when there is no policy intervention in energy market, the evolution of competition in energy alternative pathway is also investigated. Thirdly, the system parameters are also identified by using an artificial neural network method on the basis of certain empirical statistical data in China, and the dynamics of the parameters-identified system are studied. Finally, the influences of energy policy on economic growth are empirically analyzed, and some policy recommendations are given based on the results of empirical analysis. - Highlights: • Modeling the energy economy system via the method of dynamic system. • Attaining the chaotic attractor of the energy production and economic system. • Discovering the Hopf bifurcation when the investment changes. • Proposing the alternative pathway of free competition in energy production. • Determining the turning points of parameters related to policy regulation

  15. Different heating systems for single family house: Energy and economic analysis

    Directory of Open Access Journals (Sweden)

    Turanjanin Valentina M.

    2016-01-01

    Full Text Available The existing building stock energy consumption accounts for about 38% of final energy consumption in Republic of Serbia. 70% of that energy is consumed by residential sector, mostly for space heating. This research is addressed to the single family house building placed in the Belgrade city. The house has ground and first floor with total heating area of 130 m2 and pellet as space heating source. The aim of this paper is to evaluate energy and economic analysis for different heating systems. Several homeheating were compared: Option 1 (biomass combustion boiler using pellet as a fuel, Option 2 (gas combustion boiler and Option 3 (heat pump. The building performance was evaluated by TRNSYS 17 simulation code. Results show estimated savings using renewable energy sources. [Projekat Ministarstva nauke Republike Srbije, br. III42008

  16. Economic study on compressed energy storage cogeneration system in urban areas

    International Nuclear Information System (INIS)

    Uchiyama, Youji

    1991-01-01

    Due to the concentration of functions into cities and the spread of room cooling facilities, the energy demand in cities increased rapidly especially in summer season. The improvement of load factor of electric power has become an important subject for electric power companies, and as the technology for positively improving it, there is electric power storage. As for compressed air energy storage (CAES) system, its introduction, has been investigated as the electric power storage technology for the future in electric power business, but since it is also gas turbine technology, it becomes a cogeneration system. If the waste heat of gas turbines and compressors can be utilized effectively, not only the load factor of electric power is improved, but also it contributes to the improvement of overall energy efficiency and the improvement of environmental problems. This research is to study on the feasibility of compressed air energy storage centering around its economical efficiency when it is installed in customer side as the cogeneration system in cities. The features of CAES, the tendency of the development in Japan and foreign countries, the introduction of CAES in new town districts and the economy are described. (K.I.)

  17. Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands

    International Nuclear Information System (INIS)

    Blechinger, P.; Cader, C.; Bertheau, P.; Huyskens, H.; Seguin, R.; Breyer, C.

    2016-01-01

    Globally, small islands below 100,000 inhabitants represent a large number of diesel based mini-grids. With volatile fossil fuel costs which are most likely to increase in the long-run and competitive renewable energy technologies the introduction of such sustainable power generation system seems a viable and environmental friendly option. Nevertheless the implementation of renewable energies on small islands is quite low based on high transaction costs and missing knowledge according to the market potential. Our work provides a global overview on the small island landscape showing the respective population, economic activity, energy demand, and fuel costs for almost 1800 islands with approximately 20 million inhabitants currently supplied by 15 GW of diesel plants. Based on these parameters a detailed techno-economic assessment of the potential integration of solar PV, wind power, and battery storage into the power supply system was performed for each island. The focus on solar and wind was set due to the lack of data on hydro and geothermal potential for a global island study. It revealed that almost 7.5 GW of photovoltaic and 14 GW of wind power could be economically installed and operated on these islands reducing the GHG-emissions and fuel consumption by approximately 50%. In total numbers more than 20 million tons of GHG emissions can be reduced by avoiding the burning of 7.8 billion liters of diesel per year. Cost savings of around 9 USDct/kWh occur on average by implementing these capacities combined with 5.8 GWh of battery storage. This detailed techno-economic evaluation of renewable energies enables policy makers and investors to facilitate the implementation of clean energy supply systems on small islands. To accelerate the implementation of this enormous potential we give specific policy recommendations such as the introduction of proper regulations. - Highlights: • GIS analysis has identified approximately 1800 small island energy systems with

  18. Effect of different economic support policies on the optimal synthesis and operation of a distributed energy supply system with renewable energy sources for an industrial area

    International Nuclear Information System (INIS)

    Casisi, Melchiorre; De Nardi, Alberto; Pinamonti, Piero; Reini, Mauro

    2015-01-01

    Highlights: • MILP model optimization identifies best structure and operation of an energy system. • Total cost of the system is minimized according to industrial stakeholders wills. • Effects of the adoption of economic support policies on the system are evaluated. • Social cost of incentives is comparted with correspondent CO 2 emission reduction. • Support schemes that promote an actual environmental benefit are highlighted. - Abstract: Economic support policies are widely adopted in European countries in order to promote a more efficient energy usage and the growth of renewable energy technologies. On one hand these schemes allow us to reduce the overall pollutant emissions and the total cost from the point of view of the energy systems, but on the other hand their social impact in terms of economic investment needs to be evaluated. The aim of this paper is to compare the social cost of the application of each incentive with the correspondent CO 2 emission reduction and overall energy saving. A Mixed Integer Linear Programming optimization procedure is used to evaluate the effect of different economic support policies on the optimal configuration and operation of a distributed energy supply system of an industrial area located in the north-east of Italy. The minimized objective function is the total annual cost for owning, operating and maintaining the whole energy system. The expectation is that a proper mix of renewable energy technologies and cogeneration systems will be included in the optimal solution, depending on the amount and nature of the supporting policies, highlighting the incentives that promote a real environmental benefit

  19. Energy and economic development [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Machado, G.; Schaeffer, R.

    2006-01-01

    energy use patterns. Section 5.2 assesses energy use in Brazil by analysing energy intensities. A decomposition analysis technique is applied to final energy use figures to help identify the factors affecting final energy use in the Brazilian economy. Such a technique allows the decomposition of energy use changes into three basic effects: activity, structure and intensity. The activity effect results from the impact of overall economic growth on final energy use. The structure effect derives from the impact that the sectoral composition of the economy has on the final energy use of a country. The intensity effect refers to the final energy requirements per unit of activity of each sector considered (sectoral breakdown). Findings are contrasted with historical events and circumstances to provide a better understanding of the impacts of Brazil's economic and social choices on its final energy use patterns. Section 5.3 recommends synergetic strategies to enhance sustainable energy development in Brazil based on what has been learned from the country's previous economic and social choices and from the experiences of other countries. The final section is a summary of the main issues related to Brazil's energy system and its economic development. The chapter presents indicators mainly related to energy intensity. Other important economic indicators that are part of the Energy Indicators for Sustainable Development (EISD) set are addressed in other parts of the report: fuel mix in Chapter 2, reserves to production ratios in Chapter 3, technology efficiencies in Chapter 4, per capita energy use in Chapter 7 and import dependence in Chapter 8

  20. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  1. Interconnected power systems: a technical and economical optimization for the benefit of energy transitions in France and in Europe

    International Nuclear Information System (INIS)

    Maillard, Dominique

    2014-01-01

    The roles and missions of TSOs go way beyond the implicit meaning of the term 'power transmission'. At the heart of the power system, we are responsible to keep the balance between supply and demand. By ensuring that we have the ability to fulfill this role on a daily basis, we provide our customers with economical, reliable and clean access to power supply. Operating the power system is all about optimization. Firstly, by mutualizing energy sources at the European level, RTE insures 'power' solidarity between regions and enhance renewable energy sources contribution. Secondly, the market mechanisms that we are developing make it possible to use the most competitive energy sources in France and in Europe. This optimal use of resources call for close cooperation with our European counterparts. These mechanisms support security of supply and economic optimization of the system, while also facilitating other ways to consume power. Overall, we promote solutions to help making decisions based on physical and economic parameters, always seeking the most advantageous solution and ensuring grid operability. RTE is constantly seeking ways of remaining a step ahead of changes within the power system. In the energy transition context, French economic competitiveness also relies on optimal efficiency of the power system. Our ambition is to developing a smart transmission system to support tomorrow's economy and energy landscape, in conjunction with our partners. (author)

  2. Energy efficiency / economic in agroecosystems; Eficiencia energetica/economica em agroecossistemas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis Carlos Ferreira de; Bueno, Osmar de Carvalho; Esperancini, Maura Seiko Tsutui [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas

    2010-07-01

    The energy and economic evaluation of agroecosystems is important in the sense of appraise as maintainable these can be so much of the point of view energy as economic. The objective of the present paper was to show, starting from a case study, the construction of an indicator of energy/economic efficiency, whose results for four existent systems of corn production in the study area presented indexes that varied between 22.4 and 31.6. Of the reading of those values was possible to evaluate that all of the appraised systems show sustainability of long and short term. The proposed indicator if it shows solid in the agroecosystems appreciation concerning the analysis of your energy/economic sustainability. (author)

  3. Techno-economic prospects for CO2 capture from distributed energy systems, , 19(March 2013), 2013, pp. 328-347

    NARCIS (Netherlands)

    Kuramochi, T.; Ramirez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2013-01-01

    CO2 emissions from distributed energy systems are expected to become increasingly significant, accounting for about 20% for current global energy-related CO2 emissions in 2030. This article reviews, assesses and compares the techno-economic performance of CO2 capture from distributed energy systems

  4. Economics of superconductive energy storage inductor-converter units in power systems

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1975-01-01

    Since the original proposal by Boom and Peterson in 1972, there has been growing interest in superconductive energy storage inductor converter units (IC units) for use in large power systems for peak shaving and load leveling. Different aspects of it are being studied at the University of Wisconsin and elsewhere. An economic study of such IC units shows that large IC units, bigger than about 1000 MWh, are economically competitive with other peaking alternatives, larger units being more economical. External electrical circuit losses in IC units have negligible effect on their storage and power capacities. There are three credits which could be of significant economic value to IC units. These are: (1) transmission credit which varied from about $4 to $60/kW peak power, with a typical value of about $35/kW; (2) pollution credit which varied from about $5 to $160/kW with a typical value of $80/kW; and Spinning Reserve Credit which varied from about $20 to $370/kW with a typical value of $90/kW

  5. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  6. Energy economics and financial markets

    Energy Technology Data Exchange (ETDEWEB)

    Dorsman, Andre [Vrije Univ. Amsterdam (Netherlands). Dept. of Finance; Simpson, John L. [Curtin Univ., Perth, WA (Australia). School of Economics and Finance; Westerman, Wim (eds.) [Groningen Univ. (Netherlands). Faculty of Economics and Business Economics, Econometrics and Finance

    2013-10-01

    Deals with the upcoming theme of energy issues. Links energy issues with economics and financial markets. Combines global focus with specific regional and local examples. Unites theoretical insights with timely data and practical insights. Specialized author team from all over the world. Energy issues feature frequently in the economic and financial press. Specific examples of topical energy issues come from around the globe and often concern economics and finance. The importance of energy production, consumption and trade raises fundamental economic issues that impact the global economy and financial markets. This volume presents research on energy economics and financial markets related to the themes of supply and demand, environmental impact and renewables, energy derivatives trading, and finance and energy. The contributions by experts in their fields take a global perspective, as well as presenting cases from various countries and continents.

  7. Economic valuation of heat pumps and electric boilers in the Danish energy system

    DEFF Research Database (Denmark)

    Nielsen, Maria Grønnegaard; Morales González, Juan Miguel; Zugno, Marco

    2016-01-01

    Heat pumps (HP) and electric immersion boilers (EB) have great potential to increase flexibility in energy systems. In parallel, decreasing taxes on electricity-based heat production are creating a more favorable economic environment for the deployment of these units in Denmark. In this paper, th...... by potential investors....

  8. Energy alternatives for irrigation pumping: an economic analysis for northern India.

    OpenAIRE

    Bhatia R

    1984-01-01

    ILO pub-WEP pub. Working paper presenting an economic analysis of alternative energy sources for irrigation pumping in Northern India - considers economic and technical aspects of photovoltaic pumping systems, solar energy systems, electric power, dual-fuel and diesel engines, Biogas and wind power; discusses economic and social development aspects. Abbreviations, bibliography, glossary and tables.

  9. Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2014-10-01

    Full Text Available Desiccant-based air handling units can achieve reductions in greenhouse gas emissions and energy savings with respect to conventional air conditioning systems. Benefits are maximized when they interact with renewable energy technologies, such as solar collectors. In this work, experimental tests and data derived from scientific and technical literature are used to implement a model of a solar desiccant cooling system, considering three different collector technologies (air, flat-plate and evacuated collectors. Simulations were then performed to compare the energy, environmental and economic performance of the system with those of a desiccant-based unit where regeneration thermal energy is supplied by a natural gas boiler, and with those of a conventional air-handling unit. The only solution that allows achieving the economic feasibility of the solar desiccant cooling unit consists of 16 m2 of evacuated solar collectors. This is able to obtain, with respect to the reference system, a reduction of primary energy consumption and of the equivalent CO2 emissions of 50.2% and 49.8%, respectively, but with a payback time of 20 years.

  10. The Technical and Economic Study of Solar-Wind Hybrid Energy System in Coastal Area of Chittagong, Bangladesh

    Directory of Open Access Journals (Sweden)

    Shuvankar Podder

    2015-01-01

    Full Text Available The size optimization and economic evaluation of the solar-wind hybrid renewable energy system (RES to meet the electricity demand of 276 kWh/day with 40 kW peak load have been determined in this study. The load data has been collected from the motels situated in the coastal areas of Patenga, Chittagong. RES in standalone as well as grid connected mode have been considered. The optimal system configurations have been determined based on systems net present cost (NPC and cost of per unit energy (COE. A standalone solar-wind-battery hybrid system is feasible and economically comparable to the present cost of diesel based power plant if 8% annual capacity shortage is allowed. Grid tied solar-wind hybrid system, where more than 70% electricity contribution is from RES, is economically comparable to present grid electricity price. Moreover, grid tied RES results in more than 60% reduction in greenhouse gases emission compared to the conventional grid. Sensitivity analysis has been performed in this study to determine the effect of capital cost variation or renewable resources variation on the system economy. Simulation result of sensitivity analysis has showed that 20% reduction of installation cost results in nearly 9%–12% reductions in cost of per unit energy.

  11. Direct regional energy/economic modeling (DREEM) design

    Energy Technology Data Exchange (ETDEWEB)

    Hall, P.D.; Pleatsikas, C.J.

    1979-10-01

    This report summarizes an investigation into the use of regional and multiregional economic models for estimating the indirect and induced impacts of Federally-mandated energy policies. It includes an examination of alternative types of energy policies that can impact regional economies and the available analytical frameworks for measuring the magnitudes and spatial extents of these impacts. One such analytical system, the National Regional Impact Evaluation System (NRIES), currently operational in the Bureau of Economic Analysis (BEA), is chosen for more detailed investigation. The report summarizes the models capabilities for addressing various energy policy issues and then demonstrates the applicability of the model in specified contexts by developing appropriate input data for three scenarios. These scenarios concern the multi-state impacts of alternative coal-mining-development decisions, multi-regional impacts of macroeconomic change, and the comprehensive effects of an alternative national energy supply trajectory. On the basis of this experience, the capabilities of NRIES for analyzing energy-policy issues are summarized in a concluding chapter.

  12. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  13. Energy and economic tables 1950-1991

    International Nuclear Information System (INIS)

    1994-02-01

    This publication, prepared by the Planning and Economic Studies Section of the Division of Nuclear Power, presents summaries of data contained in the IAEA Energy and Economic Data Bank (EEDB). The data for each country are presented in a standardized format and in consistent system units. Aggregated data for the whole world, and for eight world subdivisions, are also presented in the same format

  14. Variants of social-economic and energy development of Bulgaria up to 2010

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    The development variants are formulated as the second stage of a procedure of energy-economy interrelations dynamics study, the other two stages being the scenarios description and the analysis of the development variants. This stage consists of interactive studies with the complex model of the economic developments (CMED), the model of the energy demand (MED) and the energy supplies model (ENERGO). The chapter presents a considerable in its depth and scope description of the energy consumption system developments, according to the alternative social economic and technological policies and also to the studies on the energy complex structure variants and the national energy balance. The economic development variants comprise 25 economic branch structures according to 6 basic economic indices. The energy demand development variants embrace the energy consumption system (including final energy demand, final electrical power demand of the industrial, transportation, household and services sectors), the energy supply system (fuel production and energy conversion) demand and the total energy demands of the country. The dynamics of the final energy demand is considered by 14 types of energy carriers. In addition a draft study on the implementation of gas turbine and combined cycle power plants in the electricity and heat production of the country is presented. 16 refs., 28 figs., 25 tab. (R.Ts.)

  15. Macro-economic and energy scenarios for Japan through the long-term

    International Nuclear Information System (INIS)

    Mankin, Shuichi

    1986-03-01

    As one of studies and systems analyses on the role of VHTR and process heat utilization in future energy systems, long-term macro economic and energy scenarios of Japan until the year 2030 have been generated. This paper presents,; 1) the outline of the long-term macro econometric model and the energy system dynamics model by which these scenarios were generated, 2) back grounds and prospects on future societies of Japan and exogeneous assumptions for calculations, and 3) macro energy and economic scenarios generated. Reflecting the present economic prospects, these scenarios are seemed to be of extremely low-growth type, however, the role of VHTR and its energy systems could be prospected clealy to play a large and important role within these scenario regions. Basic philosophies of scenario generations are also mentioned in this paper. (author)

  16. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  17. Technical and Economic Potential of Distributed Energy Storages for the Integration of Renewable Energy

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Trier, Daniel; Hansen, Kenneth

    Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role decentral...... indicate that sector coupling along with an intelligent choice of distributed energy storage technologies can enable the integration of large shares of fluctuating renewable energy in an energy efficient and cost-effective way.......Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role...... decentralised energy storages (DES) should play in integrating fluctuating renewable energy sources. The technical and economic potential for DES solutions is quantified using energy system modelling, and it is identified which DES technologies have the largest total (technical and economic) potential. For this...

  18. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2004-12-01

    This study evaluated the role of nuclear energy in various aspects in order to provide a more comprehensive standard of judgement to the justification of the utilization of nuclear energy. Firstly, this study evaluated the economic value addition of nuclear power generation technology and Radio-Isotope(RI) technology quantitatively by using modified Input-Output table. Secondly, a comprehensive cost-benefit analysis of nuclear power generation was conducted with an effort to quantify the foreign exchange expenditure, the environmental damage cost during 1986-2015 for each scenario. Thirdly, the effect of the regulation of CO 2 emission on the Korean electric supply system was investigated. In more detail, an optimal composition of power plant mix by energy source was investigated, under the assumption of the CO 2 emission regulation at a certain level, by using MESSAGE model. Finally, the economic spillover effect from technology self-reliance of NSSS by Korea Atomic Energy Research Institute was evaluated. Both production spillover effect and value addition spillover effect were estimated by using Input-Output table

  19. Economic models for battery energy storage

    International Nuclear Information System (INIS)

    Reckrodt, R.C.; Anderson, M.D.; Kluczny, R.M.

    1990-01-01

    While the technology required to produce viable Battery Energy Storage System exists, the economic feasibility (cost vs. benefits) of building these systems requires justification. First, a generalized decision diagram was developed to ensure that all of the economic factors were considered and properly related for the customer-side-of-the meter. Next, two economic models that had consistently given differing results were compared. One was the McKinney model developed at UM-Rolla in 1987; the second was the SYSPLAN model developed by Battelle. Differences were resolved on a point by point basis with reference to the current economic environment. The economic model was upgraded to include the best of both models based on the resolution of these differences. The upgrades were implemented as modifications to the original SYSPLAN (1986 version) to preserve user friendliness. In this paper four specific cases are evaluated and compared. The results are as predicted, since comparison was made with two known models

  20. Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective mathematical programming approach

    International Nuclear Information System (INIS)

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2014-01-01

    Highlights: • Environmental/economical scheduling of energy and reserve. • Simultaneous participation of loads in both energy and reserve scheduling. • Aggregate wind generation and demand uncertainties in a stochastic model. • Stochastic scheduling of energy and reserve in a distribution system. • Demand response providers’ participation in energy and reserve scheduling. - Abstract: In this paper a stochastic multi-objective economical/environmental operational scheduling method is proposed to schedule energy and reserve in a smart distribution system with high penetration of wind generation. The proposed multi-objective framework, based on augmented ε-constraint method, is used to minimize the total operational costs and emissions and to generate Pareto-optimal solutions for the energy and reserve scheduling problem. Moreover, fuzzy decision making process is employed to extract one of the Pareto-optimal solutions as the best compromise non-dominated solution. The wind power and demand forecast errors are considered in this approach and the reserve can be furnished by the main grid as well as distributed generators and responsive loads. The consumers participate in both energy and reserve markets using various demand response programs. In order to facilitate small and medium loads participation in demand response programs, a Demand Response Provider (DRP) aggregates offers for load reduction. In order to solve the proposed optimization model, the Benders decomposition technique is used to convert the large scale mixed integer non-linear problem into mixed-integer linear programming and non-linear programming problems. The effectiveness of the proposed scheduling approach is verified on a 41-bus distribution test system over a 24-h period

  1. Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses

    International Nuclear Information System (INIS)

    Georges, L.; Massart, C.; Van Moeseke, G.; De Herde, A.

    2012-01-01

    In order to reduce the energy consumption of the building stock, a major trend is to drastically reduce the space-heating (SH) needs by improving the thermal performance of the envelope. In general, this measure is combined with efficient heating systems to minimize the delivered energy and greenhouse gas emissions. Nevertheless, these better systems are often more expensive so that the extra-investment could be hardly recovered for small-scale energy consumption. The main objective of the article is to show how equilibria between cost-effectiveness and environmental performance of heating systems are changed when small SH needs are considered (i.e. for passive and low-energy houses). The scope is limited to new single-family dwellings. Furthermore, the passive house standard provides means of simplifying the SH by using the ventilation air: the idea is that savings should counterbalance the extra-investment in super-insulation. In theory, a new global economic optimum is generated at the passive house level. The second objective of the work is to study which conditions could lead to this new optimum. Only a detached-house typology is investigated to address this last issue. Regarding methodology, all the investigations are done considering the Belgian context. Energy and environmental performance is evaluated using a method that complies with the EN-15603 and EN-15316 standards. - Highlights: ► Cost-benefit analysis is performed without incentives and is based on the Belgian market. ► Equilibria between cost-effectiveness and environmental performance of heating systems are changed for very low-energy houses. ► The space-heating simplification at the passive house level can hardly produce a new global economic optimum.

  2. An economic perspective on the reliability of lighting systems in building with highly efficient energy: A case study

    International Nuclear Information System (INIS)

    Salata, F.; Lieto Vollaro, A. de; Ferraro, A.

    2014-01-01

    Highlights: • Proper design of efficient lighting systems. • The reliability and durability of the light sources. • Maintenance of lighting systems. • Quality standards of LED lamps. • Optimum economic choice of light sources. - Abstract: The performance of lighting system must be calculated in order to determine the energy requirements of the building. In the normative [EN 12464-1] are established lighting requirements which have effects on energy needs. The European standard [EN 15193] provides guidance on that evaluation. The easiest way to comply with reduction of energy requirements leads to the replacement of traditional lamps with LED ones, but if we calculate also the reliability parameters, the economic return is not guaranteed. Using bibliographic data, we have compared lighting’s results for a museum (LED lamps versus CFL and halogen lamps). The objective function of the study is to optimize the energy consumption of lighting systems, but at the same time to assess the reliability (MTTF of the lamps) of these systems. Without accurate information about this last parameters, the right choice of the lamps cannot be done successfully

  3. Methodology for the economic optimisation of energy storage systems for frequency support in wind power plants

    International Nuclear Information System (INIS)

    Johnston, Lewis; Díaz-González, Francisco; Gomis-Bellmunt, Oriol; Corchero-García, Cristina; Cruz-Zambrano, Miguel

    2015-01-01

    Highlights: • Optimisation of energy storage system with wind power plant for frequency response. • Energy storage option considered could be economically viable. • For a 50 MW wind farm, an energy storage system of 5.3 MW and 3 MW h was found. - Abstract: This paper proposes a methodology for the economic optimisation of the sizing of Energy Storage Systems (ESSs) whilst enhancing the participation of Wind Power Plants (WPP) in network primary frequency control support. The methodology was designed flexibly, so it can be applied to different energy markets and to include different ESS technologies. The methodology includes the formulation and solving of a Linear Programming (LP) problem. The methodology was applied to the particular case of a 50 MW WPP, equipped with a Vanadium Redox Flow battery (VRB) in the UK energy market. Analysis is performed considering real data on the UK regular energy market and the UK frequency response market. Data for wind power generation and energy storage costs are estimated from literature. Results suggest that, under certain assumptions, ESSs can be profitable for the operator of a WPP that is providing frequency response. The ESS provides power reserves such that the WPP can generate close to the maximum energy available. The solution of the optimisation problem establishes that an ESS with a power rating of 5.3 MW and energy capacity of about 3 MW h would be enough to provide such service whilst maximising the incomes for the WPP operator considering the regular and frequency regulation UK markets

  4. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis

    International Nuclear Information System (INIS)

    Calise, Francesco; Figaj, Rafal Damian; Vanoli, Laura

    2017-01-01

    Highlights: • Space heating/cooling, domestic hot water and electrical energy are provided by the system. • Two different users are investigated: fitness center and office. • The influence of the battery system on system economic performance is scarce. • Net metering contract is more profitable compared to simplified purchase/resale arrangement one. - Abstract: In this paper a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system are presented. The system includes photovoltaic/thermal collectors coupled with a solar-assisted heat pump, an adsorption chiller and an electrical energy storage. The modelled plant supplies electrical energy, space heating and cooling and domestic hot water. The produced solar thermal energy is used during the winter to supply the heat pump evaporator, providing the required space heating. In summer, solar thermal energy is used to drive an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess, with respect to the space heating and cooling demand, is used to produce domestic hot water. The produced electrical energy is self-consumed by both user and system auxiliary equipment and/or supplied to the grid. The system model includes a detailed electrical energy model for user storage and exchange with the grid along with a detailed building model. This study is a continuation of previous works recently presented by the authors. In particular, the present paper focuses on the real electrical demands of several types of users and on the analysis of the comfort of building users. Differently from the works previously published by the authors, the present work bases the calculations on measured electrical demands of real users (fitness center and offices). The system performance is analyzed with two different electricity supply contracts: net metering and simplified purchase/resale arrangement. Daily, weekly and yearly results are presented. Finally, a

  5. Energy economics; Economie de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Babusiaux, D. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    2005-07-01

    The energy demand is strongly conditioned by the consuming equipments. Depending on the uses, some energy sources can be substituted, while for some others the choice is limited or impossible. The energy offer comes mainly from non-renewable resources, and taking into consideration the geographical localization of these resources, economics are geopolitics are indissociable despite the development of markets. Necessary for the economic development, energy cannot be consumed without impact on the environment, which raises some worrying questions, like the one of global warming. (J.S.)

  6. Sector Economic Outlook. Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The energy sector is a key driver of the economic pillar of Vision 2030. As the economy grows, urbanization intensifies and incomes increase, corporate and household demand for energy also rises. To meet this growth in demand for energy, the sector needs to increase investments and diversify into more sources of energy such as geothermal and wind power. It is therefore critical that focus is directed towards development and sustainability of the energy sector to ensure delivery of least cost power that will improve Kenya's competitiveness and achieve the Vision 2030 objective of 10% average annual economic growth.

  7. Economic Assessment of Network-Constrained Transactive Energy for Managing Flexible Demand in Distribution Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Xue, Yusheng

    2017-01-01

    's aggregation at distribution system level. We extend this method with: (1) a new modeling technique that allows the resulting congestion price to be directly interpreted as a locational marginal pricing in the system; (2) an explicit analysis of the benefits and costs of different actors when using the NCTE...... method in the system, given the high penetration of distributed energy resources. This paper firstly describes the NCTE-based distribution system that introduces a new interacting scheme for actors at the distribution system level. Then, technical modeling and economic interpretation of the NCTE...

  8. Day-ahead economic optimisation of energy storage

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; Bosch, van den P.P.J.; Groot, de R.J.W.; Kling, W.L.

    2014-01-01

    This article addresses the day-ahead economic optimisation of energy storage systems within the setting of electricity spot markets. The case study is about a lithium-ion battery system integrated in a low voltage distribution grid with residential customers and photovoltaic generation in the

  9. A technical and economic analysis of one potential pathway to a 100% renewable energy system

    Directory of Open Access Journals (Sweden)

    David Connolly

    2014-02-01

    Full Text Available This paper outlines how an existing energy system can be transformed into a 100% renewable energy system. The transition is divided into a number of key stages which reflect key radical technological changes on the supply side of the energy system. Ireland is used as a case study,but in reality this reflects many typical energy systems today which use power plants for electricity, individual boilers for heat, and oil for transport. The seven stages analysed are 1 reference, 2 introduction of district heating, 3 installation of small and large-scale heat pumps,4 reducing grid regulation requirements, 5 adding flexible electricity demands and electric vehicles, 6 producing synthetic methanol/DME for transport, and finally 7 using synthetic gas to replace the remaining fossil fuels. For each stage, the technical and economic performance of the energy system is calculated. The results indicate that a 100% renewable energy system can provide the same end-user energy demands as today’s energy system and at the same price. Electricity will be the backbone of the energy system, but the flexibility in today’s electricity sector will be transferred from the supply side of the demand side in the future. Similarly, due to changes in the type of spending required in a 100% renewable energy system, this scenario will result in the creation of 100,000 additional jobs in Ireland compared to an energy system like today’s. These results are significant since they indicate that the transition to a 100% renewable energy system can begin today, without increasing the cost of energy in the short- or long-term, if the costs currently forecasted for 2050 become a reality.

  10. Solar energy's economic and social benefits

    International Nuclear Information System (INIS)

    Scheer, H.

    1995-01-01

    There are numerous indications that solar energy is far more than a mere stopgap measure to escape from the present environmental crisis. These include the natural as well as the developed, and still developing, technological potential of solar energy; the vast opportunities offered by abandoning destructive energy sources; and, not least, the new industrial perspectives arising from the conversion of our energy system. In addition to the environmental benefits, solar energy will bring about major economic and social gains. The creation of a solar energy system offers an unexpected and unique chance to release industrial society from the harmful consequences of the Industrial Revolution and to make available its positive accomplishments - particularly the social, democratic and cultural opportunities made possible by freeing mankind from slave labour - to all of mankind. Destruction of the environment is the greatest danger for industrialized societies pursuing economic growth, but it is not the only one. The Western high culture of welfare states is evidently a thing of the past. Created by the pressure of social movements that emerged in the Industrial Revolution, they stabilized capitalism by making it more responsive to the social needs in its strongholds. But both old and new contradictions, as well as the growth of welfare costs, lead to the conclusion that the future of the industrial system is increasingly seen only in terms of jettisoning its social obligations. Political democracy will then once more be in danger. Modern history is unable to provide an example of a stable democracy based on permanent mass misery

  11. Energy, economic growth, and human welfare

    International Nuclear Information System (INIS)

    Schurr, S.H.

    1984-01-01

    The subject is covered in sections, entitled: economic growth and human welfare; world-wide economic growth; economic growth and energy consumption; assessing the future; caution advised; energy supply and economic growth; supply as constraint; sound policies needed. (U.K.)

  12. Economic effect of fusion in energy market. Various externalities of energy systems and the integrated evaluation

    International Nuclear Information System (INIS)

    Ito, Keishiro

    2002-01-01

    The primacy of a nuclear fusion reactor in a competitive energy market remarkably depends on to what extent the reactor contributes to reduce the externalities of energy. The reduction effects are classified into two effects, which have quite dissimilar characteristics. One is an effect of environmental dimensions. The other is related to energy security. In this study I took up the results of EC's ExternE project studies as a representative example of the former effect. Concerning the latter effect, I clarified the fundamental characteristics of externalities related to energy security and the conceptual framework for the purpose of evaluation. In the socio-economical evaluation of research into and development investments in nuclear fusions reactors, the public will require the development of integrated evaluation systems to support the cost-effect analysis of how well the reduction effects of externalities have been integrated with the effects of technological innovation, learning, spillover, etc. (author)

  13. City and Energy Infrastructures between Economic Processes and Urban Planning

    Directory of Open Access Journals (Sweden)

    Giuseppe Mazzeo

    2013-11-01

    Full Text Available The paper deals with the issues related to the relationship between city, energy, economic factors and city planning. These issues are analyzed from a theoretical point of view and are placed in a logical path based on three assumptions. The first considers the city as an intelligent system constantly evolving. The second considers the city as a system where economic processes come out at their highest level affecting other aspects of social and urban structure. The third considers the planning as the weak link in the process of urban development, one of the most exposed to economic and social pressures.Energy production has experienced a great progress since steam and electricity were discovered. Each stage of this evolution has affected city and territory introducing significant physical signs, changing the ways of carrying out functions and creating new needs and new activities. The energy revolution, based on sustainable sources and on skillful management of the networks, will strongly affect the city and the way of organizing the activities, their location, dimension, and the shape of the spaces.The paper explores some of the issues related to the relationship between urban system and energy.The first section analyzes the meaning of the intelligent city as an entity that is constantly changing and constantly adapting. The second section analyzes the role of the energy systems in the evolution of the activities and of the city’s image. The last section investigates the role of the economic factors in the evolution of the shape and meaning of city, pointing out that the way towards smart and green urban systems will largely depend on their economic advantage. 

  14. A technical and economic analysis of one potential pathway to a 100% renewable energy system

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad

    2014-01-01

    requirements, 5) adding flexible electricity demands and electric vehicles, 6) producing synthetic methanol/DME for transport, and finally 7) using synthetic gas to replace the remaining fossil fuels. For each stage, the technical and economic performance of the energy system is calculated. The results...

  15. Economic Assessment of Network-Constrained Transactive Energy for Managing Flexible Demand in Distribution Systems

    Directory of Open Access Journals (Sweden)

    Junjie Hu

    2017-05-01

    Full Text Available The increasing number of distributed energy resources such as electric vehicles and heat pumps connected to power systems raises operational challenges to the network operator, for example, introducing grid congestion and voltage deviations in the distribution network level if their operations are not properly coordinated. Coordination and control of a large number of distributed energy resources requires innovative approaches. In this paper, we follow up on a recently proposed network-constrained transactive energy (NCTE method for scheduling of electric vehicles and heat pumps within a retailer’s aggregation at distribution system level. We extend this method with: (1 a new modeling technique that allows the resulting congestion price to be directly interpreted as a locational marginal pricing in the system; (2 an explicit analysis of the benefits and costs of different actors when using the NCTE method in the system, given the high penetration of distributed energy resources. This paper firstly describes the NCTE-based distribution system that introduces a new interacting scheme for actors at the distribution system level. Then, technical modeling and economic interpretation of the NCTE-based distribution system are described. Finally, we show the benefits and costs of different actors within the NCTE-based distribution system.

  16. GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria

    International Nuclear Information System (INIS)

    Saheb Koussa, Djohra; Koussa, Mustapha

    2016-01-01

    This paper presents a method for economic evaluation and GHGs (greenhouse gases) emissions calculation from a GCRES (grid-connected renewable energy system). An investigation is made on large-scale operations of 67 MWh/day GCRES. A comparison is performed between a GCRES and a standard grid operation focusing on environmental and economic impacts. Emissions and the Renewable energy generation fraction (RF) of total energy consumption are calculated as the main environmental indicators. Costs including NPC (net present cost), COE (cost of energy) and payback period are calculated as the economic indicators. Using the hourly mean global solar irradiance, temperature and wind speed data relative to In Salah and Adrar locations characterized by an arid and hot climate according to the Koppen–Geiger climate classification, a long-term continuous implementation of hybrid renewable energy systems are simulated using HOMER software and are discussed. As results, it is observed that a GCRES reduce 30% and 35% of GHGs emission, and 81% and 76% of COE during the operation phase respectively for In Salah and Adrar. Investments in GCRES should be considered only by planning to produce parts of the equipment locally, which leads to significantly reduce the costs and, consequently, the emissions. - Highlights: • Grid-connected renewable energy system (GCRES). • Economic evaluation and greenhouse gases (GHGs) emissions calculation. • In Salah and Adrar are taken as two examples of the famous Algerian arid land. • The climatic data are used to simulate the long-term implementation of the system.

  17. Energy and Economic Crisis

    International Nuclear Information System (INIS)

    2000-01-01

    The relationship between the economy and the energy is much more complex of what looks. However, they are continued making, in some cases, absolute statements that used to listen in the past as dogmas, among those that are highly correlated in energy consumption and the Gross National Product GNP and that the countries follow the same development pattern more or less, mainly in connection with the energy consumption. Such statements are not completely misses, neither completely correct and they have behind many simplifications. Of a part, of the historical evolution analysis of several countries or groups of countries on long periods, it confirms the fact that the economic growth, induces an increment in general in the total consumption of energy and vice versa: Energy available with more speed and to smaller price it favors the economic development. Other important factors that impact in the growth of the energy consumption, besides the economic development, are, among, the population's increment, the state of technological development and the cultural customs of use

  18. Performance testing and economic analysis of a photovoltaic flywheel energy storage and conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R. D.; Millner, A. R.; Jarvinen, P. O.

    1980-01-01

    A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power conditioning electronics, is described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery-inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in some utility-interactive applications.

  19. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  20. Economic model of pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-07-29

    The objective of the work reported here was to develop a model which could be used to assess the economic effects of energy-conservative technological innovations upon the pipeline industry. The model is a dynamic simulator which accepts inputs of two classes: the physical description (design parameters, fluid properties, and financial structures) of the system to be studied, and the postulated market (throughput and price) projection. The model consists of time-independent submodels: the fluidics model which simulates the physical behavior of the system, and the financial model which operates upon the output of the fluidics model to calculate the economics outputs. Any of a number of existing fluidics models can be used in addition to that developed as a part of this study. The financial model, known as the Systems, Science and Software (S/sup 3/) Financial Projection Model, contains user options whereby pipeline-peculiar characteristics can be removed and/or modified, so that the model can be applied to virtually any kind of business enterprise. The several dozen outputs are of two classes: the energetics and the economics. The energetics outputs of primary interest are the energy intensity, also called unit energy consumption, and the total energy consumed. The primary economics outputs are the long-run average cost, profit, cash flow, and return on investment.

  1. Techno-Economic Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    technical and economic challenges. One such challenge is the discontinuity, or intermittency, of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization strategies. This paper presents a model and optimization...... for a sustainable energy system for a 100% renewables based Smart House (SH). We have devised and analysed an innovative high-efficiency approach to residential energy supply. The analysis involves detailed technical specifications and considerations for providing optimal supply of electricity, heating, cooling......The continuous increasing negative effects of fossil fuel consumption on society and the environment, opens a major interest into environmentally friendly alternatives to sustain the increasing demand for energy services. Despite the obvious advantages of renewable energy, it presents important...

  2. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  3. The Potential of Energy Storage Systems with Respect to Generation Adequacy and Economic Viability

    Science.gov (United States)

    Bradbury, Kyle Joseph

    Intermittent energy resources, including wind and solar power, continue to be rapidly added to the generation fleet domestically and abroad. The variable power of these resources introduces new levels of stochasticity into electric interconnections that must be continuously balanced in order to maintain system reliability. Energy storage systems (ESSs) offer one potential option to compensate for the intermittency of renewables. ESSs for long-term storage (1-hour or greater), aside from a few pumped hydroelectric installations, are not presently in widespread use in the U.S. The deployment of ESSs would be most likely driven by either the potential for a strong internal rate of return (IRR) on investment and through significant benefits to system reliability that independent system operators (ISOs) could incentivize. To assess the potential of ESSs three objectives are addressed. (1) Evaluate the economic viability of energy storage for price arbitrage in real-time energy markets and determine system cost improvements for ESSs to become attractive investments. (2) Estimate the reliability impact of energy storage systems on the large-scale integration of intermittent generation. (3) Analyze the economic, environmental, and reliability tradeoffs associated with using energy storage in conjunction with stochastic generation. First, using real-time energy market price data from seven markets across the U.S. and the physical parameters of fourteen ESS technologies, the maximum potential IRR of each technology from price arbitrage was evaluated in each market, along with the optimal ESS system size. Additionally, the reductions in capital cost needed to achieve a 10% IRR were estimated for each ESS. The results indicate that the profit-maximizing size of an ESS is primarily determined by its technological characteristics (round-trip charge/discharge efficiency and self-discharge) and not market price volatility, which instead increases IRR. This analysis demonstrates

  4. Economic Dispatch of Electric Energy Storage with Multi-service Provision

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2011-01-01

    This paper develops a generic optimization model that explores the difficulty met by Electric Energy Storage (EES) systems when economic dispatch for multiple-service provision is requested. Such a model is further used to investigate the economic performance of an EES system which meets the 10...

