WorldWideScience

Sample records for echolocating species phyllostomus

  1. Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor

    Science.gov (United States)

    Fenzl, Thomas; Schuller, Gerd

    2005-01-01

    Background Echolocating bats emit vocalizations that can be classified either as echolocation calls or communication calls. Neural control of both types of calls must govern the same pool of motoneurons responsible for vocalizations. Electrical microstimulation in the periaqueductal gray matter (PAG) elicits both communication and echolocation calls, whereas stimulation of the paralemniscal area (PLA) induces only echolocation calls. In both the PAG and the PLA, the current thresholds for triggering natural vocalizations do not habituate to stimuli and remain low even for long stimulation periods, indicating that these structures have relative direct access to the final common pathway for vocalization. This study intended to clarify whether echolocation calls and communication calls are controlled differentially below the level of the PAG via separate vocal pathways before converging on the motoneurons used in vocalization. Results Both structures were probed simultaneously in a single experimental approach. Two stimulation electrodes were chronically implanted within the PAG in order to elicit either echolocation or communication calls. Blockade of the ipsilateral PLA site with iontophoretically application of the glutamate antagonist kynurenic acid did not impede either echolocation or communication calls elicited from the PAG. However, blockade of the contralateral PLA suppresses PAG-elicited echolocation calls but not communication calls. In both cases the blockade was reversible. Conclusion The neural control of echolocation and communication calls seems to be differentially organized below the level of the PAG. The PLA is an essential functional unit for echolocation call control before the descending pathways share again the final common pathway for vocalization. PMID:16053533

  2. Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor

    Directory of Open Access Journals (Sweden)

    Schuller Gerd

    2005-08-01

    Full Text Available Abstract Background Echolocating bats emit vocalizations that can be classified either as echolocation calls or communication calls. Neural control of both types of calls must govern the same pool of motoneurons responsible for vocalizations. Electrical microstimulation in the periaqueductal gray matter (PAG elicits both communication and echolocation calls, whereas stimulation of the paralemniscal area (PLA induces only echolocation calls. In both the PAG and the PLA, the current thresholds for triggering natural vocalizations do not habituate to stimuli and remain low even for long stimulation periods, indicating that these structures have relative direct access to the final common pathway for vocalization. This study intended to clarify whether echolocation calls and communication calls are controlled differentially below the level of the PAG via separate vocal pathways before converging on the motoneurons used in vocalization. Results Both structures were probed simultaneously in a single experimental approach. Two stimulation electrodes were chronically implanted within the PAG in order to elicit either echolocation or communication calls. Blockade of the ipsilateral PLA site with iontophoretically application of the glutamate antagonist kynurenic acid did not impede either echolocation or communication calls elicited from the PAG. However, blockade of the contralateral PLA suppresses PAG-elicited echolocation calls but not communication calls. In both cases the blockade was reversible. Conclusion The neural control of echolocation and communication calls seems to be differentially organized below the level of the PAG. The PLA is an essential functional unit for echolocation call control before the descending pathways share again the final common pathway for vocalization.

  3. A new species of Parichoronyssus (Acari: Dermanyssoidea: Macronyssidae) from bats of the genus Phyllostomus (Chiroptera: Phyllostomidae) in Peru and Venezuela, with keys to the species of Parichoronyssus.

    Science.gov (United States)

    Morales-Malacara, Juan B; Guerrero, Ricardo

    2007-01-01

    Parichoronyssus bakeri new species was found on two phyllostomid bats species, the greater spear-nosed bat, Phyllostomus hastatus (Pallas), and the lesser spear-nosed bat, Phyllostomus elongatus (E. Geoffroy), in Pakitza, National Park Manu, Madre de Dios, Peru, including additional material examined from Venezuela. The female, male, deutonymph, and protonymph are described and illustrated. A key to the seven species of Parichoronyssus is provided.

  4. Species-specific beaked whale echolocation signals.

    Science.gov (United States)

    Baumann-Pickering, Simone; McDonald, Mark A; Simonis, Anne E; Solsona Berga, Alba; Merkens, Karlina P B; Oleson, Erin M; Roch, Marie A; Wiggins, Sean M; Rankin, Shannon; Yack, Tina M; Hildebrand, John A

    2013-09-01

    Beaked whale echolocation signals are mostly frequency-modulated (FM) upsweep pulses and appear to be species specific. Evolutionary processes of niche separation may have driven differentiation of beaked whale signals used for spatial orientation and foraging. FM pulses of eight species of beaked whales were identified, as well as five distinct pulse types of unknown species, but presumed to be from beaked whales. Current evidence suggests these five distinct but unidentified FM pulse types are also species-specific and are each produced by a separate species. There may be a relationship between adult body length and center frequency with smaller whales producing higher frequency signals. This could be due to anatomical and physiological restraints or it could be an evolutionary adaption for detection of smaller prey for smaller whales with higher resolution using higher frequencies. The disadvantage of higher frequencies is a shorter detection range. Whales echolocating with the highest frequencies, or broadband, likely lower source level signals also use a higher repetition rate, which might compensate for the shorter detection range. Habitat modeling with acoustic detections should give further insights into how niches and prey may have shaped species-specific FM pulse types.

  5. Echolocation

    Indian Academy of Sciences (India)

    His pioneering experiments have led to an understand- ing of how bats catch frogs in total darkn~ss. Bats emit high frequency sound waves while navigating, and process the echo that comes back from obstacles. This method assists prey location and capture. GENERAL I ARTICLE. Echolocation. The Strange Ways of Bats.

  6. Echolocation caBs of twenty southern African bat species

    African Journals Online (AJOL)

    all species, and added that intensity and harmonic information. (not available through ANABAT recordings) would have proved useful for identification. The aim of this study is to present new echolocation data for. 20 southern African species using a time-expansion Petters- son D980 bat detector, particularly with the view to ...

  7. Echolocation Call Structure of Fourteen Bat Species in Korea

    Directory of Open Access Journals (Sweden)

    Fukui, Dai

    2015-07-01

    Full Text Available The echolocation calls of bats can provide useful information about species that are generally difficult to observe in the field. In many cases characteristics of call structure can be used to identify species and also to obtain information about aspects of the bat's ecology. We describe and compare the echolocation call structure of 14 of the 21 bat species found in Korea, for most of which the ecology and behavior are poorly understood. In total, 1,129 pulses were analyzed from 93 echolocation call sequences of 14 species. Analyzed pulses could be classified into three types according to the pulse shape: FM/CF/FM type, FM type and FM/QCF type. Pulse structures of all species were consistent with previous studies, although geographic variation may be indicated in some species. Overall classification rate provided by the canonical discriminant analysis was relatively low. Especially in the genera Myotis and Murina, there are large overlaps in spectral and temporal parameters between species. On the other hand, classification rates for the FM/QCF type species were relatively high. The results show that acoustic monitoring could be a powerful tool for assessing bat activity and distribution in Korea, at least for FM/QCF and FM/CF/FM species.

  8. Behavioral evidence for community-wide species discrimination from echolocation calls in bats.

    Science.gov (United States)

    Schuchmann, Maike; Siemers, Björn M

    2010-07-01

    Recognizing species identity is crucial for many aspects of animal life and is often mediated by acoustic signals. Although most animals are able to distinguish acoustic signals of their own species from other sympatrically occurring species, it is yet unknown whether animals can distinguish among acoustic signals of different closely related sympatric species. In this context, echolocating bats are a particularly interesting model system: their echolocation system evolved primarily for spatial orientation and foraging, but recent studies indicate that echolocation also has an important communicative function. Yet, the role of echolocation calls for species discrimination and thus potentially for interspecific communication has not been investigated. Using a behavioral discrimination assay, we found that two species of wild horseshoe bats could discriminate calls of their own species from those of three sympatric congeneric species. We further show that the bats were able to discriminate between echolocation calls of different congeneric species from the local community. In both cases, discrimination ability was high despite strong overlap of species' call frequency bands. This study provides the first experimental evidence for species discrimination based on echolocation calls. On a more general level, it shows for the first time that animals can distinguish among acoustic signals of different closely related and ecologically similar species from their local community.

  9. Flight and echolocation behaviour of three vespertilionid bat species while commuting on flyways.

    Science.gov (United States)

    Schaub, Andrea; Schnitzler, Hans-Ulrich

    2007-12-01

    This study compares the flight and echolocation behaviour of three vespertilionid bat species while they commute on flyways. We measured the bats' spatial position relative to vertical background contours and relative to the ground while recording their echolocation behaviour. In Myotis daubentonii, we found a significant influence of spatial context on the position and dimensions of flyways as well as on echolocation behaviour. In gap situations, flyways tended to be narrower and located closer to background structures, flight speeds were lower and the bandwidth of echolocation signals was larger than in edge situations. Differences in background structure did not affect flight and echolocation behaviour. When commuting in the same gap situation flyway positions and dimensions for M. daubentonii and Myotis brandtii were similar but differed from those of Pipistrellus pipistrellus, which were slightly higher and further out than those used by the Myotis species. In M. brandtii, flyway positions and dimensions remained constant over 3 years. We found species-dependent differences in signal structure, but pulse interval and flight speed were similar across all species. The influence of available space on the position of flyways, on flight speed and on echolocation behaviour is discussed.

  10. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (molossidae.

    Directory of Open Access Journals (Sweden)

    Kirsten Jung

    Full Text Available Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design

  11. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (molossidae).

    Science.gov (United States)

    Jung, Kirsten; Molinari, Jesús; Kalko, Elisabeth K V

    2014-01-01

    Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.

  12. Echolocation in small cetaceans

    DEFF Research Database (Denmark)

    Ladegaard, Michael

    2017-01-01

    Many animals exploit sound for navigational purposes, but only some produce signals dedicated to probe their environment actively through echolocation. Only in bats and toothed whales has echolocation evolved to serve as a primary sense informing not only navigation, but also foraging on highly a...... of echolocation in toothed whales, the adaptations to biosonar operation in various contexts, and the biosonar adjustments that toothed whales employ when closing in on their echolocation targets.......Many animals exploit sound for navigational purposes, but only some produce signals dedicated to probe their environment actively through echolocation. Only in bats and toothed whales has echolocation evolved to serve as a primary sense informing not only navigation, but also foraging on highly...... identifying, tracking, and capturing prey. I have sought to expand on this knowledge by studying poorly understood aspects of toothed whale echolocation. This has taken me to the Amazon rain forest, where I have studied the use of echolocation in Amazon river dolphins to show that this species uses...

  13. A new fossil species supports an early origin for toothed whale echolocation.

    Science.gov (United States)

    Geisler, Jonathan H; Colbert, Matthew W; Carew, James L

    2014-04-17

    Odontocetes (toothed whales, dolphins and porpoises) hunt and navigate through dark and turbid aquatic environments using echolocation; a key adaptation that relies on the same principles as sonar. Among echolocating vertebrates, odontocetes are unique in producing high-frequency vocalizations at the phonic lips, a constriction in the nasal passages just beneath the blowhole, and then using air sinuses and the melon to modulate their transmission. All extant odontocetes seem to echolocate; however, exactly when and how this complex behaviour--and its underlying anatomy--evolved is largely unknown. Here we report an odontocete fossil, Oligocene in age (approximately 28 Myr ago), from South Carolina (Cotylocara macei, gen. et sp. nov.) that has several features suggestive of echolocation: a dense, thick and downturned rostrum; air sac fossae; cranial asymmetry; and exceptionally broad maxillae. Our phylogenetic analysis places Cotylocara in a basal clade of odontocetes, leading us to infer that a rudimentary form of echolocation evolved in the early Oligocene, shortly after odontocetes diverged from the ancestors of filter-feeding whales (mysticetes). This was followed by enlargement of the facial muscles that modulate echolocation calls, which in turn led to marked, convergent changes in skull shape in the ancestors of Cotylocara, and in the lineage leading to extant odontocetes.

  14. Human Echolocation

    OpenAIRE

    Teng, Santani

    2013-01-01

    The use of active natural echolocation as a mobility aid for blind humans has received increased scientific and popular attention in recent years (Engber, 2006; Kreiser, 2006; NPR, 2011), in part due to a focus on several blind individuals who have developed remarkable expertise. However, perhaps surprisingly, the history of empirical human echolocation research is not much younger than the era of echolocation research (cf. Griffin, 1958). Nevertheless, compared to its bat and cetacean count...

  15. The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls.

    Science.gov (United States)

    Dong, Dong; Lei, Ming; Hua, Panyu; Pan, Yi-Hsuan; Mu, Shuo; Zheng, Guantao; Pang, Erli; Lin, Kui; Zhang, Shuyi

    2017-01-01

    Bats can perceive the world by using a wide range of sensory systems, and some of the systems have become highly specialized, such as auditory sensory perception. Among bat species, the Old World leaf-nosed bats and horseshoe bats (rhinolophoid bats) possess the most sophisticated echolocation systems. Here, we reported the whole-genome sequencing and de novo assembles of two rhinolophoid bats-the great leaf-nosed bat (Hipposideros armiger) and the Chinese rufous horseshoe bat (Rhinolophus sinicus). Comparative genomic analyses revealed the adaptation of auditory sensory perception in the rhinolophoid bat lineages, probably resulting from the extreme selectivity used in the auditory processing by these bats. Pseudogenization of some vision-related genes in rhinolophoid bats was observed, suggesting that these genes have undergone relaxed natural selection. An extensive contraction of olfactory receptor gene repertoires was observed in the lineage leading to the common ancestor of bats. Further extensive gene contractions can be observed in the branch leading to the rhinolophoid bats. Such concordance suggested that molecular changes at one sensory gene might have direct consequences for genes controlling for other sensory modalities. To characterize the population genetic structure and patterns of evolution, we re-sequenced the genome of 20 great leaf-nosed bats from four different geographical locations of China. The result showed similar sequence diversity values and little differentiation among populations. Moreover, evidence of genetic adaptations to high altitudes in the great leaf-nosed bats was observed. Taken together, our work provided a useful resource for future research on the evolution of bats. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Colony size, sex ratio and cohabitation in roosts of Phyllostomus hastatus (Pallas (Chiroptera: Phyllostomidae

    Directory of Open Access Journals (Sweden)

    LM. Costa

    Full Text Available Phyllostomus hastatus bat is species broadly distributed over the Neotropical region, which uses as diurnal roosts caves, hollow trees, palm leaves and human buildings. Thirteen diurnal roosts of P. hastatus were analysed from 1990 to 2009 in several localities of Rio de Janeiro State, regarding environment (rural, urban or protected area, type of roost (hollow tree, basement or roof, sex ratio and cohabitation. A nocturnal roost was also analysed. Sex ratio of P. hastatus varied considerably among roosts what may be explained by the fact this species can roost alone, in couples, in harems or in groups of bachelor males. Phyllostomus hastatus was observed in cohabitation with three other species: Molossus rufus, Molossus molossus and Myotis nigricans. Due to the frequency of cohabitation observed between P. hastatus and species of the genus Molossus, one or more advantages for the members of this association may be expected. The simultaneous usage of a feeding roost by a group of bachelor males is unknown information in the literature, and may suggest that this kind of group may interact with each other even when away from their diurnal roosts.

  17. Colony size, sex ratio and cohabitation in roosts of Phyllostomus hastatus (Pallas) (Chiroptera: Phyllostomidae).

    Science.gov (United States)

    Costa, L M; Lourenço, E C; Esbérard, C E L; Silva, R M

    2010-11-01

    Phyllostomus hastatus bat is species broadly distributed over the Neotropical region, which uses as diurnal roosts caves, hollow trees, palm leaves and human buildings. Thirteen diurnal roosts of P. hastatus were analysed from 1990 to 2009 in several localities of Rio de Janeiro State, regarding environment (rural, urban or protected area), type of roost (hollow tree, basement or roof), sex ratio and cohabitation. A nocturnal roost was also analysed. Sex ratio of P. hastatus varied considerably among roosts what may be explained by the fact this species can roost alone, in couples, in harems or in groups of bachelor males. Phyllostomus hastatus was observed in cohabitation with three other species: Molossus rufus, Molossus molossus and Myotis nigricans. Due to the frequency of cohabitation observed between P. hastatus and species of the genus Molossus, one or more advantages for the members of this association may be expected. The simultaneous usage of a feeding roost by a group of bachelor males is unknown information in the literature, and may suggest that this kind of group may interact with each other even when away from their diurnal roosts.

  18. Echolocation in Oilbirds and swiftlets

    Directory of Open Access Journals (Sweden)

    Signe eBrinkløv

    2013-05-01

    Full Text Available The discovery of ultrasonic bat echolocation prompted a wide search for other animal biosonar systems, which yielded, among few others, two avian groups. One, the South American Oilbird (Steatornis caripensis: Caprimulgiformes, is nocturnal and eats fruit. The other is a selection of diurnal, insect-eating swiftlets (species in the genera Aerodramus and Collocalia: Apodidae from across the Indo-Pacific. Bird echolocation is restricted to lower frequencies audible to humans, implying a system of poorer resolution than the ultrasonic (>20 kHz biosonar of most bats and toothed whales. As such, bird echolocation has been labelled crude or rudimentary. Yet, echolocation is found in at least 16 extant bird species and has evolved several times in avian lineages. Birds use their syringes to produce broadband click-type biosonar signals that allow them to nest in dark caves and tunnels, probably with less predation pressure. There are ongoing discrepancies about several details of bird echolocation, from signal design to the question about whether echolocation is used during foraging. It remains to be seen if bird echolocation is as sophisticated as that of tongue-clicking rousette bats. Bird echolocation performance appears to be superior to that of blind humans using signals of notable similarity. However, no apparent specializations have been found so far in the birds' auditory system (from middle ear to higher processing centres. The advent of light-weight recording equipment and custom software for examining signals and reconstructing flight paths now provides the potential to study the echolocation behaviour of birds in more detail and resolve such issues.

  19. Echolocation in Oilbirds and swiftlets

    Science.gov (United States)

    Brinkløv, Signe; Fenton, M. Brock; Ratcliffe, John M.

    2013-01-01

    The discovery of ultrasonic bat echolocation prompted a wide search for other animal biosonar systems, which yielded, among few others, two avian groups. One, the South American Oilbird (Steatornis caripensis: Caprimulgiformes), is nocturnal and eats fruit. The other is a selection of diurnal, insect-eating swiftlets (species in the genera Aerodramus and Collocalia: Apodidae) from across the Indo-Pacific. Bird echolocation is restricted to lower frequencies audible to humans, implying a system of poorer resolution than the ultrasonic (>20 kHz) biosonar of most bats and toothed whales. As such, bird echolocation has been labeled crude or rudimentary. Yet, echolocation is found in at least 16 extant bird species and has evolved several times in avian lineages. Birds use their syringes to produce broadband click-type biosonar signals that allow them to nest in dark caves and tunnels, probably with less predation pressure. There are ongoing discrepancies about several details of bird echolocation, from signal design to the question about whether echolocation is used during foraging. It remains to be seen if bird echolocation is as sophisticated as that of tongue-clicking rousette bats. Bird echolocation performance appears to be superior to that of blind humans using signals of notable similarity. However, no apparent specializations have been found so far in the birds' auditory system (from middle ear to higher processing centers). The advent of light-weight recording equipment and custom software for examining signals and reconstructing flight paths now provides the potential to study the echolocation behavior of birds in more detail and resolve such issues. PMID:23755019

  20. Echolocation in Oilbirds and swiftlets

    OpenAIRE

    Brinkl?v, Signe; Fenton, M. Brock; Ratcliffe, John M.

    2013-01-01

    The discovery of ultrasonic bat echolocation prompted a wide search for other animal biosonar systems, which yielded, among few others, two avian groups. One, the South American Oilbird (Steatornis caripensis: Caprimulgiformes), is nocturnal and eats fruit. The other is a selection of diurnal, insect-eating swiftlets (species in the genera Aerodramus and Collocalia: Apodidae) from across the Indo-Pacific. Bird echolocation is restricted to lower frequencies audible to humans, implying a syste...

  1. A bony connection signals laryngeal echolocation in bats.

    Science.gov (United States)

    Veselka, Nina; McErlain, David D; Holdsworth, David W; Eger, Judith L; Chhem, Rethy K; Mason, Matthew J; Brain, Kirsty L; Faure, Paul A; Fenton, M Brock

    2010-02-18

    Echolocation is an active form of orientation in which animals emit sounds and then listen to reflected echoes of those sounds to form images of their surroundings in their brains. Although echolocation is usually associated with bats, it is not characteristic of all bats. Most echolocating bats produce signals in the larynx, but within one family of mainly non-echolocating species (Pteropodidae), a few species use echolocation sounds produced by tongue clicks. Here we demonstrate, using data obtained from micro-computed tomography scans of 26 species (n = 35 fluid-preserved bats), that proximal articulation of the stylohyal bone (part of the mammalian hyoid apparatus) with the tympanic bone always distinguishes laryngeally echolocating bats from all other bats (that is, non-echolocating pteropodids and those that echolocate with tongue clicks). In laryngeally echolocating bats, the proximal end of the stylohyal bone directly articulates with the tympanic bone and is often fused with it. Previous research on the morphology of the stylohyal bone in the oldest known fossil bat (Onychonycteris finneyi) suggested that it did not echolocate, but our findings suggest that O. finneyi may have used laryngeal echolocation because its stylohyal bones may have articulated with its tympanic bones. The present findings reopen basic questions about the timing and the origin of flight and echolocation in the early evolution of bats. Our data also provide an independent anatomical character by which to distinguish laryngeally echolocating bats from other bats.

  2. The communicative potential of bat echolocation pulses.

    Science.gov (United States)

    Jones, Gareth; Siemers, Björn M

    2011-05-01

    Ecological constraints often shape the echolocation pulses emitted by bat species. Consequently some (but not all) bats emit species-specific echolocation pulses. Because echolocation pulses are often intense and emitted at high rates, they are potential targets for eavesdropping by other bats. Echolocation pulses can also vary within species according to sex, body size, age, social group and geographic location. Whether these features can be recognised by other bats can only be determined reliably by playback experiments, which have shown that echolocation pulses do provide sufficient information for the identification of sex and individual in one species. Playbacks also show that bats can locate conspecifics and heterospecifics at foraging and roost sites by eavesdropping on echolocation pulses. Guilds of echolocating bat species often partition their use of pulse frequencies. Ecology, allometric scaling and phylogeny play roles here, but are not sufficient to explain this partitioning. Evidence is accumulating to support the hypothesis that frequency partitioning evolved to facilitate intraspecific communication. Acoustic character displacement occurs in at least one instance. Future research can relate genetic population structure to regional variation in echolocation pulse features and elucidate those acoustic features that most contribute to discrimination of individuals.

  3. The hearing gene Prestin reunites echolocating bats

    Science.gov (United States)

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J.; Jones, Gareth; Cotton, James A.; Zhang, Shuyi

    2008-01-01

    The remarkable high-frequency sensitivity and selectivity of the mammalian auditory system has been attributed to the evolution of mechanical amplification, in which sound waves are amplified by outer hair cells in the cochlea. This process is driven by the recently discovered protein prestin, encoded by the gene Prestin. Echolocating bats use ultrasound for orientation and hunting and possess the highest frequency hearing of all mammals. To test for the involvement of Prestin in the evolution of bat echolocation, we sequenced the coding region in echolocating and nonecholocating species. The resulting putative gene tree showed strong support for a monophyletic assemblage of echolocating species, conflicting with the species phylogeny in which echolocators are paraphyletic. We reject the possibilities that this conflict arises from either gene duplication and loss or relaxed selection in nonecholocating fruit bats. Instead, we hypothesize that the putative gene tree reflects convergence at stretches of functional importance. Convergence is supported by the recovery of the species tree from alignments of hydrophobic transmembrane domains, and the putative gene tree from the intra- and extracellular domains. We also found evidence that Prestin has undergone Darwinian selection associated with the evolution of specialized constant-frequency echolocation, which is characterized by sharp auditory tuning. Our study of a hearing gene in bats strongly implicates Prestin in the evolution of echolocation, and suggests independent evolution of high-frequency hearing in bats. These results highlight the potential problems of extracting phylogenetic signals from functional genes that may be prone to convergence. PMID:18776049

  4. Sensorimotor Model of Obstacle Avoidance in Echolocating Bats.

    Science.gov (United States)

    Vanderelst, Dieter; Holderied, Marc W; Peremans, Herbert

    2015-10-01

    Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID) and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D), we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF) bats and frequency modulated (FM) bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour.

  5. Sensorimotor Model of Obstacle Avoidance in Echolocating Bats.

    Directory of Open Access Journals (Sweden)

    Dieter Vanderelst

    2015-10-01

    Full Text Available Bat echolocation is an ability consisting of many subtasks such as navigation, prey detection and object recognition. Understanding the echolocation capabilities of bats comes down to isolating the minimal set of acoustic cues needed to complete each task. For some tasks, the minimal cues have already been identified. However, while a number of possible cues have been suggested, little is known about the minimal cues supporting obstacle avoidance in echolocating bats. In this paper, we propose that the Interaural Intensity Difference (IID and travel time of the first millisecond of the echo train are sufficient cues for obstacle avoidance. We describe a simple control algorithm based on the use of these cues in combination with alternating ear positions modeled after the constant frequency bat Rhinolophus rouxii. Using spatial simulations (2D and 3D, we show that simple phonotaxis can steer a bat clear from obstacles without performing a reconstruction of the 3D layout of the scene. As such, this paper presents the first computationally explicit explanation for obstacle avoidance validated in complex simulated environments. Based on additional simulations modelling the FM bat Phyllostomus discolor, we conjecture that the proposed cues can be exploited by constant frequency (CF bats and frequency modulated (FM bats alike. We hypothesize that using a low level yet robust cue for obstacle avoidance allows bats to comply with the hard real-time constraints of this basic behaviour.

  6. Biomimetic echolocation with application to radar and sonar sensing

    OpenAIRE

    Baker, C. J.; Smith, G. E.; Balleri, Alessio; Holderied, M.; Griffiths, H. D.

    2014-01-01

    Nature provides a number of examples where acoustic echolocation is the primary sensing modality, the most well-known of these being the bat, whale and dolphin. All demonstrate a remarkable ability to "see with sound". Using echolocation they navigate, locate and capture prey. As species, they have not only survived but have thrived in all their individual environments, often solely reliant on echolocation. All of these creatures are inherently cognitive. They all maintain a perception of the...

  7. Dolphins Can Maintain Vigilant Behavior through Echolocation for 15 Days without Interruption or Cognitive Impairment

    Science.gov (United States)

    2012-10-17

    species such as bats and odontocetes (e.g., toothed whales such as dolphins and porpoises), echolocation is an important, if not primary means of finding...dolphins can echolocate for at least most of the night [1]. Like dolphins, bats may continuously echolocate for extended periods [11]; however most...Holderied MW (2007) Bat echolocation calls: adaptation and convergent evolution. Proceedings of the Royal Society B 274: 905–912. 4. Moss CF

  8. Sensory biology: echolocation from click to call, mouth to wing.

    Science.gov (United States)

    Fenton, M Brock; Ratcliffe, John M

    2014-12-15

    Echolocators use echoes of sounds they produce, clicks or calls, to detect objects. Usually, these signals originate from the head. New work reveals that three species of bats use their wings to generate echolocation signals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Unsupervised Learning (Clustering) of Odontocete Echolocation Clicks

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unsupervised Learning ( Clustering ) of Odontocete...develop methods for clustering of marine mammal echolocation clicks to learn about species assemblages where little or no prior knowledge exists about...California Bight where many of the species can be acoustically identified, enabling the development of clustering algorithms whose performance can be

  10. High duty cycle echolocation and prey detection by bats.

    Science.gov (United States)

    Lazure, Louis; Fenton, M Brock

    2011-04-01

    There are two very different approaches to laryngeal echolocation in bats. Although most bats separate pulse and echo in time by signalling at low duty cycles (LDCs), almost 20% of species produce calls at high duty cycles (HDCs) and separate pulse and echo in frequency. HDC echolocators are sensitive to Doppler shifts. HDC echolocation is well suited to detecting fluttering targets such as flying insects against a cluttered background. We used two complementary experiments to evaluate the relative effectiveness of LDC and HDC echolocation for detecting fluttering prey. We measured echoes from fluttering targets by broadcasting artificial bat calls, and found that echo amplitude was greatest for sounds similar to those used in HDC echolocation. We also collected field recordings of syntopic LDC and HDC bats approaching an insect-like fluttering target and found that HDC bats approached the target more often (18.6% of passes) than LDC bats (1.2% of passes). Our results suggest that some echolocation call characteristics, particularly duty cycle and pulse duration, translate into improved ability to detect fluttering targets in clutter, and that HDC echolocation confers a superior ability to detect fluttering prey in the forest understory compared with LDC echolocation. The prevalence of moths in the diets of HDC bats, which is often used as support for the allotonic frequency hypothesis, can therefore be partly explained by the better flutter detection ability of HDC bats.

  11. Bat echolocation calls: Orientation to communication

    Science.gov (United States)

    Fenton, M. Brock

    2004-05-01

    Bats hunting flying insects adjust the design of their echolocation calls according to the situation in which they forage and stage in an attack. Changes in call design across attack sequences alert other bats within earshot to the presence of prey, demonstrating a continuum in roles for biosonar signals between orientation and communication. Many aerial-feeding bats change the design of their echolocation calls in the presence of echolocating conspecifics. Bats may change frequency parameters, durations, and/or intensities of their calls. While a variety of free-tailed bats (Molossidae Otomops martiensseni, Tadarida teniotis, Molossus molossus) consistently change their echolocation calls when more than one bat is flying in an area, at least one sheath-tailed bat (Emballonuridae Taphozous perforatus) does not. Changes in echolocation calls may maximize jamming avoidance and/or enhance the communicative function of the calls. The data for molossids support the hypothesis that when hunting some species fly in formation. Here, variation in individual call design could provide positional information and reduce the chances of mid-air collisions.

  12. It's not black or white—on the range of vision and echolocation in echolocating bats

    Science.gov (United States)

    Boonman, Arjan; Bar-On, Yinon; Cvikel, Noam; Yovel, Yossi

    2013-01-01

    Around 1000 species of bats in the world use echolocation to navigate, orient, and detect insect prey. Many of these bats emerge from their roost at dusk and start foraging when there is still light available. It is however unclear in what way and to which extent navigation, or even prey detection in these bats is aided by vision. Here we compare the echolocation and visual detection ranges of two such species of bats which rely on different foraging strategies (Rhinopoma microphyllum and Pipistrellus kuhlii). We find that echolocation is better than vision for detecting small insects even in intermediate light levels (1–10 lux), while vision is advantageous for monitoring far-away landscape elements in both species. We thus hypothesize that, bats constantly integrate information acquired by the two sensory modalities. We suggest that during evolution, echolocation was refined to detect increasingly small targets in conjunction with using vision. To do so, the ability to hear ultrasonic sound is a prerequisite which was readily available in small mammals, but absent in many other animal groups. The ability to exploit ultrasound to detect very small targets, such as insects, has opened up a large nocturnal niche to bats and may have spurred diversification in both echolocation and foraging tactics. PMID:24065924

  13. Click-based echolocation in bats: not so primitive after all.

    Science.gov (United States)

    Yovel, Yossi; Geva-Sagiv, Maya; Ulanovsky, Nachum

    2011-05-01

    Echolocating bats of the genus Rousettus produce click sonar signals, using their tongue (lingual echolocation). These signals are often considered rudimentary and are believed to enable only crude performance. However, the main argument supporting this belief, namely the click's reported long duration, was recently shown to be an artifact. In fact, the sonar clicks of Rousettus bats are extremely short, ~50-100 μs, similar to dolphin vocalizations. Here, we present a comparison between the sonar systems of the 'model species' of laryngeal echolocation, the big brown bat (Eptesicus fuscus), and that of lingual echolocation, the Egyptian fruit bat (Rousettus aegyptiacus). We show experimentally that in tasks, such as accurate landing or detection of medium-sized objects, click-based echolocation enables performance similar to laryngeal echolocators. Further, we describe a sophisticated behavioral strategy for biosonar beam steering in clicking bats. Finally, theoretical analyses of the signal design--focusing on their autocorrelations and wideband ambiguity functions--predict that in some aspects, such as target ranging and Doppler-tolerance, click-based echolocation might outperform laryngeal echolocation. Therefore, we suggest that click-based echolocation in bats should be regarded as a viable echolocation strategy, which is in fact similar to the biosonar used by most echolocating animals, including whales and dolphins.

  14. Prenatal development supports a single origin of laryngeal echolocation in bats.

    Science.gov (United States)

    Wang, Zhe; Zhu, Tengteng; Xue, Huiling; Fang, Na; Zhang, Junpeng; Zhang, Libiao; Pang, Jian; Teeling, Emma C; Zhang, Shuyi

    2017-01-09

    Bat laryngeal echolocation is considered as one of the most complex and diverse modes of auditory sensory perception in animals and its evolutionary history has been the cause of many scientific controversies in the past two decades. To date, the majority of scientific evidence supports that bats (Chiroptera) are divided into two subordinal groups: Yinpterochiroptera, containing the laryngeal echolocating superfamily Rhinolophidae as sister taxa to the non-laryngeal echolocating family Pteropodidae; and Yangochiroptera, containing all other laryngeal echolocating lineages. This topology has led to an unanswered question in mammalian biology: was laryngeal echolocation lost in the ancestral pteropodids or gained convergently in the echolocating bat lineages? To date, there is insufficient and conflicting evidence from fossil, genomic, morphological and phylogenomic data to resolve this question. We detail an ontogenetic study of fetal cochlear development from seven species of bats and five outgroup mammals and show that in early fetal development, all bats including the non-laryngeal echolocating pteropodids have a similarly large cochlea typically associated with laryngeal echolocation abilities. The subsequent cochlear growth rate in the pteropodids is the slowest of all mammals and leads to the pteropodids and the non-echolocating lineages eventually sharing a similar cochlear morphospace as adults. The results suggest that pteropodids maintain a vestigial developmental stage indicative of past echolocation capabilities and thus support a single origin of laryngeal echolocation in bats.

  15. It's not black or white?on the range of vision and echolocation in echolocating bats

    OpenAIRE

    Boonman, Arjan; Bar-On, Yinon; Cvikel, Noam; Yovel, Yossi

    2013-01-01

    Around 1000 species of bats in the world use echolocation to navigate, orient, and detect insect prey. Many of these bats emerge from their roost at dusk and start foraging when there is still light available. It is however unclear in what way and to which extent navigation, or even prey detection in these bats is aided by vision. Here we compare the echolocation and visual detection ranges of two such species of bats which rely on different foraging strategies (Rhinopoma microphyllum and Pip...

  16. Classification of Echolocation Calls from 14 Species of Bat by Support Vector Machines and Ensembles of Neural Networks

    Directory of Open Access Journals (Sweden)

    Stuart Parsons

    2009-07-01

    Full Text Available Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA, support vector machines (SVM and ensembles of neural networks (ENN. Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97% consistently outperformed SVMs (mean identification rate – 87%. Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

  17. Spectral Biomimetic Technique for Wood Classification Inspired by Human Echolocation

    Directory of Open Access Journals (Sweden)

    Juan Antonio Martínez Rojas

    2012-01-01

    Full Text Available Palatal clicks are most interesting for human echolocation. Moreover, these sounds are suitable for other acoustic applications due to their regular mathematical properties and reproducibility. Simple and nondestructive techniques, bioinspired by synthetized pulses whose form reproduces the best features of palatal clicks, can be developed. The use of synthetic palatal pulses also allows detailed studies of the real possibilities of acoustic human echolocation without the problems associated with subjective individual differences. These techniques are being applied to the study of wood. As an example, a comparison of the performance of both natural and synthetic human echolocation to identify three different species of wood is presented. The results show that human echolocation has a vast potential.

  18. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.

    Science.gov (United States)

    Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen

    2013-01-01

    Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets.

  19. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.

    Directory of Open Access Journals (Sweden)

    Ying-Yi Ho

    Full Text Available Laryngeally echolocating bats avoid self-deafening (forward masking by separating pulse and echo either in time using low duty cycle (LDC echolocation, or in frequency using high duty cycle (HDC echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz followed immediately by a frequency modulated (FM sweep (194 to 113 kHz. This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences. Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13, and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97. We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets.

  20. Psychophysics of human echolocation.

    Science.gov (United States)

    Schörnich, Sven; Wallmeier, Ludwig; Gessele, Nikodemus; Nagy, Andreas; Schranner, Michael; Kish, Daniel; Wiegrebe, Lutz

    2013-01-01

    The skills of some blind humans orienting in their environment through the auditory analysis of reflections from self-generated sounds have received only little scientific attention to date. Here we present data from a series of formal psychophysical experiments with sighted subjects trained to evaluate features of a virtual echo-acoustic space, allowing for rigid and fine-grain control of the stimulus parameters. The data show how subjects shape both their vocalisations and auditory analysis of the echoes to serve specific echo-acoustic tasks. First, we show that humans can echo-acoustically discriminate target distances with a resolution of less than 1 m for reference distances above 3.4 m. For a reference distance of 1.7 m, corresponding to an echo delay of only 10 ms, distance JNDs were typically around 0.5 m. Second, we explore the interplay between the precedence effect and echolocation. We show that the strong perceptual asymmetry between lead and lag is weakened during echolocation. Finally, we show that through the auditory analysis of self-generated sounds, subjects discriminate room-size changes as small as 10%.In summary, the current data confirm the practical efficacy of human echolocation, and they provide a rigid psychophysical basis for addressing its neural foundations.

  1. Accelerated FoxP2 Evolution in Echolocating Bats

    Science.gov (United States)

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J.; Jones, Gareth; Zhang, Shuyi

    2007-01-01

    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination. PMID:17878935

  2. Accelerated FoxP2 evolution in echolocating bats.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination.

  3. Swift as sound. Design and evolution of the echolocation system in Swiftlets (Apodidae : Collocaliini)

    NARCIS (Netherlands)

    Thomassen, H.A.

    2005-01-01

    The thesis describes the design and evolution of echolocation in the South and Southeast Asian Swiftlets. It starts explaining the molecular phylogenetics of Swiftlets, which is used in subsequent chapters. Echolocation calls and social vocalisations of Swifts are compared between species and with

  4. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii.

    Science.gov (United States)

    Russo, Danilo; Jones, Gareth; Arlettaz, Raphaël

    2007-01-01

    The two sibling mouse-eared bats, Myotis myotis and M. blythii, cope with similar orientation tasks, but separate their trophic niche by hunting in species-specific foraging microhabitats. Previous work has shown that both species rely largely on passive listening to detect and glean prey from substrates, and studies on other bat species have suggested that echolocation is ;switched off' during passive listening. We tested the hypothesis that mouse-eared bats continuously emit echolocation calls while approaching prey. Echolocation may be needed for orientation while simultaneously listening for prey. Because these sibling species forage in different microhabitats and eat different prey, we also compared their echolocation behaviour and related it to their ecology. Both species used echolocation throughout prey approach, corroborating a functional role for echolocation during gleaning. Captive bats of both species emitted similar orientation calls, and pulse rate increased during prey approach. Between the search to approach phases, call amplitude showed a sudden, dramatic drop and bats adopted ;whispering echolocation' by emitting weak calls. Whispering echolocation may reduce the risks of masking prey-generated sounds during passive listening, the mouse-eared bats' main detection tactic; it may also avoid alerting ultrasound-sensitive prey. In several cases M. myotis emitted a loud buzz made of 2-18 components when landing. We hypothesise that the buzz, absent in M. blythii at least when gleaning from the same substrate, is used to assess the distance from ground and refine the landing manoeuvre. Our findings have implications for niche separation between sibling species of echolocating bats, support a role for echolocation during passive listening and suggest a functional role for buzzes in landing control.

  5. Inferring echolocation in ancient bats.

    Science.gov (United States)

    Simmons, Nancy B; Seymour, Kevin L; Habersetzer, Jörg; Gunnell, Gregg F

    2010-08-19

    Laryngeal echolocation, used by most living bats to form images of their surroundings and to detect and capture flying prey, is considered to be a key innovation for the evolutionary success of bats, and palaeontologists have long sought osteological correlates of echolocation that can be used to infer the behaviour of fossil bats. Veselka et al. argued that the most reliable trait indicating echolocation capabilities in bats is an articulation between the stylohyal bone (part of the hyoid apparatus that supports the throat and larynx) and the tympanic bone, which forms the floor of the middle ear. They examined the oldest and most primitive known bat, Onychonycteris finneyi (early Eocene, USA), and argued that it showed evidence of this stylohyal-tympanic articulation, from which they concluded that O. finneyi may have been capable of echolocation. We disagree with their interpretation of key fossil data and instead argue that O. finneyi was probably not an echolocating bat.

  6. Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat.

    Science.gov (United States)

    Razak, Khaleel A; Fuzessery, Zoltan M

    2015-10-01

    Studies of birdsongs and neural selectivity for songs have provided important insights into principles of concurrent behavioral and auditory system development. Relatively little is known about mammalian auditory system development in terms of vocalizations or other behaviorally relevant sounds. This review suggests echolocating bats are suitable mammalian model systems to understand development of auditory behaviors. The simplicity of echolocation calls with known behavioral relevance and strong neural selectivity provides a platform to address how natural experience shapes cortical receptive field (RF) mechanisms. We summarize recent studies in the pallid bat that followed development of echolocation calls and cortical processing of such calls. We also discuss similar studies in the mustached bat for comparison. These studies suggest: (1) there are different developmental sensitive periods for different acoustic features of the same vocalization. The underlying basis is the capacity for some components of the RF to be modified independent of others. Some RF computations and maps involved in call processing are present even before the cochlea is mature and well before use of echolocation in flight. Others develop over a much longer time course. (2) Normal experience is required not just for refinement, but also for maintenance, of response properties that develop in an experience independent manner. (3) Experience utilizes millisecond range changes in timing of inhibitory and excitatory RF components as substrates to shape vocalization selectivity. We suggest that bat species and call diversity provide a unique opportunity to address developmental constraints in the evolution of neural mechanisms of vocalization processing. © 2014 Wiley Periodicals, Inc.

  7. Echolocating bats cry out loud to detect their prey

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Kalko, Elisabeth K V

    2008-01-01

    Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has...... been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important...... for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array...

  8. Growth and differentiation on a trypanosome of the subgenus Schizotrypanum from the bat Phyllostomus hastatus

    Directory of Open Access Journals (Sweden)

    Sônia I. Hamanaka

    1993-12-01

    Full Text Available The effects of temperature, pH, osmolarity and aeration on the growth and differentiation of a trypanosome ofthe subgenus Schizotrypanum isolatedfrom the bat Phyllostomus hastatus were studied. In general, the growth characteristics ofthe flagellate were similar to those of Trypanosoma (Schizotrypanum cruzi. However, the parasite did not growth at 33 or 37C. Increase in the osmolarity and aeration promoted growth at 33C. Significant metacyclogenesis was detected only in the growth condition where maximal growth occured (28C, pH 7.3, 380m0s/kg, in tissue cullure flasks, at the end ofthe exponential growth phase. The begining of the metacyclogenesis process was coincident with most glucose utilization and lowest pH. During metacyclogenesis both culture medium pH and osmolarity increased steadly.

  9. Allen's big-eared bat (Idionycteris phyllotis) documented in colorado based on recordings of its distinctive echolocation call

    Science.gov (United States)

    Hayes, M.A.; Navo, K.W.; Bonewell, L.; Mosch, C.J.; Adams, Rick A.

    2009-01-01

    Allen's big-eared bat (Idionycteris phyllotis) inhabits much of the southwestern USA, but has not been documented in Colorado. We recorded echolocation calls consistent with I. phyllotis near La Sal Creek, Montrose County, Colorado. Based on characteristics of echolocation calls and flight behavior, we conclude that the echolocation calls described here were emitted by I. phyllotis and that they represent the first documentation of this species in Colorado.

  10. Echolocation in humans: an overview.

    Science.gov (United States)

    Thaler, Lore; Goodale, Melvyn A

    2016-11-01

    Bats and dolphins are known for their ability to use echolocation. They emit bursts of sounds and listen to the echoes that bounce back to detect the objects in their environment. What is not as well-known is that some blind people have learned to do the same thing, making mouth clicks, for example, and using the returning echoes from those clicks to sense obstacles and objects of interest in their surroundings. The current review explores some of the research that has examined human echolocation and the changes that have been observed in the brains of echolocation experts. We also discuss potential applications and assistive technology based on echolocation. Blind echolocation experts can sense small differences in the location of objects, differentiate between objects of various sizes and shapes, and even between objects made of different materials, just by listening to the reflected echoes from mouth clicks. It is clear that echolocation may enable some blind people to do things that are otherwise thought to be impossible without vision, potentially providing them with a high degree of independence in their daily lives and demonstrating that echolocation can serve as an effective mobility strategy in the blind. Neuroimaging has shown that the processing of echoes activates brain regions in blind echolocators that would normally support vision in the sighted brain, and that the patterns of these activations are modulated by the information carried by the echoes. This work is shedding new light on just how plastic the human brain is. WIREs Cogn Sci 2016, 7:382-393. doi: 10.1002/wcs.1408 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  11. Prestin shows divergent evolution between constant frequency echolocating bats.

    Science.gov (United States)

    Shen, Bin; Avila-Flores, Rafael; Liu, Yang; Rossiter, Stephen J; Zhang, Shuyi

    2011-10-01

    The gene Prestin encodes a motor protein that is thought to confer the high-frequency sensitivity and selectivity that characterizes the mammalian auditory system. Recent research shows that the Prestin gene has undergone a burst of positive selection on the ancestral branch of the Old World horseshoe and leaf-nosed bats (Rhinolophidae and Hipposideridae, respectively), and also on the branch leading to echolocating cetaceans. Moreover, these two groups share a large number of convergent amino acid sequence replacements. Horseshoe and leaf-nosed bats exhibit narrowband echolocation, in which the emitted calls are based on the second harmonic of a predominantly constant frequency (CF) component, the frequency of which is also over-represented in the cochlea. This highly specialized form of echolocation has also evolved independently in the neotropical Parnell's mustached bat (Pteronotus parnellii). To test whether the convergent evolution of CF echolocation between lineages has arisen from common changes in the Prestin gene, we sequenced the Prestin coding region (~2,212 bp, >99% coverage) in P. parnellii and several related species that use broadband echolocation calls. Our reconstructed Prestin gene tree and amino acid tree showed that P. parnellii did not group together with Old World horseshoe and leaf-nosed bats, but rather clustered within its true sister species. Comparisons of sequences confirmed that P. parnellii shared most amino acid changes with its congeners, and we found no evidence of positive selection in the branch leading to the genus of Pteronotus. Our result suggests that the adaptive changes seen in Prestin in horseshoe and leaf-nosed bats are not necessary for CF echolocation in P. parnellii.

  12. Bat echolocation calls facilitate social communication.

    Science.gov (United States)

    Knörnschild, Mirjam; Jung, Kirsten; Nagy, Martina; Metz, Markus; Kalko, Elisabeth

    2012-12-07

    Bat echolocation is primarily used for orientation and foraging but also holds great potential for social communication. The communicative function of echolocation calls is still largely unstudied, especially in the wild. Eavesdropping on vocal signatures encoding social information in echolocation calls has not, to our knowledge, been studied in free-living bats so far. We analysed echolocation calls of the polygynous bat Saccopteryx bilineata and found pronounced vocal signatures encoding sex and individual identity. We showed experimentally that free-living males discriminate approaching male and female conspecifics solely based on their echolocation calls. Males always produced aggressive vocalizations when hearing male echolocation calls and courtship vocalizations when hearing female echolocation calls; hence, they responded with complex social vocalizations in the appropriate social context. Our study demonstrates that social information encoded in bat echolocation calls plays a crucial and hitherto underestimated role for eavesdropping conspecifics and thus facilitates social communication in a highly mobile nocturnal mammal.

  13. Independent losses of visual perception genes Gja10 and Rbp3 in echolocating bats (Order: Chiroptera.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available A trade-off between the sensory modalities of vision and hearing is likely to have occurred in echolocating bats as the sophisticated mechanism of laryngeal echolocation requires considerable neural processing and has reduced the reliance of echolocating bats on vision for perceiving the environment. If such a trade-off exists, it is reasonable to hypothesize that some genes involved in visual function may have undergone relaxed selection or even functional loss in echolocating bats. The Gap junction protein, alpha 10 (Gja10, encoded by Gja10 gene is expressed abundantly in mammal retinal horizontal cells and plays an important role in horizontal cell coupling. The interphotoreceptor retinoid-binding protein (Irbp, encoded by the Rbp3 gene is mainly expressed in interphotoreceptor matrix and is known to be critical for normal functioning of the visual cycle. We sequenced Gja10 and Rbp3 genes in a taxonomically wide range of bats with divergent auditory characteristics (35 and 18 species for Gja10 and Rbp3, respectively. Both genes have became pseudogenes in species from the families Hipposideridae and Rhinolophidae that emit constant frequency echolocation calls with Doppler shift compensation at high-duty-cycles (the most sophisticated form of biosonar known, and in some bat species that emit echolocation calls at low-duty-cycles. Our study thus provides further evidence for the hypothesis that a trade-off occurs at the genetic level between vision and echolocation in bats.

  14. Independent losses of visual perception genes Gja10 and Rbp3 in echolocating bats (Order: Chiroptera).

    Science.gov (United States)

    Shen, Bin; Fang, Tao; Dai, Mengyao; Jones, Gareth; Zhang, Shuyi

    2013-01-01

    A trade-off between the sensory modalities of vision and hearing is likely to have occurred in echolocating bats as the sophisticated mechanism of laryngeal echolocation requires considerable neural processing and has reduced the reliance of echolocating bats on vision for perceiving the environment. If such a trade-off exists, it is reasonable to hypothesize that some genes involved in visual function may have undergone relaxed selection or even functional loss in echolocating bats. The Gap junction protein, alpha 10 (Gja10, encoded by Gja10 gene) is expressed abundantly in mammal retinal horizontal cells and plays an important role in horizontal cell coupling. The interphotoreceptor retinoid-binding protein (Irbp, encoded by the Rbp3 gene) is mainly expressed in interphotoreceptor matrix and is known to be critical for normal functioning of the visual cycle. We sequenced Gja10 and Rbp3 genes in a taxonomically wide range of bats with divergent auditory characteristics (35 and 18 species for Gja10 and Rbp3, respectively). Both genes have became pseudogenes in species from the families Hipposideridae and Rhinolophidae that emit constant frequency echolocation calls with Doppler shift compensation at high-duty-cycles (the most sophisticated form of biosonar known), and in some bat species that emit echolocation calls at low-duty-cycles. Our study thus provides further evidence for the hypothesis that a trade-off occurs at the genetic level between vision and echolocation in bats.

  15. New discoveries on the ecology and echolocation of the heart ...

    African Journals Online (AJOL)

    In this study we report findings in roosting ecology, ectoparasites, echolocation characteristics and the phylogenetic position of Cardioderma cor, an impressive bat species that is distributed throughout the savannas and woodlands of eastern Africa. For individuals caught in Mago National Park, Ethiopia, we recorded ...

