WorldWideScience

Sample records for echo t2-weighted mri

  1. Clinical characteristics in normal healthy adults with microbleeds on echo-planar gradient-echo T2*-weighted MRI

    International Nuclear Information System (INIS)

    Takahashi, Wakoh; Ide, Michiru; Ohnuki, Tomohide; Takagi, Shigeharu; Shinohara, Yukito

    2004-01-01

    The gradient-echo T 2 * -weighted sequence in magnetic resonance imaging is known to be useful for detecting microbleeds (MBs) in patients with intracranial hemorrhage or lacunar stroke. We investigated the characteristics of apparently healthy adults with MBs but without stroke, employing echo-planar gradient-echo T 2 * -weighted MRI. The subjects were recruited from among 3,537 participants who underwent brain check-ups at the HIMEDIC Imaging Center. Of the 3,537 participants, 3,296 (mean age, 55±11 years) without any history of cerebrovascular disease or apparent focal neurological manifestations were selected for the present study. MBs on echo-planar gradient-echo T 2 * -weighted MRI were observed in 74 (2.2%) of the 3,296 subjects. Of a total of 133 lesions found in these 74 persons, 31 were located in the basal ganglia or cortico-subcortical regions. Thirty were in the deep white matter, 19 in the thalamus, 16 in the cerebellum, and 6 in the brain stem. The subjects with MBs were significantly older than the subjects without MBs, and the mean values for their systolic and diastolic blood pressures were higher than those in the subjects without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs, as compared with those without MBs. Asymptomatic cerebral infarction, periventricular hyperintensity, and deep and subcortical white matter hyperintensity on T 1 - and T 2 -weighted MRI were more frequent in the subjects with MBs of the basal ganglia or thalamus than in those with MBs in other regions. MBs on echo-planar gradient-echo T 2 * -weighted MRI were thus relatively rare in apparently healthy adults. However, MBs in the basal ganglia or thalamus are suggested to be closely related to intracerebral microangiopathy. Persons with MBs in such regions should therefore be carefully checked for cerebrovascular risk

  2. Evaluation of renal function with dynamic MRI-T2-weighted gradient echo technique

    International Nuclear Information System (INIS)

    Kato, Katsuya

    1995-01-01

    To evaluate the usefulness of dynamic MRI of kidneys in healthy volunteers and patients with different 24-hour creatinine clearance (Ccr) levels, a dynamic study that employed the T2 weighted gradient echo technique (FLASH: TR/TE=34/25 msec, flip angle= 20 degrees) with single images during breathhold was performed on 10 healthy volunteers and 35 patients, all examined for the Ccr and suspected of having renal parenchymal disease after a phantom study. T1-weighted and dynamic MR imagings were obtained with a 1.5T imager. I analyzed the time-intensity curve of renal cortex and medulla, and defined a cortex decreased ratio (CDR) and medulla decreased ratio (MDR) in comparison with the Ccr. The cortico-medullary difference ratio (CMDR) of T1WI was also compared with the Ccr. The parameters of the T2 dynamic MRI study (CDR, MDR) better correlated with the Ccr than CMDR. Renal function can be quantitatively evaluated with the T2 dynamic MRI and there is a possibility that we can qualitatively evaluate the renal dysfunction and estimate its cause. (author)

  3. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Fellner, Franz A. [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria) and Zentrales Radiologie Institut, Allgemeines Krankenhaus der Stadt Linz, Krankenhausstr. 9, 4020 Linz (Austria)]. E-mail: franz.fellner@akh.linz.at; Fellner, Claudia [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria); Aichner, Franz T. [Abteilung fuer Neurologie, Landes-Nervenklinik Wagner-Jauregg, Linz (Austria); Moelzer, Guenther [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria)

    2005-11-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 {mu}s, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis.

  4. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    International Nuclear Information System (INIS)

    Fellner, Franz A.; Fellner, Claudia; Aichner, Franz T.; Moelzer, Guenther

    2005-01-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 μs, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis

  5. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    International Nuclear Information System (INIS)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B; Wang, K; Bayram, E

    2016-01-01

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  6. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B [UT MD Anderson Cancer Center, Houston, TX (United States); Wang, K; Bayram, E [GE Healthcare Technologies, Waukesha, Wisconsin (United States)

    2016-06-15

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  7. Volumetric fat-water separated T2-weighted MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Sonik, Arvind; Madhuranthakam, Ananth J.; Venkatesan, Ramesh; Lai, Peng; Brau, Anja C.S.

    2011-01-01

    Pediatric body MRI exams often cover multiple body parts, making the development of broadly applicable protocols and obtaining uniform fat suppression a challenge. Volumetric T2 imaging with Dixon-type fat-water separation might address this challenge, but it is a lengthy process. We develop and evaluate a faster two-echo approach to volumetric T2 imaging with fat-water separation. A volumetric spin-echo sequence was modified to include a second shifted echo so two image sets are acquired. A region-growing reconstruction approach was developed to decompose separate water and fat images. Twenty-six children were recruited with IRB approval and informed consent. Fat-suppression quality was graded by two pediatric radiologists and compared against conventional fat-suppressed fast spin-echo T2-W images. Additionally, the value of in- and opposed-phase images was evaluated. Fat suppression on volumetric images had high quality in 96% of cases (95% confidence interval of 80-100%) and were preferred over or considered equivalent to conventional two-dimensional fat-suppressed FSE T2 imaging in 96% of cases (95% confidence interval of 78-100%). In- and opposed-phase images had definite value in 12% of cases. Volumetric fat-water separated T2-weighted MRI is feasible and is likely to yield improved fat suppression over conventional fat-suppressed T2-weighted imaging. (orig.)

  8. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aymerich, F.X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Universitat Politecnica de Catalunya - Barcelona Tech (UPC), Department of Automatic Control (ESAII), Barcelona (Spain); Auger, C.; Alcaide-Leon, P.; Pareto, D.; Huerga, E.; Corral, J.F.; Mitjana, R.; Rovira, A. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Sastre-Garriga, J.; Montalban, X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Centre d' Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Barcelona (Spain)

    2017-04-15

    To compare the sensitivity of enhancing multiple sclerosis (MS) lesions in gadolinium-enhanced 2D T1-weighted gradient-echo (GRE) and spin-echo (SE) sequences, and to assess the influence of visual conspicuity and laterality on detection of these lesions. One hundred MS patients underwent 3.0T brain MRI including gadolinium-enhanced 2D T1-weighted GRE and SE sequences. The two sets of contrast-enhanced scans were evaluated in random fashion by three experienced readers. Lesion conspicuity was assessed by the image contrast ratio (CR) and contrast-to-noise ratio (CNR). The intracranial region was divided into four quadrants and the impact of lesion location on detection was assessed in each slice. Six hundred and seven gadolinium-enhancing MS lesions were identified. GRE images were more sensitive for lesion detection (0.828) than SE images (0.767). Lesions showed a higher CR in SE than in GRE images, whereas the CNR was higher in GRE than SE. Most misclassifications occurred in the right posterior quadrant. The gadolinium-enhanced 2D T1-weighted GRE sequence at 3.0T MRI enables detection of enhancing MS lesions with higher sensitivity and better lesion conspicuity than 2D T1-weighted SE. Hence, we propose the use of gadolinium-enhanced GRE sequences rather than SE sequences for routine scanning of MS patients at 3.0T. (orig.)