  5. Analysis of economic and energy utilization aspects for waste heat aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.; Wilson, J. V.

    1978-01-01

    A waste heat aquaculture system using extensive culture techniques to produce fin and shellfish is currently under investigation at the Oak Ridge National Laboratory. The system uses nutrients in waste water streams to grow algae and zooplankton which are fed to fish and clams. A tilapia polyculture association and the freshwater clam Corbicula are the animals cultured in the system. The investigations were performed to determine the economic feasibility of the system and examine energy utilization in the system. A net energy analysis was performed to identify the energy saving potential for the system. This analysis includes all energy costs (both direct and indirect) associated with building and operating the system. The results of the economic study indicated that fish production costs of $0.55/kg ($0.25/lb) were possible. This cost, however, depends upon the fish production rate and food conversion efficiency and could rise to as much as $1.65/kg ($0.75/lb). Clam production costs were found to be in the neighborhood of $0.37/kg of clam meat ($1.24/bushel). The energy utilization study results indicated that, when all energy costs are included, fish from the aquaculture system may require only 35% of the net energy now required for fish products from the ocean. However, the energy requirements also depend on system parameters and could be as large as the energy required for ocean caught products. Clams can be produced in the aquaculture system using only about 25% of the net energy required by traditional means. The results of the analysis indicate that the system appears to be economically feasible. They also indicate that significant energy savings are possible if waste heat aquaculture products replace ocean caught products.

  6. The economic growth enigma: Capital, labour and useful energy?

    International Nuclear Information System (INIS)

    Ayres, Robert; Voudouris, Vlasios

    2014-01-01

    We show that the application of flexible semi-parametric statistical techniques enables significant improvements in model fitting of macroeconomic models. As applied to the explanation of the past economic growth (since 1900) in US, UK and Japan, the new results demonstrate quite conclusively the non-linear relationships between capital, labour and useful energy with economic growth. They also indicate that output elasticities of capital, labour and useful energy are extremely variable over time. We suggest that these results confirm the economic intuition that growth since the industrial revolution has been driven largely by declining energy costs due to the discovery and exploitation of relatively inexpensive fossil fuel resources. Implications for the 21st century, which are also discussed briefly by exploring the implications of an ACEGES-based scenario of oil production, are as follows: (a) the provision of adequate and affordable quantities of useful energy as a pre-condition for economic growth and (b) the design of energy systems as ‘technology incubators’ for a prosperous 21st century. - Highlights: • Economic growth needs three factors of production. • We propose a semi-parametric generalised production function. • Exploitation of inexpensive fossil fuel resources has profound policy implications

  7. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  8. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  9. Energy consumption and economic development

    International Nuclear Information System (INIS)

    Tremblay, M.T.

    1994-01-01

    Speaking as an economic planner, the author of this address suggests a scenario that is rather pessimistic for the future of nuclear energy. He emphasizes that technological change will lead to economic growth, but then supposes that improvements in hydrogen energy and solar energy, combined with global competition, may lead to a fall rather than an increase in oil prices early in the next century. The 10 year lead time for bringing a nuclear station from design to commissioning makes it difficult to predict the economics of operation

  10. On the economic attractiveness of renewable energy technologies

    International Nuclear Information System (INIS)

    Jaegemann, Cosima

    2014-01-01

    The competitiveness of wind and solar power technologies is often evaluated in public debates by comparing levelized costs of electricity. This is, however, incorrect, as doing so neglects the economic value of technologies. Similarly, renewable energy support schemes are often designed to incentivize investors to only account for the marginal economic costs (MEC) but not for the marginal economic value (MEV el ) of renewable energy technologies, i.e., the revenue from selling electricity on the wholesale market during the unit's technical lifetime. In this paper, it is shown that the net marginal economic costs per kWh (NMEC) - defined as the difference between the MEC and the MEV el per kWh - should serve as the reference when discussing the economic attractiveness of renewable energy technologies. Moreover, renewable energy support schemes should incentivize investments in technologies and regions with the lowest net marginal economic costs per kWh (NMEC), as otherwise excess costs occur. This is demonstrated using the example of Germany and its technology- and region-specific wind and solar power targets for 2020. By applying a linear electricity system optimization model, Germany's technology- and region-specific wind and solar power targets for 2020 are found to cause excess costs of more than 6.6 bn Euro 2010 . These are driven by comparatively high NMEC (low economic attractiveness) of offshore wind and solar power in comparison to onshore wind power in Germany up to 2020.

  11. Economics of compressed air energy storage employing thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Reilly, R.W.

    1979-11-01

    The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

  12. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  13. From partial to total economic analysis. Five applications to environmental and energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.

    2006-05-04

    The studies presented in this thesis address the consequences of market distortions of governmental policies - predominantly in the area of environmental and energy policy. The studies cover different economic aggregation levels: The first study aims at investigating firm-level effects. Thus, the results refer only to a small number of well-defined economic entities, e.g. electricity supply companies in Germany. Subsequently, issues - such as the evaluation of efficiency effects of the European Emissions Trading system - are addressed on a multi-sectoral and multi-regional level, but still only one market is considered. Thereupon, the scope of investigation is broadened by interactions of different markets - e.g. as in the case of the economic evaluation of renewable energy promotion strategies. Finally, a general equilibrium analysis of a European nuclear phase-out scenario covers all economic feed-backs on the national and international level. (orig.) 5.

  14. Energy, Economic Growth and Environmental Sustainability: Five Propositions

    Directory of Open Access Journals (Sweden)

    Steven Sorrell

    2010-06-01

    Full Text Available This paper advances five linked and controversial propositions that have both deep historical roots and urgent contemporary relevance. These are: (a the rebound effects from energy efficiency improvements are significant and limit the potential for decoupling energy consumption from economic growth; (b the contribution of energy to productivity improvements and economic growth has been greatly underestimated; (c the pursuit of improved efficiency needs to be complemented by an ethic of sufficiency; (d sustainability is incompatible with continued economic growth in rich countries; and (e a zero-growth economy is incompatible with a fractional reserve banking system. These propositions run counter to conventional wisdom and each highlights either a "blind spot" or "taboo subject" that deserves closer scrutiny. While accepting one proposition reinforces the case for accepting the next, the former is neither necessary nor sufficient for the latter.

  15. Economics of producing hydrogen as transportation fuel using offshore wind energy systems

    International Nuclear Information System (INIS)

    Mathur, Jyotirmay; Agarwal, Nalin; Swaroop, Rakesh; Shah, Nikhar

    2008-01-01

    Over the past few years, hydrogen has been recognized as a suitable substitute for present vehicular fuels. This paper covers the economic analysis of one of the most promising hydrogen production methods-using wind energy for producing hydrogen through electrolysis of seawater-with a concentration on the Indian transport sector. The analysis provides insights about several questions such as the advantages of offshore plants over coastal installations, economics of large wind-machine clusters, and comparison of cost of producing hydrogen with competing gasoline. Robustness of results has been checked by developing several scenarios such as fast/slow learning rates for wind systems for determining future trends. Results of this analysis show that use of hydrogen for transportation is not likely to be attractive before 2012, and that too with considerable learning in wind, electrolyzer and hydrogen storage technology

  16. Establishment of Passive Energy Conservation Measure and Economic Evaluation of Fenestration System in Nonresidential Building of Korea

    Directory of Open Access Journals (Sweden)

    Bo-Eun Choi

    2017-01-01

    Full Text Available ECO2 (building energy efficiency rating program and passive energy conservation measures (ECMs were established as a basic study for targeted methodologies and decision support systems development in Korea to meet national regulations. The primary energy consumption and economic evaluation of nonresidential buildings was performed. Passive ECMs were classified as planning and performance elements. The planning elements are the window-to-wall ratio (WWR and horizontal shading angle. The performance elements are the thermal transmittance (U-value of the walls, roof, and floor and the U-value and solar heat gain coefficient (SHGC of windows. This study focused on the window-to-wall ratio and the U-value and solar heat gain coefficient of windows. An economic efficiency database for the constructed alternatives was built; the target building was set and the Passive ECM List for the target building was derived. The energy consumption evaluation and economic evaluation were performed for each of the constructed alternatives, and a methodology for guiding energy efficiency decisions was proposed based on the performance evaluation results, and the optimal Passive ECM List for the target building was derived.

  17. Project management for economical nuclear energy

    International Nuclear Information System (INIS)

    Majerle, P.P.

    2005-01-01

    The price of electricity is significantly influenced by the cost of the initial generation asset. The cost of the initial nuclear generation asset is significantly influenced by the design and construction duration. Negative variations in the cost and duration of actual design and construction have historically impacted the early relative economics of nuclear power generation. Successful management of plant design information will mitigate the risks of the design and construction of future nuclear plants. Information management tools that can model the integrated delivery of large complex projects enable the project owners to accurately evaluate project progress, as well as the economic impact of regulatory, political, or market activities not anticipated in the project execution plan. Significant differences exist in the electrical energy markets, project delivery models, and fuel availability between continents and countries. However, each market and project delivery model is challenged by the need to produce economical electrical energy. The information management system presented in this paper provides a means to capture in a single integrated computerized database the design information developed during plant design, procurement, and construction and to allow this information to be updated and retrieved in real time by all project participants. Utilization of the information management system described herein will enable diverse project teams to rapidly and reliably input, share, and retrieve power plant information, thereby supporting project management's goal to make good on its commitment to the economic promise of tomorrow's nuclear electrical power generation by achieving cost-effective construction. (authors)

  18. Conception for economical energy utilization and supply

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H; Canzler, B

    1977-10-01

    This study was performed to study the factors which determine energy consumption within buildings and how to optimize such energy use. The parameters of the principal energy consumers, i.e., HVAC and lighting systems, were analyzed. Possibilities for obtaining economical energy supplies and for reducing energy consumption were studied with emphasis on adapting the building mechanical equipment and the building design and construction to each other. It was concluded that planning for energy conservation in buildings will decrease the cost of constructing and operating buildings if the architect, building contractor and building operator work together from the initial planning stages.

  19. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  20. The new economics of nuclear energy

    International Nuclear Information System (INIS)

    Salian, Ramesh; Prasanna Kumar, N.

    2012-01-01

    With 15% of the world's population and an economic growth rate that increases the aspiration of its people to better quality of life, India has a voracious appetite for energy. Nuclear power is one of the options of providing safe, environmentally benign, reliable and economically competitive energy services. Nuclear power world over provides about 16% of electricity through 440 nuclear power plants with a total installed capacity of 361.582 GW (as of January 2004, IAEA PRIS data). Nuclear energy has traditionally played a small role in meeting India's energy requirements. Nuclear power makes up only 4,120 MW, constituting 2.6%, of the total electricity generation capacity. India is a power hungry nation and needs to switch over from its tremendous dependence on fossil fuels to alternative sources of energy like solar energy, bio energy and nuclear energy. Indian nuclear power plants have progressively attained excellent operation performances. However, the changing economic and geopolitical situation in the energy sector has made it imperative to emphasize the significance of nuclear energy in the future energy landscape of the country. The present paper discuss the importance, demand and supply pattern of nuclear energy and its economics. (author)

  1. Three empirical essays in energy economics

    Science.gov (United States)

    Pless, Jacquelyn Ryan

    This dissertation explores society's relationship with energy systems. Focusing on two areas of energy economics---electricity reliability and clean energy technology adoption---my objective is to provide insights on energy markets that can contribute towards informing energy policy and improving quality of life. In the first chapter, I examine how firm-level corruption on the demand side of the electricity sector impacts electricity reliability in developing countries. Showing that bribes for electricity connections are closely related to power outages experienced by firms, this chapter demonstrates how consumer-level corrupt behavior negatively impacts electricity service provision. In the second chapter, I study homeowners' stated information searching about solar photovoltaic (PV) adoption in California's residential market. Exploring differences between the types of information sought by consumers adopting solar through third-party ownership (TPO) relative to consumers who purchase solar systems outright (host-ownership (HO)), this chapter sheds light on differences between business model consumer preferences in the residential solar PV market. Lastly, in the third chapter I estimate solar subsidy pass-through to the prices faced by consumers in California's residential solar PV market and ask whether incidence differs for TPO consumers where subsidies are directed to the third party owner of the system (or the "seller") and HO consumers where subsidies go directly to the consumer (or the "buyer"). I find that TPO consumers capture more than 100 percent of every dollar of solar subsidy while HO consumers capture less than 100 percent of every dollar. This is surprising because standard economic theory predicts that the relative benefit of a subsidy does not depend on to whom it is directed.

  2. On the physics of power, energy and economics of renewable electric energy sources - Part II

    International Nuclear Information System (INIS)

    Skoglund, Annika; Leijon, Mats; Waters, Rafael; Rehn, Alf; Lindahl, Marcus

    2010-01-01

    Renewable Energy Technologies (RETs) are often recognized as less competitive than traditional electric energy conversion systems. Obstacles with renewable electric energy conversion systems are often referred to the intermittency of the energy sources and the relatively high maintenance cost. However, due to an intensified discourse on climate change and its effects, it has from a societal point of view, become more desirable to adopt and install CO 2 neutral power plants. Even if this has increased the competitiveness of RETs in a political sense, the new goals for RET installations must also be met with economical viability. We propose that the direction of technical development, as well as the chosen technology in new installations, should not primarily be determined by policies, but by the basic physical properties of the energy source and the associated potential for inexpensive energy production. This potential is the basic entity that drives the payback of the investment of a specific RET power plant. With regard to this, we argue that the total electric energy conversion system must be considered if effective power production is to be achieved, with focus on the possible number of full loading hours and the Degree of Utilization. This will increase the cost efficiency and economical competitiveness of RET investments, and could enhance faster diffusion of new innovations and installations without over-optimistic subsidies. This paper elaborates on the overall problem of the economy of renewable electric energy conversion systems by studying the interface between physics, engineering and economy reported for RET power plants in different scientific publications. The core objective is to show the practical use of the Degree of Utilization and how the concept is crucial for the design and economical optimization disregarding subsidies. The results clearly indicate that the future political regulative frameworks should consider the choice of renewable energy

  3. Electric vehicle charging in China's power system : Energy, economic and environmental trade-offs and policy implications

    NARCIS (Netherlands)

    Li, Ying; Davis, Chris; Lukszo, Zofia; Weijnen, Margot

    2016-01-01

    This work investigates different scenarios for electric vehicle (EV) deployment in China and explores the implications thereof with regard to energy portfolio, economics and the environment. Specifically, we investigate how to better deliver the value of EVs by improving designs in the power system

  4. Simplified energy design economics: Principles of economics applied to energy conservation and solar energy investments in buildings

    Science.gov (United States)

    Marshall, H. E.; Ruegg, R. T.; Wilson, F.

    1980-01-01

    Economic analysis techniques for evaluating alternative energy conservation investments in buildings are presented. Life cycle cost, benefit cost, savings to investment, payback, and rate of return analyses are explained and illustrated. The procedure for discounting is described for a heat pump investment. Formulas, tables of discount factors, and detailed instructions are provided to give all information required to make economic evaluations of energy conserving building designs.

  5. Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions

    International Nuclear Information System (INIS)

    Edwin, M.; Joseph Sekhar, S.

    2014-01-01

    Highlights: • Performance studies on biomass and biogas based milk cooling systems in remote areas. • Economic analysis of milk cooling system operated with locally available renewable energy sources. • Payback period for replacing conventional milk cooling systems with renewable energy based cooling system. • Identification of the suitable combination of locally available renewable energy sources for milk cooling. • Hybrid energy based milk cooling system for regions that have rubber and paddy cultivation, in India. - Abstract: In developing countries like India, about 70% of the population is engaged in the production of milk, fruits and vegetables. Due to the lack of proper storage and transit facilities, the agricultural produce, in remote areas loses its value. This spoilage could be prevented at the local village level, by providing cooling units for short term preservation. In this paper, the possibility of a hybrid energy based thermally operated cold storage has been considered to meet the cooling needs of the villages in the southern parts of India, where biomass, biogas and gobar gas are available in abundance. A milk cooling system that uses various combinations of locally available renewable energy sources to operate an aqua ammonia vapour absorption cooling system has been analysed using the Matlab software. The impact of various combinations of renewable energy sources on the Coefficient of Performance (COP), Net Present Value (NPV) and payback period of the total cooling system has been studied. The analysis shows that the COP and payback period of the proposed hybrid renewable energy based milk cooling system are 0.16–0.23 and 4–6 years respectively

  6. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  7. The role of energy in economic growth.

    Science.gov (United States)

    Stern, David I

    2011-02-01

    This paper reviews the mainstream, resource economics, and ecological economics models of growth. A possible synthesis of energy-based and mainstream models is presented. This shows that when energy is scarce it imposes a strong constraint on the growth of the economy; however, when energy is abundant, its effect on economic growth is much reduced. The industrial revolution released the constraints on economic growth by the development of new methods of using coal and the discovery of new fossil fuel resources. Time-series analysis shows that energy and GDP cointegrate, and energy use Granger causes GDP when capital and other production inputs are included in the vector autoregression model. However, various mechanisms can weaken the links between energy and growth. Energy used per unit of economic output has declined in developed and some developing countries, owing to both technological change and a shift from poorer quality fuels, such as coal, to the use of higher quality fuels, especially electricity. Substitution of other inputs for energy and sectoral shifts in economic activity play smaller roles. © 2011 New York Academy of Sciences.

  8. Economic and Environmental Assessment of a 1 MW Grid Connected Rooftop Solar PV System for Energy Efficient Building in Bangladesh

    Science.gov (United States)

    Chakraborty, Sanjib; Hosain, Rubayet; Rahman, Toufiqur; Rabbi, Ahmead Fazle

    This paper evaluates the potentiality of a 1 MW grid connected rooftop solar PV system for an Energy Efficient Building in Bangladesh, which was estimated by utilizing NASA SSE solar radiation data, PVsyst simulation software and RETScreen simulation software. Economic and environmental viability for a ten-storied building with roof area of 6,500 m2 in the Capital City of Bangladesh, Dhaka was assessed by using the RETScreen simulation software. The yearly electricity production of the proposed system was 1,581 MWh estimated by PVsyst where the technical prospective of gird-connected solar PV in Bangladesh was calculated as about 50,174 MW. The economic assessments were determined the simple payback in such a way that the generated electricity first fulfills the demand of the building, and then the rest of the energy is supplied to the grid. The result indicates that the roof top solar PV system for an Energy efficient building in Dhaka city has a favorable condition for development both in economic and environmental point of view.

  9. Silviculture and economic benefits of producing wood energy from conventional forestry systems and measures to mitigate negative impacts

    International Nuclear Information System (INIS)

    Manley, A.; Richardson, J.

    1995-01-01

    Activity ''Forest Energy Production'' focused on the development and evaluation, in the context of conventional forestry systems, silvicultural and forest management practices which optimise productivity for traditional products and wood for energy, while safeguarding the forest ecosystem. A series of meetings, workshops, and review papers involving the three participating countries of Canada, Sweden, and the United Kingdom were planned and completed. An additional workshop in Switzerland was also held. Increasing production of biomass for energy is generally found to be positive, from silvicultural, economic, and environmental perspectives. Eight specific forest management systems were investigated and/or reported: five conventional systems involving multiple products in softwood and mixed wood, and three hardwood systems emphasising production of biomass for energy. Modifications in silvercultural practice to also produce biomass for energy included increased opportunities for thinnings, intermediate cuttings, and stand and site rehabilitation as well as more flexible and efficient harvesting systems. Economic benefits accrued from increased investment in harvesting and burning technology, improvements in stand quality and site utilisation, and substitution for more expensive fuels, especially if all costs are considered. Environmental effects were found to be generally positive, but negative effects of nutrient and organic matter removal on the overall sustainability of specific systems are possible. These need to be addressed. Harvest and management guidelines are being designed and put into practice. Social, institutional, and technical barriers to the increased use of biomass for energy are being addressed by specific strategies and initiatives involving programs and incentives for production, market development, research and education. Net positive effects indicate increased use of forest biomass for energy, in the short and long term. (Abstract Truncated)

  10. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  11. Technical and economic analysis on grid-connected wind farm based on hybrid energy storage system and distributed generators

    Science.gov (United States)

    Zhang, Xinhua; Zhou, Zhongkang; Chen, Xiaochun; Song, Jishuang; Shi, Maolin

    2017-05-01

    system is proposed based on NaS battery and lithium ion battery, that the former is the main large scale energy storage technology world-widely used and developed and the latter is a flexible way to have both power and energy capacities. The hybrid energy storage system, which takes advantage of the two complementary technologies to provide large power and energy capacities, is chosen to do an evaluation of econom ical-environmental based on critical excess electricity production (CEEP), CO2 emission, annual total costs calculated on the specific given condition using Energy PLAN software. The result shows that hybrid storage system has strengths in environmental benefits and also can absorb more discarded wind power than single storage system and is a potential way to push forward the application of wind power and even other types of renewable energy resources.

  12. Economic evaluation of energy saving measures in a common type of Greek building

    International Nuclear Information System (INIS)

    Nikolaidis, Yiannis; Pilavachi, Petros A.; Chletsis, Alexandros

    2009-01-01

    This paper deals with the economic analysis and evaluation of various energy saving measures in the building sector, focusing on a domestic detached house in Greece, i.e. in a typical Mediterranean climate. In order to detect the energy saving measures that, in addition to energy benefits, can also provide economic profits, the study examines the following measures: all kinds of insulation; upgrading of the heating system; use of thermal solar systems; upgrading of lighting; upgrading of electric appliances; upgrading of the cooling system. The economic evaluation methods used for ranking the energy saving measures are the Net Present Value, the Internal Rate of Return, the Savings to Investment Ratio and the Depreciated Payback Period. It has been found that amongst the most effective energy saving methods are the upgrading of lighting, the insulation of the roof of the building and the installation of an automatic temperature control system.

  13. Introduction : Energy economics and financial markets

    NARCIS (Netherlands)

    Simpson, John L.; Westerman, Wim; Dorsman, André

    2015-01-01

    Energy issues feature frequently in the economic and financial press. It is argued that the importance of energy production, consumption and trade and raises fundamental economic issues that impact the global economy and financial markets. Specific examples of daily energy issues stem from various

  14. Economics of Renewable Energy for Water Desalination in Developing Countries

    Directory of Open Access Journals (Sweden)

    Enas R. Shouman

    2015-12-01

    Full Text Available The aim of this study is to investigate the economics of renewable energy- powered desalination, as applied to water supply for remote coastal and desert communities in developing countries. In this paper, the issue of integration of desalination technologies and renewable energy from specified sources is addressed. The features of Photovoltaic (PV system combined with reverse osmosis desalination technology, which represents the most commonly applied integration between renewable energy and desalination technology, are analyzed. Further, a case study for conceptual seawater reverse osmosis (SW-RO desalination plant with 1000 m3 /d capacity is presented, based on PV and conventional generators powered with fossil fuel to be installed in a remote coastal area in Egypt, as a typical developing country. The estimated water cost for desalination with PV/ SW-RO system is about $1.25 m3 , while ranging between $1.22-1.59 for SW-RO powered with conventional generator powered with fossil fuel. Analysis of the economical, technical and environmental factors depicts the merits of using large scale integrated PV/RO system as an economically feasible water supply relying upon a renewable energy source.

  15. Economic and Power System Modeling and Analysis | Water Power | NREL

    Science.gov (United States)

    Economic and Power System Modeling and Analysis Economic and Power System Modeling and Analysis technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects

  16. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    Science.gov (United States)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases

  17. A thermo economic analysis of a PV-hydrogen system feeding the energy requests of a residential building in an isolated valley of the Alps

    International Nuclear Information System (INIS)

    Santarelli, M.; Macagno, S.

    2004-01-01

    The subject of this paper is an economic analysis of a model of a stand alone energy system based only on a renewable source (solar irradiance) integrated with a system for the production of hydrogen. The purpose of this system is to supply the complete electric and part of the heat requests of a small residential user in a remote area (an isolated building in a valley of the Alps in Italy) during a complete year of operation without integration of a traditional energy system based on fossil fuels. The system analysed is composed of a PV array integrated with an electrolyser, with a tank where the hydrogen is stored as compressed gas and with a proton exchange membrane fuel cell. Such a system has no pollutant emissions and is environmentally friendly. A simulation program has been developed to design the system and to analyse the technical and economic performance during a complete year of operation. The economic analysis is developed using thermo economic analysis. This procedure joins some aspects of exergy analysis with some economic information, such as the fuel market costs and the investment and maintenance costs of the components of the energy plant. Using this methodology, it is possible to obtain some information on the economic behaviour of the plant and to analyse in depth the process of cost formation of all system flows, in particular those of the final products. The thermo economic analysis can be performed to evaluate the different economic behaviour of the system in different operating conditions (e.g. during daylight hours or in evening hours). In this paper, the analysis has been effected considering a representative day for each month of operation and two significant hours (1:00 p.m. and 8:00 p.m.) in order to consider two opposite situations (with and without solar irradiance) with high energy demands by the user. Moreover, a sensitivity analysis has been developed to calculate the variation of the cost of the final energy products (and of the

  18. THE EUROPEAN UNION’S QUEST FOR ENERGY POLICY: A GEO-ECONOMIC APPROACH

    Directory of Open Access Journals (Sweden)

    Alin Codoban

    2011-09-01

    Full Text Available The European Union’s external energy policy architecture is very important for further energy security and economic development. European normative power on its neighbours represents the most efficient way of integrating neighbouring energy markets, with the EU’s emerging internal market and, in perspective, through economic interdependence and complementarities, there are chances of creating an European geo-energy space. EU’s tools for shaping the geo-energy space are becoming more effective in an extended European economic area that would allow it to act as the main actor in a multilateral interconnected system of energy producer and transit countries. The result of the paper is materialized in a new paradigm for EU’s external energy policy, which can provide future security of supply through market institutions and an active economic diplomacy in the resource energy countries.

  19. The economic value of fusion energy

    International Nuclear Information System (INIS)

    Kim, S.H.; Clarke, J.; Edmonds, J.

    1996-01-01

    The potential economic benefit of fusion energy technology is significant and could dwarf the world's total expenditure on fusion energy research and development. However, the realization of these benefits will depend on the economic competitiveness of electricity generation from fusion energy technologies relative to that from other existing fossil fueled and renewable technologies, as well as the time in which fusion energy technologies are available for commercial operation. Utilizing the Second Generation Model, a long-term energy/economics model, the potential economic benefit of fusion energy technology for the United States was assessed. Model scenarios with hypothetical fusion power technologies based on the International Thermonuclear Experimental Reactor (ITER) design with varying cost and time of availability showed that significant economic benefit exists from a competitive fusion technology with cost of electricity (COE) of 0.06 $/kWhr and available in the year 2025. The fusion technology with these characteristics resulted in a total discounted GDP benefit of $105 billion from the year 1995 to 2100. On the other hand, uncompetitive fusion technologies with higher COE of 0.12 and 0.09 $/kWhr had little economic benefits. Moreover, delaying the introduction of all fusion technologies from 2025 to 2050 reduced the economic benefits of fusion technologies by more than 60 percent. Aside from the economic benefit of fusion technologies operating in the United States, the potential economic value of international trade in fusion technologies is likely to be even greater. If the United States could capture just a portion of the global electricity market, the export value of the fusion technology could amount to hundreds of billions of dollars, whereas the cost of importing the technology to the United States will erase any benefits derived from GDP increases

  20. Effects of stochastic energy prices on long-term energy-economic scenarios

    International Nuclear Information System (INIS)

    Krey, Volker; Martinsen, Dag; Wagner, Hermann-Josef

    2007-01-01

    In view of the currently observed energy prices, recent price scenarios, which have been very moderate until 2004, also tend to favor high future energy prices. Having a large impact on energy-economic scenarios, we incorporate uncertain energy prices into an energy systems model by including a stochastic risk function. Energy systems models are frequently used to aid scenario analysis in energy-related studies. The impact of uncertain energy prices on the supply structures and the interaction with measures in the demand sectors is the focus of the present paper. For the illustration of the methodological approach, scenarios for four EU countries are presented. Including the stochastic risk function, elements of high energy price scenarios can be found in scenarios with a moderate future development of energy prices. In contrast to scenarios with stochastic investment costs for a limited number of technologies, the inclusion of stochastic energy prices directly affects all parts of the energy system. Robust elements of hedging strategies include increasing utilization of domestic energy carriers, the use of CHP and district heat and the application of additional energy-saving measures in the end-use sectors. Region-specific technology portfolios, i.e., different hedging options, can cause growing energy exchange between the regions in comparison with the deterministic case. (author)

  1. Economic analysis of flat plate collectors of solar energy

    International Nuclear Information System (INIS)

    Ozsabuncuoglu, I.H.

    1995-01-01

    Although solar energy potential in Turkey is far more than its total annual energy consumption, because of technical, economic and efficiency problems it cannot be harnessed to its fullest extent. Solar energy collecting systems have an initial cost two to five times higher than alternatives using electricity, LPG, fuel or other solid energy sources. However, their annual repair and maintenance costs are much lower than alternatives due to high energy prices. Solar systems with inflated annual costs have a minimum present value of US$867.19. Solar energy systems can be recommended for the countries that want a dependable and environmentally sound energy source. However, investment in R and D activities is necessary to reduce total cost of the system through improved efficiency and better production technology. (author)

  2. Economic incentives to wind systems commercialization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lotker, M.; Shaw, Jr, R. W.; Adolfson, W. F.; Bernardi, R. P.; Davidoff, P. H.; Eckhart, M. T.; Gunwaldsen, D. S.; Mettam, P. J.; Narayanan, P.; Sillin, J. O.

    1978-08-01

    This assessment of Economic Incentives to Wind Systems Commercialization is an analysis of the quantitative and qualitative impacts of a variety of Government funded economic incentives on Wind Energy Conversion Systems (WECS). The purpose of this study is to achieve better understanding of the relationship between implementation of specific economic incentives for WECS, and the factors surrounding WECS commercial introduction.

  3. The causal relationship between energy resources and economic growth in Brazil

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Fu, Hsin-Chia

    2013-01-01

    This study investigates the causal relationship between clean and non-clean energy consumption and economic growth in Brazil over the period of 1980–2009. Clean energy consumption at aggregated level of total renewable energy consumption and disaggregated levels of hydroelectric, new renewables, and nuclear energy consumption are tested within a production function framework. A cointegration test reveals a long-term equilibrium relationship between real output, capital, labor, and renewable and non-renewable energy consumption at aggregated level, and a long-term equilibrium relationship between real output, capital, labor, and hydroelectric/new renewables/nuclear and fossil fuel energy consumption at disaggregated level. The capital, labor, and new renewables elasticities of real output are positive and statistically significant, other energy consumption item's elasticities are insignificant. The results from error correction model reveal the interdependencies between new renewables, nuclear, fossil fuel, and total non-renewable energy consumption and economic growth, the unidirectional causality from hydroelectric/total renewable consumption to economic growth, the substitutability between new renewables and fossil fuel consumption, and the substitutability between new renewables and nuclear energy consumption. Additionally, nuclear and new renewables energy consumption responds to bring the system back to equilibrium. Overall, aggregated analysis may obscure the relationship between different types of clean energy consumption and economic growth. - Highlights: • We model three kinds of clean energy and non-clean energy consumption and real GDP. • There is fossil fuel consumption–economic growth bidirectional causality. • There is new renewables consumption–economic growth bidirectional causality. • There is nuclear energy consumption–economic growth bidirectional causality. • Substitutability exists for new renewables–fossil fuel or new

  4. Economics, modeling, planning and management of energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; Khan, A.M.; Furlan, G.

    1989-01-01

    The Workshop attended by 89 participants from 40 countries aimed to provide participants with an overview of global and regional issues and to familiarize them with analytical tools and modeling techniques appropriate for the analysis and planning of national energy systems. Emphasis was placed on energy-economy-interaction, modelling for balancing energy demand and supply, technical-economic evaluation of energy supply alternatives and energy demand management. This volume presents some of the lectures delivered at the Workshop. The material has been organized in five parts under the headings General Review of Current Energy Trends, Energy and Technology Menu, Basic Analytical Approaches, Energy Modeling and Planning, and Energy Management and Policy. A separate abstract was prepared for each of the lectures presented. Refs, figs and tabs

  5. Techno-economic evaluation of various electric energy supply for rural areas Pakistan

    International Nuclear Information System (INIS)

    Nagdev, A.J.; Samo, S.R.

    1994-01-01

    A diagnostic study was carried out to evaluate the techno-economic viability of various electric supply sources for electrification of rural areas in Pakistan in present socio-economic conditions. The important influencing factors considered were: social needs, electric requirement and availability of energy resources. The electric requirements of model rural village were established at 20431 kw h per year. Prudent evaluations reveal that hydroelectric, photovoltaic and diesel systems are better options than an electric grid extension of more than 2 km. In order to become an economically meritorious energy source, photovoltaic system should attain cost level Rs. 100 per watt-peak of installed system. (author)

  6. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  7. Solar Energy Grid Integration Systems (SEGIS): adding functionality while maintaining reliability and economics

    Science.gov (United States)

    Bower, Ward

    2011-09-01

    An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.

  8. Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications

    International Nuclear Information System (INIS)

    Li, Ying; Davis, Chris; Lukszo, Zofia; Weijnen, Margot

    2016-01-01

    Highlights: • We investigate the energy, economic and environmental implications of deploying EVs for China’s power system by 2030. • EVs outperform gasoline-powered vehicles in terms of average fueling costs. • Controlled EV charging given the expected 2030 capacity portfolio results in more CO_2 emissions than uncontrolled charging. • Controlled charging has absolute advantages in mitigating the peak load and facilitating RES generation. • Controlled (dis)charging will not reduce CO_2 for China without generation decarbonization and CO_2-influenced dispatch. - Abstract: This work investigates different scenarios for electric vehicle (EV) deployment in China and explores the implications thereof with regard to energy portfolio, economics and the environment. Specifically, we investigate how to better deliver the value of EVs by improving designs in the power system and charging strategies, given expected developments by 2030 in both the power system and EV penetration levels. The impact of EV charging is quantified by applying an integrated transportation-power system model on a set of scenarios which represent uncertainties in charging strategies. We find that deploying EVs essentially shifts the use of gasoline to coal-fired power generation in China, thus leading to more coal consumption and CO_2 emissions of the power system. Economically, EVs outperform gasoline-powered vehicles in terms of average fueling costs. However, the impact of EVs in terms of CO_2 emissions at the national level largely depends on the charging strategy. Specifically, controlled charging results in more CO_2 emissions associated with EVs than uncontrolled charging, as it tends to feed EVs with electricity produced by cheap yet low-efficiency coal power plants located in regions where coal prices are low. Still, compared with uncontrolled charging, controlled charging shows absolute advantages in: (1) mitigating the peak load arising from EV charging; (2) facilitating RES

  9. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  10. Clean energy, non-clean energy, and economic growth in the MIST countries

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Li, Yi-Ying; Hsin-Chia Fu

    2014-01-01

    This paper explores the causal relationship between clean (renewable/nuclear) and non-clean energy consumption and economic growth in emerging economies of the MIST (Mexico, Indonesia, South Korea, and Turkey) countries. The panel co-integration tests reveal that there is a long-term equilibrium relationship among GDP, capital formation, labor force, renewable/nuclear, and fossil fuel energy consumption. The panel causality results indicate that (1) there is a positive unidirectional short-run causality from fossil fuel energy consumption to economic growth with a bidirectional long-run causality; (2) there is a unidirectional long-run causality from renewable energy consumption to economic growth with positive bidirectional short-run causality, and a long-run causality from renewable to fossil fuel energy consumption with negative short-run feedback effects; and (3) there is a bidirectional long-run causality between nuclear energy consumption and economic growth and a long-run causality from fossil fuel energy consumption to nuclear energy consumption with positive short-run feedback effects. These suggest that MIST countries should be energy-dependent economies and that energy conservation policies may depress their economic development. However, developing renewable and nuclear energy is a viable solution for addressing energy security and climate change issues, and creating clean and fossil fuel energy partnerships could enhance a sustainable energy economy. - Highlights: • This novel study can provide more robust bases to strengthen sustainable energy policy settings. • Fossil fuel/nuclear energy use and economic growth is bidirectional causality. • Renewable energy consumption long term causes economic growth. • There is substitutability between renewable and fossil fuel energy. • Clean and non-clean energy partnerships can achieve a sustainable energy economy

  11. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

  12. Zero energy homes – Are they economically viable?

    International Nuclear Information System (INIS)

    Berry, Stephen; Davidson, Kathryn

    2015-01-01

    Whilst net zero energy homes are espoused in many policy circles, and many bespoke examples have been constructed to demonstrate their technical feasibility, there is a scarcity of evidence demonstrating such a standard would be economically rational, particularly for large scale housing development where orientation and aspect may not always be optimal. Drawing on energy monitoring evidence and construction economics associated with a nearly zero energy housing estate in Adelaide, Australia, this paper explores the economic feasibility of the net zero energy home policy in warm temperate climates. The results demonstrate that using economic tools and assumptions typically applied for building energy regulatory policy changes, net societal economic benefits significantly outweigh costs. The clear economic outcomes, combined with expected health and productivity benefits from improved levels of thermal comfort, should provide security to policy makers to progress home energy standards towards net zero energy performance. -- Highlights: •The concept of net zero energy homes is examined for economic viability. •Evidence is collected from a near net zero energy housing estate. •Conservative results show that societal benefits outweigh costs. •Significant additional benefits gained from net zero energy homes

  13. Energy Economics: A Place for Energy Poverty in the Agenda?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The global energy system faces three major strategic challenges in the coming decades: the growing risk of disruptions to energy supply; the threat of environmental damage caused by energy production and use; and persistent energy poverty. The first two challenges have attracted a lot of attention from the energy-economics community, much less so the need to address the problem of energy under-development. On current trends, the number of people in poor countries relying primarily on traditional biomass for their energy needs will continue to rise, while the number lacking access to electricity will barely fall. To change this course, decisive policy action is needed urgently as part of the broader process of human development. Meeting basic human needs, such as food and shelter, must be at the heart of any strategy to alleviate poverty.

  14. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  15. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  16. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  17. Comparative technical-economic analysis of the low temperature heating systems

    International Nuclear Information System (INIS)

    Sharevski, Vasko; Sharevski, Milan

    1994-01-01

    A method for comparative technical-economic analysis between low temperature heating systems and heating systems with fossil fuel boiler plant, heat pump heating system and electrical heating systems is presented. The single and combined heating systems are analyzed. The technical-economic priority application of the heating system is determined according to the prices of the low temperature heat energy, fossil fuel heat energy, electrical energy, as well as to the coefficient of the annual use of the installed heating capacity, investment expenses, structure of the combined heating system and coefficient of performances of the heat pump. The combined heating system, composed with a low temperature heating subsystem, which is used to cover the base heat demands, and a oil boiler plant heating subsystem, for the top heat demands, have technical-economic justification and wide range of priority application, in comparison with single heating systems. (author)

  18. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    Science.gov (United States)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  19. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China.

    Science.gov (United States)

    Lu, Hongfang; Bai, Yu; Ren, Hai; Campbell, Daniel E

    2010-12-01

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation. Important questions that must be answered to determine what strategy is best for society are, "What is the reason behind this conversion?"; "Which system is more productive and which is more sustainable?"; and "How can economic policy be used to adjust the pattern of farmland use to attain sustainable development?" To answer these questions, a combined evaluation of these agricultural production systems was done using emergy, energy and economic methods. An economic analysis clearly showed that the reason for this conversion was simply that the economic output/input ratio and the benefit density of the vegetable production system were greater than that of rice. However, both energy and emergy evaluations showed that long-term rice was the best choice for sustainable development, followed by rotation systems. The current price of rice is lower than the em-value of rice produced from the long-term rice system, but higher than that of rice produced from the rotation system. Scenario analysis showed that if the government increases the price of rice to the em-value of rice produced from the long-term rice system, US$0.4/kg, and takes the value of soil organic matter into account, the economic output/input ratios of both the rice and rotation systems will be higher than that of the vegetable system. The three methods, energy, emergy and economics, are different but complementary, each revealing a different aspect of the same system. Their combined use shows not only the reasons behind a system's current state or condition, but also the way to adjust these systems to move toward more sustainable states. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  1. Energy and economic savings using geothermal heat pumps in different climates

    International Nuclear Information System (INIS)

    Morrone, Biagio; Coppola, Gaetano; Raucci, Vincenzo

    2014-01-01

    Highlights: • Numerical study on 20 years Ground Source Heat Pumps (GSHPs) operation is achieved. • Increase in ground temperature due to GSHP can occur during 20 years operation. • Economical and GHG savings using GSHP show divergent trends for different climates. - Abstract: A technical and economic feasibility study is performed on residential buildings, heated and cooled by geothermal heat pumps (GHPs) equipped with energy piles. The analysis is carried out for two different climate locations and building energy needs, which have been evaluated following the current European standard ISO 13790. The energy pile system performance coupled with the GHP has been numerically calculated by using the PILESIM2 software over 20 years of operation. The Primary Energy Saving (PES) indices were calculated comparing the actual GHPs systems with traditional cooling and heating systems, together with their sensitivity to thermal and cooling loads for two different climate locations. Also, economic savings and greenhouse gases (GHG) reduction have been calculated resulting from the GHPs use. The results show that in mild climates, where the GHPs are mainly used as HP, the annual average temperature of the ground around the energy piles can increase up to about 10 °C after many years of operation, whereas in cold climates the increase is nearly negligible. Thus, the economical profit of GHPs is more difficult to achieve in mild climates than in cold ones. Conversely, GHG emission reduction is found to be larger in mild climates than in cold ones

  2. Techno-Economic Approach to Solar Energy Systems Onboard Marine Vehicles

    Directory of Open Access Journals (Sweden)

    Salem Ahmed A.