  16. Geographic variation in the morphology, echolocation and diet of the ...

    African Journals Online (AJOL)

    The insectivorous bat Chaerephon pumilus has a wide distribution in Africa and displays considerable variation in the colour of its wings and venter.We investigated whether variation is also evident in its morphology, echolocation and diet by comparing a population of this species in Amani Nature Reserve, Tanzania, with ...

  17. Neurophysiological analysis of echolocation in bats

    Science.gov (United States)

    Suga, N.

    1972-01-01

    An analysis of echolocation and signal processing in brown bats is presented. Data cover echo detection, echo ranging, echolocalization, and echo analysis. Efforts were also made to identify the part of the brain that carries out the most essential processing function for echolocation. Results indicate the inferior colliculus and the auditory nuclei function together to process this information.

  18. Echolocation in the large molossid bats Eumops glaucinus and Nyctinomops macrotis.

    Science.gov (United States)

    Mora, Emanuel C; Torres, Lester

    2008-01-01

    Eumops glaucinus and Nyctinomops macrotis, the largest molossid bats in Cuba, were investigated. Both species of bats share the same guild in the island and are similar in size, which allow the prediction of overlapping echolocation inventories following both the "vocal plasticity hypothesis" and the "scaling hypothesis." In addition, large body size predicts the emission of low frequency calls in the human audible range. Calls recorded during hunting show that the bats' echolocation repertoires are very similar and of low frequency, with most differences in search calls. Matches were found in the calls' design, duration, slope, bandwidth, and spectral parameters. Statistical differences between search calls are consistent with the predictions from the "scaling hypothesis," considering that E. glaucinus is only slightly larger than N. macrotis. The echolocation calls emitted by both species are in the frequency range below 20-25 kHz, which identifies both species as the only ones with echolocation in the human audible range in Cuba.

  19. Morphophysiology and ultrastructure of the male reproductive accessory glands of the bats Carollia perspicillata, Glossophaga soricina and Phyllostomus discolor (Chiroptera: Phyllostomidae).

    Science.gov (United States)

    Martins, Fabiane F; Beguelini, Mateus R; Puga, Cintia C I; Morielle-Versute, Eliana; Vilamaior, Patricia S L; Taboga, Sebastião R

    2016-07-01

    The male reproductive accessory glands (RAGs) are important organs that contribute to the secretion of different substances that composed the ejaculate. Despite this important function, their composition, anatomy and function vary widely between species. Thus, the RAGs of three species of phyllostomid bats were morphologically and ultrastructurally characterized and compared in this study. The RAGs of the three analyzed species are composed of a prostate and a pair of bulbourethral glands (BG). In all species, the prostate is composed of three well-defined regions (ventral, dorsolateral and dorsal regions). The ventral region showed an atypical epithelium (undefined) with no obvious cellular limits and a holocrine PAS-positive secretion. The dorsolateral region of Carollia perspicillata and Phyllostomus discolor showed a pseudostratified cubic morphology, and that from Glossophaga soricina had a columnar morphology endowed with cytoplasmic projections and stereocilia. The dorsal region of the three analyzed species is composed of a pseudostratified columnar epithelium endowed with stereocilia; however, G. soricina also presented cytoplasmic projections in the apical portions of the secretory cells similar to those in the dorsolateral region. The BG of the three analyzed species are composed of a pseudostratified columnar epithelium including basal and PAS-positive secretory cells. In conclusion, this study morphologically and ultrastructurally characterized the RAGs of three species of phyllostomid bats, demonstrating the presence of a novel third prostatic region in species of this family. The results also showed the absence of seminal vesicles and ampullary glands, and better characterized the holocrine pattern of the prostatic ventral region, which is unique to bats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Convergent acoustic field of view in echolocating bats.

    Science.gov (United States)

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-03

    Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed on wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate into more directional sound beams. Therefore, bats that emit their calls through their mouths should show a relationship between mouth size and wavelength, driving smaller bats to signals of higher frequency. We found that in a flight room mimicking a closed habitat, six aerial hawking vespertilionid species (ranging in size from 4 to 21 g, ref. 5) produced sonar beams of extraordinarily similar shape and volume. Each species had a directivity index of 11 ± 1 dB (a half-amplitude angle of approximately 37°) and an on-axis sound level of 108 ± 4 dB sound pressure level referenced to 20 μPa root mean square at 10 cm. Thus all bats adapted their calls to achieve similar acoustic fields of view. We propose that the necessity for high directionality has been a key constraint on the evolution of echolocation, which explains the relationship between bat size and echolocation call frequency. Our results suggest that echolocation is a dynamic system that allows different species, regardless of their body size, to converge on optimal fields of view in response to habitat and task.

  1. Convergent acoustic field of view in echolocating bats

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-01

    Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed on wavel......Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed...... on wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate...... into more directional sound beams. Therefore, bats that emit their calls through their mouths should show a relationship between mouth size and wavelength, driving smaller bats to signals of higher frequency. We found that in a flight room mimicking a closed habitat, six aerial hawking vespertilionid...

  2. The evolution of echolocation in bats.

    Science.gov (United States)

    Jones, Gareth; Teeling, Emma C

    2006-03-01

    Recent molecular phylogenies have changed our perspective on the evolution of echolocation in bats. These phylogenies suggest that certain bats with sophisticated echolocation (e.g. horseshoe bats) share a common ancestry with non-echolocating bats (e.g. Old World fruit bats). One interpretation of these trees presumes that laryngeal echolocation (calls produced in the larynx) probably evolved in the ancestor of all extant bats. Echolocation might have subsequently been lost in Old World fruit bats, only to evolve secondarily (by tongue clicking) in this family. Remarkable acoustic features such as Doppler shift compensation, whispering echolocation and nasal emission of sound each show multiple convergent origins in bats. The extensive adaptive radiation in echolocation call design is shaped largely by ecology, showing how perceptual challenges imposed by the environment can often override phylogenetic constraints.

  3. Echolocation calls of Poey's flower bat ( Phyllonycteris poeyi) unlike those of other phyllostomids

    Science.gov (United States)

    Mora, Emanuel C.; Macías, Silvio

    2007-05-01

    Unlike any other foraging phyllostomid bat studied to date, Poey’s flower bats ( Phyllonycteris poeyi-Phyllostomidae) emit relatively long (up to 7.2 ms), intense, single-harmonic echolocation calls. These calls are readily detectable at distances of at least 15 m. Furthermore, the echolocation calls contain only the first harmonic, which is usually filtered out in the vocal tract of phyllostomids. The foraging echolocation calls of P. poeyi are more like search-phase echolocation calls of sympatric aerial-feeding bats (Molossidae, Vespertilionidae, Mormoopidae). Intense, long, narrowband, single-harmonic echolocation calls focus acoustic energy maximizing range and favoring detection, which may be particularly important for cruising bats, like P. poeyi, when flying in the open. Flying in enclosed spaces, P. poeyi emit short, low-intensity, frequency-modulated, multiharmonic echolocation calls typical of other phyllostomids. This is the first report of a phyllostomid species emitting long, intense, single-harmonic echolocation calls with most energy in the first harmonic.

  4. Echolocation calls of Poey's flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids.

    Science.gov (United States)

    Mora, Emanuel C; Macías, Silvio

    2007-05-01

    Unlike any other foraging phyllostomid bat studied to date, Poey's flower bats (Phyllonycteris poeyi-Phyllostomidae) emit relatively long (up to 7.2 ms), intense, single-harmonic echolocation calls. These calls are readily detectable at distances of at least 15 m. Furthermore, the echolocation calls contain only the first harmonic, which is usually filtered out in the vocal tract of phyllostomids. The foraging echolocation calls of P. poeyi are more like search-phase echolocation calls of sympatric aerial-feeding bats (Molossidae, Vespertilionidae, Mormoopidae). Intense, long, narrowband, single-harmonic echolocation calls focus acoustic energy maximizing range and favoring detection, which may be particularly important for cruising bats, like P. poeyi, when flying in the open. Flying in enclosed spaces, P. poeyi emit short, low-intensity, frequency-modulated, multiharmonic echolocation calls typical of other phyllostomids. This is the first report of a phyllostomid species emitting long, intense, single-harmonic echolocation calls with most energy in the first harmonic.

  5. Representation of three-dimensional space in the auditory cortex of the echolocating bat P. discolor.

    Directory of Open Access Journals (Sweden)

    Wolfgang Greiter

    Full Text Available The auditory cortex is an essential center for sound localization. In echolocating bats, combination sensitive neurons tuned to specific delays between call emission and echo perception represent target distance. In many bats, these neurons are organized as a chronotopically organized map of echo delay. However, it is still unclear to what extend these neurons can process directional information and thereby form a three-dimensional representation of space. We investigated the representation of three-dimensional space in the auditory cortex of Phyllostomus discolor. Specifically, we hypothesized that combination sensitive neurons encoding target distance in the AC can also process directional information. We used typical echolocation pulses of P. discolor combined with simulated echoes from different positions in virtual 3D-space and measured the evoked neuronal responses in the AC of the anesthetized bats. Our results demonstrate that combination sensitive neurons in the AC responded selectively to specific positions in 3-D space. While these neurons were sharply tuned to echo delay and formed a precise target distance map, the neurons' specificity in azimuth and elevation depended on the presented sound pressure level. Our data further reveal a topographic distribution of best elevation of the combination sensitive neurons along the rostro-caudal axis i.e., neurons in the rostral part of the target distance map representing short delays prefer elevations below the horizon. Due to their spatial directionality and selectivity to specific echo delays representing target distance, combination sensitive cortical neurons are suited to encode three-dimensional spatial information.

  6. Baird's beaked whale echolocation signals.

    Science.gov (United States)

    Baumann-Pickering, Simone; Yack, Tina M; Barlow, Jay; Wiggins, Sean M; Hildebrand, John A

    2013-06-01

    Echolocation signals from Baird's beaked whales were recorded during visual and acoustic shipboard surveys of cetaceans in the California Current ecosystem and with autonomous, long-term recorders in the Southern California Bight. The preliminary measurement of the visually validated Baird's beaked whale echolocation signals from towed array data were used as a basis for identifying Baird's signals in the autonomous recorder data. Two distinct signal types were found, one being a beaked whale-like frequency modulated (FM) pulse, the other being a dolphin-like broadband click. The median FM inter-pulse interval was 230 ms. Both signal types showed a consistent multi-peak structure in their spectra with peaks at ~9, 16, 25, and 40 kHz. Depending on signal type, as well as recording aspect and distance to the hydrophone, these peaks varied in relative amplitude. The description of Baird's echolocation signals will allow for studies of their distribution and abundance using towed array data without associated visual sightings and from autonomous seafloor hydrophones.

  7. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi.

    Science.gov (United States)

    Puechmaille, Sébastien J; Borissov, Ivailo M; Zsebok, Sándor; Allegrini, Benjamin; Hizem, Mohammed; Kuenzel, Sven; Schuchmann, Maike; Teeling, Emma C; Siemers, Björn M

    2014-01-01

    Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.

  8. Bat echolocation calls: adaptation and convergent evolution.

    Science.gov (United States)

    Jones, Gareth; Holderied, Marc W

    2007-04-07

    Bat echolocation calls provide remarkable examples of 'good design' through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge.

  9. Bat echolocation calls: adaptation and convergent evolution

    Science.gov (United States)

    Jones, Gareth; Holderied, Marc W

    2007-01-01

    Bat echolocation calls provide remarkable examples of ‘good design’ through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge. PMID:17251105

  10. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation.

    Directory of Open Access Journals (Sweden)

    Kalina T J Davies

    Full Text Available The vestibular system maintains the body's sense of balance and, therefore, was probably subject to strong selection during evolutionary transitions in locomotion. Among mammals, bats possess unique traits that place unusual demands on their vestibular systems. First, bats are capable of powered flight, which in birds is associated with enlarged semicircular canals. Second, many bats have enlarged cochleae associated with echolocation, and both cochleae and semicircular canals share a space within the petrosal bone. To determine how bat vestibular systems have evolved in the face of these pressures, we used micro-CT scans to compare canal morphology across species with contrasting flight and echolocation capabilities. We found no increase in canal radius in bats associated with the acquisition of powered flight, but canal radius did correlate with body mass in bat species from the suborder Yangochiroptera, and also in non-echolocating Old World fruit bats from the suborder Yinpterochiroptera. No such trend was seen in members of the Yinpterochiroptera that use laryngeal echolocation, although canal radius was associated with wing-tip roundedness in this group. We also found that the vestibular system scaled with cochlea size, although the relationship differed in species that use constant frequency echolocation. Across all bats, the shape of the anterior and lateral canals was associated with large cochlea size and small body size respectively, suggesting differential spatial constraints on each canal depending on its orientation within the skull. Thus in many echolocating bats, it seems that the combination of small body size and enlarged cochlea together act as a principal force on the vestibular system. The two main groups of echolocating bats displayed different canal morphologies, in terms of size and shape in relation to body mass and cochlear size, thus suggesting independent evolutionary pathways and offering tentative support for

  11. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation.

    Science.gov (United States)

    Davies, Kalina T J; Bates, Paul J J; Maryanto, Ibnu; Cotton, James A; Rossiter, Stephen J

    2013-01-01

    The vestibular system maintains the body's sense of balance and, therefore, was probably subject to strong selection during evolutionary transitions in locomotion. Among mammals, bats possess unique traits that place unusual demands on their vestibular systems. First, bats are capable of powered flight, which in birds is associated with enlarged semicircular canals. Second, many bats have enlarged cochleae associated with echolocation, and both cochleae and semicircular canals share a space within the petrosal bone. To determine how bat vestibular systems have evolved in the face of these pressures, we used micro-CT scans to compare canal morphology across species with contrasting flight and echolocation capabilities. We found no increase in canal radius in bats associated with the acquisition of powered flight, but canal radius did correlate with body mass in bat species from the suborder Yangochiroptera, and also in non-echolocating Old World fruit bats from the suborder Yinpterochiroptera. No such trend was seen in members of the Yinpterochiroptera that use laryngeal echolocation, although canal radius was associated with wing-tip roundedness in this group. We also found that the vestibular system scaled with cochlea size, although the relationship differed in species that use constant frequency echolocation. Across all bats, the shape of the anterior and lateral canals was associated with large cochlea size and small body size respectively, suggesting differential spatial constraints on each canal depending on its orientation within the skull. Thus in many echolocating bats, it seems that the combination of small body size and enlarged cochlea together act as a principal force on the vestibular system. The two main groups of echolocating bats displayed different canal morphologies, in terms of size and shape in relation to body mass and cochlear size, thus suggesting independent evolutionary pathways and offering tentative support for multiple acquisitions of

  12. The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Science.gov (United States)

    Davies, Kalina T. J.; Bates, Paul J. J.; Maryanto, Ibnu; Cotton, James A.; Rossiter, Stephen J.

    2013-01-01

    The vestibular system maintains the body’s sense of balance and, therefore, was probably subject to strong selection during evolutionary transitions in locomotion. Among mammals, bats possess unique traits that place unusual demands on their vestibular systems. First, bats are capable of powered flight, which in birds is associated with enlarged semicircular canals. Second, many bats have enlarged cochleae associated with echolocation, and both cochleae and semicircular canals share a space within the petrosal bone. To determine how bat vestibular systems have evolved in the face of these pressures, we used micro-CT scans to compare canal morphology across species with contrasting flight and echolocation capabilities. We found no increase in canal radius in bats associated with the acquisition of powered flight, but canal radius did correlate with body mass in bat species from the suborder Yangochiroptera, and also in non-echolocating Old World fruit bats from the suborder Yinpterochiroptera. No such trend was seen in members of the Yinpterochiroptera that use laryngeal echolocation, although canal radius was associated with wing-tip roundedness in this group. We also found that the vestibular system scaled with cochlea size, although the relationship differed in species that use constant frequency echolocation. Across all bats, the shape of the anterior and lateral canals was associated with large cochlea size and small body size respectively, suggesting differential spatial constraints on each canal depending on its orientation within the skull. Thus in many echolocating bats, it seems that the combination of small body size and enlarged cochlea together act as a principal force on the vestibular system. The two main groups of echolocating bats displayed different canal morphologies, in terms of size and shape in relation to body mass and cochlear size, thus suggesting independent evolutionary pathways and offering tentative support for multiple acquisitions of

  13. Sound localization by echolocating bats

    Science.gov (United States)

    Aytekin, Murat

    Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies

  14. Bat echolocation calls: adaptation and convergent evolution

    OpenAIRE

    Jones, Gareth; Holderied, Marc W

    2007-01-01

    Bat echolocation calls provide remarkable examples of ‘good design’ through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, lase...

  15. Interaction of vestibular, echolocation, and visual modalities guiding flight by the big brown bat, Eptesicus fuscus

    Science.gov (United States)

    Horowitz, Seth S.; Simmons, James A.

    2004-05-01

    The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. Laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests were carried out while administering heavy water (D2O) to bats to impair their vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.

  16. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).

    Science.gov (United States)

    Brinkløv, Signe; Jakobsen, Lasse; Ratcliffe, John M; Kalko, Elisabeth K V; Surlykke, Annemarie

    2011-01-01

    The directionality of bat echolocation calls defines the width of bats' sonar "view," while call intensity directly influences detection range since adequate sound energy must impinge upon objects to return audible echoes. Both are thus crucial parameters for understanding biosonar signal design. Phyllostomid bats have been classified as low intensity or "whispering bats," but recent data indicate that this designation may be inaccurate. Echolocation beam directionality in phyllostomids has only been measured through electrode brain-stimulation of restrained bats, presumably excluding active beam control via the noseleaf. Here, a 12-microphone array was used to measure echolocation call intensity and beam directionality in the frugivorous phyllostomid, Carollia perspicillata, echolocating in flight. The results showed a considerably narrower beam shape (half-amplitude beam angles of approximately 16° horizontally and 14° vertically) and louder echolocation calls [source levels averaging 99 dB sound pressure level (SPL) root mean square] for C. perspicillata than was found for this species when stationary. This suggests that naturally behaving phyllostomids shape their sound beam to achieve a longer and narrower sonar range than previously thought. C. perspicillata orient and forage in the forest interior and the narrow beam might be adaptive in clutter, by reducing the number and intensity of off-axis echoes.

  17. Intensity and directionality of bat echolocation signals

    Directory of Open Access Journals (Sweden)

    Lasse eJakobsen

    2013-04-01

    Full Text Available The paper reviews current knowledge of intensity and directionality of bat echolocation signals. Recent studies have revealed that echolocating bats can be much louder than previously believed. Bats previously dubbed whispering can emit calls with source levels up to 110 dB SPL at 10 cm and the louder open space hunting bats have been recorded at above 135 dB SPL. This implies that maximum emitted intensities are generally 30 dB or more above initial estimates. Bats’ dynamic control of acoustic features also includes the intensity and directionality of their sonar calls. Aerial hawking bats will increase signal directionality in the field along with intensity thus increasing sonar range. During the last phase of prey pursuit, vespertilionid bats broaden their echolocation beam considerably, probably to counter evasive manoeuvres of eared prey. We highlight how multiple call parameters (frequency, duration, intensity and directionality of echolocation signals in unison define the search volume probed by bats and in turn how bats perceive their surroundings. Small changes to individual parameters can, in combination, drastically change the bat’s perception, facilitating successful navigation and food acquisition across a vast range of ecological niches. To better understand the function of echolocation in the natural habitat it is critical to determine multiple acoustic features of the echolocation calls. The combined (interactive effects, not only of frequency and time parameters, but also of intensity and directionality, define the bat’s view of its acoustic scene.

  18. Echolocation versus echo suppression in humans

    Science.gov (United States)

    Wallmeier, Ludwig; Geßele, Nikodemus; Wiegrebe, Lutz

    2013-01-01

    Several studies have shown that blind humans can gather spatial information through echolocation. However, when localizing sound sources, the precedence effect suppresses spatial information of echoes, and thereby conflicts with effective echolocation. This study investigates the interaction of echolocation and echo suppression in terms of discrimination suppression in virtual acoustic space. In the ‘Listening’ experiment, sighted subjects discriminated between positions of a single sound source, the leading or the lagging of two sources, respectively. In the ‘Echolocation’ experiment, the sources were replaced by reflectors. Here, the same subjects evaluated echoes generated in real time from self-produced vocalizations and thereby discriminated between positions of a single reflector, the leading or the lagging of two reflectors, respectively. Two key results were observed. First, sighted subjects can learn to discriminate positions of reflective surfaces echo-acoustically with accuracy comparable to sound source discrimination. Second, in the Listening experiment, the presence of the leading source affected discrimination of lagging sources much more than vice versa. In the Echolocation experiment, however, the presence of both the lead and the lag strongly affected discrimination. These data show that the classically described asymmetry in the perception of leading and lagging sounds is strongly diminished in an echolocation task. Additional control experiments showed that the effect is owing to both the direct sound of the vocalization that precedes the echoes and owing to the fact that the subjects actively vocalize in the echolocation task. PMID:23986105

  19. Human Exploration of Enclosed Spaces through Echolocation.

    Science.gov (United States)

    Flanagin, Virginia L; Schörnich, Sven; Schranner, Michael; Hummel, Nadine; Wallmeier, Ludwig; Wahlberg, Magnus; Stephan, Thomas; Wiegrebe, Lutz

    2017-02-08

    Some blind humans have developed echolocation, as a method of navigation in space. Echolocation is a truly active sense because subjects analyze echoes of dedicated, self-generated sounds to assess space around them. Using a special virtual space technique, we assess how humans perceive enclosed spaces through echolocation, thereby revealing the interplay between sensory and vocal-motor neural activity while humans perform this task. Sighted subjects were trained to detect small changes in virtual-room size analyzing real-time generated echoes of their vocalizations. Individual differences in performance were related to the type and number of vocalizations produced. We then asked subjects to estimate virtual-room size with either active or passive sounds while measuring their brain activity with fMRI. Subjects were better at estimating room size when actively vocalizing. This was reflected in the hemodynamic activity of vocal-motor cortices, even after individual motor and sensory components were removed. Activity in these areas also varied with perceived room size, although the vocal-motor output was unchanged. In addition, thalamic and auditory-midbrain activity was correlated with perceived room size; a likely result of top-down auditory pathways for human echolocation, comparable with those described in echolocating bats. Our data provide evidence that human echolocation is supported by active sensing, both behaviorally and in terms of brain activity. The neural sensory-motor coupling complements the fundamental acoustic motor-sensory coupling via the environment in echolocation. SIGNIFICANCE STATEMENT Passive listening is the predominant method for examining brain activity during echolocation, the auditory analysis of self-generated sounds. We show that sighted humans perform better when they actively vocalize than during passive listening. Correspondingly, vocal motor and cerebellar activity is greater during active echolocation than vocalization alone. Motor

  20. The physics of bat echolocation: Signal processing techniques

    Science.gov (United States)

    Denny, Mark

    2004-12-01

    The physical principles and signal processing techniques underlying bat echolocation are investigated. It is shown, by calculation and simulation, how the measured echolocation performance of bats can be achieved.

  1. Echolocation

    Indian Academy of Sciences (India)

    and observed their inability to perform these correct orientations. Spallanzani repeated these experiments and obtained similar results. Both of them concluded that bats ... a British physiologist put forward the hypothesis that bats emit ultrasound and listen to the echoes of these sounds. After 18 years, the American zoologist ...

  2. The evolution of echolocation in bats: a comparative approach

    OpenAIRE

    Collen, A. L.

    2012-01-01

    The evolutionary history of echolocation in bats is poorly understood, as fossils provide little direct evidence, and most studies into echolocation have taken an ecological approach. Bats use a wide variety of echolocation call structures despite facing similar sensory challenges, and it is not clear how and why these echolocation call types evolved, or what impact they have on other aspects of the evolution of bats. Here, I use phylogenetic comparative methods and newly-collated echolocatio...

  3. Hear, hear: the convergent evolution of echolocation in bats?

    Science.gov (United States)

    Teeling, Emma C

    2009-07-01

    The evolutionary history of laryngeal echolocation is controversial, and little is known about the molecular mechanisms that underlie this sense. A recent paper by Li and colleagues is one of the first studies to identify and sequence a gene involved in echolocation in bats -Prestin, the so-called mammalian hearing gene. Phylogenetic analyses show evidence for positive selection acting on this gene in the echolocating lineages and support the convergent evolution of laryngeal echolocation in bats.

  4. The Voltage-Gated Potassium Channel Subfamily KQT Member 4 (KCNQ4) Displays Parallel Evolution in Echolocating Bats

    Science.gov (United States)

    Liu, Yang; Han, Naijian; Franchini, Lucía F.; Xu, Huihui; Pisciottano, Francisco; Elgoyhen, Ana Belén; Rajan, Koilmani Emmanuvel; Zhang, Shuyi

    2012-01-01

    Bats are the only mammals that use highly developed laryngeal echolocation, a sensory mechanism based on the ability to emit laryngeal sounds and interpret the returning echoes to identify objects. Although this capability allows bats to orientate and hunt in complete darkness, endowing them with great survival advantages, the genetic bases underlying the evolution of bat echolocation are still largely unknown. Echolocation requires high-frequency hearing that in mammals is largely dependent on somatic electromotility of outer hair cells. Then, understanding the molecular evolution of outer hair cell genes might help to unravel the evolutionary history of echolocation. In this work, we analyzed the molecular evolution of two key outer hair cell genes: the voltage-gated potassium channel gene KCNQ4 and CHRNA10, the gene encoding the α10 nicotinic acetylcholine receptor subunit. We reconstructed the phylogeny of bats based on KCNQ4 and CHRNA10 protein and nucleotide sequences. A phylogenetic tree built using KCNQ4 amino acid sequences showed that two paraphyletic clades of laryngeal echolocating bats grouped together, with eight shared substitutions among particular lineages. In addition, our analyses indicated that two of these parallel substitutions, M388I and P406S, were probably fixed under positive selection and could have had a strong functional impact on KCNQ4. Moreover, our results indicated that KCNQ4 evolved under positive selection in the ancestral lineage leading to mammals, suggesting that this gene might have been important for the evolution of mammalian hearing. On the other hand, we found that CHRNA10, a gene that evolved adaptively in the mammalian lineage, was under strong purifying selection in bats. Thus, the CHRNA10 amino acid tree did not show echolocating bat monophyly and reproduced the bat species tree. These results suggest that only a subset of hearing genes could underlie the evolution of echolocation. The present work continues to

  5. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats.

    Science.gov (United States)

    Liu, Yang; Han, Naijian; Franchini, Lucía F; Xu, Huihui; Pisciottano, Francisco; Elgoyhen, Ana Belén; Rajan, Koilmani Emmanuvel; Zhang, Shuyi

    2012-05-01

    Bats are the only mammals that use highly developed laryngeal echolocation, a sensory mechanism based on the ability to emit laryngeal sounds and interpret the returning echoes to identify objects. Although this capability allows bats to orientate and hunt in complete darkness, endowing them with great survival advantages, the genetic bases underlying the evolution of bat echolocation are still largely unknown. Echolocation requires high-frequency hearing that in mammals is largely dependent on somatic electromotility of outer hair cells. Then, understanding the molecular evolution of outer hair cell genes might help to unravel the evolutionary history of echolocation. In this work, we analyzed the molecular evolution of two key outer hair cell genes: the voltage-gated potassium channel gene KCNQ4 and CHRNA10, the gene encoding the α10 nicotinic acetylcholine receptor subunit. We reconstructed the phylogeny of bats based on KCNQ4 and CHRNA10 protein and nucleotide sequences. A phylogenetic tree built using KCNQ4 amino acid sequences showed that two paraphyletic clades of laryngeal echolocating bats grouped together, with eight shared substitutions among particular lineages. In addition, our analyses indicated that two of these parallel substitutions, M388I and P406S, were probably fixed under positive selection and could have had a strong functional impact on KCNQ4. Moreover, our results indicated that KCNQ4 evolved under positive selection in the ancestral lineage leading to mammals, suggesting that this gene might have been important for the evolution of mammalian hearing. On the other hand, we found that CHRNA10, a gene that evolved adaptively in the mammalian lineage, was under strong purifying selection in bats. Thus, the CHRNA10 amino acid tree did not show echolocating bat monophyly and reproduced the bat species tree. These results suggest that only a subset of hearing genes could underlie the evolution of echolocation. The present work continues to

  6. Marine Mammals: Hearing and Echolocation at Coconut Island

    Science.gov (United States)

    2012-09-30

    echolocation is accomplished via a stapedial mechanism in the same way that it is controlled by bats . Found that hearing pathways differ between...fellowship to work at Brown University with Dr. Jim Simmons on the echolocation of Bats . ...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Marine Mammals: Hearing and Echolocation at Coconut

  7. Geographic variation in Risso's dolphin echolocation click spectra.

    Science.gov (United States)

    Soldevilla, Melissa S; Baumann-Pickering, Simone; Cholewiak, Danielle; Hodge, Lynne E W; Oleson, Erin M; Rankin, Shannon

    2017-08-01

    Discrimination of bioacoustic signals to the species or population level is critical for using passive acoustic monitoring to study cetacean ecology. Risso's dolphins off southern California have distinctive peaks and notches in their echolocation clicks, but it was unknown whether Risso's dolphins from other geographic areas have similarly distinctive click spectra and whether populations are acoustically distinct. This study investigates using clicks for species and population identification by characterizing the spectral structure of Risso's dolphin echolocation clicks recorded over wide-ranging geographic regions including the U.S. waters of the North Atlantic Ocean, Gulf of Mexico, and North Pacific Ocean; and international waters of the Eastern Tropical Pacific. All recordings with Risso's dolphin clicks exhibited the spectral peak and notch pattern described off southern California, indicating the presence of peak banding patterns is useful for species discrimination. Geographic regions were a significant explanatory factor for variability in the frequencies of click spectral peaks, with relatively higher frequency peaks and notches found off Hawaii compared to California waters and off the southeast U.S. compared to the Gulf of Mexico. In the North Atlantic Ocean, a latitudinal cline in frequencies was evident. Potential causes of acoustic variation within and among acoustic encounters are evaluated.

  8. Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear

    Science.gov (United States)

    2013-01-01

    Introduction Many mammals have evolved highly adapted hearing associated with ecological specialisation. Of these, bats possess the widest frequency range of vocalisations and associated hearing sensitivities, with frequencies of above 200 kHz in some lineages that use laryngeal echolocation. High frequency hearing in bats appears to have evolved via structural modifications of the inner ear, however, studying these minute features presents considerable challenges and hitherto few such attempts have been made. To understand these adaptations more fully, as well as gain insights into the evolutionary origins of ultrasonic hearing and echolocation in bats, we undertook micro-computed tomography (μCT) scans of the cochleae of representative bat species from 16 families, encompassing their broad range of ecological diversity. To characterise cochlear gross morphology, we measured the relative basilar membrane length and number of turns, and compared these values between echolocating and non-echolocating bats, as well as other mammals. Results We found that hearing and echolocation call frequencies in bats correlated with both measures of cochlear morphology. In particular, relative basilar membrane length was typically longer in echolocating species, and also correlated positively with the number of cochlear turns. Ancestral reconstructions of these parameters suggested that the common ancestor of all extant bats was probably capable of ultrasonic hearing; however, we also found evidence of a significant decrease in the rate of morphological evolution of the basilar membrane in multiple ancestral branches within the Yangochiroptera suborder. Within the echolocating Yinpterochiroptera, there was some evidence of an increase in the rate of basilar membrane evolution in some tips of the tree, possibly associated with reported shifts in call frequency associated with recent speciation events. Conclusions The two main groups of echolocating bat were found to display

  9. Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear.

    Science.gov (United States)

    Davies, Kalina Tj; Maryanto, Ibnu; Rossiter, Stephen J

    2013-01-30

    Many mammals have evolved highly adapted hearing associated with ecological specialisation. Of these, bats possess the widest frequency range of vocalisations and associated hearing sensitivities, with frequencies of above 200 kHz in some lineages that use laryngeal echolocation. High frequency hearing in bats appears to have evolved via structural modifications of the inner ear, however, studying these minute features presents considerable challenges and hitherto few such attempts have been made. To understand these adaptations more fully, as well as gain insights into the evolutionary origins of ultrasonic hearing and echolocation in bats, we undertook micro-computed tomography (μCT) scans of the cochleae of representative bat species from 16 families, encompassing their broad range of ecological diversity. To characterise cochlear gross morphology, we measured the relative basilar membrane length and number of turns, and compared these values between echolocating and non-echolocating bats, as well as other mammals. We found that hearing and echolocation call frequencies in bats correlated with both measures of cochlear morphology. In particular, relative basilar membrane length was typically longer in echolocating species, and also correlated positively with the number of cochlear turns. Ancestral reconstructions of these parameters suggested that the common ancestor of all extant bats was probably capable of ultrasonic hearing; however, we also found evidence of a significant decrease in the rate of morphological evolution of the basilar membrane in multiple ancestral branches within the Yangochiroptera suborder. Within the echolocating Yinpterochiroptera, there was some evidence of an increase in the rate of basilar membrane evolution in some tips of the tree, possibly associated with reported shifts in call frequency associated with recent speciation events. The two main groups of echolocating bat were found to display highly variable inner ear morphologies

  10. Intensity and directionality of bat echolocation signals

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Brinkløv, Signe; Surlykke, Annemarie

    2013-01-01

    The paper reviews current knowledge of intensity and directionality of bat echolocation signals. Recent studies have revealed that echolocating bats can be much louder than previously believed. Bats previously dubbed "whispering" can emit calls with source levels up to 110 dB SPL at 10 cm...... and the louder open space hunting bats have been recorded at above 135 dB SPL. This implies that maximum emitted intensities are generally 30 dB or more above initial estimates. Bats' dynamic control of acoustic features also includes the intensity and directionality of their sonar calls. Aerial hawking bats...... will increase signal directionality in the field along with intensity thus increasing sonar range. During the last phase of prey pursuit, vespertilionid bats broaden their echolocation beam considerably, probably to counter evasive maneuvers of eared prey. We highlight how multiple call parameters (frequency...

  11. Single source sound production and dynamic beam formation in echolocating harbour porpoises (Phocoena phocoena)

    DEFF Research Database (Denmark)

    Madsen, Peter Teglberg; Wisniewska, Danuta Maria; Beedholm, Kristian

    2010-01-01

    Echolocating toothed whales produce high-powered clicks by pneumatic actuation of phonic lips in their nasal complexes. All non-physeteroid toothed whales have two pairs of phonic lips allowing many of these species to produce both whistles and clicks at the same time. That has led to the hypothe......Echolocating toothed whales produce high-powered clicks by pneumatic actuation of phonic lips in their nasal complexes. All non-physeteroid toothed whales have two pairs of phonic lips allowing many of these species to produce both whistles and clicks at the same time. That has led...... of three echolocating porpoises (Phocoena phocoena) with symmetrical pairs of phonic lips. Using time of arrival differences on three hydrophones, we show that all recorded clicks from these three porpoises are produced by the right pair of phonic lips with no evidence of simultaneous or independent...... as a waveguide for sound energy between 100 and 160 kHz to generate a forward-directed sound beam for echolocation....

  12. Intensity and directionality of bat echolocation signals

    OpenAIRE

    Jakobsen, Lasse; Brinkl?v, Signe; Surlykke, Annemarie

    2013-01-01

    The paper reviews current knowledge of intensity and directionality of bat echolocation signals. Recent studies have revealed that echolocating bats can be much louder than previously believed. Bats previously dubbed “whispering” can emit calls with source levels up to 110 dB SPL at 10 cm and the louder open space hunting bats have been recorded at above 135 dB SPL. This implies that maximum emitted intensities are generally 30 dB or more above initial estimates. Bats' dynamic control of acou...

  13. Echolocating Bats Cry Out Loud to Detect Their Prey

    Science.gov (United States)

    Surlykke, Annemarie; Kalko, Elisabeth K. V.

    2008-01-01

    Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4–7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae) ranged between 122–134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats with similar

  14. Echolocating bats cry out loud to detect their prey.

    Directory of Open Access Journals (Sweden)

    Annemarie Surlykke

    Full Text Available Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4-7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae ranged between 122-134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats

  15. Echolocation The Strange Ways of Bats

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Echolocation The Strange Ways of Bats. G Marimuthu. General Article Volume 1 Issue 5 May 1996 pp 40-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0040-0048. Author Affiliations.

  16. Echolocation The Strange Ways of Bats

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Echolocation The Strange Ways of Bats. G Marimuthu. General Article Volume 1 Issue 5 May 1996 pp 40-48. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/05/0040-0048. Author Affiliations.

  17. Biomechanical control of vocal plasticity in an echolocating bat.

    Science.gov (United States)

    Luo, Jinhong; Wiegrebe, Lutz

    2016-03-01

    Many animal species adjust the spectral composition of their acoustic signals to variable environments. However, the physiological foundation of such spectral plasticity is often unclear. The source-filter theory of sound production, initially established for human speech, applies to vocalizations in birds and mammals. According to this theory, adjusting the spectral structure of vocalizations could be achieved by modifying either the laryngeal/syringeal source signal or the vocal tract, which filters the source signal. Here, we show that in pale spear-nosed bats, spectral plasticity induced by moderate level background noise is dominated by the vocal tract rather than the laryngeal source signal. Specifically, we found that with increasing background noise levels, bats consistently decreased the spectral centroid of their echolocation calls up to 3.2 kHz, together with other spectral parameters. In contrast, noise-induced changes in fundamental frequency were small (maximally 0.1 kHz) and were inconsistent across individuals. Changes in spectral centroid did not correlate with changes in fundamental frequency, whereas they correlated negatively with changes in call amplitude. Furthermore, while bats consistently increased call amplitude with increasing noise levels (the Lombard effect), increases in call amplitude typically did not lead to increases in fundamental frequency. In summary, our results suggest that at least to a certain degree echolocating bats are capable of adjusting call amplitude, fundamental frequency and spectral parameters independently. © 2016. Published by The Company of Biologists Ltd.

  18. Multi-component separation and analysis of bat echolocation calls.

    Science.gov (United States)

    DiCecco, John; Gaudette, Jason E; Simmons, James A

    2013-01-01

    The vast majority of animal vocalizations contain multiple frequency modulated (FM) components with varying amounts of non-linear modulation and harmonic instability. This is especially true of biosonar sounds where precise time-frequency templates are essential for neural information processing of echoes. Understanding the dynamic waveform design by bats and other echolocating animals may help to improve the efficacy of man-made sonar through biomimetic design. Bats are known to adapt their call structure based on the echolocation task, proximity to nearby objects, and density of acoustic clutter. To interpret the significance of these changes, a method was developed for component separation and analysis of biosonar waveforms. Techniques for imaging in the time-frequency plane are typically limited due to the uncertainty principle and interference cross terms. This problem is addressed by extending the use of the fractional Fourier transform to isolate each non-linear component for separate analysis. Once separated, empirical mode decomposition can be used to further examine each component. The Hilbert transform may then successfully extract detailed time-frequency information from each isolated component. This multi-component analysis method is applied to the sonar signals of four species of bats recorded in-flight by radiotelemetry along with a comparison of other common time-frequency representations.

  19. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.

    Science.gov (United States)

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-06-30

    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision" than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation.

  20. A blind climber: The first evidence of ultrasonic echolocation in arboreal mammals.

    Science.gov (United States)

    Panyutina, Aleksandra A; Kuznetsov, Alexander N; Volodin, Ilya A; Abramov, Alexei V; Soldatova, Irina B

    2017-03-01

    The means of orientation is studied in the Vietnamese pygmy dormouse Typhlomys chapensis, a poorly known enigmatic semi-fossorial semi-arboreal rodent. Data on eye structure are presented, which prove that Typhlomys (translated as "the blind mouse") is incapable of object vision: the retina is folded and retains no more than 2500 ganglion cells in the focal plane, and the optic nerve is subject to gliosis. Hence, Typhlomys has no other means for rapid long-range orientation among tree branches other than echolocation. Ultrasonic vocalization recordings at the frequency range of 50-100 kHz support this hypothesis. The vocalizations are represented by bouts of up to 7 more or less evenly-spaced and uniform frequency-modulated sweep-like pulses in rapid succession. Structurally, these sweeps are similar to frequency-modulated ultrasonic echolocation calls of some bat species, but they are too faint to be revealed with a common bat detector. When recording video simultaneously with the ultrasonic audio, a significantly greater pulse rate during locomotion compared to that of resting animals has been demonstrated. Our findings of locomotion-associated ultrasonic vocalization in a fast-climbing but weakly-sighted small mammal ecotype add support to the "echolocation-first theory" of pre-flight origin of echolocation in bats. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  1. 'Compromise' in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Each animal population has its own acoustic signature which facilitates identification, communication and reproduction. The sonar signals of bats can convey social information, such as species identity and contextual information. The goal of this study was to determine whether bats adjust their echolocation call structures to mutually recognize and communicate when they encounter the bats from different colonies. We used the intermediate leaf-nosed bats (Hipposideros larvatus as a case study to investigate the variations of echolocation calls when bats from one colony were introduced singly into the home cage of a new colony or two bats from different colonies were cohabitated together for one month. Our experiments showed that the single bat individual altered its peak frequency of echolocation calls to approach the call of new colony members and two bats from different colonies adjusted their call frequencies toward each other to a similar frequency after being chronically cohabitated. These results indicate that the 'compromise' in echolocation calls might be used to ensure effective mutual communication among bats.

  2. Moth wing scales slightly increase the absorbance of bat echolocation calls.

    Directory of Open Access Journals (Sweden)

    Jinyao Zeng

    Full Text Available Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40-60 kHz than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5-6%.

  3. 'Compromise' in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus).

    Science.gov (United States)

    Chen, Yi; Liu, Qi; Su, Qianqian; Sun, Yunxiao; Peng, Xingwen; He, Xiangyang; Zhang, Libiao

    2016-01-01

    Each animal population has its own acoustic signature which facilitates identification, communication and reproduction. The sonar signals of bats can convey social information, such as species identity and contextual information. The goal of this study was to determine whether bats adjust their echolocation call structures to mutually recognize and communicate when they encounter the bats from different colonies. We used the intermediate leaf-nosed bats (Hipposideros larvatus) as a case study to investigate the variations of echolocation calls when bats from one colony were introduced singly into the home cage of a new colony or two bats from different colonies were cohabitated together for one month. Our experiments showed that the single bat individual altered its peak frequency of echolocation calls to approach the call of new colony members and two bats from different colonies adjusted their call frequencies toward each other to a similar frequency after being chronically cohabitated. These results indicate that the 'compromise' in echolocation calls might be used to ensure effective mutual communication among bats.

  4. Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat, Rhinolophus capensis (Chiroptera: Rhinolophidae).

    Science.gov (United States)

    Odendaal, Lizelle J; Jacobs, David S

    2011-05-01

    We investigated intraspecific variation in echolocation calls of the Cape horseshoe bat, Rhinolophus capensis, by comparing echolocation and associated morphological parameters among individuals from three populations of this species. The populations were situated in the center and at the western and eastern limits of the distribution of R. capensis. The latter two populations were situated in ecotones between vegetation biomes. Ecotone populations deviated slightly from the allometric relationship between body size and peak frequency for the genus, and there was no relationship between these variables within R. capensis. Nasal chamber length was the best predictor of peak frequency but not correlated with body size. The evolution of echolocation thus appears to have been uncoupled from body size in R. capensis. Furthermore, females used higher frequencies than males, which imply a potential social role for peak frequency. The differences in peak frequency may have originated from random founder effects and then compounded by genetic drift and/or natural selection. The latter may have acted directly on peak frequency altering skull parameters involved in echolocation independently of body size, resulting in the evolution of local acoustic signatures.

  5. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (chiroptera).

    Science.gov (United States)

    Eick, Geeta N; Jacobs, David S; Matthee, Conrad A

    2005-09-01

    Bats (Order Chiroptera), the only mammals capable of powered flight and sophisticated laryngeal echolocation, represent one of the most species-rich and ubiquitous orders of mammals. However, phylogenetic relationships within this group are poorly resolved. A robust evolutionary tree of Chiroptera is essential for evaluating the phylogeny of echolocation within Chiroptera, as well as for understanding their biogeographical history. We generated 4 kb of sequence data from portions of four novel nuclear intron markers for multiple representatives of 17 of the 18 recognized extant bat families, as well as the putative bat family Miniopteridae. Three echolocation-call characters were examined by mapping them onto the combined topology: (1) high-duty cycle versus low-duty cycle, (2) high-intensity versus low-intensity call emission, and (3) oral versus nasal emission. Echolocation seems to be highly convergent, and the mapping of echolocation-call design onto our phylogeny does not appear to resolve the question of whether echolocation had a single or two origins. Fossil taxa may also provide insight into the evolution of bats; we therefore evaluate 195 morphological characters in light of our nuclear DNA phylogeny. All but 24 of the morphological characters were found to be homoplasious when mapped onto the supermatrix topology, while the remaining characters provided insufficient information to reconstruct the placement of the fossil bat taxa with respect to extant families. However, a morphological synapomorphy characterizing the Rhinolophoidea was identified and is suggestive of a separate origin of echolocation in this clade. Dispersal-Vicariance analysis together with a relaxed Bayesian clock were used to evaluate possible biogeographic scenarios that could account for the current distribution pattern of extant bat families. Africa was reconstructed as the center of origin of modern-day bat families.

  6. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi.

    Directory of Open Access Journals (Sweden)

    Sébastien J Puechmaille

    Full Text Available Animals employ an array of signals (i.e. visual, acoustic, olfactory for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1 echolocation peak frequency is an honest signal of body size; (2 females preferentially select males with high frequency calls during the mating season; (3 high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.

  7. Depth Echolocation Learnt by Novice Sighted People.

    Directory of Open Access Journals (Sweden)

    Alessia Tonelli

    Full Text Available Some blind people have developed a unique technique, called echolocation, to orient themselves in unknown environments. More specifically, by self-generating a clicking noise with the tongue, echolocators gain knowledge about the external environment by perceiving more detailed object features. It is not clear to date whether sighted individuals can also develop such an extremely useful technique. To investigate this, here we test the ability of novice sighted participants to perform a depth echolocation task. Moreover, in order to evaluate whether the type of room (anechoic or reverberant and the type of clicking sound (with the tongue or with the hands influences the learning of this technique, we divided the entire sample into four groups. Half of the participants produced the clicking sound with their tongue, the other half with their hands. Half of the participants performed the task in an anechoic chamber, the other half in a reverberant room. Subjects stood in front of five bars, each of a different size, and at five different distances from the subject. The dimension of the bars ensured a constant subtended angle for the five distances considered. The task was to identify the correct distance of the bar. We found that, even by the second session, the participants were able to judge the correct depth of the bar at a rate greater than chance. Improvements in both precision and accuracy were observed in all experimental sessions. More interestingly, we found significantly better performance in the reverberant room than in the anechoic chamber. The type of clicking did not modulate our results. This suggests that the echolocation technique can also be learned by sighted individuals and that room reverberation can influence this learning process. More generally, this study shows that total loss of sight is not a prerequisite for echolocation skills this suggests important potential implications on rehabilitation settings for persons with

  8. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  9. Evolution of high duty cycle echolocation in bats

    DEFF Research Database (Denmark)

    Fenton, M. B.; Faure, P. A.; Ratcliffe, J. M.

    2012-01-01

    Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track...... fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence....... In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements...

  10. Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae.

    Directory of Open Access Journals (Sweden)

    Emanuel C Mora

    2013-06-01

    Full Text Available Echolocating bats use the time elapsed from biosonar pulse emission to the arrival of echo (defined as echo-delay to assess target-distance. Target-distance is represented in the brain by delay-tuned neurons that are classified as either heteroharmonic or homoharmormic. Heteroharmonic neurons respond more strongly to pulse-echo pairs in which the timing of the pulse is given by the fundamental biosonar harmonic while the timing of echoes is provided by one (or several of the higher order harmonics. On the other hand, homoharmonic neurons are tuned to the echo delay between similar harmonics in the emitted pulse and echo. It is generally accepted that heteroharmonic computations are advantageous over homoharmonic computations; i.e. heteroharmonic neurons receive information from call and echo in different frequency-bands which helps to avoid jamming between pulse and echo signals. Heteroharmonic neurons have been found in two species of the family Mormoopidae (Pteronotus parnellii and Pteronotus quadridens and in Rhinolophus rouxi. Recently, it was proposed that heteroharmonic target-range computations are a primitive feature of the genus Pteronotus that was preserved in the evolution of the genus. Here we review recent findings on the evolution of echolocation in Mormoopidae, and try to link those findings to the evolution of the heteroharmonic computation strategy. We stress the hypothesis that the ability to perform heteroharmonic computations evolved separately from the ability of using long constant-frequency echolocation calls, high duty cycle echolocation and Doppler Shift Compensation. Also, we present the idea that heteroharmonic computations might have been of advantage for categorizing prey size, hunting eared insects and living in large conspecific colonies. We make five testable predictions that might help future investigations to clarify the evolution of the heteroharmonic echolocation in Mormoopidae and other families.

  11. Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae

    Science.gov (United States)

    Mora, Emanuel C.; Macías, Silvio; Hechavarría, Julio; Vater, Marianne; Kössl, Manfred

    2013-01-01

    Echolocating bats use the time elapsed from biosonar pulse emission to the arrival of echo (defined as echo-delay) to assess target-distance. Target-distance is represented in the brain by delay-tuned neurons that are classified as either “heteroharmonic” or “homoharmormic.” Heteroharmonic neurons respond more strongly to pulse-echo pairs in which the timing of the pulse is given by the fundamental biosonar harmonic while the timing of echoes is provided by one (or several) of the higher order harmonics. On the other hand, homoharmonic neurons are tuned to the echo delay between similar harmonics in the emitted pulse and echo. It is generally accepted that heteroharmonic computations are advantageous over homoharmonic computations; i.e., heteroharmonic neurons receive information from call and echo in different frequency-bands which helps to avoid jamming between pulse and echo signals. Heteroharmonic neurons have been found in two species of the family Mormoopidae (Pteronotus parnellii and Pteronotus quadridens) and in Rhinolophus rouxi. Recently, it was proposed that heteroharmonic target-range computations are a primitive feature of the genus Pteronotus that was preserved in the evolution of the genus. Here, we review recent findings on the evolution of echolocation in Mormoopidae, and try to link those findings to the evolution of the heteroharmonic computation strategy (HtHCS). We stress the hypothesis that the ability to perform heteroharmonic computations evolved separately from the ability of using long constant-frequency echolocation calls, high duty cycle echolocation, and Doppler Shift Compensation. Also, we present the idea that heteroharmonic computations might have been of advantage for categorizing prey size, hunting eared insects, and living in large conspecific colonies. We make five testable predictions that might help future investigations to clarify the evolution of the heteroharmonic echolocation in Mormoopidae and other families. PMID

  12. Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts

    Science.gov (United States)

    Thaler, Lore; Arnott, Stephen R.; Goodale, Melvyn A.