  9. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    Energy Technology Data Exchange (ETDEWEB)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W. [Department of Diagnostic Radiology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); DiMartino, E. [Department of Otorhinolaryngology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Prescher, A. [Department of Anatomy, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Kinzel, S. [Department of Experimental Veterinary Medicine, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany)

    2004-04-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  10. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    International Nuclear Information System (INIS)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W.; DiMartino, E.; Prescher, A.; Kinzel, S.

    2004-01-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  11. Comparison of multi-echo and single-echo gradient-recalled echo sequences for SPIO-enhanced Liver MRI at 3 T

    International Nuclear Information System (INIS)

    Choi, J.S.; Kim, M.-J.; Kim, J.H.; Choi, J.-Y.; Chung, Y.E.; Park, M.-S.; Kim, K.W.

    2010-01-01

    Aim: To assess the utility of a T2*-weighted, multi-echo data imaging combination sequenced on superparamagnetic iron oxide (SPIO)-enhanced liver magnetic resonance imaging (MRI) using a 3 T system. Materials and methods: Fifty patients underwent SPIO-enhanced MRI at 3 T using T2*-weighted, single-echo, gradient-recalled echo (GRE) sequences [fast imaging with steady precession; repetition time (TR)/echo time (TE), 126 ms/9 ms; flip angle, 30 o ] and multi-echo GRE (multi-echo data image combination) sequences (TR/TE, 186 ms/9 ms; flip angle, 30 o ). Three radiologists independently reviewed the images in a random order. The sensitivity and accuracy for the detection of focal hepatic lesions (a total of 76 lesions in 33 patients; 48 solid lesions, 28 non-solid lesions) were compared by analysing the area under the receiver operating characteristic curves. Image artefacts (flow artefacts, susceptibility artefacts, dielectric artefacts, and motion artefacts), lesion conspicuity, and overall image quality were evaluated according to a four-point scale: 1, poor; 2, fair; 3, good; 4, excellent. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the lesions were compared. Results: Image artefacts were more frequent with single-echo GRE (p < 0.05). The mean scale of image quality assessment for flow, susceptibility, dielectric, and motion artefacts were 2.76, 3.13, 3.42, and 2.89 with singe-echo, respectively, compared with 3.47, 3.43, 3.47, and 3.39, respectively, with multi-echo GRE. There was no significant difference in lesion conspicuity between single-echo (3.15) and multi-echo (3.30) GRE sequences. The overall image quality was significantly (p < 0.05) better with multi-echo (3.37) than with single-echo GRE (2.89). The mean SNR and CNR of the lesions were significantly (p < 0.05) higher on multi-echo (79 ± 23 and 128 ± 59, respectively) images than on single-echo (38 ± 11 and 102 ± 44, respectively) images. Lesion detection accuracy and

  12. Detection of hyperacute parenchymal hemorrhage of the brain using echo-planar T2{sup *}-weighted and diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, M. [Dept. of Radiology, Medizinische Universitaet zu Luebeck (Germany); Mayer, T.E.; Yousry, I.; Brueckmann, H. [Dept. of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Hamann, G.F. [Dept. of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2001-05-01

    We investigated the usefulness of echo-planar imaging (EPI) as well as T2{sup *}-weighted and diffusion-weighted MRI (DWI) to identify hyperacute hemorrhage (within 24 h after ictus) in the brain. Seven patients were examined 3.5 to 24 h after onset of symptoms using a whole-body 1.5-T MR system. Two diffusion-weighted sequences were run to obtain isotropic and anisotropic diffusion images. Apparent diffusion coefficients (ADC) were calculated from the isotropic diffusion images. All DWI images as well as the T2*-weighted EPI images showed the hematomas as either discrete, deeply hypointense homogeneous lesions, or as lesions of mixed signal intensity containing hypointense areas. We conclude that even in the early phase after hemorrhage, sufficient amounts of paramagnetic deoxyhemoglobin are present in intracerebral hemorrhages to cause hypointensity on EPI T2{sup *}-weighted and DWI images; thus, use of ultrafast EPI allows identification of intracerebral hemorrhage. (orig.)

  13. Three-dimensional isotropic T2-weighted cervical MRI at 3 T: Comparison with two-dimensional T2-weighted sequences

    International Nuclear Information System (INIS)

    Kwon, J.W.; Yoon, Y.C.; Choi, S.-H.

    2012-01-01

    Aim: To compare three-dimensional (3D) isotropic T2-weighted magnetic resonance imaging (MRI) sequences and reformation with two-dimensional (2D) T2-weighted sequences regarding image quality of the cervical spine at 3 T. Materials and methods: A phantom study was performed using a water-filled cylinder. The signal-to-noise and image homogeneity were evaluated. Fourteen (n = 14) volunteers were examined at 3 T using 3D isotropic T2-weighted sagittal and conventional 2D T2-weighted sagittal, axial, and oblique sagittal MRI. Multiplanar reformation (MPR) of the 3D T2-weighted sagittal dataset was performed simultaneously with image evaluation. In addition to artefact assessment, the visibility of anatomical structures in the 3D and 2D sequences was qualitatively assessed by two radiologists independently. Cohen’s kappa and Wilcoxon signed rank test were used for the statistical analysis. Result: The 3D isotropic T2-weighted sequence resulted in the highest signal-to-noise ratio (SNR) and lowest non-uniformity (NU) among the sequences in the phantom study. Quantitative evaluation revealed lower NU values of the cerebrospinal fluid (CSF) and muscles in 2D T2-weighted sagittal sequences compared to the 3D volume isotropic turbo spin-echo acquisition (VISTA) sequence. The other NU values revealed no statistically significant difference between the 2D turbo spin-echo (TSE) and 3D VISTA sequences (0.059 < p < 0.959). 3D VISTA images showed significantly fewer CSF flow artefacts (p < 0.001) and better delineated intradural nerve rootlets (p = 0.001) and neural foramina (p = 0.016) compared to 2D sequences. Conclusion: A 3D T2 weighted sequence is superior to conventional 2D sequences for the delineation of intradural nerve rootlets and neural foramina and is less affected by CSF flow artefacts.