    2016-09-01

    Full Text Available The world is facing the challenge of continuously increasing energy consumption. At the same time, the energy resources are getting scarcer. Despite a sudden significant drop of fuel prices worldwide, research activities that focus on reducing the dependence on fossil fuels as a traditional source of energy still have the preference in the field of shipping industry. The use of clean and renewable energies, such as solar energy for instance, is proposed as a method to improve the ship efficiency. Ships can get the benefits from solar energy due to the fact that most of their upper decks are always exposed to the Sun, especially in sunny water regions. The present paper discusses the effectiveness and challenges of installing solar panels for auxiliary power production on board a ship. As a case study, the research evaluates both economic and environmental benefits resulting from implementing such concept aboard a research vessel.

  3. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  4. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  5. Economic effect of fusion in energy market. Economic impact of fusion deployment in energy market

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2002-01-01

    Energy model analysis estimates the significant contribution of fusion in the latter half of the century under the global environment constraints if it will be successfully developed and introduced into the market. The total possible economical impact of fusion is investigated from the aspect of energy cost savings, sales, and its effects on Gross Domestic Products. Considerable economical possibility will be found in the markets for fusion related devices, of currently developing countries, and for synthesized fuel. The value of fusion development could be evaluated from these possible economic impact in comparison with its necessary investment. (author)

  6. Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2015-01-01

    Despite the prevalence of voluntary and involuntary energy conservation policies, developing countries in Africa continue to struggle to achieve energy efficiency targets. Consequently, energy intensity levels have risen threatening the security of the energy system. This raises the important question: is there an economic state that induces agents to be energy conscious? In this study, we study the case of Algeria's energy intensity from 1971 to 2010. First, the paper argues that there is a certain economic state that economic agents find investing in energy conservation a viable option. Any state different from that would mean not investing in energy conservation. Second, the paper argues that the economy can do better even with an infinitesimal reduction in fuel subsidy, and that the gains in revenue from the policy can compensate for the negative socio-economic and equity impacts associated with such a policy. Third, the paper argues that, so long as, industrial expansion in the country move parallel with investment in technological innovation, long-term sustainable growth and energy conservation targets are jointly feasible. Fourth, the paper shows that income elasticity evolves with the business cycle, and the absorptive capability of the host country affects how FDI (foreign direct inflows) impact energy intensity. - Highlights: • Low income states inhibit fuel substitution and investment in energy conservation. • Income elasticity evolves as we pass through boom and recessionary periods. • The goals of sustainable growth and energy conservation are not mutually exclusive. • Absorptive capability affects the impact of FDI on energy intensity

  7. Economical optimization of building elements for use in design of nearly zero energy buildings

    DEFF Research Database (Denmark)

    Hansen, Sanne

    2012-01-01

    Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on how to end up with the most economical optimal solution. Therefore this paper present a method...... for finding the economical optimal solutions based on the use of the cost of conserved energy for each main building envelope part and building service system and cost of produced energy for each energy producing system. By use of information on construction cost and developed models of the yearly energy use...

  8. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...... water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed...

  9. A Process for the Implementation of New Renewable Energy Systems in a Building by Considering Environmental and Economic Effect

    Directory of Open Access Journals (Sweden)

    Chan-Joong Kim

    2015-09-01

    Full Text Available The excessive use of fossil fuels has led to global warming and air pollution. To solve these problems, interest in new renewable energy system (NRE system has increased in recent years. In particular, photovoltaic, solar thermal heating, fuel cell and ground source heating system are actively implemented for achieving the zero energy building. Since the initial investment cost of the NRE system is quite expensive, it is necessary to conduct a feasibility study from the life cycle perspective. Therefore, this study aimed to develop the process for the implementation of NRE system in a building for the optimal design. This study was conducted with four steps: (i establishing the basic information for the system installation; (ii selecting key factors affecting system performances; (iii making possible alternatives of the system installation; and (iv selecting optimal system by considering environmental and economic effect. The proposed process could enable the final decision-maker to easily and accurately determine the optimal design of the NRE systems from the economic and environmental efficiency in the early design phase. The process could also be applied to any other NRE system and could be extended to any other country in the global environment.

  10. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Science.gov (United States)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  11. Model of sustainable development of energy system, case of Hamedan

    International Nuclear Information System (INIS)

    Sahabmanesh, Aref; Saboohi, Yadollah

    2017-01-01

    Sustainable economic growth and improvement of the social welfare depend upon the sufficient supply of energy resources, while the utilization of energy resources is one of the main factors of environmental degradation. This research is involved with development of a sustainable energy system model and a new method for sustainability assessment. This model represents the flow of energy from primary resources through processing, conversion, and end-use technologies in an optimization framework where the useful energy demand in various social and economic sectors is met. The impact of energy supply and consumption chain on the environment at each level of energy system is also embedded in the model structure. A multi-criteria analysis of changes is then applied and sustainable development indices of the whole system are concluded. Finally, effects of the energy subsidy policy and high economic growth rate on sustainability of the energy system in three scenarios are analyzed. Results demonstrate that energy subsidy decelerates the improvement rate of the total sustainability index. Also, when a high economic growth is accompanied with the energy subsidy this index reduces considerably. Results show that how penetration of renewable energy potentials changes the sustainability situation of energy systems. - Highlights: • Developing a new model for sustainable energy systems. • Presenting a new method for sustainability assessment of energy systems. • Optimizing the energy flow and capacity expansion of Hamedan energy system. • Utilizing an MCDA approach to obtain sustainability indices of the whole system. • Analysis of energy subsidy and high economic growth on energy sustainability.

  12. Energy–exergy and economic analyses of a hybrid solar–hydrogen renewable energy system in Ankara, Turkey

    International Nuclear Information System (INIS)

    Ozden, Ender; Tari, Ilker

    2016-01-01

    Highlights: • Uninterrupted energy in an emergency blackout situation. • System modeling of a solar–hydrogen based hybrid renewable energy system. • A comprehensive thermodynamical analysis. • Levelized cost of electricity analysis for a project lifetime of 25 years. - Abstract: A hybrid (Solar–Hydrogen) stand-alone renewable energy system that consists of photovoltaic panels (PV), Proton Exchange Membrane (PEM) fuel cells, PEM based electrolyzers and hydrogen storage is investigated by developing a complete model of the system using TRNSYS. The PV panels are mounted on a tiltable platform to improve the performance of the system by monthly adjustments of the tilt angle. The total area of the PV panels is 300 m 2 , the PEM fuel cell capacity is 5 kW, and the hydrogen storage is at 55 bars pressure and with 45 m 3 capacity. The main goal of this study is to verify that the system meets the electrical power demand of the emergency room without experiencing a shortage for a complete year in an emergency blackout situation. For this purpose, after modeling the system, energy and exergy analyses for the hydrogen cycle of the system for a complete year are performed, and the energy and exergy efficiencies are found as 4.06% and 4.25%, respectively. Furthermore, an economic analysis is performed for a project lifetime of 25 years based on Levelized Cost of Electricity (LCE), and the LCE is calculated as 0.626 $/kWh.

  13. Economic Issues in Power System Decarbonization

    International Nuclear Information System (INIS)

    Sabolic, D.

    2012-01-01

    Achieving the 80% decrease in carbon-dioxide emissions until 2050, which is the primary goal of the European Union's long-term energy policy, assumes, inter alia, that the electricity part of the system will be able to produce at least 96% of electricity from renewable sources. Moreover, the power system in the widest sense of the word should significantly increase its energy efficiency. Such tremendously ambitious goals, which may as well seem almost unattainable from today's perspective, will certainly require hefty capital investments in plants based on clean technologies, thus, the costs of pollution externalities will not be avoidable anymore. They will have to be bore by the society through substantial increase in energy prices relative to other products and services. Today's subvention schemes, which support current development of renewable sources, will have to be completely abandoned until such a distant future as 2050 is. The power system will have to become self-sustainable in an economic sense. This work pertains to economic challenges which face the power system in a forthcoming processes of rapid decarbonization, as well as to some widely-spread blunders about them.(author)

  14. The IAEA energy and economic data bank

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Russell, J.E.

    1978-01-01

    In 1976, the IAEA established a computerized energy and economic data bank not only on nuclear energy but on other forms of energy as well. The purpose of the data bank is to provide in a unified and systematic way energy and related economic data needed for long-term energy planning. A computer program permits the production of a variety of up-to-date tables and graphs

  15. The economic impact of renewable energy

    International Nuclear Information System (INIS)

    1998-02-01

    This report summarises the findings of a project investigating the economic impact of renewable energy. The background to the study is traced, and potential sources of public finance for renewable projects, sensitivity analysis of the employment estimates , estimates of demand met by renewable energy technologies, the expenditures involved in investment in renewable energy; and sectoral linkages are examined. Wealth creation through investment in renewable energy, and the economic and employment impacts are explored. Plant retirement and replacement analysis, and input-output models are considered in appendices

  16. The economic impact of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report summarises the findings of a project investigating the economic impact of renewable energy. The background to the study is traced, and potential sources of public finance for renewable projects, sensitivity analysis of the employment estimates , estimates of demand met by renewable energy technologies, the expenditures involved in investment in renewable energy; and sectoral linkages are examined. Wealth creation through investment in renewable energy, and the economic and employment impacts are explored. Plant retirement and replacement analysis, and input-output models are considered in appendices.

  17. Economics of wind energy

    International Nuclear Information System (INIS)

    Ranganathan, V.; Kumar, H.P.S.

    1991-01-01

    Conventional economic analysis of wind energy often ignores the fact that it is not an energy source available on tap, but is intermittent. The analysis at times is discriminatory in the sense that the costs of transmission and distribution are added to the central grid alternative but the costs of the locational constraints of wind energy siting are not quantified. This paper evaluates wind energy after correcting for these two factors. The results are not encouraging

  18. Wastewater Reuse: An Economic Perspective to Identify Suitable Areas for Poplar Vegetation Filter Systems for Energy Production

    Directory of Open Access Journals (Sweden)

    Mauro Viccaro

    2017-11-01

    Full Text Available The increasing interest towards climate change, water and energy saving, and soil protection has led the research community to consider non-conventional water as a sustainable source for irrigation of energy crops. Vegetation filter systems are considered a reliable technique for sustainable biomass cultivation, enabling the use of reclaimed wastewater as water and nutrients sources during irrigation periods. In this study, a geographic information system (GIS-based spatial model was developed to identify areas potentially suitable for creating vegetation filter systems with poplars to size the plants of energy production. An economic assessment allowed us to identify the cost-effectiveness areas for biomass production that can be fertigated by reclaimed wastewater. Considering the Basilicata region as the test region, a surface area of 258,512 ha was investigated, identifying 73,331 ha of SRF soils sited downstream of 45 wastewater treatment plants (WWTPs. However, considering only areas that have positive net present value and are economically attractive, results indicate 1606 ha of SRF falling within the areas of influence of 39 WWTPs. The results show that the sector of dedicated crops, adjacent and linked with WWTPs, expresses a total capacity of 50.56 MW for thermal, 8.25 MW for electricity, and 31 MW for cogeneration (25.07 MWt and 5.94 MWe plants.

  19. Energy Systems Studies Program annual report, fiscal year 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1976-06-01

    This is the fourth annual progress report of the Energy Systems Studies Program supported at Brookhaven National Laboratory by the Energy Research and Development Administration (ERDA), Office of the Assistant Administrator for Planning and Analysis. The program is coordinated under the designation of a National Center for Analysis of Energy Systems (NCAES). Five working groups with specific program responsibilities are: policy analysis, economic analysis, biomedical and environmental assessment, technology assessment, and energy data and models. Future scenarios of the implementation of groups of technologies and new resources are developed. The socio-economic and environmental consequences are analyzed in detail and impact analyses are performed. Progress during FY 1976 is summarized in the following areas: energy system model development; energy-economic model development; technology assessments and support; economic analyses; and energy model data base activities. The program plan for FY 1977 is presented. (MCW)

  20. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  1. Design and Economic Analysis of a Photovoltaic System: A Case Study

    Directory of Open Access Journals (Sweden)

    COC Oko

    2012-11-01

    Full Text Available This paper presents the design analysis of a photovoltaic (PV system to power the CAD/CAM Laboratory at the Department of Mechanical Engineering, University of Port Harcourt. Life cycle cost and break-even point analyses are also carried out to assess the economic viability of the system. The unit cost of electricity for the designed PV system is high compared to the current unit cost of the municipally supplied electricity, but will be competitive with lowering cost of PV system components and favourable government policies on renewable energy. The approach and data provided are useful for designing solar systems in the area. The automated MS Excel spreadsheet developed could be used for the design and economic analyses of PV system in any other geographical region once the input data are sorted. Since about 90% of businesses in Nigeria currently own diesel generators, it is expected that future work should be devoted to the optimum combination of PV-Battery-Diesel system in electricity generation for optimum economic benefits to the country. Keywords: photovoltaic system design, renewable energy technology, solar energy economics

  2. Input-output analysis for installing renewable energy systems

    International Nuclear Information System (INIS)

    Itoh, Y.; Nakata, T.

    2004-01-01

    Renewable energy facilities have been installed in many regions, because of their possibility to be an alternative to fossil fuels for mitigating global warming. Besides the profitability of renewable energy businesses, indirect economic effects of installing renewable energy facilities should be clarified. This study examines the possibility that the renewable energy facilities give renewed impetus to regional economic progress. The economic effects are analysed with input-output techniques in a rural area in Japan. As a consequence, both positive and negative effects on the rural economy are derived. In addition, we will focus on the changes in sectors such as construction, business services, banking, etc. as a result of economic activities for renewable systems. The business benefits of renewable energy system are discussed. (author)

  3. Economic viability of large-scale fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helsley, Charles E., E-mail: cehelsley@fusionpowercorporation.com; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system

  4. Economic viability of large-scale fusion systems

    International Nuclear Information System (INIS)

    Helsley, Charles E.; Burke, Robert J.

    2014-01-01

    A typical modern power generation facility has a capacity of about 1 GWe (Gigawatt electric) per unit. This works well for fossil fuel plants and for most fission facilities for it is large enough to support the sophisticated generation infrastructure but still small enough to be accommodated by most utility grid systems. The size of potential fusion power systems may demand a different viewpoint. The compression and heating of the fusion fuel for ignition requires a large driver, even if it is necessary for only a few microseconds or nanoseconds per energy pulse. The economics of large systems, that can effectively use more of the driver capacity, need to be examined. The assumptions used in this model are specific for the Fusion Power Corporation (FPC) SPRFD process but could be generalized for any system. We assume that the accelerator is the most expensive element of the facility and estimate its cost to be $20 billion. Ignition chambers and fuel handling facilities are projected to cost $1.5 billion each with up to 10 to be serviced by one accelerator. At first this seems expensive but that impression has to be tempered by the energy output that is equal to 35 conventional nuclear plants. This means the cost per kWh is actually low. Using the above assumptions and industry data for generators and heat exchange systems, we conclude that a fully utilized fusion system will produce marketable energy at roughly one half the cost of our current means of generating an equivalent amount of energy from conventional fossil fuel and/or fission systems. Even fractionally utilized systems, i.e. systems used at 25% of capacity, can be cost effective in many cases. In conclusion, SPRFD systems can be scaled to a size and configuration that can be economically viable and very competitive in today's energy market. Electricity will be a significant element in the product mix but synthetic fuels and water may also need to be incorporated to make the large system economically

  5. Some ecological and socio-economic considerations for biomass energy crop production

    International Nuclear Information System (INIS)

    Paine, L.K.; Undersander, D.J.; Temple, S.A.; Klemme, R.M.; Peterson, T.L.; Bartelt, G.A.; Sample, D.W.; Rineer, K.C.

    1996-01-01

    The purpose of this paper is to suggest a regional approach to ensure that energy crop production will proceed in an ecologically and economically sustainable way. At this juncture, we have the opportunity to build into the system some ecological and socio-economic values which have not traditionally been considered. If crop species are chosen and sited properly, incorporation of energy crops into our agricultural system could provide extensive wildlife habitat and address soil and water quality concerns, in addition to generating renewable power. We recommend that three types of agricultural land be targeted for perennial biomass energy crops: (1) highly erodible land; (2) wetlands presently converted to agricultural uses; and (3) marginal agricultural land in selected regions. Fitting appropriate species to these lands, biomass crops can be successfully grown on lands not ecologically suited for conventional farming practices, thus providing an environmental benefit in addition to producing an economic return to the land owner. (author)

  6. The relationship between energy consumption structure, economic structure and energy intensity in China

    International Nuclear Information System (INIS)

    Feng Taiwen; Sun Linyan; Zhang Ying

    2009-01-01

    This paper investigates the long-run equilibrium relationships, temporal dynamic relationships and causal relationships between energy consumption structure, economic structure and energy intensity in China. Time series variables over the periods from 1980 to 2006 are employed in empirical tests. Cointegration tests suggest that these three variables tend to move together in the long-run. In addition, Granger causality tests indicate that there is a unidirectional causality running from energy intensity to economic structure but not vice versa. Impulse response analysis provides reasonable evidences that one shock of the three variables will cause the periods of destabilized that followed. However, the impact of the energy consumption structure shock on energy intensity and the impact of the economic structure shock on energy consumption structure seem to be rather marginal. The findings have significant implications from the point of view of energy conservation and economic development. In order to decrease energy intensity, Chinese government must continue to reduce the proportion of coal in energy consumption, increase the utilization efficiency of coal and promote the upgrade of economic structure. Furthermore, a full analysis of factors that may relate to energy intensity (e.g. energy consumption structure, economic structure) should be conducted before making energy policies.

  7. Economic Dispatch of Hydrogen Systems in Energy Spot Markets

    DEFF Research Database (Denmark)

    You, Shi; Nørgård, Per Bromand

    2015-01-01

    of energy spot markets. The generic hydrogen system is comprised of an electrolysis for hydrogen production, a hydrogen storage tank and a fuel cell system for cogeneration of electricity and heat. A case study is presented with information from practical hydrogen systems and the Nordic energy markets...

  8. Integrated modelling of economic-energy-environment scenarios - The impact of China and India's economic growth on energy use and CO2 emissions

    International Nuclear Information System (INIS)

    Roques, F.; Sassi, O.; Guivarch, C.; Waisman, H.; Crassous, R.; Hourcade, J.Ch.

    2009-03-01

    A hybrid framework coupling the bottom-up energy sector WEM model with the top-down general equilibrium model IMACLIM-R is implemented to capture the macro-economic feedbacks of Chinese and Indian economic growth on energy and emissions scenarios. The iterative coupling procedure captures the detailed representation of energy use and supply while ensuring the micro-economic and macro-economic consistency of the different scenarios studied. The dual representation of the hybrid model facilitates the incorporation of energy sector expertise in internally consistent scenarios. The paper describes how the hybrid model was used to assess the effect of uncertainty on economic growth in China and India in the energy and emissions scenarios of the International Energy Agency. (authors)

  9. Thermodynamic and economic assessment of off-grid portable cooling systems with energy storage for emergency areas

    International Nuclear Information System (INIS)

    Ozcan, Hasan; Akyavuz, Umit Deniz

    2017-01-01

    Highlights: • Solar based refrigeration systems with energy storage are proposed. • Thermodynamic and economic assessments are applied. • Cost of the pumped-hydro storage quadruples the hydrogen storage option. • A case study is made for the city of Aleppo in Syria as an emergency region. - Abstract: This study aims to investigate performance and cost aspects of a solar powered portable cooling system to conserve first aid supplies for off-grid areas with energy storage. Due to the intermittent nature of solar energy availability, two energy storage options are considered for a stationary system. Additional to the standalone system without energy storage, hydrogen is selected to be the storage medium by considering electrolysis at day time, and use of a hydrogen fuel cell unit at night time. This system consists of solar photovoltaic cells, a Polymer Exchange Membrane (PEM) electrolysis unit (PEME), hydrogen tank, a PEM fuel cell unit (PEMFC), and a vapor compression refrigeration (VCR) system to condition a container rated with ∼11 kW cooling load. The second system utilizes pumped – hydro storage (PHS) technology using a simple pump – turbine couple by storing water at a higher reservoir during day time and utilizing it to produce hydro power at night. Existence of higher reservoir brings a significant additional cost for the PHS system, making this configuration almost four times more costly than that of the hydrogen storage option, even though the storage efficiency of the PHS system is significantly higher than the hydrogen storage.

  10. Polish energy-system modernisation

    International Nuclear Information System (INIS)

    Drozdz, M.

    2003-01-01

    The Polish energy-system needs intensive investments in new technologies, which are energy efficient, clean and cost effective. Since the early 1990s, the Polish economy has had practically full access to modern technological devices, equipment and technologies. Introducing new technologies is a difficult task for project teams, constructors and investors. The author presents a set of principles for project teams useful in planning and energy modernisation. Several essential features are discussed: Energy-efficient appliances and systems; Choice of energy carriers, media and fuels; Optimal tariffs, maximum power and installed power; Intelligent, integrated, steering systems; Waste-energy recovery; Renewable-energy recovery. In practice there are several difficulties connected with planning and realising good technological and economic solutions. The author presents his own experiences of energy-system modernisation of industrial processes and building new objects. (Author)

  11. Energy-, environmental and economic evaluation of energy crops utilization

    International Nuclear Information System (INIS)

    1994-06-01

    This preliminary project is prepared in order to clarify the economic possibilities and rentability of energy crops. Examples of energy crop resource potential, environmental and economic consequences are calculated on the basis of existing data. Utilization of annual and perennial crops is evaluated with regard to the usual following of agricultural areas, and to the traditional power generation in a coal-fueled plant. Two technological options are discussed: one based on energy crop fuels supplementing the conventional coal fuel, and the other based on a separate biomass-fueled boiler, connected to the conventional coal-fueled unit. Implementation of the main project,following the preliminary one will permit to estimate the future prospects and strategies of energy crop utilization as a profitable energy resource. (EG)

  12. Economic viability of geothermal energy usage in comparison to renewable and conventional energy systems

    International Nuclear Information System (INIS)

    Schaumann, G.

    2002-01-01

    This comprehensive lecture given by Prof. Dr. Gunter Schaumann in Bad Duerkheim, Germany, discusses the use of geothermal energy in relationship to other forms of renewable energy sources and conventional energy technologies used to provide heat, power and motive force. The characteristics of geothermal energy from various sources and examples of its possible use are discussed. In particular, the paper deals with deep geothermal energy, which can provide heating energy for district heating schemes, if necessary with the help of heat pumps. The prospects of such a use of geothermal energy in the next 50 years in various suitable regions in Germany is discussed and the associated prerequisites are listed. The present situation concerning the use of geothermal energy in Germany is examined. An example of a geothermal heating power station that also features a gas-fired combined heat and power installation, a heat pump and a peak-load boiler is given. Also, the generation of electrical power using the Organic Rankine Cycle is discussed. The factors influencing the economic viability of geothermal power stations are discussed in detail and the resulting energy prices are compared with conventional plants. The paper gives details of the calculation of investment and energy costs for heat and power generation and presents figures based on exemplary installations

  13. Market economic systems

    OpenAIRE

    Pryor, Frederic L.

    2004-01-01

    The new comparative economics has focused on individual institutions, rather than the economic system as a whole. This essay argues that economic systems should be defined in terms of clusters of complementary or covarying institutions. A cluster analysis of OECD countries using data on forty different economic institutions shows that four economic systems characterize these nations. Further, these systems have no significant impact on economic growth or inflation, but they do have an importa...

  14. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, Tilman, E-mail: tilman@santarius.de [Visiting Scholar, Institute of European Studies and Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 (United States)

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  15. Waste-to-energy: Technical, economic and ecological point of views

    International Nuclear Information System (INIS)

    Cassitto, L.

    1997-01-01

    Overwhelming waste-recycling should be considered more as a psychological than as a technological method to deal with wastes. The best waste disposal systems should actually grant mass or energy recovery from technical, economic and ecological point-of-views. Highest results seem to be granted by waste-to-energy technologies since energy content is the best preserved property after using materials

  16. Thermodynamic Laws Applied to Economic Systems

    Science.gov (United States)

    González, José Villacís

    2009-01-01

    Economic activity in its different manifestations--production, exchange, consumption and, particularly, information on quantities and prices--generates and transfers energy. As a result, we can apply to it the basic laws of thermodynamics. These laws are applicable within a system, i.e., in a country or between systems and countries. To these…

  17. THE RENEWABLE ENERGY PRODUCTION-ECONOMIC DEVELOPMENT NEXUS

    Directory of Open Access Journals (Sweden)

    Gorkemli Kazar

    2014-04-01

    Full Text Available As renewable energy requirements increases, its relation with development is controversial. In this study, by taking human development index for development level, the relationship between renewable electricity net generation values and development has been searched with panel analysis. Study covers two different time periods: 1980-2010 with 5 year data to analyze long term effects and 2005-2010 yearly data for short term effects. Unlike previous studies, energy generation has been taken into consideration for it is thought to be more related with economic development. It is found that in the long run economic development will be leading to renewable energy production, while in the short run there exists a bidirectional causal relationship between renewable energy production and economic development. In addition, the causal relationship between economic development and renewable energy production varies both in the long run and in the short run due to human development level of the countries.

  18. Energy abundance and economic progress

    International Nuclear Information System (INIS)

    Schurr, S.H.

    1983-01-01

    A discussion is presented on the benefits of energy abundance and on the links between energy supply, economic growth and human welfare in the United States. It is argued that the restoration of energy abundance with dependable sources of supply should be a major national objective. (U.K.)

  19. Handbook of natural resource and energy economics. Volume III

    International Nuclear Information System (INIS)

    Kneese, A.V.; Sweeney, J.L.

    1993-01-01

    The last of a three-volume series of handbooks focuses on the economics of energy, minerals and exhaustible resources, and the forecasting issues. The relationship between energy, the environment and economic growth is also examined. Chapter headings are: economic theory of depletable resources; the optimal use of exhaustible resources; intertemporal consistency issues in depletable resources; buying energy and non-fuel minerals; mineral resource stocks and information; strategies for modelling exhaustible resource supply; natural resources in an age of substitutability; natural resource cartels; the economics of energy security; natural resource use and the environment; and energy, the environment and economic growth

  20. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  1. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  2. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  3. Technical efficiency of economic systems of EU-15 countries based on energy consumption

    International Nuclear Information System (INIS)

    Bampatsou, Christina; Papadopoulos, Savas; Zervas, Efthimios

    2013-01-01

    In the present study, Data Envelopment Analysis is used to determine the Technical Efficiency index of EU-15 countries from 1980 to 2008, using cross-country comparison. Technical Efficiency index represents the capacity of an economy to produce a higher level of Gross Domestic Product for a given level of total energy input. The level of the Technical Efficiency index is determined from the energy mix (fossil fuels, non-fossil fuels, nuclear energy) of each country and depends on the maximization level of the production of the Gross Domestic Product of the economic system, without waste of energy resources. The current study is applied in the case of the EU15 countries. Its scope is to highlight the differentiations of country classifications before and after the integration of nuclear energy in the energy mix of each country. The main result is that the integration of nuclear energy as an additional input in the energy mixture affects negatively the Technical Efficiency of countries. Also, when an economy achieves a decrease of the energy consumption produced from fossil fuels, and a better exploitation of renewable energy sources, clearly improves its capacity to produce more output with the given levels of inputs. - Highlights: ► Technical efficiency index of EU-15 countries is determined through the DEA method. ► Level of the TE index is determined from the energy mix used in each country. ► TE level depends on the maximization level of GDP without waste of energy resources. ► Capacity of an economy to produce more GDP for a given energy input is determined. ► TE differentiation before and after the integration of nuclear energy is performed

  4. Sustainable energy-economic-environmental scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-31

    IIASA's Environmentally Compatible Energy Strategies (ECS) Project has proposed a quantitative 'working definition' of sustainable development E3 (energy-economic-environmental) scenarios. ECS has proposed four criteria for sustainability: economic growth is sustained throughout the time horizon; socioeconomic inequity among world regions is reduced over the 21st century; reserves-to-production (R/P) ratio for exhaustible primary energy resources do not decline; and long-term environmental stress is mitigated. Using these criteria, 40 long-term E3 scenarios generated by ECS models were reviewed and analyzed. Amongst the conclusions drawn were: slow population growth or stabilization of global population appears to be prerequisite for sustainable development; economic growth alone does not guarantee a sustainable future; carbon intensities of total primary energy must decrease faster than the historical trend; strategies for fossil fuel consumption must aim at non-decreasing R/P ratios; and carbon emissions must be near or below today's levels at the end of this century. The analysis of sustainable development scenarios is an important step towards formulating long-term strategies aimed at climate stabilization. 6 figs., 1 tab.

  5. Economic valuation of heat pumps and electric boilers in the Danish energy system

    International Nuclear Information System (INIS)

    Nielsen, Maria Grønnegaard; Morales, Juan Miguel; Zugno, Marco; Pedersen, Thomas Engberg; Madsen, Henrik

    2016-01-01

    Highlights: • We assess the economic value of heat pumps and electric boilers in Denmark. • The daily operation of a heat and power system is modeled by stochastic programming. • Deterministic models overestimate the value of heat pumps and electric boilers. • Heat pumps and electric boilers can reduce the cost of operating the Danish system. • Falling power prices may boost the future value of heat pumps and electric boilers. - Abstract: Heat pumps (HP) and electric immersion boilers (EB) have great potential to increase flexibility in energy systems. In parallel, decreasing taxes on electricity-based heat production are creating a more favorable economic environment for the deployment of these units in Denmark. In this paper, the economic value of heat pumps and electric boilers is assessed by simulating their day-to-day market performance using a novel operational strategy based on two-stage stochastic programming. This stochastic model is employed to optimize jointly the daily operation of HPs and EBs along with the Combined Heat and Power (CHP) units in the system. Uncertainty in the heat demand and power price is modeled via scenarios representing different plausible paths for their future evolution. A series of case-studies are performed using real-world data for the heat and power systems in the Copenhagen area during four representative weeks of 2013. We show that the use of stochastic operational models is critical, as standard deterministic models provide an overestimation of the added benefits from the installation of HPs and EBs, thus leading to over-investment in capacity. Furthermore, we perform sensitivity studies to investigate the effect on market performance of varying capacity and efficiency for these units, as well as of different levels of prices in the electricity market. We find that these parameters substantially affect the profitability of heat pumps and electric boilers, hence, they must be carefully assessed by potential

  6. Economic sustainability of a biomass energy project located at a dairy in California, USA

    International Nuclear Information System (INIS)

    Camarillo, Mary Kay; Stringfellow, William T.; Jue, Michael B.; Hanlon, Jeremy S.

    2012-01-01

    Previous experience has demonstrated the tenuous nature of biomass energy projects located at livestock facilities in the U.S. In response, the economic sustainability of a 710 kW combined heat and power biomass energy system located on a dairy farm in California was evaluated. This biomass energy facility is unique in that a complete-mix anaerobic digester was used for treatment of manure collected in a flush-water system, co-digestates were used as additional digester feedstocks (whey, waste feed, and plant biomass), and the power plant is operating under strict regulatory requirements for stack gas emissions. Electricity was produced and sold wholesale, and cost savings resulted from the use of waste heat to offset propane demand. The impact of various operational factors was considered in the economic analysis, indicating that the system is economically viable as constructed but could benefit from introduction of additional substrates to increase methane and electricity production, additional utilization of waste heat, sale of digested solids, and possibly pursuing greenhouse gas credits. Use of technology for nitrogen oxide (NO x ) removal had a minimal effect on economic sustainability. - Highlights: ► We evaluated the economic sustainability of a dairy biomass energy project. ► The project is economically sustainable as currently operated. ► The simple payback period could be reduced if the system is operated near capacity. ► Co-digestion of off-site waste streams is recommended to improve profitability.

  7. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  8. Economic analysis of coal-based polygeneration system for methanol and power production

    International Nuclear Information System (INIS)

    Lin, Hu; Jin, Hongguang; Gao, Lin; Han, Wei

    Polygeneration system for chemical and power co-production has been regarded as one of promising technologies to use fossil fuel more efficiently and cleanly. In this paper the thermodynamic and economic performances of three types of coal-based polygeneration system were investigated and the influence of energy saving of oxygenation systems on system economic performance was revealed. The primary cost saving ratio (PCS) is presented as a criterion, which represents the cost saving of polygeneration system compared with the single-product systems with the same products outputs, to evaluate economic advantages of polygeneration system. As a result, the system, adopting un-reacted syngas partly recycled to the methanol synthesis reactor and without the shift process, can get the optimal PCS of 11.8%, which results from the trade-off between the installed capital cost saving and the energy saving effects on the cost saving, and represents the optimal coupling relationship among chemical conversion, energy utilization and economic performance. And both of fuel price and the level of equipment capital cost affect on PCS faintly. This paper provides an evaluation method for polygeneration systems based on both technical and economic viewpoints. (author)

  9. Scenarios of socio-economic and energy development of the country up to 2010

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    The scenarios description is given as the first stage of a procedure of an energy-economy interrelations dynamics study, the other two stages being the formulation and the analysis of the development variants. The scenarios reflect quantitatively the policies and the international conditions for the socio-economic, energy demand and energy supply developments of the country. Two economic development scenarios ('high' - official macroeconomic views and 'low' - economic restructuring and decrease of energy intensity) hierarchically preside over the two corresponding energy demand scenarios of different technological evolutions ('traditional' and 'energy efficiency' oriented one) in the industry, the transport and the domestic and services sectors. Four energy supply system scenarios follow, corresponding to different approaches in the development of the energy conversion technologies and energy carriers, thus constituting a scenario tree of the studies. 16 refs., 2 figs., 7 tab., 1 ann. (R.Ts.)

  10. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working......℃. The exergy efficiency of organic Rankine cycle (ORC) system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting...

  11. Relationship of Energy Growth to Economic Growth under Alternative Energy Policies

    Energy Technology Data Exchange (ETDEWEB)

    Behling, Jr., D. J.; Dullien, R.; Hudson, E.

    1976-03-01

    This report is the first of a series of studies that will analyze the economic and social impacts of research, development, and demonstration plans of the Energy Research and Development Administration. Two policy proposals were examined against a Base Case set of economic and energy projections for the years 1985, 1990, and 2000: (1) the introduction of RD and D-initiated energy supply and end-use conversion technologies to expand domestic energy supply and to improve the efficiency and flexibility of its use; and (2) the imposition of taxes and tariffs on petroleum and natural gas to reduce demand for these primary energy sources. Targets for the amounts of imports of oil and gas were specified by ERDA as follows: 10 percent (or less) of total U.S. energy consumption in 1985; 8 percent (or less) of total U.S. energy consumption in 1990; and 5 percent (or less) of total U.S. energy consumption in 2000. The purpose of the analysis was to first identify the degree to which the introduction of new energy technologies and/or the imposition of energy taxes could reduce oil and gas imports toward the target levels; and second, to estimate the effects of these policies on the economy and the environment. These economic and environmental effects are thus a measure of the costs associated with meeting the import targets. The benefits of these policies, in the form of increased economic and political security were not measured. The analysis was based on an analytic framework which linked detailed mathematical process engineering and economic models to more aggregate econometric models. The four models employed are described.

  12. Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2013-01-01

    Highlights: ► Applying exergy, economic, environment and sustainability analyses to the GDHSs. ► Assessing energy and exergy efficiencies, economic and environmental impacts. ► Calculating the energy and exergy efficiencies of 34.86% and 48.78%, respectively. ► Proposing GDHSs as the most economic heating system. ► Providing a significant contribution towards reducing the emissions of air pollution. - Abstract: This study deals with an energetic and exergetic analysis as well as economic and environmental evaluations of Afyon geothermal district heating system (AGDHS) in Afyon, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. And, for economic and environmental evaluations, actual data are obtained from the Technical Departments. The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. For system performance analysis and improvement, both energy and exergy efficiencies of the overall AGDHS are determined to be 34.86% and 48.78%, respectively. The efficiency improvements in heat and power systems can help achieving energy security in an environmentally acceptable way by reducing the emissions that might otherwise occur. Present application has shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and makes a significant contribution towards reducing the emissions of air pollution.

  13. Energy expenditure, economic growth, and the minimum EROI of society

    International Nuclear Information System (INIS)

    Fizaine, Florian; Court, Victor

    2016-01-01

    We estimate energy expenditure for the US and world economies from 1850 to 2012. Periods of high energy expenditure relative to GDP (from 1850 to 1945), or spikes (1973–74 and 1978–79) are associated with low economic growth rates, and periods of low or falling energy expenditure are associated with high and rising economic growth rates (e.g. 1945–1973). Over the period 1960–2010 for which we have continuous year-to-year data for control variables (capital formation, population, and unemployment rate) we estimate that, statistically, in order to enjoy positive growth, the US economy cannot afford to spend more than 11% of its GDP on energy. Given the current energy intensity of the US economy, this translates in a minimum societal EROI of approximately 11:1 (or a maximum tolerable average price of energy of twice the current level). Granger tests consistently reveal a one way causality running from the level of energy expenditure (as a fraction of GDP) to economic growth in the US between 1960 and 2010. A coherent economic policy should be founded on improving net energy efficiency. This would yield a “double dividend”: increased societal EROI (through decreased energy intensity of capital investment), and decreased sensitivity to energy price volatility. - Highlights: •We estimate energy expenditures as a fraction of GDP for the US, the world (1850–2012), and the UK (1300–2008). •Statistically speaking, the US economy cannot afford to allocate more than 11% of its GDP to energy expenditures in order to have a positive growth rate. •This corresponds to a maximum tolerable average price of energy of twice the current level. •In the same way, US growth is only possible if its primary energy system has at least a minimum EROI of approximately 11:1.

  14. Net-energy analysis of nuclear and wind power systems

    International Nuclear Information System (INIS)

    Tyner, G.T. Sr.

    1985-01-01

    The following question is addressed: can nuclear power and wind power (a form of solar energy) systems yield enough energy to replicate themselves out of their own energy and leave a residual of net energy in order to provide society with its needs and wants. Evidence is provided showing that there is a proportionality between the real monetary cost and energy inputs. The life-cycle, economic cost of the energy-transformation entity is the basis for calculating the amount of energy needed, as inputs, to sustain energy transformation. This study is unique as follows: others were based on preliminary cost and performance estimates. This study takes advantage of updated cost and performance data. Second, most prior studies did not include the energy cost of labor, government, and financial services, transmission and distribution, and overhead in arriving at energy inputs. This study includes all economic costs as a basis for calculating energy-input estimates. Both static (single-entity analysis) and dynamic (total systems over time) analyses were done and the procedures are shown in detail. It was found that the net-energy yield will be very small and most likely negative. System costs must be substantially lowered or efficiencies materially improved before these systems can become sources of enough net energy to drive the United States economic system at even the present level of economic output

  15. Energy Storage Economics

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This presentation provides an overview on energy storage economics including recent market trends, battery terminology and concepts, value streams, challenges, and an example of how photovoltaics and storage can be used to lower demand charges. It also provides an overview of the REopt Lite web tool inputs and outputs.

  16. Future trends in electrical energy generation economics in the United States

    Science.gov (United States)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  17. Nuclear energy consumption and economic growth in nine developed countries

    International Nuclear Information System (INIS)

    Wolde-Rufael, Yemane; Menyah, Kojo

    2010-01-01

    This article attempts to test the causal relationship between nuclear energy consumption and real GDP for nine developed countries for the period 1971-2005 by including capital and labour as additional variables. Using a modified version of the Granger causality test developed by Toda and Yamamoto (1995), we found a unidirectional causality running from nuclear energy consumption to economic growth in Japan, Netherlands and Switzerland; the opposite uni-directional causality running from economic growth to nuclear energy consumption in Canada and Sweden; and a bi-directional causality running between economic growth and nuclear energy consumption in France, Spain, the United Kingdom and the United States. In Spain, the United Kingdom and the USA, increases in nuclear energy consumption caused increases in economic growth implying that conservation measures taken that reduce nuclear energy consumption may negatively affect economic growth. In France, Japan, Netherlands and Switzerland increases in nuclear energy consumption caused decreases in economic growth, suggesting that energy conservation measure taken that reduce nuclear energy consumption may help to mitigate the adverse effects of nuclear energy consumption on economic growth. In Canada and Sweden energy conservation measures affecting nuclear energy consumption may not harm economic growth.