    2011-01-01

    Background A small number of blind people are adept at echolocating silent objects simply by producing mouth clicks and listening to the returning echoes. Yet the neural architecture underlying this type of aid-free human echolocation has not been investigated. To tackle this question, we recruited echolocation experts, one early- and one late-blind, and measured functional brain activity in each of them while they listened to their own echolocation sounds. Results When we compared brain activity for sounds that contained both clicks and the returning echoes with brain activity for control sounds that did not contain the echoes, but were otherwise acoustically matched, we found activity in calcarine cortex in both individuals. Importantly, for the same comparison, we did not observe a difference in activity in auditory cortex. In the early-blind, but not the late-blind participant, we also found that the calcarine activity was greater for echoes reflected from surfaces located in contralateral space. Finally, in both individuals, we found activation in middle temporal and nearby cortical regions when they listened to echoes reflected from moving targets. Conclusions These findings suggest that processing of click-echoes recruits brain regions typically devoted to vision rather than audition in both early and late blind echolocation experts. PMID:21633496

  13. High Frequency Components in Bottlenose Dolphin Echolocation Signals

    National Research Council Canada - National Science Library

    Toland, Ronald

    1998-01-01

    .... To assess the importance of these high frequencies in dolphin echolocation and target identification, experiments were performed in which an acoustic filter, used to suppress the high frequencies...

  14. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    Science.gov (United States)

    Denzinger, Annette; Schnitzler, Hans-Ulrich

    2013-01-01

    Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore, we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats' echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies patterns of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning. PMID:23840190

  15. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    Directory of Open Access Journals (Sweden)

    Annette eDenzinger

    2013-07-01

    Full Text Available Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats’ echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies pattern of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning.

  16. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats.

    Science.gov (United States)

    Denzinger, Annette; Schnitzler, Hans-Ulrich

    2013-01-01

    Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore, we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats' echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies patterns of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning.

  17. Intense ultrasonic clicks from echolocating toothed whales do not elicit anti-predator responses or debilitate the squid Loligo pealeii

    DEFF Research Database (Denmark)

    Wilson, Maria; Hanlon, R.T.; Tyack, P.L.

    2007-01-01

    an evolutionary selection pressure on cephalopods to develop a mechanism for detecting and evading sound-emitting toothed whale predators. Ultrasonic detection has evolved in some insects to avoid echolocating bats, and it can be hypothesized that cephalopods might have evolved similar ultrasound detection......Toothed whales use intense ultrasonic clicks to echolocate prey and it has been hypothesized that they also acoustically debilitate their prey with these intense sound pulses to facilitate capture. Cephalopods are an important food source for toothed whales, and there has probably been...... as an anti-predation measure. We test this hypothesis in the squid Loligo pealeii in a playback experiment using intense echolocation clicks from two squid-eating toothed whale species. Twelve squid were exposed to clicks at two repetition rates (16 and 125 clicks per second) with received sound pressure...

  18. Echolocation by the harbour porpoise: Life in coastal waters

    Directory of Open Access Journals (Sweden)

    Lee Anton Miller

    2013-04-01

    Full Text Available The harbour porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbour porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using this frequency band for biosonar signals.

  19. The Acuity of Echolocation: Spatial Resolution in Sighted Persons Compared to the Performance of an Expert Who Is Blind

    Science.gov (United States)

    Teng, Santani; Whitney, David

    2011-01-01

    Echolocation is a specialized application of spatial hearing that uses reflected auditory information to localize objects and represent the external environment. Although it has been documented extensively in nonhuman species, such as bats and dolphins, its use by some persons who are blind as a navigation and object-identification aid has…

  20. Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats

    Science.gov (United States)

    Luo, Jinhong; Koselj, Klemen; Zsebők, Sándor; Siemers, Björn M.; Goerlitz, Holger R.

    2014-01-01

    Climate change impacts the biogeography and phenology of plants and animals, yet the underlying mechanisms are little known. Here, we present a functional link between rising temperature and the prey detection ability of echolocating bats. The maximum distance for echo-based prey detection is physically determined by sound attenuation. Attenuation is more pronounced for high-frequency sound, such as echolocation, and is a nonlinear function of both call frequency and ambient temperature. Hence, the prey detection ability, and thus possibly the foraging efficiency, of echolocating bats and susceptible to rising temperatures through climate change. Using present-day climate data and projected temperature rises, we modelled this effect for the entire range of bat call frequencies and climate zones around the globe. We show that depending on call frequency, the prey detection volume of bats will either decrease or increase: species calling above a crossover frequency will lose and species emitting lower frequencies will gain prey detection volume, with crossover frequency and magnitude depending on the local climatic conditions. Within local species assemblages, this may cause a change in community composition. Global warming can thus directly affect the prey detection ability of individual bats and indirectly their interspecific interactions with competitors and prey. PMID:24335559

  1. Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats.

    Science.gov (United States)

    Luo, Jinhong; Koselj, Klemen; Zsebok, Sándor; Siemers, Björn M; Goerlitz, Holger R

    2014-02-06

    Climate change impacts the biogeography and phenology of plants and animals, yet the underlying mechanisms are little known. Here, we present a functional link between rising temperature and the prey detection ability of echolocating bats. The maximum distance for echo-based prey detection is physically determined by sound attenuation. Attenuation is more pronounced for high-frequency sound, such as echolocation, and is a nonlinear function of both call frequency and ambient temperature. Hence, the prey detection ability, and thus possibly the foraging efficiency, of echolocating bats and susceptible to rising temperatures through climate change. Using present-day climate data and projected temperature rises, we modelled this effect for the entire range of bat call frequencies and climate zones around the globe. We show that depending on call frequency, the prey detection volume of bats will either decrease or increase: species calling above a crossover frequency will lose and species emitting lower frequencies will gain prey detection volume, with crossover frequency and magnitude depending on the local climatic conditions. Within local species assemblages, this may cause a change in community composition. Global warming can thus directly affect the prey detection ability of individual bats and indirectly their interspecific interactions with competitors and prey.

  2. Bats aloft: Variation in echolocation call structure at high altitudes

    Science.gov (United States)

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  3. No genome-wide protein sequence convergence for echolocation.

    Science.gov (United States)

    Zou, Zhengting; Zhang, Jianzhi

    2015-05-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Evolution of high duty cycle echolocation in bats.

    Science.gov (United States)

    Fenton, M Brock; Faure, Paul A; Ratcliffe, John M

    2012-09-01

    Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence. In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing Doppler-shifted echoes, were essential to the evolution of HDC echolocation because they allowed bats to detect, lock onto and track fluttering targets. This advantage was especially important in habitats with dense vegetation that produce overlapping, time-smeared echoes (i.e. background acoustic clutter). We make four specific, testable predictions arising from this hypothesis.

  5. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba’s Fruit Eating Bat, Carollia perspicillata

    Science.gov (United States)

    Kordes, Sebastian; Kössl, Manfred

    2017-01-01

    Abstract For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units’ responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams. PMID:29242823

  6. New model for gain control of signal intensity to object distance in echolocating bats

    DEFF Research Database (Denmark)

    Nørum, Ulrik; Brinkløv, Signe; Surlykke, Annemarie

    2012-01-01

    Echolocating bats emit ultrasonic calls and listen for the returning echoes to orient and localize prey in darkness. The emitted source level, SL (estimated signal intensity 10 cm from the mouth), is adjusted dynamically from call to call in response to sensory feedback as bats approach objects....... A logarithmic relationship of SL=20 log(10)(x), i.e. 6 dB output reduction per halving of distance, x, has been proposed as a model for the relationship between emitted intensity and object distance, not only for bats but also for echolocating toothed whales. This logarithmic model suggests that the approaching......=SL(max)-ae(-)(bx). In addition to providing a method for estimating maximum output, the new model also offers a tool for estimating a minimum detection distance where intensity compensation starts. We tested the new exponential model against the 'conventional' logarithmic model on data from five bat species. The new model...

  7. Classification of echolocation clicks from odontocetes in the Southern California Bight.

    Science.gov (United States)

    Roch, Marie A; Klinck, Holger; Baumann-Pickering, Simone; Mellinger, David K; Qui, Simon; Soldevilla, Melissa S; Hildebrand, John A

    2011-01-01

    This study presents a system for classifying echolocation clicks of six species of odontocetes in the Southern California Bight: Visually confirmed bottlenose dolphins, short- and long-beaked common dolphins, Pacific white-sided dolphins, Risso's dolphins, and presumed Cuvier's beaked whales. Echolocation clicks are represented by cepstral feature vectors that are classified by Gaussian mixture models. A randomized cross-validation experiment is designed to provide conditions similar to those found in a field-deployed system. To prevent matched conditions from inappropriately lowering the error rate, echolocation clicks associated with a single sighting are never split across the training and test data. Sightings are randomly permuted before assignment to folds in the experiment. This allows different combinations of the training and test data to be used while keeping data from each sighting entirely in the training or test set. The system achieves a mean error rate of 22% across 100 randomized three-fold cross-validation experiments. Four of the six species had mean error rates lower than the overall mean, with the presumed Cuvier's beaked whale clicks showing the best performance (<2% error rate). Long-beaked common and bottlenose dolphins proved the most difficult to classify, with mean error rates of 53% and 68%, respectively.

  8. Intense echolocation calls from two 'whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae).

    Science.gov (United States)

    Brinkløv, Signe; Kalko, Elisabeth K V; Surlykke, Annemarie

    2009-01-01

    Bats use echolocation to exploit a variety of habitats and food types. Much research has documented how frequency-time features of echolocation calls are adapted to acoustic constraints imposed by habitat and prey but emitted sound intensities have received little attention. Bats from the family of Phyllostomidae have been categorised as low intensity (whispering) gleaners, assumed to emit echolocation calls with low source levels (approximately 70 dB SPL measured 10 cm from the bat's mouth). We used a multi-microphone array to determine intensities emitted from two phyllostomid bats from Panamá with entirely different foraging strategies. Macrophyllum macrophyllum hunts insects on the wing and gaffs them with its tail membrane and feet from or above water surfaces whereas Artibeus jamaicensis picks fruit from vegetation with its mouth. Recordings were made from bats foraging on the wing in a flight room. Both species emitted surprisingly intense signals with maximum source levels of 105 dB SPL r.m.s. for M. macrophyllum and 110 dB SPL r.m.s. for A. jamaicensis, hence much louder than a ;whisper'. M. macrophyllum was consistently loud (mean source level 101 dB SPL) whereas A. jamaicensis showed a much more variable output, including many faint calls and a mean source level of 96 dB SPL. Our results support increasing evidence that echolocating bats in general are much louder than previously thought. We discuss the importance of loud calls and large output flexibility for both species in an ecological context.

  9. Patterns and causes of geographic variation in bat echolocation pulses.

    Science.gov (United States)

    Jiang, Tinglei; Wu, Hui; Feng, Jiang

    2015-05-01

    Evolutionary biologists have a long-standing interest in how acoustic signals in animals vary geographically, because divergent ecology and sensory perception play an important role in speciation. Geographic comparisons are valuable in determining the factors that influence divergence of acoustic signals. Bats are social mammals and they depend mainly on echolocation pulses to locate prey, to navigate and to communicate. Mounting evidence shows that geographic variation of bat echolocation pulses is common, with a mean 5-10 kHz differences in peak frequency, and a high level of individual variation may be nested in this geographical variation. However, understanding the geographic variation of echolocation pulses in bats is very difficult, because of differences in sample and statistical analysis techniques as well as the variety of factors shaping the vocal geographic evolution. Geographic differences in echolocation pulses of bats generally lack latitudinal, longitudinal and elevational patterns, and little is known about vocal dialects. Evidence is accumulating to support the fact that geographic variation in echolocation pulses of bats may be caused by genetic drift, cultural drift, ecological selection, sexual selection and social selection. Future studies could relate geographic differences in echolocation pulses to social adaptation, vocal learning strategies and patterns of dispersal. In addition, new statistical techniques and acoustic playback experiments may help to illustrate the causes and consequences of the geographic evolution of echolocation pulse in bats. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  10. Audiomotor integration for active sensing in the echolocating bat, Eptesicus fuscus

    Science.gov (United States)

    Moss, Cynthia F.; Sinha, Shiva R.; Ghose, Kaushik

    2003-10-01

    Echolocating bats probe the environment with sonar signals that change as they seek, pursue and intercept insect prey on the wing. Coordinating its sonar vocalizations with flight dynamics in response to changing echo information, the bat exhibits a dazzling display of sensorimotor integration. Our work aims at understanding the mechanisms supporting audiomotor integration for echolocation in the FM-bat, Eptesicus fuscus. Behavioral studies measure adaptive responses of free-flying bats engaged in complex spatial tasks. The directional aim of the bat's sonar beam and temporal patterning of cries provide explicit data on the motor commands that feed directly back to the auditory system for spatially-guided behavior. Neural studies focus on the superior colliculus (SC), a midbrain structure implicated in species-specific orienting behaviors. A population of SC neurons shows echo-delay tuning, a response property believed to play a role in target range coding. Microstimulation of the SC elicits head and pinna movements, along with sonar vocalizations. SC recordings from tethered, vocalizing bats reveal bursts of neural activity preceding each sonar cry. Collectively, these results suggest that the bat SC plays a functional role in the auditory information processing and orienting behaviors that operate together in echolocation. [Work supported by NSF, NIMH and Whitehall Foundation.

  11. The diet of bats from Southeastern Brazil: the relation to echolocation and foraging behaviour

    Directory of Open Access Journals (Sweden)

    M. Brock Fenton

    1999-01-01

    Full Text Available In this study the incidence of moths and beetles was examined from feces samples of bats that use different foraging behaviors. Twenty sites around the Fazenda Intervales, a Field Research Station located in São Paulo State, in southeastern Brazil were sampled. Feces were collected from bats caught in mist nets, Turtle Traps or hand nets and, in one case, from beneath a roost. Feces samples were taken from six species of bats: Micronycteris megalotis (Gray, 1842, Mimon bennettii (Gray, 1838, Furipterus horrens (F. Cuvier, 1828, Myotis riparius Handley, 1960, Myotis ruber (E. Geoffroy, 1806 and Histiotus velalus (I. Geoffroy, 1824. To record and describe the frequencies dominating bat echolocation calls, an Anabat II bat detector coupled with an Anabat ZCA interfaces and DOS laptop computers were used. The data show that Furipterus horrens feeds extensively on moths, as predicted from the features of its echolocation calls. Gleaning bats, whose echolocation calls are much less conspicuous to moths take a wide range of insect (and other prey.

  12. Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus).

    Science.gov (United States)

    Wahlberg, Magnus; Jensen, Frants H; Soto, Natacha Aguilar; Beedholm, Kristian; Bejder, Lars; Oliveira, Cláudia; Rasmussen, Marianne; Simon, Malene; Villadsgaard, Anne; Madsen, Peter T

    2011-10-01

    The Indian Ocean and Atlantic bottlenose dolphins (Tursiops aduncus and Tursiops truncatus) are among the best studied echolocating toothed whales. However, almost all echolocation studies on bottlenose dolphins have been made with captive animals, and the echolocation signals of free-ranging animals have not been quantified. Here, biosonar source parameters from wild T. aduncus and T. truncatus were measured with linear three- and four-hydrophone arrays in four geographic locations. The two species had similar source parameters, with source levels of 177-228 dB re 1 μPa peak to peak, click durations of 8-72 μs, centroid frequencies of 33-109 kHz and rms bandwidths between 23 and 54 kHz. T. aduncus clicks had a higher frequency emphasis than T. truncatus. The transmission directionality index was up to 3 dB higher for T. aduncus (29 dB) as compared to T. truncatus (26 dB). The high directionality of T. aduncus does not appear to be only a physical consequence of a higher frequency emphasis in clicks, but may also be caused by differences in the internal properties of the sound production system. © 2011 Acoustical Society of America

  13. Spatial orientation of different frequencies within the echolocation beam of a Tursiops truncatus and Pseudorca crassidens.

    Science.gov (United States)

    Ibsen, Stuart D; Nachtigall, Paul E; Krause-Nehring, Jacqueline; Kloepper, Laura; Breese, Marlee; Li, Songhai; Vlachos, Stephanie

    2012-08-01

    A two-dimensional array of 16 hydrophones was created to map the spatial distribution of different frequencies within the echolocation beam of a Tursiops truncatus and a Pseudorca crassidens. It was previously shown that both the Tursiops and Pseudorca only paid attention to frequencies between 29 and 42 kHz while echolocating. Both individuals tightly focused the 30 kHz frequency and the spatial location of the focus was consistently pointed toward the target. At 50 kHz the beam was less focused and less precisely pointed at the target. At 100 kHz the focus was often completely lost and was not pointed at the target. This indicates that these individuals actively focused the beam toward the target only in the frequency range they paid attention to. Frequencies outside this range were left unfocused and undirected. This focusing was probably achieved through sensorimotor control of the melon morphology and nasal air sacs. This indicates that both morphologically different species can control the spatial distribution of different frequency ranges within the echolocation beam to create consistent ensonation of desired targets.

  14. 'No cost of echolocation for flying bats' revisited.

    Science.gov (United States)

    Voigt, Christian C; Lewanzik, Daniel

    2012-08-01

    Echolocation is energetically costly for resting bats, but previous experiments suggested echolocation to come at no costs for flying bats. Yet, previous studies did not investigate the relationship between echolocation, flight speed, aerial manoeuvres and metabolism. We re-evaluated the 'no-cost' hypothesis, by quantifying the echolocation pulse rate, the number of aerial manoeuvres (landings and U-turns), and the costs of transport in the 5-g insectivorous bat Rhogeessa io (Vespertilionidae). On average, bats (n = 15) travelled at 1.76 ± 0.36 m s⁻¹ and performed 11.2 ± 6.1 U-turns and 2.8 ± 2.9 ground landings when flying in an octagonal flight cage. Bats made more U-turns with decreasing wing loading (body weight divided by wing area). At flight, bats emitted 19.7 ± 2.7 echolocation pulses s⁻¹ (range 15.3-25.8 pulses s⁻¹), and metabolic rate averaged 2.84 ± 0.95 ml CO₂ min⁻¹, which was more than 16 times higher than at rest. Bats did not echolocate while not engaged in flight. Costs of transport were not related to the rate of echolocation pulse emission or the number of U-turns, but increased with increasing number of landings; probably as a consequence of slower travel speed when staying briefly on ground. Metabolic power of flight was lower than predicted for R. io under the assumption that energetic costs of echolocation call production is additive to the aerodynamic costs of flight. Results of our experiment are consistent with the notion that echolocation does not add large energetic costs to the aerodynamic power requirements of flight in bats.

  15. Echolocation behavior of franciscana dolphins (Pontoporia blainvillei) in the wild.

    Science.gov (United States)

    Melcón, Mariana L; Failla, Mauricio; Iñíguez, Miguel A

    2012-06-01

    Franciscana dolphins are small odontocetes hard to study in the field. In particular, little is known on their echolocation behavior in the wild. In this study we recorded 357 min and analyzed 1019 echolocation signals in the Rio Negro Estuary, Argentina. The clicks had a peak frequency at 139 kHz, and a bandwidth of 19 kHz, ranging from 130 to 149 kHz. This is the first study describing echolocation signals of franciscana dolphins in the wild, showing the presence of narrow-band high frequency signals in these dolphins. Whether they use other vocalizations to communicate or not remains uncertain.

  16. A Device for Human Ultrasonic Echolocation.

    Science.gov (United States)

    Sohl-Dickstein, Jascha; Teng, Santani; Gaub, Benjamin M; Rodgers, Chris C; Li, Crystal; DeWeese, Michael R; Harper, Nicol S

    2015-06-01

    We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system, and 2) richer in object and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. The echoes of ultrasonic pulses were recorded and time stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments, in which the locations of echo-reflective surfaces were judged using these time-stretched echoes. Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However, trained subjects demonstrated an ability to judge elevation as well. This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment.

  17. ‘Compromise’ in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus)

    Science.gov (United States)

    Chen, Yi; Liu, Qi; Su, Qianqian; Sun, Yunxiao; Peng, Xingwen; He, Xiangyang; Zhang, Libiao

    2016-01-01

    Each animal population has its own acoustic signature which facilitates identification, communication and reproduction. The sonar signals of bats can convey social information, such as species identity and contextual information. The goal of this study was to determine whether bats adjust their echolocation call structures to mutually recognize and communicate when they encounter the bats from different colonies. We used the intermediate leaf-nosed bats (Hipposideros larvatus) as a case study to investigate the variations of echolocation calls when bats from one colony were introduced singly into the home cage of a new colony or two bats from different colonies were cohabitated together for one month. Our experiments showed that the single bat individual altered its peak frequency of echolocation calls to approach the call of new colony members and two bats from different colonies adjusted their call frequencies toward each other to a similar frequency after being chronically cohabitated. These results indicate that the ‘compromise’ in echolocation calls might be used to ensure effective mutual communication among bats. PMID:27029005

  18. Neurophysiological findings relevant to echolocation in marine animals

    Science.gov (United States)

    Bullock, T. H.; Ridgway, S. H.

    1972-01-01

    A review of echolocation mechanisms in marine mammals, chiefly porpoises, is given. Data cover peripheral auditory and central neurophysiological specializations favorable to the analysis of echolocating clicks and their echoes. Conclusions show (1) signals are received from 50 up to at least 135 kHz, (2) sound is received through the mandible skin, and (3) the midbrain sites are insensitive to low frequencies (below 6 kHz).

  19. Automated classification of dolphin echolocation click types from the Gulf of Mexico.

    Science.gov (United States)

    Frasier, Kaitlin E; Roch, Marie A; Soldevilla, Melissa S; Wiggins, Sean M; Garrison, Lance P; Hildebrand, John A

    2017-12-01

    Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso's dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori.

  20. Ontogeny of the larynx and flight ability in Jamaican fruit bats (Phyllostomidae) with considerations for the evolution of echolocation.

    Science.gov (United States)

    Carter, Richard T; Adams, Rick A

    2014-07-01

    Echolocating bats have adaptations of the larynx such as hypertrophied intrinsic musculature and calcified or ossified cartilages to support sonar emission. We examined growth and development of the larynx relative to developing flight ability in Jamaican fruit bats to assess how changes in sonar production are coordinated with the onset of flight during ontogeny as a window for understanding the evolutionary relationships between these systems. In addition, we compare the extent of laryngeal calcification in an echolocating shrew species (Sorex vagrans) and the house mouse (Mus musculus), to assess what laryngeal chiropteran adaptations are associated with flight versus echolocation. Individuals were categorized into one of five developmental flight stages (flop, flutter, flap, flight, and adult) determined by drop-tests. Larynges were cleared and stained with alcian blue and alizarin red, or sectioned and stained with hematoxylin and eosin. Our results showed calcification of the cricoid cartilage in bats, represented during the flap stage and this increased significantly in individuals at the flight stage. Thyroid and arytenoid cartilages showed no evidence of calcification and neither cricoid nor thyroid showed significant increases in rate of growth relative to the larynx as a whole. The physiological cross-sectional area of the cricothyroid muscles increased significantly at the flap stage. Shrew larynges showed signs of calcification along the margins of the cricoid and thyroid cartilages, while the mouse larynx did not. These data suggest the larynx of echolocating bats becomes stronger and sturdier in tandem with flight development, indicating possible developmental integration between flight and echolocation. © 2014 Wiley Periodicals, Inc.

  1. Learning to echolocate in sighted people: A correlational study on attention, working memory and spatial abilities

    NARCIS (Netherlands)

    Ekkel, M.R.; Lier, R.J. van; Steenbergen, B.

    2017-01-01

    Echolocation can be beneficial for the orientation and mobility of visually impaired people. Research has shown considerable individual differences for acquiring this skill. However, individual characteristics that affect the learning of echolocation are largely unknown. In the present study, we

  2. Echolocating bats use future-target information for optimal foraging.

    Science.gov (United States)

    Fujioka, Emyo; Aihara, Ikkyu; Sumiya, Miwa; Aihara, Kazuyuki; Hiryu, Shizuko

    2016-04-26

    When seeing or listening to an object, we aim our attention toward it. While capturing prey, many animal species focus their visual or acoustic attention toward the prey. However, for multiple prey items, the direction and timing of attention for effective foraging remain unknown. In this study, we adopted both experimental and mathematical methodology with microphone-array measurements and mathematical modeling analysis to quantify the attention of echolocating bats that were repeatedly capturing airborne insects in the field. Here we show that bats select rational flight paths to consecutively capture multiple prey items. Microphone-array measurements showed that bats direct their sonar attention not only to the immediate prey but also to the next prey. In addition, we found that a bat's attention in terms of its flight also aims toward the next prey even when approaching the immediate prey. Numerical simulations revealed a possibility that bats shift their flight attention to control suitable flight paths for consecutive capture. When a bat only aims its flight attention toward its immediate prey, it rarely succeeds in capturing the next prey. These findings indicate that bats gain increased benefit by distributing their attention among multiple targets and planning the future flight path based on additional information of the next prey. These experimental and mathematical studies allowed us to observe the process of decision making by bats during their natural flight dynamics.

  3. What a plant sounds like: the statistics of vegetation echoes as received by echolocating bats.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    2009-07-01

    Full Text Available A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes.

  4. Variability in echolocation call intensity in a community of horseshoe bats: a role for resource partitioning or communication?

    Science.gov (United States)

    Schuchmann, Maike; Siemers, Björn M

    2010-09-17

    Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may

  5. The acuity of echolocation: Spatial resolution in the sighted compared to expert performance

    OpenAIRE

    Teng, Santani; Whitney, David

    2011-01-01

    Compared with the echolocation performance of a blind expert, sighted novices rapidly learned size and position discrimination with surprising precision. We use a novel task to characterize the population distribution of echolocation skill in the sighted and report the highest known human echolocation acuity in our expert subject.

  6. Drinking and flying: does alcohol consumption affect the flight and echolocation performance of phyllostomid bats?

    Science.gov (United States)

    Orbach, Dara N; Veselka, Nina; Dzal, Yvonne; Lazure, Louis; Fenton, M Brock

    2010-02-01

    In the wild, frugivorous and nectarivorous bats often eat fermenting fruits and nectar, and thus may consume levels of ethanol that could induce inebriation. To understand if consumption of ethanol by bats alters their access to food and general survival requires examination of behavioural responses to its ingestion, as well as assessment of interspecific variation in those responses. We predicted that bats fed ethanol would show impaired flight and echolocation behaviour compared to bats fed control sugar water, and that there would be behavioural differences among species. We fed wild caught Artibeus jamaicensis, A. lituratus, A. phaeotis, Carollia sowelli, Glossophaga soricina, and Sturnira lilium (Chiroptera, Phyllostomidae) sugar water (44 g of table sugar in 500 ml of water) or sugar water with ethanol before challenging them to fly through an obstacle course while we simultaneously recorded their echolocation calls. We used bat saliva, a non-invasive proxy, to measure blood ethanol concentrations ranging from 0 to >0.3% immediately before flight trials. Flight performance and echolocation behaviour were not significantly affected by consumption of ethanol, but species differed in their blood alcohol concentrations after consuming it. The bats we studied display a tolerance for ethanol that could have ramifications for the adaptive radiation of frugivorous and nectarivorous bats by allowing them to use ephemeral food resources over a wide span of time. By sampling across phyllostomid genera, we show that patterns of apparent ethanol tolerance in New World bats are broad, and thus may have been an important early step in the evolution of frugivory and nectarivory in these animals.

  7. Crossmodal Transfer of Object Information in Human Echolocation

    Directory of Open Access Journals (Sweden)

    Santani Teng

    2011-10-01

    Full Text Available In active echolocation, reflections from self-generated acoustic pulses are used to represent the external environment. This ability has been described in some blind humans to aid in navigation and obstacle perception[1-4]. Echoic object representation has been described in echolocating bats and dolphins[5,6], but most prior work in humans has focused on navigation or other basic spatial tasks[4,7,8]. Thus, the nature of echoic object information received by human practitioners remains poorly understood. In two match-to-sample experiments, we tested the ability of five experienced blind echolocators to identify objects haptically which they had previously sampled only echoically. In each trial, a target object was presented on a platform and subjects sampled it using echolocation clicks. The target object was then removed and re-presented along with a distractor object. Only tactile sampling was allowed in identifying the target. Subjects were able to identify targets at greater than chance levels among both common household objects (p < .001 and novel objects constructed from plastic blocks (p = .018. While overall accuracy was indicative of high task difficulty, our results suggest that objects sampled by echolocation are recognizable by shape, and that this representation is available across sensory modalities.

  8. Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey.

    Science.gov (United States)

    Schmieder, Daniela A; Kingston, Tigga; Hashim, Rosli; Siemers, Björn M

    2010-10-23

    Both mammals and birds experience a performance trade-off between producing vocalizations with high bandwidths and at high repetition rate. Echolocating bats drastically increase repetition rate from 2-20 calls s(-1) up to about 170 calls s(-1) prior to intercepting airborne prey in order to accurately track prey movement. In turn, bandwidth drops to about 10-30 kHz for the calls of this 'final buzz'. We have now discovered that Southeast Asian rainforest bats (in the vespertilionid subfamilies Kerivoulinae and Murininae) are able to maintain high call bandwidths at very high repetition rates throughout approach to prey. Five species of Kerivoula and Phoniscus produced call bandwidths of between 78 and 170 kHz at repetition rates of 140-200 calls s(-1) and two of Murina at 80 calls s(-1). The 'typical' and distinct drop in call frequency was present in none of the seven species. This stands in striking contrast to our present view of echolocation during approach to prey in insectivorous bats, which was established largely based on European and American members of the same bat family, the Vespertilionidae. Buzz calls of Kerivoula pellucida had mean bandwidths of 170 kHz and attained maximum starting frequencies of 250 kHz which makes them the most broadband and most highly pitched tonal animal vocalization known to date. We suggest that the extreme vocal performance of the Kerivoulinae and Murininae evolved as an adaptation to echolocating and tracking arthropods in the dense rainforest understorey.

  9. The energy ratio mapping algorithm: a tool to improve the energy-based detection of odontocete echolocation clicks.

    Science.gov (United States)

    Klinck, Holger; Mellinger, David K

    2011-04-01

    The energy ratio mapping algorithm (ERMA) was developed to improve the performance of energy-based detection of odontocete echolocation clicks, especially for application in environments with limited computational power and energy such as acoustic gliders. ERMA systematically evaluates many frequency bands for energy ratio-based detection of echolocation clicks produced by a target species in the presence of the species mix in a given geographic area. To evaluate the performance of ERMA, a Teager-Kaiser energy operator was applied to the series of energy ratios as derived by ERMA. A noise-adaptive threshold was then applied to the Teager-Kaiser function to identify clicks in data sets. The method was tested for detecting clicks of Blainville's beaked whales while rejecting echolocation clicks of Risso's dolphins and pilot whales. Results showed that the ERMA-based detector correctly identified 81.6% of the beaked whale clicks in an extended evaluation data set. Average false-positive detection rate was 6.3% (3.4% for Risso's dolphins and 2.9% for pilot whales).

  10. Echolocation in Blainville's beaked whales (Mesoplodon densirostris).

    Science.gov (United States)

    Madsen, P T; de Soto, N Aguilar; Arranz, P; Johnson, M

    2013-06-01

    Here we use sound and movement recording tags to study how deep-diving Blainville's beaked whales (Mesoplodon densirostris) use echolocation to forage in their natural mesopelagic habitat. These whales ensonify thousands of organisms per dive but select only about 25 prey for capture. They negotiate their cluttered environment by radiating sound in a narrow 20° field of view which they sample with 1.5-3 clicks per metre travelled requiring only some 60 clicks to locate, select and approach each prey. Sampling rates do not appear to be defined by the range to individual targets, but rather by the movement of the predator. Whales sample faster when they encounter patches of prey allowing them to search new water volumes while turning rapidly to stay within a patch. This implies that the Griffin search-approach-capture model of biosonar foraging must be expanded to account for sampling behaviours adapted to the overall prey distribution. Beaked whales can classify prey at more than 15 m range adopting stereotyped motor patterns when approaching some prey. This long detection range relative to swimming speed facilitates a deliberate mode of sensory-motor operation in which prey and capture tactics can be selected to optimize energy returns during long breath-hold dives.

  11. Auditory cortex of newborn bats is prewired for echolocation.

    Science.gov (United States)

    Kössl, Manfred; Voss, Cornelia; Mora, Emanuel C; Macias, Silvio; Foeller, Elisabeth; Vater, Marianne

    2012-04-10

    Neuronal computation of object distance from echo delay is an essential task that echolocating bats must master for spatial orientation and the capture of prey. In the dorsal auditory cortex of bats, neurons specifically respond to combinations of short frequency-modulated components of emitted call and delayed echo. These delay-tuned neurons are thought to serve in target range calculation. It is unknown whether neuronal correlates of active space perception are established by experience-dependent plasticity or by innate mechanisms. Here we demonstrate that in the first postnatal week, before onset of echolocation and flight, dorsal auditory cortex already contains functional circuits that calculate distance from the temporal separation of a simulated pulse and echo. This innate cortical implementation of a purely computational processing mechanism for sonar ranging should enhance survival of juvenile bats when they first engage in active echolocation behaviour and flight.

  12. Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation.

    Science.gov (United States)

    Kuc, Roman

    2010-11-01

    A protruding noseleaf and concave pinna structures suggest that some bats may use these to enhance their echolocation capabilities. This paper considers two possible mechanisms that each exploit the combination of direct and delayed acoustic paths to achieve more complex emission or sensitivity echolocation patterns. The first is an emission mechanism, in which the protruding noseleaf vibrates to emit sound in both the forward and backward directions, and pinna structures reflect the backward emission to enhance the forward beam. The second is a reception mechanism, which has a direct echo path to the ear canal and a delayed path involving pinna structures reflecting onto the noseleaf and then into the ear canal. A model using Davis' Round-eared Bat illustrates that such direct and delayed acoustic paths provide target elevation cues. The model demonstrates the delayed pinna component can increase the on-axis emission strength, narrow the beam width, and sculpt frequency-dependent beam patterns useful for echolocation.

  13. New model for gain control of signal intensity to object distance in echolocating bats.

    Science.gov (United States)

    Nørum, Ulrik; Brinkløv, Signe; Surlykke, Annemarie

    2012-09-01

    Echolocating bats emit ultrasonic calls and listen for the returning echoes to orient and localize prey in darkness. The emitted source level, SL (estimated signal intensity 10 cm from the mouth), is adjusted dynamically from call to call in response to sensory feedback as bats approach objects. A logarithmic relationship of SL=20 log(10)(x), i.e. 6 dB output reduction per halving of distance, x, has been proposed as a model for the relationship between emitted intensity and object distance, not only for bats but also for echolocating toothed whales. This logarithmic model suggests that the approaching echolocator maintains a constant intensity impinging upon the object, but it also implies ever-increasing source levels with distance, a physical and biological impossibility. We developed a new model for intensity compensation with an exponential rise to the maximum source level: SL=SL(max)-ae(-)(bx). In addition to providing a method for estimating maximum output, the new model also offers a tool for estimating a minimum detection distance where intensity compensation starts. We tested the new exponential model against the 'conventional' logarithmic model on data from five bat species. The new model performed better in 77% of the trials and as good as the conventional model in the rest (23%). We found much steeper rates of compensation when fitting the model to individual rather than pooled data, with slopes often steeper than -20 dB per halving of distance. This emphasizes the importance of analyzing individual events. The results are discussed in light of habitat constraints and the interaction between bats and their eared prey.

  14. The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses

    Science.gov (United States)

    Boonman, Arjan M.; Parsons, Stuart; Jones, Gareth

    2003-01-01

    Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range-Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range-Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range-Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.

  15. Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents.

    Science.gov (United States)

    Hsiao, Chun-Jen; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wu, Chung-Hsin; Jen, Philip Hung-Sun

    2016-08-17

    Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.

  16. In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus = Atividade in vitro do ácido 2-piridinocarboxílico em tripanossoma do subgênero Schizotrypanum isolado do morcego Phyllostomus hastatus

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Ceridóreo Corrêa

    2011-09-01

    Full Text Available The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 ƒÊg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 ƒÊg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was275 ƒÊg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a competitive inhibition. Furthermore, two anti-Trypanosoma (Schizotrypanum cruzi drugs were also evaluated with regard to bat trypanosome growth. Benznidazole, at 50 ƒÊg mL-1, inhibited epimastigote growth by 90% after 12 days incubation. Nifurtimox, at the same concentration, caused 96% growth inhibition after four days incubation. Corroborating a previous study, bat trypanosomes are a good model for screening new trypanocidal compounds. Moreover, they can be used to study many biological processes common to human pathogenic trypanosomatids.O efeito do acido 2- piridinocarboxilico (acido picolinico sobre um tripanossoma do subgenero Schizotrypanum isolado do morcego Phyllostomus hastatus foi determinado neste estudo. O acido picolinico, na concentracao de 50 ƒÊg mL-1, inibiu 99% do crescimento de epimastigotas apos 12 dias de incubacao. Alem disso, houve um decrescimo de 50 e 100% na mobilidade dos tripomastigotas apos 6 e 24h, respectivamente, em presenca de acido picolinico na concentracao de 50 ƒÊg mL-1. A concentracao citotoxica 50% para celulas HEp-2 foi de 275 ƒÊg mL-1 apos quatro dias de incubacao. Esses resultados indicam maior toxicidade contra os tripanossomas. O efeito inibitoriodo acido picolinico sobre o crescimento de

  17. In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus - doi: 10.4025/actascibiolsci.v33i4.6482 In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus - doi: 10.4025/actascibiolsci.v33i4.6482

    Directory of Open Access Journals (Sweden)

    Sueli Fumie Yamada-Ogatta

    2011-09-01

    Full Text Available The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 µg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 µg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was 275 µg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a competitive inhibition. Furthermore, two anti-Trypanosoma (Schizotrypanum cruzi drugs were also evaluated with regard to bat trypanosome growth. Benznidazole, at 50 µg mL-1, inhibited epimastigote growth by 90% after 12 days incubation. Nifurtimox, at the same concentration, caused 96% growth inhibition after four days incubation. Corroborating a previous study, bat trypanosomes are a good model for screening new trypanocidal compounds. Moreover, they can be used to study many biological processes common to human pathogenic trypanosomatids.The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 µg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 µg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was 275 µg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a

  18. Probing the natural scene by echolocation in bats

    Directory of Open Access Journals (Sweden)

    Cynthia F Moss

    2010-08-01

    Full Text Available Bats echolocating in the natural environment face the formidable task of sorting signals from multiple auditory objects, echoes from obstacles, prey and the calls of conspecifics. Successful orientation in a complex environment depends on auditory information processing, along with adaptive vocal-motor behaviors and flight path control, which draw upon 3-D spatial perception, attention and memory. This article reviews field and laboratory studies that document adaptive sonar behaviors of echolocating bats, and point to the fundamental signal parameters they use to track and sort auditory objects in a dynamic environment. We suggest that adaptive sonar behavior provides a window to bats’ perception of complex auditory scenes.

  19. Probing the natural scene by echolocation in bats

    DEFF Research Database (Denmark)

    Moss, Cynthia F; Surlykke, Annemarie

    2010-01-01

    -motor behaviors and flight path control, which draw upon 3-D spatial perception, attention, and memory. This article reviews field and laboratory studies that document adaptive sonar behaviors of echolocating bats, and point to the fundamental signal parameters they use to track and sort auditory objects......Bats echolocating in the natural environment face the formidable task of sorting signals from multiple auditory objects, echoes from obstacles, prey, and the calls of conspecifics. Successful orientation in a complex environment depends on auditory information processing, along with adaptive vocal...... in a dynamic environment. We suggest that adaptive sonar behavior provides a window to bats' perception of complex auditory scenes....

  20. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity

    Science.gov (United States)

    2014-01-01

    Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals

  1. Dolphin "packet" use during long-range echolocation tasks.

    Science.gov (United States)

    Finneran, James J

    2013-03-01

    When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.

  2. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates.

    Science.gov (United States)

    von Benda-Beckmann, Alexander M; Thomas, Len; Tyack, Peter L; Ainslie, Michael A

    2018-02-01

    Passive acoustic monitoring with widely-dispersed hydrophones has been suggested as a cost-effective method to monitor population densities of echolocating marine mammals. This requires an estimate of the area around each receiver over which vocalizations are detected-the "effective detection area" (EDA). In the absence of auxiliary measurements enabling estimation of the EDA, it can be modelled instead. Common simplifying model assumptions include approximating the spectrum of clicks by flat energy spectra, and neglecting the frequency-dependence of sound absorption within the click bandwidth (narrowband assumption), rendering the problem amenable to solution using the sonar equation. Here, it is investigated how these approximations affect the estimated EDA and their potential for biasing the estimated density. EDA was estimated using the passive sonar equation, and by applying detectors to simulated clicks injected into measurements of background noise. By comparing model predictions made using these two approaches for different spectral energy distributions of echolocation clicks, but identical click source energy level and detector settings, EDA differed by up to a factor of 2 for Blainville's beaked whales. Both methods predicted relative density bias due to narrowband assumptions ranged from 5% to more than 100%, depending on the species, detector settings, and noise conditions.

  3. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.

    Science.gov (United States)

    Luo, Jinhong; Moss, Cynthia F

    2017-10-10

    Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vocalizations during call production and has been intensively studied in nonecholocating animals. Audiovocal feedback not only is a necessary component of vocal learning but also guides the control of the spectro-temporal structure of vocalizations. Here, we show that audiovocal feedback is directly involved in the echolocating bat's control of sonar call features. As big brown bats tracked targets from a stationary position, we played acoustic jamming signals, simulating calls of another bat, timed to selectively perturb audiovocal feedback or echo feedback. We found that the bats exhibited the largest call-frequency adjustments when the jamming signals occurred during vocal production. By contrast, bats did not show sonar call-frequency adjustments when the jamming signals coincided with the arrival of target echoes. Furthermore, bats rapidly adapted sonar call design in the first vocalization following the jamming signal, revealing a response latency in the range of 66 to 94 ms. Thus, bats, like songbirds and humans, rely on audiovocal feedback to structure sonar signal design.

  4. Sensing in a noisy world: lessons from auditory specialists, echolocating bats.

    Science.gov (United States)

    Corcoran, Aaron J; Moss, Cynthia F

    2017-12-15

    All animals face the essential task of extracting biologically meaningful sensory information from the 'noisy' backdrop of their environments. Here, we examine mechanisms used by echolocating bats to localize objects, track small prey and communicate in complex and noisy acoustic environments. Bats actively control and coordinate both the emission and reception of sound stimuli through integrated sensory and motor mechanisms that have evolved together over tens of millions of years. We discuss how bats behave in different ecological scenarios, including detecting and discriminating target echoes from background objects, minimizing acoustic interference from competing conspecifics and overcoming insect noise. Bats tackle these problems by deploying a remarkable array of auditory behaviors, sometimes in combination with the use of other senses. Behavioral strategies such as ceasing sonar call production and active jamming of the signals of competitors provide further insight into the capabilities and limitations of echolocation. We relate these findings to the broader topic of how animals extract relevant sensory information in noisy environments. While bats have highly refined abilities for operating under noisy conditions, they face the same challenges encountered by many other species. We propose that the specialized sensory mechanisms identified in bats are likely to occur in analogous systems across the animal kingdom. © 2017. Published by The Company of Biologists Ltd.

  5. Echolocation caBs of twenty southern African bat species

    African Journals Online (AJOL)

    bach (1987) (A&R) from Pafuri, Kruger National Park, South Africa Parameters of calls of Minlopterus schrelbersll recorded at De Hoop were used With the. permiSSion of D S. Jacobs. Calls of individual bats recorded dUring the present study are given codes (e g TMA) correspo"dmg to those used In Fig 1 The following ...

  6. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats.

    Science.gov (United States)

    Thiagavel, Jeneni; Cechetto, Clément; Santana, Sharlene E; Jakobsen, Lasse; Warrant, Eric J; Ratcliffe, John M

    2018-01-08

    Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats' common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation. Further, we find that among extant predatory bats (all of which use laryngeal echolocation), those with putatively less sophisticated biosonar have relatively larger eyes than do more sophisticated echolocators. We contend that signs of ancient trade-offs between vision and echolocation persist today, and that non-echolocating, phytophagous pteropodid bats may retain some of the necessary foundations for biosonar.

  7. Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats

    OpenAIRE

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echoloca...

  8. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum).

    Science.gov (United States)

    Kobayasi, Kohta I; Hiryu, Shizuko; Shimozawa, Ryota; Riquimaroux, Hiroshi

    2012-11-01

    Although much is known about the echolocation of horseshoe bats (Rhinolophus spp.), little is known about the characteristics and function of their communication calls. This study focused on a stereotyped behavior of a bat approaching a companion animal in the colony, and examined their interaction and vocalization during this behavior. The bats emit echolocation-like vocalizations when approaching each other and these vocalizations contain a "buildup" pulse sequence, in which the frequency of the pulse increases gradually to normal echolocation pulse frequencies. The results suggest that the echolocation-like pulses serve an important role in communication within the colony.

  9. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    Directory of Open Access Journals (Sweden)

    Frants H Jensen

    Full Text Available Toothed whales (Cetacea, odontoceti use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica and Irrawaddy dolphins (Orcaella brevirostris within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191 re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  10. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    Science.gov (United States)

    Jensen, Frants H; Rocco, Alice; Mansur, Rubaiyat M; Smith, Brian D; Janik, Vincent M; Madsen, Peter T

    2013-01-01

    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  11. Echolocation-Based Foraging by Harbor Porpoises and Sperm Whales, Including Effects on Noise and Acoustic Propagation

    National Research Council Canada - National Science Library

    DeRuiter, Stacy L

    2008-01-01

    .... Study results indicate how porpoises vary the rate and level of their echolocation clicks during prey capture events and show that, unlike bats, porpoises continue their echolocation buzz after prey capture...

  12. Evidence for echolocation in the oldest known bats.

    Science.gov (United States)

    Novacek, M J

    The earliest-known bats are represented by excellent fossil material, including virtually complete skeletons of Icaronycteris index from the early Eocene (50 Myr BP) of western Wyoming and Palaeochiropteryx tupaiodon from the middle Eocene (45 Myr BP) 'Grube Messel' of western Germany. These taxa have been closely allied with Recent Microchiroptera, a suborder of diverse bats noted for their powers of ultrasonic echolocation. A problem with this relationship is the alleged absence in the Eocene forms of specializations in the auditory region and other aspects of the skeletal system. It has been proposed, therefore, that the oldest bats are members of a group more primitive and possibly ancestral to the Microchiroptera and the visually oriented Megachiroptera. Previously undescribed specimens now show, however, that Icaronycteris and Palaeochiropteryx share special basicranial features with microchiropterans which suggest comparable refinement of ultrasonic echolocation. These results support the theory that a sophisticated sonar system was present in the earliest records of microchiropteran history.

  13. Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System

    Science.gov (United States)

    Cheely, Matthew; Horiuchi, Timothy

    2003-12-01

    Bat echolocation is a fascinating topic of research for both neuroscientists and engineers, due to the complex and extremely time-constrained nature of the problem and its potential for application to engineered systems. In the bat's brainstem and midbrain exist neural circuits that are sensitive to the specific difference in time between the outgoing sonar vocalization and the returning echo. While some of the details of the neural mechanisms are known to be species-specific, a basic model of reafference-triggered, postinhibitory rebound timing is reasonably well supported by available data. We have designed low-power, analog VLSI circuits to mimic this mechanism and have demonstrated range-dependent outputs for use in a real-time sonar system. These circuits are being used to implement range-dependent vocalization amplitude, vocalization rate, and closest target isolation.

  14. Analog VLSI Models of Range-Tuned Neurons in the Bat Echolocation System

    Directory of Open Access Journals (Sweden)

    Horiuchi Timothy

    2003-01-01

    Full Text Available Bat echolocation is a fascinating topic of research for both neuroscientists and engineers, due to the complex and extremely time-constrained nature of the problem and its potential for application to engineered systems. In the bat's brainstem and midbrain exist neural circuits that are sensitive to the specific difference in time between the outgoing sonar vocalization and the returning echo. While some of the details of the neural mechanisms are known to be species-specific, a basic model of reafference-triggered, postinhibitory rebound timing is reasonably well supported by available data. We have designed low-power, analog VLSI circuits to mimic this mechanism and have demonstrated range-dependent outputs for use in a real-time sonar system. These circuits are being used to implement range-dependent vocalization amplitude, vocalization rate, and closest target isolation.

  15. The effect of climate on acoustic signals: does atmospheric sound absorption matter for bird song and bat echolocation?

    Science.gov (United States)

    Snell-Rood, Emilie C

    2012-02-01

    The divergence of signals along ecological gradients may lead to speciation. The current research tests the hypothesis that variation in sound absorption selects for divergence in acoustic signals along climatic gradients, which has implications for understanding not only diversification, but also how organisms may respond to climate change. Because sound absorption varies with temperature, humidity, and the frequency of sound, individuals or species may vary signal structure with changes in climate over space or time. In particular, signals of lower frequency, narrower bandwidth, and longer duration should be more detectable in environments with high sound absorption. Using both North American wood warblers (Parulidae) and bats of the American Southwest, this work found evidence of associations between signal structure and sound absorption. Warbler species with higher mean absorption across their range were more likely to have narrow bandwidth songs. Bat species found in higher absorption habitats were more likely to have lower frequency echolocation calls. In addition, bat species changed echolocation call structure across seasons, using longer duration, lower frequency calls in the higher absorption rainy season. These results suggest that signals may diverge along climatic gradients due to variation in sound absorption, although the effects of absorption are modest. © 2012 Acoustical Society of America

  16. Regulation of bat echolocation pulse acoustics by striatal dopamine.

    Science.gov (United States)

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-10-01

    The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.

  17. Scanning behavior in echolocating common pipistrelle bats (Pipistrellus pipistrellus.

    Directory of Open Access Journals (Sweden)

    Anna-Maria Seibert

    Full Text Available Echolocating bats construct an auditory world sequentially by analyzing successive pulse-echo pairs. Many other mammals rely upon a visual world, acquired by sequential foveal fixations connected by visual gaze saccades. We investigated the scanning behavior of bats and compared it to visual scanning. We assumed that each pulse-echo pair evaluation corresponds to a foveal fixation and that sonar beam movements between pulses can be seen as acoustic gaze saccades. We used a two-dimensional 16 microphone array to determine the sonar beam direction of succeeding pulses and to characterize the three dimensional scanning behavior in the common pipistrelle bat (Pipistrellus pipistrellus flying in the field. We also used variations of signal amplitude of single microphone recordings as indicator for scanning behavior in open space. We analyzed 33 flight sequences containing more than 700 echolocation calls to determine bat positions, source levels, and beam aiming. When searching for prey and orienting in space, bats moved their sonar beam in all directions, often alternately back and forth. They also produced sequences with irregular or no scanning movements. When approaching the array, the scanning movements were much smaller and the beam was moved over the array in small steps. Differences in the scanning pattern at various recording sites indicated that the scanning behavior depended on the echolocation task that was being performed. The scanning angles varied over a wide range and were often larger than the maximum angle measurable by our array. We found that echolocating bats use a "saccade and fixate" strategy similar to vision. Through the use of scanning movements, bats are capable of finding and exploring targets in a wide search cone centered along flight direction.