  14. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    Science.gov (United States)

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p T2-weighted SE MRI.

  15. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  16. Application of fast spin-echo T2-weighted imaging for examination of the neurocranium. Comparison with the conventional T2-weighted spin-echo sequence

    International Nuclear Information System (INIS)

    Siewert, C.; Hosten, N.; Felix, R.

    1994-01-01

    T 2 -weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T 2 -weighted imaging (TT 2 ) of the neurocranium in comparison to conventional spin-echo T 2 -weighted imaging (T 2 ). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT 2 than in T 2 (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT 2 , Parkinson patients have to be examined by conventional T 2 . If these limitations are taken into account, fast spin-echo T 2 -weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T 2 -weighting achieved in a short acquisition time. (orig.) [de

  17. Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index

    DEFF Research Database (Denmark)

    Sinding, Marianne Munk; Peters, David Alberg; Frøkjær, Jens Brøndum

    (MRI) variable T2* reflects the placental oxygenation and thereby placental function. Therefore, we aimed to evaluate the performance of placental T2* in the prediction of low birth weight using the uterine artery (UtA) pulsatility index (PI) as gold standard. Methods: The study population......CONTROL ID: 2516296 ABSTRACT FINAL ID: P22.05 TITLE: Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index AUTHORS (FIRST NAME, LAST NAME): Marianne Sinding1, David Peters2, Jens B. Frøkjær3, 4, Ole B. Christiansen1, 4, Astrid Petersen5...... had an EFW T2* was measured by MRI at 1.5T. A gradient recalled echo MRI sequence with readout at 16 echo times was used, and the placental T2* value was obtained by fitting the signal intensity as a function of the echo times...

  18. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    Science.gov (United States)

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  19. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    Science.gov (United States)

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (pT2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering

    International Nuclear Information System (INIS)

    Biederer, J.; Reuter, M.; Both, M.; Grimm, J.; Heller, M.; Muhle, C.; Graessner, J.

    2002-01-01

    The aim of this study was to evaluate feasibility and limitations of two MR sequences for imaging of the lung using a semi-quantitative rating scale. Ten healthy volunteers were assessed with a breath-hold T1-weighted gradient-recalled-echo (TR/TE=129/2.2 ms, matrix 173 x 256) and a T2-weighted turbo spin-echo (TSE) sequence with respiratory triggering (TR/TE=3000-5000/120 ms, matrix 270 x 512) in axial 6-mm slices. The T1-weighted GRE protocol included a pre-saturation pulse over the mediastinal structures. Artefacts and resolution of vessel/airway structures in each lung segment were evaluated by two observers (10 volunteers, 180 segments). Cardiac and vessel pulsation artefacts predominated on T1-weighted GRE, respiration artefacts on T2-weighted TSE (lingula and middle lobe). Pre-saturation of the mediastinum reduced pulsation artefacts on T1-weighted GRE. T1-weighted GRE images were improved by bright flow signal of vessels, whereas image quality of T2-weighted TSE was reduced by black-blood effects in central parts of the lung. Delineation of lung periphery and the mediastinum was superior with T2-weighted TSE. Segmental/sub-segmental vessels (up to fourth/fifth order) and bronchi (up to third order) were identified. All 180 lung segments were imaged in diagnostic quality with at least one of the two sequences (T1-weighted GRE not diagnostic in 9 of 180, T2-weighted TSE in 4 of 180). Both sequences were found to be complementary: superior identification of gross lung anatomy with T1-weighted GRE and higher detail resolution in the periphery and the mediastinum with T2-weighted TSE. (orig.)

  1. Comparative study of image quality between axial T2-weighted BLADE and turbo spin-echo MRI of the upper abdomen on 3.0 T.

    Science.gov (United States)

    Zhang, Lin; Tian, ChunMei; Wang, PeiYuan; Chen, Liang; Mao, XiJin; Wang, ShanShan; Wang, Xu; Dong, JingMin; Wang, Bin

    2015-09-01

    To compare image quality of turbo spin-echo (TSE) with BLADE [which is also named periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)] on magnetic resonance imaging (MRI) for upper abdomen. This study involved the retrospective evaluation of 103 patients (63 males, 40 females; age range 19-76 years; median age 53.8 years) who underwent 3.0 T MRI with both conventional TSE T2-weighted imaging (T2WI) and BLADE TSE T2WI. Two radiologists assessed respiratory motion, gastrointestinal peristalsis, and vascular pulsation artifacts, as well as the sharpness of the liver and pancreas edges. Scores for all magnetic resonance (MR) images were recorded. Wilcoxon's rank test was used to compare hierarchical data. Cohen's kappa coefficient was adopted to analyze interobserver consistency. Compared to TSE T2WI, BLADE TSE T2WI reduced all of the examined motion artifacts and increased the sharpness of the liver and pancreas edges (all P image quality.

  2. Efficacy of T2*-Weighted Gradient-Echo MRI in Early Diagnosis of Cerebral Venous Thrombosis with Unilateral Thalamic Lesion

    Directory of Open Access Journals (Sweden)

    Shingo Mitaki

    2013-01-01

    Full Text Available Cerebral venous thrombosis (CVT is an uncommon cause of stroke with diverse etiologies and varied clinical presentations. Because of variability in clinical presentation and neuroimaging, CVT remains a diagnostic challenge. Recently, some studies have highlighted the value of T2*-weighted gradient-echo MRI (T2*WI in the diagnosis of CVT. We report the case of a 79-year-old woman with CVT due to a hypercoagulable state associated with cancer. On the initial T2-weighted image (T2WI, there was a diffuse high-intensity lesion in the right thalamus, extending into the posterior limb of the internal capsule and midbrain. T2*WI showed diminished signal and enlargement of the right basilar vein and the vein of Galen. Even though there is a wide range of differential diagnoses in unilateral thalamic lesions, and a single thalamus lesion is a rare entity of CVT, based on T2*WI findings we could make an early diagnosis and perform treatment. Our case report suggests that T2*WI could detect thrombosed veins and be a useful method of early diagnosis in CVT.