  18. Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine

    International Nuclear Information System (INIS)

    Cassetti, G.; Rocco, M.V.; Colombo, E.

    2014-01-01

    Exergy based analyses are considered by the scientific community appropriate tools for the design and the performance evaluation and improvements of energy systems. Moreover, they are today recognized as proper instruments to assess economic, environmental and social externalities of energy systems. This paper presents the results of a study in which different exergy analysis methods are adopted to determine the optimal design configuration of a gas turbine operating in simple Joule Brayton cycle. Standard exergy and Thermoeconomic analyses are performed to identify the highest thermodynamic efficiency and minimum economic cost configurations of the system, while for the environmental analysis Authors propose an innovative method in which the exergy analysis is combined with a Risk Analysis. With this method the total risk associated to the system is used as objective function in the same way as monetary cost is for standard Thermoeconomic analysis. These three methods aims therefore to determine the optimal design configurations of the system with respect to their specific objective functions, respectively: exergy cost (J/J), monetary (exergoeconomic) cost (€/J) and risk (injured/J) of the product. Results lead to three different optimal design parameters for the system, according to the objective of each analysis procedure. - Highlights: • An original implementation of Thermoeconomic framework is proposed. • Standard Exergy and Thermoeconomic analysis are performed on a case study. • A new model using exergy as allocation criteria for Risk Analysis is performed. • Different optimal configurations are obtained and compared

  19. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  20. Economic policy and renewable energy

    International Nuclear Information System (INIS)

    Klaiss, H.

    1993-01-01

    The paper summarizes the economical conclusions of the 6th Symposium on Solar Thermal Concentrating Technologies which take place at Mojacar (Almeria). Parabolic throughs, Central Receiver Systems, dish stirling and Solar chimneys will commercial utilization by the year 2000. Levalized Energy Cost (Solar) is still higher than conventional (coal). Only the utilization of environmental parameters like ''CO2 avoided'' may contribute to market penetration. Concerning siting, it becomes clear that only those countries below 40 degree latitude, (Madrid, Nepal, Ankara) are acceptable. A desregulation of the electrical market is necessary for solar penetration, mainly in developing countries

  1. Design, Operation, Control, and Economics of a Photovoltaic/Fuel Cell/Battery Hybrid Renewable Energy System for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Zachary S. Whiteman

    2015-06-01

    Full Text Available Meeting rapidly growing global energy demand—without producing greenhouse gases or further diminishing the availability of non-renewable resources—requires the development of affordable low-emission renewable energy systems. Here, we develop a hybrid renewable energy system (HRES for automotive applications—specifically, a roof-installed photovoltaic (PV array combined with a PEM fuel cell/NiCd battery bus currently operating shuttle routes on the University of Delaware campus. The system’s overall operating objectives—meeting the total power demand of the bus and maintaining the desired state of charge (SOC of the NiCd battery—are achieved with appropriately designed controllers: a logic-based “algebraic controller” and a standard PI controller. The design, implementation, and performance of the hybrid system are demonstrated via simulation of real shuttle runs under various operating conditions. The results show that both control strategies perform equally well in enabling the HRES to meet its objectives under typical operating conditions, and under sudden cloud cover conditions; however, at consistently high bus speeds, battery SOC maintenance is better, and the system consumes less hydrogen, with PI control. An economic analysis of the PV investment necessary to realize the HRES design objectives indicates a return on investment of approximately 30% (a slight, but nonetheless positive, ~$550 profit over the bus lifetime in Newark, DE, establishing the economic viability of the proposed addition of a PV array to the existing University of Delaware fuel cell/battery bus.

  2. The Technical and Economic Study of Solar-Wind Hybrid Energy System in Coastal Area of Chittagong, Bangladesh

    OpenAIRE

    Podder, Shuvankar; Khan, Raihan Sayeed; Alam Mohon, Shah Md Ashraful

    2015-01-01

    The size optimization and economic evaluation of the solar-wind hybrid renewable energy system (RES) to meet the electricity demand of 276 kWh/day with 40 kW peak load have been determined in this study. The load data has been collected from the motels situated in the coastal areas of Patenga, Chittagong. RES in standalone as well as grid connected mode have been considered. The optimal system configurations have been determined based on systems net present cost (NPC) and cost of per unit ene...

  3. Sustainability Efficiency Factor: Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

    Science.gov (United States)

    Boldon, Lauren

    The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as "the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity" (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system

  4. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  5. Economics in Criticality and Restoration of Energy Infrastructures.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Gale A.; Flaim, Silvio J.; Folga, Stephen M.; Gotham, Douglas J.; McLamore, Michael R.; Novak, Mary H.; Roop, Joe M.; Rossmann, Charles G.; Shamsuddin, Shabbir A.; Zeichner, Lee M.; Stamber, Kevin L.

    2005-03-01

    Economists, systems analysts, engineers, regulatory specialists, and other experts were assembled from academia, the national laboratories, and the energy industry to discuss present restoration practices (many have already been defined to the level of operational protocols) in the sectors of the energy infrastructure as well as other infrastructures, to identify whether economics, a discipline concerned with the allocation of scarce resources, is explicitly or implicitly a part of restoration strategies, and if there are novel economic techniques and solution methods that could be used help encourage the restoration of energy services more quickly than present practices or to restore service more efficiently from an economic perspective. AcknowledgementsDevelopment of this work into a coherent product with a useful message has occurred thanks to the thoughtful support of several individuals:Kenneth Friedman, Department of Energy, Office of Energy Assurance, provided the impetus for the work, as well as several suggestions and reminders of direction along the way. Funding from DOE/OEA was critical to the completion of this effort.Arnold Baker, Chief Economist, Sandia National Laboratories, and James Peerenboom, Director, Infrastructure Assurance Center, Argonne National Laboratory, provided valuable contacts that helped to populate the authoring team with the proper mix of economists, engineers, and systems and regulatory specialists to meet the objectives of the work.Several individuals provided valuable review of the document at various stages of completion, and provided suggestions that were valuable to the editing process. This list of reviewers includes Jeffrey Roark, Economist, Tennessee Valley Authority; James R. Dalrymple, Manager of Transmission System Services and Transmission/Power Supply, Tennessee Valley Authority; William Mampre, Vice President, EN Engineering; Kevin Degenstein, EN Engineering; and Patrick Wilgang, Department of Energy, Office of

  6. The Energetics of Economics (Money as access to Energy)

    OpenAIRE

    Ternyik, Stephen I.

    2013-01-01

    Money is being portrayed as temporal access to energy and a new methodical approach to the energetics of the human economy is introduced.The economic evolution of world system energetics is put into the historical focus of all global monetary civilization, reaching back to Sumerian city states.This long wave energetics of human economic action clearly points to the biophysical boundaries of the globalized monetary production economy which is also based on natural law.The future perspective of...

  7. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  8. The methodology of energy policy-making in economical models

    Energy Technology Data Exchange (ETDEWEB)

    Poursina, B.

    1998-08-01

    Scrutiny and careful study in energy is a subject that in human science has been investigated from different point of view. The expansion of this research, because of its importance and effect in different dimensions of human life, has also arrived in the field of political and economic sciences. Economics evaluates the energy phenomenon at the side of elements such as labor, capital and technology in the production functions of firms. The nature of these discussions is mainly from the viewpoint of micro analyses. Nevertheless, the variation and challenges concerning energy and environment during the recent decades and the economists` detailed investigations in its analysis and evaluation have led to the arrival of energy discussions in a special shape in macro planning and large economic models. The paper compares various energy models - EFDM, MEDEE, MIDAS and HERMES. This extent of planning and consequently modelling which lacks a background in the processes of economic researches, deals with analysis of energy and economics reacting effects. Modelling of energy-economy interaction and energy policy in modeling macroeconomics large models are new ideas in energy studies and economics. 7 refs., 6 figs., 1 tab.

  9. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  10. Remarks on economic growth and energy demand

    International Nuclear Information System (INIS)

    Mueller, W.

    1979-01-01

    An energy policy according to the principles of decoupling is impossible without an increase in reasonable and profitable power application. It is also impossible without increased nuclear energy. Energy policy according to the principles of decoupling connects the natural growth tendency of a liberally arranged industry with the natural limits of the production factor 'nature'. Energy policy is the very sphere where tomorrow's necessities must be planned today. If in long range, a constant level of energy production struturised different from today's can be assumed, then this is future-bound. For it takes into consideration today tomorrow's necessities. This is the only guarantee we have for our industry to be able to grow tomorrow. On the basis of historical experience, an economic system will believe in the goal of a constant energy supply just as it was believing in abounding in energy up to day. The structure of the growth might change in long term. But accepting the thoughts of decoupling, progress will come. (orig./HP) [de

  11. Integrated economic assessment of energy and forestry mitigation options using MARKAL

    International Nuclear Information System (INIS)

    1998-01-01

    There have been a number of economic assessment of GHG mitigation studies carried out in Indonesia. Several alternative mitigation options for energy and non-energy sectors have been described and the economic assessment of the options has been done for each sectors. However, most of the economic assessment particularly for non-energy sector, was not to find a least cost option but the lowest cost options. A program called MARKAL developed by a consortium of energy specialists from more than a dozen countries in the early 1980s, is a program that can be used for optimization, so that the least cost options could be selected. Indonesia has used this program intensively for energy system analysis. Attempt to use this program for other sector has not been developed as this program was designed for energy sector. Therefore, using MARKAL for other sector, all activities of the other sectors should be treated as energy activities. This study is aimed to use MARKAL for analysing both energy and forestry sector together. This paper described briefly the methodology of using MARKAL for both energy and forestry sectors. As the activities in energy sector have unique characteristics, thus only forest activities are described in more detail. (au)

  12. Energy economics basics - Emphasis programme 2004 - 2007

    International Nuclear Information System (INIS)

    Gutzwiller, L.

    2005-01-01

    This report from the Swiss Federal Office of Energy (SFOE) examines the work done within the framework of the interdisciplinary energy economics programme on scenarios and instruments for energy policy-making and economics, as well as on social and environmental aspects. The report reviews the emphasis and goals of the next phase of the programme for the period 2004 - 2007. A research road map is discussed that is to identify promising technologies that will provide a substantial contribution to meeting the goal of creating the so-called '2000-Watt Society'. The road map is to also help identify technologies that provide socio-economic advantages and identify bottlenecks and restraints on the propagation of energy-efficient technologies in the building and transport areas

  13. National economic aspects of energy supply

    International Nuclear Information System (INIS)

    Tschopp, P.

    1981-01-01

    The author discusses the economic place value of energy supply for production, the influence of energy on national economy structure and specialisation, cost/gain effects of alternative energy strategies, the effects of energy policy on the labour market, and the need for clearer aims in energy policy. (H.V.H.)

  14. Multi-objective technico-economic optimization of energy conversion systems: hydrogen and electricity cogeneration from Generation IV nuclear reactor

    International Nuclear Information System (INIS)

    Gomez, A.

    2008-01-01

    With the increase in environmental considerations, such as the control of greenhouse emissions, and with the decrease in the fossil energy resources, hydrogen is currently considered as a promising energy vector. One of the main technological challenges of a future hydrogen economy is its large scale production without fossil fuel emissions. Under this context, nuclear energy is particularly adapted for hydrogen massive production by thermochemical cycles or high temperature electrolysis. One of the selected nuclear systems is the Very High Temperature Reactor (950 C/1200 C), cooled with helium, and dedicated to hydrogen production or to hydrogen electricity cogeneration. The main objective of this investigation, within the framework of a collaboration between CEA, French Atomic Agency (Cadarache) and LGC (Toulouse), consists in defining a technico-economic optimization methodology of electricity-hydrogen cogeneration systems, in order to identify and propose promising development strategies. Among the massive production processes of hydrogen, the thermochemical cycle Iodine-Sulphur has been considered. Taking into account the diversity of the used energies (i.e., heat and electricity) on the one hand and of the produced energies (hydrogen and electricity) on the other hand of the studied cogeneration system, an exergetic approach has been developed due to its ability to consider various energy forms on the same thermodynamical basis. The CYCLOP software tool (CEA) is used for the thermodynamic modelling of these systems. The economic criterion, calculated using the SEMER software tool (CEA), is based on the minimization of the total production site cost over its lifespan i.e., investment, operating costs and nuclear fuel cost. Capital investment involves the development of cost functions adapted to specific technologies and their specific operating conditions. The resulting optimization problems consist in maximizing the energy production, while minimizing the

  15. Energy from the desert. Very large scale photovoltaic systems: socio-economic, financial, technical and environmental aspects. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, K.; Ito, M.; Komoto, K.; Vleuten, P. van der; Faiman, D. (eds.)

    2009-05-15

    This executive summary report for the International Energy Agency (IEA) summarises the objectives and concepts of very large scale photovoltaic power generation (VLS-PV) systems and takes a look at the socio-economic, financial and technical aspects involved as well as the environmental impact of such systems. Potential benefits for desert communities, agricultural development and desalination of water are topics that are looked at. The potential of VLS-PV, its energy payback time and CO{sub 2} emission rates are discussed. Case studies for the Sahara and the Gobi Dessert areas are discussed. A VLS-PV roadmap is proposed and scenarios are discussed. Finally, conclusions are drawn and recommendations are made.

  16. Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil

    International Nuclear Information System (INIS)

    Lopes de Carvalho, Ariovaldo; Antunes, Carlos Henggeler; Freire, Fausto

    2016-01-01

    Highlights: • A Hybrid IO-MOLP model is formulated for energy-economic-environmental analysis. • Scenarios for sugarcane cultivation and 1st- and 2nd-generation bioethanol production. • Higher energy use and GHG emissions due to chemicals in 2G processes. • Lower overall employment level in the 1G + 2G scenarios compared to the 1G scenario. • Policies and technological choices should consider direct and indirect effects of 2G. - Abstract: Bioethanol from sugarcane can be produced using first-generation (1G) or second-generation (2G) technologies. 2G technologies can increase the capacity of production per sugarcane mass input and are expected to have a key role in future reductions of environmental impacts of sugarcane bioethanol. A hybrid Input-Output (IO) framework is developed for Brazil coupling the System of National Accounts and the National Energy Balance, which is extended to assess Greenhouse Gas (GHG) emissions. Life-cycle based estimates for two sugarcane cultivation systems, two 1G and eight 2G bioethanol production scenarios, are coupled in the IO framework. A multi-objective linear programming (MOLP) model is formulated based on this framework for energy-economic-environmental analysis of the Brazilian economic system and domestic bioethanol supply in prospective scenarios. Twenty-four solutions are computed: four “extreme” solutions resulting from the individual optimization of each objective function (GDP, employment level, total energy consumption and total GHG emissions - 1G scenario), ten compromise solutions minimizing the distance of the feasible region to the ideal solution (1G, 1G-optimized and prospective 1G + 2G scenarios), and ten solutions maximizing the total bioethanol production (1G, 1G-optimized and prospective 1G + 2G scenarios). Higher diesel oil and lubricants consumption in the mechanical harvesting process has counterbalanced the positive effects of more efficient trucks leading to higher energy consumption and GHG

  17. Wind energy economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy have improved rapidly in the past few years, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. As bank loan periods for wind projects are shorter than for thermal plant, the effect on the price of wind energy is discussed. It is argued that wind energy has a higher value than that of centralised plant, since it is fed into the low voltage distribution network and it follows that the price of wind energy is converging with its value. The paper also includes a brief review of the capacity credit of wind plant and an assessment of the cost penalties which are incurred due to the need to hold extra plant on part load. These penalties are shown to be small. (author)

  18. Energy storage systems: a strategic road-book

    International Nuclear Information System (INIS)

    2011-01-01

    Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

  19. The Economics of America's Energy Future.

    Science.gov (United States)

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  20. Economic thinking, sustainable development and the role of solar energy in the 21st century

    International Nuclear Information System (INIS)

    Hohmeyer, O.

    1993-01-01

    The long term survival of mankind will only be possible if economic thinking as well as economic theory understands that the world economy is only a subsystem of the global ecological system. Only if the scale of the economic system stays within the limits determined by the long term resource availability and the assimilative capacity of the global ecological system, sustainable development and the survival of mankind can be achieved. Solar energy as the only long term energy source supplied from outside the global ecological system needs to be a central building block of sustainable development. Today the main obstacle for a widespread use of solar energy is its relative price. The paper shows that the present prices of non-renewable energy sources are heavily subsidized by not including the costs of health and environmental damages as well as the long term costs of wasting non-renewable energy sources at the expense of future generations. If these costs are taken into account the relative costs of solar energy look far more favorable than present market prices show. Photovoltaic electricity generation may become cost effective within this decade

  1. Essays on the economics of decarbonization and renewable energy support

    International Nuclear Information System (INIS)

    Jaegemann, Cosima Claudia

    2014-01-01

    The thesis consists of five essays investigating various aspects associated with the decarbonization of Europe's power sector and the politically incentivized expansion of renewable energy generation. The first essay analyzes the economic implications of alternative decarbonization pathways and policy instruments for Europe's power sector up to 2050 and illustrates the importance of ensuring competition between all low-carbon technologies in order to limit the costs of decarbonization. The second essay analyzes the economic inefficiency associated with the concept of grid parity for the case of photovoltaic (PV). In order to both enhance overall welfare and avoid redistributional effects, the indirect financial incentive for in-house PV electricity consumption should be abolished. The third essay discusses the system price effect of wind and solar power generation and illustrates that the decrease in the marginal value of wind and solar power (as a consequence of increased penetration) is already highly relevant for both wind and solar power generation in Germany. The fourth essay adds to the ongoing debate surrounding the cost-efficient achievement of politically implemented renewable energy targets. Renewable energy support schemes that fail to incentivize investors to account for differences in the marginal value of wind and solar power generation are associated with excess costs as they prevent the equalization of net marginal costs across technologies and regions. The fifth essay analyzes the economic value of storage as a function of the overall generation mix and illustrates the economic inefficiency arising from feed-in tariff systems for the special case of thermal energy storage units in concentrating solar power plants.

  2. Essays on the economics of decarbonization and renewable energy support

    Energy Technology Data Exchange (ETDEWEB)

    Jaegemann, Cosima Claudia

    2014-06-05

    The thesis consists of five essays investigating various aspects associated with the decarbonization of Europe's power sector and the politically incentivized expansion of renewable energy generation. The first essay analyzes the economic implications of alternative decarbonization pathways and policy instruments for Europe's power sector up to 2050 and illustrates the importance of ensuring competition between all low-carbon technologies in order to limit the costs of decarbonization. The second essay analyzes the economic inefficiency associated with the concept of grid parity for the case of photovoltaic (PV). In order to both enhance overall welfare and avoid redistributional effects, the indirect financial incentive for in-house PV electricity consumption should be abolished. The third essay discusses the system price effect of wind and solar power generation and illustrates that the decrease in the marginal value of wind and solar power (as a consequence of increased penetration) is already highly relevant for both wind and solar power generation in Germany. The fourth essay adds to the ongoing debate surrounding the cost-efficient achievement of politically implemented renewable energy targets. Renewable energy support schemes that fail to incentivize investors to account for differences in the marginal value of wind and solar power generation are associated with excess costs as they prevent the equalization of net marginal costs across technologies and regions. The fifth essay analyzes the economic value of storage as a function of the overall generation mix and illustrates the economic inefficiency arising from feed-in tariff systems for the special case of thermal energy storage units in concentrating solar power plants.

  3. Swedish Environmental and Economic Accounts. Physical accounts for energy and emissions to air 1993 and 1995

    International Nuclear Information System (INIS)

    2000-01-01

    This Statistical Report presents results from the physical Swedish Environmental and Economic Accounts for the years 1993 and 1995 according to the classification NACE. The Environmental Economic Accounts constitute an integrated and comprehensive system for environmental and economic statistics. Environmental data are systematically presented together with economic data in a common framework. The system can be used for analyses of various relationships between economy and environment. Data on emissions to air of carbon dioxide, sulphur dioxide, nitrogen oxides, carbon monoxide, methane, nitrous oxide and ammonia are presented for 39 industries, government services and private consumption. The use of energy commodities in monetary and physical terms are also presented for the same sectors. Economic, energy and emission data are also presented in environmental and economic profiles and indicators. Environmental and economic profiles provide an illustration of the relationship between industry, consumption of energy commodities and emission to air. Indicators, that show e.g. emissions (in kg) by value added (in SEK) for economic activities, is another way to illustrate the relation between emissions and economic data

  4. The Economics of Wind Energy

    International Nuclear Information System (INIS)

    Krohn, S.; Morthorst, P.E.; Awerbuch, S.

    2009-03-01

    This report is the result of an effort by the European Wind Energy Association (EWEA) to assemble a team of professional economists to assess the costs, benefits and risks associated with wind power generation. In particular, the authors were asked to evaluate the costs and benefits to society of wind energy compared to other forms of electricity production. In the present context of increasing energy import dependency in industrialised countries as well as the volatility of fuel prices and their impact on GDP, the aspects of energy security and energy diversification have to be given particular weight in such an analysis. Chapter 1 examines the basic (riskless) cost components of wind energy, as it leaves the wind farm, including some international comparisons and a distinction between onshore and offshore technologies. Chapter 2 illustrates other costs, mainly risks that are also part of the investment and thus have to be incorporated in the final price at which electricity coming from wind can be sold in the markets. The chapter discusses why the electricity market for renewable energy sources (RES) is regulated and how different support systems and institutional settings affect the final cost (and hence, price) of wind power. Chapter 3 discusses how the integration of wind energy is modifying the characteristics and management of the electrical system including grids, and how such modifications can affect the global price of electricity. Chapter 4 analyses how the external benefits of wind energy, such as its lower environmental impact and the lower social risk it entails can be incorporated into its valuation. Chapter 5 develops a methodology for the correct economic comparison of electricity costs coming from wind and from fuel-intensive coal and gas power generation. Chapter 5 uses as a starting point the methodology currently applied by the International Energy Agency (IEA) and improves it by incorporating some of the elements described in the previous

  5. Economic and policy analysis for solar PV systems in Indiana

    International Nuclear Information System (INIS)

    Jung, Jinho; Tyner, Wallace E.

    2014-01-01

    In recent years, the energy market in the US and globally is expanding the production of renewable energy. Solar energy for electricity is also expanding in the US. Indiana is one of the states expanding solar energy with solar photovoltaic (PV) systems. Therefore, we conduct benefit cost analysis with several uncertain input variables to determine the economics of adopting solar PV systems in Indiana based on policy instruments that could increase adoption of solar PV systems. The specific objectives are analyses of the cost distribution of solar PV systems compared with grid electricity in homes and estimating the probability that solar can be cheaper than electricity from grids under different policy combinations. We first do the analysis under current policy and then the analysis under potential policy options for a variety of scenarios. Also, the results inform government policy makers on how effective the alternative policies for encouraging solar PV systems are. The results show that current policies are important in reducing the cost of solar PV systems. However, with current policies, there is only 50–50 chance of solar being cheaper than electricity from grids. If potential policies are implemented, solar PV systems can be more economical than grid electricity. - Highlights: • We investigate the economics of solar PV systems based on policy instruments. • We do scenario analyses under different combinations of policies. • We examine the probability of solar being cheaper than grid electricity for each scenario. • With current policies, there is 50–50 chance of solar being cheaper than the grid. • With depreciation and carbon tax, solar is much more economical than the grid

  6. The economic power of energy and the need to integrate it with energy policy

    International Nuclear Information System (INIS)

    Kümmel, Reiner; Lindenberger, Dietmar; Weiser, Florian

    2015-01-01

    Drastic oil price changes, the associated economic perturbations, the coupling of energy conversion to entropy production in the form of emissions, and the problems of climate change call for a reappraisal of energy in economic theory. We review econometric growth analyses that do not weigh the production factors capital, labor, and energy by their cost shares. Their reproduction of economic growth in Germany, Japan, and the USA during the second half of 20th century is good. According to these analyses, energy's output elasticity, which measures its economic power, is much larger than energy's share in total factor cost, while for labor's output elasticity and cost share the opposite is true. This is consistent with profit and welfare optimization, if hitherto ignored technological constraints are taken into account. Computing the motion of the German industrial sector in its cost mountain, employing empirical data on factor quantities and prices, supports these results. The pivotal role of energy in economic growth provides leverage to energy policies that care about social well being and climate stability. - Highlights: • The article indicates the importance of thermodynamics for economics. • Due to technological constraints output elasticities deviate from factor cost shares. • We point out energy policy implications from the high output elasticities of energy.

  7. Comparing centralized and decentralized bio-energy systems in rural China

    International Nuclear Information System (INIS)

    He, Guizhen; Bluemling, Bettina; Mol, Arthur P.J.; Zhang, Lei; Lu, Yonglong

    2013-01-01

    Under the dual pressures of an energy crisis and rising greenhouse gas emissions, biomass energy development and utilisation has become part of the national energy strategy in China. The last decade has witnessed a strong promotion of both centralised and decentralised bio-energy systems in rural China. The government seems to have a strong preference for centralised (village-based) bio-energy systems in recent years. However, these government-driven systems have not worked without difficulties, particularly regarding economic and technological viability and maintenance. Studies on the advantages and disadvantages of decentralised and centralised bio-energy systems are rare. This study aims to shed light on the performances of these two systems in terms of social, economic and environmental effects. Through interviewing local officials and village leaders and surveying farmers in 12 villages in Shandong Province, it was found that bio-energy systems should be selected based on the local circumstances. The diversity of the local natural, economic and social situations determines the size, place, technology and organisational model of the bio-energy system. - Highlights: • Biomass energy development has become part of the national energy strategy in China. • The dis-/advantages of decentralized and centralized bio-energy systems are evaluated. • Bio-energy systems should be selected based on the local circumstances

  8. Integrated electrofuels and renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva

    energy into chemical energy by means of electrolysers, thus connecting fluctuating renewable energy to the vast amount of fuel storage already available in today’s energy systems. The conducted research indicates that electrofuels for heavy-duty transportation are technically and economically viable...... in energy systems and could play an important role in future energy systems. The cross-sector approach in the fuel production, by redirecting the excess electricity to the transport sector, is creating the flexibility and storage buffer for fluctuating electricity. The key concern in the short term should...

  9. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  10. Biomass energy utilisation - ecological and economic aspects

    International Nuclear Information System (INIS)

    Plamen Gramatikov

    2009-01-01

    Biomass is the world's fourth largest energy source today and it represents about 35% of the primary energy supply in developing countries. Biomass is a versatile source of energy in that it can produce electricity, heat, transport fuel and it can be stored. The problems (technical, economic, etc.) which have to be solved by treatment of biomass are discussed in this work. The average quantities of biomass resources of some European countries are presented and the structure, percentage of products and their calorific values are estimated. Keywords: Biomass Energy Potential, Ecological & Economic Aspects

  11. Economic analyses of central solar heating systems with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D; Keinonen, R.S.

    1986-10-01

    Economic optimization of large active community solar heating systems with annual thermal storage is discussed. The economic evaluation is based on a thermal performance simulation model employing one hour time steps and on detailed up-date data. Different system configurations and sub-system sizes have been considered. For Northern European weather conditions (60/sup 0/N) and with at least 400-500 residential units, the life-cycle cost of delivered solar heat was 6.5-7.5 c/kWh for 50% fraction of non-purchased energy. For a solar fraction of 70%, the solar energy price would be 8 c/kWh.

  12. Fiscal greening and energy. Part 2. Economic effects of increase and broadening of the Regulating Energy Levy (REB)

    International Nuclear Information System (INIS)

    Lijesen, M.; Mulder, M.; Vromans, M.

    2001-07-01

    For the benefit of the discussion on greening the Dutch tax system, The Netherlands Bureau for Economic Policy Analysis (CPB) has made an analysis of the economic and environmental effects of raising the energy tax in the Netherlands, the so called Regulating Energy Tax.This energy tax is introduced in 1996 and has been raised in the following years in order to encourage energy efficiency improvement and the production of renewable energy. Since the introduction and the raising of this energy tax is coupled with a reduction of the tax tariffs on labour and capital, the tax basis is shifted towards environment polluting factors.This tax shift is called 'greening the tax system'. Five variants for raising the energy tax are analysed. In two of these variants the existing tariffs are raised by maintaining the existing exemption for energy use above a certain level. In the other two variants this level is raised, meaning that a larger part of the total energy use is taxed.In addition to these 4 variants, CPB has formulated a variant in which taxes have to be paid for all energy use without any exemption. In the long run uniform marginal tariffs for all energy users is the most efficient variant. Measures to reduce emissions will then be taken by the firms and households where the marginal reduction costs are relatively low. In the medium run the environmental and macroeconomic effects are almost the same in all variants. Raising the energy tax will result in a reduction of the emissions of CO2 in 2020 by 2,5 -8,5 Mton. The explanation for this range is the existence of large uncertainties concerning the development of costs and non-financial bottlenecks in the field of renewable energy production. The macro-economic costs of all variants in 2020 will be less then 0,1% GDP. The differences in environmental and macro-economic effects in the medium run are too small and the uncertainties about these effects are too large to rank these variants according their cost

  13. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  14. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, V

    2010-10-01

    Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...

  15. Thermo economical evaluation of retrofitting strategies in air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Tribess, Arlindo; Fiorelli, Flavio Augusto Sanzogo; Hernandez Neto, Alberto [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br; fiorelli@usp.br; ahneto@usp.br

    2000-07-01

    In a building project, several subsystems are designed, among them the air conditioning system. Electrical energy consumption profiles show that this subsystem is responsible for 40 to 50% of total consumption in a commercial building. Besides the study of technical aspects that should be considered in order to assure the thermal comfort of the occupants as well the temperature and humidity conditions for an efficient equipment operation, an economical evaluation of this subsystem should be also made. In retrofit projects, the economical aspect is also critical for such projects in order to assure bigger efficiency in an economically attractive way. This paper analyses some strategies that might be adopted in retrofitting an air conditioning system installed in a commercial building with mixed occupation. By mixed we mean that some floors have a typical office occupation profile and other floors are mainly occupied by electronic equipment. This analysis includes both technical and economical evaluation. The proposed solutions performance are compared to the old system, which allows to verify the retrofitting impact in energy consumption reduction and its economical feasibility. (author)

  16. Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Tzamalis, G. [Center for Renewable Energy Sources (CRES), RES and Hydrogen Technologies, 19th km Marathon Avenue, GR 19009 Pikermi (Greece); Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece); Zoulias, E.I.; Stamatakis, E.; Varkaraki, E. [Center for Renewable Energy Sources (CRES), RES and Hydrogen Technologies, 19th km Marathon Avenue, GR 19009 Pikermi (Greece); Lois, E.; Zannikos, F. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2011-01-15

    Two different options for the autonomous power supply of rural or/and remote buildings are examined in this study. The first one involves a PV - diesel based power system, while the second one integrates RES and hydrogen technologies for the development of a self - sustained power system. The main objective is the replacement of the diesel generator and a comparison between these two options for autonomous power supply. Model simulations of the two power systems before and after the replacement, an optimization of the component sizes and a techno - economic analysis have been performed for the purpose of this study. A sensitivity analysis taking into account future cost scenarios for hydrogen technologies is also presented. The results clearly show that the Cost of Energy Produced (COE) from the PV - hydrogen technologies power system is extremely higher than the PV - diesel power system. However, the adopted PV - hydrogen technologies power system reduces to zero the Green - House Gas (GHG) emissions. Moreover, the sensitivity analysis indicates that COE for the latter system can be further reduced by approximately 50% compared to its initial value. This could be achieved by reducing critical COE's parameters, such as PEM electrolyser and fuel cell capital costs. Hence, a possible reduction on the capital costs of hydrogen energy equipment in combination with emissions reduction mentioned above could make hydrogen - based power systems more competitive. (author)

  17. Technical challenges to energy systems' operation and markets

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.; Meibom, P.; Gehrke, O. [Risoe National Lab. (Denmark); Oestergaard, J. [Technical Univ. of Denmark (Denmark)

    2006-11-15

    A future energy system that includes a high proportion of renewable energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today, while delivering better environmental performance, especially with regard to CO{sub 2} emissions. Security of supply refers to the long-term reliability of fuel supply; especially in power systems, it also covers short-term requirements for system stability and adequacy. Economic efficiency is concerned with getting the best from the significant amounts of money, human capital and natural resources involved in an energy system. Integral to economic efficiency in energy systems is the presence of well-functioning markets for energy services. The variability and reduced predictability of a number of renewable energy sources, notably wind power, create specific challenges for future energy systems compared to those of today. Power transmission will also become an issue, as the areas with good potential for wind power and wave energy are often located some distance from the centres of power consumption. This chapter describes the challenges involved, and possible solutions to these, with a focus on power systems. The chapter is divided into two sections reflecting the fact that some challenges relate to managing the power system in its normal operation mode, whereas others are specific to fault conditions. (au)

  18. Nuclear energy and global warming: a new economic view

    International Nuclear Information System (INIS)

    Rokhshad Hejazi

    2009-01-01

    This paper tries to state energy situation and then energy policy globally in economic view and then offer the practical solution. Besides above questions, the most important questions that will be answered are: What is the energy position, in economic view? and what is the most important priority among environmental issues? According to present conditions and environmental challenges what is the way map for energy supply? Is the priority for environment and energy with an economic sight, in present and future, same as the past? (Author)

  19. Capital-energy complementarity in aggregate energy-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, W.W.

    1979-10-01

    The interplay between capital and energy will affect the outcome of energy-policy initiatives. A static model clarifies the interpretation of the conflicting empirical evidence on the nature of this interplay. This resolves an apparent conflict between engineering and economc interpretations and points to an additional ambiguity that can be resolved by distinguishing between policy issues at aggregated and disaggregated levels. Restrictions on aggregate energy use should induce reductions in the demand for capital and exacerbate the economic impacts of the energy policy. 32 references.

  20. Energy and economic growth: Grounding our understanding in physical reality

    International Nuclear Information System (INIS)

    Ockwell, David G.

    2008-01-01

    This article attempts to summarise the complex, wide ranging and unresolved debate within the economics literature on the possibility of decoupling economic growth from energy use. It explores the difference between neo-classical and ecological economic worldviews and highlights how the ecological economic approach attempts to ground its analysis within the physical limits implied by the laws of thermodynamics. Once these laws are accounted for, the possibility of decoupling economic growth from energy use seems more limited than neo-classical economics implies. Analysis of empirical evidence also demonstrates that observed improvements in GDP/energy use ratios in the USA are better explained by shifts towards higher quality fuels than by improvements in the energy efficiency of technologies. This implies a need to focus on decarbonising energy supply. Furthermore, where energy-efficiency improvements are attempted, they must be considered within the context of a possible rebound effect, which implies that net economy-wide energy savings from energy-efficiency improvements may not be as large as the energy saved directly from the efficiency improvement itself. Both decarbonising energy supply and improving energy efficiency require the rapid development and deployment of new and existing low-carbon technologies. This review therefore concludes by briefly outlining areas of economic thought that have emerged as a result of engagement between economists and experts from other disciplines. They include ecological, evolutionary and institutional economics, all of which can make policy-relevant contributions to achieving a transition to a low-carbon economy

  1. Re-materialising energy use through transparent monitoring systems

    International Nuclear Information System (INIS)

    Burgess, Jacquelin; Nye, Michael

    2008-01-01

    This paper reviews the effect of transparent energy monitoring systems on the purchasing, production and energy use behaviour of consumers and producers. Relevant literature is explored on the linkages between feedback, risk and responsibility, knowledge, economic drivers, and sustainable energy consumption. Drawing on international as well as UK-specific experiences, the paper focuses on the prospects for current and future energy monitoring systems to 're-materialise' energy use in economic and environmental terms that are more meaningful, and thus more behaviourally significant, to a substantially wider range of energy users than today's. Appliance labelling, smart metering and carbon footprint analyses are explored as case studies

  2. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  3. International symposium on energy, environment and economics: Transactions

    International Nuclear Information System (INIS)

    Colville, E.J.

    1995-01-01

    The conference deals with a comprehensive range of topics on energy sources and technologies, the economic impacts of energy use and production, and environmental issues. The papers are grouped into chapters covering environmental policy, environment education, environment economics, new and renewable energy sources, utilities, electricity and planning software, domestic energy, commercial energy, heat pumps and cogeneration, and transport. A number of un-presented papers and abstracts of contributions are included. Relevant papers are individually indexed/abstracted. Tabs. figs., refs

  4. The intelligent energy system for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Morthorst, Poul Erik; Bindslev, Henrik; Sonderberg Petersen, Leif

    2010-09-15

    In a future energy system non-fossil fuels have taken the lead, end-use technologies are highly efficient and closely interlinked to supply through intelligent energy systems. Climate change issues, security of supply and economic development need to be pursued concurrently. This calls for flexible and intelligent energy system infrastructures that effectively accommodate large amounts of fluctuating renewable energy and let the end-user interact with the supply through advanced ICT. The second important characteristic is intelligent integration of the entire transport sector. The third key area is advanced energy storage facilities in the system and the introduction of super-grids.

  5. Nuclear energy as an instrument of economic policy

    International Nuclear Information System (INIS)

    Thiriet, L.

    1984-01-01

    This chapter is a review of how nuclear power can help achieve energy policy objectives, illustrated with examples based on experience in France. It is preceded by a preliminary consideration of the global economic background for the development of nuclear power today. Headings are: introduction; world-wide economic environment; nuclear energy and inflation; nuclear energy and external constraints; nuclear energy, foreign currency and employment in the French context. (U.K.)

  6. Energy and Environmental Systems Division 1981 research review

    International Nuclear Information System (INIS)

    1982-04-01

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems

  7. Economic Optimal Operation of Community Energy Storage Systems in Competitive Energy Markets

    OpenAIRE

    Arghandeh, Reza; Woyak, Jeremy; Onen, Ahmet; Jung, Jaesung; Broadwater, Robert P.

    2014-01-01

    Distributed, controllable energy storage devices offer several benefits to electric power system operation. Three such benefits include reducing peak load, providing standby power, and enhancing power quality. These benefits, however, are only realized during peak load or during an outage, events that are infrequent. This paper presents a means of realizing additional benefits by taking advantage of the fluctuating costs of energy in competitive energy markets. An algorithm for optimal charge...

  8. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  9. Energy demand, economic growth, and energy efficiency - the Bakun dam-induced sustainable energy policy revisited

    International Nuclear Information System (INIS)

    Keong, C.Y.