  18. Acoustic behavior of echolocating bats in complex environments

    Science.gov (United States)

    Moss, Cynthia; Ghose, Kaushik; Jensen, Marianne; Surlykke, Annemarie

    2004-05-01

    The echolocating bat controls the direction of its sonar beam, just as visually dominant animals control the movement of their eyes to foveate targets of interest. The sonar beam aim of the echolocating bat can therefore serve as an index of the animal's attention to objects in the environment. Until recently, spatial attention has not been studied in the context of echolocation, perhaps due to the difficulty in obtaining an objective measure. Here, we describe measurements of the bat's sonar beam aim, serving as an index of acoustic gaze and attention to objects, in tasks that require localization of obstacles and insect prey. Measurements of the bat's sonar beam aim are taken from microphone array recordings of vocal signals produced by a free-flying bat under experimentally controlled conditions. In some situations, the animal relies on spatial memory over reflected sounds, perhaps because its perceptual system cannot easily organize cascades of echoes from obstacles and prey. This highlights the complexity of the bat's orientation behavior, which can alternate between active sensing and spatial memory systems. The bat's use of spatial memory for orientation also will be addressed in this talk. [Work supported by NSF-IBN-0111973 and the Danish Research Council.

  19. Integrated fossil and molecular data reconstruct bat echolocation.

    Science.gov (United States)

    Springer, M S; Teeling, E C; Madsen, O; Stanhope, M J; de Jong, W W

    2001-05-22

    Molecular and morphological data have important roles in illuminating evolutionary history. DNA data often yield well resolved phylogenies for living taxa, but are generally unattainable for fossils. A distinct advantage of morphology is that some types of morphological data may be collected for extinct and extant taxa. Fossils provide a unique window on evolutionary history and may preserve combinations of primitive and derived characters that are not found in extant taxa. Given their unique character complexes, fossils are critical in documenting sequences of character transformation over geologic time and may elucidate otherwise ambiguous patterns of evolution that are not revealed by molecular data alone. Here, we employ a methodological approach that allows for the integration of molecular and paleontological data in deciphering one of the most innovative features in the evolutionary history of mammals-laryngeal echolocation in bats. Molecular data alone, including an expanded data set that includes new sequences for the A2AB gene, suggest that microbats are paraphyletic but do not resolve whether laryngeal echolocation evolved independently in different microbat lineages or evolved in the common ancestor of bats and was subsequently lost in megabats. When scaffolds from molecular phylogenies are incorporated into parsimony analyses of morphological characters, including morphological characters for the Eocene taxa Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx, the resulting trees suggest that laryngeal echolocation evolved in the common ancestor of fossil and extant bats and was subsequently lost in megabats. Molecular dating suggests that crown-group bats last shared a common ancestor 52 to 54 million years ago.

  20. Bats from Fazenda Intervales, Southeastern Brazil: species account and comparison between different sampling methods

    Directory of Open Access Journals (Sweden)

    Christine V. Portfors

    2000-06-01

    Full Text Available Assessing the composition of an area's bat fauna is typically accomplished by using captures or by monitoring echolocation calls with bat detectors. The two methods may not provide the same data regarding species composition. Mist nets and harp traps may be biased towards sampling low flying species, and bat detectors biased towards detecting high intensity echolocators. A comparison of the bat fauna of Fazenda Intervales, southeastern Brazil, as revealed by mist nets and harp trap captures, checking roosts and by monitoring echolocation calls of flying bats illustrates this point. A total of 17 species of bats was sampled. Fourteen bat species were captured and the echolocation calls of 12 species were recorded, three of them not revealed by mist nets or harp traps. The different sampling methods provided different pictures of the bat fauna. Phyllostomid bats dominated the catches in mist nets, but in the field their echolocation calls were never detected. No single sampling approach provided a complete assessment of the bat fauna in the study area. In general, bats producing low intensity echolocation calls, such as phyllostomids, are more easily assessed by netting, and bats producing high intensity echolocation calls are better surveyed by bat detectors. The results demonstrate that a combined and varied approach to sampling is required for a complete assessment of the bat fauna of an area.

  1. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats

    DEFF Research Database (Denmark)

    Thiagavel, Jeneni; Cechetto, Clément; Santana, Sharlene E

    2018-01-01

    Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar...... and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats' common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation....... Further, we find that among extant predatory bats (all of which use laryngeal echolocation), those with putatively less sophisticated biosonar have relatively larger eyes than do more sophisticated echolocators. We contend that signs of ancient trade-offs between vision and echolocation persist today...

  2. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    Science.gov (United States)

    Lee, Wu-Jung; Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H; Moss, Cynthia F

    2017-12-01

    Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  3. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    Directory of Open Access Journals (Sweden)

    Wu-Jung Lee

    2017-12-01

    Full Text Available Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  4. Discrimination of fast click-series produced by tagged Risso's dolphins (Grampus griseus) for echolocation or communication.

    Science.gov (United States)

    Arranz, P; DeRuiter, S L; Stimpert, A K; Neves, S; Friedlaender, A S; Goldbogen, J A; Visser, F; Calambokidis, J; Southall, B L; Tyack, P L

    2016-09-15

    Early studies that categorized odontocete pulsed sounds had few means of discriminating signals used for biosonar-based foraging from those used for communication. This capability to identify the function of sounds is important for understanding and interpreting behavior; it is also essential for monitoring and mitigating potential disturbance from human activities. Archival tags were placed on free-ranging Grampus griseus to quantify and discriminate between pulsed sounds used for echolocation-based foraging and those used for communication. Two types of rapid click-series pulsed sounds, buzzes and burst pulses, were identified as produced by the tagged dolphins and classified using a Gaussian mixture model based on their duration, association with jerk (i.e. rapid change of acceleration) and temporal association with click trains. Buzzes followed regular echolocation clicks and coincided with a strong jerk signal from accelerometers on the tag. They consisted of series averaging 359±210 clicks (mean±s.d.) with an increasing repetition rate and relatively low amplitude. Burst pulses consisted of relatively short click series averaging 45±54 clicks with decreasing repetition rate and longer inter-click interval that were less likely to be associated with regular echolocation and the jerk signal. These results suggest that the longer, relatively lower amplitude, jerk-associated buzzes are used in this species to capture prey, mostly during the bottom phase of foraging dives, as seen in other odontocetes. In contrast, the shorter, isolated burst pulses that are generally emitted by the dolphins while at or near the surface are used outside of a direct, known foraging context. © 2016. Published by The Company of Biologists Ltd.

  5. Stimulation of the Basal and Central Amygdala in the Mustached Bat Triggers Echolocation and Agonistic Vocalizations within Multimodal Output

    Directory of Open Access Journals (Sweden)

    Jie eMa

    2014-03-01

    Full Text Available The neural substrate for the perception of vocalization is relatively well described, but we know much less about how the timing and specificity of vocalizations is tightly coupled with audiovocal communication behavior. In many vocal species, well-timed vocalizations accompany fear, vigilance and aggression. These emotive responses likely originate within the amygdala and other limbic structures, but the organization of motor outputs for triggering species-appropriate behaviors remains unclear. We performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements. In a few locations, responses were constrained to vocalization and/or pinna movements despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses versus social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that multimodal clusters of neurons may simultaneously modulate the activity of multiple central pattern generators present within the brainstem.

  6. Adaptive vocal behavior drives perception by echolocation in bats

    DEFF Research Database (Denmark)

    Moss, Cynthia F; Chiu, Chen; Surlykke, Annemarie

    2011-01-01

    Echolocation operates through adaptive sensorimotor systems that collectively enable the bat to localize and track sonar objects as it flies. The features of sonar signals used by a bat to probe its surroundings determine the information available to its acoustic imaging system. In turn, the bat......'s perception of a complex scene guides its active adjustments in the features of subsequent sonar vocalizations. Here, we propose that the bat's active vocal-motor behaviors play directly into its representation of a dynamic auditory scene....

  7. Adaptive vocal behavior drives perception by echolocation in bats.

    Science.gov (United States)

    Moss, Cynthia F; Chiu, Chen; Surlykke, Annemarie

    2011-08-01

    Echolocation operates through adaptive sensorimotor systems that collectively enable the bat to localize and track sonar objects as it flies. The features of sonar signals used by a bat to probe its surroundings determine the information available to its acoustic imaging system. In turn, the bat's perception of a complex scene guides its active adjustments in the features of subsequent sonar vocalizations. Here, we propose that the bat's active vocal-motor behaviors play directly into its representation of a dynamic auditory scene. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Science.gov (United States)

    Liu, Ying; Feng, Jiang; Metzner, Walter

    2013-01-01

    Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  9. Different auditory feedback control for echolocation and communication in horseshoe bats.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this "auditory fovea", horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.

  10. Phenotypic Convergence in Genetically Distinct Lineages of a Rhinolophus Species Complex (Mammalia, Chiroptera)

    OpenAIRE

    Jacobs, David S.; Babiker, Hassan; Bastian, Anna; Kearney, Teresa; van Eeden, Rowen; Bishop, Jacqueline M.

    2013-01-01

    Phenotypes of distantly related species may converge through adaptation to similar habitats and/or because they share biological constraints that limit the phenotypic variants produced. A common theme in bats is the sympatric occurrence of cryptic species that are convergent in morphology but divergent in echolocation frequency, suggesting that echolocation may facilitate niche partitioning, reducing competition. If so, allopatric populations freed from competition, could converge in both mor...

  11. Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild

    DEFF Research Database (Denmark)

    Frants, Jensen; Lars, Bejder; Wahlberg, Magnus

    2009-01-01

    intervals, and source levels of wild bottlenose dolphins (Tursiops sp.) by recording regular (non-buzz) echolocation clicks with a linear hydrophone array. Dolphins clicked faster with decreasing distance to the array, reflecting a decreasing delay between the outgoing echolocation click and the returning...... longer than a few body lengths of the dolphin. Source level estimates drop with reducing range between the echolocating dolphins and the target as a function of 17 log(R). This may indicate either (1) an active form of time-varying gain in the biosonar independent of click intervals or (2) a bias...

  12. Managing Clutter in a High Pulse Rate Echolocation System

    Directory of Open Access Journals (Sweden)

    Jacob Isbell

    2018-03-01

    Full Text Available The use of echolocation for navigating in dense, cluttered environments is a challenge due to the need for rapid sampling of nearby objects in the face of delayed echoes from distant objects. In the wild, echolocating bats frequently encounter this situation when leaving the roost or while hunting. If long-delay echoes from a distant object are received after the next pulse is sent out, these “aliased” echoes appear as close-range phantom objects. Little is known about how bats cope with these situations. In this work, we demonstrate a novel strategy to manage aliasing in cases where a single target is actively being tracked at close range. This paper presents three reactive strategies for a high pulse-rate sonar system to combat aliased echoes: (1 changing the interpulse interval to move the aliased echoes away in time from the tracked target, (2 changing positions to create a geometry without aliasing, and (3 a phase-based, transmission beam-shaping strategy to illuminate the target and not the aliasing object.

  13. Assessing bat detectability and occupancy with multiple automated echolocation detectors

    Science.gov (United States)

    Gorresen, P.M.; Miles, A.C.; Todd, C.M.; Bonaccorso, F.J.; Weller, T.J.

    2008-01-01

    Occupancy analysis and its ability to account for differential detection probabilities is important for studies in which detecting echolocation calls is used as a measure of bat occurrence and activity. We examined the feasibility of remotely acquiring bat encounter histories to estimate detection probability and occupancy. We used echolocation detectors coupled to digital recorders operating at a series of proximate sites on consecutive nights in 2 trial surveys for the Hawaiian hoary bat (Lasiurus cinereus semotus). Our results confirmed that the technique is readily amenable for use in occupancy analysis. We also conducted a simulation exercise to assess the effects of sampling effort on parameter estimation. The results indicated that the precision and bias of parameter estimation were often more influenced by the number of sites sampled than number of visits. Acceptable accuracy often was not attained until at least 15 sites or 15 visits were used to estimate detection probability and occupancy. The method has significant potential for use in monitoring trends in bat activity and in comparative studies of habitat use. ?? 2008 American Society of Mammalogists.

  14. Does nasal echolocation influence the modularity of the mammal skull?

    Science.gov (United States)

    Santana, S E; Lofgren, S E

    2013-11-01

    In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the 'nasal dome', in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  15. [Echolocation calls of free-flying Himalayan swiftlets (Aerodramus brevirostris)].

    Science.gov (United States)

    Wang, Bin; Ma, Jian-Zhang; Chen, Yi; Tan, Liang-Jing; Liu, Qi; Shen, Qi-Qi; Liao, Qing-Yi; Zhang, Li-Biao

    2013-02-01

    Here, we present our findings of free-flying echolocation calls of Himalayan swiftlets (Aerodramus brevirostris), which were recorded in Shenjing Cave, Hupingshan National Reserve, Shimen County, Hunan Province in June 2012, using Avisoft-UltraSoundGate 116(e). We noted that after foraging at dusk, the Himalayan swiftlets flew fast into the cave without clicks, and then slowed down in dark area in the cave, but with sounds. The echolocation sounds of Himalayan swiftlets are broadband, double noise burst clicks, separated by a short pause. The inter-pulse intervals between double clicks (99.3±3.86 ms)were longer than those within double clicks (6.6±0.42 ms) (P0.05) and pulse duration 2.9±0.12 ms, 3.2±0.17 ms, (P>0.05) between the first and second, other factors-maximum frequency, minimum frequency, frequency bandwidth, and power-were significantly different between the clicks. The maximum frequency of the first pulse (20.1±1.10 kHz) was higher than that of second (15.4±0.98 kHz) (Pecholocation pulses including ultrasonic sound, with a maximum frequency reaching 33.2 kHz.

  16. Spike Neuromorphic VLSI-Based Bat Echolocation for Micro-Aerial Vehicle Guidance

    National Research Council Canada - National Science Library

    Horiuchi, Timothy K; Krishnaprasad, P. S

    2007-01-01

    .... This includes multiple efforts related to a VLSI-based echolocation system being developed in one of our laboratories from algorithm development, bat flight data analysis, to VLSI circuit design...

  17. Active echolocation beam focusing in the false killer whale, Pseudorca crassidens.

    Science.gov (United States)

    Kloepper, Laura N; Nachtigall, Paul E; Donahue, Megan J; Breese, Marlee

    2012-04-15

    The odontocete sound production system is highly complex and produces intense, directional signals that are thought to be focused by the melon and the air sacs. Because odontocete echolocation signals are variable and the emitted click frequency greatly affects the echolocation beam shape, investigations of beam focusing must account for frequency-related beam changes. In this study we tested whether the echolocation beam of a false killer whale changed depending on target difficulty and distance while also accounting for frequency-related changes in the echolocation beam. The data indicate that the false killer whale changes its beam size according to target distance and difficulty, which may be a strategy of maximizing the energy of the target echo. We propose that the animal is using a strategy of changing the focal region according to target distance and that this strategy is under active control.

  18. Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats

    OpenAIRE

    Hage, Steffen R.; Metzner, Walter

    2013-01-01

    We previously reported that band-pass filtered noise (BFN, bandwidth 20 kHz) affected the echolocation behavior of horseshoe bats in different ways depending on which frequencies within the bats? hearing range BFN was centered. We found that call amplitudes only increased when BFN was centered on the dominant frequency of the bats' calls. In contrast, call frequencies were shifted for all BFN stimuli centered on or below the dominant frequency of echolocation calls including when BFN was cent...

  19. Dolphins Can Maintain Vigilant Behavior through Echolocation for 15 Days without Interruption or Cognitive Impairment

    OpenAIRE

    Branstetter, Brian K.; Finneran, James J.; Fletcher, Elizabeth A.; Weisman, Brian C.; Ridgway, Sam H.

    2012-01-01

    In dolphins, natural selection has developed unihemispheric sleep where alternating hemispheres of their brain stay awake. This allows dolphins to maintain consciousness in response to respiratory demands of the ocean. Unihemispheric sleep may also allow dolphins to maintain vigilant states over long periods of time. Because of the relatively poor visibility in the ocean, dolphins use echolocation to interrogate their environment. During echolocation, dolphin produce clicks and listen to retu...

  20. Depth dependent variation of the echolocation pulse rate of bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Simard, Peter; Hibbard, Ashley L; McCallister, Kimberly A; Frankel, Adam S; Zeddies, David G; Sisson, Geoffrey M; Gowans, Shannon; Forys, Elizabeth A; Mann, David A

    2010-01-01

    Trained odontocetes appear to have good control over the timing (pulse rate) of their echolocation clicks; however, there is comparatively little information about how free-ranging odontocetes modify their echolocation in relation to their environment. This study investigates echolocation pulse rate in 14 groups of free-ranging bottlenose dolphins (Tursiops truncatus) at a variety of depths (2.4-30.1 m) in the Gulf of Mexico. Linear regression models indicated a significant decrease in mean pulse rate with mean water depth. Pulse rates for most groups were multi-modal. Distance to target estimates were as high as 91.8 m, assuming that echolocation was produced at a maximal rate for the target distance. A 5.29-ms processing lag time was necessary to explain the pulse rate modes observed. Although echolocation is likely reverberation limited, these results support the hypotheses that free-ranging bottlenose dolphins in this area are adapting their echolocation signals for a variety of target detection and ranging purposes, and that the target distance is a function of water depth.

  1. Postnatal development of echolocation abilities in a bottlenose dolphin (Tursiops truncatus): temporal organization.

    Science.gov (United States)

    Favaro, Livio; Gnone, Guido; Pessani, Daniela

    2013-03-01

    In spite of all the information available on adult bottlenose dolphin (Tursiops truncatus) biosonar, the ontogeny of its echolocation abilities has been investigated very little. Earlier studies have reported that neonatal dolphins can produce both whistles and burst-pulsed sounds just after birth and that early-pulsed sounds are probably a precursor of echolocation click trains. The aim of this research is to investigate the development of echolocation signals in a captive calf, born in the facilities of the Acquario di Genova. A set of 81 impulsive sounds were collected from birth to the seventh postnatal week and six additional echolocation click trains were recorded when the dolphin was 1 year old. Moreover, behavioral observations, concurring with sound production, were carried out by means of a video camera. For each sound we measured five acoustic parameters: click train duration (CTD), number of clicks per train, minimum, maximum, and mean click repetition rate (CRR). CTD and number of clicks per train were found to increase with age. Maximum and mean CRR followed a decreasing trend with dolphin growth starting from the second postnatal week. The calf's first head scanning movement was recorded 21 days after birth. Our data suggest that in the bottlenose dolphin the early postnatal weeks are essential for the development of echolocation abilities and that the temporal features of the echolocation click trains remain relatively stable from the seventh postnatal week up to the first year of life. © 2013 Wiley Periodicals, Inc.

  2. Dolphins can maintain vigilant behavior through echolocation for 15 days without interruption or cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Brian K Branstetter

    Full Text Available In dolphins, natural selection has developed unihemispheric sleep where alternating hemispheres of their brain stay awake. This allows dolphins to maintain consciousness in response to respiratory demands of the ocean. Unihemispheric sleep may also allow dolphins to maintain vigilant states over long periods of time. Because of the relatively poor visibility in the ocean, dolphins use echolocation to interrogate their environment. During echolocation, dolphin produce clicks and listen to returning echoes to determine the location and identity of objects. The extent to which individual dolphins are able to maintain continuous vigilance through this active sense is unknown. Here we show that dolphins may continuously echolocate and accurately report the presence of targets for at least 15 days without interruption. During a total of three sessions, each lasting five days, two dolphins maintained echolocation behaviors while successfully detecting and reporting targets. Overall performance was between 75 to 86% correct for one dolphin and 97 to 99% correct for a second dolphin. Both animals demonstrated diel patterns in echolocation behavior. A 15-day testing session with one dolphin resulted in near perfect performance with no significant decrement over time. Our results demonstrate that dolphins can continuously monitor their environment and maintain long-term vigilant behavior through echolocation.

  3. Dolphins can maintain vigilant behavior through echolocation for 15 days without interruption or cognitive impairment.

    Science.gov (United States)

    Branstetter, Brian K; Finneran, James J; Fletcher, Elizabeth A; Weisman, Brian C; Ridgway, Sam H

    2012-01-01

    In dolphins, natural selection has developed unihemispheric sleep where alternating hemispheres of their brain stay awake. This allows dolphins to maintain consciousness in response to respiratory demands of the ocean. Unihemispheric sleep may also allow dolphins to maintain vigilant states over long periods of time. Because of the relatively poor visibility in the ocean, dolphins use echolocation to interrogate their environment. During echolocation, dolphin produce clicks and listen to returning echoes to determine the location and identity of objects. The extent to which individual dolphins are able to maintain continuous vigilance through this active sense is unknown. Here we show that dolphins may continuously echolocate and accurately report the presence of targets for at least 15 days without interruption. During a total of three sessions, each lasting five days, two dolphins maintained echolocation behaviors while successfully detecting and reporting targets. Overall performance was between 75 to 86% correct for one dolphin and 97 to 99% correct for a second dolphin. Both animals demonstrated diel patterns in echolocation behavior. A 15-day testing session with one dolphin resulted in near perfect performance with no significant decrement over time. Our results demonstrate that dolphins can continuously monitor their environment and maintain long-term vigilant behavior through echolocation.

  4. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.

    Science.gov (United States)

    Geipel, Inga; Jung, Kirsten; Kalko, Elisabeth K V

    2013-03-07

    Gleaning insectivorous bats that forage by using echolocation within dense forest vegetation face the sensorial challenge of acoustic masking effects. Active perception of silent and motionless prey in acoustically cluttered environments by echolocation alone has thus been regarded impossible. The gleaning insectivorous bat Micronycteris microtis however, forages in dense understory vegetation and preys on insects, including dragonflies, which rest silent and motionless on vegetation. From behavioural experiments, we show that M. microtis uses echolocation as the sole sensorial modality for successful prey perception within a complex acoustic environment. All individuals performed a stereotypical three-dimensional hovering flight in front of prey items, while continuously emitting short, multi-harmonic, broadband echolocation calls. We observed a high precision in target localization which suggests that M. microtis perceives a detailed acoustic image of the prey based on shape, surface structure and material. Our experiments provide, to our knowledge, the first evidence that a gleaning bat uses echolocation alone for successful detection, classification and precise localization of silent and motionless prey in acoustic clutter. Overall, we conclude that the three-dimensional hovering flight of M. microtis in combination with a frequent emission of short, high-frequency echolocation calls is the key for active prey perception in acoustically highly cluttered environments.

  5. The voice of bats: how greater mouse-eared bats recognize individuals based on their echolocation calls.

    OpenAIRE

    Yossi Yovel; Mariana Laura Melcon; Matthias O Franz; Annette Denzinger; Hans-Ulrich Schnitzler

    2009-01-01

    Echolocating bats use the echoes from their echolocation calls to perceive their surroundings. The ability to use these continuously emitted calls, whose main function is not communication, for recognition of individual conspecifics might facilitate many of the social behaviours observed in bats. Several studies of individual-specific information in echolocation calls found some evidence for its existence but did not quantify or explain it. We used a direct paradigm to show that greater mouse...

  6. The Voltage-Gated Potassium Channel Subfamily KQT Member 4 (KCNQ4) Displays Parallel Evolution in Echolocating Bats

    OpenAIRE

    Liu, Yang; Han, Naijian; Franchini, Lucía F.; Xu, Huihui; Pisciottano, Francisco; Elgoyhen, Ana Belén; Rajan, Koilmani Emmanuvel; Zhang, Shuyi

    2011-01-01

    Bats are the only mammals that use highly developed laryngeal echolocation, a sensory mechanism based on the ability to emit laryngeal sounds and interpret the returning echoes to identify objects. Although this capability allows bats to orientate and hunt in complete darkness, endowing them with great survival advantages, the genetic bases underlying the evolution of bat echolocation are still largely unknown. Echolocation requires high-frequency hearing that in mammals is largely dependent ...

  7. Sound-conducting mechanisms for echolocation hearing of a dolphin

    Science.gov (United States)

    Ryabov, Vyacheslav A.

    2005-09-01

    The morphological study of the lower jaw of a dolphin (Tursiops truncatus p.), and the modeling and calculation of its structures from the acoustic point of view have been conducted. It was determined that the cross-sectional area of the mandibular canal (MC) increases exponentially. The MC represents the acoustical horn. The mental foramens (MFs) is positioned in the horn throat, representing the nonequidistant array of waveguide delay lines (NAWDL). The acoustical horn ensures the traveling wave conditions inside the MC and intensifies sonar echoes up to 1514 times. This ``ideal'' traveling wave antenna is created by nature, representing the combination of the NAWDL and the acoustical horn. The dimensions and sequence of morphological structures of the lower jaw are optimal both for reception and forming the beam pattern, and for the amplification and transmission of sonar echoes up to the bulla tympani. Morphological structures of the lower jaw are considered as components of the peripheral section of the dolphin echolocation hearing.

  8. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    Directory of Open Access Journals (Sweden)

    Kaushik Ghose

    2006-05-01

    Full Text Available Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy

  9. Spatio-temporal patterns of beaked whale echolocation signals in the North Pacific.

    Directory of Open Access Journals (Sweden)

    Simone Baumann-Pickering

    Full Text Available At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific frequency modulated (FM echolocation pulses: Baird's, Blainville's, Cuvier's, Deraniyagala's, Longman's, and Stejneger's beaked whales. Additionally, one described FM pulse (BWC from Cross Seamount, Hawai'i, and three unknown FM pulse types (BW40, BW43, BW70 have been identified from almost 11 cumulative years of autonomous recordings at 24 sites throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited. There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region, consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were restricted to Southern California and may be produced by Perrin's beaked whale, known only from Californian waters. BW70 signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb's beaked whale may have produced the BW40 signals encountered off central and southern California; however, these signals were also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range.

  10. Spatio-temporal patterns of beaked whale echolocation signals in the North Pacific.

    Science.gov (United States)

    Baumann-Pickering, Simone; Roch, Marie A; Brownell, Robert L; Simonis, Anne E; McDonald, Mark A; Solsona-Berga, Alba; Oleson, Erin M; Wiggins, Sean M; Hildebrand, John A

    2014-01-01

    At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific frequency modulated (FM) echolocation pulses: Baird's, Blainville's, Cuvier's, Deraniyagala's, Longman's, and Stejneger's beaked whales. Additionally, one described FM pulse (BWC) from Cross Seamount, Hawai'i, and three unknown FM pulse types (BW40, BW43, BW70) have been identified from almost 11 cumulative years of autonomous recordings at 24 sites throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited. There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region, consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were restricted to Southern California and may be produced by Perrin's beaked whale, known only from Californian waters. BW70 signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb's beaked whale may have produced the BW40 signals encountered off central and southern California; however, these signals were also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range.

  11. High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions.

    Science.gov (United States)

    Gaudette, Jason E; Kloepper, Laura N; Warnecke, Michaela; Simmons, James A

    2014-01-01

    Measurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought. To investigate beam pattern dynamics in a variety of bat species, a high-density reconfigurable microphone array was designed and constructed using low-cost ultrasonic microphones and custom electronic circuitry. The planar array is 1.83 m wide by 1.42 m tall with microphones positioned on a 2.54 cm square grid. The system can capture up to 228 channels simultaneously at a 500 kHz sampling rate. Beam patterns are reconstructed in azimuth, elevation, and frequency for visualization and further analysis. Validation of the array measurement system and post-processing functions is shown by reconstructing the beam pattern of a transducer with a fixed circular aperture and comparing the result with a theoretical model. To demonstrate the system in use, transmit beam patterns of the big brown bat, Eptesicus fuscus, are shown.

  12. Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Science.gov (United States)

    André, M.; Caballé, A.; van der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sánchez, A. M.; Castell, J. V.; Solé, M.; Vila, F.; Djokic, D.; Adrián-Martínez, S.; Albert, A.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zuñiga, J.

    2017-04-01

    Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to-shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystems.

  13. Life history constrains biochemical development in the highly specialized odontocete echolocation system.

    Science.gov (United States)

    Koopman, Heather N; Zahorodny, Zoey P

    2008-10-22

    The vertebrate head has undergone enormous modification from the features borne by early ancestors. The growth of skull bones has been well studied in many species, yet little is known about corresponding soft tissue development. Among mammals, some of the most unusual examples of cranial evolution exist in the toothed whales (odontocetes). Specialized fat bodies in toothed whale heads play important roles in sound transmission and reception. These fat bodies contain unique endogenous lipids, with favourable acoustic properties, arranged in highly organized, three-dimensional patterns. We link variation in developmental rates of acoustic fats with life-history strategy, using bottlenose dolphins and harbour porpoises. Porpoise acoustic fats attain adult configurations earlier (less than 1 year) and at a faster pace than dolphins. The accelerated lipid accumulation in porpoises reflects the earlier need for fully functional echolocation systems. Dolphins enjoy 3-6 years of maternal care; porpoises must achieve total independence by approximately nine months. Further, a stereotypic 'blueprint' for the spatial distribution of lipids is established prior to birth, demonstrating the highly conserved nature of the intricate biochemical arrangement in acoustic tissues. This system illustrates an unusual case of soft tissue development being constrained by life history, rather than the more commonly observed mechanistic or phyletic constraints.

  14. Comparison of echolocation clicks from geographically sympatric killer whales and long-finned pilot whales

    DEFF Research Database (Denmark)

    Eskesen, Ida; Wahlberg, Magnus; Simon, Malene

    2010-01-01

    The source characteristics of biosonar signals from sympatric killer whales and long-finned pilot whales in a Norwegian fjord were compared. A total of 137 pilot whale and more than 2000 killer whale echolocation clicks were recorded using a linear four-hydrophone array. Of these, 20 pilot whale...... clicks and 28 killer whale clicks were categorized as being recorded on-axis. The clicks of pilot whales had a mean apparent source level of 196 dB re 1 lPa pp and those of killer whales 203 dB re 1 lPa pp. The duration of pilot whale clicks was significantly shorter (23 ls, S.E.¼1.3) and the centroid...... frequency significantly higher (55 kHz, S.E.¼2.1) than killer whale clicks (duration: 41 ls, S.E.¼2.6; centroid frequency: 32 kHz, S.E.¼1.5). The rate of increase in the accumulated energy as a function of time also differed between clicks from the two species. The differences in duration, frequency...

  15. Parallel evolution of auditory genes for echolocation in bats and toothed whales.

    Science.gov (United States)

    Shen, Yong-Yi; Liang, Lu; Li, Gui-Sheng; Murphy, Robert W; Zhang, Ya-Ping

    2012-06-01

    The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.

  16. Parallel evolution of auditory genes for echolocation in bats and toothed whales.

    Directory of Open Access Journals (Sweden)

    Yong-Yi Shen

    2012-06-01

    Full Text Available The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23 and its ligand, protocadherin 15 (Pcdh15, are essential for bundling motility in the sensory hair. Otoferlin (Otof responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators--two groups of bats (Yangochiroptera and Rhinolophoidea plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.

  17. Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae

    Directory of Open Access Journals (Sweden)

    Annemarie eSurlykke

    2013-06-01

    Full Text Available The Neotropical frog-eating bat, Trachops cirrhosus, primarily hunts stationary prey, either by gleaning on the wing, or in a sit-and-wait mode hanging from a perch. It listens passively for prey-generated sounds, but uses echolocation in all stages of the hunt. Like other bats in the family Phyllostomidae, T.cirrhosus has a conspicuous nose leaf, hypothesized to direct and focus echolocation calls emitted from the nostrils. T. cirrhosus is highly flexible in its cognitive abilities and its use of sensory strategies for prey detection. Additionally, T. cirrhosus has been observed to echolocate both with closed and open mouth. We hypothesize that its flexibility extends to echolocation call design. We investigated the effect of hunting mode, perching or flying, as well as the effect of mouth opening, on the acoustic parameters and directionality of the echolocation call. We used a multi-microphone array, a high-speed video camera, and a microphone-diode-video system to directly visualize the echolocation sound beam synchronized with the bat’s behavior. We found that T. cirrhosus emits a highly directional sound beam with HAM (half amplitude angle of 12o-18o and DI (directionality index of ~17 dB, among the most directional bat sonar beams measured to date. The directionality was high both when flying and when perching. The emitted intensity was low, around 88 dB SPL at10 cm from the mouth, when hanging, but higher, around 100 dB SPL at10 cm, when flying or just before take-off.Our data suggests that the limited search volume of T.cirrhosus’ sonar beam, defined by the high directionality and the rather low intensity of its echolocation calls, is adapted to the highly cluttered hunting habitat and to the perch hunting mode.

  18. Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae)

    Science.gov (United States)

    Surlykke, Annemarie; Jakobsen, Lasse; Kalko, Elisabeth K. V.; Page, Rachel A.

    2013-01-01

    The Neotropical frog-eating bat, Trachops cirrhosus, primarily hunts stationary prey, either by gleaning on the wing, or in a sit-and-wait mode hanging from a perch. It listens passively for prey-generated sounds, but uses echolocation in all stages of the hunt. Like other bats in the family Phyllostomidae, T. cirrhosus has a conspicuous nose leaf, hypothesized to direct and focus echolocation calls emitted from the nostrils. T. cirrhosus is highly flexible in its cognitive abilities and its use of sensory strategies for prey detection. Additionally, T. cirrhosus has been observed to echolocate both with closed and open mouth. We hypothesize that its flexibility extends to echolocation call design. We investigated the effect of hunting mode, perching or flying, as well as the effect of mouth opening, on the acoustic parameters and directionality of the echolocation call. We used a multi-microphone array, a high-speed video camera, and a microphone-diode-video system to directly visualize the echolocation sound beam synchronized with the bat's behavior. We found that T. cirrhosus emits a highly directional sound beam with half amplitude angle (HAM) of 12–18° and DI (directionality index) of ~17 dB, among the most directional bat sonar beams measured to date. The directionality was high both when flying and when perching. The emitted intensity was low, around 88 dB SPL at 10 cm from the mouth, when hanging, but higher, around 100 dB SPL at 10 cm, when flying or just before take-off. Our data suggests that the limited search volume of T. cirrhosus sonar beam defined by the high directionality and the rather low intensity of its echolocation calls is adapted to the highly cluttered hunting habitat and to the perch hunting mode. PMID:23825459

  19. Echolocation, vocal learning, auditory localization and the relative size of the avian auditory midbrain nucleus (MLd).

    Science.gov (United States)

    Iwaniuk, Andrew N; Clayton, Dale H; Wylie, Douglas R W

    2006-02-28

    The avian nucleus mesencephalicus lateralis, pars dorsalis (MLd) is an auditory midbrain nucleus that plays a significant role in a variety of acoustically mediated behaviours. We tested whether MLd is hypertrophied in species with auditory specializations: owls, the vocal learners and echolocaters. Using both conventional and phylogenetically corrected statistics, we find that the echolocating species have a marginally enlarged MLd, but it does not differ significantly from auditory generalists, such as pigeons, raptors and chickens. Similarly, all of the vocal learners tend to have relatively small MLds. Finally, MLd is significantly larger in owls compared to all other birds regardless of how the size of MLd is scaled. This enlargement is far more marked in asymmetrically eared owls than symmetrically eared owls. Variation in MLd size therefore appears to be correlated with some auditory specializations, but not others. Whether an auditory specialist possesses a hypertrophied MLd appears to be depend upon their hearing range and sensitivity as well as the ability to resolve small azimuthal and elevational angles when determining the location of a sound. As a result, the only group to possess a significantly large MLd consistently across our analyses is the owls. Unlike other birds surveyed, owls have a battery of peripheral and other central auditory system specializations that correlate well with their hearing abilities. The lack of differences among the generalists, vocal learners and echolocaters therefore reflects an overall similarity in hearing abilities, despite the specific life history requirements of each specialization and species. This correlation between the size of a neural structure and the sensitivity of a perceptual domain parallels a similar pattern in mammals.

  20. Discriminating features of echolocation clicks of melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus), and Gray's spinner dolphins (Stenella longirostris longirostris).

    Science.gov (United States)

    Baumann-Pickering, Simone; Wiggins, Sean M; Hildebrand, John A; Roch, Marie A; Schnitzler, Hans-Ulrich

    2010-10-01

    Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.

  1. A summary of research investigating echolocation abilities of blind and sighted humans.

    Science.gov (United States)

    Kolarik, Andrew J; Cirstea, Silvia; Pardhan, Shahina; Moore, Brian C J

    2014-04-01

    There is currently considerable interest in the consequences of loss in one sensory modality on the remaining senses. Much of this work has focused on the development of enhanced auditory abilities among blind individuals, who are often able to use sound to navigate through space. It has now been established that many blind individuals produce sound emissions and use the returning echoes to provide them with information about objects in their surroundings, in a similar manner to bats navigating in the dark. In this review, we summarize current knowledge regarding human echolocation. Some blind individuals develop remarkable echolocation abilities, and are able to assess the position, size, distance, shape, and material of objects using reflected sound waves. After training, normally sighted people are also able to use echolocation to perceive objects, and can develop abilities comparable to, but typically somewhat poorer than, those of blind people. The underlying cues and mechanisms, operable range, spatial acuity and neurological underpinnings of echolocation are described. Echolocation can result in functional real life benefits. It is possible that these benefits can be optimized via suitable training, especially among those with recently acquired blindness, but this requires further study. Areas for further research are identified. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Directionality of nose-emitted echolocation calls from bats without a nose leaf (Plecotus auritus).

    Science.gov (United States)

    Jakobsen, Lasse; Hallam, John; Moss, Cynthia F; Hedenström, Anders

    2018-02-13

    All echolocating bats and whales measured to date emit a directional bio-sonar beam that affords them a number of advantages over an omni-directional beam, i.e. reduced clutter, increased source level and inherent directional information. In this study, we investigated the importance of directional sound emission for navigation through echolocation by measuring the sonar beam of brown long-eared bats, Plecotus auritus Plecotus auritus emits sound through the nostrils but has no external appendages to readily facilitate a directional sound emission as found in most nose emitters. The study shows that P. auritus , despite lacking an external focusing apparatus, emits a directional echolocation beam (directivity index=13 dB) and that the beam is more directional vertically (-6 dB angle at 22 deg) than horizontally (-6 dB angle at 35 deg). Using a simple numerical model, we found that the recorded emission pattern is achievable if P. auritus emits sound through the nostrils as well as the mouth. The study thus supports the hypothesis that a directional echolocation beam is important for perception through echolocation and we propose that animals with similarly non-directional emitter characteristics may facilitate a directional sound emission by emitting sound through both the nostrils and the mouth. © 2018. Published by The Company of Biologists Ltd.

  3. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation.

    Science.gov (United States)

    Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina

    2017-01-01

    Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.

  4. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation.

    Directory of Open Access Journals (Sweden)

    Andrew J Kolarik

    Full Text Available Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation and tactile (using a sensory substitution device, SSD guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.

  5. Dolphin hearing during echolocation: evoked potential responses in an Atlantic bottlenose dolphin (Tursiops truncatus).

    Science.gov (United States)

    Li, Songhai; Nachtigall, Paul E; Breese, Marlee

    2011-06-15

    Auditory evoked potential (AEP) responses were recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to accept suction-cup EEG electrodes and detect targets by echolocation. AEP recording was triggered by the echolocation clicks of the animal. Three targets with target strengths of -34, -28 and -22 dB were used at a target distance of 2 to 6.5 m for each target. The results demonstrated that the AEP appeared to both outgoing echolocation clicks and echoes during echolocation, with AEP complexes consisting of alternative positive and negative waves. The echo-related AEP amplitudes were obviously lower than the outgoing click-related AEP amplitudes for all the targets at the investigated target distances. However, for targets with target strengths of -22 and -28 dB, the peak-to-peak amplitudes of the echo-related AEPs were dependent on the target distances. The echo-related AEP response amplitudes increased at further target distances, demonstrating an overcompensation of echo attenuation with target distance in the echo-perception system of the dolphin biosonar. Measurement and analysis of outgoing click intensities showed that the click levels increased with target distance (R) by a factor of approximately 10 to 17.5 logR depending on target strength. The results demonstrated that a dual-component biosonar control system formed by intensity compensation behavior in both the transmission and receiving phases of a biosonar cycle exists synchronously in the dolphin biosonar system.

  6. Decreased echolocation performance following high-frequency hearing loss in the false killer whale (Pseudorca crassidens).

    Science.gov (United States)

    Kloepper, L N; Nachtigall, P E; Gisiner, R; Breese, M

    2010-11-01

    Toothed whales and dolphins possess a hypertrophied auditory system that allows for the production and hearing of ultrasonic signals. Although the fossil record provides information on the evolution of the auditory structures found in extant odontocetes, it cannot provide information on the evolutionary pressures leading to the hypertrophied auditory system. Investigating the effect of hearing loss may provide evidence for the reason for the development of high-frequency hearing in echolocating animals by demonstrating how high-frequency hearing assists in the functioning echolocation system. The discrimination abilities of a false killer whale (Pseudorca crassidens) were measured prior to and after documented high-frequency hearing loss. In 1992, the subject had good hearing and could hear at frequencies up to 100 kHz. In 2008, the subject had lost hearing at frequencies above 40 kHz. First in 1992, and then again in 2008, the subject performed an identical echolocation task, discriminating between machined hollow aluminum cylinder targets of differing wall thickness. Performances were recorded for individual target differences and compared between both experimental years. Performances on individual targets dropped between 1992 and 2008, with a maximum performance reduction of 36.1%. These data indicate that, with a loss in high-frequency hearing, there was a concomitant reduction in echolocation discrimination ability, and suggest that the development of a hypertrophied auditory system capable of hearing at ultrasonic frequencies evolved in response to pressures for fine-scale echolocation discrimination.

  7. An aerial-hawking bat uses stealth echolocation to counter moth hearing.

    Science.gov (United States)

    Goerlitz, Holger R; ter Hofstede, Hannah M; Zeale, Matt R K; Jones, Gareth; Holderied, Marc W

    2010-09-14

    Ears evolved in many nocturnal insects, including some moths, to detect bat echolocation calls and evade capture [1, 2]. Although there is evidence that some bats emit echolocation calls that are inconspicuous to eared moths, it is difficult to determine whether this was an adaptation to moth hearing or originally evolved for a different purpose [2, 3]. Aerial-hawking bats generally emit high-amplitude echolocation calls to maximize detection range [4, 5]. Here we present the first example of an echolocation counterstrategy to overcome prey hearing at the cost of reduced detection distance. We combined comparative bat flight-path tracking and moth neurophysiology with fecal DNA analysis to show that the barbastelle, Barbastella barbastellus, emits calls that are 10 to 100 times lower in amplitude than those of other aerial-hawking bats, remains undetected by moths until close, and captures mainly eared moths. Model calculations demonstrate that only bats emitting such low-amplitude calls hear moth echoes before their calls are conspicuous to moths. This stealth echolocation allows the barbastelle to exploit food resources that are difficult to catch for other aerial-hawking bats emitting calls of greater amplitude. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Echolocation in the bat, Rhinolophus capensis: the influence of clutter, conspecifics and prey on call design and intensity

    Directory of Open Access Journals (Sweden)

    Kayleigh Fawcett

    2015-07-01

    Full Text Available Echolocating bats are exposed not only to the echoes of their own calls, but often the signals of conspecifics and other bats. For species emitting short, frequency modulated signals e.g. vespertilionoids, adjustments in both the frequency and time domain have been observed in such situations. However, bats using long duration, constant frequency calls may confront special challenges, since these bats should be less able to avoid temporal and frequency overlap. Here we investigated echolocation call design in the highduty cycle bat, Rhinolophus capensis, as bats flew with either a conspecific or heterospecific in a large outdoor flight-room. We compared these recordings to those made of bats flying alone in the same flight-room, and in a smaller flight room, alone, and hunting tethered moths. We found no differences in duty cycle or peak frequency of the calls of R. capensis across conditions. However, in the presence of a conspecific or the vespertilionoid, Miniopterus natalensis, R. capensis produced longer frequency-modulated downward sweeps at the terminus of their calls with lower minimum frequencies than when flying alone. In the presence of the larger high-duty cycle bat, R. clivosus, R. capensis produced shorter calls than when flying alone or with a conspecific. These changes are similar to those of vespertilionoids when flying from open to more cluttered environments. They are not similar to those differences observed in vespertilionoids when flying with other bats. Also unlike vespertilinoids, R. capensis used calls 15 dB less intense in conspecific pairs than when alone.

  9. A biologically inspired model of bat echolocation in a cluttered environment with inputs designed from field Recordings

    Science.gov (United States)

    Loncich, Kristen Teczar

    Bat echolocation strategies and neural processing of acoustic information, with a focus on cluttered environments, is investigated in this study. How a bat processes the dense field of echoes received while navigating and foraging in the dark is not well understood. While several models have been developed to describe the mechanisms behind bat echolocation, most are based in mathematics rather than biology, and focus on either peripheral or neural processing---not exploring how these two levels of processing are vitally connected. Current echolocation models also do not use habitat specific acoustic input, or account for field observations of echolocation strategies. Here, a new approach to echolocation modeling is described capturing the full picture of echolocation from signal generation to a neural picture of the acoustic scene. A biologically inspired echolocation model is developed using field research measurements of the interpulse interval timing used by a frequency modulating (FM) bat in the wild, with a whole method approach to modeling echolocation including habitat specific acoustic inputs, a biologically accurate peripheral model of sound processing by the outer, middle, and inner ear, and finally a neural model incorporating established auditory pathways and neuron types with echolocation adaptations. Field recordings analyzed underscore bat sonar design differences observed in the laboratory and wild, and suggest a correlation between interpulse interval groupings and increased clutter. The scenario model provides habitat and behavior specific echoes and is a useful tool for both modeling and behavioral studies, and the peripheral and neural model show that spike-time information and echolocation specific neuron types can produce target localization in the midbrain.

  10. The role of tragus on echolocating bat, Eptesicus fuscus

    Science.gov (United States)

    Chiu, Chen; Moss, Cynthia

    2005-04-01

    Echolocating bats produce ultrasonic vocal signals and utilize the returning echoes to detect, localize and track prey, and also to avoid obstacles. The pinna and tragus, two major components of the bats external ears, play important roles in filtering returning echoes. The tragus is generally believed to play a role in vertical sound localization. The purpose of this study is to further examine how manipulation of the tragus affects a free-flying bat's prey capture and obstacle avoidance behavior. The first part of this study involved a prey capture experiment, and the bat was trained to catch the tethered mealworms in a large room. The second experiment involved obstacle avoidance, and the bat's task was to fly through the largest opening from a horizontal wire array without touching the wires. In both experiments, the bat performed the tasks under three different conditions: with intact tragus, tragus-deflection and recovery from tragus-deflection. Significantly lower performance was observed in both experiments when tragi were glued down. However, the bat adjusted quickly and returned to baseline performance a few days after the manipulation. The results suggest that tragus-deflection does have effects on both the prey capture and obstacle avoidance behavior. [Work supported by NSF.

  11. Directionality of nose-emitted echolocation calls from bats without a nose-leaf (Plecotus auritus)

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Hallam, John; Moss, Cynthia F

    2017-01-01

    All echolocating bats and whales measured to date emit a directional bio-sonar beam that affords them a number of advantages over an omni-directional beam, i.e. reduced clutter, increased source level and inherent directional information. In this study we investigated the importance of a directio......All echolocating bats and whales measured to date emit a directional bio-sonar beam that affords them a number of advantages over an omni-directional beam, i.e. reduced clutter, increased source level and inherent directional information. In this study we investigated the importance...... of a directional sound emission for navigation through echolocation by measuring the sonar beam of brown long-eared bats, Plecotus auritusP. auritus emits sound through the nostrils but has no external appendages to readily facility a directional sound emission as found in most nose emitters. The study shows...

  12. Echolocating bats emit a highly directional sonar sound beam in the field

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Boel Pedersen, Simon; Jakobsen, Lasse

    2009-01-01

    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild....... We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased...... and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder...

  13. Change in echolocation signals with hearing loss in a false killer whale (Pseudorca crassidens).

    Science.gov (United States)

    Kloepper, Laura N; Nachtigall, Paul E; Breese, Marlee

    2010-10-01

    The echolocation signals of a false killer whale (Pseudorca crassidens) were collected during a wall thickness discrimination task and compared to clicks recorded during an identical experiment in 1992. During the sixteen year time period, the subject demonstrated a loss of high frequency hearing of about 70 kHz. Clicks between the two experiments were compared to investigate the effect of hearing loss on echolocation signals. There was a significant reduction in the peak frequency, center frequency and source level of clicks between the two time periods. Additionally, the subject currently produces more signals with low frequency peaks and fewer signals with high frequency peaks than she did in 1992. These results indicate the subject changed its echolocation signals to match its range of best hearing.

  14. Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales

    DEFF Research Database (Denmark)

    Madsen, Peter Teglberg; Wahlberg, Magnus

    2007-01-01

    Toothed whales produce short, ultrasonic clicks of high directionality and source level to probe their environment acoustically. This process, termed echolocation, is to a large part governed by the properties of the emitted clicks. Therefore derivation of click source parameters from free......-ranging animals is of increasing importance to understand both how toothed whales use echolocation in the wild and how they may be monitored acoustically. This paper addresses how source parameters can be derived from free-ranging toothed whales in the wild using calibrated multi-hydrophone arrays and digital...... recorders. We outline the properties required of hydrophones, amplifiers and analog to digital converters, and discuss the problems of recording echolocation clicks on the axis of a directional sound beam. For accurate localization the hydrophone array apertures must be adapted and scaled to the behavior of...

  15. Environmental acoustic cues guide the biosonar attention of a highly specialised echolocator.

    Science.gov (United States)

    Lattenkamp, Ella Z; Kaiser, Samuel; Kaučič, Rožle; Großmann, Martina; Koselj, Klemen; Goerlitz, Holger R

    2018-03-14

    Sensory systems experience a trade-off between maximizing the detail and amount of sampled information. This trade-off is particularly pronounced in sensory systems that are highly specialized for a single task and thus experience limitations in other tasks. We hypothesised that combining sensory input from multiple streams of information may resolve this trade-off and improve detection and sensing reliability. Specifically, we predicted that perceptive limitations experienced by animals reliant on specialised active echolocation can be compensated for by the phylogenetically older and less specialised process of passive hearing. We tested this hypothesis in greater horseshoe bats, which possess morphological and neural specialisations allowing them to identify fluttering prey in dense vegetation using echolocation only. At the same time, their echolocation system is both spatially and temporally severely limited. Here we show that greater horseshoe bats employ passive hearing to initially detect and localise prey-generated and other environmental sounds, and then raise vocalisation level and concentrate the scanning movements of their sonar beam on the sound source for further investigation with echolocation. These specialised echolocators thus supplement echo-acoustic information with environmental acoustic cues, enlarging perceived space beyond their biosonar range. Contrary to our predictions, we did not find consistent preferences for prey-related acoustic stimuli, indicating the use of passive acoustic cues also for detection of non-prey objects. Our findings suggest that even specialised echolocators exploit a wide range of environmental information, and that phylogenetically older sensory systems can support the evolution of sensory specialisations by compensating for their limitations. © 2018. Published by The Company of Biologists Ltd.