  3. Assessment of diagnosing metastatic bone tumor on T2*-weighted images. Comparison between turbo spin echo (TSE) method and gradient echo (GE) method

    International Nuclear Information System (INIS)

    Hayashi, Takahiko; Sugiyama, Akira; Katayama, Motoyuki

    1996-01-01

    We examined the usefulness of T2 * weighted gradient field echo images for diagnosis for metastatic bone tumors in comparison with T2 weighted turbo spin echo (fast spin echo) images. In T2 * weighted gradient field echo sequence to obtain maximum contrast-to-noise ratio (CNR), we experimentally manipulated flip angle (FA) (5deg-90deg), repetition time (TR) (400, 700 msec), and echo time (TE) (10-50 msec). The best CNR was 16.4 in fast low angle shot (FLASH) (TE: 24 msec, TR: 700 msec, FA: 40deg). Magnetic resonance imaging was carried out in 28 patients with metastatic bone tumors. In addition to conventional T1 weighted spin echo images, T2 weighted turbo spin echo (fast spin echo images) and T2 * weighted gradient field echo images were obtained. T2 * weighted gradient field echo images were superior to T2 weighted turbo spin echo (fast spin echo) images in delineating the tumors, adjacent fat tissues, and bone marrow. (author)

  4. Sub-Millimeter T2 Weighted fMRI at 7 T: Comparison of 3D-GRASE and 2D SE-EPI

    Directory of Open Access Journals (Sweden)

    Valentin G. Kemper

    2015-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD contrast employing T2* weighted 2D multi-slice echo-planar imaging (EPI. At ultra-high magnetic field (i.e. 7 T and above, it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE and 2D Spin-Echo EPI (SE-EPI, with evaluation of their imaging point-spread function, functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging point-spread function revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction was about 60 % higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio. High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T2* contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  5. Application of fast spin-echo T[sub 2]-weighted imaging for examination of the neurocranium. Comparison with the conventional T[sub 2]-weighted spin-echo sequence. Die Anwendung der T[sub 2]-gewichteten Turbo-Spin-Echo-Sequenz zur Untersuchung des Neurokraniums. Vergleich mit der konventionellen T[sub 2]-gewichteten Spin-Echo-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, C. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-07-01

    T[sub 2]-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T[sub 2]-weighted imaging (TT[sub 2]) of the neurocranium in comparison to conventional spin-echo T[sub 2]-weighted imaging (T[sub 2]). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT[sub 2] than in T[sub 2] (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT[sub 2], Parkinson patients have to be examined by conventional T[sub 2]. If these limitations are taken into account, fast spin-echo T[sub 2]-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T[sub 2]-weighting achieved in a short acquisition time. (orig.)

  6. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1999-12-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging.

  7. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki

    1999-01-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging

  8. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    Science.gov (United States)

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  9. Evaluation of turbo spin echo sequences for MRI of focal liver lesions at 0.5 T

    International Nuclear Information System (INIS)

    Kreft, B.; Layer, G.; Steudel, A.; Spiller, L.; Heuck, A.; Mueller, A.; Gieseke, J.; Reiser, M.F.

    1994-01-01

    To determine whether turbo spin echo (TSE) sequences can replace conventional T2-weighted spin echo (SE) sequences in MRI of the liver, 40 patients with focal liver lesions were imaged at 0.5 T. A T2-weighted SE sequence (TR/TE 1800/90 ms, number of signals averaged [NEX] = 2, scan time 7:16 min), a TSE sequence (TR/TE 1800/90 ms, NEX = 4, number of echos per excitation = 13, echo spacing = 12.9 ms, scan time = 4:16 min) and a T1-weighted SE sequence (TR/TE 350/15 ms, NEX = 2, scan time = 4:21 min) were obtained and image quality, lesion detectability and lesion differentiation were evaluated qualitatively by subjective assessment using scores and quantitatively by lesion-liver contrast-to-noise (CNR) and tumour/liver signal intensity (SI) ratios. The image quality of the TSE sequence was substantially better compared with the T2-weighted SE sequence due to a reduction in motion artefacts and better delineation of anatomical details. Of a total of 158 visible lesions the T1-weighted SE, TSE and T2-weighted SE sequences showed 91 %, 81 % and 65 % of the lesions, respectively. Thus the TSE sequence depicted 24 % (P < 0.001) more lesions than the T2-weighted SE sequence. In all types of pathology the lesion-liver CNR of the TSE sequence was significantly (P < 0.001) higher compared to the CNR of the T2-weighted SE sequence ( +55-65 %), indicating superior lesion conspicuity. Lesion characterization was equally good on the two T2-weighted sequences with no difference in the tumour/liver SI ratio. Using a criterion of tumour/liver SI ratio equal to or higher than 2, haemangiomas larger than 1 cm in diameter could be differentiated from other lesions with a sensitivity and specificity of 95 % and 96 %, respectively. Our results indicate that the TSE sequence is suitable for replacing the conventional T2-weighted SE sequence in MRI of focal liver lesions. (orig.)

  10. Hippocampal Microbleed on a Post-Mortem T2*-Weighted Gradient-Echo 7.0-Tesla Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    J. De Reuck

    2011-09-01

    Full Text Available The present post-mortem study of a brain from an Alzheimer patient showed on a T2*-weighted gradient-echo 7.0-T MRI of a coronal brain section a hyposignal in the hippocampus, suggesting a microbleed. On the corresponding histological examination, only iron deposits around the granular cellular layer and in blood vessel walls of the hippocampus were observed without evidence of a bleeding. This case report illustrates that the detection of microbleeds on MRI has to be interpreted with caution.

  11. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jisook; Cha, Jang Gyu [Soonchunhyang University Bucheon Hospital, Department of Radiology, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Young Koo [Soonchunhyang University Bucheon Hospital, Department of Orthopedics, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Bo Ra [Soonchunhyang University Bucheon Hospital, Department of Biomedical Statistics, Wonmi-gu, Bucheon-si (Korea, Republic of); Jeon, Chan Hong [Soonchunhyang University Bucheon Hospital, Division of Rheumatology, Department of Internal Medicine, Wonmi-gu, Bucheon-si (Korea, Republic of)

    2016-07-15

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  12. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    International Nuclear Information System (INIS)

    Yi, Jisook; Cha, Jang Gyu; Lee, Young Koo; Lee, Bo Ra; Jeon, Chan Hong

    2016-01-01

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  13. Utility of dual echo T2-weighted turbo spin echo MR imaging for differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions

    International Nuclear Information System (INIS)

    Yang, Dal Mo; Yoon, Myung Hwan; Kim, Hak Soo; Lee, Eun Joo; Kim, Jong Ho; Kim, Hyung Sik; Chung, Jin Woo