    2005-01-01

    In embarking on a dynamic course of economic development and industrial modernism, Malaysia sees the need to increase its electricity generation capacity through the development of a mega-dam project - the Bakun dam. Although hydroelectricity generation offers one of the benign options in accommodating the increasing energy consumption per capita in Malaysia, it is argued that the construction of Bakun's dam which involves a complete and irreversible destruction of 69,640 ha of old forest ecosystem remains a difficult and uncertain endeavour. It is further argued that apart from mega-dam technology, there are also other means to orchestrate a sustainable energy system in Malaysia. These include the implementation of demand and supply initiatives, such as the deployment of energy saving technology or influencing behavioral change towards a sustainable energy consumption pattern

  10. Assessing the ecological and economic sustainability of energy crops

    International Nuclear Information System (INIS)

    Hanegraaf, M.C.; Biewinga, E.E.; Bijl, G. van der

    1998-01-01

    The production and use of biomass for energy has both positive and negative impacts on the environment. The environmental impacts of energy crops should be clarified before political choices concerning energy are made. An important aid to policy-making would be a systematic methodology to assess the environmental sustainability of energy crops. So far, most studies on the environmental aspects of energy crops deal mainly with the energy production of the crops and the possible consequences for CO 2 mitigation. The Dutch Centre for Agriculture and Environment (CLM) has developed a systematic methodology to assess the ecological and socio-economic sustainability of biomass crops. The method is best described as a multicriteria analysis of process chains and is very much related to Life Cycle Assessment (LCA). Characteristics of our methodology are the use of: definition of functional units; analysis of the entire lifecycle; definition of yield levels and corresponding agricultural practices; analysis of both ecological and economic criteria; definition of reference systems; definition of procedures for normalisation and weighting. CLM has applied the method to assess the sustainability of ten potentially interesting energy crops in four European regions. The results are used to outline the perspectives for large scale production of biomass crops with regard to the medium and long term land availability in Europe. For the crops considered, net energy budget ranges from 85 GJ net avoided energy per ha for rape seed for fuel to 248 GJ net avoided fossil energy per ha for silage maize for electricity from gasification. The methodology of the tool and its results were discussed at the concerted action ''Environmental aspects of biomass production and routes for European energy supply'' (AIR3-94-2455), organised by CLM in 1996. Major conclusions of the research: multicriteria analyhsis of process lifecycles is at present the best available option to assess the ecological

  11. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  12. Employment, energy, and economic growth in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J

    1979-09-01

    The author examines the complex relationships between energy use, employment opportunities, and economic growth as they apply to the Australian economy and concludes that state and federal governments should collaborate to analyze the employment impacts of the various energy strategies. He sees the need for changes in the political and economic environment as well as in the way energy is used before Australia can return to full employment. While low or zero energy growth policies would not, by themselves, solve the unemployment problem, most new jobs have been created in the labor-intensive service industries. 25 references. (DCK)

  13. Environment, energy, and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Oberndorfer, Ulrich

    2009-09-25

    This thesis analyzes the relationship between environmental regulation as well as energy market developments on the one hand, and economic performance on the other. Due to its economic effects environmental regulation is controversially disputed. The thesis shows, however, that the economic impacts of the recently adopted climate policy in Europe, namely of the implementation of the European Union Emission Trading Scheme, have been modest at most. Consistent with economic theory, the low stringency of this regulatory measure that is aimed at combating man-made climate change is identified as one important driver of this result. Moreover, results presented in this thesis also indicate the important role which the political economy plays for the design of environmental regulation in general. These mechanisms are shown to be a driver of the low stringency and, consequently, of the small economic effects during the first phase of the European Union Emission Trading Scheme. The thesis highlights the role of investment stimulation if the goal of environmental regulation is not only the protection of the environment, but also the compatibility with economic goals. This thesis also provides new insights into the role of energy market developments for the economy. In this respect, the relevance of the EU carbon market for the financial market performance of European electricity generators is shown. Besides, this thesis particularly demonstrates the paramount importance of oil market developments for the economy as a whole. It suggests that amongst all natural resources, oil is the most relevant one to the pricing of Eurozone energy stocks. It is also shown that besides oil prices, oil volatility plays an important role for stock market development. Finally, the thesis highlights the relevance of oil market developments to the overall economy, in showing that unemployment in Germany is strongly affected by oil price shocks. In this respect, it also opposes claims that the

  14. Science and society test VI: Energy economics

    Science.gov (United States)

    Hafemeister, David W.

    1982-01-01

    Simple numerical estimates are developed in order to quantify a variety of energy economics issues. The Verhulst equation, which considers the effect of finite resources on petroleum production, is modified to take into account supply and demand economics. Numerical and analytical solutions to these differential equations are presented in terms of supply and demand elasticity functions, various finite resources, and the rate of increase in fuel costs. The indirect cost per barrel of imported oil from OPEC is shown to be about the same as the direct cost. These effects, as well as those of discounted benefits and deregulation, are used in a calculation of payback periods for various energy conserving devices. A phenomenological model for market penetration is developed along with the factors for future energy growth rates. A brief analysis of the economic returns of the ''house doctor'' program to reprofit houses for energy conservation is presented.

  15. Mashreq Arab interconnected power system potential for economic energy trading

    International Nuclear Information System (INIS)

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-01-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study

  16. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  17. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  18. Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, Flavio; Bartolini, Carlo Maria [Universita Politecnica delle Marche, Dipartimento di Energetica, Via Brecce Bianche, Ancona (AN) 60100 (Italy); Brandoni, Caterina [Universita Telematica e-Campus, Ingegneria Energetica, Via Isimbardi 10, Novedrate (CO) 22060 (Italy); Feliciotti, Petro [Universita Politecnica delle Marche, Dipartimento di Ingegneria Informatica, Gestionale e dell' Automazione, Via Brecce Bianche, Ancona (AN) 60100 (Italy)

    2011-03-15

    Micro-combined heat and power (CHP) systems are a key resource to meet the EUCO{sub 2} reduction agreed in the Kyoto Protocol. In the near future they are likely to spread significantly through applications in the residential and service sectors, since they can provide considerably higher primary energy efficiencies than plants generating electricity and heat separately. A 28 kW{sub e} natural gas, automotive-derived internal combustion engine CHP system was modeled with a view to comparing constant and variable speed operation modes. Besides their energy performances, the paper addresses the major factors involved in their economic evaluation and describes a method to assess their economic feasibility. Typical residential and service sector applications were chosen as test cases and the results discussed in terms of energy performances and of profitability. They showed that interesting savings can be obtained with respect to separate generation, and that they are higher for the household application in variable speed operating conditions. In fact the plant's energy performance is greatly enhanced by the possibility, for any given power, to regulate the engine's rotational speed. From the economic viewpoint, despite the higher initial cost of the variable speed concept, the system involves a shorter pay-back period and ensures greater profit. (author)

  19. Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator

    International Nuclear Information System (INIS)

    Caresana, Flavio; Brandoni, Caterina; Feliciotti, Petro; Bartolini, Carlo Maria

    2011-01-01

    Micro-combined heat and power (CHP) systems are a key resource to meet the EUCO 2 reduction agreed in the Kyoto Protocol. In the near future they are likely to spread significantly through applications in the residential and service sectors, since they can provide considerably higher primary energy efficiencies than plants generating electricity and heat separately. A 28 kW e natural gas, automotive-derived internal combustion engine CHP system was modeled with a view to comparing constant and variable speed operation modes. Besides their energy performances, the paper addresses the major factors involved in their economic evaluation and describes a method to assess their economic feasibility. Typical residential and service sector applications were chosen as test cases and the results discussed in terms of energy performances and of profitability. They showed that interesting savings can be obtained with respect to separate generation, and that they are higher for the household application in variable speed operating conditions. In fact the plant's energy performance is greatly enhanced by the possibility, for any given power, to regulate the engine's rotational speed. From the economic viewpoint, despite the higher initial cost of the variable speed concept, the system involves a shorter pay-back period and ensures greater profit.

  20. The use of economic forecasts in Danish economic policy, with special emphasis on energy and the environment

    International Nuclear Information System (INIS)

    Nielsen, Lise

    1998-01-01

    This article discusses the use of economic forecasts in Danish economic policy, with special emphasis on energy and the environment. Two different approaches have been used to forecast energy consumption and its effects on environment in Denmark and other countries. These are the macro economic and the technical approaches. The technical approach is based on technical expertise related to energy production and energy consumption, and the article asks whether the forecasts produced by this approach are superior to macro economic forecasts of energy consumption. This question is interesting because the implications for policy resulting from the two approaches seem to be different. The analysis may have relevance to other areas outside the main economic field. (au) 22 refs

  1. Energy consumption, political regime and economic growth in sub-Saharan Africa

    International Nuclear Information System (INIS)

    Adams, Samuel; Klobodu, Edem Kwame Mensah; Opoku, Eric Evans Osei

    2016-01-01

    In this paper, we examine the relationship between energy consumption and economic growth, and how democracy moderates this relationship using panel data of 16 sub-Saharan African (SSA) countries for the period 1971–2013. Employing a panel vector autoregressive model (PVAR) in a generalized method of moments (GMM) framework, the findings support the feedback hypothesis for energy consumption and growth. Second, the interaction variable (energy consumption and democracy) is positively and significantly related to economic growth, supporting the view that democracy moderates the energy consumption and growth nexus. Further, the results provide strong evidence of a uni-directional relationship from trade openness to energy consumption. Additionally, impulse responses and variance decompositions also confirm positive feedback relationships between energy consumption and economic growth, energy prices and economic growth. - Highlights: •Feedback exists between energy consumption and economic growth. •Democracy moderates the energy consumption and growth nexus. •positive feedback between energy prices and economic growth. •Uni-directional relationship from openness to energy consumption.

  2. Energy Economics of Farm Biogas in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E

    2012-10-24

    Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could be used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.

  3. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An investigation of the techno-economic impact of internal combustion engine based cogeneration systems on the energy requirements and greenhouse gas emissions of the Canadian housing stock

    International Nuclear Information System (INIS)

    Asaee, S. Rasoul; Ugursal, V. Ismet; Beausoleil-Morrison, Ian

    2015-01-01

    This study provides a techno-economic evaluation of retrofitting internal combustion engine (ICE) based cogeneration systems in the Canadian housing stock (CHS). The study was conducted using the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model (CHREM). CHREM includes close to 17,000 unique house files that are statistically representative of the Canadian housing stock. The cogeneration system performance was evaluated using a high resolution integrated building performance simulation software. It is assumed that the ICE cogeneration system is retrofitted into all houses that currently use a central space heating system and have a suitable basement or crawl space. The GHG emission intensity factor associated with marginal electricity generation in each province is used to estimate the annual GHG emissions reduction due to the cogeneration system retrofit. The results show that cogeneration retrofit yields 13% energy savings in the CHS. While the annual GHG emissions would increase in some provinces due to cogeneration retrofits, the total GHG emissions of the CHS would be reduced by 35%. The economic analysis indicates that ICE cogeneration system retrofits may provide an economically feasible opportunity to approach net/nearly zero energy status for existing Canadian houses. - Highlights: • Techno-economic evaluation ICE cogeneration systems for Canadian housing is reported. • ICE cogeneration retrofit could yield 13% annual energy savings in Canadian housing. • Annual GHG emissions of Canadian housing could decrease by 35% with ICE cogeneration. • But, in some provinces, GHG emissions would increase as a result of ICE cogeneration

  5. Energy consumption and economic growth on the focus on nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Filiz [Sakarya Univ., Sakarya (Turkey). Dept. of Financial Econometric; Pektas, Ali Osman [Bahcesehir Univ., Istanbul (Turkey). Dept. of Civil Engineering; Ozkan, Omer [Istanbul Medeniyet Univ. (Turkey). Dept. of Civil Engineering

    2017-01-15

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  6. Energy consumption and economic growth on the focus on nuclear energy

    International Nuclear Information System (INIS)

    Ozkan, Filiz; Pektas, Ali Osman; Ozkan, Omer

    2017-01-01

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  7. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    International Nuclear Information System (INIS)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.

    1987-01-01

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs

  8. Integration of renewable and conventional energies. How to design future energy systems?

    Energy Technology Data Exchange (ETDEWEB)

    Hellinger, Rolf [Siemens AG, Erlangen (Germany). CT RTC PET

    2015-07-01

    The worldwide increasing energy demand, especially in the economically emerging countries, and the climate change are a major challenge for the energy supply. One of the most severe challenges is the reduction of carbon dioxide emissions which can also be seen in the planned investment for energy systems. At the same time, energy systems worldwide are in transition, driven by market and technology trends. As a consequence of these trends, the complexity of future energy systems will extremely increase. The paper outlines a new approach for sustainable, reliable and affordable energy systems of the future, based on technologies, available and under development, which combine different forms of energy.

  9. Integration of renewable and conventional energies. How to design future energy systems?

    International Nuclear Information System (INIS)

    Hellinger, Rolf

    2015-01-01

    The worldwide increasing energy demand, especially in the economically emerging countries, and the climate change are a major challenge for the energy supply. One of the most severe challenges is the reduction of carbon dioxide emissions which can also be seen in the planned investment for energy systems. At the same time, energy systems worldwide are in transition, driven by market and technology trends. As a consequence of these trends, the complexity of future energy systems will extremely increase. The paper outlines a new approach for sustainable, reliable and affordable energy systems of the future, based on technologies, available and under development, which combine different forms of energy.

  10. Techno-economic study of a distributed hybrid renewable energy system supplying electrical power and heat for a rural house in China

    Science.gov (United States)

    Yuan, Jindou; Xu, Jinliang; Wang, Yaodong

    2018-03-01

    Energy saving and emission reduction have become targets for modern society due to the potential energy crisis and the threat of climate change. A distributed hybrid renewable energy system (HRES) consists of photovoltaic (PV) arrays, a wood-syngas combined heat and power generator (CHP) and back-up batteries is designed to power a typical semi-detached rural house in China which aims to meet the energy demand of a house and to reduce greenhouse gas emissions from the use of fossil fuels. Based on the annual load information of the house and the local meteorological data including solar radiation, air temperature, etc., a system model is set up using HOMER software and is used to simulate all practical configurations to carry out technical and economic evaluations. The performance of the whole HRES system and each component under different configurations are evaluated. The optimized configuration of the system is found

  11. Balancing Fiscal, Energy, and Environmental Concerns: Analyzing the Policy Options for California’s Energy and Economic Future

    Directory of Open Access Journals (Sweden)

    Edward Manderson

    2013-03-01

    Full Text Available This study estimates the fiscal, energy, and environmental tradeoffs involved in supplying California’s future energy needs. An integrated framework is developed whereby an econometric forecasting system of California energy demand is coupled with engineering-economic models of energy supply, and economic impacts are estimated using input-output models of the California economy. A baseline scenario in which California relies on imported electricity to meet future demand is then compared against various energy supply development scenarios over the forecast horizon (2012–2035. The results indicate that if California implements its renewable portfolio standard (RPS, there will be a substantial net cost in terms of value added, employment, and state tax revenues because the economic benefits of building capacity are outweighed by higher energy prices. Although carbon emissions fall, the cost per ton of avoided emissions is well above market prices. Building out natural gas fired generation capacity also leads to losses compared to the baseline, although the impacts are relatively minor. Meanwhile, a strategy of replacing imported crude oil and natural gas with domestic production using indigenous resources increases gross state product, employment, and tax revenues, with minimal impact on carbon emissions. This option could, therefore, help mitigate the costs of California meeting its RPS commitment.

  12. Symposium on Pacific Energy Cooperation '99. Changing economic environment and energy cooperation in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-16

    Compiled in this publication are the papers delivered at the above conference held in Tokyo on February 16-17, 1999. Presented in Session 1, entitled 'economic reforms and energy situation in Asian countries,' are the causes and lessons of economic and financial crisis in the Asian countries and the prospect of restoration; the outlook of energy supply and demand in the Asia Pacific region; and a message from APEC (Asia-Pacific Economic Cooperation Conference) Okinawa Energy Ministers' Meeting. Discussed in Session 2, entitled 'energy security in the Asia Pacific region,' are the outlook for world oil prices; and the stable supply of oil and gas in the Asia Pacific region. Discussed in Session 3, entitled the 'deregulation of the energy sector in the Asia Pacific region,' are the deregulation of the power sector, progress and problems; and the privatization of the oil and gas sectors. Many papers are presented also in Session 4, entitled the 'energy and environment in the Asia Pacific region, and in Session 5 entitled 'pacific energy cooperation in the changing economic and energy environment.' (NEDO)

  13. Modeling the CO2 emissions, energy use, and economic growth in Russia

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Yu, Hsiao-Cheng; Yang, Yeou-Herng

    2011-01-01

    This paper applies the co-integration technique and causality test to examine the dynamic relationships between pollutant emissions, energy use, and real output during the period between 1990 and 2007 for Russia. The empirical results show that in the long-run equilibrium, emissions appear to be energy use elastic and output inelastic. This elasticity suggests high energy use responsiveness to changes in emissions. The output exhibits a negative significant impact on emissions and does not support EKC hypothesis. These indicate that both economic growth and energy conservation policies can reduce emissions and no negative impact on economic development. The causality results indicate that there is a bidirectional strong Granger-causality running between output, energy use and emissions, and whenever a shock occurs in the system, each variable makes a short-run adjustment to restore the long-run equilibrium. The average speed of adjustment is as low as just over 0.26 years. Hence, in order to reduce emissions, the best environmental policy is to increase infrastructure investment to improve energy efficiency, and to step up energy conservation policies to reduce any unnecessary waste of energy. That is, energy conservation is expected to improve energy efficiency, thereby promoting economic growth. -- Highlights: → In Russia, emissions are energy use elastic and real output inelastic, but energy is a more important determinant of emissions than output. → In Russia, the real output exhibits a negative significant impact on emissions and does not support EKC hypothesis. → In Russia, there is a bidirectional strong causality relationship between emissions, energy use and output. → In Russia, the average speed of a short-run adjustment to restore long-run equilibrium is about 0.26 years. → In Russia, the energy conservation is expected to improve energy efficiency, thereby promoting economic growth.

  14. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  15. Economic regimes for fission--fusion energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1974-01-01

    The objectives of this hybrid fusion-fission economic regimes study are to: (1) define the target costs to be met, (2) define the optimum fissile/electrical production ratio for hybrid blankets, (3) discover synergistic configurations, and (4) define the windows of economic hybrid design having desirable cost/benefit ratios. (U.S.)

  16. Analysis of potential energy, economic and environmental savings in residential buildings: Solar collectors combined with microturbines

    International Nuclear Information System (INIS)

    Suárez, I.; Prieto, M.M.; Fernández, F.J.

    2013-01-01

    Highlights: ► Centralization of energy systems for a group of buildings improves profitability. ► Thermal solar systems are economically interesting even in low radiation locations. ► Regulations currently in force determine the feasibility of high efficiency energy systems. - Abstract: This paper presents an analysis of a combined solar-cogeneration installation for providing energy services in a set of four residential buildings. Different configurations as regards the number of collectors and their orientation, the number of buildings grouped together, the type of microturbines used in the cogeneration system and their daily and annual operating period are studied from the legal, economic and environmental perspectives. The installation that fulfils the minimum requirements of the solar system coverage and the cogeneration system efficiency currently in force, and simultaneously leads to the highest energy, economic and environmental savings is the one that integrates both technologies and centralises the installation for the four buildings together. A payback period lower than 8 years is obtained that makes this investment recommendable, but it is also concluded that maintaining the existing subsidies for these technologies and lowering the costs of the equipment, are essential factors to ensure the feasibility of this type of installations

  17. Measurement of energy efficiency based on economic foundations

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2015-01-01

    Energy efficiency policy is seen as a very important activity by almost all policy makers. In practical energy policy analysis, the typical indicator used as a proxy for energy efficiency is energy intensity. However, this simple indicator is not necessarily an accurate measure given changes in energy intensity are a function of changes in several factors as well as ‘true’ energy efficiency; hence, it is difficult to make conclusions for energy policy based upon simple energy intensity measures. Related to this, some published academic papers over the last few years have attempted to use empirical methods to measure the efficient use of energy based on the economic theory of production. However, these studies do not generally provide a systematic discussion of the theoretical basis nor the possible parametric empirical approaches that are available for estimating the level of energy efficiency. The objective of this paper, therefore, is to sketch out and explain from an economic perspective the theoretical framework as well as the empirical methods for measuring the level of energy efficiency. Additionally, in the second part of the paper, some of the empirical studies that have attempted to measure energy efficiency using such an economics approach are summarized and discussed.

  18. Energy, Economic, and Environmental Benefits of the Solar America Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Grover, S.

    2007-08-01

    The President's Solar America Initiative (SAI) was launched in January 2006 as part of the administration's Advanced Energy Initiative. The SAI is being led by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP), with NREL providing analytical and technical support. The SAI has a goal of installing 5-10 GW of photovoltaic (PV) systems in the United States by 2015 and 70-100 GW of PV systems in the United States by 2030. To make PV cost-competitive with other energy resources, this requires that the installed cost of PV fall from approximately $8/Wdc in 2005 to $3.3/Wdc in 2015 and $2.5/Wdc in 2030. This report presents estimates of the potential energy, economic, and environmental benefits that could result should the SAI PV installation goals be achieved.

  19. A techno-economic evaluation of a biomass energy conversion park

    Energy Technology Data Exchange (ETDEWEB)

    Van Dael, M.; Van Passel, S.; Witters, N. [Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek (Belgium); Pelkmans, L.; Guisson, R. [VITO, Boeretang 200, 2400 Mol (Belgium); Reumermann, P. [BTG Biomass Technology Group, Josink Esweg 34, 7545 PN Enschede (Netherlands); Marquez Luzardo, N. [School of Life Sciences and Environmental Technology, Avans Hogeschool, Hogeschoollaan 1, 4800 RA Breda (Netherlands); Broeze, J. [Agrotechnology and Food Sciences Group, Wageningen University, Bomenweg 2, 6703 HD Wageningen (Netherlands)

    2013-04-15

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production.

  20. Energy consumption and economic development after the energy price increases of 1973

    International Nuclear Information System (INIS)

    Danielewski, J.

    1993-01-01

    The interdependence between energy consumption and economic development are highlighted in this research, which focuses on energy price rises between 1973 and 1989. Three groups of countries are identified, developing and developed market economies and centrally planned economies. Two areas of interdependence are examined, firstly the dynamic relationship between primary energy consumption growth and real economic growth and secondly the static relationship between primary energy consumption and national income. In the period under review, developing market economies reacted most strongly to higher energy prices, with lower energy consumption while maintaining real growth in the Gross Domestic Product. However developing countries and centrally planned economies increased their energy consumption per unit of national income although the rate of increase slowed after 1975. (UK)

  1. Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses

    International Nuclear Information System (INIS)

    Koo, Choongwan; Hong, Taehoon; Jeong, Kwangbok; Ban, Cheolwoo; Oh, Jeongyoon

    2017-01-01

    It is expected that the rooftop photovoltaic (PV) systems can realize net-zero energy solar buildings (nZESBs), but it is not enough by itself. To realize 100% of nZESBs, the smart photovoltaic system blind (SPSB) was proposed to generate electricity in the PV system and to reduce indoor cooling demands through the shading effect in the blind system. Before its implementation, this study aims to investigate the impact of the proposed SPSB on nZESBs, which is conducted in three ways (i.e., technical, economic, and political analyses). The detailed results can be summarized as follows: (i) technical analysis: when applying the SPSB_C_I_G_S_&_2_-_a_x_i_s (which represents the SPSB with the copper-indium-gallium-selenide (CIGS) PV panel and the two-axis tracking system), its energy self-sufficiency rate was determined to be 1.25–2.31 times superior to other alternatives; (ii) economic analysis: in terms of the NPV_2_5 (net present value at year 25), SPSB_C_I_G_S_&_2_-_a_x_i_s was determined to be 1.41–2.97 times superior to others; in terms of the SIR_2_5 (savings-to-investment ratio at year 25), 1.14–1.26 times; and in terms of the break-even point, 1.4–3.0 years; and (iii) political analysis: the grid-connected utilization plan including solar renewable energy certificates (GC_i_n_c_l_._S_R_E_C plan) was determined to improve the economic profitability of the proposed SPSB. - Highlights: • The smart photovoltaic system blind was developed as prototype model in four ways. • The SPSB_C_I_G_S_&_2_-_a_x_i_s was determined to be superior to other prototype models. • A holistic analysis was conducted to evaluate the impact of the SPSB on nZESBs. • When implementing the GC_i_n_c_l_._S_R_E_C plan, the economic profitability was maximized. • Results showed the NPV_2_5 (US$2.37/m"2), SIR_2_5 (2.97 times), and BEP (7.6 years).

  2. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  3. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  4. Economic principles of optimizing mixed nuclear and non-nuclear electricity systems

    International Nuclear Information System (INIS)

    Gouni, L.

    1984-01-01

    In this chapter, an attempt will be made to show how and why, viewed from the economic angle, nuclear energy and electricity systems supplement each other, since the former requires large size facilities, and the latter provide already existing networks for the supply of all users. Consequently, it is primarily through the electric vector that the rational development of the nuclear industry may be ensured. Section 2.1 sets forth the essential rules for economic calculation. In Section 2.2 we discuss the competitive factors among final-use forms of energy in regard to utilization, and we attempt to show how nuclear energy transmitted through electricity systems may meet such terms. Finally, Section 2.3 deals with, and specifies the characteristics of, electricity systems based on nuclear energy and, in particular, the rates to which they lead. (author)

  5. A manual for the economic evaluation of energy efficiency and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Packey, D.J.; Holt, T.

    1995-03-01

    This manual is a guide for analyzing the economics of energy efficiency and renewable energy (EE) technologies and projects. It is intended (1) to help analysts determine the appropriate approach or type of analysis and the appropriate level of detail and (2) to assist EE analysts in completing consistent analyses using standard assumptions and bases, when appropriate. Included are analytical techniques that are commonly required for the economic analysis of EE technologies and projects. The manual consists of six sections: Introduction, Fundamentals, Selection Criteria Guide, Economic Measures, Special Considerations for Conservation and Renewable Energy Systems, and References. A glossary and eight appendices are also included. Each section has a brief introductory statement, a presentation of necessary formulae, a discussion, and when appropriate, examples and descriptions of data and data availability. The objective of an economic analysis is to provide the information needed to make a judgment or a decision. The most complete analysis of an investment in a technology or a project requires the analysis of each year of the life of the investment, taking into account relevant direct costs, indirect and overhead costs, taxes, and returns on investment, plus any externalities, such as environmental impacts, that are relevant to the decision to be made. However, it is important to consider the purpose and scope of a particular analysis at the outset because this will prescribe the course to follow. The perspective of the analysis is important, often dictating the approach to be used. Also, the ultimate use of the results of an analysis will influence the level of detail undertaken. The decision-making criteria of the potential investor must also be considered.

  6. Energy efficiency, sustainability and economic growth

    International Nuclear Information System (INIS)

    Ayres, Robert U.; Turton, Hal; Casten, Tom

    2007-01-01

    This paper explores two linked theses related to the role energy in economic development, and potential sources of increased energy efficiency for continued growth with reduced greenhouse gas (GHG) emissions. The first thesis is that, while reduced GHG emissions are essential for long-term global sustainability, the usual policy recommendation of increasing energy costs by introducing a carbon tax may be relatively ineffective under current market structures and have an unnecessarily adverse impact on economic growth. Our second thesis is that there exists a practical near-term strategy for reducing GHG emissions while simultaneously encouraging continued technology-driven economic growth. Moreover, this strategy does not require radical new technologies, but rather improved regulation or-more precisely-better deregulation of the electric power sector. In respect to the first of our two theses, this paper addresses a deficiency in neoclassical economic growth theory, in which growth is assumed to be automatic, inevitable and cost-free. We challenge both the assumption that growth will continue in the future at essentially the same rate ('the trend') as it has in the past, and the corollary that our children's children will inevitably be richer and better able to afford the cost of repairing the environmental damages caused by current generations [Simon et al., The state of humanity. Cambridge MA: Blackwell Publishers Ltd.; 1995

  7. Economics of total energy schemes in the liberalised European energy market

    Science.gov (United States)

    Lampret, Peter

    This thesis is concerned with the liberalisation of the European Energy markets and the affects this has had on total energy systems. The work concentrates on a number of case studies all of which are located in the area surrounding Gelsenkirchen - Bottrop - Gladbeck, the centre of the Ruhr region of Germany.The thesis describes briefly how the legislation of the parliament of the extended European Union has been interpreted and enacted into German legislation and its affects on production, transport, sales and customers. Primarily the legislation has been enacted to reduce energy costs by having a competitive market while enabling security of supply. The legislation whose development has accelerated since 1999 can lead to negative effects and these have been highlighted for the case studies chosen.The legislation and technological advances, each of them successful by themselves, do not provide the expected reduction of carbon dioxide emissions when applied to total energy system. The introduction of human behaviour as a missing link makes the problems evident and gives a theoretical basis to overcome these problems. The hypothesis is proven by eight detailed research projects and four concisely described ones.The base of the research is the experience gained on approximately 1,000 operation years of the simplest total energy system, that of centralised heating. This experience is transferred to different solutions for total energy systems and their economics in combination with the changing legislation and observation of human behaviour.The variety of topics of the case studies includes the production of heat by boiler, solar or combined heat and power and the use of fuel cells. Additionally the transfer of heat, at the place of demand is considered, either as an individual boiler in a building or as de-centralised district heating.The various results of these projects come together in a final project which covers four different heating systems in identical

  8. Economic Value of Li-ion Energy Storage System in Frequency Regulation Application from Utility Firm’s Perspective in Korea

    Directory of Open Access Journals (Sweden)

    Wonchang Hur

    2015-05-01

    Full Text Available Energy Storage Systems (ESSs have recently been highlighted because of their many benefits such as load-shifting, frequency regulation, price arbitrage, renewables, and so on. Among those benefits, we aim at evaluating their economic value in frequency regulation application. However, unlike previous literature focusing on profits obtained from participating in the ancillary service market, our approach concentrates on the cost reduction from the perspective of a utility firm that has an obligation to pay energy fees to a power exchange. More specifically, we focus on the payments between the power exchange market and the utility firm as a major source of economic benefits. The evaluation is done by cost- benefit analysis (CBA with a dataset of the Korean market while considering operational constraint costs as well as scheduled energy payments, and a simulation algorithm for the evaluation is provided. Our results show the potential for huge profits to be made by cost reduction. We believe that this research can provide a guideline for a utility firm considering investing in ESSs for frequency regulation application as a source of cost reduction.

  9. Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Li, Zhaoling; Higano, Yoshiro; Wang, Xian’en

    2016-01-01

    Highlights: • A waste-to-energy system is constructed incorporating various urban wastes and technologies. • Waste-to-energy industries are formed and introduced into current socioeconomic system. • A novel input–output simulation model is developed and applied to a metropolis. • Complete energy, economic and environmental potentials of urban wastes are discovered. - Abstract: Tremendous amounts of wastes are generated in urban areas due to accelerating industrialization and urbanization. The current unreasonable waste disposal patterns and potential energy value of urban wastes necessitates the promotion of waste-to-energy implementation. This study is intent on discovering the complete energy, economic and environmental potentials of urban wastes taking municipal solid wastes, waste oil, organic wastewater and livestock manure into consideration. A waste-to-energy system is constructed incorporating these wastes and five waste-to-energy technologies. A novel input–output simulation model is developed and applied to a metropolis to introduce the waste-to-energy system into the current socioeconomic system and form five waste-to-energy industries. The trends in waste generation and energy recovery potential, economic benefits and greenhouse gas mitigation contribution for the study area are estimated and explored from 2011 to 2025. By 2025, biodiesel production and power generation could amount to 72.11 thousand t and 1.59 billion kW h respectively. Due to the highest energy recovery and the most subsidies, the organic wastewater biogas industry has the highest output and net profit, followed by the waste incineration power generation industry. In total 17.97 million t (carbon dioxide-equivalent) accumulative greenhouse gas emission could be mitigated. The organic wastewater biogas industry and waste incineration power generation industry are more advantageous for the study area in terms of better energy, economic and environmental performances. The

  10. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  11. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    energy- system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy- system from a technical and economic perspective, as wind is the most promising fluctuating...... for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally...... renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland’s energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration...

  12. Energy consumption and economic growth. Assessing the evidence from Greece

    International Nuclear Information System (INIS)

    Hondroyiannis, George; Lolos, Sarantis; Papapetrou, Evangelia

    2002-01-01

    This paper attempts to shed light into the empirical relationship between energy consumption and economic growth, for Greece (1960-1996) employing the vector error-correction model estimation. The vector specification includes energy consumption, real GDP and price developments, the latter taken to represent a measure of economic efficiency. The empirical evidence suggests that there is a long-run relationship between the three variables, supporting the endogeneity of energy consumption and real output. These findings have important policy implications, since the adoption of suitable structural policies aiming at improving economic efficiency can induce energy conservation without impeding economic growth

  13. Frontiers in the economics of energy efficiency

    International Nuclear Information System (INIS)

    Miguel, Carlos de; Labandeira, Xavier; Löschel, Andreas

    2015-01-01

    Energy efficiency has become an essential instrument to obtain effective greenhouse gas mitigation and reduced energy dependence. This introductory article contextualizes the contributions of the supplemental issue by showing the new setting for energy efficiency economics and policy; discussing the role of price instruments to promote energy savings; presenting new approaches for energy efficiency policies; and placing energy efficiency within a wider energy and environmental framework.

  14. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  15. Analysis of the economics of typical business applications of solar energy

    Science.gov (United States)

    1981-11-01

    An economic analysis is provided of flat plate collector systems in industrial, commercial, and agricultural business applications in a variety of locations. A key element of the analysis is the federal solar investment tax credit. The SOLCOST Solar Energy Design Program is used for the study. The differences between industrial agricultural and commercial applications are considered, as are finance and tax data and fuel data. The rate of return and payback are the criteria used to compare the economic viability of systems. Market penetration estimates for process steam were derived for seven southwestern states where direct solar radiation is highest.

  16. Sourcebook for energy assessment. [Reference Energy Systems for 1972-2020

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1975-12-01

    An analytical approach is presented that is broadly applicable to the assessment of energy technologies and policies. Using the Reference Energy System approach, it permits the examination of the economic, environmental, and resource implications resulting from the substitution of one fuel or technology for another. Included as tools for such analyses are the necessary data and methodology, as well as a set of Reference Energy Systems covering the 1972-2020 period to serve as baselines for the perturbation analyses of interest. 46 tables, 25 figures, 71 references.

  17. Mapping key economic indicators of onshore wind energy in Sweden by using a geospatial methodology

    International Nuclear Information System (INIS)

    Siyal, Shahid Hussain; Mentis, Dimitris; Howells, Mark

    2016-01-01

    Highlights: • We spatially quantified and visualized the economic indicators of onshore wind energy in Sweden. • Possible land use constraints to wind energy were taken into account. • Economic indicators were estimated on the basis of two wind turbines. • We used a GIS-based methodology for this analysis and found it very useful. • Results suggest that Sweden holds economic feasible wind energy resource, specially in the southern and central regions. - Abstract: Due to modern advancements in renewable energy systems and increasing prices of fossil fuels wind energy is getting a lot of attention all over the world. In this regard, Sweden also fixed motivated targets to get energy supply from local renewable energy resources. So, local wind power could help the country in achieving the targets. In this study, economic indicators of wind energy were spatially estimated for Sweden by using ArcGIS tool. In order to do this, as input data one-year high resolution modeled annual average wind data was processed by means of Rayleigh distribution, wind turbine power curve, land use constraints, technical constraints and economic parameters. Based on the input data, it was concluded that Sweden possesses economically feasible wind energy resource. The results of the study indicate that southern and central regions could produce economically viable wind electricity in all aspects as compared to the northern region of the country. Lastly, it was recommended to speed up wind energy penetration in Sweden, communal awareness and acceptance regarding the resource should be increased to avoid possible misunderstanding. Additionally, the capability of the national electric grid should be enhanced to take up the large scale unpredictable wind energy resource.

  18. Evaluating the Economic Performance of High-Technology Industry and Energy Efficiency: A Case Study of Science Parks in Taiwan

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2013-02-01

    Full Text Available High-technology industries provide opportunities for economic growth, but also raise concerns because of their energy-demanding nature. This paper provides an integrated evaluation of both economic benefits and energy efficiency of high-technology industries based on the real data from one of the globally recognized high-technology industrial clusters, the national science parks in Taiwan. A nation-wide industrial Input-Output Analysis is conducted to demonstrate the positive effects of science parks on national economic developments and industrial upgrades. The concept of energy intensity and an energy-efficient economy index are applied to an integrated assessment of the relationship between economic growth and energy consumption. The proposed case study suggests that economic and energy efficiency objectives can be simultaneously achieved by the development of high-technology industries, while three energy policy implications are considered. First, a nation-wide macro viewpoint is needed and high-technology industries should be considered as parts of the national/regional economies by governmental agencies. Second, a proper industrial clustering mechanism and the shared environmental facilities supported by the government, such as planned land and road usage, electricity and water supply, telecommunications system, sewerage system and wastewater treatments, can improve energy efficiency of high-technology industries. Third, the governmental policies on the taxing and management system in science parks would also direct energy-efficient economy of high-technology industries.

  19. Introduction course on the economical evaluation of energy projects

    International Nuclear Information System (INIS)

    Jansen, J.C.

    1992-06-01

    A theoretical course on the financial and economical evaluation of energy projects is presented. The course was organized by the Banque Mondiale in Bujumbura, Burundi, from 11 to 16 November 1991. Subsequently attention is paid to the basics of economic analysis, the financial and the economical analysis of an investment project, and finally the prices of energy products. 4 figs., 13 refs

  20. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  1. Economics of alternative energy supply in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. V.

    1977-10-15

    Alternative means of supplying the main categories of energy demand in New Zealand are examined, using a common economic basis. In this context alternative means are defined to include those not presently in significant large-scale use in New Zealand but which have been demonstrated to be broadly technically feasible. Energy demand is conveniently divided into four categories each corresponding to a grade of energy required and each including all relevant demand in households, commerce, and industry. These categories are called low-grade heat, process heat, transport, and high-grade energy. The high-grade energy market is largely satisfied only by electricity and alternative means of supplying electricity are considered by other authors. The remaining categories are discussed. The comparison of alternatives includes a brief examination of how the comparative economics are affected by the economic criteria used and particularly the cash flow discount rate. The results obtained are of scoping accuracy only but some policy implications are suggested.

  2. Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing.

    Science.gov (United States)

    Wu, Desheng; Ning, Shuang

    2018-07-01

    Economic development, accompanying with environmental damage and energy depletion, becomes essential nowadays. There is a complicated and comprehensive interaction between economics, environment and energy. Understanding the operating mechanism of Energy-Environment-Economy model (3E) and its key factors is the inherent part in dealing with the issue. In this paper, we combine System Dynamics model and Geographic Information System to analyze the energy-environment-economy (3E) system both temporally and spatially, which explicitly explore the interaction of economics, energy, and environment and effects of the key influencing factors. Beijing is selected as a case study to verify our SD-GIS model. Alternative scenarios, e.g., current, technology, energy and environment scenarios are explored and compared. Simulation results shows that, current scenario is not sustainable; technology scenario is applicable to economic growth; environment scenario maintains a balanced path of development for long term stability. Policy-making insights are given based on our results and analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. ECONOMIC EFFECTS OF ENERGY POLICIES

    Directory of Open Access Journals (Sweden)

    Mihaela ȘTEȚ

    2014-12-01

    Full Text Available This paper highlights some of the issues raised by the implementation of energy policies and the fiscal measures in the energy sector and it aims to identify the impact of energy policies at regional level. It is emphasized, along with the environmental impact of the use of renewable resources and economic and social effects on sustainable regional development which can generate state intervention through direct and indirect, financial and non-financial instruments. Given the complex energy profile of Romania, the paper reveals also, the problems that have had to face in the last two decades and the impact of energy policies of Romanian governments. The research is based on an analysis of statistics, publications in energy sector, as well as primary and specific legislation.

  4. Energy-Aware Cognitive Radio Systems

    KAUST Repository

    Bedeer, Ebrahim

    2016-01-15

    The concept of energy-aware communications has spurred the interest of the research community in the most recent years due to various environmental and economical reasons. It becomes indispensable for wireless communication systems to shift their resource allocation problems from optimizing traditional metrics, such as throughput and latency, to an environmental-friendly energy metric. Although cognitive radio systems introduce spectrum efficient usage techniques, they employ new complex technologies for spectrum sensing and sharing that consume extra energy to compensate for overhead and feedback costs. Considering an adequate energy efficiency metric—that takes into account the transmit power consumption, circuitry power, and signaling overhead—is of momentous importance such that optimal resource allocations in cognitive radio systems reduce the energy consumption. A literature survey of recent energy-efficient based resource allocations schemes is presented for cognitive radio systems. The energy efficiency performances of these schemes are analyzed and evaluated under power budget, co-channel and adjacent-channel interferences, channel estimation errors, quality-of-service, and/or fairness constraints. Finally, the opportunities and challenges of energy-aware design for cognitive radio systems are discussed.

  5. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar

    DEFF Research Database (Denmark)

    Ahmad, Jameel; Imran, Muhammad; Khalid, Abdullah

    2018-01-01

    . The comprehensive resource assessment of wind, biomass and solar energy is carried out for grid integration. Homer Pro software is used to model a hybrid microgrid system. Optimization results and sensitivity analysis is carried out to ensure the robustness and cost-effectiveness of the proposed hybrid microgrid......This paper focuses on the techno-economic feasibility of a grid-tied hybrid microgrid system for local inhabitants of Kallar Kahar near Chakwal city of Punjab province in Pakistan and investigates the potential for electricity generation through hybrid wind, photovoltaic and biomass system...... system. The total load has been optimally shared among generated power through wind, photovoltaic and biomass resources and surplus power is supplied to the national grid in case of low local demand of the load. The results of techno-economic feasibility study show that hybrid power system can generate...

  6. Energy scarcity and economic growth reconsidered

    International Nuclear Information System (INIS)

    Uri, N.D.

    1995-01-01

    The analysis in this paper is concerned with the effect of energy scarcity on economic growth in the United States. After defining the notion of scarcity and introducing two measures of scarcity, unit costs and relative energy price, changes in the trend in resource scarcity for natural gas, bituminous coal, anthracite coal, and crude oil over the most recent three decades are investigated. Each of the energy resources became significantly more scarce resources during the decade of the 1970s in the Malthusian Stock Scarcity and Malthusian Flow Scarcity sense. Unit costs exhibit a similar change for natural gas and crude oil but not for bituminous coal and anthracite coal. The situation reversed itself during the 1980s. Natural gas, bituminous coal, anthracite coal, and crude oil all became significantly less scarce resources during the decade of the 1980s than they had been during the 1970s. That is, the increase in scarcity as measured by relative energy prices observed during the decade of the 1970s was not reversed completely during the 1980s for natural gas and crude oil. Unit costs for natural gas and crude oil demonstrate analogous patterns and test results. Given that change has taken place, it has implications for future economic growth to the extent resource scarcity and economic growth are interrelated. (author)

  7. Energy taxation and economic growth

    International Nuclear Information System (INIS)

    Seymour, Adam; Mabro, Robert.