  16. The use of frequency resolution in echolocation for modeling three dimensional environments.

    Science.gov (United States)

    Huebschman, Benjamin D

    2010-12-01

    Bats use echolocation to navigate three dimensional obstacles while locating, identifying, and engaging targets. A theory is offered of image processing during the search and navigation phase of echolocation that uses Doppler frequency shifts. The information in frequency changes across the angle of elevation can be used to generate a three dimensional model of the environment when combined with the timing and the relative amplitude of the returned signals. The mathematics of frequency shifts for an emitter traveling at a large fraction of the velocity of propagation (c) is presented. Reported behavior that can be explained by this phenomenon is discussed.

  17. Prey-capture success revealed by echolocation signals in pipistrelle bats (Pipistrellus pygmaeus)

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Futtrup, Vibeke; Tougaard, Jakob

    2003-01-01

    Three Pipistrellus pygmaeus bats were trained to capture prey on the wing while flying in the laboratory. The bats' capture behaviour and capture success were determined and correlated with acoustic analyses of post-buzz echolocation signals. Three acoustic parameters revealed capture success......: in case of success, post-buzz pauses (pbP) were longer, interpulse intervals (IPI) of the post-buzz signals were longer and, most notably, the spectra of the echolocation signals showed a number of notches that were absent after unsuccessful attempts. If the bats touched the prey without seizing it, pb...

  18. A novel biomimetic sonarhead using beamforming technology to mimic bat echolocation.

    Science.gov (United States)

    Steckel, Jan; Peremans, Herbert

    2012-07-01

    A novel biomimetic sonarhead has been developed to allow researchers of bat echolocation behavior and biomimetic sonar to perform experiments with a system similar to the bat¿s sensory system. The bat's echolocation-related transfer function (ERTF) is implemented using an array of receivers to implement the head-related transfer function (HRTF), and an array of emitters mounted on a cylindrical manifold to implement the emission pattern of the bat. The complete system is controlled by a field-programmable gate array (FPGA) based embedded system connected through a USB interface.

  19. Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, Rhinolophus pumilus (Mammalia: Rhinolophidae), on Okinawa-jima Island, Ryukyu Archipelago, Japan.

    Science.gov (United States)

    Yoshino, Hajime; Matsumura, Sumiko; Kinjo, Kazumitsu; Tamura, Hisao; Ota, Hidetoshi; Izawa, Masako

    2006-08-01

    The Okinawan least horseshoe bat, Rhinolophus pumilus, is a cave-dwelling species endemic to the central and southern Ryukyus, Japan. We analyzed variation in the constant frequency (CF) of the echolocation call and in forearm length (FAL) of this species on Okinawa-jima Island on the basis of data for 479 individuals from 11 caves scattered over the island. CF values in samples from six caves, all located in the southwestern half of Okinawa-jima, were significantly higher than those in samples from five caves in the northeastern half of the island. Also, FAL was significantly greater in the latter group than in the former group, although the ranges of variation in this character substantially overlapped between the two groups. These results suggest substantial differentiation between R. pumilus populations on Okinawa-jima. The implications of our findings for the conservation of this endangered bat species are briefly discussed.

  20. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    Science.gov (United States)

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats.

  1. Sensorimotor model of bat echolocation and prey capture.

    Science.gov (United States)

    Kuc, R

    1994-10-01

    A model of the bat sensorimotor system is developed using acoustics, signal processing, and control theory to illustrate the fundamental issues in accomplishing prey capture with echolocation. This model indicates that successful nonpredictive tracking of an ideal prey can be accomplished with a very simple system. Circular apertures approximate the mouth and ears for deriving acoustic beam patterns, using the big brown bat Eptesicus fuscus as a model. Fundamental and overtone frequency components in the emissions allow two simultaneous acoustic beams to be defined. A pair of nonlinear, time-variable, sampled-data controllers alter the bat's heading by applying yaw and pitch heading corrections. The yaw correction attempts to position the prey in the midsagittal plane by nulling the interaural intensity difference of the fundamental component. The pitch correction compares the intensities of the overtone and fundamental components and acts to null their difference. By initiating pitch correction when the overtone intensity first exceeds that of the fundamental, the ambiguity problem is solved and the prey is directed to the capture region. Simulations of passive prey capture indicate that the capture probability decreases as the prey speed increases. Both quick and sluggish prey are considered, with sluggish prey found to be caught with slightly better efficiency. The magnitude of the prey's lateral motion just prior to capture is observed to be an important factor determining capture. The presence of a blind stage is considered, during which the interference of the emission with the echo is assumed to disrupt any sonar information. The presence of such a blind stage is found to have negligible effect on capture efficiency.

  2. Parallel thalamocortical pathways for echolocation and passive sound localization in a gleaning bat, Antrozous pallidus.

    Science.gov (United States)

    Razak, Khaleel A; Shen, Weiming; Zumsteg, Terese; Fuzessery, Zoltan M

    2007-01-10

    We present evidence for parallel auditory thalamocortical pathways that serve two different behaviors. The pallid bat listens for prey-generated noise (5-35 kHz) to localize prey, while reserving echolocation [downward frequency-modulated (FM) sweeps, 60-30 kHz] for obstacle avoidance. Its auditory cortex contains a tonotopic map representing frequencies from 6 to 70 kHz. The high-frequency (BF > 30 kHz) representation is dominated by FM sweep-selective neurons, whereas most neurons tuned to lower frequencies prefer noise. Retrograde tracer injections into these physiologically distinct cortical regions revealed that the high-frequency region receives input from the suprageniculate (SG) nucleus, but not the ventral division of the medial geniculate body (MGBv), in all experiments (n = 9). In contrast, the low-frequency region receives tonotopically organized input from the MGBv in all experiments (n = 16). Labeling in the SG was observed in only two of these experiments. Both cortical regions also receive sparse inputs from medial (MGBm) and parts of the dorsal division (MGBd) outside the SG. These results show that the low- and high-frequency regions of a single tonotopic map receive dominant inputs from different thalamic divisions. Within the low-frequency region, most neurons are binaurally inhibited, and an orderly map of interaural intensity difference (IID) sensitivity is present. We show that the input to the IID map arises from topographically organized projections from the MGBv. As observed in other species, a frequency-dependent organization is observed in the lateromedial direction in the MGBv. These data demonstrate that MGBv-to-auditory cortex connections are organized with respect to both frequency and binaural selectivity. (c) 2006 Wiley-Liss, Inc.

  3. To females of a noctuid moth, male courtship songs are nothing more than bat echolocation calls

    DEFF Research Database (Denmark)

    Nakano, Ryo; Takanashi, Takuma; Skals, Niels

    2010-01-01

    It has been proposed that intraspecific ultrasonic communication observed in some moths evolved, through sexual selection, subsequent to the development of ears sensitive to echolocation calls of insectivorous bats. Given this scenario, the receiver bias model of signal evolution argues that acou...

  4. Distance perception by echolocation: the nature of echo signal-processing in the bat

    NARCIS (Netherlands)

    Simmons, James A.

    1970-01-01

    Bats orient themselves in the environment by emitting ultrasonic cries and detecting echoes of these cries that are reflected from near-by objects. 4) One of the many intriguing questions about echolocation, this active sonar sense used by bats, is whether it can serve for the perception of depth or

  5. Modeling perspectives on echolocation strategies inspired by bats flying in groups.

    Science.gov (United States)

    Lin, Yuan; Abaid, Nicole

    2015-12-21

    Bats navigating with echolocation - which is a type of active sensing achieved by interpreting echoes resulting from self-generated ultrasonic pulses - exhibit unique behaviors during group flight. While bats may benefit from eavesdropping on their peers׳ echolocation, they also potentially suffer from confusion between their own and peers׳ pulses, caused by an effect called frequency jamming. This hardship of group flight is supported by experimental observations of bats simplifying their sound-scape by shifting their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and varying pulse emission rate from a modeling perspective to understand these behaviors׳ potential benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eavesdropping can reduce collisions compared to those neglecting information from peers. In large populations, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases; conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information generated per bat. These strategies offer benefits for both biological and engineered systems, since frequency jamming is a concern in systems using active sensing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats.

    Science.gov (United States)

    Tressler, Jedediah; Smotherman, Michael S

    2009-10-01

    Background noise evokes a similar suite of adaptations in the acoustic structure of communication calls across a diverse range of vertebrates. Echolocating bats may have evolved specialized vocal strategies for echolocating in noise, but also seem to exhibit generic vertebrate responses such as the ubiquitous Lombard response. We wondered how bats balance generic and echolocation-specific vocal responses to noise. To address this question, we first characterized the vocal responses of flying free-tailed bats (Tadarida brasiliensis) to broadband noises varying in amplitude. Secondly, we measured the bats' responses to band-limited noises that varied in the extent of overlap with their echolocation pulse bandwidth. We hypothesized that the bats' generic responses to noise would be graded proportionally with noise amplitude, total bandwidth and frequency content, and consequently that more selective responses to band-limited noise such as the jamming avoidance response could be explained by a linear decomposition of the response to broadband noise. Instead, the results showed that both the nature and the magnitude of the vocal responses varied with the acoustic structure of the outgoing pulse as well as non-linearly with noise parameters. We conclude that free-tailed bats utilize separate generic and specialized vocal responses to noise in a context-dependent fashion.

  7. Size discrimination of hollow hemispheres by echolocation in a nectar feeding bat

    NARCIS (Netherlands)

    Simon, Ralph; Holderied, Marc W.; Von Helversen, Otto

    Nectar feeding bats use echolocation to find their flowers in the dense growth of tropical rainforests, and such flowers have evolved acoustic features that make their echo more conspicuous to their pollinators. To shed light on the sensory and cognitive basis of echoacoustic object recognition we

  8. Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae)

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Jakobsen, Lasse; Kalko, Elisabeth K V

    2013-01-01

    The Neotropical frog-eating bat, Trachops cirrhosus, primarily hunts stationary prey, either by gleaning on the wing, or in a sit-and-wait mode hanging from a perch. It listens passively for prey-generated sounds, but uses echolocation in all stages of the hunt. Like other bats in the family Phyl...

  9. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats

    DEFF Research Database (Denmark)

    Thiagavel, Jeneni; Cechetto, Clément; Santana, Sharlene E

    2018-01-01

    Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar...

  10. The Use of Echolocation as a Mobility Aid for Blind Persons.

    Science.gov (United States)

    Boehm, R.

    1986-01-01

    The value of echolocation for enhancing mobility of the blind was examined with five blind subjects and 11 sighted, blindfolded subjects. A hand held clicker provided the sounds for navigation through an unfamiliar hallway. Results indicated the blind subjects were better able to identify obstacles correctly using reflected sounds. (Author/DB)

  11. Vocal reporting of echolocation targets: dolphins often report before click trains end.

    Science.gov (United States)

    Ridgway, S H; Elsberry, W R; Blackwood, D J; Kamolnick, T; Todd, M; Carder, D A; Chaplin, Monica; Cranford, T W

    2012-01-01

    Bottlenose dolphins (Tursiops truncatus) wore opaque suction cups over their eyes while stationing behind an acoustically opaque door. This put the dolphins in a known position and orientation. When the door opened, the dolphin clicked to detect targets. Trainers specified that Dolphin S emit a whistle if the target was a 7.5 cm water filled sphere, or a pulse burst if the target was a rock. S remained quiet if there was no target. Dolphin B whistled for the sphere. She remained quiet for rock and for no target. Thus, S had to choose between three different responses, whistle, pulse burst, or remain quiet. B had to choose between two different responses, whistle or remain quiet. S gave correct vocal responses averaging 114 ms after her last echolocation click (range 182 ms before and 219 ms after the last click). Average response for B was 21 ms before her last echolocation click (range 250 ms before and 95 ms after the last click in the train). More often than not, B began her whistle response before her echolocation train ended. The findings suggest separate neural pathways for generation of response vocalizations as opposed to echolocation clicks. © 2012 Acoustical Society of America.

  12. Echolocation Reconsidered: Using Spatial Variations in the Ambient Sound Field To Guide Locomotion.

    Science.gov (United States)

    Ashmead, Daniel H.; Wall, Robert S.; Eaton, Susan B.; Ebinger, Kiara A.; Snook-Hill, Mary-Maureen; And Others

    1998-01-01

    Presents an acoustical model and evidence from four experiments that children with visual impairments use the buildup of low-frequency sound along walls to guide locomotion. The model differs from the concept of echolocation by emphasizing sound that is ambient, rather than self-produced, and of low frequency. (Author/CR)

  13. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats

    Science.gov (United States)

    Smotherman, Michael S.

    2010-01-01

    Background noise evokes a similar suite of adaptations in the acoustic structure of communication calls across a diverse range of vertebrates. Echolocating bats may have evolved specialized vocal strategies for echolocating in noise, but also seem to exhibit generic vertebrate responses such as the ubiquitous Lombard response. We wondered how bats balance generic and echolocation-specific vocal responses to noise. To address this question, we first characterized the vocal responses of flying free-tailed bats (Tadarida brasiliensis) to broadband noises varying in amplitude. Secondly, we measured the bats’ responses to band-limited noises that varied in the extent of overlap with their echolocation pulse bandwidth. We hypothesized that the bats’ generic responses to noise would be graded proportionally with noise amplitude, total bandwidth and frequency content, and consequently that more selective responses to band-limited noise such as the jamming avoidance response could be explained by a linear decomposition of the response to broadband noise. Instead, the results showed that both the nature and the magnitude of the vocal responses varied with the acoustic structure of the outgoing pulse as well as non-linearly with noise parameters. We conclude that free-tailed bats utilize separate generic and specialized vocal responses to noise in a context-dependent fashion. PMID:19672604

  14. Development of echolocation and communication vocalizations in the big brown bat, Eptesicus fuscus.

    Science.gov (United States)

    Monroy, Jenna A; Carter, Matthew E; Miller, Kimberly E; Covey, Ellen

    2011-05-01

    Big brown bats form large maternity colonies of up to 200 mothers and their pups. If pups are separated from their mothers, they can locate each other using vocalizations. The goal of this study was to systematically characterize the development of echolocation and communication calls from birth through adulthood to determine whether they develop from a common precursor at the same or different rates, or whether both types are present initially. Three females and their six pups were isolated from our captive breeding colony. We recorded vocal activity from postnatal day 1 to 35, both when the pups were isolated and when they were reunited with their mothers. At birth, pups exclusively emitted isolation calls, with a fundamental frequency range 30 ms. By the middle of week 1, different types of vocalizations began to emerge. Starting in week 2, pups in the presence of their mothers emitted sounds that resembled adult communication vocalizations, with a lower frequency range and longer durations than isolation calls or echolocation signals. During weeks 2 and 3, these vocalizations were extremely heterogeneous, suggesting that the pups went through a babbling stage before establishing a repertoire of stereotyped adult vocalizations around week 4. By week 4, vocalizations emitted when pups were alone were identical to adult echolocation signals. Echolocation and communication signals both appear to develop from the isolation call, diverging during week 2 and continuing to develop at different rates for several weeks until the adult vocal repertoire is established.

  15. Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Ghose, Kaushik; Moss, Cynthia F

    2009-01-01

    Echolocation allows bats to orient and localize prey in complete darkness. The sonar beam of the big brown bat, Eptesicus fuscus, is directional but broad enough to provide audible echo information from within a 60-90 deg. cone. This suggests that the big brown bat could interrogate a natural scene...

  16. Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Moss, Cynthia F.

    2000-01-01

    Echolocation signals were recorded from big brown bats, Eptesicus fuscus, flying in the field and the laboratory. In open field areas the interpulse intervals ~IPI! of search signals were either around 134 ms or twice that value, 270 ms. At long IPI’s the signals were of long duration ~14 to 18...

  17. Description and clustering of echolocation signals of Commerson's dolphins (Cephalorhynchus commersonii) in Bahía San Julián, Argentina.

    Science.gov (United States)

    Reyes Reyes, M Vanesa; Iñíguez, Miguel A; Hevia, Marta; Hildebrand, John A; Melcón, Mariana L

    2015-10-01

    Commerson's dolphins (Cephalorhynchus commersonii) inhabit coastal waters of Southern South America and Kerguelen Islands. Limited information exists about the acoustic repertoire of this species in the wild. Here, echolocation signals from free-ranging Commerson's dolphins were recorded in Bahía San Julián, Argentina. Signal parameters were calculated and a cluster analysis was made on 3180 regular clicks. Three clusters were obtained based on peak frequency (129, 137, and 173 kHz) and 3 dB bandwidth (8, 6, and 5 kHz). The 428 buzz clicks were analyzed separately. They consisted of clicks emitted with a median inter-click interval of 3.5 ms, peak frequency at 131 kHz, 3 dB bandwidth of 9 kHz, 10 dB bandwidth of 18 kHz, and duration of 56 μs. Buzz clicks were significantly shorter and with a lower peak frequency and a broader bandwidth than most of the regular clicks. This study provided the first description of different echolocation signals, including on- and off-axis signals, recorded from Commerson's dolphins in the wild, most likely as a result of animals at several distances and orientations to the recording device. This information could be useful while doing passive acoustic monitoring.

  18. Mouth-clicks used by blind expert human echolocators - signal description and model based signal synthesis.

    Directory of Open Access Journals (Sweden)

    Lore Thaler

    2017-08-01

    Full Text Available Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click and subsequent reception of the resultant sound through the ear. Existing head-related transfer function (HRTF data bases provide descriptions of reception of the resultant sound. For the current report, we collected a large database of click emissions with three blind people expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the spatial distribution (i.e. beam pattern of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Our data show that transmission levels are fairly constant within a 60° cone emanating from the mouth, but levels drop gradually at further angles, more than for speech. In terms of spectro-temporal features, our data show that emissions are consistently very brief (~3ms duration with peak frequencies 2-4kHz, but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our measurements we propose to model transmissions as sum of monotones modulated by a decaying exponential, with angular attenuation by a modified cardioid. We provide model parameters for each echolocator. These results are a step towards developing computational models of human biosonar. For example, in bats, spatial and spectro-temporal features of emissions have been used to derive and test model based hypotheses about behaviour. The data we present here suggest similar research opportunities within the context of human echolocation. Relatedly, the data are a basis to develop synthetic models of human echolocation

  19. Geographical Variation in Echolocation Call and Body Size of the Okinawan Least Horseshoe Bat, Rhinolophus pumilus(Mammalia: Rhinolophidae), on Okinawa-jima Island, Ryukyu Archipelago, Japan(Animal Diversity and Evolution)

    OpenAIRE

    Hajime, Yoshino; Sumiko, Matsumura; Kazumitsu, Kinjo; Hisao, Tamura; Hidetoshi, Ota; Masako, Izawa; Laboratory of Evolution and Ecology, Faculty of Science, University of the Ryukyus; Faculty of Science, Yamaguchi University; Department of Law, Okinawa International University; Asian Bat Research Institute; Tropical Biosphere Research Center, University of the Ryukyus; Laboratory of Evolution and Ecology, Faculty of Science, University of the Ryukyus

    2006-01-01

    The Okinawan least horseshoe bat, Rhinolophus pumilus, is a cave-dwelling species endemic to the central and southern Ryukyus, Japan. We analyzed variation in the constant frequency (CF) of the echolocation call and in forearm length (FAL) of this species on Okinawa-jima Island on the basis of data for 479 individuals from 11 caves scattered over the island. CF values in samples from six caves, all located in the southwestern half of Okinawa-jima, were significantly higher than those in sampl...

  20. Time-variant spectral peak and notch detection in echolocation-call sequences in bats.

    Science.gov (United States)

    Genzel, Daria; Wiegrebe, Lutz

    2008-01-01

    Bats are able to recognize and discriminate three-dimensional objects in complete darkness by analyzing the echoes of their ultrasonic emissions. Bats typically ensonify objects from different aspects to gain an internal representation of the three-dimensional object shape. Previous work suggests that, as a result, bats rely on the echo-acoustic analysis of spectral peaks and notches. Dependent on the aspect of ensonification, this spectral interference pattern changes over time in an object-specific manner. The speed with which the bats' auditory system can follow time-variant spectral interference patterns is unknown. Here, we measured the detection thresholds for temporal variations in the spectral content of synthesized echolocation calls in the echolocating bat, Megaderma lyra. In a two-alternative, forced-choice procedure, bats were trained to discriminate synthesized echolocation-call sequences with time-variant spectral peaks or notches from echolocation-call sequences with invariant peaks or notches. Detection thresholds of the spectral modulations were measured by varying the modulation depth of the time-variant echolocation-call sequences for modulation rates ranging from 2 to 16 Hz. Both for spectral peaks and notches, modulation-detection thresholds were at a modulation depth of approximately 11% of the centre frequency. Interestingly, thresholds were relatively independent of modulation rate. Acknowledging reservations about direct comparisons of active-acoustic and passive-acoustic auditory processing, the effectual sensitivity and modulation-rate independency of the obtained results indicate that the bats are well capable of tracking changes in the spectral composition of echoes reflected by complex objects from different angles.

  1. Echolocation parameters of Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the wild.

    Science.gov (United States)

    de Freitas, Mafalda; Jensen, Frants H; Tyne, Julian; Bejder, Lars; Madsen, Peter T

    2015-06-01

    Echolocation is a key sensory modality for toothed whale orientation, navigation, and foraging. However, a more comparative understanding of the biosonar properties of toothed whales is necessary to understand behavioral and evolutionary adaptions. To address this, two free-ranging sympatric delphinid species, Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus), were studied. Biosonar clicks from both species were recorded within the same stretch of coastal habitat in Exmouth Gulf, Western Australia, using a vertical seven element hydrophone array. S. sahulensis used biosonar clicks with a mean source level of 199 ± 3 dB re 1 μPa peak-peak (pp), mean centroid frequency of 106 ± 11 kHz, and emitted at interclick intervals (ICIs) of 79 ± 33 ms. These parameters were similar to click parameters of sympatric T. aduncus, characterized by mean source levels of 204 ± 4 dB re 1 μPa pp, centroid frequency of 112 ± 9 kHz, and ICIs of 73 ± 29 ms. These properties are comparable to those of other similar sized delphinids and suggest that biosonar parameters are independent of sympatric delphinids and possibly driven by body size. The dynamic biosonar behavior of these delphinids may have, consequently, allowed for adaptations to local environments through high levels of control over sonar beam properties.

  2. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate

    Science.gov (United States)

    Jerjos, Michael; Hohman, Baily; Lauterbur, M. Elise; Kistler, Logan

    2017-01-01

    Abstract Several taxonomically distinct mammalian groups—certain microbats and cetaceans (e.g., dolphins)—share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat–dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. PMID:28810710

  3. Postnatal ontogeny of the cochlea and flight ability in Jamaican fruit bats (Phyllostomidae) with implications for the evolution of echolocation.

    Science.gov (United States)

    Carter, Richard T; Adams, Rick A

    2015-04-01

    Recent evidence has shown that the developmental emergence of echolocation calls in young bats follow an independent developmental pathway from other vocalizations and that adult-like echolocation call structure significantly precedes flight ability. These data in combination with new insights into the echolocation ability of some shrews suggest that the evolution of echolocation in bats may involve inheritance of a primitive sonar system that was modified to its current state, rather than the ad hoc evolution of echolocation in the earliest bats. Because the cochlea is crucial in the sensation of echoes returning from sonar pulses, we tracked changes in cochlear morphology during development that included the basilar membrane (BM) and secondary spiral lamina (SSL) along the length of the cochlea in relation to stages of flight ability in young bats. Our data show that the morphological prerequisite for sonar sensitivity of the cochlea significantly precedes the onset of flight in young bats and, in fact, development of this prerequisite is complete before parturition. In addition, there were no discernible changes in cochlear morphology with stages of flight development, demonstrating temporal asymmetry between the development of morphology associated with echo-pulse return sensitivity and volancy. These data further corroborate and support the hypothesis that adaptations for sonar and echolocation evolved before flight in mammals. © 2015 Anatomical Society.

  4. Ethanol ingestion affects flight performance and echolocation in Egyptian fruit bats.

    Science.gov (United States)

    Sánchez, Francisco; Melcón, Mariana; Korine, Carmi; Pinshow, Berry

    2010-06-01

    Ethanol, a potential toxin for vertebrates, is present in all fleshy fruits and its content increases as the fruit ripens. Previously, we found that the marginal value of food for Egyptian fruit bats, Rousettus aegyptiacus, decreases when its ethanol content exceeds 1%. Therefore, we hypothesized that, if ingested, food containing >1% ethanol is toxic to these bats, probably causing inebriation that will affect flight and echolocation skills. We tested this hypothesis by flying Egyptian fruit bats in an indoor corridor and found that after ingesting ethanol-rich food bats flew significantly slower than when fed ethanol-free food. Also, the ingestion of ethanol significantly affected several variables of the bats' echolocation calls and behavior. We concluded that ethanol can be toxic to fruit bats; not only does it reduce the marginal value of food, but it also has negative physiological effects on their ability to fly competently and on their calling ability. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Hemprich's long-eared bat (Otonycteris hemprichii) as a predator of scorpions: whispering echolocation, passive gleaning and prey selection.

    Science.gov (United States)

    Holderied, Marc; Korine, Carmi; Moritz, Thorsten

    2011-05-01

    Over 70% of the droppings of the gleaning bat Otonycteris hemprichii can contain scorpion fragments. Yet, some scorpions found in its desert habitat possess venom of the highest known toxicity, rendering them a very dangerous prey. In this study, we describe how O. hemprichii catches and handles scorpions, quantify its flight and echolocation behaviour in the field, investigate what sensory modality it uses to detect scorpions, and test whether it selects scorpions according to their size or toxicity. We confirmed that O. hemprichi is a whispering bat (approx. 80 dB peSPL) with short, multi-harmonic calls. In a flight room we also confirmed that O. hemprichii detects scorpions by their walking noises. Amplitudes of such noises were measured and they reach the flying bat at or below the level of echoes of the loess substrate. Bats dropped straight onto moving scorpions and were stung frequently even straight in their face. Stings did not change the bats' behaviour and caused no signs of poisoning. Scorpions were eaten including poison gland and stinger. Bats showed no preference neither for any of the scorpion species nor their size suggesting they are generalist predators with regard to scorpions.

  6. Echolocation calls of the two endemic leaf-nosed bats (Chiroptera: Yinpterochiroptera: Hipposideridae of India: Hipposideros hypophyllus Kock & Bhat, 1994 and Hipposideros durgadasi Khajuria, 1970

    Directory of Open Access Journals (Sweden)

    Bhargavi Srinivasulu

    2016-12-01

    Full Text Available  We provide the echolocation call characteristics of two endemic Hipposiderid bats, the Kolar Leaf-nosed Bat Hipposideros hypophyllus and Durga Das’s Leaf-nosed Bat H. durgadasi from Kolar district, Karnataka, India for the first time. The calls consisted of a constant frequency (CF component followed by a frequency modulated (FM tail. It was found that, on comparison with the call frequencies of other members of the bicolor group of the genus Hipposideros previously reported from different parts of southeast Asia, H. durgadasi, though larger than H. cineraceus, called at a much higher frequency (168.4 – 175.7 kHz. H. hypophyllus, on the other hand, called between 103.0 – 106.4 kHz. In this paper we present our findings and analysis of the calls of these endemic species.  

  7. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae)

    DEFF Research Database (Denmark)

    Brinkløv, Signe; Jakobsen, Lasse; Ratcliffe, John M

    2011-01-01

    The directionality of bat echolocation calls defines the width of bats' sonar "view," while call intensity directly influences detection range since adequate sound energy must impinge upon objects to return audible echoes. Both are thus crucial parameters for understanding biosonar signal design....... a longer and narrower sonar range than previously thought. C. perspicillata orient and forage in the forest interior and the narrow beam might be adaptive in clutter, by reducing the number and intensity of off-axis echoes....

  8. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats

    OpenAIRE

    Thiagavel, Jeneni; Cechetto, Clément; Santana, Sharlene E.; Jakobsen, Lasse; Warrant, Eric J.; Ratcliffe, John M.

    2018-01-01

    Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats’ common ancestor had eyes too small to allow for successful a...

  9. Flexible echolocation behaviour of trawling bats during approach of continuous or transient prey cues

    Directory of Open Access Journals (Sweden)

    Kirstin eÜbernickel

    2013-05-01

    Full Text Available Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behaviour to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behaviour.We studied the adaptations in the behaviour of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behaviour at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behaviour to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behaviour during approaches within very short reaction times depending on the sensory information.

  10. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.

    Science.gov (United States)

    Tian, B; Schnitzler, H U

    1997-04-01

    Echolocation signals of horseshoe bats (Rhinolophidae) consist of a relatively long component of constant frequency (CF) which is preceded by an initial frequency-modulated (iFM) component and followed by a terminal frequency-modulated (tFM) component. To examine the role of these components in echolocation, four bats were trained to fly from a perch to a landing bar. A dual camera system allowed reconstruction of the flight paths in three dimensions. Echolocation signals were recorded, analyzed, and correlated with the flight behavior of the bats. It was confirmed that during flight the bats compensate the Doppler shifts which are produced by their own flight movement. In free flight they emit per wing beat one single signal of long duration, with little variation in the three signal components. In approach flight the bats reduce pulse duration and interval with decreasing target range. The iFM is not varied with respect to target range, suggesting that this component plays little role in the processing of echolocating a target of interest. The bandwidth of the tFM component is increased while its duration is shortened in proportion to decreasing target range, so that the signal-echo overlap of the FM component is avoided down to a target distance of 15 cm. These concurrent changes suggest that the tFM component is used for ranging. During the last 60 cm of the approach the bats compensated for the increase of echo SPL by lowering the emission level of the CF component by 6-9 dB and that of the tFM component by 9-11 dB per halving of range. The specific signal structure of horseshoe bats is discussed as an adaptation for the hunting of fluttering insects in highly cluttered environments.

  11. Analysis and Modeling of Echolocation Signals Emitted by Mediterranean Bottlenose Dolphins

    Directory of Open Access Journals (Sweden)

    Greco Maria

    2006-01-01

    Full Text Available We analyzed the echolocation sounds emitted by Mediterranean bottlenose dolphins. We extracted the click trains by visual inspection of the data files recorded along the coast of the Tuscany with the collaboration of the CETUS Research Center. We modeled the extracted sonar clicks as Gaussian or exponential multicomponent signals, we estimated the characteristic parameters and compared the data with the reconstructed signals based on the estimates. Results about the estimation and the data fitting are largely shown in the paper.

  12. Target distance-dependent variation of hearing sensitivity during echolocation in a false killer whale.

    Science.gov (United States)

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2010-06-01

    Evidence of varying hearing sensitivity according to the target distance was obtained in a false killer whale Pseudorca crassidens during echolocation. Auditory evoked potentials (AEPs) triggered by echolocation clicks were recorded. The target distance varied from 1 to 6 m. The records contained AEPs to the self-heard emitted click and AEPs to the echoes. Mean level of echolocation clicks depended on distance (the longer the distance, the higher the click level), however, the effect of click level on AEP amplitude was eliminated by extracting AEPs to clicks of certain particular levels. The amplitude of the echo-provoked AEP was almost independent of distance, however, the amplitude of the AEP to the emitted click, did depend on distance within a range from 1 to 4 m: the longer the distance, the higher the amplitude. The latter result is interpreted as confirmational evidence that the animal is capable of varying hearing sensitivity according to target distance. The variation of hearing sensitivity may help to compensate for the echo attenuation with distance; as a secondary effect, this variation manifested itself in a variation of the amplitude of the AEP to emitted clicks.

  13. Metabolic costs of bat echolocation in a non-foraging context support a role in communication

    Directory of Open Access Journals (Sweden)

    Dina Kea Noanoa Dechmann

    2013-04-01

    Full Text Available The exploitation of information is a key adaptive behaviour of social animals, and many animals produce costly signals to communicate with conspecifics. In contrast, bats produce ultrasound for auto-communication, i.e., they emit ultrasound calls and behave in response to the received echo. However, ultrasound echolocation calls produced by non-flying bats looking for food are energetically costly. Thus, if they are produced in a non-foraging or navigational context this indicates an energetic investment, which must be motivated by something to be under positive selection. We quantified the costs of the production of such calls, in stationary, non-foraging lesser bulldog bats (Noctilio albiventris and found metabolic rates to increase by 0.021 ± 0.001 J/pulse (mean ± standard error. From this, we estimated the metabolic rates of N. albiventris when responding with ultrasound echolocation calls to playbacks of echolocation calls from familiar and unfamiliar conspecific as well as heterospecific bats. Lesser bulldog bats adjusted their energetic investment to the social information contained in the presented playback. Our results are consistent with the hypothesis that in addition to orientation and foraging, ultrasound calls in bats may also have function for active communication.

  14. How Nectar-Feeding Bats Localize their Food: Echolocation Behavior of Leptonycteris yerbabuenae Approaching Cactus Flowers.

    Directory of Open Access Journals (Sweden)

    Tania P Gonzalez-Terrazas

    Full Text Available Nectar-feeding bats show morphological, physiological, and behavioral adaptations for feeding on nectar. How they find and localize flowers is still poorly understood. While scent cues alone allow no precise localization of a floral target, the spatial properties of flower echoes are very precise and could play a major role, particularly at close range. The aim of this study is to understand the role of echolocation for classification and localization of flowers. We compared the approach behavior of Leptonycteris yerbabuenae to flowers of a columnar cactus, Pachycereus pringlei, to that to an acrylic hollow hemisphere that is acoustically conspicuous to bats, but has different acoustic properties and, contrary to the cactus flower, present no scent. For recording the flight and echolocation behaviour we used two infrared video cameras under stroboscopic illumination synchronized with ultrasound recordings. During search flights all individuals identified both targets as a possible food source and initiated an approach flight; however, they visited only the cactus flower. In experiments with the acrylic hemisphere bats aborted the approach at ca. 40-50 cm. In the last instant before the flower visit the bats emitted a long terminal group of 10-20 calls. This is the first report of this behaviour for a nectar-feeding bat. Our findings suggest that L. yerbabuenae use echolocation for classification and localization of cactus flowers and that the echo-acoustic characteristics of the flower guide the bats directly to the flower opening.

  15. Echolocation behavior in big brown bats is not impaired after intense broadband noise exposures.

    Science.gov (United States)

    Hom, Kelsey N; Linnenschmidt, Meike; Simmons, James A; Simmons, Andrea Megela

    2016-10-15

    Echolocating bats emit trains of intense ultrasonic biosonar pulses and listen to weaker echoes returning from objects in their environment. Identification and categorization of echoes are crucial for orientation and prey capture. Bats are social animals and often fly in groups in which they are exposed to their own emissions and to those from other bats, as well as to echoes from multiple surrounding objects. Sound pressure levels in these noisy conditions can exceed 110 dB, with no obvious deleterious effects on echolocation performance. Psychophysical experiments show that big brown bats (Eptesicus fuscus) do not experience temporary threshold shifts after exposure to intense broadband ultrasonic noise, but it is not known if they make fine-scale adjustments in their pulse emissions to compensate for any effects of the noise. We investigated whether big brown bats adapt the number, temporal patterning or relative amplitude of their emitted pulses while flying through an acoustically cluttered corridor after exposure to intense broadband noise (frequency range 10-100 kHz; sound exposure level 152 dB). Under these conditions, four bats made no significant changes in navigation errors or in pulse number, timing and amplitude 20 min, 24 h or 48 h after noise exposure. These data suggest that big brown bats remain able to perform difficult echolocation tasks after exposure to ecologically realistic levels of broadband noise. © 2016. Published by The Company of Biologists Ltd.

  16. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats

    Science.gov (United States)

    Götze, Simone; Koblitz, Jens C.; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2016-01-01

    Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat’s attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1–11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls. PMID:27502900

  17. Hearing sensation levels of emitted biosonar clicks in an echolocating Atlantic bottlenose dolphin.

    Directory of Open Access Journals (Sweden)

    Songhai Li

    Full Text Available Emitted biosonar clicks and auditory evoked potential (AEP responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of -34, -28, and -22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation.

  18. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

    Science.gov (United States)

    Takahashi, Eri; Hyomoto, Kiri; Riquimaroux, Hiroshi; Watanabe, Yoshiaki; Ohta, Tetsuo; Hiryu, Shizuko

    2014-08-15

    The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequency-modulated jamming sounds (3 ms duration) mimicking echolocation pulses of P. abramus were prepared. All bats showed significant increases in the terminal frequency of the frequency-modulated pulse by an average of 2.1-4.5 kHz when the terminal frequency of the jamming sounds was lower than the bats' own pulses. This frequency shift was not observed using jamming frequencies that overlapped with or were higher than the bats' own pulses. These findings suggest that JARs in P. abramus are sensitive to the terminal frequency of jamming pulses and that the bats' response pattern was dependent on the slight difference in stimulus frequency. In experiment 2, when bats were repeatedly exposed to a band-limited noise of 70 ms duration, the bats in flight more frequently emitted pulses during silent periods between jamming sounds, suggesting that the bats could actively change the timing of pulse emissions, even during flight, to avoid temporal overlap with jamming sounds. Our findings demonstrate that bats could adjust their vocalized frequency and emission timing during flight in response to acoustic jamming stimuli. © 2014. Published by The Company of Biologists Ltd.

  19. How Nectar-Feeding Bats Localize their Food: Echolocation Behavior of Leptonycteris yerbabuenae Approaching Cactus Flowers

    Science.gov (United States)

    Koblitz, Jens C.; Fleming, Theodore H.; Medellín, Rodrigo A.; Kalko, Elisabeth K. V.; Schnitzler, Hans-Ulrich; Tschapka, Marco

    2016-01-01

    Nectar-feeding bats show morphological, physiological, and behavioral adaptations for feeding on nectar. How they find and localize flowers is still poorly understood. While scent cues alone allow no precise localization of a floral target, the spatial properties of flower echoes are very precise and could play a major role, particularly at close range. The aim of this study is to understand the role of echolocation for classification and localization of flowers. We compared the approach behavior of Leptonycteris yerbabuenae to flowers of a columnar cactus, Pachycereus pringlei, to that to an acrylic hollow hemisphere that is acoustically conspicuous to bats, but has different acoustic properties and, contrary to the cactus flower, present no scent. For recording the flight and echolocation behaviour we used two infrared video cameras under stroboscopic illumination synchronized with ultrasound recordings. During search flights all individuals identified both targets as a possible food source and initiated an approach flight; however, they visited only the cactus flower. In experiments with the acrylic hemisphere bats aborted the approach at ca. 40–50 cm. In the last instant before the flower visit the bats emitted a long terminal group of 10–20 calls. This is the first report of this behaviour for a nectar-feeding bat. Our findings suggest that L. yerbabuenae use echolocation for classification and localization of cactus flowers and that the echo-acoustic characteristics of the flower guide the bats directly to the flower opening. PMID:27684373

  20. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    Science.gov (United States)

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. © 2013.

  1. Three-dimensional tracking of Cuvier's beaked whales' echolocation sounds using nested hydrophone arrays.

    Science.gov (United States)

    Gassmann, Martin; Wiggins, Sean M; Hildebrand, John A

    2015-10-01

    Cuvier's beaked whales (Ziphius cavirostris) were tracked using two volumetric small-aperture (∼1 m element spacing) hydrophone arrays, embedded into a large-aperture (∼1 km element spacing) seafloor hydrophone array of five nodes. This array design can reduce the minimum number of nodes that are needed to record the arrival of a strongly directional echolocation sound from 5 to 2, while providing enough time-differences of arrivals for a three-dimensional localization without depending on any additional information such as multipath arrivals. To illustrate the capabilities of this technique, six encounters of up to three Cuvier's beaked whales were tracked over a two-month recording period within an area of 20 km(2) in the Southern California Bight. Encounter periods ranged from 11 min to 33 min. Cuvier's beaked whales were found to reduce the time interval between echolocation clicks while alternating between two inter-click-interval regimes during their descent towards the seafloor. Maximum peak-to-peak source levels of 179 and 224 dB re 1 μPa @ 1 m were estimated for buzz sounds and on-axis echolocation clicks (directivity index = 30 dB), respectively. Source energy spectra of the on-axis clicks show significant frequency components between 70 and 90 kHz, in addition to their typically noted FM upsweep at 40-60 kHz.

  2. Finding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar.

    Science.gov (United States)

    Gonzalez-Terrazas, Tania P; Martel, Carlos; Milet-Pinheiro, Paulo; Ayasse, Manfred; Kalko, Elisabeth K V; Tschapka, Marco

    2016-08-01

    Nectar-feeding bats depend mainly on floral nectar to fulfil their energetic requirements. Chiropterophilous flowers generally present strong floral scents and provide conspicuous acoustic echoes to attract bats. While floral scents are assumed to attract bats over long distances, acoustic properties of flower structures may provide detailed information, thus supporting the localization of a flower at close ranges. So far, to our knowledge, there is no study trying to understand the relative importance as well as the combination of these generally coupled cues for detection (presence) and localization (exact position) of open flowers in nature. For a better comprehension of the significance of olfaction and echolocation in the foraging behaviour of nectar-feeding bats, we conducted two-choice experiments with Leptonycteris yerbabuenae . We tested the bats' behaviour in three experimental scenarios with different cues: (i) olfaction versus echolocation, (ii) echolocation versus echolocation and olfaction, and (iii) olfaction versus echolocation and olfaction. We used the floral scent of the bat-pollinated cactus Pachycereus pringlei as olfactory cue and an acrylic paraboloid as acoustic cue. Additionally, we recorded the echolocation behaviour of the bats and analysed the floral scent of P. pringlei . When decoupled cues were offered, bats displayed no preference in choice for any of the two cues. However, bats reacted first to and chose more often the coupled cues. All bats echolocated continuously and broadcast a long terminal group before a successful visit. The floral scent bouquet of P. pringlei is composed of 20 compounds, some of which (e.g. methyl benzoate) were already reported from chiropterophilous plants. Our investigation demonstrates for the first time to our knowledge, that nectar-feeding bats integrate over different sensory modes for detection and precise localization of open flowers. The combined information from olfactory and acoustic cues allows

  3. Oilbirds produce echolocation signals beyond their best hearing range and adjust signal design to natural light conditions.

    Science.gov (United States)

    Brinkløv, Signe; Elemans, Coen P H; Ratcliffe, John M

    2017-05-01

    Oilbirds are active at night, foraging for fruits using keen olfaction and extremely light-sensitive eyes, and echolocate as they leave and return to their cavernous roosts. We recorded the echolocation behaviour of wild oilbirds using a multi-microphone array as they entered and exited their roosts under different natural light conditions. During echolocation, the birds produced click bursts (CBs) lasting less than 10 ms and consisting of a variable number (2-8) of clicks at 2-3 ms intervals. The CBs have a bandwidth of 7-23 kHz at -6 dB from signal peak frequency. We report on two unique characteristics of this avian echolocation system. First, oilbirds reduce both the energy and number of clicks in their CBs under conditions of clear, moonlit skies, compared with dark, moonless nights. Second, we document a frequency mismatch between the reported best frequency of oilbird hearing (approx. 2 kHz) and the bandwidth of their echolocation CBs. This unusual signal-to-sensory system mismatch probably reflects avian constraints on high-frequency hearing but may still allow oilbirds fine-scale, close-range detail resolution at the upper extreme (approx. 10 kHz) of their presumed hearing range. Alternatively, oilbirds, by an as-yet unknown mechanism, are able to hear frequencies higher than currently appreciated.

  4. The voice of bats: how greater mouse-eared bats recognize individuals based on their echolocation calls.

    Science.gov (United States)

    Yovel, Yossi; Melcon, Mariana Laura; Franz, Matthias O; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2009-06-01

    Echolocating bats use the echoes from their echolocation calls to perceive their surroundings. The ability to use these continuously emitted calls, whose main function is not communication, for recognition of individual conspecifics might facilitate many of the social behaviours observed in bats. Several studies of individual-specific information in echolocation calls found some evidence for its existence but did not quantify or explain it. We used a direct paradigm to show that greater mouse-eared bats (Myotis myotis) can easily discriminate between individuals based on their echolocation calls and that they can generalize their knowledge to discriminate new individuals that they were not trained to recognize. We conclude that, despite their high variability, broadband bat-echolocation calls contain individual-specific information that is sufficient for recognition. An analysis of the call spectra showed that formant-related features are suitable cues for individual recognition. As a model for the bat's decision strategy, we trained nonlinear statistical classifiers to reproduce the behaviour of the bats, namely to repeat correct and incorrect decisions of the bats. The comparison of the bats with the model strongly implies that the bats are using a prototype classification approach: they learn the average call characteristics of individuals and use them as a reference for classification.

  5. The voice of bats: how greater mouse-eared bats recognize individuals based on their echolocation calls.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    2009-06-01

    Full Text Available Echolocating bats use the echoes from their echolocation calls to perceive their surroundings. The ability to use these continuously emitted calls, whose main function is not communication, for recognition of individual conspecifics might facilitate many of the social behaviours observed in bats. Several studies of individual-specific information in echolocation calls found some evidence for its existence but did not quantify or explain it. We used a direct paradigm to show that greater mouse-eared bats (Myotis myotis can easily discriminate between individuals based on their echolocation calls and that they can generalize their knowledge to discriminate new individuals that they were not trained to recognize. We conclude that, despite their high variability, broadband bat-echolocation calls contain individual-specific information that is sufficient for recognition. An analysis of the call spectra showed that formant-related features are suitable cues for individual recognition. As a model for the bat's decision strategy, we trained nonlinear statistical classifiers to reproduce the behaviour of the bats, namely to repeat correct and incorrect decisions of the bats. The comparison of the bats with the model strongly implies that the bats are using a prototype classification approach: they learn the average call characteristics of individuals and use them as a reference for classification.

  6. Oilbirds produce echolocation signals beyond their best hearing range and adjust signal design to natural light conditions

    Science.gov (United States)

    Brinkløv, Signe; Elemans, Coen P. H.

    2017-01-01

    Oilbirds are active at night, foraging for fruits using keen olfaction and extremely light-sensitive eyes, and echolocate as they leave and return to their cavernous roosts. We recorded the echolocation behaviour of wild oilbirds using a multi-microphone array as they entered and exited their roosts under different natural light conditions. During echolocation, the birds produced click bursts (CBs) lasting less than 10 ms and consisting of a variable number (2–8) of clicks at 2–3 ms intervals. The CBs have a bandwidth of 7–23 kHz at −6 dB from signal peak frequency. We report on two unique characteristics of this avian echolocation system. First, oilbirds reduce both the energy and number of clicks in their CBs under conditions of clear, moonlit skies, compared with dark, moonless nights. Second, we document a frequency mismatch between the reported best frequency of oilbird hearing (approx. 2 kHz) and the bandwidth of their echolocation CBs. This unusual signal-to-sensory system mismatch probably reflects avian constraints on high-frequency hearing but may still allow oilbirds fine-scale, close-range detail resolution at the upper extreme (approx. 10 kHz) of their presumed hearing range. Alternatively, oilbirds, by an as-yet unknown mechanism, are able to hear frequencies higher than currently appreciated. PMID:28573036

  7. Bidirectional Echolocation in the Bat Barbastella barbastellus: Different Signals of Low Source Level Are Emitted Upward through the Nose and Downward through the Mouth.

    Science.gov (United States)

    Seibert, Anna-Maria; Koblitz, Jens C; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2015-01-01

    The Barbastelle bat (Barbastella barbastellus) preys almost exclusively on tympanate moths. While foraging, this species alternates between two different signal types. We investigated whether these signals differ in emission direction or source level (SL) as assumed from earlier single microphone recordings. We used two different settings of a 16-microphone array to determine SL and sonar beam direction at various locations in the field. Both types of search signals had low SLs (81 and 82 dB SPL rms re 1 m) as compared to other aerial-hawking bats. These two signal types were emitted in different directions; type 1 signals were directed downward and type 2 signals upward. The angle between beam directions was approximately 70°. Barbastelle bats are able to emit signals through both the mouth and the nostrils. As mouth and nostrils are roughly perpendicular to each other, we conclude that type 1 signals are emitted through the mouth while type 2 signals and approach signals are emitted through the nose. We hypothesize that the "stealth" echolocation system of B. barbastellus is bifunctional. The more upward directed nose signals may be mainly used for search and localization of prey. Their low SL prevents an early detection by eared moths but comes at the expense of a strongly reduced detection range for the environment below the bat. The more downward directed mouth signals may have evolved to compensate for this disadvantage and may be mainly used for spatial orientation. We suggest that the possibly bifunctional echolocation system of B. barbastellus has been adapted to the selective foraging of eared moths and is an excellent example of a sophisticated sensory arms race between predator and prey.

  8. Bidirectional Echolocation in the Bat Barbastella barbastellus: Different Signals of Low Source Level Are Emitted Upward through the Nose and Downward through the Mouth.

    Directory of Open Access Journals (Sweden)

    Anna-Maria Seibert

    Full Text Available The Barbastelle bat (Barbastella barbastellus preys almost exclusively on tympanate moths. While foraging, this species alternates between two different signal types. We investigated whether these signals differ in emission direction or source level (SL as assumed from earlier single microphone recordings. We used two different settings of a 16-microphone array to determine SL and sonar beam direction at various locations in the field. Both types of search signals had low SLs (81 and 82 dB SPL rms re 1 m as compared to other aerial-hawking bats. These two signal types were emitted in different directions; type 1 signals were directed downward and type 2 signals upward. The angle between beam directions was approximately 70°. Barbastelle bats are able to emit signals through both the mouth and the nostrils. As mouth and nostrils are roughly perpendicular to each other, we conclude that type 1 signals are emitted through the mouth while type 2 signals and approach signals are emitted through the nose. We hypothesize that the "stealth" echolocation system of B. barbastellus is bifunctional. The more upward directed nose signals may be mainly used for search and localization of prey. Their low SL prevents an early detection by eared moths but comes at the expense of a strongly reduced detection range for the environment below the bat. The more downward directed mouth signals may have evolved to compensate for this disadvantage and may be mainly used for spatial orientation. We suggest that the possibly bifunctional echolocation system of B. barbastellus has been adapted to the selective foraging of eared moths and is an excellent example of a sophisticated sensory arms race between predator and prey.

  9. Adaptive echolocation behavior in bats for the analysis of auditory scenes.

    Science.gov (United States)

    Chiu, Chen; Xian, Wei; Moss, Cynthia F

    2009-05-01

    Echolocating bats emit sonar pulses and listen to returning echoes to probe their surroundings. Bats adapt their echolocation call design to cope with dynamic changes in the acoustic environment, including habitat change or the presence of nearby conspecifics/heterospecifics. Seven pairs of big brown bats, Eptesicus fuscus, were tested in this study to examine how they adjusted their echolocation calls when flying and competing with a conspecific for food. Results showed that differences in five call parameters, start/end frequencies, duration, bandwidth and sweep rate, significantly increased in the two-bat condition compared with the baseline data. In addition, the magnitude of spectral separation of calls was negatively correlated with the baseline call design differences in individual bats. Bats with small baseline call frequency differences showed larger increases in call frequency separation when paired than those with large baseline call frequency differences, suggesting that bats actively change their sonar call structure if pre-existing differences in call design are small. Call design adjustments were also influenced by physical spacing between two bats. Calls of paired bats exhibited the largest design separations when inter-bat distance was shorter than 0.5 m, and the separation decreased as the spacing increased. All individuals modified at least one baseline call parameter in response to the presence of another conspecific. We propose that dissimilarity between the time-frequency features of sonar calls produced by different bats aids each individual in segregating echoes of its own sonar vocalizations from the acoustic signals of neighboring bats.