    1999-01-01

    To evaluate the additive value of multiphasic contrast-enhanced dynamic MR imaging as a supplement to dual-echo T2-weighted TSE MR imaging for the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions. Two radiologists retrospectively reviewed dual-echo T2-weighted TSE MR images and gadolinium-enhanced MR images in 51 patients with hepatic lesions (28 malignant, 69 benign). For the differentiation of malignant from benign lesions, as seen on dual-echo T2-weighted TSE MR images, we evaluated sensitivity, specificity, and accuracy, and compared with the results with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. In addition, Az values for dual echo T2-weighted MR images were compared with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. For the differentiation of malignant from benign hepatic lesions, as seen on dual-echo T2-weighted TSE images, sensitivity, specificity, and accuracy were 80.0%, 97.5%, and 93.9%, respectively, for lesions less than 3cm in diameter, and 92.3%, 95.0%, and 93.5%, respectively, for those that were 3cm or larger. The results for dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging were 86.7%, 100.0%, and 97.3%, respectively, for lesions less than 3cm, and 92.3%, 100.0%, and 95.7%, respectively for those that were 3cm or larger. There were no significant differences in sensitivity, specificity, or accuracy between the results obtained using dual-echo T2-weighted MR imaging and those obtained with dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging. Nor were these statistically significant differences in Az values between the two groups. For the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions, there is no difference in accuracy between dual-echo T2-weighted TSE MR imaging and the additional use of

  14. Utility of echo-planar gradient-echo T2*-weighted MR images in patients with primary intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Yokoe, Toshio; Yoshida, Tazuka; Kobayashi, Nozomu; Nakamura, Yukihiro; Kubota, Kazuyuki

    2005-01-01

    Magnetic resonance imaging (MRI) has the potential to reveal residues of intracerabral hemorrhage (ICH) throughout life because of the high sensitivity for iron-containing compounds. Gradient-echo T2 * -weighted MR imaging (T2 * MRI) requiring short times for complete acquisition is known to detect small areas of signal loss without surrounding edema representing microbleeds (MBs). MBs in the basal ganglia including the thalami are suggested to be closely related to intracerebral atherosclerotic microangiopathy. We looked for more than 3 MBs in basal ganglia or thalamus of patients with and without episodes of previous ICH. Twelve patients with previous hemorrhagic stroke and 82 without were studied. Multiple MBs in those regions were significantly more frequent in patients with recurrent ICH. In addition, a 76-year-old woman with a history of hypertension was transferred to our hospital for treatment of head injury. She had multiple incidental old basal ganglionic and thalamic MBs. The patient had an asymptomatic primary ICH on computed tomography (CT) 3 months later. In conclusion, MR evidence of multiple MBs in the basal ganglia and thalamus might identify patients at a risk for new and recurrent ICH. Therefore, patients with multiple MBs in those regions should be treated for cerebrovascular risk factors, especially hypertension. Our results appear to confirm the utility of T2 * MRI in hemorrhagic stroke. (author)

  15. MR imaging findings of diffuse axonal injury: comparison of T2-weighted gradient images and T1- and T2-weighted spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seo Young; Lee, Ghi Jai; Kim, Jeong Seok; Shim, Jae Chan; Kim, Ho Kyun [Inje Univ. College of Medicine, Seoul (Korea, Republic of)

    1998-10-01

    To compare T2-weighted images with spin-echo T1- and turbo spin-echo (TSE) T2-weighted images in patients with diffuse axonal injury(DAI). Using a 1.0T MR unit, SE T1-, TSE T2-, and and FLASH T2-weighted images were obtained from 69 patients with a history of head trauma. In 18MR images of 17 patients with imaging findings of DAI, T2-weighted images were retrospectively compared with SE T1- and TSE T2-weighted images. The interval between trauma and MR scan varied from 5 days to 24(mean, 11) months. Focusing on the number of lesions, and their location and signal intensity, as weel as associated findings, three images were simultaueously evaluated. In 18 MR images of 17 patients with MR imaging findings of DAI, 21 lesions were detected on T1-weighted images, 28 on TSE T2-weighted images, and 70 on T2-weighted images;the last of these revealed all lesions detected on the other two. Most lesions were hypointense on T1-weighted images(17/21), hyperintense on TSE T2-weighted (21/28), and hypointense on T2-weighted (63/70). Common locations for DAI were the frontal lobe (n=3D35) and corpus callosum (n=3D22). Associated brain injuries were cortical contusion (n=3D5), brainstem injury (n=3D3), deep gray matter injury (n=3D2), and subdural hematoma(n=3D1). In patients with DAI. T2-weighted images can detect more lesions and associated petechial hemorrhage than can TSE T2-weighted images. This modality is thus useful for the evaluation of patients with head trauma.=20.

  16. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?

    International Nuclear Information System (INIS)

    Baudelet, Christine; Ansiaux, Reginald; Jordan, Benedicte F; Havaux, Xavier; Macq, Benoit; Gallez, Bernard

    2004-01-01

    T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions

  17. The association between Placental T2* measured by MRI in dichorionic twin pregnancies and intertwin birth weight differences

    DEFF Research Database (Denmark)

    Sørensen, Anne Nødgaard Weidemann; Sinding, Marianne Munk; Peters, David Alberg

    ABSTRACT FINAL ID: P22.06 TITLE: The association between Placental T2* measured by MRI in dichorionic twin pregnancies and intertwin birth weight differences AUTHORS (FIRST NAME, LAST NAME): Anne Sørensen1, 2, Marianne Sinding1, David Peters3, Jens B. Frøkjær4, 2, Astrid Petersen6, Niels Uldbjerg5...... with an increased risk of adverse neonatal outcome, and new methods to predict the intertwin birth weight difference are highly clinical relevant. The Magnetic Resonance Imaging (MRI) variable placentalT2* reflects placental oxygenation and thereby placental function. Therefore, we aimed to investigate...... the association between the intertwin placental T2* difference and the intertwin birth weight difference Methods: A total of 21 dichorionic twin pregnancies (gestational age 20.1 – 34.1 weeks) were included in this study and placental T2* was measured using a gradient recalled echo MRI sequence with readout at 16...