    1994-01-01

    These two linked articles look at the relationship between policies aimed at taxing various energy sources and economic growth in the country, raising such taxes in order to decide how such fiscal policy can best serve the needs of developing nations. It is argued that, while many developing nations seek to protect internal energy markets by taxing imported petroleum products, a policy of domestic energy prices being set at the same level as their international equivalent costs is more consistent with the efficient management of long-term structural adjustment programmes. (UK)

  8. A panel study of nuclear energy consumption and economic growth

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.

    2010-01-01

    This study examines the relationship between nuclear energy consumption and economic growth for sixteen countries within a multivariate panel framework over the period 1980-2005. Pedroni's (1999, 2004) heterogeneous panel cointegration test reveals there is a long-run equilibrium relationship between real GDP, nuclear energy consumption, real gross fixed capital formation, and the labor force with the respective coefficients positive and statistically significant. The results of the panel vector error correction model finds bidirectional causality between nuclear energy consumption and economic growth in the short-run while unidirectional causality from nuclear energy consumption to economic growth in the long-run. Thus, the results provide support for the feedback hypothesis associated with the relationship between nuclear energy consumption and economic growth.

  9. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  10. The socio-economic power of renewable energy production cooperatives in Germany: Results of an empirical assessment

    OpenAIRE

    Debor, Sarah

    2014-01-01

    This paper reflects the socio-economic power of renewable energy production cooperatives for a wider energy system transformation in Germany. Energy cooperatives have turned into important supporters of renewable and decentralised energy structures, due to their strong growth since the year 2006, their participation in local renewable energy projects and their democratic awareness. The cooperative form of coordinating regional energy projects applies to a decentralised energy system that is m...

  11. The relation between Chinese economic development and energy consumption in the different periods

    International Nuclear Information System (INIS)

    Yuan Chaoqing; Liu Sifeng; Fang Zhigeng; Xie Naiming

    2010-01-01

    Since the 1980s, Chinese economy grew rapidly. With the rapid economic growth, Chinese energy consumption sharply increased. The relation between Chinese energy consumption and economic growth is focused on, and many researchers have studied this issue by applying the methods such as granger causality test. However, the results just reveal the relation in a very long period. In this paper, the history of Chinese economy is divided into four periods. And the relation between Chinese energy consumption and economic growth is examined by applying grey incidence analysis, which is one of the most important methods of grey system theory which can be applied to solve the problems with small samples. The results show that the relations in different periods are not the same. The degree of grey incidences between total energy consumption and values added of secondary industry is larger, and the degree of grey incidences between GDP and consumption of coal is larger too. And the policy implications of these results are explained.

  12. The relation between Chinese economic development and energy consumption in the different periods

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Chaoqing, E-mail: yuanchaoqing@126.co [Economics and Management College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Liu Sifeng; Fang Zhigeng; Xie Naiming [Economics and Management College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2010-09-15

    Since the 1980s, Chinese economy grew rapidly. With the rapid economic growth, Chinese energy consumption sharply increased. The relation between Chinese energy consumption and economic growth is focused on, and many researchers have studied this issue by applying the methods such as granger causality test. However, the results just reveal the relation in a very long period. In this paper, the history of Chinese economy is divided into four periods. And the relation between Chinese energy consumption and economic growth is examined by applying grey incidence analysis, which is one of the most important methods of grey system theory which can be applied to solve the problems with small samples. The results show that the relations in different periods are not the same. The degree of grey incidences between total energy consumption and values added of secondary industry is larger, and the degree of grey incidences between GDP and consumption of coal is larger too. And the policy implications of these results are explained.

  13. The relation between Chinese economic development and energy consumption in the different periods

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaoqing; Liu, Sifeng; Fang, Zhigeng; Xie, Naiming [Economics and Management College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2010-09-15

    Since the 1980s, Chinese economy grew rapidly. With the rapid economic growth, Chinese energy consumption sharply increased. The relation between Chinese energy consumption and economic growth is focused on, and many researchers have studied this issue by applying the methods such as granger causality test. However, the results just reveal the relation in a very long period. In this paper, the history of Chinese economy is divided into four periods. And the relation between Chinese energy consumption and economic growth is examined by applying grey incidence analysis, which is one of the most important methods of grey system theory which can be applied to solve the problems with small samples. The results show that the relations in different periods are not the same. The degree of grey incidences between total energy consumption and values added of secondary industry is larger, and the degree of grey incidences between GDP and consumption of coal is larger too. And the policy implications of these results are explained. (author)

  14. Technical and economic data biomass-based energy conversion systems for the production of gaseous and/or liquid energy carriers

    International Nuclear Information System (INIS)

    2000-02-01

    The objectives of this study are: (1) to give an indication of the expected development of the currently mainly fossil fuel based Dutch energy supply system to a future CO 2 -emission 'free' energy supply system, and (2) to present main technological, economic, and environmental characteristics of three promising renewable energy based technologies for the production of gaseous and/or liquid secondary energy carriers and/or electricity and/or heat, viz.: (a) biomass hydrogasification for SNG (synthetic natural gas) production; (b) trigeneration of methanol and CHP (combined heat and power) from biomass by integrating a 'once-through' LPMEOH (liquid phase methanol) process into a 'conventional BIG/CC (Biomass-Integrated-Gasifier/Combined Cycle) system; and (c) trigeneration of Fischer-Tropsch derived transportation fuels and CHP from biomass by integrating a 'once-through' FT-process (Fischer-Tropsch) into a 'conventional' BIG/CC-system. Biomass conversion systems, for the production of CHP, transportation fuels, and as biofeedstock for the petrochemical industry, will play a substantial role in meeting the future Dutch renewable energy policy goals. In case fossil fuel prices remain low, additional policies are needed to reach these goals. Biomass will also play a significant role in reaching significant CO 2 emission reduction in Western Europe. In which sector the limited amount of biomass available/contractable can be applied best is still unclear, and therefore needs further research. By biomass hydrogasification it is possible to produce SNG with more or less the same composition as Groningen natural gas. In case relatively cheap hydrogen-rich waste gas streams are used in the short-term, the SNG production costs will he in the same order of magnitude as the market price for Dutch natural gas for small consumers (fl 0.6/Nm 3 ). The calculated minimum production costs for the 'green' fuels (methanol: 15 Euroct/l or 9 Euro/GJ, and FT-fuels: 27 Euroct/l or 9 Euro

  15. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  16. Economic analysis of wood energy valorization

    International Nuclear Information System (INIS)

    Fries, Juliana.

    1988-01-01

    Companies linked to the lumber activities began to concern about the valorization of their industrial residues: either by creating new products or by utilizing them for energy generation. At the same time, companies from other sectors began investing in reforestations dedicated to energy generation (mainly eucalyptus), induced by the possibility of obtaining tax incentives and by the need of assuring their own provisions of wood, thus minimizing this raw-material, as well as its sensibility to the variation of its price in the market. However almost nothing have been researched, either about the economical feasibility of energetic valorization of the lumber in the form of industrial residues or as wood supplied by reforestation dedicated to energy generation. This dissertation propose to examine those cases analysing the concerned costs and their economical feasibility. (author). 20 refs., 19 figs., 32 tabs

  17. Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system

    International Nuclear Information System (INIS)

    Maes, Dries; Van Passel, Steven

    2012-01-01

    This paper assesses unintentional interference between different public policies promoting energy efficiency and renewable energy. The paper develops a methodology to study the interference by analysing the economic and technical behaviour of a hybrid energy system. The hybrid energy system in this case consists of an existing cogeneration unit extended with a new installation of thermal solar panels. This puts two complementary heating technologies in juxtaposition. The two technologies are supported with distinct regional support instruments in each region. The design and operation of the energy system is optimised from the point of view of the investor according to the different support instruments. The optimal configuration is analysed as well as its effect on reduced CO 2 -emissions during the lifetime of the project. The methodology is applied to a case-study for two neighbouring regions, the Netherlands and Flanders. The policies in the Netherlands show a beneficial synergy. In Flanders, the hybrid energy system is not interesting, indicating unbalanced high support for cogeneration in this case. From the point of view of the authorities, a more balanced regional policy as in the Netherlands provides a larger CO 2 -emission reduction for a smaller cost. - Highlights: ► Study of interference between various public policies by analysing a hybrid energy system. ► A methodology based on maximum value for the investor based on different public policies. ► Case study in the Netherlands show policies with a beneficial synergy. ► Situation in Flanders indicates unbalanced policies and larger cost for CO 2 -emission reduction.

  18. Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2015-01-01

    Highlights: • Operation conditions significantly affect energy & economic performance of SLDCS. • Control parameters in three areas were optimized by Multi-Population Genetic Algorithm. • Solar collector area showed the greatest effect on system performance for humid areas. • Desiccant concentration showed greatest effect on system performance for dry areas. • Requirement of collector area, heating water and desiccant flow rates for humid areas is highest. - Abstract: Operation conditions significantly affect the energy and economic performance of solar-assisted liquid desiccant cooling systems. This study optimized the system control parameters for buildings in different climates, i.e., Singapore (hot and humid), Beijing (moderate) and Boulder (hot and dry), with a multi-parameter optimization based on the Multi-Population Genetic Algorithm to obtain optimal system performance in terms of relatively maximum electricity saving rate with a minimum cost payback period. The results indicated that the selection of operation parameters is significantly influenced by climatic conditions. The solar collector installation area exhibited the greatest effect on both energy and economic performance in humid areas, and the heating water flow rate was also important. For dry areas, a change in desiccant concentration had the largest effect on system performance. Although the effect of the desiccant flow rate was significant in humid cities, it appeared to have little influence over buildings in dry areas. Furthermore, the requirements of the solar collector installation area in humid areas were much higher. The optimized area was up to 70 m"2 in Singapore compared with 27.5 m"2 in Boulder. Similar results were found for the flow rates of heating water and the desiccant solution. Applying the optimization, humid cities could achieve an electricity saving of more than 40% with a six-year payback period. The optimal performance for hot and dry areas of a 38% electricity

  19. Global warming, energy use, and economic growth

    Science.gov (United States)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  20. Energy consumption and economic growth in China: A multivariate causality test

    International Nuclear Information System (INIS)

    Wang Yuan; Wang Yichen; Zhou Jing; Zhu Xiaodong; Lu Genfa

    2011-01-01

    This study takes a fresh look at the direction of causality between energy consumption and economic growth in China during the period from 1972 to 2006, using a multivariate cointegration approach. Given the weakness associated with the bivariate causality framework, the current study performs a multivariate causality framework by incorporating capital and labor variables into the model between energy consumption and economic growth based on neo-classical aggregate production theory. Using the recently developed autoregressive distributed lag (ARDL) bounds testing approach, a long-run equilibrium cointegration relationship has been found to exist between economic growth and the explanatory variables: energy consumption, capital and employment. Empirical results reveal that the long-run parameter of energy consumption on economic growth in China is approximately 0.15, through a long-run static solution of the estimated ARDL model, and that for the short-run is approximately 0.12 by the error correction model. The study also indicates the existence of short-run and long-run causality running from energy consumption, capital and employment to economic growth. The estimation results imply that energy serves as an important source of economic growth, thus more vigorous energy use and economic development strategies should be adopted for China. - Highlights: → Cointegration is only present when real GDP is the dependent variable. →The long-run causality running from energy consumption to economic growth. →China is an energy dependent economy.

  1. Restructuring energy systems for sustainability? Energy transition policy in the Netherlands

    International Nuclear Information System (INIS)

    Kern, Florian; Smith, Adrian

    2008-01-01

    Increasingly, researchers and policy makers are confronting the challenge of restructuring energy systems into more sustainable forms. A 'transition management' model, and its adoption in the Netherlands, is attracting attention. Starting from the socio-technical multi-level theory that informs 'transition management', we analyse the 'energy transition' project carried out by the Dutch Ministry of Economic Affairs. Despite considerable achievements, their approach risks capture by the incumbent energy regime, thereby undermining original policy ambitions for structural innovation of the energy system. This experience presents generic dilemmas for transitions approaches

  2. Methodologies for environmental, micro- and macro-economic evaluation of bioenergy systems

    NARCIS (Netherlands)

    Broek, R. van den; Wijk, A. van

    2006-01-01

    An overview is given of methodologies used for evaluation of bioenergy systems on envoronmental, micro- and macro-economic spects. To evaluate micro-economic impacts net present value and annualised cost calculation are used. For environmental impacts, methods used are: qualitative studies, energy

  3. Energy Systems and Population Health

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy

  4. Economic Efficiency Assessment of Autonomous Wind/Diesel/Hydrogen Systems in Russia

    Directory of Open Access Journals (Sweden)

    O. V. Marchenko

    2013-01-01

    Full Text Available The economic efficiency of harnessing wind energy in the autonomous power systems of Russia is analyzed. Wind turbines are shown to be competitive for many considered variants (groups of consumers, placement areas, and climatic and meteorological conditions. The authors study the possibility of storing energy in the form of hydrogen in the autonomous wind/diesel/hydrogen power systems that include wind turbines, diesel generator, electrolyzer, hydrogen tank, and fuel cells. The paper presents the zones of economic efficiency of the system (set of parameters that provide its competitiveness depending on load, fuel price, and long-term average annual wind speed. At low wind speed and low price of fuel, it is reasonable to use only diesel generator to supply power to consumers. When the fuel price and wind speed increase, first it becomes more economical to use a wind-diesel system and then wind turbines with a hydrogen system. In the latter case, according to the optimization results, diesel generator is excluded from the system.

  5. A participatory systems approach to modeling social, economic, and ecological components of bioenergy

    International Nuclear Information System (INIS)

    Buchholz, Thomas S.; Volk, Timothy A.; Luzadis, Valerie A.

    2007-01-01

    Availability of and access to useful energy is a crucial factor for maintaining and improving human well-being. Looming scarcities and increasing awareness of environmental, economic, and social impacts of conventional sources of non-renewable energy have focused attention on renewable energy sources, including biomass. The complex interactions of social, economic, and ecological factors among the bioenergy system components of feedstock supply, conversion technology, and energy allocation have been a major obstacle to the broader development of bioenergy systems. For widespread implementation of bioenergy to occur there is a need for an integrated approach to model the social, economic, and ecological interactions associated with bioenergy. Such models can serve as a planning and evaluation tool to help decide when, where, and how bioenergy systems can contribute to development. One approach to integrated modeling is by assessing the sustainability of a bioenergy system. The evolving nature of sustainability can be described by an adaptive systems approach using general systems principles. Discussing these principles reveals that participation of stakeholders in all components of a bioenergy system is a crucial factor for sustainability. Multi-criteria analysis (MCA) is an effective tool to implement this approach. This approach would enable decision-makers to evaluate bioenergy systems for sustainability in a participatory, transparent, timely, and informed manner

  6. Economic evaluation for protein and energy supplementation in adults: opportunities to strengthen the evidence.

    Science.gov (United States)

    Milte, R K; Ratcliffe, J; Miller, M D; Crotty, M

    2013-12-01

    Malnutrition is a costly problem for health care systems internationally. Malnourished individuals require longer hospital stays and more intensive nursing care than adequately nourished individuals and have been estimated to cost an additional £7.3 billion in health care expenditures in the United Kingdom alone. However, treatments for malnutrition have rarely been considered from an economic perspective. The aim of this systematic review was to identify the cost effectiveness of using protein and energy supplementation as a widely used intervention to treat adults with and at risk of malnutrition. Papers were identified that included economic evaluations of protein or energy supplementation for the treatment or prevention of malnutrition in adults. While the variety of outcome measures reported for cost-effectiveness studies made synthesis of results challenging, cost-benefit studies indicated that the savings for the health system could be substantial due to reduced lengths of hospital stay and less intensive use of health services after discharge. In summary, the available economic evidence indicates that protein and energy supplementation in treatment or prevention of malnutrition provides an opportunity to improve patient wellbeing and lower health system costs.

  7. Economic assessment of nuclear energy from systems theory's point of view

    International Nuclear Information System (INIS)

    Iliffe, C.

    1976-01-01

    A report is given on how systems theory can be incorporated in nuclear energy and in which manner it can be applied. As opposed to previous considerations in which the development of nuclear energy in the form of cost effects of the energy produced in a nuclear power plant was assessed and the power plant was considered as insular plant, today this is replaced by the investigation of the individual nuclear power plants by a system of several such plants. The economy criterium of such a system is considered as the quotient of 'discounted' expenditure and discounted electro-energy production. The total discounted electricity generation by the nuclear power plant system also includes the energy production of new nuclear power plants to come and allows their special economy assessment. This method eliminates the question of the buying and selling price of plutonium and the interest payment of the expenditure for using Pn fuel. The discount programme, the systems costs, concessions in discounting, the minimization of the consumption, and the plutonium valuation are individually dealt with in detail. The solution to the linear three-interval programme is given in the appendix. (HR/LH) [de

  8. Generic modelling framework for economic analysis of battery systems

    DEFF Research Database (Denmark)

    You, Shi; Rasmussen, Claus Nygaard

    2011-01-01

    opportunities, a generic modelling framework is proposed to handle this task. This framework outlines a set of building blocks which are necessary for carrying out the economic analysis of various BS applications. Further, special focus is given on describing how to use the rainflow cycle counting algorithm...... for battery cycle life estimation, since the cycle life plays a central role in the economic analysis of BS. To illustrate the modelling framework, a case study using a Sodium Sulfur Battery (NAS) system with 5-minute regulating service is performed. The economic performances of two dispatch scenarios, a so......Deregulated electricity markets provide opportunities for Battery Systems (BS) to participate in energy arbitrage and ancillary services (regulation, operating reserves, contingency reserves, voltage regulation, power quality etc.). To evaluate the economic viability of BS with different business...

  9. Techno-economic assessment for the integration into a multi-product plant based on cascade utilization of geothermal energy

    International Nuclear Information System (INIS)

    Rubio-Maya, Carlos; Pastor Martínez, Edgar; Romero, Carlos E.; Ambriz Díaz, Víctor M.; Pacheco-Ibarra, J. Jesús

    2016-01-01

    Highlights: • Cascade utilization of low- and mid-temperature geothermal energy is presented. • The system consists of three thermal levels producing power, ice and useful heat. • A techno-economic analysis is performed evaluating energy and economic benefits. • A simple optimization algorithm was developed to optimize system benefits. • Inconvenience of low thermal efficiency and high capital cost of ORC were overcome. - Abstract: The Organic Rankine Cycle (ORC) is a technology that has reached maturity in cogeneration or waste heat applications. However, due to low thermal efficiency and high capital cost of ORC machines, geothermal-based ORC applications represent only a small percent sharing of the geothermal power capacity worldwide. Several countries have reported a great potential of low- and mid-temperature geothermal energy, representing an opportunity to explore a more efficient ORC integration into non-conventional applications of geothermal energy. One alternative, resembling the polygeneration concept, is known as cascade utilization of geothermal energy, where different energy outputs or products can be obtained at the same time, while improving thermal and economic performance. In this paper, a techno-economic analysis for the selection of small capacity ORC machines and absorption chillers (for ice production), to be integrated into a polygeneration plant that makes use of geothermal energy in a cascade arrangement, is presented. A simple cascade system that consists of three sequential thermal levels, producing simultaneously power, ice and useful heat is proposed, considering typical temperatures of geothermal zones in Mexico. A simple optimization algorithm, based on energy and economic models, including binary variables and manufacturer’s data, was developed to evaluate and determine optimal ORC and absorption chiller units. Results show, firstly, that inconvenience of low thermal efficiency and high capital cost of ORC machines can

  10. Energy Systems Integration: A Convergence of Ideas

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O' Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  11. Economic Efficiency and Investment Implementation in Energy Saving Projects

    Directory of Open Access Journals (Sweden)

    Venelin Terziev

    2017-09-01

    Full Text Available Investment in building thermoinsulation is a subject to appraisal for efficiency from the position of discounted cash flows taken specifically by energy saving. The appraisal of investment as optimal is attended by achieving the shortest term for investment implementation, the lowest investment outlays, the maximum total net value of energy savings, the shortest investment payback period. The complex application of the dynamic methods for appraising economic efficiency of an investment – net present value, internal rate of return, profitability index and discounted payback period, involves drawing of particular values which comparison definitely will show if this kind of investment is practically “attractive”. However, the question for significance weight of each of these indicators above in decision making for implementation a particular real investment still remains unsolved. This requires working out a system of criteria, priorities that can determine which of the indicators for economic efficiency of specific investment project will have the highest significance.

  12. Operations Optimization of Hybrid Energy Systems under Variable Markets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Garcia, Humberto E.

    2016-07-01

    Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper investigates the operations flexibility of HES, and develops a methodology for operations optimization to maximize its economic value based on predicted renewable generation and market information. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value, and is illustrated by numerical results.

  13. The rhetoric of calculations. Economical arguments for development of new energy technologies

    International Nuclear Information System (INIS)

    Solli, Joeran

    2004-01-01

    The thesis discusses the theoretical economics and social factors for development of new energy technologies and has chapter on: New energy technologies in an economical and political change, technology development from innovation economy to economical sociology, opinion formation in the energy sector, establishing energy economical discussion, economy as pidgin, financial factors, forming social education and market power versus language strife

  14. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy...... system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...

  15. Economic and environmental impacts of community-based residential building energy efficiency investment

    International Nuclear Information System (INIS)

    Choi, Jun-Ki; Morrison, Drew; Hallinan, Kevin P.; Brecha, Robert J.

    2014-01-01

    A systematic framework for evaluating the local economic and environmental impacts of investment in building energy efficiency is developed. Historical residential building energy data, community-wide economic input–output data, and emission intensity data are utilized. The aim of this study is to show the comprehensive insights and connection among achieving variable target reductions for a residential building energy use, economic and environmental impacts. Central to this approach for the building energy reduction goal is the creation of individual energy models for each building based upon historical energy data and available building data. From these models, savings estimates and cost implications can be estimated for various conservation measures. A ‘worst to first’ (WF) energy efficient investment strategy is adopted to optimize the level of various direct, indirect, and induced economic impacts on the local community. This evaluation helps to illumine opportunities to establish specific energy reduction targets having greatest economic impact in the community. From an environmental perspective, short term economy-wide CO 2 emissions increase because of the increased community-wide economic activities spurred by the production and installation of energy efficiency measures, however the resulting energy savings provide continuous CO 2 reduction for various target savings. - Highlights: • WF energy efficient strategy helps to optimize various level of economic impacts. • Greatest community benefits are achieved from specific energy reduction targets. • Community-wide economic impacts vary for different energy conservation measures

  16. China's transition to green energy systems: The economics of home solar water heaters and their popularization in Dezhou city

    International Nuclear Information System (INIS)

    Li Wei; Song Guojun; Beresford, Melanie; Ma, Ben

    2011-01-01

    Studying the popularization of solar water heaters (SWHs) is significant for understanding China's transition to green energy systems. Using Dezhou as a case study, this paper presents new angles on analyzing SWH deployment in China by addressing both the economic potential and the institutional dimensions at the local level. Using estimates from the demand-side of hot water for a typical three-person household in Dezhou, the paper evaluates the economic potential of a SWH in saving electricity and reducing carbon dioxide emissions. Then, expanding the analysis beyond economics, we take an institutionalist approach to study the institutional factors that contribute to Dezhou's success in SWH adoptions. By examining the five main actors in Dezhou's energy regime, we find that Dezhou's SWH deployment is driven by an urge to develop businesses and the local economy, and its success results from at least five unique factors, including the development of SWH industrial clusters in Dezhou, big manufacturers' market leadership in SWH innovations, a tight private enterprise-local government relation, geographic location within the SWH industrial belt, and the adaptive attitude of Dezhou's households towards natural resource scarcity. - Highlights: → We study the popularization of solar water heaters in Dezhou, China. → We study the institutional factors that contribute to Dezhou's success. → Five main actors in Dezhou's energy regime are examined. → Dezhou's success results from at least five unique factors. → This leads to important directions for improving China'ss green innovation adoption.

  17. INPRO Methodology to evaluate the Mexico nuclear energy system

    International Nuclear Information System (INIS)

    Cruz S, R. R.; Martin del C, C.

    2016-09-01

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  18. Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system

    International Nuclear Information System (INIS)

    Wang, Chengshan; Liu, Yixin; Li, Xialin; Guo, Li; Qiao, Lei; Lu, Hai

    2016-01-01

    An energy management system for stand-alone microgrid composed of diesel generators, wind turbine generator, biomass generator and an ESS (energy storage system) is proposed in this paper. Different operation objectives are achieved by a hierarchical control structure with different time scales. Firstly, the optimal schedules of the diesel generators, wind turbine generator, biomass generator and ESS are determined fifteen minutes ahead according to the super short-term forecast of load and wind speed in the optimal scheduling layer. Comprehensive analysis which takes the uncertainty of load and wind speed into account is conducted in this layer to minimize the operation cost of the system and ensure a desirable range of the state of charge of the ESS. Secondly, the operation points of each unit are regulated dynamically to guarantee real-time power balance and safety range of diesel generation in the real-time control layer, based on which the response capability when suffering significant forecast deviation and other emergency issues, e.g. sudden load-up can be improved. Finally, the effectiveness of the proposed energy management strategy is verified on an RT-Lab based real-time simulation platform, and the economic performances with different types of ESS are analyzed as well. - Highlights: • A hierarchical control strategy is proposed for a stand-alone microgrid. • The uncertainties of load and wind speed have been considered. • Better economic performance and high reliability of the system can be achieved. • The influences of different energy storage systems have been analyzed.

  19. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive...... penetration of renewable, fossil-free energy sources such as solar and wind power. To facilitate such intermittent power producers, we must not only control the production of electricity, but also the consumption, in an ecient and exible manner. By enabling the use of thermal energy storage in supermarkets...... of temperature dependent efficiencies in the refrigeration cycle. -Nonlinear economic MPC with uncertain predictions and the implementation of very simple predictors that use entirely historical data of, e.g., electricity prices and outdoor temperatures. Economic MPC for wind turbines, including -Optimal steady...

  20. A sustainable energy-system in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2003-01-01

    but a negative trade-balance. With this in mind, it is important that Latvia is able to meet the challenge and use the economic development to develop a sustainable energy-system and a sounder trade-balance. A combination of energy planning, national economy and innovation processes in boiler companies will form...

  1. Energy efficiency and economic fallacies: a reply; and reply

    International Nuclear Information System (INIS)

    Brookes, L.G.; Grubb, M.

    1992-01-01

    The claim that a programme of energy efficiency improvements has nothing to offer to the solution of any problem of global warming is discussed. Some very important points not previously conceded by supporters of energy efficiency solutions to economic and environmental problems are considered, namely: first that when energy supply/price is the constraint on the level of economic activity, using energy more efficiently does not help to reduce total energy demand; and, second, that it has in practice been true that when energy supply/price is not the macroeconomic constraint, once again demand for energy is not reduced by more efficient use. (author)

  2. Agro-energy supply chain planning: a procedure to evaluate economic, energy and environmental sustainability

    Directory of Open Access Journals (Sweden)

    Fabrizio Ginaldi

    2012-07-01

    Full Text Available The increasing demand for energy and expected shortage in the medium term, solicit innovative energy strategies to fulfill the increasing gap between demand-supply. For this purpose it is important to evaluate the potential supply of the energy crops and finding the areas of EU where it is most convenient. This paper proposes an agro-energy supply chain approach to planning the biofuel supply chain at a regional level. The proposed methodology is the result of an interdisciplinary team work and is aimed to evaluate the potential supply of land for the energy production and the efficiency of the processing plants considering simultaneously economic, energy and environmental targets. The crop simulation, on the basis of this approach, takes into account environmental and agricultural variables (soil, climate, crop, agronomic technique that affect yields, energy and economic costs of the agricultural phase. The use of the Dijkstra’s algorithm allows minimizing the biomass transport path from farm to collecting points and the processing plant, to reduce both the transport cost and the energy consumption. Finally, a global sustainability index (ACSI, Agro-energy Chain Sustainability Index is computed combining economic, energy and environmental aspects to evaluate the sustainability of the Agroenergy supply chain (AESC on the territory. The empirical part consists in a pilot study applied to the whole plain of Friuli Venezia Giulia (FVG a region situated in the North-Eastern part of Italy covering about 161,300 ha. The simulation has been applied to the maize cultivation using three different technologies (different levels of irrigation and nitrogen fertilization: low, medium and high input. The higher input technologies allow to achieve higher crop yields, but affect negatively both the economic and energy balances. Low input levels provides, on the average, the most favourable energy and economic balances. ACSI indicates that low inputs levels

  3. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  4. Energy, environment and economics: greenhouse policy in the balance

    International Nuclear Information System (INIS)

    Wilkenfeld, G.L.

    1990-01-01

    Taking New South Wales as a case study, this paper reviews the government's major economic and environmental concerns, and analyses how they bear on energy and greenhouse policy options. The government's economic strategy emphasises the continuing importance of primary resources, minerals processing and energy-intensive manufacturing, where the State is perceived to have a competitive advantage because of its extensive coal resources. The implications of these trends for the energy utilities and for greenhouse energy policy are analysed. 22 refs., 1 tab

  5. Dollars from Sense: The Economic Benefits of Renewable Energy

    Science.gov (United States)

    1997-09-01

    This document illustrates direct economic benefits, including job creation, of renewable energy technologies. Examples of electricity generation from biomass, wind power, photovoltaics, solar thermal energy, and geothermal energy are given, with emphasis on the impact of individual projects on the state and local community. Employment numbers at existing facilities are provided, including total national employment for each renewable industry where available. Renewable energy technologies offer economic advantages because they are more labor-intensive than conventional generation technologies, and they use primarily indigenous resources.

  6. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  7. Symposium on Pacific Energy Cooperation '99. Changing economic environment and energy cooperation in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-16

    Compiled in this publication are the papers delivered at the above conference held in Tokyo on February 16-17, 1999. Presented in Session 1, entitled 'economic reforms and energy situation in Asian countries,' are the causes and lessons of economic and financial crisis in the Asian countries and the prospect of restoration; the outlook of energy supply and demand in the Asia Pacific region; and a message from APEC (Asia-Pacific Economic Cooperation Conference) Okinawa Energy Ministers' Meeting. Discussed in Session 2, entitled 'energy security in the Asia Pacific region,' are the outlook for world oil prices; and the stable supply of oil and gas in the Asia Pacific region. Discussed in Session 3, entitled the 'deregulation of the energy sector in the Asia Pacific region,' are the deregulation of the power sector, progress and problems; and the privatization of the oil and gas sectors. Many papers are presented also in Session 4, entitled the 'energy and environment in the Asia Pacific region, and in Session 5 entitled 'pacific energy cooperation in the changing economic and energy environment.' (NEDO)

  8. Techno-economic assessment of the need for bulk energy storage in low-carbon electricity systems with a focus on compressed air storage (CAES)

    Science.gov (United States)

    Safaei Mohamadabadi, Hossein

    Increasing electrification of the economy while decarbonizing the electricity supply is among the most effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity sector. Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This thesis evaluates the performance of BES systems - especially compressed air energy storage (CAES) technology - for integration of wind energy from engineering and economic aspects. Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high roundtrip storage efficiencies ( 80% and 70%) compared to conventional CAES ( 50%). Using hydrogen to fuel CAES plants - instead of natural gas - yields a low overall efficiency ( 35%), despite its negligible GHG emissions. The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. space heating) can enhance both the economic and emissions performance of compressed air storage plants. A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km away from the air storage site). A green-field simulation finds that reducing the capital cost of BES - even drastically below current levels - does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait for availability of cheap BES systems to cost

  9. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2011-11-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling load to reduce the energy consumption of the air conditioner installed as the base-load cooler. A standard SACH-2 system for cooling load 3.5. kW (1. RT) and daily cooling time 10 h is used for case study. The cooling performance is assumed only in summer seasons from May to October. In winter season from November to April, only heat is supplied. Two installation locations (Taipei and Tainan) were examined.It was found from the cooling performance simulation that in order to save 50% energy of the air conditioner, the required solar collector area is 40m2 in Taipei and 31m2 in Tainan, for COPj=0.2. If the solar collector area is designed as 20m2, the solar ejector cooling system will supply about 17-26% cooling load in Taipei in summer season and about 21-27% cooling load in Tainan. Simulation for long-term performance including cooling in summer (May-October) and hot water supply in winter (November-April) was carried out to determine the monthly-average energy savings. The corresponding daily hot water supply (with 40°C temperature rise of water) for 20m2 solar collector area is 616-858L/day in Tainan and 304-533L/day in Taipei.The economic analysis shows that the payback time of SACH-2 decreases with increasing cooling capacity. The payback time is 4.8. years in Tainan and 6.2. years in Taipei when the cooling capacity >10. RT. If the ECS is treated as an additional device used as a protective equipment to avoid overheating of solar collectors and to convert the excess solar heat in summer into cooling to reduce the energy consumption of air conditioner, the payback time is less than 3 years for cooling capacity larger than 3. RT. © 2011 Elsevier Ltd.

  10. On the economics of technology diffusion and energy efficiency

    International Nuclear Information System (INIS)

    Mulder, P.

    2003-01-01

    Energy is an essential factor that fuels economic growth and serves human well-being. World energy use has grown enormously since the middle of the 19th century. This increase in the scale of energy demand comes at a certain price, including environmental externalities, such as the enhanced greenhouse effect. Notwithstanding the need for renewable energy sources, these environmental problems also necessitate further improvements in energy efficiency. Technological change plays a crucial role in realizing energy efficiency improvements and, hence, in ameliorating the conflict between economic growth and environmental quality. At the same time, it is known that not only innovation, but also diffusion of new technologies is a costly and lengthy process, and that many firms do not invest in best-practice technologies. This study aims to contribute to a better understanding of the inter. play between economic growth, energy use and technological change, with much emphasis on the adoption and diffusion of energy-saving technologies. The thesis presents a mix of theoretical and empirical analyses inspired by recent developments in economic theorizing on technological change that stress the role of accumulation and distribution of knowledge (learning), uncertainty, path dependency and irreversibility. The theoretical part of the study examines how several characteristics of technological change as well as environmental policy affect the dynamics of technology choice. The empirical part of the study explores long-run trends in energy- and labour productivity performance across a range of OECD countries at a detailed sectoral level

  11. Energy price increases and economic development in Malaysia.

    OpenAIRE

    Fong CO

    1984-01-01

    ILO pub-WEP pub. Working paper on the impact of higher energy costs (particularly petroleum price increases) on economic development in Malaysia, 1973 to 1983 - outlines trends in gross domestic product, balance of payments, trade and economic growth; considers household income and fuel expenditure of low income rural communitys; deals with choice of technology and employment in certain high power consumption industries; discusses energy policy implications. Graphs, maps, questionnaires, refe...

  12. Nuclear energy and economic competitiveness in several normative systems; Energia nuclear y competitividad economica en varios sistemas normativos

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. [University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom)

    2009-07-01

    The serious challenge imposed by the necessity of reducing the gases emission of greenhouse effect in the electric generation sector, it has renovated the interest in the new plants construction of nuclear energy. Nevertheless, since the use of the nuclear energy began to descend ago more of 25 years, it is has speculated continually about the possible nuclear rebirth. Are such predictions based in solid basis or are mere groundless prognostics? The objective of the present document is to analyze the economic aspects of the nuclear energy, to identify the key factors that they allow to determine its competitiveness and to sound the possible markets for the new plants of nuclear energy. To achieve this, it is divided in the following sections: Revision of the current state of the nuclear energy, including the location, the type and capacity of the plants; Identification of the variables that determine the economic situation of the nuclear energy; Revision of the recent predictions and of the economic aspects of the Olkiluoto nuclear power plant of Finland; A revision by market of the possible future of the new nuclear facilities in the coming decade. (Author)

  13. Technical and economic analysis of grid-connected PV/Wind energy stations in the Republic of Serbia under varying climatic conditions

    OpenAIRE

    Bakić, Vukman V.; Pezo, Milada L.; Stojković, Saša M.

    2016-01-01

    In this paper technical and economic analysis of grid-connected PV/Wind energy systems located in the Republic of Serbia are presented. The technical and economic data, of the various grid-connected PV/Wind hybrid energy systems for three different locations: Novi Sad, Belgrade and Kopaonik, using the transient simulations software TRNSYS and HOMER were obtained. The results obtained in this paper show that locations and technical characteristics of the energy systems have an important influe...

  14. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  15. The relationship between economic growth, energy consumption, and CO_2 emissions: Empirical evidence from China

    International Nuclear Information System (INIS)

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-01

    policies in order to effectively address greenhouse effects in China, thereby setting the nation on a low-carbon growth path. - Highlights: • The nexus between economic growth, energy use and CO_2 emissions for China examined. • Cointegration tests suggest presence of long-run relationship among the variables. • Generalized impulse response due to the external shocks to the system examined. • Bi-directional causality between economic growth and energy consumption. • Unidirectional causality from energy consumption to CO_2 emissions.

  16. Nuclear energy-economic growth nexus in OECD countries. A panel data analysis

    International Nuclear Information System (INIS)

    Ozcan, Burcu; Ari, Ayse

    2016-01-01

    The relationship between nuclear energy consumption and economic growth in 13 OECD countries from 1980 to 2012 is analyzed. The panel causality results supported the feedback hypothesis in both the short-run and long-run. There is a positive relationship between nuclear energy consumption and economic growth. As such, nuclear energy consumption and economic growth complement and reinforce each other. Nuclear energy conservation policies may negatively affect economic growth rates.

  17. Nuclear energy-economic growth nexus in OECD countries. A panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Burcu [Firat Univ., Elazig (Turkey). Dept. of Economics; Ari, Ayse [Nigde Univ. (Turkey). Dept. of Economics

    2016-01-15

    The relationship between nuclear energy consumption and economic growth in 13 OECD countries from 1980 to 2012 is analyzed. The panel causality results supported the feedback hypothesis in both the short-run and long-run. There is a positive relationship between nuclear energy consumption and economic growth. As such, nuclear energy consumption and economic growth complement and reinforce each other. Nuclear energy conservation policies may negatively affect economic growth rates.

  18. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  19. Energy modeling and economic optimization of a hybrid wind/photovoltaic system coupled with the grid and associated to an accumulator

    International Nuclear Information System (INIS)

    Gergaud, Olivier

    2002-01-01

    This thesis deals of the production of photovoltaic and wind electricity connected to the grid and having a storage. The principal interests of such a system are the clean production on the place of consumption, the mutualization of resources and energy storage, and the security of supply. Models are developed and compared successfully with reality thanks to an experimental device instrumented completion (2 kWp PV, 2 x 750 Wp wind generators, 15 kWh lead-acid battery). We obtain then a model that proves both accurate enough to distinguish energy transfers and fast enough to enable optimizing the sizing and handling of the system's energy transfers. Having energy, economic models and tools of dimensioning and management, we carried out a study of optimization based on simple cases of systems multi-production. To tackle this difficult problem, we then placed ourselves within the framework of a producer-consumer whose conditions weather with the site of production as its own consumption are supposed to be known, therefore deterministic. The problems were then the search for strategies of management of flows of energy and the fundamental characteristics of the elements of the installation optimal allowing the minimization of the energy cost. (author) [fr

  20. Recent trends in automobile recycling: An energy and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

    1994-03-01

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  1. Economic and geopolitical dimensions of renewable vs. nuclear energy in North Africa

    International Nuclear Information System (INIS)

    Marktanner, Marcus; Salman, Lana

    2011-01-01

    Addressing issues of renewable energy in North Africa must incorporate concerns regarding the compatibility of energy mixes with the nature of political regimes, their geopolitical relevance, and their socio-economic effects, in addition to economic cost-benefit deliberations. One important and under-researched aspect of nuclear energy refers to the trade-off between socio-economic development and political power conservation. Competing interests in North Africa's energy market as well as aspects of regional cooperation capacity are important when assessing the choice between renewable and nuclear energy. Therefore, the future course of meeting North Africa's energy needs is subject to a complex political and economic interplay between domestic and geopolitical development interests. The objective of this paper is to explore this complexity in more detail. We argue that the identification of any energy alternative as superior is hardly convincing unless certain standards of inclusive governance are met. We also find that it is important to highlight political-economic differences between energy importers like Morocco and Tunisia and energy exporters like Algeria, Libya, and Egypt. - Research highlights: → North Africa confronted with severe energy supply challenges in near future. → Trade-off between socio-economic development and political power conservation matters. → Economic and geopolitical dimensions of trade-off heterogeneous across North Africa.