  10. Following a foraging fish-finder: diel habitat use of Blainville's beaked whales revealed by echolocation.

    Directory of Open Access Journals (Sweden)

    Patricia Arranz

    Full Text Available Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9 hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL or near the sea-floor with little diel change. At least 43% (420/974 of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville's beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville's beaked whales in the otherwise food-limited deep-ocean.

  11. People's Ability to Detect Objects Using Click-Based Echolocation: A Direct Comparison between Mouth-Clicks and Clicks Made by a Loudspeaker.

    Science.gov (United States)

    Thaler, Lore; Castillo-Serrano, Josefina

    2016-01-01

    Echolocation is the ability to use reflected sound to obtain information about the spatial environment. Echolocation is an active process that requires both the production of the emission as well as the sensory processing of the resultant sound. Appreciating the general usefulness of echo-acoustic cues for people, in particular those with vision impairments, various devices have been built that exploit the principle of echolocation to obtain and provide information about the environment. It is common to all these devices that they do not require the person to make a sound. Instead, the device produces the emission autonomously and feeds a resultant sound back to the user. Here we tested if echolocation performance in a simple object detection task was affected by the use of a head-mounted loudspeaker as compared to active clicking. We found that 27 sighted participants new to echolocation did generally better when they used a loudspeaker as compared to mouth-clicks, and that two blind participants with experience in echolocation did equally well with mouth clicks and the speaker. Importantly, performance of sighted participants' was not statistically different from performance of blind experts when they used the speaker. Based on acoustic click data collected from a subset of our participants, those participants whose mouth clicks were more similar to the speaker clicks, and thus had higher peak frequencies and sound intensity, did better. We conclude that our results are encouraging for the consideration and development of assistive devices that exploit the principle of echolocation.

  12. People’s Ability to Detect Objects Using Click-Based Echolocation: A Direct Comparison between Mouth-Clicks and Clicks Made by a Loudspeaker

    Science.gov (United States)

    Thaler, Lore; Castillo-Serrano, Josefina

    2016-01-01

    Echolocation is the ability to use reflected sound to obtain information about the spatial environment. Echolocation is an active process that requires both the production of the emission as well as the sensory processing of the resultant sound. Appreciating the general usefulness of echo-acoustic cues for people, in particular those with vision impairments, various devices have been built that exploit the principle of echolocation to obtain and provide information about the environment. It is common to all these devices that they do not require the person to make a sound. Instead, the device produces the emission autonomously and feeds a resultant sound back to the user. Here we tested if echolocation performance in a simple object detection task was affected by the use of a head-mounted loudspeaker as compared to active clicking. We found that 27 sighted participants new to echolocation did generally better when they used a loudspeaker as compared to mouth-clicks, and that two blind participants with experience in echolocation did equally well with mouth clicks and the speaker. Importantly, performance of sighted participants’ was not statistically different from performance of blind experts when they used the speaker. Based on acoustic click data collected from a subset of our participants, those participants whose mouth clicks were more similar to the speaker clicks, and thus had higher peak frequencies and sound intensity, did better. We conclude that our results are encouraging for the consideration and development of assistive devices that exploit the principle of echolocation. PMID:27135407

  13. People's Ability to Detect Objects Using Click-Based Echolocation: A Direct Comparison between Mouth-Clicks and Clicks Made by a Loudspeaker.

    Directory of Open Access Journals (Sweden)

    Lore Thaler

    Full Text Available Echolocation is the ability to use reflected sound to obtain information about the spatial environment. Echolocation is an active process that requires both the production of the emission as well as the sensory processing of the resultant sound. Appreciating the general usefulness of echo-acoustic cues for people, in particular those with vision impairments, various devices have been built that exploit the principle of echolocation to obtain and provide information about the environment. It is common to all these devices that they do not require the person to make a sound. Instead, the device produces the emission autonomously and feeds a resultant sound back to the user. Here we tested if echolocation performance in a simple object detection task was affected by the use of a head-mounted loudspeaker as compared to active clicking. We found that 27 sighted participants new to echolocation did generally better when they used a loudspeaker as compared to mouth-clicks, and that two blind participants with experience in echolocation did equally well with mouth clicks and the speaker. Importantly, performance of sighted participants' was not statistically different from performance of blind experts when they used the speaker. Based on acoustic click data collected from a subset of our participants, those participants whose mouth clicks were more similar to the speaker clicks, and thus had higher peak frequencies and sound intensity, did better. We conclude that our results are encouraging for the consideration and development of assistive devices that exploit the principle of echolocation.

  14. Fractal scaling in bottlenose dolphin (Tursiops truncatus) echolocation: A case study

    Science.gov (United States)

    Perisho, Shaun T.; Kelty-Stephen, Damian G.; Hajnal, Alen; Houser, Dorian; Kuczaj, Stan A., II

    2016-02-01

    Fractal scaling patterns, which entail a power-law relationship between magnitude of fluctuations in a variable and the scale at which the variable is measured, have been found in many aspects of human behavior. These findings have led to advances in behavioral models (e.g. providing empirical support for cascade-driven theories of cognition) and have had practical medical applications (e.g. providing new methods for early diagnosis of medical conditions). In the present paper, fractal analysis is used to investigate whether similar fractal scaling patterns exist in inter-click interval and peak-peak amplitude measurements of bottlenose dolphin click trains. Several echolocation recordings taken from two male bottlenose dolphins were analyzed using Detrended Fluctuation Analysis and Higuchi's (1988) method for determination of fractal dimension. Both animals were found to exhibit fractal scaling patterns near what is consistent with persistent long range correlations. These findings suggest that recent advances in human cognition and medicine may have important parallel applications to echolocation as well.

  15. Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros)

    Science.gov (United States)

    Chen, Shiang-Fan; Jones, Gareth; Rossiter, Stephen J.

    2009-01-01

    The origin and maintenance of intraspecific variation in vocal signals is important for population divergence and speciation. Where vocalizations are transmitted by vertical cultural inheritance, similarity will reflect co-ancestry, and thus vocal divergence should reflect genetic structure. Horseshoe bats are characterized by echolocation calls dominated by a constant frequency component that is partly determined by maternal imprinting. Although previous studies showed that constant frequency calls are also influenced by some non-genetic factors, it is not known how frequency relates to genetic structure. To test this, we related constant frequency variation to genetic and non-genetic variables in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Recordings of bats from across Taiwan revealed that females called at higher frequencies than males; however, we found no effect of environmental or morphological factors on call frequency. By comparison, variation showed clear population structure, with frequencies lower in the centre and east, and higher in the north and south. Within these regions, frequency divergence was directional and correlated with geographical distance, suggesting that call frequencies are subject to cultural drift. However, microsatellite clustering analysis showed that broad differences in constant frequency among populations corresponded to discontinuities in allele frequencies resulting from vicariant events. Our results provide evidence that the processes shaping genetic subdivision have concomitant consequences for divergence in echolocation call frequency. PMID:19692399

  16. Digital cranial endocast of Hyopsodus (Mammalia, "Condylarthra": a case of paleogene terrestrial echolocation?

    Directory of Open Access Journals (Sweden)

    Maeva J Orliac

    Full Text Available We here describe the endocranial cast of the Eocene archaic ungulate Hyopsodus lepidus AMNH 143783 (Bridgerian, North America reconstructed from X-ray computed microtomography data. This represents the first complete cranial endocast known for Hyopsodontinae. The Hyopsodus endocast is compared to other known "condylarthran" endocasts, i. e. those of Pleuraspidotherium (Pleuraspidotheriidae, Arctocyon (Arctocyonidae, Meniscotherium (Meniscotheriidae, Phenacodus (Phenacodontidae, as well as to basal perissodactyls (Hyracotherium and artiodactyls (Cebochoerus, Homacodon. Hyopsodus presents one of the highest encephalization quotients of archaic ungulates and shows an "advanced version" of the basal ungulate brain pattern, with a mosaic of archaic characters such as large olfactory bulbs, weak ventral expansion of the neopallium, and absence of neopallium fissuration, as well as more specialized ones such as the relative reduction of the cerebellum compared to cerebrum or the enlargement of the inferior colliculus. As in other archaic ungulates, Hyopsodus midbrain exposure is important, but it exhibits a dorsally protruding largely developed inferior colliculus, a feature unique among "Condylarthra". A potential correlation between the development of the inferior colliculus in Hyopsodus and the use of terrestrial echolocation as observed in extant tenrecs and shrews is discussed. The detailed analysis of the overall morphology of the postcranial skeleton of Hyopsodus indicates a nimble, fast moving animal that likely lived in burrows. This would be compatible with terrestrial echolocation used by the animal to investigate subterranean habitat and/or to minimize predation during nocturnal exploration of the environment.

  17. Digital cranial endocast of Hyopsodus (Mammalia, "Condylarthra"): a case of paleogene terrestrial echolocation?

    Science.gov (United States)

    Orliac, Maeva J; Argot, Christine; Gilissen, Emmanuel

    2012-01-01

    We here describe the endocranial cast of the Eocene archaic ungulate Hyopsodus lepidus AMNH 143783 (Bridgerian, North America) reconstructed from X-ray computed microtomography data. This represents the first complete cranial endocast known for Hyopsodontinae. The Hyopsodus endocast is compared to other known "condylarthran" endocasts, i. e. those of Pleuraspidotherium (Pleuraspidotheriidae), Arctocyon (Arctocyonidae), Meniscotherium (Meniscotheriidae), Phenacodus (Phenacodontidae), as well as to basal perissodactyls (Hyracotherium) and artiodactyls (Cebochoerus, Homacodon). Hyopsodus presents one of the highest encephalization quotients of archaic ungulates and shows an "advanced version" of the basal ungulate brain pattern, with a mosaic of archaic characters such as large olfactory bulbs, weak ventral expansion of the neopallium, and absence of neopallium fissuration, as well as more specialized ones such as the relative reduction of the cerebellum compared to cerebrum or the enlargement of the inferior colliculus. As in other archaic ungulates, Hyopsodus midbrain exposure is important, but it exhibits a dorsally protruding largely developed inferior colliculus, a feature unique among "Condylarthra". A potential correlation between the development of the inferior colliculus in Hyopsodus and the use of terrestrial echolocation as observed in extant tenrecs and shrews is discussed. The detailed analysis of the overall morphology of the postcranial skeleton of Hyopsodus indicates a nimble, fast moving animal that likely lived in burrows. This would be compatible with terrestrial echolocation used by the animal to investigate subterranean habitat and/or to minimize predation during nocturnal exploration of the environment.

  18. Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.

    Science.gov (United States)

    Geberl, Cornelia; Brinkløv, Signe; Wiegrebe, Lutz; Surlykke, Annemarie

    2015-03-31

    Echolocation is an active sense enabling bats and toothed whales to orient in darkness through echo returns from their ultrasonic signals. Immediately before prey capture, both bats and whales emit a buzz with such high emission rates (≥ 180 Hz) and overall duration so short that its functional significance remains an enigma. To investigate sensory-motor control during the buzz of the insectivorous bat Myotis daubentonii, we removed prey, suspended in air or on water, before expected capture. The bats responded by shortening their echolocation buzz gradually; the earlier prey was removed down to approximately 100 ms (30 cm) before expected capture, after which the full buzz sequence was emitted both in air and over water. Bats trawling over water also performed the full capture behavior, but in-air capture motions were aborted, even at very late prey removals (echolocation is controlled mainly by acoustic feedback, whereas capture movements are adjusted according to both acoustic and somatosensory feedback, suggesting separate (but coordinated) central motor control of the two behaviors based on multimodal input. Bat echolocation, especially the terminal buzz, provides a unique window to extremely fast decision processes in response to sensory feedback and modulation through attention in a naturally behaving animal.

  19. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 8. Bats of Jordan: fauna, ecology, echolocation, ectoparasites

    Czech Academy of Sciences Publication Activity Database

    Benda, P.; Lučan, R. K.; Obuch, J.; Reiter, A.; Andreas, M.; Bačkor, P.; Bohnenstengel, T.; Eid, E. K.; Ševčík, M.; Vallo, Peter; Amr, Z. S.

    2010-01-01

    Roč. 74, 3-4 (2010), s. 185-353 ISSN 1211-376X Institutional research plan: CEZ:AV0Z60930519 Keywords : bats * distribution * ecology * echolocation * ectoparasites * Middle East * Jordan * Arabia * Palaearctic Region Subject RIV: EG - Zoology

  20. Phenotypic convergence in genetically distinct lineages of a Rhinolophus species complex (Mammalia, Chiroptera.

    Directory of Open Access Journals (Sweden)

    David S Jacobs

    Full Text Available Phenotypes of distantly related species may converge through adaptation to similar habitats and/or because they share biological constraints that limit the phenotypic variants produced. A common theme in bats is the sympatric occurrence of cryptic species that are convergent in morphology but divergent in echolocation frequency, suggesting that echolocation may facilitate niche partitioning, reducing competition. If so, allopatric populations freed from competition, could converge in both morphology and echolocation provided they occupy similar niches or share biological constraints. We investigated the evolutionary history of a widely distributed African horseshoe bat, Rhinolophus darlingi, in the context of phenotypic convergence. We used phylogenetic inference to identify and date lineage divergence together with phenotypic comparisons and ecological niche modelling to identify morphological and geographical correlates of those lineages. Our results indicate that R. darlingi is paraphyletic, the eastern and western parts of its distribution forming two distinct non-sister lineages that diverged ~9.7 Mya. We retain R. darlingi for the eastern lineage and argue that the western lineage, currently the sub-species R. d. damarensis, should be elevated to full species status. R. damarensis comprises two lineages that diverged ~5 Mya. Our findings concur with patterns of divergence of other co-distributed taxa which are associated with increased regional aridification between 7-5 Mya suggesting possible vicariant evolution. The morphology and echolocation calls of R. darlingi and R. damarensis are convergent despite occupying different biomes. This suggests that adaptation to similar habitats is not responsible for the convergence. Furthermore, R. darlingi forms part of a clade comprising species that are bigger and echolocate at lower frequencies than R. darlingi, suggesting that biological constraints are unlikely to have influenced the

  1. Phenotypic convergence in genetically distinct lineages of a Rhinolophus species complex (Mammalia, Chiroptera).

    Science.gov (United States)

    Jacobs, David S; Babiker, Hassan; Bastian, Anna; Kearney, Teresa; van Eeden, Rowen; Bishop, Jacqueline M

    2013-01-01

    Phenotypes of distantly related species may converge through adaptation to similar habitats and/or because they share biological constraints that limit the phenotypic variants produced. A common theme in bats is the sympatric occurrence of cryptic species that are convergent in morphology but divergent in echolocation frequency, suggesting that echolocation may facilitate niche partitioning, reducing competition. If so, allopatric populations freed from competition, could converge in both morphology and echolocation provided they occupy similar niches or share biological constraints. We investigated the evolutionary history of a widely distributed African horseshoe bat, Rhinolophus darlingi, in the context of phenotypic convergence. We used phylogenetic inference to identify and date lineage divergence together with phenotypic comparisons and ecological niche modelling to identify morphological and geographical correlates of those lineages. Our results indicate that R. darlingi is paraphyletic, the eastern and western parts of its distribution forming two distinct non-sister lineages that diverged ~9.7 Mya. We retain R. darlingi for the eastern lineage and argue that the western lineage, currently the sub-species R. d. damarensis, should be elevated to full species status. R. damarensis comprises two lineages that diverged ~5 Mya. Our findings concur with patterns of divergence of other co-distributed taxa which are associated with increased regional aridification between 7-5 Mya suggesting possible vicariant evolution. The morphology and echolocation calls of R. darlingi and R. damarensis are convergent despite occupying different biomes. This suggests that adaptation to similar habitats is not responsible for the convergence. Furthermore, R. darlingi forms part of a clade comprising species that are bigger and echolocate at lower frequencies than R. darlingi, suggesting that biological constraints are unlikely to have influenced the convergence. Instead, the

  2. Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging for chinook salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Au, Whitlow W. L.; Ford, John K. B.; Horne, John K.; Allman, Kelly A. Newman

    2004-02-01

    Fish-eating ``resident''-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re:1 μPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.

  3. Plant classification from bat-like echolocation signals.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    2008-03-01

    Full Text Available Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM to automatically extract suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other complex objects.

  4. Morphometric variation in Periglischrus torrealbai (Acari: Spinturnicidae) on three species of host bats (Chiroptera: Phyllostomidae) with a new record of host species.

    Science.gov (United States)

    de Almeida, Juliana Cardoso; Gomes, Luiz Antonio Costa; Owen, Robert D

    2018-01-01

    We evaluated morphometric variation of the mite Periglischrus torrealbai (Spinturnicidae) on three species of host bats: Phyllostomus discolor, P. hastatus, and Tonatia bidens (Phyllostomidae). A total of 67 females and 74 males of P. torrealbai were collected from 41 host individuals of these three bat species that were sampled in Brazil, Paraguay, and Peru. Twenty-one measurements from the dorsal side and 28 from the ventral side were recorded from female mites and 21 dorsal and 34 ventral measurements were taken from males. To evaluate morphological variation of P. torrealbai on different species of host bats, principal component analysis and unweighted pair-group method using arithmetic averages cluster analysis with Euclidean distances were used. Both analyses showed three groups of mites clearly separated: group 1 comprised all ectoparasites collected from T. bidens, group 2 included all mites from P. hastatus, and group 3 had all those from P. discolor. This result indicates that P. torrealbai varies morphologically by host bat species and suggests that this nominal species comprises three morphologically distinct species. In the present study, we record for the first time, the association between P. torrealbai and T. bidens. Our data reinforce the high relationship of specificity between Periglischrus mites and phyllostomid bat species.

  5. Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata

    DEFF Research Database (Denmark)

    Ratcliffe, John M; Jakobsen, Lasse; Kalko, Elisabeth K V

    2011-01-01

    The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a 'monotonous' sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 k......) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive...... relationships between (1) call intensity and call duration and (2) call intensity and distance from clutter. However, these relationships were weaker than those reported for bats from other families. We speculate on how call frequency alternation and an offbeat emission rhythm might reflect a novel strategy...

  6. Echolocation in two very small bats from Thailand Craseonycteris thonglongyai and Myotis siligorensis

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Miller, Lee A.; Møhl, Bertel

    1993-01-01

    The echolocation and hunting behavior of two very small bats, Craseonycteris thonglongyai (Hill) and Myotis siligorensis (Horsfield), from Thailand, were investigated using multiflash photographs, video, and high-speed tape recordings with a microphone array that allowed determination of distance...... and direction to the bats. C. thonglongyai is the world's smallest mammal and M. siligorensis is only slightly larger. Both bats hunted insects in open areas. The search signals of C. thonglongyai were 3.5 ms long multiharmonic constant frequency (CF) signals with a prominent second harmonic at 73 kHz repeated...... consisted of two phases, buzz I and buzz II. Buzz 11 was characterized by short cry durations (around 0.3 ms), a constant high repetition rate (185 Hz), a distinct drop in frequency, and a prominent second harmonic (Figs. 5, 6, 7). The drop in frequency, apparently typical of vespertilionid bats, has been...

  7. Source parameter estimates of echolocation clicks from wild pygmy killer whales (Feresa attenuata) (L)

    Science.gov (United States)

    Madsen, P. T.; Kerr, I.; Payne, R.

    2004-10-01

    Pods of the little known pygmy killer whale (Feresa attenuata) in the northern Indian Ocean were recorded with a vertical hydrophone array connected to a digital recorder sampling at 320 kHz. Recorded clicks were directional, short (25 μs) transients with estimated source levels between 197 and 223 dB re. 1 μPa (pp). Spectra of clicks recorded close to or on the acoustic axis were bimodal with peak frequencies between 45 and 117 kHz, and with centroid frequencies between 70 and 85 kHz. The clicks share characteristics of echolocation clicks from similar sized, whistling delphinids, and have properties suited for the detection and classification of prey targeted by this odontocete. .

  8. Phylogenetic reconstruction by cross-species chromosome painting and G-banding in four species of Phyllostomini tribe (Chiroptera, Phyllostomidae in the Brazilian Amazon: an independent evidence for monophyly.

    Directory of Open Access Journals (Sweden)

    Talita Fernanda Augusto Ribas

    Full Text Available The subfamily Phyllostominae comprises taxa with a variety of feeding strategies. From the cytogenetic point of view, Phyllostominae shows different rates of chromosomal evolution between genera, with Phyllostomus hastatus probably retaining the ancestral karyotype for the subfamily. Since chromosomal rearrangements occur rarely in the genome and have great value as phylogenetic markers and in taxonomic characterization, we analyzed three species: Lophostoma silvicola (LSI, Phyllostomus discolor (PDI and Tonatia saurophila (TSA, representing the tribe Phyllostomini, collected in the Amazon region, by classic and molecular cytogenetic techniques in order to reconstruct the phylogenetic relationships within this tribe. LSA has a karyotype of 2n=34 and FN=60, PDI has 2n=32 and FN=60 and TSA has 2n=16 and FN=20. Comparative analysis using G-banding and chromosome painting show that the karyotypic complement of TSA is highly rearranged relative to LSI and PHA, while LSI, PHA and PDI have similar karyotypes, differing by only three chromosome pairs. Nearly all chromosomes of PDI and PHA were conserved in toto, except for chromosome 15 that was changed by a pericentric inversion. A strongly supported phylogeny (bootstrap=100 and Bremer=10 steps, confirms the monophyly of Phyllostomini. In agreement with molecular topologies, TSA was in the basal position, while PHA and LSI formed sister taxa. A few ancestral syntenies are conserved without rearrangements and most associations are autapomorphic traits for Tonatia or plesiomorphic for the three genera analyzed here. The karyotype of TSA is highly derived in relation to that of other phyllostomid bats, differing from the supposed ancestral karyotype of Phyllostomidae by multiple rearrangements. Phylogenies based on chromosomal data are independent evidence for the monophyly of tribe Phyllostomini as determined by molecular topologies and provide additional support for the paraphyly of the genus Tonatia by

  9. Phylogenetic reconstruction by cross-species chromosome painting and G-banding in four species of Phyllostomini tribe (Chiroptera, Phyllostomidae) in the Brazilian Amazon: an independent evidence for monophyly.

    Science.gov (United States)

    Ribas, Talita Fernanda Augusto; Rodrigues, Luis Reginaldo Ribeiro; Nagamachi, Cleusa Yoshiko; Gomes, Anderson José Baia; Rissino, Jorge das Dores; O'Brien, Patricia Caroline Mary; Yang, Fengtang; Ferguson-Smith, Malcolm Andrew; Pieczarka, Julio Cesar

    2015-01-01

    The subfamily Phyllostominae comprises taxa with a variety of feeding strategies. From the cytogenetic point of view, Phyllostominae shows different rates of chromosomal evolution between genera, with Phyllostomus hastatus probably retaining the ancestral karyotype for the subfamily. Since chromosomal rearrangements occur rarely in the genome and have great value as phylogenetic markers and in taxonomic characterization, we analyzed three species: Lophostoma silvicola (LSI), Phyllostomus discolor (PDI) and Tonatia saurophila (TSA), representing the tribe Phyllostomini, collected in the Amazon region, by classic and molecular cytogenetic techniques in order to reconstruct the phylogenetic relationships within this tribe. LSA has a karyotype of 2n=34 and FN=60, PDI has 2n=32 and FN=60 and TSA has 2n=16 and FN=20. Comparative analysis using G-banding and chromosome painting show that the karyotypic complement of TSA is highly rearranged relative to LSI and PHA, while LSI, PHA and PDI have similar karyotypes, differing by only three chromosome pairs. Nearly all chromosomes of PDI and PHA were conserved in toto, except for chromosome 15 that was changed by a pericentric inversion. A strongly supported phylogeny (bootstrap=100 and Bremer=10 steps), confirms the monophyly of Phyllostomini. In agreement with molecular topologies, TSA was in the basal position, while PHA and LSI formed sister taxa. A few ancestral syntenies are conserved without rearrangements and most associations are autapomorphic traits for Tonatia or plesiomorphic for the three genera analyzed here. The karyotype of TSA is highly derived in relation to that of other phyllostomid bats, differing from the supposed ancestral karyotype of Phyllostomidae by multiple rearrangements. Phylogenies based on chromosomal data are independent evidence for the monophyly of tribe Phyllostomini as determined by molecular topologies and provide additional support for the paraphyly of the genus Tonatia by the exclusion

  10. [Dietary composition, echolocation pulses and morphological measurements of the long-fingered bat Miniopterus fuliginosus (Chiroptera: Vespertilioninae)].

    Science.gov (United States)

    Hu, Kai-Liang; Wei, Li; Zhu, Teng-Teng; Wang, Xu-Zhong; Zhang, Li-Biao

    2011-04-01

    We investigated food (insect) availability in foraging areas utilized by the long-fingered bat Miniopterus fuliginosus using light traps, fish netting and fecal analysis. The dominant preys of M. fuliginosus were Lepidoptera (55%, by volume percent) and Coleoptera (38%) of a relatively large body size. M. fuliginosus has relatively long, narrow wings and a wing span of 6.58+/-0.12 and high wing loading of 9.85+/-0.83 N/m2. The echolocation calls of free flying M. fuliginosus were FM signals, with a pulse duration of 1.45+/-0.06 ms, interpulse interval of 63.08+/-21.55 ms, and low dominant frequency of 44.50+/-2.26 kHz. This study shows that the morphological characteristics and echolocation calls of long-fingered bats are closely linked to their predatory behavior.

  11. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.

    Science.gov (United States)

    Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F

    2015-09-01

    In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. © 2015 S. Karger AG, Basel.

  12. Feeding at a high pitch: Source parameters of narrow band,high-frequency clicks from echolocating off-shore hourglassdolphins and coastal Hector's dolphins

    DEFF Research Database (Denmark)

    Kyhn, Line Anker; Tougaard, Jakob; Jensen, Frants Havmand

    2009-01-01

    (Lagenorhynchus cruciger) and Hector's dolphins (Cephalorhynchus hectori ) were made in the Drake Passage between Tierra del Fuego and the Antarctic Peninsular and Banks Peninsular Akaroa Harbour, New Zealand with a four element hydrophone array. Analysis of source parameters shows that both species produce...... narrow band high-frequency (NBHF) echolocation clicks. Coastal Hector's dolphins produce clicks with a mean peak frequency of 129 kHz, 3 dB bandwidth of 20 kHz, 57 ys, 10 dB duration, and mean apparent source level (ASL) of 177 dB re 1 yPa (p.-p.). The oceanic hourglass dolphins produce clicks with mean...... peak frequency of 126 kHz, 3 dB bandwidth of 8 kHz, 116 ys, 10 dB duration, and a mean estimated ASL of 197 dB re 1 yPa (p.-p.). Thus, hourglass dolphins apparently produce clicks of higher source level, which should allow them to detect prey at more than twice the distance compared to Hector...

  13. Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear

    OpenAIRE

    Davies, Kalina TJ; Maryanto, Ibnu; Rossiter, Stephen J

    2013-01-01

    Introduction Many mammals have evolved highly adapted hearing associated with ecological specialisation. Of these, bats possess the widest frequency range of vocalisations and associated hearing sensitivities, with frequencies of above 200?kHz in some lineages that use laryngeal echolocation. High frequency hearing in bats appears to have evolved via structural modifications of the inner ear, however, studying these minute features presents considerable challenges and hitherto few such attemp...

  14. Gleaning bat echolocation calls do not elicit antipredator behaviour in the Pacific field cricket, Teleogryllus oceanicus (Orthoptera: Gryllidae).

    Science.gov (United States)

    ter Hofstede, Hannah M; Killow, Joanne; Fullard, James H

    2009-08-01

    Bats that glean prey (capture them from surfaces) produce relatively inconspicuous echolocation calls compared to aerially foraging bats and could therefore be difficult predators to detect, even for insects with ultrasound sensitive ears. In the cricket Teleogryllus oceanicus, an auditory interneuron (AN2) responsive to ultrasound is known to elicit turning behaviour, but only when the cricket is in flight. Turning would not save a cricket from a gleaning bat so we tested the hypothesis that AN2 elicits more appropriate antipredator behaviours when crickets are on the ground. The echolocation calls of Nyctophilus geoffroyi, a sympatric gleaning bat, were broadcast to singing male and walking female T. oceanicus. Males did not cease singing and females did not pause walking more than usual in response to the bat calls up to intensities of 82 dB peSPL. Extracellular recordings from the cervical connective revealed that the echolocation calls elicited AN2 action potentials at high firing rates, indicating that the crickets could hear these stimuli. AN2 appears to elicit antipredator behaviour only in flight, and we discuss possible reasons for this context-dependent function.

  15. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species

    DEFF Research Database (Denmark)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2017-01-01

    Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may...... mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared (Plecotus auritus) and one small-eared (Glossophaga soricina), flying freely in a wind tunnel. We find that the body drag of both species is higher...... than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from...

  16. Localization and tracking of moving objects in two-dimensional space by echolocation.

    Science.gov (United States)

    Matsuo, Ikuo

    2013-02-01

    Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.

  17. Intense echolocation calls from two ;whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae)

    DEFF Research Database (Denmark)

    Brinkløv, Signe; Kalko, Elisabeth K V; Surlykke, Annemarie

    2009-01-01

    Bats use echolocation to exploit a variety of habitats and food types. Much research has documented how frequency-time features of echolocation calls are adapted to acoustic constraints imposed by habitat and prey but emitted sound intensities have received little attention. Bats from the family...... with entirely different foraging strategies. Macrophyllum macrophyllum hunts insects on the wing and gaffs them with its tail membrane and feet from or above water surfaces whereas Artibeus jamaicensis picks fruit from vegetation with its mouth. Recordings were made from bats foraging on the wing in a flight...

  18. Species and acoustic diversity of bats in a palaeotropical wet evergreen forest in southern India

    OpenAIRE

    Raghuram, H; Jain, M; Balakrishnan, R

    2014-01-01

    The Western Ghats of India is among the top 25 biodiversity hotspots in the world. About 43% of the reported 117 bat species in India are found in this region, but few quantitative studies of bat echolocation calls and diversity have been carried out here thus far. A quantitative study of bat diversity was therefore conducted using standard techniques, including mist-netting, acoustical and roost surveys in the wet evergreen forests of Kudremukh National Park in the Western Ghats of Karnataka...

  19. Prey-capture success revealed by echolocation signals in pipistrelle bats (Pipistrellus pygmaeus)

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Futtrup, Vibeke; Tougaard, Jakob

    2003-01-01

    : in case of success, post-buzz pauses (pbP) were longer, interpulse intervals (IPI) of the post-buzz signals were longer and, most notably, the spectra of the echolocation signals showed a number of notches that were absent after unsuccessful attempts. If the bats touched the prey without seizing it, pb......P was significantly increased, but by less than was seen following a successful capture. Thus, acoustic recordings can be used to determine the outcome of a capture attempt with 72-75% correct using IPI or pbP, and with 78% correct using notches. Even more trials (>85%) were classified correctly by using the first...

  20. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls

    Science.gov (United States)

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen

    2015-01-01

    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  1. The aerodynamic cost of head morphology in bats: maybe not as bad as it seems.

    Science.gov (United States)

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Grigorios; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads.

  2. Echolocation signals of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in Sanniang Bay, China.

    Science.gov (United States)

    Fang, Liang; Li, Songhai; Wang, Kexiong; Wang, Zhitao; Shi, Wenjing; Wang, Ding

    2015-09-01

    While the low-frequency communication sounds of Indo-Pacific humpback dolphins (Sousa chinensis) have been reported in a number of papers, the high-frequency echolocation signals of Sousa chinensis, especially those living in the wild, have been less studied. In the current study, echolocation signals of humpback dolphins were recorded in Sanniang Bay, Guangxi Province, China, using a cross-type hydrophone array with five elements. In total, 77 candidate on-axis clicks from 77 scans were selected for analysis. The results showed that the varied peak-to-peak source levels ranged from 177.1 to 207.3 dB, with an average of 187.7 dB re: 1 μPa. The mean peak frequency was 109.0 kHz with a -3-dB bandwidth of 50.3 kHz and 95% energy duration of 22 μs. The -3-dB bandwidth was much broader than the root mean square bandwidth and exhibited a bimodal distribution. The center frequency exhibited a positive relationship with the peak-to-peak source level. The clicks of the wild Indo-Pacific humpback dolphins were short-duration, broadband, ultrasonic pulses, similar to those produced by other whistling dolphins of similar body size. However, the click source levels of the Indo-Pacific humpback dolphin appear to be lower than those of other whistling dolphins.

  3. An echolocation model for range discrimination of multiple closely spaced objects: transformation of spectrogram into the reflected intensity distribution.

    Science.gov (United States)

    Matsuo, Ikuo; Kunugiyama, Kenji; Yano, Masafumi

    2004-02-01

    Using frequency-modulated echolocation, bats can discriminate the range of objects with an accuracy of less than a millimeter. However, bats' echolocation mechanism is not well understood. The delay separation of three or more closely spaced objects can be determined through analysis of the echo spectrum. However, delay times cannot be properly correlated with objects using only the echo spectrum because the sequence of delay separations cannot be determined without information on temporal changes in the interference pattern of the echoes. To illustrate this, Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The delay time for object 1, T1, can be estimated from the echo spectrum around the onset time. The delay time for object 2 is obtained by adding T1 to the delay separation between objects 1 and 2 (extracted from the first appearance of interference effects). Further objects can be located in sequence by this same procedure. This model can determine delay times for three or more closely spaced objects with an accuracy of about 1 micros, when all the objects are located within 30 micros of delay separation. This model is applicable for the range discrimination of objects having different reflected intensities and in a noisy environment (0-dB signal-to-noise ratio) while the cross-correlation method is hard to apply to these problems.

  4. Ambient noise causes independent changes in distinct spectro-temporal features of echolocation calls in horseshoe bats.

    Science.gov (United States)

    Hage, Steffen R; Jiang, Tinglei; Berquist, Sean W; Feng, Jiang; Metzner, Walter

    2014-07-15

    One of the most efficient mechanisms to optimize signal-to-noise ratios is the Lombard effect - an involuntary rise in call amplitude due to ambient noise. It is often accompanied by changes in the spectro-temporal composition of calls. We examined the effects of broadband-filtered noise on the spectro-temporal composition of horseshoe bat echolocation calls, which consist of a constant-frequency component and initial and terminal frequency-modulated components. We found that the frequency-modulated components became larger for almost all noise conditions, whereas the bandwidth of the constant-frequency component increased only when broadband-filtered noise was centered on or above the calls' dominant or fundamental frequency. This indicates that ambient noise independently modifies the associated acoustic parameters of the Lombard effect, such as spectro-temporal features, and could significantly affect the bat's ability to detect and locate targets. Our findings may be of significance in evaluating the impact of environmental noise on echolocation behavior in bats. © 2014. Published by The Company of Biologists Ltd.

  5. The function of male sperm whale slow clicks in a high latitude habitat: communication, echolocation, or prey debilitation?

    Science.gov (United States)

    Oliveira, Cláudia; Wahlberg, Magnus; Johnson, Mark; Miller, Patrick J O; Madsen, Peter T

    2013-05-01

    Sperm whales produce different click types for echolocation and communication. Usual clicks and buzzes appear to be used primarily in foraging while codas are thought to function in social communication. The function of slow clicks is less clear, but they appear to be produced by males at higher latitudes, where they primarily forage solitarily, and on the breeding grounds, where they roam between groups of females. Here the behavioral context in which these vocalizations are produced and the function they may serve was investigated. Ninety-nine hours of acoustic and diving data were analyzed from sound recording tags on six male sperm whales in Northern Norway. The 755 slow clicks detected were produced by tagged animals at the surface (52%), ascending from a dive (37%), and during the bottom phase (11%), but never during the descent. Slow clicks were not associated with the production of buzzes, other echolocation clicks, or fast maneuvering that would indicate foraging. Some slow clicks were emitted in seemingly repetitive temporal patterns supporting the hypothesis that the function for slow clicks on the feeding grounds is long range communication between males, possibly relaying information about individual identity or behavioral states.

  6. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat,Antrozous pallidus.

    Science.gov (United States)

    Measor, Kevin R; Leavell, Brian C; Brewton, Dustin H; Rumschlag, Jeffrey; Barber, Jesse R; Razak, Khaleel A

    2017-01-01

    In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat's auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey.

  7. Cryptic mammalian species: a new species of whiskered bat (Myotis alcathoe n. sp.) in Europe

    Science.gov (United States)

    von Helversen, O.; Heller, K.-G.; Mayer, F.; Nemeth, A.; Volleth, M.; Gombkötö, P.

    2001-05-01

    The analysis of morphological, behavioural and genetic characters of whiskered bats revealed a new European bat species within the family Vespertilionidae. We describe the morphology, karyology, genetic similarity, ecology and distribution of Myotis alcathoe n. sp. It closely resembles Myotis mystacinus, Myotis brandtii and Myotis ikonnikovi in morphology, but all four species show clear genetic differences in two mitochondrial genes (ND1 and 12S rRNA). Myotis alcathoe n. sp. is the smallest species among the European whiskered bats and uses the highest-frequency echolocation calls of all the European Myotis species. It prefers to hunt in small valleys with deciduous trees and flowing water, which is an endangered habitat. Records from Greece and Hungary indicate a distribution range in south-eastern Europe.

  8. Ship noise extends to frequencies used for echolocation by endangered killer whales

    Directory of Open Access Journals (Sweden)

    Scott Veirs

    2016-02-01

    standard deviations. This is the first study to present source spectra for populations of different ship classes operating in coastal habitats, including at higher frequencies used by killer whales for both communication and echolocation.

  9. Ship noise extends to frequencies used for echolocation by endangered killer whales.

    Science.gov (United States)

    Veirs, Scott; Veirs, Val; Wood, Jason D

    2016-01-01

    deviations. This is the first study to present source spectra for populations of different ship classes operating in coastal habitats, including at higher frequencies used by killer whales for both communication and echolocation.

  10. Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey.

    Science.gov (United States)

    Aizpurua, Ostaizka; Aihartza, Joxerra; Alberdi, Antton; Baagøe, Hans J; Garin, Inazio

    2014-09-15

    Formerly thought to be a strictly insectivorous trawling bat, recent studies have shown that Myotis capaccinii also preys on fish. To determine whether differences exist in bat flight behaviour, prey handling and echolocation characteristics when catching fish and insects of different size, we conducted a field experiment focused on the last stage of prey capture. We used synchronized video and ultrasound recordings to measure several flight and dip features as well as echolocation characteristics, focusing on terminal buzz phase I, characterized by a call rate exceeding 100 Hz, and buzz phase II, characterized by a drop in the fundamental well below 20 kHz and a repetition rate exceeding 150 Hz. When capturing insects, bats used both parts of the terminal phase to the same extent, and performed short and superficial drags on the water surface. In contrast, when preying on fish, buzz I was longer and buzz II shorter, and the bats made longer and deeper dips. These variations suggest that lengthening buzz I and shortening buzz II when fishing is beneficial, probably because buzz I gives better discrimination ability and the broader sonar beam provided by buzz II is useless when no evasive flight of the prey is expected. Additionally, bats continued emitting calls beyond the theoretical signal-overlap zone, suggesting that they might obtain information even when they have surpassed that threshold, at least initially. This study shows that M. capaccinii can regulate the temporal components of its feeding buzzes and modify prey capture technique according to the target. © 2014. Published by The Company of Biologists Ltd.

  11. Testing the Sensory Drive Hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus).

    Science.gov (United States)

    Jacobs, David S; Catto, Sarah; Mutumi, Gregory L; Finger, Nikita; Webala, Paul W

    2017-01-01

    Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature) on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455) significantly explained a proportion of the variation in resting frequency across sites (P < 0.05). Specifically, at higher relative humidity (around 60%) prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to decrease the

  12. Testing the Sensory Drive Hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus.

    Directory of Open Access Journals (Sweden)

    David S Jacobs

    Full Text Available Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455 significantly explained a proportion of the variation in resting frequency across sites (P < 0.05. Specifically, at higher relative humidity (around 60% prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to

  13. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.

    Science.gov (United States)

    Matsuta, Naohiro; Hiryu, Shizuko; Fujioka, Emyo; Yamada, Yasufumi; Riquimaroux, Hiroshi; Watanabe, Yoshiaki

    2013-04-01

    The echolocation sounds of Japanese CF-FM bats (Rhinolophus ferrumequinum nippon) were measured while the bats pursued a moth (Goniocraspidum pryeri) in a flight chamber. Using a 31-channel microphone array system, we investigated how CF-FM bats adjust pulse direction and beam width according to prey position. During the search and approach phases, the horizontal and vertical beam widths were ±22±5 and ±13±5 deg, respectively. When bats entered the terminal phase approximately 1 m from a moth, distinctive evasive flight by G. pryeri was sometimes observed. Simultaneously, the bats broadened the beam widths of some emissions in both the horizontal (44% of emitted echolocation pulses) and vertical planes (71%). The expanded beam widths were ±36±7 deg (horizontal) and ±30±9 deg (vertical). When moths began evasive flight, the tracking accuracy decreased compared with that during the approach phase. However, in 97% of emissions during the terminal phase, the beam width was wider than the misalignment (the angular difference between the pulse and target directions). These findings indicate that bats actively adjust their beam width to retain the moving target within a spatial echolocation window during the final capture stages.

  14. Possible age-related hearing loss (presbycusis) and corresponding change in echolocation parameters in a stranded Indo-Pacific humpback dolphin.

    Science.gov (United States)

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2013-11-15

    The hearing and echolocation clicks of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, were studied. This animal had been repeatedly observed in the wild before it was stranded and its age was estimated to be ~40 years. The animal's hearing was measured using a non-invasive auditory evoked potential (AEP) method. Echolocation clicks produced by the dolphin were recorded when the animal was freely swimming in a 7.5 m (width)×22 m (length)×4.8 m (structural depth) pool with a water depth of ~2.5 m. The hearing and echolocation clicks of the studied dolphin were compared with those of a conspecific younger individual, ~13 years of age. The results suggested that the cut-off frequency of the high-frequency hearing of the studied dolphin was ~30-40 kHz lower than that of the younger individual. The peak and centre frequencies of the clicks produced by the older dolphin were ~16 kHz lower than those of the clicks produced by the younger animal. Considering that the older dolphin was ~40 years old, its lower high-frequency hearing range with lower click peak and centre frequencies could probably be explained by age-related hearing loss (presbycusis).

  15. The role of echolocation in the hunting of terrestrial prey--new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra.

    Science.gov (United States)

    Schmidt, S; Hanke, S; Pillat, J

    2000-10-01

    The observation that gleaning bats detect prey by its noises, together with difficulties in recording their faint sonar calls, have led some authors to conclude that gleaning bats may not use echolocation in certain hunting situations. In particular, it is conjectured that echolocation plays no role in the classification and tracking of prey. In the present study, we show that the gleaning bat, Megaderma lyra, is able to find silent and motionless prey on the ground. The significance of sonar for catching a variety of terrestrial prey is established in a standardized situation. Sonar calls were found to be emitted during all stages, i.e. approach, hovering above the prey, and return to the roost, of every hunting flight. The harmonic pattern of the calls differed significantly between these stages, calls with three or more prominent components prevailing during hovering. Bats identified prey and rejected dummies while hovering above them. During this stage, increased call rates and reduced call durations were found. Echolocation activity during, and the duration of, the hovering phase depended on prey type, in particular on prey movement. The prey-dependent shifts in sonar activity, the broadband call structure with an emphasis on higher harmonics, and a systematic shift of the calls' peak frequencies during hovering, are discussed as adaptations to identifying prey by sonar.

  16. Diversification and reproductive isolation: cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii

    Directory of Open Access Journals (Sweden)

    Clare Elizabeth L

    2013-01-01

    Full Text Available Abstract Background Molecular techniques are increasingly employed to recognize the presence of cryptic species, even among commonly observed taxa. Previous studies have demonstrated that bats using high-duty cycle echolocation may be more likely to speciate quickly. Pteronotus parnellii is a widespread Neotropical bat and the only New World species to use high-duty cycle echolocation, a trait otherwise restricted to Old World taxa. Here we analyze morphological and acoustic variation and genetic divergence at the mitochondrial COI gene, the 7th intron region of the y-linked Dby gene and the nuclear recombination-activating gene 2, and provide extensive evidence that P. parnellii is actually a cryptic species complex. Results Central American populations form a single species while three additional species exist in northern South America: one in Venezuela, Trinidad and western Guyana and two occupying sympatric ranges in Guyana and Suriname. Reproductive isolation appears nearly complete (only one potential hybrid individual found. The complex likely arose within the last ~6 million years with all taxa diverging quickly within the last ~1-2 million years, following a pattern consistent with the geological history of Central and northern South America. Significant variation in cranial measures and forearm length exists between three of the four groups, although no individual morphological character can discriminate these in the field. Acoustic analysis reveals small differences (5–10 kHz in echolocation calls between allopatric cryptic taxa that are unlikely to provide access to different prey resources but are consistent with divergence by drift in allopatric species or through selection for social recognition. Conclusions This unique approach, considering morphological, acoustic and multi-locus genetic information inherited maternally, paternally and bi-parentally, provides strong support to conclusions about the cessation of gene flow and

  17. Diversification and reproductive isolation: cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii.

    Science.gov (United States)

    Clare, Elizabeth L; Adams, Amanda M; Maya-Simões, Aline Z; Eger, Judith L; Hebert, Paul D N; Fenton, M Brock

    2013-01-29

    Molecular techniques are increasingly employed to recognize the presence of cryptic species, even among commonly observed taxa. Previous studies have demonstrated that bats using high-duty cycle echolocation may be more likely to speciate quickly. Pteronotus parnellii is a widespread Neotropical bat and the only New World species to use high-duty cycle echolocation, a trait otherwise restricted to Old World taxa. Here we analyze morphological and acoustic variation and genetic divergence at the mitochondrial COI gene, the 7th intron region of the y-linked Dby gene and the nuclear recombination-activating gene 2, and provide extensive evidence that P. parnellii is actually a cryptic species complex. Central American populations form a single species while three additional species exist in northern South America: one in Venezuela, Trinidad and western Guyana and two occupying sympatric ranges in Guyana and Suriname. Reproductive isolation appears nearly complete (only one potential hybrid individual found). The complex likely arose within the last ~6 million years with all taxa diverging quickly within the last ~1-2 million years, following a pattern consistent with the geological history of Central and northern South America. Significant variation in cranial measures and forearm length exists between three of the four groups, although no individual morphological character can discriminate these in the field. Acoustic analysis reveals small differences (5-10 kHz) in echolocation calls between allopatric cryptic taxa that are unlikely to provide access to different prey resources but are consistent with divergence by drift in allopatric species or through selection for social recognition. This unique approach, considering morphological, acoustic and multi-locus genetic information inherited maternally, paternally and bi-parentally, provides strong support to conclusions about the cessation of gene flow and degree of reproductive isolation of these cryptic species.

  18. Echolocation calls and morphology in the Mehelyi’s (Rhinolophus mehelyi and mediterranean (R. euryale horseshoe bats: implications for resource partitioning

    Directory of Open Access Journals (Sweden)

    Egoitz Salsamendi

    2006-03-01

    Full Text Available Abstract Rhinolophus euryale and R. mehelyi are morphologically very similar species and their distributions overlap extensively in the Mediterranean basin. We modelled their foraging behaviour using echolocation calls and wing morphology and, assuming niche segregation occurs between the two species, we explored how it is shaped by these factors. Resting frequency of echolocation calls was recorded and weight, forearm length, wing loading, aspect ratio and wing tip shape index were measured. R. mehelyi showed a significantly higher resting frequency than R. euryale, but differences are deemed insufficient for dietary niche segregation. Weight and forearm length were significantly larger in R. mehelyi. The higher values of aspect ratio and wing loading and a lower value of wing tip shape index in R. melehyi restrict its flight manoeuvrability and agility. Therefore, the flight ability of R. mehelyi may decrease as habitat complexity increases. Thus, the principal mechanism for resource partitioning seems to be based on differing habitat use arising from differences in wing morphology. Riassunto Ecolocalizzazione e morfologia nei rinolofi di Mehely (Rhinolophus mehelyi e euriale (R. euryale: implicazioni nella segregazione delle risorse trofiche. Rhinolophus euryale e R. mehelyi sono specie morfologicamente molto simili, la cui distribuzione risulta largamente coincidente in area mediterranea. Il comportamento di foraggiamento delle due specie è stato analizzato in funzione delle caratteristiche dei segnali di ecolocalizzazione e della morfologia alare, ed è stata valutata l’incidenza di questi fattori nell’ipotesi di una segregazione delle nicchie. È stata rilevata la frequenza a riposo dei segnali ultrasonori, così come il peso, la lunghezza dell’avambraccio, il carico alare, e due

  19. Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton's bat, Myotis daubentonii.

    Science.gov (United States)

    Fawcett, Kayleigh; Ratcliffe, John M

    2015-03-01

    We compared the influence of conspecifics and clutter on echolocation and flight speed in the bat Myotis daubentonii. In a large room, actual pairs of bats exhibited greater disparity in peak frequency (PF), minimum frequency (F MIN) and call period compared to virtual pairs of bats, each flying alone. Greater inter-individual disparity in PF and F MIN may reduce acoustic interference and/or increase signal self-recognition in the presence of conspecifics. Bats flying alone in a smaller flight room, to simulate a more cluttered habitat as compared to the large flight room, produced calls of shorter duration and call period, lower intensity, and flew at lower speeds. In cluttered space, shorter call duration should reduce masking, while shorter call period equals more updates to the bat's auditory scene. Lower intensity likely reflects reduced range detection requirements, reduced speed the demands of flying in clutter. Our results show that some changes (e.g. PF separation) are associated with conspecifics, others with closed habitat (e.g. reduced call intensity). However, we demonstrate that call duration, period, and flight speed appear similarly influenced by conspecifics and clutter. We suggest that some changes reduce conspecific interference and/or improve self-recognition, while others demonstrate that bats experience each other like clutter.

  20. Target representation of naturalistic echolocation sequences in single unit responses from the inferior colliculus of big brown bats

    Science.gov (United States)

    Sanderson, Mark I.; Simmons, James A.

    2005-11-01

    Echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals whose duration, repetition rate, and sweep structure change systematically during interception of prey. When stimulated with a 2.5-s sequence of 54 FM pulse-echo pairs that mimic sounds received during search, approach, and terminal stages of pursuit, single neurons (N=116) in the bat's inferior colliculus (IC) register the occurrence of a pulse or echo with an average of <1 spike/sound. Individual IC neurons typically respond to only a segment of the search or approach stage of pursuit, with fewer neurons persisting to respond in the terminal stage. Composite peristimulus-time-histogram plots of responses assembled across the whole recorded population of IC neurons depict the delay of echoes and, hence, the existence and distance of the simulated biosonar target, entirely as on-response latencies distributed across time. Correlated changes in pulse duration, repetition rate, and pulse or echo amplitude do modulate the strength of responses (probability of the single spike actually occurring for each sound), but registration of the target itself remains confined exclusively to the latencies of single spikes across cells. Modeling of echo processing in FM biosonar should emphasize spike-time algorithms to explain the content of biosonar images.