  18. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  19. High incidence of microbleeds in hemodialysis patients detected by T2*-weighted gradient-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yokoyama, Shunichi; Uomizu, Kenji; Kajiya, Yoriko; Tajitsu, Kenichiro; Kusumoto, Kazuhiro; Hirano, Hirofumi

    2005-01-01

    The incidence and characteristics of microbleeds in hemodialysis (HD) patients were investigated to elucidate the clinical significance with T 2 * -weighted gradient-echo magnetic resonance (MR) imaging. The 57 patients with chronic renal failure maintained by HD had no previous history of stroke. The control group consisted of 53 patients without previous history of stroke or chronic renal failure. The incidence and the number of microbleeds were assessed in the HD and control groups. The findings of microbleeds with T 2 * -weighted gradient-echo MR imaging were compared with those of T 1 - and T 2 -weighted MR imaging in HD patients. The incidence of microbleeds was significantly greater in the HD patients compared with the control patients. T 2 * -weighted gradient-echo imaging revealed a total of 44 microbleeds in 11 HD patients. T 2 -weighted imaging demonstrated 13 of 44 microbleeds as hyperintensity, whereas T 1 -weighted imaging demonstrated 12 lesions as hypointensity. T 2 - and T 1 -weighted imagings did not demonstrate any findings in 31 and 32 lesions, respectively. T 2 * -weighted gradient-echo MR imaging is effective to detect microbleeds which may be a predictor of intracerebral hemorrhage in HD patients and should be included in the protocol for the study of cerebrovascular disease, because T 2 - and T 1 -weighted MR imaging recognizes microbleeds as lacunar infarction. (author)

  20. Optimal MR pulse sequences for hepatic hemangiomas : comparison of T2-weighted turbo-spin-echo, T2-weighted breath-hold turbo-spin-echo, and T1-weighted FLASH dynamic imaging

    International Nuclear Information System (INIS)

    Wang, Wen Chao; Choi, Byung Ihn; Han, Joon Koo; Kim, Tae Kyoung; Cho, Soon Gu

    1997-01-01

    To optimize MR imaging pulse sequences in the imaging of hepatic hemangioma and to evaluate on dynamic MR imaging the enhancing characteristics of the lesions. Twenty patients with 35 hemangiomas were studied by using Turbo-spin-echo (TSE) sequence (T2-weighted, T2- and heavily T2-weighted breath-hold) and T1-weighted FLASH imaging acquired before, immediately on, and 1, 3 and 5 minutes after injection of a bolus of Gd-DTPA (0.1mmol/kg). Phased-array multicoil was employed. Images were quantitatively analyzed for lesion-to-liver signal difference to noise ratios (SD/Ns), and lesion-to-liver signal ratios (H/Ls), and qualitatively analyzed for lesion conspicuity. The enhancing characteristics of the hemangiomas were described by measuring the change of signal intensity as a curve in T1-weighted FLASH dynamic imaging. For T2-weighted images, breath-hold T2-weighted TSE had a slightly higher SD/N than other pulse sequences, but there was no statistical difference in three fast pulse sequences (p=0.211). For lesion conspicuity, heavily T2-weighted breath-hold TSE images was superior to T2-weighted breath-hold or non-breath-hold TSE (H/L, 5.75, 3.81, 2.87, respectively, p<0.05). T2-weighted breath-hold TSE imaging was more effective than T2-weighted TSE imaging in removing lesion blurring or lack of sharpness, and there was a 12-fold decrease in acquisition time (20sec versus 245 sec). T1-weighted FLASH dynamic images of normal liver showed peak enhancement at less than 1 minute, and of hemangioma at more than 3 minutes;the degree of enhancement for hemangioma decreased after a 3 minute delay. T2-weighed breath-hold TSE imaging and Gd-DTPA enhanced FLASH dynamic imaging with 5 minutes delay are sufficient for imaging hepatic hemangiomas

  1. High-resolution T{sub 2}-weighted cervical cancer imaging: a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hoogendam, Jacob P.; Verheijen, Rene H.M.; Zweemer, Ronald P. [University Medical Centre Utrecht, Department of Gynaecological Oncology, UMC Utrecht Cancer Centre, PO Box 85500, Utrecht (Netherlands); Kalleveen, Irene M.L.; Castro, Catalina S.A. de; Raaijmakers, Alexander J.E.; Bosch, Maurice A.A.J. van den; Klomp, Dennis W.J.; Veldhuis, Wouter B. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands)

    2017-03-15

    We studied the feasibility of high-resolution T{sub 2}-weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. A feasibility study on 20 stage IB1-IIB cervical cancer patients was conducted. All underwent pre-treatment 1.5-T MRI. At 7.0-T MRI, an external transmit/receive array with seven dipole antennae and a single endorectal monopole receive antenna were used. Discomfort levels were assessed. Following individualised phase-based B{sub 1} {sup +} shimming, T{sub 2}-weighted turbo spin echo sequences were completed. Patients had stage IB1 (n = 9), IB2 (n = 4), IIA1 (n = 1) or IIB (n = 6) cervical cancer. Discomfort (ten-point scale) was minimal at placement and removal of the endorectal antenna with a median score of 1 (range, 0-5) and 0 (range, 0-2) respectively. Its use did not result in adverse events or pre-term session discontinuation. To demonstrate feasibility, T{sub 2}-weighted acquisitions from 7.0-T MRI are presented in comparison to 1.5-T MRI. Artefacts on 7.0-T MRI were due to motion, locally destructive B{sub 1} interference, excessive B{sub 1} under the external antennae and SENSE reconstruction. High-resolution T{sub 2}-weighted 7.0-T MRI of stage IB1-IIB cervical cancer is feasible. The addition of an endorectal antenna is well tolerated by patients. (orig.)

  2. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases

    International Nuclear Information System (INIS)

    Allgayer, B.; Lukas, P.; Loos, W.; Kersting-Sommerhoff, B.

    1993-01-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T 1 weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied -26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.) [de

  3. The evaluation of fat saturation fast spin-echo T2W1 for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2W1 for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 than at conventional T2W1. Fat-saturation fast spin-echo T2W1 is useful for the evaluation of patients with mild acute spinal trauma without neurological impairment

  4. The evaluation of fat saturation fast spin-echo T2WI for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2WI for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 is useful the evaluation of patients with mild acute spinal trauma without neurological impairment

  5. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence

    NARCIS (Netherlands)

    Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint

    Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify

  6. Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-09-01

    We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  7. T2 black lesions on routine knee MRI: differential considerations

    International Nuclear Information System (INIS)

    Wadhwa, Vibhor; Cho, Gina; Moore, Daniel; Pezeshk, Parham; Coyner, Katherine; Chhabra, Avneesh

    2016-01-01

    The majority of abnormal findings or lesions on T2-weighted fast spin-echo (FSE) magnetic resonance imaging (MRI) are hyperintense due to increased perfusion or fluid content, such as infections, tumours or synovitis. Hypointense lesions on T2-weighted images (both fat-suppressed and non-fat-suppressed) are less common and can sometimes be overlooked. Such lesions have limited differential diagnostic possibilities, and include vacuum phenomenon, loose body, tenosynovial giant cell tumour, rheumatoid arthritis, haemochromatosis, gout, amyloid, chondrocalcinosis, hydroxyapetite deposition disease, lipoma arborescens, arthrofibrosis and iatrogenic lesions. These lesions often show characteristic appearances and predilections in the knee. In this article, the authors describe the MRI features of hypointense T2 lesions on routine knee MRI and outline a systematic diagnostic approach towards their evaluation. (orig.)