  2. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  3. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    demonstrate our operational-planning framework and economic justification for different storage applications. A new reliability model is proposed for security and adequacy assessment of power networks containing renewable resources and energy storage systems. The proposed model is used in combination with the operational-planning framework to enhance the reliability and operability of wind integration. The proposed framework optimally utilizes the storage capacity for reliability applications of wind integration. This is essential for justification of storage deployment within regulated utilities where the absence of market opportunities limits the economic advantage of storage technologies over gas-fired generators. A control strategy is also proposed to achieve the maximum reliability using energy storage systems. A cost-benefit analysis compares storage technologies and conventional alternatives to reliably and efficiently integrate different wind penetrations and determines the most economical design. Our simulation results demonstrate the necessity of optimal storage placement for different wind applications. This dissertation also proposes a new stochastic framework to optimally charge and discharge electric vehicles (EVs) to mitigate the effects of wind power uncertainties. Vehicle-to-grid (V2G) service for hedging against wind power imbalances is introduced as a novel application for EVs. This application enhances the predictability of wind power and reduces the power imbalances between the scheduled output and actual power. An Auto Regressive Moving Average (ARMA) wind speed model is developed to forecast the wind power output. Driving patterns of EVs are stochastically modeled and the EVs are clustered in the fleets of similar daily driving patterns. Monte Carlo Simulation (MCS) simulates the system behavior by generating samples of system states using the wind ARMA model and EVs driving patterns. A Genetic Algorithm (GA) is used in combination with MCS to optimally

  4. Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC

    Directory of Open Access Journals (Sweden)

    Ruixiong Li

    2016-12-01

    Full Text Available The compressed air energy storage (CAES system, considered as one method for peaking shaving and load-levelling of the electricity system, has excellent characteristics of energy storage and utilization. However, due to the waste heat existing in compressed air during the charge stage and exhaust gas during the discharge stage, the efficient operation of the conventional CAES system has been greatly restricted. The Kalina cycle (KC and organic Rankine cycle (ORC have been proven to be two worthwhile technologies to fulfill the different residual heat recovery for energy systems. To capture and reuse the waste heat from the CAES system, two systems (the CAES system combined with KC and ORC, respectively are proposed in this paper. The sensitivity analysis shows the effect of the compression ratio and the temperature of the exhaust on the system performance: the KC-CAES system can achieve more efficient operation than the ORC-CAES system under the same temperature of exhaust gas; meanwhile, the larger compression ratio can lead to the higher efficiency for the KC-CAES system than that of ORC-CAES with the constant temperature of the exhaust gas. In addition, the evolutionary multi-objective algorithm is conducted between the thermodynamic and economic performances to find the optimal parameters of the two systems. The optimum results indicate that the solutions with an exergy efficiency of around 59.74% and 53.56% are promising for KC-CAES and ORC-CAES system practical designs, respectively.

  5. Energy and economic development (environmental implications)

    International Nuclear Information System (INIS)

    Zorzoli, G.B.

    1992-01-01

    An examination, for developed countries, of significant correlations among economic growth, electric energy intensity and elasticity, per capita values of gross national product and greenhouse gas emissions, indicates notable possibilities for a healthier global environment with increased world-wide diffusion of clean and rational energy use technologies coupled with substantial economic growth. This scenario, however, is contrasted by worrisome doubts as to the chances for a successful outcome of recently proposed tenable growth policies when it is pointed out that forecasts, based on current demographic trends, call for a doubling of the world population in the near future. The foreseen unrestrained population explosion, leading to an unprecedented proliferation in the use of fossil fuels, now appears to represent the most serious threat to the global environment

  6. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  7. Comparing Economic Systems.

    Science.gov (United States)

    Wolken, Lawrence C.

    1984-01-01

    Defines the predominate classifications of economic systems: traditional, command, market, capitalism, socialism, and communism. Considers property rights, role of government, economic freedom, incentives, market structure, economic goals and means of achieving those goals for each classification. Identifies 26 print and audio-visual sources for…

  8. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  9. Public perceptions of energy system risks: some policy implications

    International Nuclear Information System (INIS)

    Thomas, K.; Otway, H.J.

    1980-01-01

    The subject is discussed under the headings: introduction; perceptions, beliefs and attitudes; the survey of public perceptions and attitudes towards energy systems; attitudes towards the five energy systems (nuclear, coal, oil, solar and hydro); perceptions of energy systems - the underlying dimensions of belief (economic benefits; environmental risk; psychological and physical risk; indirect risk; technology development); differential analysis of the perceptions of those pro and con nuclear energy; summary of perceptions of energy systems - relevance to the Austrian dilemma; policy implications. (U.K.)

  10. German enterprises and the changes in energy economics due to increased concerns regarding environmental sustainability

    Directory of Open Access Journals (Sweden)

    Weber Gregor

    2015-06-01

    Full Text Available This article is part of a first year doctoral research regarding the current state of knowledge in environmental sustainability, energy economics and their impact on European enterprises. As the current changes and modifications of the German energy economics system are observed by people all around the globe, the current paper analyzes what has been said until now in the scientific literature on character of the new strategy for energy consumption and production in Germany and its impact on environmental and social sustainability. With the help of two questionnaire-based surveys conducted in 2013 and 2014 through the German DIHK1, German enterprises were surveyed in order to: identify potential differences and similarities between the two periods, identify the effects of the energy transition on companies’ profitability, and analyze these effects and compare the results in terms of potential trend developments. The research findings confirmed that changes in the energy system affect not only the environmental sustainability only, but also the economy, in some cases even independent of the stage in which the changing system of the economy presently is.

  11. Energy demand projections based on an uncertain dynamic system modeling approach

    International Nuclear Information System (INIS)

    Dong, S.

    2000-01-01

    Today, China has become the world's second largest pollution source of CO 2 . Owing to coal-based energy consumption, it is estimated that 85--90% of the SO 2 and CO 2 emission of China results from coal use. With high economic growth and increasing environmental concerns, China's energy consumption in the next few decades has become an issue of active concern. Forecasting of energy demand over long periods, however, is getting more complex and uncertain. It is believed that the economic and energy systems are chaotic and nonlinear. Traditional linear system modeling, used mostly in energy demand forecasts, therefore, is not a useful approach. In view of uncertainty and imperfect information about future economic growth and energy development, an uncertain dynamic system model, which has the ability to incorporate and absorb the nature of an uncertain system with imperfect or incomplete information, is developed. Using the model, the forecasting of energy demand in the next 25 years is provided. The model predicts that China's energy demand in 2020 will be about 2,700--3,000 Mtce, coal demand 3,500 Mt, increasing by 128% and 154%, respectively, compared with that of 1995

  12. Causal relationship between nuclear energy consumption and economic growth: A multi-country analysis

    International Nuclear Information System (INIS)

    Yoo, Seung-Hoon; Ku, Se-Ju

    2009-01-01

    This paper attempts to investigate the causal relationship between nuclear energy consumption and economic growth using the data from six countries among 20 countries that have used nuclear energy for more than 20 years until 2005. To this end, time-series techniques including the tests for unit roots, co-integration, and Granger-causality are employed to Argentina, France, Germany, Korea, Pakistan, and Switzerland. The main conclusion is that the causal relationship between nuclear energy consumption and economic growth is not uniform across countries. In the case of Switzerland, there exists bi-directional causality between nuclear energy consumption and economic growth. This means that an increase in nuclear energy consumption directly affects economic growth and that economic growth also stimulates further nuclear energy consumption. The uni-directional causality runs from economic growth to nuclear energy consumption without any feedback effects in France and Pakistan, and from nuclear energy to economic growth in Korea. However, any causality between nuclear energy consumption and economic growth in Argentina and Germany is not detected.

  13. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Energy efficiency programs add to the costs incurred by electricity users in the short term and generate significant economic benefits in the medium and long term. Using the example of programs in development at Hydro-Quebec, it is shown that the net economic benefits surpass, in present value terms, the sums invested by the electric utility and the customer, corresponding to yields of over 100%. This benefit is the principal impact of energy conservation programs which also provide employment, for every dollar invested, of the same order as that provided by hydroelectric production (i.e. costs associated with construction of generating plants, transmission lines, and distribution facilities). This evaluation takes account of the structure of purchases of goods and services brought about by energy efficiency programs and their large import component. This result may be surprising since the hydroelectric industry is strongly integrated into the Quebec economy, but it is understandable when one takes into account the importance of distribution costs to small-scale users, which causes significant local activity even when imported products are involved, and the very intensive labor requirement for certain energy efficiency measures. In addition, the employment generated by energy efficiency investments is very diversified in terms of the range of skills used and its geographic dispersion. 2 figs., 4 tabs

  14. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo [Center for Environmental Studies, Kyung Hee University, Yongin (Korea, Republic of)

    2016-02-15

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  15. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    International Nuclear Information System (INIS)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo

    2016-01-01

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  16. Modeling and optimization of a network of energy hubs to improve economic and emission considerations

    International Nuclear Information System (INIS)

    Maroufmashat, Azadeh; Elkamel, Ali; Fowler, Michael; Sattari, Sourena; Roshandel, Ramin; Hajimiragha, Amir; Walker, Sean; Entchev, Evgueniy

    2015-01-01

    Energy hubs that incorporate a variety of energy generation and energy transformation technologies can be used to provide the energy storage needed to enable the efficient operation of a ‘smart energy network’. When these hubs are combined as a network and allowed to exchange energy, they create efficiency advantages in both financial and environmental performance. Further, the interconnectedness of the energy network design provides an added layer of reliability. In this paper, a complex network of energy hubs is modeled and optimized under different scenarios to examine both the financial viability and potential reduction of greenhouse gas emissions. Two case studies consisting of two and three energy hubs within a network are considered. The modeling Scenarios vary according to the consideration of distributed energy systems and energy interaction between energy hubs. In the case of a network of two energy hubs, there is no significant economic or emissions benefit with only a 0.5% reduction in total cost and 3% reduction in CO_2 emission. In the case of a network of three energy hubs, there is a significant economic benefit ranging from 11% to 29%, and 11% emission reduction benefit, as well as a 13% reduction in natural gas consumption. - Highlights: • The generic form of the modified energy hub concept with network model is presented. • Two case studies are presented to demonstrate the benefits of energy hub network. • Distributed energy is shown to provide economic and environmental advantages. • Multi criteria optimization of the economic and environmental performance is done.

  17. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine

    International Nuclear Information System (INIS)

    Wang, Tianyou; Zhang, Yajun; Zhang, Jie; Peng, Zhijun; Shu, Gequn

    2014-01-01

    Highlights: • Comparisons of exhaust energy recovery are launched between two types of engine. • System performances are analyzed in terms of benefits and thermo-economics. • Diesel engine system presents superior to gasoline type in economic applicability. • Only diesel engine system using water under full load meets the economic demand. - Abstract: Exhaust energy recovery system (EERS) based on Rankine cycle (RC) in internal combustion engines have been studied mainly on heavy-duty diesel engines (D) and light-duty vehicle gasoline engines (G), however, little information available on systematical comparisons and evaluations between the two applications, which is a particularly necessary summary for clarifying the differences. In this paper, the two particular systems are compared quantitatively using water, R141b, R123 and R245fa as working fluids. The influences of evaporating pressure, engine type and load on the system performances are analyzed with multi-objectives, including the thermal efficiency improvement, the reduced CO 2 emission, the total heat transfer area per net power output (APP), the electricity production cost (EPC) and the payback period (PBP). The results reveal that higher pressure and engine load would be attractive for better performances. R141b shows the best performances in system benefits for the D-EERS, while water exhibits the largest contributions in the G-EERS. Besides, water performs the best thermo-economics, and R245fa serves as the most uneconomical fluid. The D-EERS presents superior to the G-EERS in the economic applicability as well as much more CO 2 emission reductions, although with slightly lower thermal efficiency improvement, and only the D-EERS with water under the full load meets the economic demand. Therefore the EERS based on RC serve more applicable on the heavy-duty diesel engine, while it might be feasible for the light-duty vehicle gasoline engine as the state-of-the art technologies are developed in the

  18. Localism and energy: Negotiating approaches to embedding resilience in energy systems

    International Nuclear Information System (INIS)

    O'Brien, Geoff; Hope, Alex

    2010-01-01

    Tensions are evident in energy policy objectives between centralised top-down interconnected energy systems and localised distributed approaches. Examination of these tensions indicates that a localised approach can address a systemic problem of interconnected systems; namely vulnerability. The challenge for energy policy is to realise the interrelated goals of energy security, climate and environmental targets and social and economic issues such as fuel poverty, whilst mitigating vulnerability. The effectiveness of conventional approaches is debatable. A transition to a low carbon pathway should focus on resilience, counter to vulnerability. This article draws from on-going work which evaluates the energy aspects of a Private Finance Initiative (PFI) project to refurbish and re-build a local authority's entire stock of sheltered accommodation to high environmental standards. Initial findings suggest that whereas more conventional procurement processes tend to increase systemic vulnerability, a user focussed process driven through PFI competitive dialogue is beginning to motivate some developers to adopt innovative approaches to energy system development.

  19. A MILP model for integrated plan and evaluation of distributed energy systems

    International Nuclear Information System (INIS)

    Ren, Hongbo; Gao, Weijun

    2010-01-01

    In the last decade, technological innovations and a changing economic and regulatory environment have resulted in a renewed interest for distributed energy resources (DER). However, because of the lack of a suitable design tool, the expected potential of DER penetration is not always exerted sufficiently. In this paper, a mixed-integer linear programming (MILP) model has been developed for the integrated plan and evaluation of DER systems. Given the site's energy loads, local climate data, utility tariff structure, and information (both technical and financial) on candidate DER technologies, the model minimizes overall energy cost for a test year by selecting the units to install and determining their operating schedules. Furthermore, the economic, energetic and environmental effects of the DER system can be evaluated. As an illustrative example, an investigation has been conducted of economically optimal DER system for an eco-campus in Kitakyushu, Japan. The result illustrates that gas engine is currently the most popular DER technology from the economic point of view. Although holding reasonable economic merits, unless combined with heat recovery units, the introduction of DER technologies may result in marginal or even adverse environmental effects. Furthermore, according to the results of sensitivity analysis, the optimal system combination and corresponding economic and environmental performances are more or less sensitive to the scale of energy demand, energy prices (both electricity and city gas), as well as carbon tax rate. (author)

  20. Technical and economical assessment on tethered wind-energy systems (TWES)

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, O.; Maekawa, S.

    1982-06-01

    The objective of the work reported was to establish the potential of tethered wind energy systems for energy conversion in the upper atmosphere. Of the concepts investigated, the Vertical Takeoff and Landing (VTOL) lift generation concept had the highest potential as compared to balloon, wind and hybrid concepts.

  1. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    Science.gov (United States)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  2. Managing peak loads in energy grids: Comparative economic analysis

    International Nuclear Information System (INIS)

    Zhuk, A.; Zeigarnik, Yu.; Buzoverov, E.; Sheindlin, A.

    2016-01-01

    One of the key issues in modern energy technology is managing the imbalance between the generated power and the load, particularly during times of peak demand. The increasing use of renewable energy sources makes this problem even more acute. Various existing technologies, including stationary battery energy storage systems (BESS), can be employed to provide additional power during peak demand times. In the future, integration of on-board batteries of the growing fleet of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) into the grid can provide power during peak demand hours (vehicle-to-grid, or V2G technology). This work provides cost estimates of managing peak energy demands using traditional technologies, such as maneuverable power plants, conventional hydroelectric, pumped storage plants and peaker generators, as well as BESS and V2G technologies. The derived estimates provide both per kWh and kW year of energy supplied to the grid. The analysis demonstrates that the use of battery storage is economically justified for short peak demand periods of <1 h. For longer durations, the most suitable technology remains the use of maneuverable steam gas power plants, gas turbine,reciprocating gas engine peaker generators, conventional hydroelectric, pumped storage plants. - Highlights: • Cost of managing peak energy demand employing different technologies are estimated. • Traditional technologies, stationary battery storage and V2G are compared. • Battery storage is economically justified for peak demand periods of <1 h. • V2G appears to have better efficiency than stationary battery storage in low voltage power grids.

  3. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  4. Energy-economic policy modeling

    Science.gov (United States)

    Sanstad, Alan H.

    2018-01-01

    Computational models based on economic principles and methods are powerful tools for understanding and analyzing problems in energy and the environment and for designing policies to address them. Among their other features, some current models of this type incorporate information on sustainable energy technologies and can be used to examine their potential role in addressing the problem of global climate change. The underlying principles and the characteristics of the models are summarized, and examples of this class of model and their applications are presented. Modeling epistemology and related issues are discussed, as well as critiques of the models. The paper concludes with remarks on the evolution of the models and possibilities for their continued development.

  5. Compressed Air Energy Storage System Control and Performance Assessment Using Energy Harvested Index

    Directory of Open Access Journals (Sweden)

    Hanif SedighNejad

    2014-01-01

    Full Text Available In this paper a new concept for control and performance assessment of compressed air energy storage (CAES systems in a hybrid energy system is introduced. The proposed criterion, based on the concept of energy harvest index (HEI, measures the capability of a storage system to capture renewable energy. The overall efficiency of the CAES system and optimum control and design from the technical and economic point of view is presented. A possible application of this idea is an isolated community with significant wind energy resource. A case study reveals the usefulness of the proposed criterion in design, control and implementation of a small CAES system in a hybrid power system (HPM for an isolated community. Energy harvested index and its effectiveness in increasing the wind penetration rate in the total energy production is discussed.

  6. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    OpenAIRE

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for fu...

  7. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Summary report

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. Case studies were performed for three different municipalities: Uppsala, Stockholm, and Aelvdalen. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management systems of the three municipalities studied, even if the waste has to be transported to a regional facility. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are

  8. Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use

    International Nuclear Information System (INIS)

    Babu, G. Uday Bhaskar; Aditya, R.; Jana, Amiya K.

    2012-01-01

    It has long been recognized that the highly irreversible operation of batch distillation involves more wastage of energy compared to continuous flow distillation. For boosting its energy efficiency, the middle vessel batch distillation (MVBD) column has been invented. In this paper, a rigorous model for an MVBD process for the separation of a ternary hydrocarbon system is developed to simulate its transient behavior. In order to obtain the products at their maximum achievable purities, we device the two operating policies for the representative configuration. This contribution introduces a heat pumping system in the MVBD aiming to further improve its energetic and economic potentials. This novel heat integration technique is operated with a variable speed compressor for pressurizing the overhead vapor before thermally coupling it with the reboiler liquid. Interestingly, along with the compression ratio (CR), the other two manipulated variables are the inflow rate of overhead vapor to the compressor and that of an external medium (here, steam) that provides makeup heat to the reboiler. The operation of this adaptive heat pump assisted column originally involves the simultaneous adaptation of two variables throughout the entire batch processing. The simulation results show that a cost savings predicted in the heat integrated MVBD scheme can be achieved along with a substantial reduction in energy consumption. -- Highlights: ► The two operating policies have been derived for middle vessel batch distillation operation. ► This contribution introduces an adaptive heat pumping system for the middle vessel column. ► The heat integrated column shows better energetic and economic potentials over its conventional counterpart.

  9. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  10. Power management for energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.

    2013-02-15

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms, e.g., in supermarkets. For control of the commercial refrigeration application as well as the wind turbine application, we propose an economic optimizing model predictive controller, economic MPC. Our investigations are primarily concerned with: 1) modeling of the applications to suit the chosen control framework; 2) formulating the MPC controller laws to overcome challenges introduced by the industrial applications, and defining economic objectives that reect the real physics of the systems as well as our control objectives; 3) solving the involved, non-trivial optimization problems eciently in real-time; 4) demonstrating the feasibility and potential of the proposed methods by extensive simulation and comparison with existing control methods and evaluation of data from systems in actual operation. We demonstrate, i.a., substantial cost savings, on the order of 30 %, compared to a standard thermostat-based supermarket refrigeration system and show how our methods exhibit sophisticated demand response to real-time variations in electricity prices. Violations of the temperature ranges can be kept at a very low frequency of occurrence inspite of the presence of uncertainty. For the power output from wind turbines, ramp rates, as low a 3 % of the rated power per minute, can be effectively ensured with the use of energy storage and we show how the active use of rotor inertia as an additional energy storage can reduce the needed storage capacity by up to 30 % without reducing the power output. (Author)

  11. Alternative Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    West, M.; Duckers, L.; Lockett, P.; Loughridge, B.; Peatfield, T.; White, P.

    1984-01-01

    The Coventry (Lanchester) Polytechnic Wave Energy Group has been involved in the United Kingdom wave energy research programme since its inception in 1975. Whilst the work of the group is mainly concerned with wave energy, and currently is directed towards the design of a wave energy device tailored to the needs of isolated/island communities, it has some involvement with other aspects of the alternatives. This conference, dealing with alternative energy systems and their electrical integration and utilisation was engendered by the general interest which the Polytechnic group members have in the alternatives and their use. The scope for electrical integration and utilisation is very broad. Energy for family groups may be provided in a relatively unsophisticated way which is acceptable to them. Small population centres, for example island communities relying upon diesel equipment, can reap the benefits of the alternatives through their ability to accept novel integration schemes and a flexible approach to the use of the energy available. Consumers already enjoying the benefits of a 'firm' electricity grid supply can use energy from a variety of alternative systems, via the grid, without having to modify their energy consumption habits. In addition to the domestic and industrial applications and coastal possibilities, specialist applications in isolated environments have also emerged. The Proceedings detail practical, technical and economic aspects of the alternatives and their electrical integration and utilisation.

  12. Energy consumption and economic growth revisited in African countries

    Energy Technology Data Exchange (ETDEWEB)

    Eggoh, Jude C., E-mail: comlanvi-jude.eggoh@univ-orleans.fr [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Bangake, Chrysost [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Universite d' Artois and Laboratoire EQUIPPE, Lille 1, FSES, 59655 Villeneuve d' Ascq Cedex (France); Rault, Christophe [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Toulouse Business School (France)

    2011-11-15

    The aim of this paper is to provide new empirical evidence on the relationship between energy consumption and economic growth for 21 African countries over the period from 1970 to 2006, using recently developed panel cointegration and causality tests. The countries are divided into two groups: net energy importers and net energy exporters. It is found that there exists a long-run equilibrium relationship between energy consumption, real GDP, prices, labor and capital for each group of countries as well as for the whole set of countries. This result is robust to possible cross-country dependence and still holds when allowing for multiple endogenous structural breaks, which can differ among countries. Furthermore, we find that decreasing energy consumption decreases growth and vice versa, and that increasing energy consumption increases growth, and vice versa, and that this applies for both energy exporters and importers. Finally, there is a marked difference in the cointegration relationship when country groups are considered. - Highlights: > We assess the energy consumption and economic growth nexus in 21 African countries. > There exists a long-run relationship between energy consumption and economic growth. > This result is robust to cross-country dependence and for structural breaks. > Our findings finally support the feedback hypothesis of bidirectional causality.

  13. Economic analysis of a new class of vanadium redox-flow battery for medium- and large-scale energy storage in commercial applications with renewable energy

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Zhao, Wei; Chen, Xi; Tao, Wen-Quan

    2017-01-01

    Highlights: • A new class of the vanadium redox-flow battery (VRB) is developed. • The new class of VRB is more economic. It is simple process and easy to scale-up. • There are three levels of cell stacks and electrolytes with different qualities. • The economic analysis of the VRB system for renewable energy bases is carried out. • Related polices and suggestions based on the result are provided. - Abstract: Interest in the implement of vanadium redox-flow battery (VRB) for energy storage is growing, which is widely applicable to large-scale renewable energy (e.g. wind energy and solar photo-voltaic), developing distributed generation, lowering the imbalance and increasing the usage of electricity. However, a comprehensive economic analysis of the VRB for energy storage is obscured for various commercial applications, yet it is fundamental for implementation of the VRB in commercial electricity markets. In this study, based on a new class of the VRB that was developed by our team, a comprehensive economic analysis of the VRB for large-scale energy storage is carried out. The results illustrate the economy of the VRB applications for three typical energy systems: (1) The VRB storage system instead of the normal lead-acid battery to be the uninterrupted power supply (UPS) battery for office buildings and hospitals; (2) Application of vanadium battery in household distributed photo-voltaic power generation systems; (3) The wind power and solar power stations equipped with the VRB storage systems. The economic perspectives and cost-benefit analysis of the VRB storage systems may underpin optimisation for maximum profitability. In this case, two findings are concluded. First, with the fixed capacity power or fixed discharging time, the greater profit ratio will be generated from the longer time or the larger capacity power. Second, when the profit ratio, discharging time and capacity power are all variables, it is necessary to find out the best optimisation

  14. A dynamic optimization on economic energy efficiency in development: A numerical case of China

    International Nuclear Information System (INIS)

    Wang, Dong

    2014-01-01

    This paper is based on dynamic optimization methodology to investigate the economic energy efficiency issues in developing countries. The paper introduces some definitions about energy efficiency both in economics and physics, and establishes a quantitative way for measuring the economic energy efficiency. The linkage between economic energy efficiency, energy consumption and other macroeconomic variables is demonstrated primarily. Using the methodology of dynamic optimization, a maximum problem of economic energy efficiency over time, which is subjected to the extended Solow growth model and instantaneous investment rate, is modelled. In this model, the energy consumption is set as a control variable and the capital is regarded as a state variable. The analytic solutions can be derived and the diagrammatic analysis provides saddle-point equilibrium. A numerical simulation based on China is also presented; meanwhile, the optimal paths of investment and energy consumption can be drawn. The dynamic optimization encourages governments in developing countries to pursue higher economic energy efficiency by controlling the energy consumption and regulating the investment state as it can conserve energy without influencing the achievement of steady state in terms of Solow model. If that, a sustainable development will be achieved. - Highlights: • A new definition on economic energy efficiency is proposed mathematically. • A dynamic optimization modelling links economic energy efficiency with other macroeconomic variables in long run. • Economic energy efficiency is determined by capital stock level and energy consumption. • Energy saving is a key solution for improving economic energy efficiency

  15. Sustainable energy. Economic growth for the Netherlands with green potential

    International Nuclear Information System (INIS)

    Sijbesma, F.; Oudeman, M.

    2010-02-01

    Research of the economic potential and options for enhancing renewable energy in the Netherlands. The following research questions were addressed: What is the current and future economic value of renewable energy in the Netherlands?; What are the areas in which the Netherlands has a unique point of departure with respect to knowledge and activities?; How can the economic potential be optimally deployed? Can the opportunities be increased by making it a key area?; What are other ways are there to enhance the economic development?. [nl

  16. Techno-Economic aspects on choosing alternative energy sources (sun and wind) compared with generator

    International Nuclear Information System (INIS)

    Zvolun, Yona.

    1990-11-01

    Independent alternative energy systems, such as wind and solar, need batteries to store produced energy in order to supply a reliable source of electricity when needed. Increasing reliability of these sources automatically influence the quality and availability of this type of power supply. Every solar and wind energy system includes a certain number of principle components : Photovoltaic arrays or wind generator, regulator/control unit to control charge/ discharge of the batteries and power supply to consumers, converters from AC to DC and DC to AC, batteries and load. The mode of system operation for both the independent or combined system is influenced by many complicated factors some of which are stochastic variables, time and location variables or constant. From the above complicated data one must choose the optimal system which answers the following criteria: a. Minimum cost which determines the inter relative array sizes for combined systems (photovoltaic cells wind generator and batteries). b. Reliability of power supply in general. c. Full consumption of power installation by obtaining maximum possible output under existing conditions at any time. This paper deals with the connected problems caused in a combined system of solar/photovoltaic cells, wind generator and batteries and will offer alternative economic and technical alternatives for power supply from fuel operated generators . Inverter components: photovoltaic cells and wind generators, which are the principle components without which solar and/or wind systems cannot exist, are discussed from the theoretical and physical aspects. Also, operation of the attached components, such as batteries, inverters, generators, regulators etc, is discussed. The last part of this paper discusses the choosing of the optimal system in a Techno-economic sense as opposed to energy supplied from generator, The work exhibited on these pages will contribute to better understanding of the different systems while

  17. Potential energy efficiency and conservation, economic, and environmental benefits from the implementation of superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1992-01-01

    This paper reports on Superconducting Magnetic Energy Storage (SMES) which is a recent technology that has the capability to significantly improve electrical system operations within electric utility systems. The technology has already been demonstrated by Bonneville Power Administration in a 30-MJ SMES test demonstration unit. Savings in utility operations from improved system efficiency, increased reliability, and reduced maintenance requirements contribute to the economic justification of SMES. Beyond these benefits, there are additional benefits which in the long run may equal or outweigh the electrical operational benefits. These benefits are the energy conservation and environmental benefits. The technology has the capability of reducing fuel consumption which can in turn reduce emissions. In a regional setting it can shift emissions both in volumes and in physical. With its capability to strategically shift generation and significantly affect emissions and air quality it can stretch clean energy generation options, thus SMES can be seen as an energy and environmental management technology and tool

  18. Performance and Economics of a Wind-Diesel Hybrid Energy System: Naval Air Landing Field, San Clemente Island, California; TOPICAL

    International Nuclear Information System (INIS)

    McKenna, Ed; Olsen, Timothy

    1999-01-01

    This report provides an overview of the wind resource, economics and operation of the recently installed wind turbines in conjunction with diesel power for the Naval Air Landing Field (NALF), San Clemente Island (SCI), California Project. The primary goal of the SCI wind power system is to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is also intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen-oxide emissions and other pollutants. The first two NM 225/30 225kW wind turbines were installed and started shake-down operations on February 5, 1998. This report describes the initial operational data gathered from February 1998 through January 1999, as well as the SCI wind resource and initial cost of energy provided by the wind turbines on SCI. In support of this objective, several years of data on the wind resources of San Clemente Island were collected and compared to historical data. The wind resource data were used as input to economic and feasibility studies for a wind-diesel hybrid installation for SCI

  19. Performance analysis of supply and return fans for HVAC systems under different operating strategies of economizer dampers

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, Nabil [Florida Solar Energy Center, A Research Institute of the University of Center Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2010-07-15

    HVAC systems and associated equipment consume a relatively large fraction of total building energy consumption, a significant portion of which is attributed to fan operation. The operation of economizer dampers when installed can cause high energy consumption in fans if they are not functioning in proper and optimal manner. This will mainly be due to the potential high pressure drops through those dampers and associated high total pressures that should be developed by supply and/or return fans. It is then necessary to ensure that a proper strategy to operate optimally the economizer dampers is implemented with minimum fan energy use. The paper examines several operation strategies of the economizer dampers and investigates their effects on the performance of both the supply and return fans in HVAC system. It also discusses a new operating strategy for economizer dampers that can lead to lower fan energy use. The strategies are evaluated by simulations for a typically existing HVAC system. Several factors such as the building locations, system characteristics, resistance in the duct where the dampers are installed, supply air temperature and economizer control, and minimum ventilation requirements are also considered during the evaluations. The results show that the way of the economizer dampers been controlled has a significant effect on fan performance and its energy use. The proposed strategy if properly implemented can provide fan energy saving in the range of 5-30%, depending mainly on the number of hours when the system operates in the free cooling mode, damper characteristics, and minimum outdoor air. (author)

  20. Energy consumption and economic growth: Evidence from Cameroon

    International Nuclear Information System (INIS)

    Fondja Wandji, Yris D.

    2013-01-01

    The aim of this paper is to study the nature of the relationship between energy consumption and economic growth in Cameroon through a three-step approach: (i) Study the stationarity of the chronic, (ii) test of causality between variables and (iii) estimate the appropriate model. The study concludes in a non-stationarity of the series. Using the data in first difference, the Granger causality test yields a strong evidence for unidirectional causality running from OIL to GDP. Cointegration tests also show that these two series are co-integrated and the Error Correction Model (ECM) reveals that every percentage increase in Oil products consumption increases economic growth by around 1.1%. This result confirms the intuition that an economic policy aimed at improving energy supply will necessarily have a positive impact on economic growth. On the other side, a lack of energy is a major bottleneck for further economic development in Cameroon. - Highlights: • The series of GDP, ELECTRICITY, OIL and BIOFUELS are integrated of order 1. • The Granger causality test yields a unidirectional causality running from OIL to GDP. • No causal link between GDP and ELECTRICITY, and no more between GDP and BIOFUELS. • Cointegration tests also show that only OIL and GDP are co-integrated. • Every percentage increase in OIL increases GDP by around 1.1%

  1. Staff roster for 1979: National Center for Analysis of Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This publication is a compilation of resumes from the current staff of the National Center for Analysis of Energy Systems. The Center, founded in January 1976, is one of four areas within the Department of Energy and Environment at Brookhaven National Laboratory. The emphasis of programs at the Center is on energy policy and planning studies at the regional, national, and international levels, involving quantitative, interdisciplinary studies of the technological, economic, social, and environmental aspects of energy systems. To perform these studies the Center has assembled a staff of experts in the areas of science, technology, economics planning, health and safety, information systems, and quantitative analysis.

  2. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1980-06-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improvng the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness

  3. A critique of non-parametric efficiency analysis in energy economics studies

    International Nuclear Information System (INIS)

    Chen, Chien-Ming

    2013-01-01

    The paper reexamines non-additive environmental efficiency models with weakly-disposable undesirable outputs appeared in the literature of energy economics. These efficiency models are used in numerous studies published in this journal and other energy-related outlets. Recent studies, however, have found key limitations of the weak-disposability assumption in its application to environmental efficiency analysis. It is found that efficiency scores obtained from non-additive efficiency models can be non-monotonic in pollution quantities under the weak-disposability assumption — which is against common intuition and the principle of environmental economics. In this paper, I present taxonomy of efficiency models found in the energy economics literature and illustrate the above limitations and discuss implications of monotonicity from a practical viewpoint. Finally, I review the formulations for a variable returns-to-scale technology with weakly-disposable undesirable outputs, which has been misused in a number of papers in the energy economics literature. An application to evaluating the energy efficiencies of 23 European Union states is presented to illustrate the problem. - Highlights: • Review different environmental efficiency model used in energy economics studies • Highlight limitations of these environmental efficiency models • These limitations have not been recognized in the existing energy economics literature. • Data from 23 European Union states are used to illustrate the methodological consequences

  4. ADRES : autonomous decentralized regenerative energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, G.; Einfalt, A.; Leitinger, C.; Tiefgraber, D. [Vienna Univ. of Technology (Austria)

    2007-07-01

    The autonomous decentralized regenerative energy systems (ADRES) research project demonstrates that decentralized network independent microgrids are the target power systems of the future. This paper presented a typical structure of a microgrid, demonstrating that all types of generation available can be integrated, from wind and small hydro to photovoltaic, fuel cell, biomass or biogas operated stirling motors and micro turbines. In grid connected operation the balancing energy and reactive power for voltage control will come from the public grid. If there is no interconnection to a superior grid, it will form an autonomous micro grid. In order to reduce peak power demand and base energy, autonomous microgrid technology requires highly efficient appliances. Otherwise large collector design, high storage and balancing generation capacities would be necessary, which would increase costs. End-use energy efficiency was discussed with reference to demand side management (DSM) strategies that match energy demand with actual supply in order to minimize the storage size needed. This paper also discussed network controls that comprise active and reactive power. Decentralized robust algorithms were investigated with reference to black-start ability and congestion management features. It was concluded that the trend to develop small decentralized grids in parallel to existing large systems will improve security of supply and reduce greenhouse gas emissions. Decentralized grids will also increase energy efficiency because regenerative energy will be used where it is collected in the form of electricity and heat, thus avoiding transport and the extension of transmission lines. Decentralized energy technology is now becoming more economic by efficient and economic mass production of components. Although decentralized energy technology requires energy automation, computer intelligence is becoming increasingly cost efficient. 2 refs., 4 figs.

  5. The Energy Economics of Financial Structuring for Renewable Energy Projects

    Science.gov (United States)

    Rana, Vishwajeet

    2011-12-01

    This dissertation focuses on the various financial structuring options for the renewable energy sector. The projects in this sector are capital-intensive to build but have relatively low operating costs in the long run when compared to traditional energy resources. The large initial capital requirements tend to discourage investors. To encourage renewable investments the government needs to provide financial incentives. Since these projects ultimately generate returns, the government's monetary incentives go to the sponsors and tax equity investors who build and operate such projects and invest capital in them. These incentives are usually in the form of ITCs, PTCs and accelerated depreciation benefits. Also, in some parts of the world, carbon credits are another form of incentive for the sponsors and equity investors to invest in such turnkey projects. The relative importance of these various considerations, however, differs from sponsor to sponsor, investor to investor and from project to project. This study focuses mainly on the US market, the federal tax benefits and incentives provided by the government. This study focuses on the energy economics that are used for project decision-making and parties involved in the transaction as: Project Developer/Sponsor, Tax equity investor, Debt investor, Energy buyer and Tax regulator. The study fulfils the knowledge gap in the decision making process that takes advantage of tax monetization in traditional after-tax analysis for renewable energy projects if the sponsors do not have the tax capacity to realize the total benefits of the project. A case-study for a wind farm, using newly emerging financial structures, validates the hypothesis that these renewable energy sources can meet energy industry economic criteria. The case study also helps to validate the following hypotheses: a) The greater a sponsor's tax appetite, the tower the sponsor's equity dilution. b) The use of leverage increases the cost of equity financing

  6. Optimized design of total energy systems: The RETE project

    Science.gov (United States)

    Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.

    1980-05-01

    The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.

  7. Economic chances and problems of the peaceful uses of nuclear energy in an evolutionary context

    International Nuclear Information System (INIS)

    Hohn, B.

    1992-01-01

    To organize and ensure energy supply is of pivotal importance for social development. Therefore, the paper focuses on the issue of nuclear energy within the stress field of society, technology, energy and evolution. Nuclear energy use is studied with regard to its evolutionary fit, on the basis of an integrating analysis overriding economic considerations. So the criterion of customary economics is expanded by the evaluation criterion of evolutionary principles. After considering the theoretical structure of environment and resource economy and its limits, the evolutionary background of energy and energy use is examined. Evolution strategies are outlined to show how structures and orders are formed in the course of evolution and how energy resources are exploited. In view of the global ecological crisis, solution strategies require a solid concept of an evolutionary fitting energy system the requirement profile of which can be obtained, by means of fitting criteria, from a synthesis of economic theory and the outlined evolution strategies. In order to sound the evolutionary fit of nuclear energy use on the basis of the theoretical foundations of economics and evolution and of the fitting criteria obtained from their synthesis, the status of the problem and its multifacetted interconnections are structured. Critical analysis of the peaceful use of nuclear energy is performed by means of a systematics which is to ensure that the mental order gradually approaches the evaluation of the evolutionary fit of nuclear power. (orig./HSCH) [de

  8. Energy consumption, pollutant emissions and economic growth in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Menyah, Kojo [London Metropolitan Business School, London Metropolitan University (United Kingdom); Wolde-Rufael, Yemane [Independent Researcher (United Kingdom)

    2010-11-15

    This paper examines the long-run and the causal relationship between economic growth, pollutant emissions and energy consumption for South Africa for the period 1965-2006 in a multivariate framework which includes labour and capital as additional variables. Using the bound test approach to cointegration, we found a short-run as well as a long-run relationship among the variables with a positive and a statistically significant relationship between pollutant emissions and economic growth. Further, applying a modified version of the Granger causality test we also found a unidirectional causality running from pollutant emissions to economic growth; from energy consumption to economic growth and from energy consumption to CO{sub 2} emissions all without a feedback. The econometric evidence suggests that South Africa has to sacrifice economic growth or reduce its energy consumption per unit of output or both in order to reduce pollutant emissions. In the long-run however, it is possible to meet the energy needs of the country and at the same time reduce CO{sub 2} emissions by developing energy alternatives to coal, the main source of CO{sub 2} emissions. However, the econometric results upon which the policy suggestions are made should be interpreted with care, as they may not be sufficiently robust enough to categorically warrant the choice of an unpalatable policy option by South Africa. (author)

  9. [Analysis of grey correlation between energy consumption and economic growth in Liaoning Province, China.

    Science.gov (United States)

    Wang, Li; Xi, Feng Ming; Wang, Jiao Yue

    2016-03-01

    The contradiction between energy consumption and economic growth is increasingly prominent in China. Liaoning Province as one of Chinese heavy industrial bases, consumes a large amount of energy. Its economic development has a strong dependence on energy consumption, but the energy in short supply become more apparent. In order to further understand the relationship between energy consumption and economic growth and put forward scientific suggestions on low carbon development, we used the grey correlation analysis method to separately examine the relevance of economic growth with energy consumption industries and energy consumption varieties through analy sis of energy consumption and economic growth data in Liaoning Province from 2000 to 2012. The results showed that the wholesale and retail sector and hotel and restaurant sector were in the minimum energy consumption in all kinds of sectors, but they presented the closest connection with the economic growth. Although industry energy consumption was the maximum, the degree of connection between industry energy consumption and economic growth was weak. In all types of energy consumption, oil and hydro-power consumption had a significant connection with economic growth. However, the degree of connection of coal consumption with economic growth was not significant, which meant that coal utilization efficiency was low. In order to achieve low carbon and sustainable development, Liaoning Province should transform the economic growth mode, adjust industry structure, optimize energy structure, and improve energy utilization efficiency, especially promote producer services and develop clean and renewable energy.