  1. Source levels of echolocation signals vary in correlation with wingbeat cycle in landing big brown bats (Eptesicus fuscus).

    Science.gov (United States)

    Koblitz, Jens C; Stilz, Peter; Schnitzler, Hans-Ulrich

    2010-10-01

    Recordings of the echolocation signals of landing big brown bats with a two-dimensional 16-microphone array revealed that the source level reduction of 7 dB per halving of distance is superimposed by a variation of up to 12 dB within single call groups emitted during the approach. This variation correlates with the wingbeat cycle. The timing of call emission correlates with call group size. First pulses of groups containing many calls are emitted earlier than first calls in groups with fewer calls or single calls. This suggests that the emission of pulse groups follows a fixed motor pattern where the information gained from the preceding pulse group determines how many calls will be emitted in the next group. Single calls and call groups are centred at the middle of the upstroke. Expiration is indicated by call emission. The pause between groups is centred at the middle of the downstroke and indicates inspiration. The hypothesis that the source level variation could be caused by changes in the subglottic pressure due to the contraction of the major flight muscles is discussed.

  2. The Source Parameters of Echolocation Clicks from Captive and Free-Ranging Yangtze Finless Porpoises (Neophocaena asiaeorientalis asiaeorientalis).

    Science.gov (United States)

    Fang, Liang; Wang, Ding; Li, Yongtao; Cheng, Zhaolong; Pine, Matthew K; Wang, Kexiong; Li, Songhai

    2015-01-01

    The clicks of Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis) from 7 individuals in the tank of Baiji aquarium, 2 individuals in a netted pen at Shishou Tian-e-zhou Reserve and 4 free-ranging individuals at Tianxingzhou were recorded using a broadband digital recording system with four element hydrophones. The peak-to-peak apparent source level (ASL_pp) of clicks from individuals at the Baiji aquarium was 167 dB re 1 μPa with mean center frequency of 133 kHz, -3dB bandwidth of 18 kHz and -10 dB duration of 58 μs. The ASL_pp of clicks from individuals at the Shishou Tian-e-zhou Reserve was 180 dB re 1 μPa with mean center frequency of 128 kHz, -3dB bandwidth of 20 kHz and -10 dB duration of 39 μs. The ASL_pp of clicks from individuals at Tianxingzhou was 176 dB re 1 μPa with mean center frequency of 129 kHz, -3dB bandwidth of 15 kHz and -10 dB duration of 48 μs. Differences between the source parameters of clicks among the three groups of finless porpoises suggest these animals adapt to their echolocation signals depending on their surroundings.

  3. Echolocation of static and moving objects in two-dimensional space using bat-like frequency-modulation sound

    Directory of Open Access Journals (Sweden)

    Ikuo eMatsuo

    2013-07-01

    Full Text Available Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. The big brown bat, Eptesicus fuscus, emits linear period modulation sound, and is capable of locating static objects with a range accuracy of less than 1 microsecond. A previously introduced model can estimate ranges of multiple, static objects using linear frequency modulation sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 microsecond by measuring the echo at a low signal-to-noise ratio. This model could estimate the location of each moving object in two-dimensional space. In this study, the linear period modulation sounds, mimicking the emitting pulse of big brown bats, were introduced as the emitted signals. Echoes were measured from moving objects at two receiving points by intermittently emitting these sounds. It was clarified that this model could localize moving objects in two-dimensional space by accurately estimating the object ranges.

  4. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis.

    Science.gov (United States)

    Faure, P A; Barclay, R M

    1994-05-01

    The foraging and echolocation behaviour of Myotis evotis was investigated during substrate-gleaning and aerial-hawking attacks. Bats gleaned moths from both the ground and a bark-covered trellis, however, they were equally adept at capturing flying moths. The calls emitted by M. evotis during substrate-gleaning sequences were short, broadband, and frequency-modulated (FM). Three behavioural phases were identified: search, hover, and attack. Gleaning search calls were significantly longer in duration, lower in highest frequency, and larger in bandwidth than hover/attack calls. Calls were detected in only 68% of gleaning sequences, and when they were emitted, bats ceased calling approximately 200 ms before attacking. Terminal feeding buzzes, the rapid increase in pulse repetition rate associated with an attempted prey capture, were never recorded during gleaning attacks. The echolocation calls uttered by M. evotis during aerial-hawking foraging sequences were also short duration, high frequency, FM calls. Two distinct acoustic phases were identified: approach and terminal. Approach calls were significantly different from terminal calls in all variables measured. Calls were detected in 100% of aerial-hawking attacks and terminal feeding buzzes were invariably produced. Gleaning hover/attack calls were spectrally similar to aerial approach calls, but were shorter in duration and emitted at a significantly lower (but constant) repetition rate than aerial signals. Although the foraging environment (flight cage contents) remained unchanged between tasks (substrate-gleaning vs. aerial-hawking), bats emitted significantly lower amplitude calls while gleaning. We conclude that M. evotis adjusts its echolocation behaviour to meet the perceptual demands (acoustical constraints) imposed by each foraging situation.

  5. The effect of call libraries and acoustic filters on the identification of bat echolocation

    Science.gov (United States)

    Clement, Matthew; Murray, Kevin L; Solick, Donald I; Gruver, Jeffrey C

    2014-01-01

    Quantitative methods for species identification are commonly used in acoustic surveys for animals. While various identification models have been studied extensively, there has been little study of methods for selecting calls prior to modeling or methods for validating results after modeling. We obtained two call libraries with a combined 1556 pulse sequences from 11 North American bat species. We used four acoustic filters to automatically select and quantify bat calls from the combined library. For each filter, we trained a species identification model (a quadratic discriminant function analysis) and compared the classification ability of the models. In a separate analysis, we trained a classification model using just one call library. We then compared a conventional model assessment that used the training library against an alternative approach that used the second library. We found that filters differed in the share of known pulse sequences that were selected (68 to 96%), the share of non-bat noises that were excluded (37 to 100%), their measurement of various pulse parameters, and their overall correct classification rate (41% to 85%). Although the top two filters did not differ significantly in overall correct classification rate (85% and 83%), rates differed significantly for some bat species. In our assessment of call libraries, overall correct classification rates were significantly lower (15% to 23% lower) when tested on the second call library instead of the training library. Well-designed filters obviated the need for subjective and time-consuming manual selection of pulses. Accordingly, researchers should carefully design and test filters and include adequate descriptions in publications. Our results also indicate that it may not be possible to extend inferences about model accuracy beyond the training library. If so, the accuracy of acoustic-only surveys may be lower than commonly reported, which could affect ecological understanding or management

  6. Life history constrains biochemical development in the highly specialized odontocete echolocation system

    OpenAIRE

    Koopman, Heather N; Zahorodny, Zoey P

    2008-01-01

    The vertebrate head has undergone enormous modification from the features borne by early ancestors. The growth of skull bones has been well studied in many species, yet little is known about corresponding soft tissue development. Among mammals, some of the most unusual examples of cranial evolution exist in the toothed whales (odontocetes). Specialized fat bodies in toothed whale heads play important roles in sound transmission and reception. These fat bodies contain unique endogenous lipids,...

  7. Body lift, drag and power are relatively higher in large-eared than in small-eared bat species.

    Science.gov (United States)

    Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders; Johansson, L Christoffer

    2017-10-01

    Bats navigate the dark using echolocation. Echolocation is enhanced by external ears, but external ears increase the projected frontal area and reduce the streamlining of the animal. External ears are thus expected to compromise flight efficiency, but research suggests that very large ears may mitigate the cost by producing aerodynamic lift. Here we compare quantitative aerodynamic measures of flight efficiency of two bat species, one large-eared ( Plecotus auritus ) and one small-eared ( Glossophaga soricina ), flying freely in a wind tunnel. We find that the body drag of both species is higher than previously assumed and that the large-eared species has a higher body drag coefficient, but also produces relatively more ear/body lift than the small-eared species, in line with prior studies on model bats. The measured aerodynamic power of P. auritus was higher than predicted from the aerodynamic model, while the small-eared species aligned with predictions. The relatively higher power of the large-eared species results in lower optimal flight speeds and our findings support the notion of a trade-off between the acoustic benefits of large external ears and aerodynamic performance. The result of this trade-off would be the eco-morphological correlation in bat flight, with large-eared bats generally adopting slow-flight feeding strategies. © 2017 The Author(s).

  8. Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments.

    Science.gov (United States)

    Aihara, Ikkyu; Fujioka, Emyo; Hiryu, Shizuko

    2013-01-01

    Prey pursuit by an echolocating bat was studied theoretically and experimentally. First, a mathematical model was proposed to describe the flight dynamics of a bat and a single prey. In this model, the flight angle of the bat was affected by [Formula: see text] angles related to the flight path of the single moving prey, that is, the angle from the bat to the prey and the flight angle of the prey. Numerical simulation showed that the success rate of prey capture was high, when the bat mainly used the angle to the prey to minimize the distance to the prey, and also used the flight angle of the prey to minimize the difference in flight directions of itself and the prey. Second, parameters in the model were estimated according to experimental data obtained from video recordings taken while a Japanese horseshoe bat (Rhinolphus derrumequinum nippon) pursued a moving moth (Goniocraspidum pryeri) in a flight chamber. One of the estimated parameter values, which represents the ratio in the use of the [Formula: see text] angles, was consistent with the optimal value of the numerical simulation. This agreement between the numerical simulation and parameter estimation suggests that a bat chooses an effective flight path for successful prey capture by using the [Formula: see text] angles. Finally, the mathematical model was extended to include a bat and [Formula: see text] prey. Parameter estimation of the extended model based on laboratory experiments revealed the existence of bat's dynamical attention towards [Formula: see text] prey, that is, simultaneous pursuit of [Formula: see text] prey and selective pursuit of respective prey. Thus, our mathematical model contributes not only to quantitative analysis of effective foraging, but also to qualitative evaluation of a bat's dynamical flight strategy during multiple prey pursuit.

  9. Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments.

    Directory of Open Access Journals (Sweden)

    Ikkyu Aihara

    Full Text Available Prey pursuit by an echolocating bat was studied theoretically and experimentally. First, a mathematical model was proposed to describe the flight dynamics of a bat and a single prey. In this model, the flight angle of the bat was affected by [Formula: see text] angles related to the flight path of the single moving prey, that is, the angle from the bat to the prey and the flight angle of the prey. Numerical simulation showed that the success rate of prey capture was high, when the bat mainly used the angle to the prey to minimize the distance to the prey, and also used the flight angle of the prey to minimize the difference in flight directions of itself and the prey. Second, parameters in the model were estimated according to experimental data obtained from video recordings taken while a Japanese horseshoe bat (Rhinolphus derrumequinum nippon pursued a moving moth (Goniocraspidum pryeri in a flight chamber. One of the estimated parameter values, which represents the ratio in the use of the [Formula: see text] angles, was consistent with the optimal value of the numerical simulation. This agreement between the numerical simulation and parameter estimation suggests that a bat chooses an effective flight path for successful prey capture by using the [Formula: see text] angles. Finally, the mathematical model was extended to include a bat and [Formula: see text] prey. Parameter estimation of the extended model based on laboratory experiments revealed the existence of bat's dynamical attention towards [Formula: see text] prey, that is, simultaneous pursuit of [Formula: see text] prey and selective pursuit of respective prey. Thus, our mathematical model contributes not only to quantitative analysis of effective foraging, but also to qualitative evaluation of a bat's dynamical flight strategy during multiple prey pursuit.

  10. Echolocation behaviour of the big brown bat (Eptesicus fuscus) in an obstacle avoidance task of increasing difficulty.

    Science.gov (United States)

    Sändig, Sonja; Schnitzler, Hans-Ulrich; Denzinger, Annette

    2014-08-15

    Four big brown bats (Eptesicus fuscus) were challenged in an obstacle avoidance experiment to localize vertically stretched wires requiring progressively greater accuracy by diminishing the wire-to-wire distance from 50 to 10 cm. The performance of the bats decreased with decreasing gap size. The avoidance task became very difficult below a wire separation of 30 cm, which corresponds to the average wingspan of E. fuscus. Two of the bats were able to pass without collisions down to a gap size of 10 cm in some of the flights. The other two bats only managed to master gap sizes down to 20 and 30 cm, respectively. They also performed distinctly worse at all other gap sizes. With increasing difficulty of the task, the bats changed their flight and echolocation behaviour. Especially at gap sizes of 30 cm and below, flight paths increased in height and flight speed was reduced. In addition, the bats emitted approach signals that were arranged in groups. At all gap sizes, the largest numbers of pulses per group were observed in the last group before passing the obstacle. The more difficult the obstacle avoidance task, the more pulses there were in the groups and the shorter the within-group pulse intervals. In comparable situations, the better-performing bats always emitted groups with more pulses than the less well-performing individuals. We hypothesize that the accuracy of target localization increases with the number of pulses per group and that each group is processed as a package. © 2014. Published by The Company of Biologists Ltd.

  11. The sonar aperture and its neural representation in bats.

    Science.gov (United States)

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  12. Effect of echolocation behavior-related constant frequency-frequency modulation sound on the frequency tuning of inferior collicular neurons in Hipposideros armiger.

    Science.gov (United States)

    Tang, Jia; Fu, Zi-Ying; Wei, Chen-Xue; Chen, Qi-Cai

    2015-08-01

    In constant frequency-frequency modulation (CF-FM) bats, the CF-FM echolocation signals include both CF and FM components, yet the role of such complex acoustic signals in frequency resolution by bats remains unknown. Using CF and CF-FM echolocation signals as acoustic stimuli, the responses of inferior collicular (IC) neurons of Hipposideros armiger were obtained by extracellular recordings. We tested the effect of preceding CF or CF-FM sounds on the shape of the frequency tuning curves (FTCs) of IC neurons. Results showed that both CF-FM and CF sounds reduced the number of FTCs with tailed lower-frequency-side of IC neurons. However, more IC neurons experienced such conversion after adding CF-FM sound compared with CF sound. We also found that the Q 20 value of the FTC of IC neurons experienced the largest increase with the addition of CF-FM sound. Moreover, only CF-FM sound could cause an increase in the slope of the neurons' FTCs, and such increase occurred mainly in the lower-frequency edge. These results suggested that CF-FM sound could increase the accuracy of frequency analysis of echo and cut-off low-frequency elements from the habitat of bats more than CF sound.

  13. The neuroethology of song cessation in response to gleaning bat calls in two species of katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia.

    Science.gov (United States)

    ter Hofstede, Hannah M; Fullard, James H

    2008-08-01

    We investigated whether the use of primary or secondary behavioural defences is related to prey sensory thresholds using two species of North American katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia. Male katydids produce intense calling songs to attract mates, and many gleaning bat species are known to use these calls to locate them as prey. Low duty cycle calling (i.e. sporadic calls) is a primary defence against gleaning bats (prevents attacks), and song cessation is a secondary defence (enables survival of an attack), for which these two species show behavioural differences. Echolocation calls of Myotis septentrionalis, a sympatric gleaning bat species, were broadcast to singing katydids and to neural preparations of these katydids to test if differences in behavioural response were related to differences in auditory sensitivity. We measured thresholds and firing patterns of the T-cell, an auditory interneuron involved in predator detection. We hypothesized that low duty cycle calling is the best defence for species not sensitive enough to mount a secondary defence in response to predator cues; therefore, we predicted that N. ensiger (high duty cycle song) would have lower behavioural and T-cell thresholds than A. oblongifolia (low duty cycle song). Although more N. ensiger ceased singing than A. oblongifolia, the number and maximum firing rate of T-cell action potentials did not differ between species for echolocation call sequences. We suggest that the T-cell has divergent functions within the Tettigoniidae, including predator and mate detection, and the function could be context dependent in some species.

  14. Dynamic temporal signal processing in the inferior colliculus of echolocating bats

    Directory of Open Access Journals (Sweden)

    Philip eJen

    2012-05-01

    Full Text Available In nature, communication sounds among animal species including humans are typical complex sounds that occur in sequence and vary with time in several parameters including amplitude, frequency, duration as well as separation and order of individual sounds. Among these multiple parameters, sound duration is a simple but important one that contributes to the distinct spectral and temporal attributes of individual biological sounds. Likewise, the separation of individual sounds is an important temporal attribute that determines an animal’s ability in distinguishing individual sounds. Whereas duration selectivity of auditory neurons underlies an animal’s ability in recognition of sound duration, the recovery cycle of auditory neurons determines a neuron’s ability in responding to closely spaced sound pulses and therefore it underlies the animal’s ability in analyzing the order of individual sounds. Since the multiple parameters of naturally occurring communication sounds vary with time, the analysis of a specific sound parameter by an animal would be inevitably affected by other co-varying sound parameters. This is particularly obvious in insectivorous bats which rely on analysis of returning echoes for prey capture when they systematically vary the multiple pulse parameters throughout a target approach sequence. In this review article, we present our studies of dynamic variation of duration selectivity and recovery cycle of neurons in the central nucleus of the inferior colliculus of the frequency-modulated bats to highlight the dynamic temporal signal processing of central auditory neurons. These studies use single pulses and three biologically relevant pulse-echo (P-E pairs with varied duration, gap and amplitude difference similar to that occurring during search, approach and terminal phases of hunting by bats. These studies show that most collicular neurons respond maximally to a best tuned sound duration (BD. The sound to which these

  15. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.

    Science.gov (United States)

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations

  16. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  17. EXPERIMENTAL MEASUREMENTS OF TAILING UNDERWATER SEDIMENTS AND LIQUID INDUSTRIAL WASTES IN STORAGE TANK ON THE BASIS OF ECHOLOCATION AND GPS-SYSTEMS AT JSC “BELARUSKALI”

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2016-01-01

    Full Text Available The paper presents a new approach to calculate volume of tailing underwater sediments and liquid industrial wastes on the basis of innovative technologies. Two theodolites which are set at various points and a boat with a load for measuring water depth have been traditionally used for topographic survey of slime storage bottom. Horizontal directions have been simultaneously measured on the boat marker while using theodolites. Water depth has been determined while using  a 2-kg circular load which was descended into brine solution with the help of rope. In addition to rather large time and labour costs such technology has required synchronization in actions on three participants involved in the work: operators of two theodolites and boat team in every depth measuring point. Methodology has been proposed for more efficient solution of the problem. It presupposes the use of echolocation together with space localization systems (GPS-systems which can be set on a boat with the purpose to measure depth of a storage tank bed. An echolocation transducer has been installed under the boat bottom at the depth of 10 cm from the brine solution level in the slime storage.  An aerial of GPS-receiver has been fixed over the echo-sounder transducer. Horizontal positioning of bottom depth measuring points have been carried out in the local coordinate system. Formation of digital model for slime storage bottom has been executed after data input of the coordinate positioning that corresponded to corrected depths in the software package LISCAD Plus SEE. The formation has been made on the basis of a strict triangulation method.  Creation of the digital model makes it rather easy to calculate a volume between a storage bottom and a selected level (height of filling material. In this context it is possible to determine a volume and an area not only above but also lower of the datum surface. For this purpose it is recommended to use digital models which are developed

  18. Echolocation in sympatric Peale's dolphins (Lagenorhynchus australis) and Commerson's dolphins (Cephalorhynchus commersonii) producing narrow-bandhigh-frequency clicks

    DEFF Research Database (Denmark)

    Kyhn, Line Anker; Jensen, Frants Havmand; Beedholm, Kristian

    2010-01-01

    -element hydrophone array from wild Peale's (Lagenorhynchus australis) and Commerson's (Cephalorhynchus commersonii) dolphins off the Falkland Islands. The centroid frequency was different between Commerson's (133±2kHz) and Peale's (129±3kHz) dolphins. The r.m.s. bandwidth was 12±3kHz for both species. The source...... level was higher for Peale's dolphin (185±6dB re 1 uPa p.-p.) than for Commerson's(177±5 dB re 1 uPa p.-p.). The mean directivity indexes were 25dB for both species. The relatively low source levels in combination with the high directivity index may be an adaptation to reduce clutter when foraging...

  19. O que é melhor para manter a riqueza de espécies de morcegos (Mammalia, Chiroptera: um fragmento florestal grande ou vários fragmentos de pequeno tamanho? What is better for maintaining the richness of bat (Mammalia, Chiroptera species: a large forest fragment or many small fragments?

    Directory of Open Access Journals (Sweden)

    Nelio Roberto dos Reis

    2003-06-01

    Full Text Available This study was carried out with the objective of evaluating if the size of forest fragments affects the diversity of bat species. In order to do that, seven fragments were studied in Londrina, Paraná: five small fragments, whose areas varied between 1 and 10 ha; a fragment which is considered medium-sized (Parque Municipal Arthur Thomas - 85,47 ha.; and a large fragment (Parque Estadual Mata dos Godoy - 680 ha.. Thirty three species were collected. Ten species were common to all three types of fragments: Chrotopterus auritus (Peters, 1856, Carollia perspicillata (Linnaeus, 1758, Artibeus fimbriatus Gray, 1838, Artibeus lituratus (Olfers, 1818, Platyrrhinus lineatus (E. Geoffroy, 1810, Pygoderma bilabiatum (Wagner, 1843, Sturnira lilium (E. Geoffroy, 1810, Vampyressa pusilla (Wagner, 1843, Eptesicus brasiliensis (Desmarest, 1819, and Myotis nigricans (Schinz, 1821. Eight species were only found in the large fragment: Noctilio albiventris Desmarest, 1818, Glossophaga soricina (Pallas, 1766, Uroderma bilobatum Peters, 1866, Diaemus youngi (Jentink,1893, Diphylla ecaudata Spix, 1823, Eptesicus furinalis (d'Orbigny, 1847, Histiotus velatus (I. Geoffroy, 1824 and Myotis levis (I. Geoffroy, 1824. Five were only found in the small fragments: Noctilio leporinus (Linnaeus, 1758, Phyllostomus discolor Wagner, 1843, Chiroderma villosum Peters, 1860, Eptesicus sp. e Rogheessa tumida H. Allen, 1866. Chiroderma doriae, which is threatened by extinction, was captured in the large fragment and in one of the small fragments; M. ruber, also threatened by extinction, was captured in the medium-sized and large fragments. We believe that the major cause for the loss of organic diversity is not rational exploitation, but the destruction of habitats, a result of the expansion of irrational human activities.

  20. Invasive Species

    Science.gov (United States)

    Invasive species have significantly changed the Great Lakes ecosystem. An invasive species is a plant or animal that is not native to an ecosystem, and whose introduction is likely to cause economic, human health, or environmental damage.

  1. The discovery of Kerivoula krauensis (Chiroptera: Vespertilionidae in southern peninsular Thailand provides new information on the distribution and conservation status of this data deficient species

    Directory of Open Access Journals (Sweden)

    Bounsavane Douangboubpha

    2014-10-01

    Full Text Available In August 2013, an adult male Kerivoula krauensis was captured in a harp trap set in forest understorey in Bala Forest, Hala-Bala Wildlife Sanctuary, Narathiwat Province, Thailand. This is only the second locality recorded for the species, the first outside Malaysia, and represents a range extension of 254 km, northwards from Krau Wildlife Reserve, Malaysia. This discovery has important conservation implications suggesting that the species is more widespread than previously thought but also confirms previous findings that it appears to live in very low population densities as compared to other Kerivoula found in the same habitat. Information on its taxonomy, echolocation call, distribution and ecology is included. In addition, the new material from Thailand is briefly compared to other known species from the country

  2. Neural mechanisms of ranging are different in two species of bats.

    Science.gov (United States)

    Berkowitz, A; Suga, N

    1989-09-01

    The primary cue for ranging by echolocation is the delay between an emitted pulse and its echo. The abilities of several species of bats to discriminate target ranges have been accounted for by a theory which assumes that bats perform cross-correlation analysis of the FM components of pulse and echo. In this study, the neural mechanisms performing the cross-correlation are shown to differ in two species. The mustached bat emits CF-FM pulses with four harmonics (CF1-4 and FM1-4) while the little brown bat emits FM pulses with only one harmonic (FM1). In the auditory cortex of both species, there is a cluster or clusters of delay-tuned neurons. Delay-tuned neurons in the mustached bat utilize delay lines created by neurons which respond to the FM1 component of the pulse and extract range information from the combination of the pulse FM1 and the echo FMn (n = 2, 3, or 4). In contrast, delay-tuned neurons in the little brown bat utilize delay lines evoked by the pulse FM1, which is stronger than the echo FM1, and extract range information from the combination of the pulse FM1 and the echo FM1. Inhibition is involved in creating the delay lines in both species.

  3. (Annonaceae) species

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... 2Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor. Darul Ehsan, Malaysia. ... The genus Xylopia comprises about 170 species and they are widely .... American Type Culture Collection (ATCC) while VRSA156 and. VISA24 were lab ...

  4. Acoustic Aposematism and Evasive Action in Select Chemically Defended Arctiine (Lepidoptera: Erebidae Species: Nonchalant or Not?

    Directory of Open Access Journals (Sweden)

    Nicolas J Dowdy

    Full Text Available Tiger moths (Erebidae: Arctiinae have experienced intense selective pressure from echolocating, insectivorous bats for over 65 million years. One outcome has been the evolution of acoustic signals that advertise the presence of toxins sequestered from the moths' larval host plants, i.e. acoustic aposematism. Little is known about the effectiveness of tiger moth anti-bat sounds in their natural environments. We used multiple infrared cameras to reconstruct bat-moth interactions in three-dimensional (3-D space to examine how functional sound-producing organs called tymbals affect predation of two chemically defended tiger moth species: Pygarctia roseicapitis (Arctiini and Cisthene martini (Lithosiini. P. roseicapitis and C. martini with intact tymbals were 1.8 and 1.6 times less likely to be captured by bats relative to those rendered silent. 3-D flight path and acoustic analyses indicated that bats actively avoided capturing sound-producing moths. Clicking behavior differed between the two tiger moth species, with P. roseicapitis responding in an earlier phase of bat attack. Evasive flight behavior in response to bat attacks was markedly different between the two tiger moth species. P. roseicapitis frequently paired evasive dives with aposematic sound production. C. martini were considerably more nonchalant and employed evasion in fewer interactions. Our results show that acoustic aposematism is effective at deterring bat predation in a natural context and that this strategy is likely to be the ancestral function of tymbal organs within the Arctiinae.

  5. Variation in acoustic behavior of delphinids in the Pacific Ocean based on school size and species composition

    Science.gov (United States)

    Rankin, Shannon; Barlow, Jay

    2005-04-01

    Variation in acoustic behavior based on school size and species composition was examined for surveys in the eastern tropical Pacific (2000), along the U.S. West Coast (2001), and in the U.S. EEZ surrounding Hawaii (2002). Sounds were monitored using a towed hydrophone array, and vocal schools were defined as those producing any combination of whistles, burst pulses, and/or echolocation clicks. Delphinid schools containing mixed species were consistently more vocal than single species schools. Vocal schools of Stenella attenuata, S. longirostris, Delphinus delphis, and Lissodelphis borealis were significantly larger than non-vocal schools. Vocal schools of Tursiops truncatus and Grampus griseus were somewhat larger than non-vocal schools, although this relationship was not significant. There was no relationship between group size and vocal activity for S. coeruleoalba, Steno bredanensis, and Globicephala spp. For species without a strong group size effect, all but T. truncatus were more vocal in the Hawaiian waters. The ability to use acoustic techniques in dolphin population estimation depends on their effectiveness in consistently detecting dolphin schools. This study suggests that small single-species schools of S. attenuata, S. longirostris, D. delphis, and L. borealis are more likely to be missed during acoustic monitoring in these regions.

  6. Taxonomic reassessment of bats from Castelnau’s expedition to South America (1843–1847): Phyllostoma angusticeps Gervais, 1856 (Chiroptera, Phyllostomidae)

    Science.gov (United States)

    Arroyo-Cabrales, Joaquín; Gardner, Alfred; Sigé, Bernard; Catzeflis, Francois; McCarthy, Timothy J.

    2017-01-01

    Gervais, in 1856, described the bats collected during Castelnau’s expedition through South America (1843–1847). We report that Phyllostoma angusticeps (Gervais, 1856), long treated as a junior synonym of Phyllostomus discolor(Wagner, 1843), is not a representative of the genus Phyllostomus. In fact, as we demonstrate, it represents the taxon known as Trachops cirrhosus. We also provide a summary, in tabular form, of the genera and species first described by Gervais (1856).

  7. Fear conditioned discrimination of frequency modulated sweeps within species-specific calls of mustached bats.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    2010-05-01

    Full Text Available Social and echolocation vocalizations of bats contain different patterns of frequency modulations. An adult bat's ability to discriminate between various FM parameters, however, is not well established. Using changes in heart rate (HR as a quantitative measure of associative learning, we demonstrate that mustached bats (Pteronotus parnellii can be fear conditioned to linear frequency modulated (FM sweeps typically centered at their acoustic fovea (approximately 60 kHz. We also show that HR is sensitive to a change in the direction of the conditional frequency modulation keeping all other parameters constant. In addition, a change in either depth or duration co-varied with FM rate is reflected in the change in HR. Finally, HR increases linearly with FM rate incremented by 0.1 kHz/ms from a pure tone to a target rate of 1.0 kHz/ms of the conditional stimulus. Learning is relatively rapid, occurring after a single training session. We also observed that fear conditioning enhances local field potential activity within the basolateral amygdala. Neural response enhancement coinciding with rapid learning and a fine scale cortical representation of FM sweeps shown earlier make FMs prime candidates for discriminating between different call types and possibly communicating socially relevant information within species-specific sounds.

  8. Development and characterization of 10 microsatellite markers in the Cape horseshoe bat, Rhinolophus capensis (Chiroptera, Rhinolophidae) and cross-amplification in southern African Rhinolophus species.

    Science.gov (United States)

    Nesi, Nicolas; Jacobs, David S; Feldheim, Kevin; Bishop, Jacqueline M

    2015-09-26

    The Cape horseshoe bat, Rhinolophus capensis, is endemic to the Cape region of South Africa. Coalescent analysis of mitochondrial DNA sequence data suggests extensive historical gene flow between populations despite strong geographic variation of their echolocation call phenotype. Nevertheless the fine-scale genetic structure and evolutionary ecology of R. capensis remains poorly understood. Here we describe the development of 10 novel polymorphic microsatellite loci to investigate of the dispersal ecology of R. capensis and to facilitate taxonomic studies of Rhinolophus species in southern Africa. We report 10 microsatellite primer pairs that consistently amplify scorable and polymorphic loci across 12 African rhinolophid species. Initial analysis of two populations of R. capensis from South Africa revealed moderate to high levels of allelic variation with 4-14 alleles per locus and observed heterozygosities of 0.450-0.900. No evidence of linkage disequilibrium was observed and eight of the loci showed no departure from Hardy-Weinberg equilibrium. Cross-species utility of these markers revealed consistently amplifiable polymorphic loci in eleven additional rhinolophid species. The cross-amplification success of the microsatellites developed here provides a cost-effective set of population genetic marker for the study of rhinolophid evolutionary ecology and conservation in southern Africa.

  9. Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution

    Directory of Open Access Journals (Sweden)

    Xuan Fujun

    2012-04-01

    Full Text Available We investigated the reactions of four bat species from four different lineages to UV light: Hipposideros armiger (Hodgson, 1835 and Scotophilus kuhlii Leach, 1821, which use constant frequency (CF or frequency modulation (FM echolocation, respectively; and Rousettus leschenaultii (Desmarest, 1820 and Cynopterus sphinx (Vahl, 1797, cave and tree-roosting Old World fruit bats, respectively. Following acclimation and training involving aversive stimuli when exposed to UV light, individuals of S. kuhlii and C. sphinx exposed to such stimuli displayed conditioned reflexes such as body crouching, wing retracting, horizontal crawling, flying and/or vocalization, whereas individuals of H. armiger and R. leschenaultii, in most cue-testing sessions, remained still on receiving the stimuli. Our behavioral study provides direct evidence for the diversity of cone-based UV vision in the order Chiroptera and further supports our earlier postulate that, due to possible sensory tradeoffs and roosting ecology, defects in the short wavelength opsin genes have resulted in loss of UV vision in CF bats, but not in FM bats. In addition, Old World fruit bats roosting in caves have lost UV vision, but those roosting in trees have not. Bats are thus the third mammalian taxon to retain ancestral cone-based UV sensitivity in some species.

  10. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    Science.gov (United States)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  11. Histomorfometria testicular do morcego Phyllostomus discolor (Chiroptera: Phyllostomidae em áreas de Mata Atlântica de Pernambuco

    Directory of Open Access Journals (Sweden)

    Nivaldo Bernardo de Lima Júnior

    2014-12-01

    Full Text Available Esse estudo analisou a condição reprodutiva, por meio da histomorfometria, de P. discolor coletados em fragmentos de Mata Atlântica do litoral sul de Pernambuco, durante as estações seca e chuvosa. Os animais são de coleção e foram classificados de acordo com a posição testicular (descendentes e não descendentes. Para as análises histomorfométricas, foram selecionados aleatoriamente 18 espécimes durante as estações seca e chuvosa, dos quais (n = 11 com testículos descendentes e (n = 7 com testículos não descendentes. Os resultados demonstraram que as maiores médias da área de ocupação dos túbulos seminíferos foram na estação chuvosa, independente dos espécimes apresentarem os testículos descendentes ou não. Isso pode estar relacionado a um maior investimento em produção espermática, já que na estação chuvosa, existe uma maior disponibilidade de alimentos devido às precipitações pluviométricas.

  12. Histomorfometria testicular do morcego Phyllostomus discolor (Chiroptera: Phyllostomidae) em áreas de Mata Atlântica de Pernambuco

    OpenAIRE

    Nivaldo Bernardo de Lima Júnior; Maria Juliana Gomes Arandas; Ketsia Sabrina do Nascimento Marinho; Francisco Carlos Amanajás de Aguiar Júnior; Antonio Rossano Mendes Pontes; Katharine Raquel Pereira dos Santos

    2014-01-01

    Esse estudo analisou a condição reprodutiva, por meio da histomorfometria, de P. discolor coletados em fragmentos de Mata Atlântica do litoral sul de Pernambuco, durante as estações seca e chuvosa. Os animais são de coleção e foram classificados de acordo com a posição testicular (descendentes e não descendentes). Para as análises histomorfométricas, foram selecionados aleatoriamente 18 espécimes durante as estações seca e chuvosa, dos quais (n = 11) com testículos descendentes e (n = 7) com ...

  13. Four new bat species (Rhinolophus hildebrandtii complex reflect Plio-Pleistocene divergence of dwarfs and giants across an Afromontane archipelago.

    Directory of Open Access Journals (Sweden)

    Peter J Taylor

    Full Text Available Gigantism and dwarfism evolve in vertebrates restricted to islands. We describe four new species in the Rhinolophus hildebrandtii species-complex of horseshoe bats, whose evolution has entailed adaptive shifts in body size. We postulate that vicissitudes of palaeoenvironments resulted in gigantism and dwarfism in habitat islands fragmented across eastern and southern Africa. Mitochondrial and nuclear DNA sequences recovered two clades of R. hildebrandtii senso lato which are paraphyletic with respect to a third lineage (R. eloquens. Lineages differ by 7.7 to 9.0% in cytochrome b sequences. Clade 1 includes R. hildebrandtii sensu stricto from the east African highlands and three additional vicariants that speciated across an Afromontane archipelago through the Plio-Pleistocene, extending from the Kenyan Highlands through the Eastern Arc, northern Mozambique and the Zambezi Escarpment to the eastern Great Escarpment of South Africa. Clade 2 comprises one species confined to lowland savanna habitats (Mozambique and Zimbabwe. A third clade comprises R. eloquens from East Africa. Speciation within Clade 1 is associated with fixed differences in echolocation call frequency, and cranial shape and size in populations isolated since the late Pliocene (ca 3.74 Mya. Relative to the intermediate-sized savanna population (Clade 2, these island-populations within Clade 1 are characterised by either gigantism (South African eastern Great Escarpment and Mts Mabu and Inago in Mozambique or dwarfism (Lutope-Ngolangola Gorge, Zimbabwe and Soutpansberg Mountains, South Africa. Sympatry between divergent clades (Clade 1 and Clade 2 at Lutope-Ngolangola Gorge (NW Zimbabwe is attributed to recent range expansions. We propose an "Allometric Speciation Hypothesis", which attributes the evolution of this species complex of bats to divergence in constant frequency (CF sonar calls. The origin of species-specific peak frequencies (overall range = 32 to 46 kHz represents the

  14. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus).

    Science.gov (United States)

    Pavan, Ana Carolina; Marroig, Gabriel

    2016-10-01

    A phylogenetic systematic perspective is instrumental in recovering new species and their evolutionary relationships. The advent of new technologies for molecular and morphological data acquisition and analysis, allied to the integration of knowledge from different areas, such as ecology and population genetics, allows for the emergence of more rigorous, accurate and complete scientific hypothesis on species diversity. Mustached bats (genus Pteronotus) are a good model for the application of this integrative approach. They are a widely distributed and a morphologically homogeneous group, but comprising species with remarkable differences in their echolocation strategy and feeding behavior. The latest systematic review suggested six species with 17 subspecies in Pteronotus. Subsequent studies using discrete morphological characters supported the same arrangement. However, recent papers reported high levels of genetic divergence among conspecific taxa followed by bioacoustic and geographic agreement, suggesting an underestimated diversity in the genus. To date, no study merging genetic evidences and morphometric variation along the entire geographic range of this group has been attempted. Based on a comprehensive sampling including representatives of all current taxonomic units, we attempt to delimit species in Pteronotus through the application of multiple methodologies and hierarchically distinct datasets. The molecular approach includes six molecular markers from three genetic transmission systems; morphological investigations used 41 euclidean distances estimated through three-dimensional landmarks collected from 1628 skulls. The phylogenetic analysis reveals a greater diversity than previously reported, with a high correspondence among the genetic lineages and the currently recognized subspecies in the genus. Discriminant analysis of variables describing size and shape of cranial bones support the rising of the genetic groups to the specific status. Based on

  15. Species concept and speciation

    Directory of Open Access Journals (Sweden)

    Amal Y. Aldhebiani

    2018-03-01

    Full Text Available Defining and recognizing a species has been a controversial issue for a long time. To determine the variation and the limitation between species, many concepts have been proposed. When a taxonomist study a particular taxa, he/she must adopted a species concept and provide a species limitation to define this taxa. In this paper some of species concepts are discussed starting from the typological species concepts to the phylogenetic concept. Positive and negative aspects of these concepts are represented in addition to their application.

  16. Endangered Species Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of the Endangered Species Act (ESA) is to protect and recover imperiled species and the ecosystems upon which they depend. The U.S. Fish and Wildlife...

  17. Endangered Species Protection Bulletins

    Science.gov (United States)

    Endangered Species Protection Bulletins set forth geographically specific pesticide use limitations for the protection of threatened and endangered (listed) species and their designated critical habitat. Find out how to get and use Bulletins.

  18. National invasive species program

    Science.gov (United States)

    Anna Rinick

    2007-01-01

    The structure and function of the National Invasive Species Council was presented below. The names and contact information for the USDA Invasive Species coordinators as of February 2006 were presented on the next page.

  19. Species choice, provenance and species trials among native Brazilian species

    Energy Technology Data Exchange (ETDEWEB)

    Drumond, M.A.

    1982-01-01

    Six papers from the conference are presented. Drumond, M.A., Potential of species native to the semi-arid tropics, 766-781, (Refs. 18), reports on Anadenanthera macrocarpa, Mimosa species, Schinopsis brasiliensis, Spondias tuberosa, Ziziphus joazeiro, Cnidoscolus phyllacanthus, Bursera leptophleos (leptophloeos), Tabebuia impetiginosa, Astronium urundeuva, and Mimosa caesalpinia. Monteiro, R.F.R., Speltz, R.M., Gurgel, J.T. do A.; Silvicultural performance of 24 provenances of Araucaria angustifolia in Parana, 814-824, (Refs. 8). Pires, C.L. da S., Kalil Filho, A.N., Rosa, P.R.F. da, Parente, P.R., Zanatto, A.C.S.; Provenance trials of Cordia alliodora in the State of Sao Paulo, 988-995, (Refs. 9). Nogueira, J.C.B., Siqueira, A.C.M.F., Garrido, M.A.O., Gurgel Garrido, L.M. do A., Rosa, P.R.F., Moraes, J.L. de, Zandarin, M.A., Gurgel Filho, O.A., Trials of some native species in various regions of the State of Sao Paulo, 1051-1063, (Refs. 9) describes Centrolobium tomentosum, Peltophorum dubium, Tabebuia vellosoi, Cariniana legalis, and Balfourodendron riedelianum. Batista, M.P., Borges, J.F., Franco, M.A.B.; Early growth of a native species in comparison with exotics in northeastern Para, Brazil, 1105-1110, (Refs. 3). Jacaranda copaia is compared with Gmelina arborea, Pinus caribaea various hondurensis, Eucalyptus deglupta, and E. urophylla. Lima, P.C.F., Souza, S.M. de, Drumond, M.A.; Trials of native forest species at Petrolina, Pernambuco, 1139-1148, (Refs. 8), deals with Anadenanthera macrocarpa, Piptadenia obliqua, Pithecellobium foliolosum, Astronium urundeuva, Schinopsis brasiliensis, Cassia excelsa, Caesalpinia pyramidalis, Parkia platycephala, Pseudobombax simplicifolium, Tabebuia impetiginosa, Caesalpinia ferrea, and Aspidosperma pyrifolium. 18 references.

  20. Detection of cryptic species

    International Nuclear Information System (INIS)

    Cockburn, A.F.; Jensen, T.; Seawright, J.A.

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author)

  1. Computer derivation of some dolphin echolocation signals.

    Science.gov (United States)

    Altes, R A

    1971-09-03

    Recent advances in radar theory have given rise to a straightforward method of sonar signal design. The method involves computer maximization of a signal-to-interference ratio. The procedure has been used to derive sonar signals that can accurately measure target velocity. When two dolphins were placed in a situation conducive to the utilization of such signals, their waveforms were similar to those that had been theoretically derived.

  2. Support your local species

    DEFF Research Database (Denmark)

    Stärk, Johanna

    Nearly a quarter of all animal species within the European Union are threatened with extinction. Protecting many of these species will require the full spectrum of conservation actions from in-situ to ex-situ management. Holding an estimated 44% of EU Red Listed terrestrial vertebrates, zoos hereby...

  3. New Species of Agaricales

    Science.gov (United States)

    Kim, Yang Sup; Park, Ki Moon; Kim, Wan Gyu; Yoo, Kwan Hee; Park, In Cheol

    2009-01-01

    Clitocybe alboinfundibulliforme sp. nov. is widely distributed in Korea. Volvariella koreana sp. nov. is rarely distributed in Korea. These taxa were occasionally found together at the same place. Both of these species seem to be associated with each other. These two species are fully described and illustrated in this paper. PMID:23983550

  4. (WF n ) species

    Indian Academy of Sciences (India)

    potential, electron affinity, absolute electronegativity and chemical hardness are also evaluated which provide insights into chemical ..... η = 1/2 (IP − EA). (3). Absolute electronegativity measures the ability of species to attract electron and correlates inversely with the proton affinity. The increase in χ of WFn species with the ...

  5. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    the predicted increase in climate variability. Whereas species may show relatively high phenological resilience to climate change per se, the resilience of systems may be more constrained by the inherent dependence through consumer-resource interactions across trophic levels. During the last 15 years...... and resources. This poster will present the conceptual framework for this project focusing on species resilience....

  6. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  7. Chapter 16: Species Diversity

    African Journals Online (AJOL)

    zargaran

    2012-05-03

    May 3, 2012 ... In this survey, the oak gall wasps (Hymenoptera: Cynipidae: Cynipini) were collected from oak forests of West-Azerbaijan Province in six sites, from April to October. Species richness, heterogeneity, evenness and true diversity were measured. Based on the result of this study, 37 of oak gall wasps species ...

  8. Management of invasive species

    DEFF Research Database (Denmark)

    Schou, Jesper Sølver; Jensen, Frank

    In this paper, we conduct a number of cost-benefit analyses to clarify whether the establishment of invasive species should be prevented or the damage of such species should be mitigated after introduction. We use the potential establishment of ragweed in Denmark as an empirical case. The main...... of information externalities, altruistic preferences, possible catastrophic events and ethical considerations....

  9. The Origin of Species

    NARCIS (Netherlands)

    Darwin, Charles

    2005-01-01

    In The Origin of Species Darwin outlined his theory of evolution, which proposed that species had been evolving and differentiating over time under the influence of natural selection. On its publication it became hugely influential, bringing about a seismic shift in the scientific view of humanitys

  10. The species in primatology.

    Science.gov (United States)

    Groves, Colin

    2014-01-01

    Biologists of the late eighteenth and early nineteenth centuries all bandied about the term "species," but very rarely actually said what they meant by it. Often, however, one can get inside their thinking by piecing together some of their remarks. One of the most nearly explicit-appropriately, for the man who wrote a book called The Origin of Species - was Charles Darwin: "Practically, when a naturalist can unite two forms together by others having intermediate characters, he treats the one as a variety of the other… He later translated this into evolutionary terms: "Hereafter, we shall be compelled to acknowledge that the only distinction between species and well-marked varieties is, that the latter are known, or believed, to be connected at the present day by intermediate gradations, whereas species were formerly thus connected"(1:484-5.) Copyright © 2014 Wiley Periodicals, Inc.

  11. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  12. Endangered Species: Pesticide Restrictions

    Science.gov (United States)

    Our goal is to protect threatened and endangered species and their habitats, without placing unnecessary burden on agriculture and pesticide users. Pesticide limitations are developed to ensure safe use of pesticides in order to meet this goal.

  13. Threatened & Endangered Species Occurrences

    Data.gov (United States)

    Kansas Data Access and Support Center — The database consists of a single statewide coverage of location records for 54 species contained in the Kansas Natural Heritage Inventory database of the Kansas...

  14. Wood Species Recognition System

    OpenAIRE

    Bremananth R; Nithya B; Saipriya R

    2009-01-01

    The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing te...

  15. Sub specie aeternitatis

    Directory of Open Access Journals (Sweden)

    Laura Gioeni

    2012-10-01

    Full Text Available Per delineare il rapporto tra etica ed estetica nell'architettura e rispondere alla domanda principale «che cosa è o dovrebbe essere un buon architetto?», il saggio discute la tesi di Wittgenstein secondo cui «l'opera d'arte è l'oggetto visto sub specie aeternitatis e la vita buona è il mondo visto sub specie aeternitatis. Questa è la connessione tra arte ed etica».

  16. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  17. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  18. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  19. Prices and species diversity

    DEFF Research Database (Denmark)

    Sauer, Johannes

    . Based on a biologically defined species diver-sity index we incorporate biodiversity either as a desirable output or biodiversity loss as a detrimental input. Beside quantitative shadow price measures the main contribu-tion of the work is the evidence that parametric scores of environmental efficiency...... of biodiversity and the appropriate incorporation in stochastic fron-tier models to achieve more realistic measures of production efficiency. We use the empirical example of tobacco production drawing from as well as affecting species diversity in the surrounding forests. We apply a shadow profit distance...

  20. Translating Dyslexia across Species

    Science.gov (United States)

    Gabel, Lisa A.; Manglani, Monica; Escalona, Nicholas; Cysner, Jessica; Hamilton, Rachel; Pfaffmann, Jeffrey; Johnson, Evelyn

    2016-01-01

    Direct relationships between induced mutation in the "DCDC2" candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and…

  1. on candida species

    African Journals Online (AJOL)

    Abstract. Background: Candida species (sp) is implicated in causing opportunistic disseminated mycotic complications in stage II. HIV patients. Cleistopholis patens is a West African medicinal tree reported to have significant antifungal activity against C. albicans. Objectives: This study aimed to determine the anti-candidal ...

  2. Species Distribution Modelling

    DEFF Research Database (Denmark)

    Gomes, Vitor H. F.; Ijff, Stephanie D.; Raes, Niels

    2018-01-01

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SD...

  3. Chapter 16: Species Diversity

    African Journals Online (AJOL)

    zargaran

    2012-05-03

    May 3, 2012 ... 2008; Zargaran et al., 2008), the oak cynipid gall wasps diversity is yet to be studied. Nazemi et al. (2008) reported species richness of oak gall wasps from. Kurdistan, Ilam and Kermanshah provinces of Iran. Reducing the oak gall wasps diversity will be as an alarm for environmental health of oak forests.

  4. Man as a Species.

    Science.gov (United States)

    Solem, Alan; And Others

    Written in 1964, the document represents experimental material of the Anthropology Curriculum Study Project. The objectives of the project were to discuss the evolution of man as distinguished from the evolution of other species and as related to culture, and to emphasize human diversity. Three brief essays are presented. The first, "The…

  5. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  6. Positive feedback in species communities

    NARCIS (Netherlands)

    Gerla, D.J.

    2012-01-01

    Sometimes the eventual population densities in a species community depend on the initial densities or the arrival times of species. If arrival times determine species composition, a priority effect has occurred. Priority effects may occur if the species community exhibits alternative stable states

  7. What ears do for bats: a comparative study of pinna sound pressure transformation in chiroptera.

    Science.gov (United States)

    Obrist, M K; Fenton, M B; Eger, J L; Schlegel, P A

    1993-07-01

    Using a moveable loudspeaker and an implanted microphone, we studied the sound pressure transformation of the external ears of 47 species of bats from 13 families. We compared pinna gain, directionality of hearing and interaural intensity differences (IID) in echolocating and non-echolocating bats, in species using different echolocation strategies and in species that depend upon prey-generated sounds to locate their targets. In the Pteropodidae, two echolocating species had slightly higher directionality than a non-echolocating species. The ears of phyllostomid and vespertilionid species showed moderate directionality. In the Mormoopidae, the ear directionality of Pteronotus parnellii clearly matched the dominant spectral component of its echolocation calls, unlike the situation in three other species. Species in the Emballonuridae, Molossidae, Rhinopomatidae and two vespertilionids that use narrow-band search-phase echolocation calls showed increasingly sharp tuning of the pinna to the main frequency of their signals. Similar tuning was most evident in Hipposideridae and Rhinolophidae, species specialized for flutter detection via Doppler-shifted echoes of high-duty-cycle narrow-band signals. The large pinnae of bats that use prey-generated sounds to find their targets supply high sound pressure gain at lower frequencies. Increasing domination of a narrow spectral band in echolocation is reflected in the passive acoustic properties of the external ears (sharper directionality). The importance of IIDs for lateralization and horizontal localization is discussed by comparing the behavioural directional performance of bats with their bioacoustical features.

  8. Prior indigenous technological species

    Science.gov (United States)

    Wright, Jason T.

    2018-01-01

    One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.