  8. Liver iron content determined by MRI. Spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie

    2012-05-15

    Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)

  9. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    International Nuclear Information System (INIS)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-01-01

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  10. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  11. Visual analysis of serial T2-weighted MRI in multiple sclerosis: intra- and interobserver reproducibility

    International Nuclear Information System (INIS)

    Molyneux, P.D.; Miller, D.H.; Filippi, M.; Yousry, T.A.; Radue, E.W.; Ader, H.J.; Barkhof, F.

    1999-01-01

    We evaluated the effect of consensus formation and training on the agreement between observers in scoring the number of new and enlarging multiple sclerosis (MS) lesions on serial T2-weighted MRI studies. The baseline and month 9 MRI studies of 16 patients with a range of MRI activity were used (dual-echo conventional spin-echo sequence, TR 2000, TE 34 and 90 ms, 5 mm contiguous slices, in-plane resolution 1 mm). First, the serial studies were visually analysed for the presence of new and enlarging lesions, on two occasions, by five experienced observers, without adopting any consensus strategy and in isolation. Next, the observers met to identify the common sources of inconsistencies in reporting between observers and formulate consensus rules. Finally, a further independent reading session was performed on the same MRI dataset, this time applying the consensus rules. Agreement between observers was assessed using kappa scores. Without the consensus rules, interobserver kappa scores for the first and second reading sessions for new lesions were only 0.51 and 0.39 respectively; agreement for enlarging lesions was even worse. The mean intraobserver kappa score for new lesions was higher at 0.72, reflecting the fact that the observers were consistently applying their individual assessment strategies. Application of the consensus rules did not lead to a significant improvement in inter observer kappas; the kappa scores adopting the guidelines were 0.46 and 0.21 for new and enlarging lesions respectively. Consensus guidelines thus did not improve the reproducibility of visual analysis of serial T2-weighted MRI, and the level of agreement between observers remained only moderate. Suboptimal repositioning is likely to be a major source of residual variability and this suggests a future role for image registration strategies; until then, a single observer, or pair of observers working in consensus, should be used in MS studies. (orig.)

  12. Assessment of T2- and T1-weighted MRI brain lesion load in patients with subcortical vascular encephalopathy

    International Nuclear Information System (INIS)

    Gass, A.; Oster, M.; Cohen, S.; Daffertshofer, M.; Schwartz, A.; Hennerici, M.G.

    1998-01-01

    Previous cross-sectional studies in patients with subcortical vascular encephalopathy (SVE) have shown little or no correlation between brain lesion load and clinical disability, which could be due to the low specificity of T2-weighted MRI. Recent studies have indicated that T1-weighted MRI may be more specific than T2-weighted MRI for severe tissue destruction. We studied 37 patients with a diagnosis of SVE and 11 normal controls with standardised T1- and T2-weighted MRI. All patients underwent detailed clinical assessment including a neuropsychological test battery and computerised gait analysis. Both the T2- and T1-weighted total MRI lesion loads different between patients and controls different, particularly T1. The ratio of T2-/T1-weighted lesion load was lower in controls than in patients. There was no overall correlation of T1- or T2-weighted lesion load with clinical disability, but group comparison of patients with severe and mild clinical deficits showed different lesion loads. We suggest that T1- and T2-weighted MRI lesion loads demonstrate relevant structural abnormality in patients with SVE. (orig.)

  13. The appearances of oesophageal carcinoma demonstrated on high-resolution, T2-weighted MRI, with histopathological correlation

    International Nuclear Information System (INIS)

    Riddell, A.M.; Allum, W.H.; Thompson, J.N.; Wotherspoon, A.C.; Richardson, C.; Brown, G.

    2007-01-01

    This paper describes the spectrum of imaging features of oesophageal adenocarcinoma seen using high-resolution T2-weighted (T2W) magnetic resonance imaging (MRI). Thirty-nine patients with biopsy-proven oesophageal adenocarcinoma were scanned using an external surface coil. A sagittal T2W sequence was used to localise the tumour and to plan axial images perpendicular to the tumour. Fast spin-echo (FSE) T2W axial sequence parameters were: TR/TE, 3,300-5,000 ms/120-80 ms; field of view (FOV) 225 mm, matrix 176 x 512(reconstructed) mm to 256 x 224 mm, giving an in-plane resolution of between 1.28 x 0.44 mm and 0.88 x 1.00 mm, with 3-mm slice thickness. Thirty-three patients underwent resection and the MR images were compared with the histological whole-mount sections. There were four T1, 12 T2, and 17 T3 tumours. The T2W high-resolution MRI sequences produced detailed images of the oesophageal wall and surrounding structures. Analysis of the imaging appearances for different tumour T stages enabled the development of imaging criteria for local staging of oesophageal cancer using high-resolution MRI. Our study illustrates the spectrum of appearances of oesophageal cancer on T2W high-resolution MRI, and using the criteria established in this study, demonstrates the potential of this technique as an alternative non-invasive method for local staging for oesophageal cancer. (orig.)

  14. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging.

    Science.gov (United States)

    Murphy, B J

    2001-06-01

    To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee.

  15. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    International Nuclear Information System (INIS)

    Murphy, B.J.

    2001-01-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  16. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.J. [Dept. of Radiology, Univ. of Miami School of Medicine, FL (United States)

    2001-06-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  17. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  18. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  19. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)

  20. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    Directory of Open Access Journals (Sweden)

    Adam Kettinger

    2016-12-01

    Full Text Available Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate how these advance echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1 simple arithmetic averaging, (2 BOLD sensitivity weighting, (3 temporal-signal-to-noise ratio weighting and (4 temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e. group-level t-values compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned.

  1. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  2. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  3. Diffusion-weighted echo-planar MRI of lacunar infarcts

    International Nuclear Information System (INIS)

    Noguchi, K.; Nagayoshi, T.; Watanabe, N.; Kanazawa, T.; Toyoshima, S.; Morijiri, M.; Shojaku, H.; Shimizu, M.; Seto, H.