  10. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  11. Calculations of energy consumption in ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kreslins, Andris; Ramata, Anna [Riga Technical University (Latvia)], e-mail: kreslins@rbf.rtu.lv, email: Anna.Ramata@rtu.lv

    2011-07-01

    Energy cost is an important economic factor in the food industry production process. With the rising price of energy, a reduction in energy consumption would greatly impact production and the end product. The aim of this study was to develop a methodology for optimizing energy consumption. A comparison between a traditional ventilation system and a mechanical system was carried out; the necessary enthalpy for heating the air supply and thermal energy consumption were calculated and compared for both systems during the heating season, from October to April, using climatological data for Latvia. Results showed that energy savings of 46% to 87% can be achieved by applying the methodology in the design of industrial buildings; in addition, a well-designed ventilation system increases the workers' productivity. This study presented a methodology which can optimize energy consumption in the food industry sector.

  12. An energy saving system for hospital laundries

    Energy Technology Data Exchange (ETDEWEB)

    Katsanis, J.S.; Tsarabaris, P.T.; Polykrati, A.D.; Proios, A.N. [National Technical Univ. of Athens, Athens (Greece). School of Electrical and Computer Engineering; Koufakis, E.I. [Public Power Corp. S.A., Crete (Greece)

    2009-07-01

    Hospital laundries are one of the largest consumers of water and electrical and thermal energy. This paper examined the energy savings achieved by a system using the hot wastewater from the washing process. Hospital laundries consume thermal energy using steam, which is produced in boilers by burning diesel oil or natural gas. Electrical energy for the mechanical drives, ventilation and also the lighting required in the laundry area are big consumers of energy. The paper presented the proposed system and discussed the parameters of the system and system dimensioning. The paper also provided and discussed an interpretation of steam and energy savings. The proposed system was considered to be economically viable, simple in its construction, installation and operation. From the application of the suggested system, the cost savings resulted in a satisfactory payback period for the capital invested of approximately three to five years. 14 refs., 4 tabs., 2 figs.

  13. The global sustainability project and the LLNL China energy systems model

    International Nuclear Information System (INIS)

    Harris, N; Lamont, A; Stewart, J; Woodrow, C.

    1999-01-01

    The sustainability of our modern way of life is becoming a major concern of both our domestic and international policy. The Rio conference on the environment and the recent Kyoto conference on global climate change are two indications of the importance of solving global environmental problem. Energy is a key component in global sustainability since obtaining and using it has major environmental effects. If our energy systems are to be sustainable in the long run, they must be structured using technologies that have a minimal impact on our environment and resources. At the same time, they must meet practical economic requirements: they must be reasonably economical, they must meet the needs of society and they must be tailored to the resources that are available in a particular region or country. Because economic considerations and government policies both determine the development of the energy system, economic and systems modeling can help us better understand ways that new technologies and policies can be used to obtain a more sustainable system. The Global Sustainability Project has developed both economic modeling software and models to help us better understand these issues and has applied them to the analysis of energy and environmental problems in China. In the past year, the models and data developed by the project have been used to support other projects investigating the interaction of technologies and the environment. The project this year has focused on software development to improve our modeling tools and on the refinement and application of the China Energy System model. The major thrust of the software development has been improvements in the METANet economic software system. We have modified its solution algorithm to improve speed and accuracy of the solutions and to make it compatible with the SuperCode modeling system. It is planned to eventually merge the two systems to take advantage of the faster, more flexible solution algorithms of Super

  14. Energy Economic Data Base Program (EEDB). Phase V update (1982) report

    International Nuclear Information System (INIS)

    1983-07-01

    This Phase V Update of the Energy Economic Data Base (EEDB) is the latest in a series of cost studies dating back to the late 1960's that have provided the Department of Energy and its predecessor agencies with consistent data on the capital costs of reactor systems of current interest to the Nuclear Energy program and on the comparative costs of large fossil-fueled systems. This report summarizes the detailed data from the EEDB at an intermediate level and summarizes what has been learned from this year's Update. This report also contains fuel cycle and O and M cost data, but the emphasis of the program and the report is on capital costs. The DOE Office of Nuclear Energy summarizes the capital cost data as well as additional fuel cycle and O and M cost data in a separate report, Nuclear Energy Cost Data Base - A Reference Data Base for Nuclear and Coal-Fired Powerplant Power Generation Cost Analysis, DOE/NE-0044

  15. Achieving a secure energy future: Environmental and economic issues

    International Nuclear Information System (INIS)

    Pimentel, David; Herdendorf, M.; Eisenfeld, S.

    1994-01-01

    Energy, economics, and the environment are interdependent. Land, water, atmospheric, and biological resources are being degraded by current high energy consumption. U.S. energy consumption is the highest in the world and the U.S. Department of Energy reports that the United States has only about 10 years of known and potentially discoverable oil reserves. The U.S. should reduce its energy consumption by one half to help restore the quality of the environment while improving the American standard of living by strengthening the economy and increasing the number of jobs. Because of the interdependence of energy, economics, and the environment, energy efficiency and transition to renewable energy sources are critical. An estimated 40% of current energy consumption could be produced employing solar energy technologies, but would require about 20% of total U.S. land area. Therefore, the development of solar energy technologies to substitute for fossil energy is projected to compete for land required for agriculture and forestry as well as have other environmental impacts

  16. Energy innovation systems indicator report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M. [Technical Univ. of Denmark. DTU Management Engineering, Kgs. Lyngby (Denmark); Klitkou, A.; Iversen, E. [Nordic Institute for Studies in Innovation, Research and Education, Oslo (Norway)

    2012-12-15

    Knowledge about the innovation systems with respect to new energy solutions and technologies is of central importance for understanding the dynamics of change in the energy sector and assessment of opportunities for moving towards more climate-friendly and sustainable energy systems and for socio-economic development in the field, creation of new businesses, work places, etc.. This is the topic that in general is addressed in the research activities of the ''EIS - Strategic research alliance for Energy Innovation Systems and their dynamics - Denmark in global competition''. As part of this, the present report gives an overview of the available indicators of energy innovation systems and points out some of the limitations and potentials there currently are in this connection. Focus is on Denmark. Figures for other countries, primarily Nordic or European, are in some cases showed as well, offering a comparative perspective. (Author)

  17. Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Xia

    2015-10-01

    Full Text Available The installation of stationary super-capacitor energy storage system (ESS in metro systems can recycle the vehicle braking energy and improve the pantograph voltage profile. This paper aims to optimize the energy management, location, and size of stationary super-capacitor ESSes simultaneously and obtain the best economic efficiency and voltage profile of metro systems. Firstly, the simulation platform of an urban rail power supply system, which includes trains and super-capacitor energy storage systems, is established. Then, two evaluation functions from the perspectives of economic efficiency and voltage drop compensation are put forward. Ultimately, a novel optimization method that combines genetic algorithms and a simulation platform of urban rail power supply system is proposed, which can obtain the best energy management strategy, location, and size for ESSes simultaneously. With actual parameters of a Chinese metro line applied in the simulation comparison, certain optimal scheme of ESSes’ energy management strategy, location, and size obtained by a novel optimization method can achieve much better performance of metro systems from the perspectives of two evaluation functions. The simulation result shows that with the increase of weight coefficient, the optimal energy management strategy, locations and size of ESSes appear certain regularities, and the best compromise between economic efficiency and voltage drop compensation can be obtained by a novel optimization method, which can provide a valuable reference to subway company.

  18. McCabe wind energy system

    International Nuclear Information System (INIS)

    Norton, R.; McCabe, F.; MacMichael, G.

    1995-01-01

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  19. McCabe wind energy system

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R [Wyndmoor (United States); McCabe, F [Levr/Air, Inc., Doylestown (United States); MacMichael, G [Regional Technical College, Galway (Iran, Islamic Republic of)

    1996-12-31

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  20. McCabe wind energy system

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R. [Wyndmoor (United States); McCabe, F. [Levr/Air, Inc., Doylestown (United States); MacMichael, G. [Regional Technical College, Galway (Iran, Islamic Republic of)

    1995-12-31

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  1. The relationship between economic growth, energy consumption, and CO{sub 2} emissions: Empirical evidence from China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojian, E-mail: 1987wangshaojian@163.com [School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275 (China); Li, Qiuying [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Fang, Chuanglin, E-mail: fangcl@igsnrr.ac.cn [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhou, Chunshan [School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-01-15

    -term energy and economic policies in order to effectively address greenhouse effects in China, thereby setting the nation on a low-carbon growth path. - Highlights: • The nexus between economic growth, energy use and CO{sub 2} emissions for China examined. • Cointegration tests suggest presence of long-run relationship among the variables. • Generalized impulse response due to the external shocks to the system examined. • Bi-directional causality between economic growth and energy consumption. • Unidirectional causality from energy consumption to CO{sub 2} emissions.

  2. Economic assessment and optimal operation of CSP systems with TES in California electricity markets

    Science.gov (United States)

    Dowling, Alexander W.; Dyreson, Ana; Miller, Franklin; Zavala, Victor M.

    2017-06-01

    The economics and performance of concentrated power (CSP) systems with thermal energy storage (TES) inherently depend on operating policies and the surrounding weather conditions and electricity markets. We present an integrated economic assessment framework to quantify the maximum possible revenues from simultaneous energy and ancillary services sales by CSP systems. The framework includes both discrete start-up/shutdown restrictions and detailed physical models. Analysis of coinci-dental historical market and meteorological data reveals provision of ancillary services increases market revenue 18% to 37% relative to energy-only participation. Surprisingly, only 53% to 62% of these revenues are available through sole participation in the day-ahead market, indicating significant opportunities at faster timescales. Motivated by water-usage concerns and permitting requirements, we also describe a new nighttime radiative-enhanced dry-cooling system with cold-side storage that consumes no water and offers higher effciencies than traditional air-cooled designs. Operation of this new system is complicated by the cold-side storage and inherent coupling between the cooling system and power plant, further motivating integrated economic analysis.

  3. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2010-01-01

    In this study a model of the Irish energy-system was developed using EnergyPLAN based on the year 2007, which was then used for three investigations. The first compares the model results with actual values from 2007 to validate its accuracy. The second illustrates the exposure of the existing Irish energy-system to future energy costs by considering future fuel prices, CO 2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy-system from a technical and economic perspective, as wind is the most promising fluctuating renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland's energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally, these results are not only applicable to Ireland, but also represent the issues facing many other countries. (author)

  4. 'Decoupling' of economic growth and energy consumption - a new strategy of energy policy or merely a new

    Energy Technology Data Exchange (ETDEWEB)

    Horn, M

    1979-03-01

    The relations between the economic development and energy consumption is explained and their complexity is pointed out. The development of the official energy prognoses since 1973 and the development of economic growth and energy consumption from 1951-1976 show that these two developments had been linked together during certain periods but that the coefficient of elasticity shows a falling trend in the long term. The parameters determining the relation between economic growth and energy consumption are discussed: energy prices, capacity load, investments and technological innovations. At the same time the limits of a possible decoupling are demonstrated.

  5. Process and Economic Optimisation of a Milk Processing Plant with Solar Thermal Energy

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    . Based on the case study of a dairy factory, where first a heat integration is performed to optimise the system, a model for solar thermal process integration is developed. The detailed model is based on annual hourly global direct and diffuse solar radiation, from which the radiation on a defined......This work investigates the integration of solar thermal systems for process energy use. A shift from fossil fuels to renewable energy could be beneficial both from environmental and economic perspectives, after the process itself has been optimised and efficiency measures have been implemented...... surface is calculated. Based on hourly process stream data from the dairy factory, the optimal streams for solar thermal process integration are found, with an optimal thermal storagetank volume. The last step consists of an economic optimisation of the problem to determine the optimal size...

  6. Economic growth and energy consumption in Algeria: a causality analysis

    International Nuclear Information System (INIS)

    Cherfi, S.

    2011-01-01

    The purpose of this study is to review the causal link in the Granger sense, between energy consumption and economic growth in Algeria, to determine its implications for economic policy. The analysis was done based on Granger static and causality tests using statistical data on per capita primary energy consumption and gross domestic product per inhabitant in Algeria, over the 1965-2008 period. The results of the survey show that there is, in Algeria, a strong link between energy consumption per inhabitant and GDP per inhabitant. The results also suggest the lack of a long term impetus (no co-integration) between energy consumption and economic growth. In addition, there is a one-way causal link between GDP and energy consumption, i.e. the prior GDP data provides a better forecast of energy consumption level, but not the contrary. In other words, GDP explains consumption, not the contrary. (author)

  7. Economic and Environmental Considerations for Zero-emission Transport and Thermal Energy Generation on an Energy Autonomous Island

    Directory of Open Access Journals (Sweden)

    Fontina Petrakopoulou

    2018-01-01

    Full Text Available The high cost and environmental impact of fossil-fuel energy generation in remote regions can make renewable energy applications more competitive than business-as-usual scenarios. Furthermore, energy and transport are two of the main sectors that significantly contribute to global greenhouse gas emissions. This paper focuses on the generation of thermal energy and the transport sector of a fossil fuel-based energy independent island in Greece. We evaluate (1 technologies for fully renewable thermal energy generation using building-specific solar thermal systems and (2 the replacement of the vehicle fleet of the island with electric and hydrogen-fueled vehicles. The analysis, based on economic and environmental criteria, shows that although solar thermal decreases greenhouse gases by 83%, when compared to the current diesel-based situation, it only becomes economically attractive with subsidy scenarios equal to or higher than 50%. However, in the transport sector, the sum of fuel and maintenance costs of fuel-cell and electric vehicles is found to be 45% lower than that of the current fleet, due to their approximately seven times lower fuel cost. Lastly, it will take approximately six years of use of the new vehicles to balance out the emissions of their manufacturing phase.

  8. Simulation-economic model of using the geothermal energy of Uzbekistan

    International Nuclear Information System (INIS)

    Mukhamedov, R.S.; Yuksel, B.

    1990-01-01

    Although a wide range of estimates with different authors have the common view that Soviet Central Asia is a region ranking among the first in the USSR in terms of geothermal resources which are economically feasible for exploitation. Uzbekistan has the highest potential in the region. The areas inside the republic's territory which have particularly high geothermal energy potential are: the Fergana fracture, specifically the Adrusman-Chust anomaly, the Ustyurt plateau, the southern coast of the Aral Sea, and a group of small artesian basins in the heart of the Kyzyl Kum desert. The ultimate goal of this paper is to construct a simulation-economic model with the following characteristics: minimum effect on the ecological situation in the republic; minimum cost; heat and mass transfer in geological and geothermal structures; economic parameters for different technological systems

  9. Energy consumption and energy R and D in OECD: Perspectives from oil prices and economic growth

    International Nuclear Information System (INIS)

    Leng Wong, Siang; Chia, Wai-Mun; Chang, Youngho

    2013-01-01

    We estimate the short-run and long-run elasticities of various types of energy consumption and energy R and D to changes in oil prices and income of the 20 OECD countries over the period of 1980–2010 using the Nerlove partial adjustment model (NPAM). We find negative income elasticity for coal consumption but positive income elasticity for oil and gas consumption suggesting the importance of economic growth in encouraging the usage of cleaner energy from coal to oil and gas. By introducing time dummies into the regressions, we show that climatic mitigation policies are able to promote the usage of cleaner energies. Through the dynamic linkages between energy consumption and energy R and D, we find that fossil fuel consumption promotes fossil fuel R and D and fossil fuel R and D in turn drives its own consumption. Renewable energy R and D which is more responsive to economic growth reduces fossil fuel consumption and hence fossil fuel R and D. - Highlights: • Economic growth encourages the use of cleaner forms of energy. • Economic growth promotes renewable energy R and D. • Subsidies for renewable energy R and D promote renewable energy consumption. • Fossil fuel R and D promotes fossil fuel consumption in countries with oil reserves. • Oil consumption reduces significantly with higher oil prices

  10. Will history repeat itself? Economic convergence and convergence in energy use patterns

    International Nuclear Information System (INIS)

    Jakob, Michael; Haller, Markus; Marschinski, Robert

    2012-01-01

    In this paper, a difference-in-differences estimator on panel data for 30 developing and 21 industrialized countries is employed over the period 1971–2005 to examine how patterns of energy use (characterized by the consumption of primary energy carriers, sectoral energy use and carbon emissions) are changing in the process of economic development. For the average developing country in our sample, the results indicate that economic catch-up has been accompanied by above-average growth of the use of most primary energy carriers, the consumption of final energy in most sectors and total CO 2 emissions. For industrialized countries, we find that economic growth is partially decoupled from energy consumption and that above average rates of economic growth were accompanied by larger improvements in energy efficiency. These results emphasize the need to identify the relevant engines of economic growth, their implications for energy use and possibilities to achieve low-carbon growth centered on productivity and efficiency improvements rather than on capital accumulation. - Highlights: ► For developing countries, the hypothesis of ‘leap-frogging’ is rejected. ► For OECD countries, economic growth is partially decoupled from energy use. ► For OECD countries, higher rates of growth are related to energy efficiency improvements. ► Low-carbon growth requires productivity and efficiency improvements.

  11. Optimal Planning and Operation Management of a Ship Electrical Power System with Energy Storage System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Meng, Lexuan

    2016-01-01

    Next generation power management at all scales is highly relying on the efficient scheduling and operation of different energy sources to maximize efficiency and utility. The ability to schedule and modulate the energy storage options within energy systems can also lead to more efficient use...... of the generating units. This optimal planning and operation management strategy becomes increasingly important for off-grid systems that operate independently of the main utility, such as microgrids or power systems on marine vessels. This work extends the principles of optimal planning and economic dispatch...... for the proposed plan is derived based on the solution from a mixed-integer nonlinear programming (MINLP) problem. Simulation results showed that including well-sized energy storage options together with optimal operation management of generating units can improve the economic operation of the test system while...

  12. Mine rent and the new economic system

    Energy Technology Data Exchange (ETDEWEB)

    Cadan, K. (Federalni Ministerstvo Paliv a Energetiky, Prague (Czechoslovakia))

    1989-09-01

    Reviews historical concept of ground rents with reference to works of Adam Smith and David Ricardo and to 19th century capitalism and Marxism-Leninism. Asks whether mine rents can exist under a socialist system and examines theoretical basis for mine rents, which includes socio-economic aspects, geological conditions, proximity to markets and environmental considerations. Compares mine rents with agricultural land rents and analyzes value of end product (coal) and effect of pricing method on it. Explains pricing system in Czechoslovakia, which involves 3 groupings: coking coal, coke and energy coal (including briquets), the price of each of which is set according to average costs and geological conditions. Surplus revenue (or positive mine rent) only arises therefore at mines where the production costs are lower than fixed trade prices. Discusses in general terms application of new economic system (perestroika) to concept of mine rent and assessment of mine profitability and concludes that method of pricing solid fuels will play a decisive role. 4 refs.

  13. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  14. Global renewable energy-based electricity generation and smart grid system for energy security.

    Science.gov (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  15. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  16. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  17. Economizing justice: Turning equity claims into lower energy tariffs in Chile

    International Nuclear Information System (INIS)

    Alvial-Palavicino, Carla; Ureta, Sebastián

    2017-01-01

    This paper considers the issue of how energy justice is economized; how political and ethical claims about particular energy (in)justices are turned into economic valuations. Drawing on science and technology studies, we present a conceptual framework that understands economization as emerging from three interrelated processes: problematization, framing and overflowing. Applying this framework to the drafting of new energy legislation in Chile, we trace how perceived shortcomings in equity and distributional justice were turned into “market failures,” able to be resolved by market-based mechanisms. This case highlights the dangers implicit in the uncritical economization of energy justice claims, in which ethical considerations regarding the distribution of risks and benefits of energy production and provision are reduced to a redistribution of payments among consumers – something that limits the possibilities for structural reform. - Highlights: • The implementation of an electricity equity tariff is discussed. • A process of economization transforms equity demands into market devices. • Energy justice, as mobilized in the policy process, includes multiple forms of justice. • Competition between these multiple forms fails to deliver a complete form of justice.

  18. Thermodynamic, Environmental and Economic Analyses of Solar Ejector Refrigeration System Application for Cold Storage

    Directory of Open Access Journals (Sweden)

    İbrahim ÜÇGÜL

    2009-02-01

    Full Text Available The refrigeration processes have been widely applied for especially in cold storages. In these plants, the systems working with compressed vapour cooling cycles have been used as a classical method. In general, electrical energy is used for compressing in these processes. Although, mainly the electricity itself has no pollution effect on the environment, the fossil fuels that are widely used to produce electricity in the most of the world, affect the nature terribly. In short, these refrigeration plants, because of the source of the electricity pollute the nature indirectly. However, for compression an ejector refrigeration system requires one of the important renewable energy sources with negligible pollution impact on the environment, namely solar energy from a thermal source. Thermodynamical, environmental and economical aspects of the ejector refrigeration system working with solar energy was investigated in this study. As a pilot case, apple cold storage plants widely used in ISPARTA city, which 1/5 th of apple production of TURKEY has been provided from, was chosen. Enviromental and economical advantages of solar ejector refrigeration system application for cold storage dictated by thermodynamic, economic and enviromental analyses in this research.

  19. Economic analysis of alternatives for optimizing energy use in manufacturing companies

    International Nuclear Information System (INIS)

    Méndez-Piñero, Mayra Ivelisse; Colón-Vázquez, Melitza

    2013-01-01

    The manufacturing companies are one of the main consumers of energy. The increment in global warming and the instability in the petroleum oil market have motivated companies to find alternatives to reduce energy use. In the academic literature several researchers have demonstrated that optimization models can be successfully used to reduce energy use. This research presents the use of an optimization model to identify feasible economic alternatives to reduce energy use. The economic analysis methods used were the payback and the internal rate of return. The optimization model developed in this research was applied and validated using an electronic manufacturing company case study. The results demonstrate that the main variables affecting the economic feasibility of the alternatives are the economic analysis method and the initial implementation costs. Several scenarios were analyzed and the best results show that the manufacturing company could save up to $78,000 in three years if the recommendations based on the optimization model results are implemented. - Highlights: • Evaluate top consumers of energy in manufacturing: A/C, compressed air, and lighting • Economic analysis of alternatives to optimize energy used in manufacturing • Comparison of payback method and internal rate of return method with real data • Results demonstrate that the company could generate savings in energy use

  20. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  1. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, M. K.; Moon, K. H.; Nam, J. H.; Noh, B. C.; Kim, H. R.

    2008-12-01

    The concerns on the global warming issues in the international community are bringing about a paradigm shift in the national economy including energy technology development. In this connection, the green growth mainly utilizing green technology, which emits low carbon, is being initiated by many advanced countries including Korea. The objective of the study is to evaluate the contribution to the national economy from nuclear energy attributable to the characteristics of green technology, to which nuclear energy belongs. The study covers the role of nuclear in addressing climate change issues, the proper share of nuclear in the electricity sector, the cost analyses of decommissioning and radioactive waste management, and the analysis on the economic performance of nuclear R and D including cost benefit analysis

  2. Assessment of TEES{reg_sign} applications for Wet Industrial Wastes: Energy benefit and economic analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Scheer, T.H.

    1992-02-01

    Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg_sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

  3. Assessment of TEES reg sign applications for Wet Industrial Wastes: Energy benefit and economic analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Scheer, T.H.

    1992-02-01

    Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

  4. Economic feasibility of a wood biomass energy system under evolving demand

    Directory of Open Access Journals (Sweden)

    Giorgio Guariso

    2016-01-01

    Full Text Available In some European regions, particularly in mountainous areas, the demand for energy is evolving due to the decrease of resident population and the adoption of energy efficiency measures. Such changes are rapid enough to significantly impact on the planning process of wood-to-energy chains that are supposed to work for the following 20–25 years. The paper summarizes a study in an Italian pre-alpine district where some municipality shows a declining resident population together with increasing summer tourism. The planning of conversion plants to exploit the local availability of wood is formulated as a mathematical programming problem that maximizes the economic return of the investment, under time-varying parameters that account for the demand evolution. Such a demand is estimated from current trends, while biomass availability and transport is computed from the local cartography, through standard GIS operations. Altogether, the mixed integer optimization problem has 11 possible plant locations of different sizes and technologies taking their feedstock from about 200 parcels. The problem is solved with a commercial software package and shows that the optimal plan changes if one considers the foreseen evolution of the energy demand. As it always happen in this type of biomass-based plants, while the problem formulation is general and may be applied to other cases, the solution obtained is strongly dependent on local values and thus cannot be extrapolated to different contexts.

  5. An economic evaluation of the potential for distributed energy in Australia

    International Nuclear Information System (INIS)

    Lilley, William E.; Reedman, Luke J.; Wagner, Liam D.; Alie, Colin F.; Szatow, Anthony R.

    2012-01-01

    We present here economic findings from a major study by Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) on the value of distributed energy technologies (DE; collectively demand management, energy efficiency and distributed generation) for reducing greenhouse gas emissions from Australia's energy sector (CSIRO, 2009). The study covered potential economic, environmental, technical, social, policy and regulatory impacts that could result from their wide scale adoption. Partial Equilibrium modeling of the stationary energy and transport sectors found that Australia could achieve a present value welfare gain of around $130 billion when operating under a 450 ppm carbon reduction trajectory through to 2050. Modeling also suggests that reduced volatility in the spot market could decrease average prices by up to 12% in 2030 and 65% in 2050 by using local resources to better cater for an evolving supply–demand imbalance. Further modeling suggests that even a small amount of distributed generation located within a distribution network has the potential to significantly alter electricity prices by changing the merit order of dispatch in an electricity spot market. Changes to the dispatch relative to a base case can have both positive and negative effects on network losses. - Highlights: ► Quantified impact of distributed generation (DG) on the Australian energy sector. ► Australia could achieve a welfare gain of around $130 billion through to 2050. ► Wholesale market modeling found that DG led to lower price levels and volatility. ► DG has impacts on the transmission system in terms of dispatch and system losses.

  6. System analysis of energy utilization from waste - evaluation of energy, environment and economy. Case study - Uppsala

    International Nuclear Information System (INIS)

    Sundqvist, Jan-Olov; Granath, Jessica; Frostell, Bjoern; Bjoerklund, Anna; Eriksson, Ola; Carlsson, Marcus

    1999-12-01

    Energy, environmental, and economic consequences of different management systems for municipal solid waste have been studied in a systems analysis. In the systems analysis, different combinations of incineration, materials recycling of separated plastic and cardboard containers, and biological treatment (anaerobic digestion and composting) of easily degradable organic waste, were studied and also compared to landfilling. In the study a computer model (ORWARE) based on LCA methodology was used. The following parameters were used for evaluating the different waste management options: consumption of energy resources, global warming potential, acidification, eutrophication, photo oxidant formation, heavy metal flows, financial economy and welfare economy, where welfare economy is the sum of financial economy and environmental economy. The study shows that reduced landfilling to the benefit of an increased use of energy and material from waste is positive from an environmental and energy as well as economic aspect. This is mainly due to the fact that the choice of waste management method affects processes outside the waste management system, such as production of district heating, electricity, vehicle fuel, plastic, cardboard, and fertiliser. This means that landfilling of energy-rich waste should be avoided as far as possible, both because of the the environmental impact, and because of the low recovery of resources. Incineration should constitute a basis in the waste management system of Uppsala. Once the waste is collected, longer regional transports are of little significance, as long as the transports are carried out in an efficient manner. Comparing materials recycling and incineration, and biological treatment and incineration, no unambiguous conclusions can be drawn. There are benefits and drawbacks associated with all these waste management options. Materials recycling of plastic containers is comparable to incineration from a welfare economic aspect, but gives

  7. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  8. Nuclear proliferation and civilian nuclear power: report of the nonproliferation alternative systems assessment program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1979-12-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improving the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness. The objectives of this assessment are to identify when economic incentives to deploy advanced nuclear power systems might exist, to estimate the costs of using technologies that would reduce the risk of proliferation, to assess the impact of major economic uncertainties on the transition to new technologies, and to compare the investments required for alternative systems

  9. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling

    International Nuclear Information System (INIS)

    Heymans, Catherine; Walker, Sean B.; Young, Steven B.; Fowler, Michael

    2014-01-01

    The reuse of Li-ion EV batteries for energy storage systems (ESS) in stationary settings is a promising technology to support improved management of demand and supply of electricity. In this paper, MatLAB simulation of a residential energy profile and regulated cost structure is used to analyze the feasibility of and cost savings from repurposing an EV battery unit for peak-shifting. in situ residential energy storage can contribute to the implementation of a smart grid by supporting the reduction of demand during typical peak use periods. Use of an ESS increases household energy use but potentially improves economic effectiveness and reduces greenhouse gas emissions. The research supports the use of financial incentives for Li-ion battery reuse in ESS, including lower energy rates and reduced auxiliary fees. - Highlights: • EV Li-ion batteries can be reused in stationary energy storage systems (ESS). • A single ESS can shift 2 to 3 h of electricity used in a house. • While energy use increases, potential economic and environmental effectiveness improve. • ESS supports smart grid objectives. • Incentives like reduced fees are needed to encourage implementation of Li-ion battery ESS

  10. The Relationship Between Energy Consumption and Economic ...

    African Journals Online (AJOL)

    As evidenced from the study, causality runs from energy consumption to economic growth. Energy consumption in Nigeria is mainly based on the use of fossil fuels which is non-renewable. Therefore, in order to actualize its vision of becoming one of the 20th largest economies in the World by the year 2020, government ...

  11. CO2 emissions, energy consumption and economic growth in China: A panel data analysis

    International Nuclear Information System (INIS)

    Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W.

    2011-01-01

    This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic output using panel cointegration and panel vector error correction modeling techniques based on the panel data for 28 provinces in China over the period 1995-2007. Our empirical results show that CO 2 emissions, energy consumption and economic growth have appeared to be cointegrated. Moreover, there exists bidirectional causality between CO 2 emissions and energy consumption, and also between energy consumption and economic growth. It has also been found that energy consumption and economic growth are the long-run causes for CO 2 emissions and CO 2 emissions and economic growth are the long-run causes for energy consumption. The results indicate that China's CO 2 emissions will not decrease in a long period of time and reducing CO 2 emissions may handicap China's economic growth to some degree. Some policy implications of the empirical results have finally been proposed. - Highlights: → We conduct a panel data analysis of the energy-CO 2 -economy nexus in China. → CO 2 emissions, energy use and economic growth appear to be cointegrated. → There exists bidirectional causality between energy consumption and economic growth. → Energy consumption and economic growth are the long-run causes for CO 2 emissions.

  12. Calculation of economic viability and environmental costs of photovoltaic solar energy for the Brazilian Northeast region

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine

    2013-01-01

    The availability of energy resources is a central point to economic development. The energy matrix of most countries is based on the consumption of fossil fuels, which adds annually over 5 billion tons of carbon into the atmosphere. The energy consumption in developing countries has quadrupled since the 60s further aggravating global environmental conditions. The need to implement alternative energy sources to the energy matrix was proved. In addition, Brazil has a large number of people without access to electricity, which affects the quality of life of these populations. In this context, it is necessary to think in economic development way, and then the sustainable and alternative sources appear as an option for its features and its availability in Brazil. The solar energy captured by photovoltaic cells can be highlighted in the Brazilian scenario because of its wide availability, especially in the Northeast. The aim of this paper is to estimate the economic feasibility of insertion of solar systems in small communities in the Brazilian Northeast, considering environmental costs involved in electricity generation. The methodology is based on economic concepts and economic valuation of environmental resources. The results shows that solar power is becoming increasingly competitive due to reduced costs of components and due to the environmental costs reduced when compared with fossil fuels. (author)

  13. Calculation of economic viability and environmental costs of photovoltaic solar energy for the Brazilian Northeast region

    Energy Technology Data Exchange (ETDEWEB)

    Stecher, Luiza C.; Sabundjian, Gaianes; Menzel, Francine, E-mail: luizastecher@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The availability of energy resources is a central point to economic development. The energy matrix of most countries is based on the consumption of fossil fuels, which adds annually over 5 billion tons of carbon into the atmosphere. The energy consumption in developing countries has quadrupled since the 60s further aggravating global environmental conditions. The need to implement alternative energy sources to the energy matrix was proved. In addition, Brazil has a large number of people without access to electricity, which affects the quality of life of these populations. In this context, it is necessary to think in economic development way, and then the sustainable and alternative sources appear as an option for its features and its availability in Brazil. The solar energy captured by photovoltaic cells can be highlighted in the Brazilian scenario because of its wide availability, especially in the Northeast. The aim of this paper is to estimate the economic feasibility of insertion of solar systems in small communities in the Brazilian Northeast, considering environmental costs involved in electricity generation. The methodology is based on economic concepts and economic valuation of environmental resources. The results shows that solar power is becoming increasingly competitive due to reduced costs of components and due to the environmental costs reduced when compared with fossil fuels. (author)

  14. CH2 Energy Harvesting Systems: Economic Use and Efficiency

    Directory of Open Access Journals (Sweden)

    Chun Cheung

    2012-11-01

    Full Text Available This paper looks at the City of Melbourne's new office development CH2 as a case study of world class energy performance. In particular, the integrated design of conventionally independent systems has led to the potential to deliver significant savings to the Council and to deliver better environmental conditions to building occupants that in turn may contribute to satisfaction, well-being and productivity. It is concluded that this project has the potential to be an iconic example of effective implementation of ESD (environmental sustainable design principles and therefore act as a demonstration project to others. Energy efficiency of more than 50% of current benchmarks for Melbourne is effected. Energy harvesting is defined as arising from squander, waste and nature, which is a new concept introduced in this paper to better describe the design decision process.

  15. Economic analysis of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican; Chu Delin; Hu Liqin

    2004-01-01

    The economic performance of the Fusion-Driven Subcritical system (FDS) is discussed. At first, as an example, the impacts of parameters, such as plasma aspect-ratio, elongation, normalized beta, on-axis toroidal field and the blanket energy-gain are analyzed on the costs of the typical case (moderate aspect-ratio) of FDS. Then, the economic characteristics of the 3 possible scenarios of FDS are estimated with respect to the neutronics parameters. The results calculated with the SYSCODE developed by the FDS team show that the cost of electricity of Scenario-1 (low aspect-ratio) and Scenario-2 (moderate aspect-ratio) of FDS is cheaper than that of pure fusion power plant at the same plane size (1 GW e ). The cost of electricity of the FDS power plant depends heavily on the functions of blanket and the blanket energy-gain. (authors)

  16. Energy consumption, prices and economic growth in three SSA countries: A comparative study

    International Nuclear Information System (INIS)

    Odhiambo, Nicholas M.

    2010-01-01

    In this paper we examine the causal relationship between energy consumption and economic growth in three sub-Saharan African countries, namely South Africa, Kenya and Congo (DRC). We incorporate prices as an intermittent variable in a bivariate setting between energy consumption and economic growth-thereby creating a simple trivariate framework. Using the ARDL-bounds testing procedure, we find that the causality between energy consumption and economic growth varies significantly across the countries under study. The results show that for South Africa and Kenya there is a unidirectional causal flow from energy consumption to economic growth. However, for Congo (DRC) it is economic growth that drives energy consumption. These findings have important policy implications insofar as energy conservation policies are concerned. In the case of Congo (DRC), for example, the implementation of energy conservation policies may not significantly affect economic growth because the country's economy is not entirely energy dependent. However, for South Africa and Kenya there is a need for more energy supply augmentations in order to cope with the long-run energy demand. In the short-run, however, the two countries should explore more efficient and cost-effective sources of energy in order to address the energy dependency problem.

  17. How energy conversion drives economic growth far from the equilibrium of neoclassical economics

    International Nuclear Information System (INIS)

    Kümmel, Reiner; Lindenberger, Dietmar

    2014-01-01

    Energy conversion in the machines and information processors of the capital stock drives the growth of modern economies. This is exemplified for Germany, Japan, and the USA during the second half of the 20th century: econometric analyses reveal that the output elasticity, i.e. the economic weight, of energy is much larger than energy's share in total factor cost, while for labor just the opposite is true. This is at variance with mainstream economic theory according to which an economy should operate in the neoclassical equilibrium, where output elasticities equal factor cost shares. The standard derivation of the neoclassical equilibrium from the maximization of profit or of time-integrated utility disregards technological constraints. We show that the inclusion of these constraints in our nonlinear-optimization calculus results in equilibrium conditions, where generalized shadow prices destroy the equality of output elasticities and cost shares. Consequently, at the prices of capital, labor, and energy we have known so far, industrial economies have evolved far from the neoclassical equilibrium. This is illustrated by the example of the German industrial sector evolving on the mountain of factor costs before and during the first and the second oil price explosion. It indicates the influence of the ‘virtually binding’ technological constraints on entrepreneurial decisions, and the existence of ‘soft constraints’ as well. Implications for employment and future economic growth are discussed. (paper)

  18. How energy conversion drives economic growth far from the equilibrium of neoclassical economics

    Science.gov (United States)

    Kümmel, Reiner; Lindenberger, Dietmar

    2014-12-01

    Energy conversion in the machines and information processors of the capital stock drives the growth of modern economies. This is exemplified for Germany, Japan, and the USA during the second half of the 20th century: econometric analyses reveal that the output elasticity, i.e. the economic weight, of energy is much larger than energy's share in total factor cost, while for labor just the opposite is true. This is at variance with mainstream economic theory according to which an economy should operate in the neoclassical equilibrium, where output elasticities equal factor cost shares. The standard derivation of the neoclassical equilibrium from the maximization of profit or of time-integrated utility disregards technological constraints. We show that the inclusion of these constraints in our nonlinear-optimization calculus results in equilibrium conditions, where generalized shadow prices destroy the equality of output elasticities and cost shares. Consequently, at the prices of capital, labor, and energy we have known so far, industrial economies have evolved far from the neoclassical equilibrium. This is illustrated by the example of the German industrial sector evolving on the mountain of factor costs before and during the first and the second oil price explosion. It indicates the influence of the ‘virtually binding’ technological constraints on entrepreneurial decisions, and the existence of ‘soft constraints’ as well. Implications for employment and future economic growth are discussed.

  19. Investigation of international energy economics. [Use of econometric model EXPLOR

    Energy Technology Data Exchange (ETDEWEB)

    Deonigi, D.E.; Clement, M.; Foley, T.J.; Rao, S.A.

    1977-03-01

    The Division of International Affairs of the Energy Research and Development Administration is assessing the long-range economic effects of energy research and development programs in the U.S. and other countries, particularly members of the International Energy Agency (IEA). In support of this effort, a program was designed to coordinate the capabilities of five research groups--Rand, Virginia Polytechnic Institute, Brookhaven National Laboratory, Lawrence Livermore Laboratory, and Pacific Northwest Laboratory. The program could evaluate the international economics of proposed or anticipated sources of energy. This program is designed to be general, flexible, and capable of evaluating a diverse collection of potential energy (nuclear and nonnuclear) related problems. For example, the newly developed methodology could evaluate the international and domestic economic impact of nuclear-related energy sources, but also existing nonnuclear and potential energy sources such as solar, geothermal, wind, etc. Major items to be included would be the cost of exploration, cost of production, prices, profit, market penetration, investment requirements and investment goods, economic growth, change in balance of payments, etc. In addition, the changes in cost of producing all goods and services would be identified for each new energy source. PNL developed (1) a means of estimating the demands for major forms of energy by country, and (2) a means of identifying results or impacts on each country. The results for each country were then to be compared to assess relative advantages. PNL relied on its existing general econometric model, EXPLOR, to forecast the demand for energy by country. (MCW)

  20. Economic aspects and potentials of renewable energy sources in Germany

    International Nuclear Information System (INIS)

    Mannsbart, W.; Reichert, J.

    1992-01-01

    While there is a high theoretical potential for renewable energy sources in Germany, assessing theoretical potentials is more or less like playing with numbers; severe technical shortcomings and economic factors prevent then from being fully achieved. Unsuitable azimuth and slope of roofs, shading, absence of central hot water systems limit the application of collectors. The present storage technology is not suitable for a solar share higher than 50%. Individual space heating is not feasible under local climatic conditions. The broad application of biomass fuels fails because of limited resources. Feeding high amounts of fluctuating electricity generated by wind and photovoltaic systems into utility grids causes stability and storage problems. Insufficient training of installation personnel, lack of incentives for multi-family housing owners and high investment costs hinder the market penetration of renewable energy sources. Drastic cost reductions can only be expected from mass production. Therefore, appropriate policy measures - raised energy prices, as well as, subsidies or tax reliefs are necessary for market breakthrough