  9. Audiogram of a Stranded Blainville’s Beaked Whale (Mesoplodon Densirostris) Measured using Auditory Evoked Potentials

    Science.gov (United States)

    2011-01-18

    animal. Blainville’s beaked whale echolocation signals have been 64 compared to those produced by a variety of bat species. They produce two distinct...Populations and Ocean Noise. Washington, DC, 454 National Academy Press. 455 Neuweiler, G. (1984). "Foraging, Echolocation and Audition in Bats ...foraging behavior of these deep diving cetaceans. They do not initiate echolocating at depths shallower 58 than 200m (Johnson et al., 2004). Their foraging

  10. Oilbirds

    DEFF Research Database (Denmark)

    Brinkløv, Signe; Warrant, Eric

    2017-01-01

    A Quick guide to oilbirds: nocturnal birds found only in Neotropical rainforests that, rather like many bat species, live in caves where they use echolocation for orientation.......A Quick guide to oilbirds: nocturnal birds found only in Neotropical rainforests that, rather like many bat species, live in caves where they use echolocation for orientation....

  11. Estimating Effects of Species Interactions on Populations of Endangered Species.

    Science.gov (United States)

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  12. The functional biogeography of species

    DEFF Research Database (Denmark)

    Carstensen, Daniel W.; Dalsgaard, Bo; Svenning, Jens-Christian

    2013-01-01

    Biogeographical systems can be analyzed as networks of species and geographical units. Within such a biogeographical network, individual species may differ fundamentally in their linkage pattern, and therefore hold different topological roles. To advance our understanding of the relationship...... between species traits and large-scale species distribution patterns in archipelagos, we use a network approach to classify birds as one of four biogeographical species roles: peripherals, connectors, module hubs, and network hubs. These roles are based upon the position of species within the modular...... network of islands and species in Wallacea and the West Indies. We test whether species traits - including habitat requirements, altitudinal range-span, feeding guild, trophic level, and body length - correlate with species roles. In both archipelagos, habitat requirements, altitudinal range-span and body...

  13. Penicillium species causing onychomycosis.

    Directory of Open Access Journals (Sweden)

    Ramani R

    1994-04-01

    Full Text Available Onychomycosis caused by mould infection is rare. A 40 year old male patient presented with dystrophic finger nails and multiple, erythematous lesions with slightly raised borders and scaling all over the body. The patient was a known diabetic. He did not respond to griseofulvin. Samples from nails and skin scales were cultured. From the nails, Penicillium species and from the skin scales. Trichophyton rubrum were isolated. Ketoconazole therapy (200 mg twice daily x 4 mths led to complete cure with negative cultures and normalization of nails.

  14. Species concepts, species delimitation and the inherent limitations ...

    Indian Academy of Sciences (India)

    Frank Zachos

    genes” (ibid., italics in the original). Hill focuses on birds, but in principle the concept could be applicable more widely. It is similar to the Genetic and the Differential Fitness Species ..... into account social and financial ramifications of species status (as when the habitat of an endangered species needs protection) not only ...

  15. Species concepts, species delimitation and the inherent limitations ...

    Indian Academy of Sciences (India)

    Frank Zachos

    The nuisance of having to deal with so many species concepts can be reinterpreted as a situation in which various lines ... understanding of the species category and its ontology, but the most pressing practical problem remains ..... into account social and financial ramifications of species status (as when the habitat of an.

  16. Save Our Species: Protecting Endangered Species from Pesticides.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This full-size poster profiles 11 wildlife species that are endangered. Color illustrations of animals and plants are accompanied by narrative describing their habitats and reasons for endangerment. The reverse side of the poster contains information on the Endangered Species Act, why protecting endangered and threatened species is important, how…

  17. Identification of malassezia species

    Directory of Open Access Journals (Sweden)

    Kindo A

    2004-01-01

    Full Text Available Malassezia spp. are lipophilic unipolar yeasts recognized as commensals of skin that may be pathogenic under certain conditions. The genus Malassezia now comprises of seven species. This study was aimed at using a simple practical approach to speciate Malassezia yeasts from clinical material. Seventy skin scrapings from patients with pityriasis versicolor infection, positive in 10% potassium hydroxide (KOH, were cultured onto modified Dixon′s agar (mDixon′s agar and Sabouraud dextrose agar (SDA and incubated at 32ºC. Speciation was done on the basis of Gram stain morphology, catalase test, and utilization of Tweens. Out of 70 scrapings 48 (68.75% showed growth on mDixon′s agar. The commonest isolate was M. sympodialis (28, 58% followed by M. globosa (19, 40% and one isolate was (2% of M. restricta. M. sympodialis was the commonest species affecting our population and there was no isolation of M. obtusa, M. slooffiae, M. pachydermatis and M. furfur.

  18. Endangered Species Act Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Critical habitat (CH) is designated for the survival and recovery of species listed as threatened or endangered under the Endangered Species Act (ESA). Critical...

  19. New species of Malaysian ferns

    NARCIS (Netherlands)

    Holttum, R.E.

    1962-01-01

    The present paper includes descriptions of several new species of ferns found among recent collections from various parts of Malaysia; also two new combinations of names of species which are of interest on account of their taxonomic history.

  20. New Malesian species of Viscaceae

    NARCIS (Netherlands)

    Barlow, Bryan A.

    1996-01-01

    Three new Malesian species of Viscaceae are described. Ginalloa flagellaris Barlow is distinguished as a species from New Guinea and New Britain, previously included within G. arnottiana Korthals. Viscum exile Barlow is recognized as a new species endemic to Celebes, related to V. ovalifolium.

  1. 75 FR 78974 - Endangered Species

    Science.gov (United States)

    2010-12-17

    ...-XA086 Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.) and the regulations governing the taking, importing, and exporting of endangered and threatened species (50 CFR 222-226). Permit...

  2. California Endangered Species Resource Guide.

    Science.gov (United States)

    California State Dept. of Education, Los Angeles.

    This document was developed in response to California Senate Bill No. 885, "The Endangered Species Education Project," that called for a statewide program in which schools adopt a local endangered species, research past and current efforts to preserve the species' habitat, develop and implement an action plan to educate the community…

  3. 76 FR 2348 - Endangered Species

    Science.gov (United States)

    2011-01-13

    .... 15596] Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... requested permit has been issued under the authority of the Endangered Species Act of 1973, as amended (ESA... endangered and threatened species (50 CFR parts 222-226). The North Carolina Aquarium at Fort Fisher has been...

  4. Electrosmog and species conservation

    International Nuclear Information System (INIS)

    Balmori, Alfonso

    2014-01-01

    Despite the widespread use of wireless telephone networks around the world, authorities and researchers have paid little attention to the potential harmful effects of mobile phone radiation on wildlife. This paper briefly reviews the available scientific information on this topic and recommends further studies and specific lines of research to confirm or refute the experimental results to date. Controls must be introduced and technology rendered safe for the environment, particularly, threatened species. - Highlights: • Studies have shown effects in both animals and plants. • Two thirds of the studies reported ecological effects. • There is little research in this area and further research is needed. • The technology must be safe. • Controls should be introduced to mitigate the possible effects

  5. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  6. Species of Wadicosa (Araneae, Lycosidae): a new species from Madagascar.

    Science.gov (United States)

    Kronestedt, Torbjörn

    2017-05-10

    Since establishing the wolf spider genus Wadicosa Zyuzin, 1985 (Zyuzin 1985), eleven species have been accepted in it, either by transfer from Lycosa Latreille, 1804 or Pardosa C.L. Koch, 1847 or by original designation (WSC 2017). However, according to Kronestedt (1987), additional species wait to be formally transferred to Wadicosa. The genus is restricted to the Old World, with one species, Wadicosa jocquei Kronestedt, 2015, recently described from Madagascar and surrounding islands.

  7. Ring species as demonstrations of the continuum of species formation

    DEFF Research Database (Denmark)

    Pereira, Ricardo José Do Nascimento; Wake, David B.

    2015-01-01

    In the mid-20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of 'circular overlaps' or 'ring species' as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier...... in this issue of Molecular Ecology by Fuchs et al. (2015), focused on the entire genealogy of a bulbul (Alophoixus) species complex, offers key insights into the evolutionary processes underlying diversification of this Indo-Malayan bird. Their findings fulfil most of the criteria that can be expected for ring...

  8. Population genetics and cryptic species

    International Nuclear Information System (INIS)

    McPheron, Bruce A.

    2000-01-01

    Does the definition of a species matter for pest management purposes? Taxonomists provide us with tools - usually morphological characters - to identify a group of organisms that we call a species. The implication of this identification is that all of the individuals that fit the provided description are members of the species in question. The taxonomists have considered the range of variation among individuals in defining the species, but this variation is often forgotten when we take the concept of species to the level of management. Just as there is morphological variation among individuals, there is also variation in practically any character we might imagine, which has implications for the short and long term success of our management tactics. The rich literature on insecticide resistance should be a constant reminder of the fact that the pressure on pest survival and reproduction applied by our management approaches frequently leads to evolutionary changes within the pest species. The degree of variation within a particular species is a defining characteristic of that species. This level of variability may have very important implications for successful management, so it is very important to measure variation and, whenever possible, the genetic basis of that variation, in a target species. Population genetic approaches can provide evidence of genetic structure (or lack thereof) among populations of a species. These types of data can be used to discuss the movement of pest populations on a local or global scale. In other cases, we may have a complex of species that share some, but not all, characteristics. Species complexes that share morphological characters (i.e., cannot be easily distinguished) but not biological characters are referred to as sibling or cryptic species

  9. Sensory Drive Mediated by Climatic Gradients Partially Explains Divergence in Acoustic Signals in Two Horseshoe Bat Species, Rhinolophus swinnyi and Rhinolophus simulator.

    Directory of Open Access Journals (Sweden)

    Gregory L Mutumi

    Full Text Available Geographic variation can be an indicator of still poorly understood evolutionary processes such as adaptation and drift. Sensory systems used in communication play a key role in mate choice and species recognition. Habitat-mediated (i.e. adaptive differences in communication signals may therefore lead to diversification. We investigated geographic variation in echolocation calls of African horseshoe bats, Rhinolophus simulator and R. swinnyi in the context of two adaptive hypotheses: 1 James' Rule and 2 the Sensory Drive Hypothesis. According to James' Rule body-size should vary in response to relative humidity and temperature so that divergence in call frequency may therefore be the result of climate-mediated variation in body size because of the correlation between body size and call frequency. The Sensory Drive Hypothesis proposes that call frequency is a response to climate-induced differences in atmospheric attenuation and predicts that increases in atmospheric attenuation selects for calls of lower frequency. We measured the morphology and resting call frequency (RF of 111 R. simulator and 126 R. swinnyi individuals across their distributional range to test the above hypotheses. Contrary to the prediction of James' Rule, divergence in body size could not explain the variation in RF. Instead, acoustic divergence in RF was best predicted by latitude, geography and climate-induced differences in atmospheric attenuation, as predicted by the Sensory Drive Hypothesis. Although variation in RF was strongly influenced by temperature and humidity, other climatic variables (associated with latitude and altitude as well as drift (as suggested by a positive correlation between call variation and geographic distance, especially in R. simulator may also play an important role.

  10. Armillaria species in coniferous stands

    Directory of Open Access Journals (Sweden)

    Anna Żółciak

    2013-12-01

    Full Text Available Identification of the Armillaria species in selected coniferous stands (Scots pine stands, Norway spruce stands and fir stands was the aim of the work carried out on the basis of mating tests and consideration of macroscopic traits of fruit-bodies. One species of Armillaria [A. ostoyae (Romagnesi Herink] was found in Scots pine stands, three species [A. ostoyae, A. cepistipes Velenovský and A. borealis Marxmüller et Korhonen] were found in Norway spruce stands and two species [A. ostoyae and A. cepistipes] were found in fir stands.

  11. Uncommon Species and Other Features

    Data.gov (United States)

    Vermont Center for Geographic Information — The Vermont Fish and Wildlife Department's Natural Heritage Inventory (NHI) maintains a database of uncommon, rare, threatened and endangered species and natural...

  12. Balance of bacterial species in the gut

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Balance of bacterial species in the gut. Protective. Lactobacillus species. Bifidobacterium species. Selected E. coli. Saccharomyces boulardii. Clostridium butyricum.

  13. Results of an inventory of bats in the Uzungwa scarp forest reserve ...

    African Journals Online (AJOL)

    We report on identifications, including analysis of echolocation calls, and distribution for this mammalian group, which is one of the least known among the unique mammalian community that is found in the Udzungwa Mountains. Keywords: Chiroptera, Udzungwa Mountains, Eastern Arc, echolocation, species list. Journal of ...

  14. Removing other Tree Species does not benefit the Timber Species ...

    African Journals Online (AJOL)

    The endemic canopy tree Cephalosphaera usambarensis is a valuable timber species in montane rainforest of Tanzania. Here we evaluate an experiment in which mature trees of species other than C. usambarensis were removed from an area in the East Usambara Mountains. We compared stage/size structure of the ...

  15. Bat species richness and activity over an elevation gradient in mediterranean shrublands of Crete

    Directory of Open Access Journals (Sweden)

    Panagiotis Georgiakakis

    2010-08-01

    Full Text Available Abstract
    The effect of elevation on bat species richness and activity was investigated in shrublands of central Crete (Greece using broad-band acoustic surveys. Recordings of echolocation calls were made in 15 transects equally distributed in three distinct elevation zones (500, 1000 and 1500 m a.s.l. during spring and autumn 2007-2008. Time-expanded calls were subsequently identified with the use of quadratic discriminant functions.
    Out of 13 species recorded, Hypsugo savii, Pipistrellus kuhlii and Tadarida teniotis were the most common and abundant. Many Rhinolophus hipposideros were also recorded in all elevation zones. Thirteen species were recorded in the lower elevation zone, 7 species in the mid one and 8 species in the 1500 m a.s.l. sites. Species richness, the number of bat passes of the most abundant species, as well as the total number of bat passes were not significantly affected by elevation. In spring both species richness and bat activity were higher than in autumn, although the corresponding difference in temperature was not significant.
    The high variability in both bat activity and the number of species found per transect in each elevation zone probably depended on the presence of other habitat types in the close vicinity, while roost availability and location might also have played an important role.
    We suggest that the ability of bats to perform regular movements along the elevational gradient has to be taken in account when assessing elevational patterns in bat diversity and activity. The geology of the study area is also of considerable importance through its effect on foraging and roosting opportunities for bats.

    Riassunto
    Ricchezza specifica e attività dei chirotteri lungo un gradiente altitudinale nella macchia mediterranea di Creta
    L’effetto della quota su ricchezza in specie e

  16. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  17. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code Bristlemouths...

  18. Insular species swarm goes underground

    DEFF Research Database (Denmark)

    P. S. Reboleira, Ana Sofia; Enghoff, Henrik

    2014-01-01

    -group, an insular species swarm distributed in the archipelagos of Madeira and the Canary Islands. We discuss the differences between the new species and their relatives and present information on the subterranean environment of Madeira. An updated overview of the subterranean biodiversity of millipedes...

  19. 76 FR 74778 - Endangered Species

    Science.gov (United States)

    2011-12-01

    .... 16439] Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... has been issued under the authority of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq.) and the regulations governing the taking, importing, and exporting of endangered and...

  20. 76 FR 1405 - Endangered Species

    Science.gov (United States)

    2011-01-10

    ...-XA128 Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and..., importing, and exporting of endangered and threatened species (50 CFR parts 222-226). The five-year permit... above- named organization. The requested permit has been issued under the authority of the Endangered...

  1. Species delimitation and global biosecurity.

    Science.gov (United States)

    Boykin, Laura M; Armstrong, Karen F; Kubatko, Laura; De Barro, Paul

    2012-01-01

    Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, "tip to root", for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg's reciprocal monophyly, (P(AB)),1 (2) Rodrigo's (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule-coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits might

  2. Species recognition and cryptic species in the Tuber indicum complex.

    Directory of Open Access Journals (Sweden)

    Juan Chen

    Full Text Available Morphological delimitation of Asian black truffles, including Tuber himalayense, T. indicum, T. sinense, T. pseudohimalayense, T. formosanum and T. pseudoexcavatum, has remained problematic and even phylogenetic analyses have been controversial. In this study, we combined five years of field investigation in China with morphological study and DNA sequences analyses (ITS, LSU and β-tubulin of 131 Tuber specimens to show that T. pseudohimalayense and T. pseudoexcavatum are the same species. T. formosanum is a separate species based on its host plants and geographic distribution, combined with minor morphological difference from T. indicum. T. sinense should be treated as a synonym of T. indicum. Our results demonstrate that the present T. indicum, a single described morphological species, should include at least two separate phylogenetic species. These findings are of high importance for truffle taxonomy and reveal and preserve the richness of truffle diversity.

  3. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  4. Molecular Typing of Nocardia Species

    Directory of Open Access Journals (Sweden)

    Seyyed Saeed Eshraghi

    2012-03-01

    Full Text Available Identification of clinically significant Nocardia species is essential for the definitive diagnosis, predict antimicrobial susceptibility, epidemiological purposes, and for an effective treatment. Conventional identification of Nocardia species in routine medical laboratories which is based on phenotypic (cellular morphology, colonial characteristics, biochemical and enzymatic profiles, and chemotaxonomic characteristics is often laborious, and time-consuming. The procedure requires expertise, and newer species can be difficult to differentiate with accuracy from other related species. Alternative methods of identification, such as high performance liquid chromatography (HPLC and molecular biology techniques allow a better characterization of species. The taxonomy of the genus Nocardia has been dramatically been revised during the last decade and more than 30 valid human clinical significance species of Nocardia have been reported. The use of molecular approaches, including 16S rRNA gene sequencing, restriction fragment length polymorphism (RFLP or PCR restriction endonuclease analysis has been the focus of recent investigations to distinguish the isolates of Nocardia from other actinomycetes genera. The methods have revolutionized the characterization of the Nocardiae by providing rapid, sensitive, and accurate identification procedures. The present review describes the currently known medically important pathogenic species of Nocardia.

  5. Species-area relationships are controlled by species traits.

    Science.gov (United States)

    Franzén, Markus; Schweiger, Oliver; Betzholtz, Per-Eric

    2012-01-01

    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope = 0.82), narrow dietary niche (slope= 0.59), low abundance (slope= 0.52), and low reproductive potential (slope = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions.

  6. Evolution of mutualism between species

    Energy Technology Data Exchange (ETDEWEB)

    Post, W.M.; Travis, C.C.; DeAngelis, D.L.

    1980-01-01

    Recent theoretical work on mutualism, the interaction between species populations that is mutually beneficial, is reviewed. Several ecological facts that should be addressed in the construction of dynamic models for mutualism are examined. Basic terminology is clarified. (PSB)

  7. The Candida Pathogenic Species Complex

    Science.gov (United States)

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  8. Achromobacter species in cystic fibrosis

    DEFF Research Database (Denmark)

    Hansen, C R; Pressler, T; Ridderberg, W

    2013-01-01

    Achromobacter species leads to chronic infection in an increasing number of CF patients. We report 2 cases of Achromobacter ruhlandii cross-infection between patients after well-described indirect contact....

  9. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  10. Earth Day: All Species Projects.

    Science.gov (United States)

    Kraft, Marty

    1994-01-01

    Describes the All Species Project, an interdisciplinary program that attempts to build a sense of community and understanding of the natural world by integrating ideas from art, science, anthropology, counseling, theater, and any other area deemed applicable. (MDH)

  11. EAMJ Species April 10.indd

    African Journals Online (AJOL)

    2010-04-04

    albicans Candida species. (17). In the setting of candidemia and deep infections susceptibility testing may be of benefit especially in cases where initial therapy has failed, the results may guide on suitable adjustment of therapy.

  12. Theoretical microbial ecology without species

    Science.gov (United States)

    Tikhonov, Mikhail

    2017-09-01

    Ecosystems are commonly conceptualized as networks of interacting species. However, partitioning natural diversity of organisms into discrete units is notoriously problematic and mounting experimental evidence raises the intriguing question whether this perspective is appropriate for the microbial world. Here an alternative formalism is proposed that does not require postulating the existence of species as fundamental ecological variables and provides a naturally hierarchical description of community dynamics. This formalism allows approaching the species problem from the opposite direction. While the classical models treat a world of imperfectly clustered organism types as a perturbation around well-clustered species, the presented approach allows gradually adding structure to a fully disordered background. The relevance of this theoretical construct for describing highly diverse natural ecosystems is discussed.

  13. Phenotypic Plasticity and Species Coexistence.

    Science.gov (United States)

    Turcotte, Martin M; Levine, Jonathan M

    2016-10-01

    Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Species delimitation in the Stenocereus griseus (Cactaceae species complex reveals a new species, S. huastecorum.

    Directory of Open Access Journals (Sweden)

    Hernán Alvarado-Sizzo

    Full Text Available The Stenocereus griseus species complex (SGSC has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  15. Chapter 07: Species description pages

    Science.gov (United States)

    Alex C. Wiedenhoeft

    2011-01-01

    These pages are written to be the final step in the identification process; you will be directed to them by the key in Chapter 6. Each species or group of similar species in the same genus has its own set of pages. The information in the first page describes the characteristics of the wood covered in the manual. The page shows images of similar or confusable woods,...

  16. Species Egalitarianism and the Environment

    Directory of Open Access Journals (Sweden)

    Kristin Tiili

    2014-06-01

    Full Text Available A general anthropocentric view of the human species affects the environment and is a major contributing factor in the environmental crisis we are currently facing. A species egalitarian society would have positive effects on the crisis, and particularly in regards to short term goals of decreasing greenhouse gases in the atmosphere. Additionally it would increase the quality of life and alleviate the suffering of countless beings, nonhuman animals and humans alike.

  17. Seed dormancy in alpine species

    OpenAIRE

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after c...

  18. Endangered Lilium Species of Turkey

    Directory of Open Access Journals (Sweden)

    Sevim Demir

    2018-01-01

    Full Text Available Turkey, which is among the major gene centers of the world and has a special place in plant genetic diversity. However, many plant genetic resources, including geophytes, are under genetic erosion because of the environmental and other problems and therefore face with the danger of extinction. Lilium ciliatum is endemic to North East Anatolia. IUCN (International Union for the Conservation of Natural Resources Red List Category of this species is Endangered (EN. Lilium ciliatum naturally grown in Zigana pass, Bayburt, Trabzon, Bulancak, Giresun and Gümüşhane is endangered and major threats of L. ciliatum are road construction and human disturbance related to ecotourism and recreation. It was reported that Lilium carniolicum naturally grown in Turkey is endangered although it isn’t in the IUCN Red List. Distribution areas of L. carniolicum are Trabzon, Rize, Artvin and it is also endemic to North East Anatolia. These species have high potential for use as ornamental plants with their colorful big flowers. In addition, the bulbs of these species are also used in the cosmetic industry and medicine. These are the main properties that increase the importance of L. ciliatum and L. carniolicum species. Therefore it is very important to protect the habitats of these species, ensure the continuity of their generations. The disappearance of these endemic species from our country means to disappear from the world. This review has been given in order to give some information about the endangered Lilium species of Turkey and conservation actions on these species in Turkey flora and take attention to the issue.

  19. Collective behaviour across animal species.

    Science.gov (United States)

    DeLellis, Pietro; Polverino, Giovanni; Ustuner, Gozde; Abaid, Nicole; Macrì, Simone; Bollt, Erik M; Porfiri, Maurizio

    2014-01-16

    We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment.

  20. Echinacea species of medicinal use

    OpenAIRE

    Leon Sorin MUNTEAN; Dan VARBAN; Sorin MUNTEAN; Mircea TAMAS; Rodica VARBAN

    1998-01-01

    Echinacea species come from North America. Preparations of Echinacea pallida Nutt. and Echinacea purpurea (L.) Moench are used in healing many diseases owing to their immunostimulative, antivirus and bacteria, scarifying and anti-inflammatory properties. Echinacea pallida Nutt. displays tap root, linear spear-shaped leaves. Seedling plantation with both species is performed in May and spacing of 50 cm between rows and 30 cm between plants per row. Harvest takes place in the 2-nd year of flowe...

  1. Keystone species and food webs.

    Science.gov (United States)

    Jordán, Ferenc

    2009-06-27

    Different species are of different importance in maintaining ecosystem functions in natural communities. Quantitative approaches are needed to identify unusually important or influential, 'keystone' species particularly for conservation purposes. Since the importance of some species may largely be the consequence of their rich interaction structure, one possible quantitative approach to identify the most influential species is to study their position in the network of interspecific interactions. In this paper, I discuss the role of network analysis (and centrality indices in particular) in this process and present a new and simple approach to characterizing the interaction structures of each species in a complex network. Understanding the linkage between structure and dynamics is a condition to test the results of topological studies, I briefly overview our current knowledge on this issue. The study of key nodes in networks has become an increasingly general interest in several disciplines: I will discuss some parallels. Finally, I will argue that conservation biology needs to devote more attention to identify and conserve keystone species and relatively less attention to rarity.

  2. The Colletotrichum gloeosporioides species complex.

    Science.gov (United States)

    Weir, B S; Johnston, P R; Damm, U

    2012-09-15

    The limit of the Colletotrichum gloeosporioides species complex is defined genetically, based on a strongly supported clade within the Colletotrichum ITS gene tree. All taxa accepted within this clade are morphologically more or less typical of the broadly defined C. gloeosporioides, as it has been applied in the literature for the past 50 years. We accept 22 species plus one subspecies within the C. gloeosporioides complex. These include C. asianum, C. cordylinicola, C. fructicola, C. gloeosporioides, C. horii, C. kahawae subsp. kahawae, C. musae, C. nupharicola, C. psidii, C. siamense, C. theobromicola, C. tropicale, and C. xanthorrhoeae, along with the taxa described here as new, C. aenigma, C. aeschynomenes, C. alatae, C. alienum, C. aotearoa, C. clidemiae, C. kahawae subsp. ciggaro, C. salsolae, and C. ti, plus the nom. nov. C. queenslandicum (for C. gloeosporioides var. minus). All of the taxa are defined genetically on the basis of multi-gene phylogenies. Brief morphological descriptions are provided for species where no modern description is available. Many of the species are unable to be reliably distinguished using ITS, the official barcoding gene for fungi. Particularly problematic are a set of species genetically close to C. musae and another set of species genetically close to C. kahawae, referred to here as the Musae clade and the Kahawae clade, respectively. Each clade contains several species that are phylogenetically well supported in multi-gene analyses, but within the clades branch lengths are short because of the small number of phylogenetically informative characters, and in a few cases individual gene trees are incongruent. Some single genes or combinations of genes, such as glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase, can be used to reliably distinguish most taxa and will need to be developed as secondary barcodes for species level identification, which is important because many of these fungi are of biosecurity

  3. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?

    NARCIS (Netherlands)

    Donovan, L.A.; Rosenthal, D.R.; Sanchez-Velenosi, M.; Rieseberg, L.H.; Ludwig, F.

    2010-01-01

    Hybrid speciation is thought to be facilitated by escape of early generation hybrids into new habitats, subsequent environmental selection and adaptation. Here, we ask whether two homoploid hybrid plant species (Helianthus anomalus, H. deserticola) diverged sufficiently from their ancestral parent

  4. Terrestrial animals as invasive species and as species at risk from invasions

    Science.gov (United States)

    Deborah M. Finch; Dean Pearson; Joseph Wunderle; Wayne Arendt

    2010-01-01

    Including terrestrial animal species in the invasive species strategy plan is an important step in invasive species management. Invasions by nonindigenous species threaten nearly 50 percent of imperiled native species in the United States and are the Nation's second leading cause of species endangerment. Invasion and conversion of native habitats by exotic species...

  5. Malassezia Species and Pityriasis Versicolor

    Directory of Open Access Journals (Sweden)

    Gulin Rodoplu

    2016-01-01

    Full Text Available Malassezia species are found in part of the normal human cutaneous commensal flora, however it has been known for many years that the Malassezia yeasts are associated with a number of different human diseases ranging from pityriasis versicolor to seborrhoeic dermatitis. In addition, since the 1980s, they have been reported as causing opportunistic systemic infections. The taxonomy of Malassezia spp. has recently been modified to include 13 obligatorily lipophilic species, plus one non-obligatorily lipophilic species, which only rarely colonizes human hosts and currently the genus consist 14 species as M. furfur, M. pachydermatis, M. sympodialis, M. globosa, M. obtusa, M. slooffiae, M. restricta, M. dermatis, M. japonica, M. nana, M. yamatoensis, M. caprae, M. equina, M. cuniculi. Fastidious growth requirements of Malassezia yeasts defied the initial attempts to culture these organisms and their true identification and the relationship between different species only became apparent with the application of modern molecular techniques. The causative fungus is seen especially in such seborrheic areas as the scalp, face, trunk and upper back. Under the influence of various exogenous or endogenous predisposing factors, these yeasts change from the blastospore form to the mycelial form and become pathogenic. Diagnosis of pityriasis versicolor which is caused by Malassezia species is generally easy and lies on the basis of its clinical appearance and can be confirmed by mycological examination. The diagnosisis is mainly based on direct examination with potassium hydroxide (KOH and demonstration that represents pseudohyphae and blastoconidia as the typical %u201Cspaghetti and meatballs%u201D pattern. Characteristic features of the genus Malassezia include a distinctive morphology and an affinity for lipids in culture. Culture is necessary to recover the infecting strain, especially for epidemiologic purposes and also to test its antifungal susceptibility

  6. Turbulent dispersal promotes species coexistence

    Science.gov (United States)

    Berkley, Heather A; Kendall, Bruce E; Mitarai, Satoshi; Siegel, David A

    2010-01-01

    Several recent advances in coexistence theory emphasize the importance of space and dispersal, but focus on average dispersal rates and require spatial heterogeneity, spatio-temporal variability or dispersal-competition tradeoffs to allow coexistence. We analyse a model with stochastic juvenile dispersal (driven by turbulent flow in the coastal ocean) and show that a low-productivity species can coexist with a high-productivity species by having dispersal patterns sufficiently uncorrelated from those of its competitor, even though, on average, dispersal statistics are identical and subsequent demography and competition is spatially homogeneous. This produces a spatial storage effect, with an ephemeral partitioning of a ‘spatial niche’, and is the first demonstration of a physical mechanism for a pure spatiotemporal environmental response. ‘Turbulent coexistence’ is widely applicable to marine species with pelagic larval dispersal and relatively sessile adult life stages (and perhaps some wind-dispersed species) and complements other spatial and temporal storage effects previously documented for such species. PMID:20455921

  7. Tiarosporella species: Distribution and significance

    Directory of Open Access Journals (Sweden)

    Karadžić Dragan

    2003-01-01

    Full Text Available The genus Tiarosporella consists of eight species of which four occur on conifers. These fungi differ in conidial size and in the form of appendages that occur on the distal end of the conidia (pycnospore. In Europe only the two species have been recorded. T. parca occurs on the species of the genus Picea (P. abies and P. omorika, while T. durmitorensis infests fir (Abies alba. T. parca can be considered, as an endophyte, and it sporulates only when the needles die due to a stress or old age. T. durmitorensis is a very aggressive pathogen colonizing fir needles of all ages. Together with other fungi, it leads to tree death. So far, T. durmitotensis has been found only in European silver fir stands in the National Park "Durmitor" and in the National Park "Biogradska Gora".

  8. Scandinavian Oncophorus (Bryopsida, Oncophoraceae: species, cryptic species, and intraspecific variation

    Directory of Open Access Journals (Sweden)

    Lars Hedenäs

    2017-05-01

    Full Text Available Scandinavian members of the acrocarpous moss genus Oncophorus were revised after field observations had suggested unrecognized diversity. Based on molecular (nuclear: internal transcribed spacers 1 and 2, ITS; plastid: trnGUCC G2 intron, trnG, rps4 gene + trnS-rps4 spacer, rps4 and morphological evidence, four morphologically distinguishable species are recognized, Oncophorus elongatus (I.Hagen Hedenäs, O. integerrimus Hedenäs sp. nov. (syn. O. virens var. elongatus Limpr., O. virens (Hedw. Brid., and O. wahlenbergii Brid. (O. sardous Herzog, syn. nov.. Oncophorus elongatus was earlier recognized, but much of its variation was hidden within O. wahlenbergii. Its circumscription is here expanded to include plants with long leaves having mostly denticulate or sharply denticulate upper margins and with long and narrow marginal cells in the basal portion of the sheathing leaf lamina. The new species O. integerrimus sp. nov. differs from O. virens in having more loosely incurved leaves and entire or almost entire upper leaf margins. Besides these characters, the species in the respective pairs differ in quantitative features of the leaf lamina cells. Several cryptic entities were found, in several cases as molecularly distinct as some of the morphologically recognizable species, and phylogeographic structure is present within O. elongatus and O. virens.

  9. New species of Elattostachys (Blume) Radlk. (Sapindaceae)

    NARCIS (Netherlands)

    Adema, Frits

    1992-01-01

    Seven new species of Elattostachys (Blume) Radlk. are described, five from New Guinea and one each from Celebes and the Solomon Islands. A key to the species of Celebes and one to the species of New Guinea is given.

  10. Enolonium Species-Umpoled Enolates

    DEFF Research Database (Denmark)

    Arava, Shlomy; Kumar, Jayprakash N.; Maksymenko, Shimon

    2017-01-01

    Enolonium species/iodo(III) enolates of carbonyl compounds have been suggested to be intermediates in a wide variety of hypervalent iodine induced chemical transformations of ketones, including α-C-O, α-C-N, α-C-C, and alpha-carbon- halide bond formation, but they have never been characterized. W....... Our results open up chemical space for designing a variety of new transformations. We showcase the ability of enolonium species to react with prenyl, crotyl, cinnamyl, and allyl silanes with absolute regioselectivity in up to 92% yield....

  11. Seven new Malesian species of Ficus (Moraceae)

    NARCIS (Netherlands)

    Berg, C.C.

    2012-01-01

    Descriptions of seven new species, Ficus buntaensis, F. flavistipulata, F. jambiensis, F. porata, F. samarana, F. sorongensis and F. temburongensis are presented and the related species briefly discussed.

  12. Alien species recorded in the United Arab Emirates: an initial list of terrestrial and freshwater species

    Directory of Open Access Journals (Sweden)

    Pritpal Soorae

    2015-10-01

    Full Text Available Little is documented on the alien terrestrial and freshwater species in the United Arab Emirates. To address this, an assessment of terrestrial and freshwater alien species was conducted using various techniques such as a questionnaire, fieldwork data, networking with relevant people, and a detailed literature review. The results of the initial assessment show that there are 146 alien species recorded in the following seven major taxonomic groups: invertebrates 49 species, freshwater fish five species, amphibian one species, reptiles six species, birds 71 species, mammals six species and plants eight species. To inform decision makers a full list of the 146 species identified in this assessment is presented. 

  13. and tulbaghia species (wild garlic)

    African Journals Online (AJOL)

    Mgina

    Tulbaghia (wild Garlic) is a plant genus most closely related to the genus Allium both in the family Alliaceae and is ... that have been identified in the Alliaceae family. ... characteristic odours and the medicinal properties of both the Tulbaghia and Allium species. This review will focus mainly on the genus Tulbaghia and its.

  14. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  15. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Andersen, Sophie Susanna Strindberg; Nielsen, Tenna W; Ribeiro, Ângela M

    2015-01-01

    ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison...

  16. Molecular Epidemiology of Fonsecaea Species

    NARCIS (Netherlands)

    Najafzadeh, M.J.; Sun, J.; Vicente, V.A.; Klaassen, C.H.W.; Bonifaz, A.; Gerrits van den Ende, A.H.G.; Menken, S.B.J.; de Hoog, G.S.

    2011-01-01

    To assess population diversities among 81 strains of fungi in the genus Fonsecaea that had been identified down to species level, we applied amplified fragment-length polymorphism (AFLP) technology and sequenced the internal transcribed spacer regions and the partial cell division cycle, β-tubulin,

  17. Man...An Endangered Species?

    Science.gov (United States)

    Department of the Interior, Washington, DC.

    The general theme of this 1968 yearbook is that man is a threatened species, facing overpopulation and unbridled technology - both self induced. The presentation is broad, relating to many aspects of conservation and natural resources in the United States in a descriptive, non-technical style. The yearbook is divided into major topics: Land…

  18. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  19. storey and canopy tree species

    African Journals Online (AJOL)

    different tree species. The data presented here would therefore help in the planning and management of tropical forest reserves and development of management inteiventions to enhance forest productivity and ecological balance. Materials and methods. Study site. Kalinzu Forest Reserve is a tropical rain forest locate<.! in.

  20. The Netherlands’ marine Cladophora species

    NARCIS (Netherlands)

    Slootweg, A.F.G.

    1947-01-01

    When studying the marine species of the genus Cladophora in the Netherlands, I had the disposal of the material of the National Herbarium at Leiden, the herbaria of the Universities of Amsterdam, Groningen and Utrecht and those of the “Zoölogisch Station” at Den Helder and the “Koninklijke

  1. Perpetual flowering in strawberry species

    Science.gov (United States)

    Studies have revealed genetic control of flowering patterns for seasonal flowering (SF) and perpetual flowering (PF) genotypes in the common garden strawberry, with associated links to gene homeologs in diploid alpine strawberry, F. vesca L. Within the genus Fragaria, 22 species and multiple subspec...

  2. Georgia Species at Risk Project

    Science.gov (United States)

    2009-06-01

    well-developed. Shrub and herb layers may be sparse or moderately dense. Within its range, Sabal minor may be a prominent shrub. Species richness...lanuginosa), Ulmus alata and Viburnum rufidulum. Common vines include Berchemia scandens and Cocculus carolinus. This community occurs on

  3. Endangered Species: An Educator's Handbook.

    Science.gov (United States)

    Smith, Jean, M., Comp.

    Presented are two articles, an annotated bibliography, and other information useful in teaching about endangered species, especially those found in Florida. The articles provide an ethical rationale, teaching suggestions, and a discussion of the value of wildlife. Descriptions of over 100 pertinent books, periodicals, movies, and filmstrips are in…

  4. Methylated DNA in Borrelia species.

    OpenAIRE

    Hughes, C A; Johnson, R C

    1990-01-01

    The DNA of Borrelia species was examined for the presence of methylated GATC sequences. The relapsing-fever Borrelia sp., B. coriaceae, and only 3 of 22 strains of B. burgdorferi contained adenine methylation systems. B. anserina lacked an adenine methylation system. Fundamental differences in DNA methylation exist among members of the genus Borrelia.

  5. Species recovery in the united states: Increasing the effectiveness of the endangered species act

    OpenAIRE

    Evans, DM; Che-Castaldo, JP; Crouse, D; Davis, FW; Epanchin-Niell, R; Flather, CH; Frohlich, RK; Goble, DD; Li, YW; Male, TD; Master, LL; Moskwik, MP; Neel, MC; Noon, BR; Parmesan, C

    2016-01-01

    © The Ecological Society of America. The Endangered Species Act (ESA) has succeeded in shielding hundreds of species from extinction and improving species recovery over time. However, recovery for most species officially protected by the ESA - i.e., listed species-has been harder to achieve than initially envisioned. Threats to species are persistent and pervasive, funding has been insufficient, the distribution of money among listed species is highly uneven, and at least 10 times more specie...

  6. Optimal conservation of migratory species.

    Directory of Open Access Journals (Sweden)

    Tara G Martin

    Full Text Available BACKGROUND: Migratory animals comprise a significant portion of biodiversity worldwide with annual investment for their conservation exceeding several billion dollars. Designing effective conservation plans presents enormous challenges. Migratory species are influenced by multiple events across land and sea-regions that are often separated by thousands of kilometres and span international borders. To date, conservation strategies for migratory species fail to take into account how migratory animals are spatially connected between different periods of the annual cycle (i.e. migratory connectivity bringing into question the utility and efficiency of current conservation efforts. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first framework for determining an optimal conservation strategy for a migratory species. Employing a decision theoretic approach using dynamic optimization, we address the problem of how to allocate resources for habitat conservation for a Neotropical-Nearctic migratory bird, the American redstart Setophaga ruticilla, whose winter habitat is under threat. Our first conservation strategy used the acquisition of winter habitat based on land cost, relative bird density, and the rate of habitat loss to maximize the abundance of birds on the wintering grounds. Our second strategy maximized bird abundance across the entire range of the species by adding the constraint of maintaining a minimum percentage of birds within each breeding region in North America using information on migratory connectivity as estimated from stable-hydrogen isotopes in feathers. We show that failure to take into account migratory connectivity may doom some regional populations to extinction, whereas including information on migratory connectivity results in the protection of the species across its entire range. CONCLUSIONS/SIGNIFICANCE: We demonstrate that conservation strategies for migratory animals depend critically upon two factors: knowledge of

  7. Species recovery in the United States: Increasing the effectiveness of the Endangered Species Act

    Science.gov (United States)

    Daniel M. Evans; Judy P. Che-Castaldo; Deborah Crouse; Frank W. Davis; Rebecca Epanchin-Niell; Curtis H. Flather; R. Kipp Frohlich; Dale D. Goble; Ya-Wei Li; Timothy D. Male; Lawrence L. Master; Matthew P. Moskwik; Maile C. Neel; Barry R. Noon; Camille Parmesan; Mark W. Schwartz; J. Michael Scott; Byron K. Williams

    2016-01-01

    The Endangered Species Act (ESA) has succeeded in shielding hundreds of species from extinction and improving species recovery over time. However, recovery for most species officially protected by the ESA - i.e., listed species - has been harder to achieve than initially envisioned. Threats to species are persistent and pervasive, funding has been insufficient...

  8. Synopsis of the Oxyethira flavicornis species group with new Japanese Oxyethira species (Trichoptera, Hydroptilidae

    Directory of Open Access Journals (Sweden)

    Oláh, J.

    2013-06-01

    Full Text Available A brief synopsis of the Oxyethira flavicornis species group is produced by the examination of type materials. Diagrammatic drawings with similar style were prepared for all the known and for the new species. Short description of genus Oxyethira, subgenus Oxyethira, species group of Oxyethira flavicornis are presented together with the description of five species clusters: O. datra new species cluster, O. ecornuta new species cluster, O. flavicornis new species cluster, O. hiroshima new species cluster, O. tiunovae new species cluster. Five new species are described from the O. flavicornis species group: O chitosea sp. n., O. hena sp. n., O. hiroshima sp. n., O. kakida sp. n., O. mekunna sp. n. One new species is described from the Oxyethira grisea species group: Oxyethira ozea sp. n. and two new species from the Oxyethira ramosa species group: Oxyethira miea sp. n., Oxyethira okinawa sp. n.

  9. Allelopathy of plant species of pharmaceutical importance to cultivated species

    Directory of Open Access Journals (Sweden)

    Álisson Sobrinho Maranho

    2012-11-01

    Full Text Available This study aimed to identify possible allelopathic effects of leaf aqueous extracts of Baccharis dracunculifolia DC., Pilocarpus pennatifolius Lem., Cyperus rotundus L., Morus rubra L., Casearia sylvestris Sw., and Plectranthus barbatus Andr. on the germination and initial growth of Lactuca sativa L., Brassica oleracea L. cv. capitata, B. oleracea L. cv. italica, B. pekinenses L., B. campestris L., Lycopersicum esculentum Miller, and Eruca sativa L. To obtain the aqueous extracts, leaves previously dried at a 1g.10mL-1 concentration were used, diluted in six solutions (10, 30, 50, 70, 90, and 100% and compared to control, distilled water, with five replications of 10 seeds for all vegetable species. The aqueous extracts of all species showed allelopathic potential for germination of seeds, the germination speed index, and the initial growth of shoots and roots of vegetable crops. The aqueous extracts of C. rotundus and P. barbatus promoted lower and higher allelopathic effects, respectively, and the vegetal structure mostly affected by the extracts was the primary root. The results indicate the existence of allelopathic potential in the species tested, so there’s a need for adopting care procedures when cultivating vegetables with them.

  10. Floral reward in Ranunculaceae species

    Directory of Open Access Journals (Sweden)

    Bożena Denisow

    2016-04-01

    Full Text Available Floral reward is important in ecological and evolutionary perspectives and essential in pollination biology. For example, floral traits, nectar and pollen features are essential for understanding the functional ecology, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. We believe to present a synthetic description in the field of floral reward in Ranunculaceae family important in pollination biology and indicating connections between ecological and evolutionary approaches. The links between insect visitors’ behaviour and floral reward type and characteristics exist. Ranunculaceae is a family of aboot 1700 species (aboot 60 genera, distributed worldwide, however the most abundant representatives are in temperate and cool regions of the northern and southern hemispheres. The flowers are usually radially symmetric (zygomorphic and bisexual, but in Aconitum, Aquilegia are bilaterally symmetric (zygomorphic. Most Ranunculaceae flowers offer no nectar, only pollen (e.g., Ranunculus, Adonis vernalis, Thalictrum, but numerous species create trophic niches for different wild pollinators (e.g. Osmia, Megachile, Bombus, Andrena (Denisow et al. 2008. Pollen is a source of protein, vitamins, mineral salts, organic acids and hormones, but the nutritional value varies greatly between different plant species. The pollen production can differ significantly between Ranunculacea species. The mass of pollen produced in anthers differ due to variations in the number of developed anthers. For example, interspecies differences are considerable, 49 anthers are noted in Aquilegia vulgaris, 70 anthers in Ranunculus lanuginosus, 120 in Adonis vernalis. A significant intra-species differences’ in the number of anthers are also noted (e.g. 41 to 61 in Aquilegia vulgaris, 23-45 in Ranunculus cassubicus. Pollen production can be up to 62 kg per ha for Ranunculus acer

  11. The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...

  12. What is a Species? An Endless Debate

    Indian Academy of Sciences (India)

    Srimath

    compatibility. Hennigian species. Hennig, 1950. Species are reproductively isolated natural concept. Willmann, 1985 populations or group of populations. They originate via the dissolution of the stem species in speciation event and cease to exist either through extinction or speciation. Ecological species. Van Valen, 1976.

  13. Charcoal anatomy of forest species

    Directory of Open Access Journals (Sweden)

    Graciela Inés Bolzon de Muñiz1

    2012-09-01

    Full Text Available Vegetal charcoal retains the anatomical structure of the wood and may permit its botanical identification, which depends on species characteristics, the charcoal fragments size and preservation state. Anatomical characterization of ten forest species charcoal was done envisaging the identification and control of illegal charcoal. Differences between gymnosperms and angiosperms are evident in carbonized wood. Vessel diameter was statistically different between wood and charcoal in Vatairea guianensis, Mezilaurus itauba, Calophyllum brasiliense e Qualea cf. acuminata, and vessel frequency in Vatairea guianensis, Manilkara huberi, Qualea cf. acuminata e Simarouba amara. The anatomical structure from wood, in general aspects, is constant during carbonization process using temperature of 450°C, being possible to identify the material by using its cellular components.

  14. Dynamic conservation for migratory species.

    Science.gov (United States)

    Reynolds, Mark D; Sullivan, Brian L; Hallstein, Eric; Matsumoto, Sandra; Kelling, Steve; Merrifield, Matthew; Fink, Daniel; Johnston, Alison; Hochachka, Wesley M; Bruns, Nicholas E; Reiter, Matthew E; Veloz, Sam; Hickey, Catherine; Elliott, Nathan; Martin, Leslie; Fitzpatrick, John W; Spraycar, Paul; Golet, Gregory H; McColl, Christopher; Morrison, Scott A

    2017-08-01

    In an era of unprecedented and rapid global change, dynamic conservation strategies that tailor the delivery of habitat to when and where it is most needed can be critical for the persistence of species, especially those with diverse and dispersed habitat requirements. We demonstrate the effectiveness of such a strategy for migratory waterbirds. We analyzed citizen science and satellite data to develop predictive models of bird populations and the availability of wetlands, which we used to determine temporal and spatial gaps in habitat during a vital stage of the annual migration. We then filled those gaps using a reverse auction marketplace to incent qualifying landowners to create temporary wetlands on their properties. This approach is a cost-effective way of adaptively meeting habitat needs for migratory species, optimizes conservation outcomes relative to investment, and can be applied broadly to other conservation challenges.

  15. Echinococcus species in African wildlife.

    Science.gov (United States)

    Hüttner, M; Romig, T

    2009-09-01

    Cystic echinococcosis, caused by different species of the Echinococcus granulosus complex, is an important zoonotic disease with a particular impact on pastoralist societies. In addition to the widespread taxa with synanthropic transmission, a number of Echinococcus species were described from African wild carnivores early in the 20th century. For lack of study material, most of these were later tentatively synonymized with E. granulosus. Early infection experiments with wildlife isolates gave ambiguous results due to the use of unspecified parasite material, and only recently molecular methods provided the opportunity to shed light on the confusing scenery e.g. by characterizing E. felidis from the African lion. Here we will summarize the convoluted history of Echinococcus research in sub-Saharan Africa and highlight the necessity of molecular surveys to establish the life cycles and estimate the zoonotic potential of these parasites.

  16. Ranking species in mutualistic networks

    Science.gov (United States)

    Domínguez-García, Virginia; Muñoz, Miguel A.

    2015-02-01

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic ``nested'' structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm -similar in spirit to Google's PageRank but with a built-in non-linearity- here we propose a method which -by exploiting their nested architecture- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.

  17. Haemolytic glycoglycerolipids from Gymnodinium species.

    Science.gov (United States)

    Parrish, C C; Bodennec, G; Gentien, P

    1998-03-01

    Glycoglycerolipids derived from microalgae can be a source of biologically active substances including toxins. Such glycolipids were analysed in two isolates of toxic marine dinoflagellates from European waters. The lipids of Gymnodinium mikimotoi contained 17% of monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), while in Gymnodinium sp. the proportion was 35%. MGDG and DGDG from both species were haemolytic. The major unsaturated fatty acid in both algal glycolipids was 18:5 omega 3.

  18. Population Genomics of Paramecium Species.

    Science.gov (United States)

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Candida Species Biofilms’ Antifungal Resistance

    Science.gov (United States)

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  20. Endophthalmitis caused by Klebsiella species.

    Science.gov (United States)

    Sridhar, Jayanth; Flynn, Harry W; Kuriyan, Ajay E; Dubovy, Sander; Miller, Darlene

    2014-09-01

    To report the clinical presentation, antibiotic sensitivities, treatment strategies, and visual outcomes associated with endophthalmitis caused by Klebsiella species. A noncomparative consecutive case series. Microbiology database records were retrospectively reviewed for all patients with endophthalmitis caused by Klebsiella species from 1990 to 2012 at a large university referral center. The corresponding clinical records were then reviewed to evaluate the endophthalmitis clinical features and treatment outcomes. Seven patients were identified. Clinical settings included endogenous (n = 3), posttraumatic (n = 2), trabeculectomy bleb-associated (n = 1), and postpenetrating keratoplasty (n = 1). Five patients presented with hypopyon. Presenting visual acuity ranged from 20/60 to light perception in nonendogenous cases and 1/200 to light perception in endogenous cases. Klebsiella was sensitive to aminoglycosides, third-generation cephalosporins, and second- and third-generation fluoroquinolones in all cases. Initial treatment strategies were vitreous tap and injection (n = 4), pars plana vitrectomy with intravitreal antibiotics (n = 2), and anterior chamber tap and injection (n = 1). All three endogenous cases later underwent enucleation or evisceration. In nonendogenous cases, the final visual acuity was 20/70 or better in all 4 patients. Endophthalmitis caused by Klebsiella species is associated with poor visual outcomes. Endogenous cases had high rates of enucleation or evisceration.