    1998-01-01

    We studied 35 patients with lacunar infarcts, using diffusion-weighted echo-planar imaging (DW-EPI) at 1.5 T. The relative apparent diffusion coefficient ratio (ADCR) of each lesion was calculated and lesion conspicuity on DW-EPI was compared to that on images aquired with fast fluid-attenuated inversion recovery and T2-weighted fast spin-echo sequences. Acute small infarcts (within 3 days) were identified with DW-EPI as an area of decreased ADCR (range 0.33-0.87; mean 0.67) and high signal, subacute small infarcts (4-30 days) as a high-signal or isointense areas of decreased or nearly normal ADCR (0.54-0.98; 0.73), and chronic small infarcts (> 30 days) as low- or high-signal areas of nearly normal or increased ADCR (0.97-1.92; 1.32). In three patients, small infarcts of the brain stem in the hyperacute phase (within 6 h) were seen only with DW-EPI. In five patients, fresh small infarcts adjacent to multiple old infarcts could be distinguished only with DW-EPI. (orig.)

  4. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  5. 3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix

    Science.gov (United States)

    Vargas Sanchez, Andrea Fernanda

    Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.

  6. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results

    NARCIS (Netherlands)

    Nketiah, G.; Elschot, M.; Kim, E.; Teruel, J.R.; Scheenen, T.W.J.; Bathen, T.F.; Selnaes, K.M.

    2017-01-01

    PURPOSE: To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. MATERIALS AND METHODS:

  7. Evaluation with fat-suppression fast spin-echo T2-weighted images for bone and soft tissue disorders

    International Nuclear Information System (INIS)

    Kakitsubata, Yousuke; Watanabe, Katsushi; Kakitsubata, Sachiko; Shimizu, Tokiyoshi.

    1997-01-01

    One hundred and sixty-four magnetic resonance (MR) studies of bone or soft tissue disorders were evaluated with T2-weighted fast spin echo (FSE) imaging and T2-weighted fat-suppressed FSE (FS-FSE) imaging. Fifty-two patients with bone contusion of the knee were also evaluated with conventional T2-weighted SE imaging and T2-weighted FS-FSE imaging. In 50 of 71 patients (70.4%), areas of high signal intensity in bone marrow were more clearly demonstrated on T2-weighted FS-FSE images than on T2-weighted FSE image. Edema or inflammation of soft tissues were also clearly revealed on T2-weighted FS-FSE images. In 27 of 32 patients (84%), bone contusions were more apparently shown on T2-weighted FS-FSE images than on conventional T2-weighted SE image. T2-weighted FS-FSE imaging is a sensitive method of evaluating the long T2 lesions of bone or soft tissue disorders. (author)

  8. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    Science.gov (United States)

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  9. Anteroinferior tears of the glenoid labrum: fat-suppressed fast spin-echo T2 versus gradient-recalled echo MR images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); De Smet, A A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Norris, M A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Orwin, J F [Department of Orthopedic Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States)

    1997-05-01

    Objective. To compare fat-suppressed fast spin-echo (FSE) T2-weighted images with gradient-recalled echo (GRE) T2*-weighted images in the evaluation of anteroinferior labral tears. Design. MR images were retrospectively reviewed by two radiologists masked to the history and arthroscopic findings. They separately interpreted the anteroinferior labrum as torn or intact, first on one pulse sequence and then, 4 weeks later, on the other sequence. The MR interpretations were correlated with the arthroscopic findings. Patients. Nine patients with anteroinferior labral tears, and nine similarly-aged patients with normal, labra were studied. Results and conclusions. Observer 1 had a sensitivity of 0.56 on the GRE images and 0.67 on the FSE images (P>0.5), with a specificity of 1.0 for both sequences. Observer 2 had a sensitivity of 0.78 and a specificity of 0.89 for both sequences. In this small study there is no significant difference between GRE and fat-suppressed FSE images in their ability to diagnose anteroinferior labral tears. When evaluating the labrum with conventional MRI, axial fat-suppressed FSE T2-weighted images can be used in place of GRE images without a loss of accuracy. (orig.). With 3 figs., 1 tab.

  10. A neurotological study of patients with pontine hyperintense lesions on T2 weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Toru; Tominaga, Satoru; Yukimasa, Akiko; Oku, Masaya; Sakagami, Masafumi [Hyogo Coll. of Medicine, Nishinomiya (Japan)

    2002-03-01

    Pontine hyperintense lesions seen on T2-weighted MRI were thought to be related to disequilibrium. Some of these lesions have a low signal on T1-weighted imaging, while others have an iso-signal. The purpose of this study was to clarify the relationship between neurological findings and pontine lesions detected by MRI. The subjects were 11 patients (6 males, 5 females; age range: 30 to 83 years [mean: 64.1 years]) with pontine hyperintense lesions identified on T2-weighted MRI. We compared the clinical signs and the MRI findings. Six of the patients had low-intensity areas on T1-weighted images, and the other 5 had iso-intensity areas. Six patients complained of vertigo, and 5 complained of dizziness. Eight complained of positionaly evoked disequilibrium. Positional nystagmus was seen in 4 patients. In 9 patients, abnormalities were found on the ENG test, including the saccadic eye movement test, ETT, and OKP. Numbness on the lips occurred in 2 patients, and cerebellar signs were present in 4. None of the patients had facial paralysis. Disequilibrium originating in the central nervous system was suggested in 10 patients. Clinical examinations revealed similar findings in patients with a low signal on T1-weighted MRI and those with an iso-signal. Our results indicate that pontine lesions identified by T2-weighted MRI cause vertigo or dizziness, and, in most cases, these lesions cause abnormal neurological or neurological abnormalities. (author)

  11. A neurotological study of patients with pontine hyperintense lesions on T2 weighted MRI

    International Nuclear Information System (INIS)

    Seo, Toru; Tominaga, Satoru; Yukimasa, Akiko; Oku, Masaya; Sakagami, Masafumi

    2002-01-01

    Pontine hyperintense lesions seen on T2-weighted MRI were thought to be related to disequilibrium. Some of these lesions have a low signal on T1-weighted imaging, while others have an iso-signal. The purpose of this study was to clarify the relationship between neurological findings and pontine lesions detected by MRI. The subjects were 11 patients (6 males, 5 females; age range: 30 to 83 years [mean: 64.1 years]) with pontine hyperintense lesions identified on T2-weighted MRI. We compared the clinical signs and the MRI findings. Six of the patients had low-intensity areas on T1-weighted images, and the other 5 had iso-intensity areas. Six patients complained of vertigo, and 5 complained of dizziness. Eight complained of positionaly evoked disequilibrium. Positional nystagmus was seen in 4 patients. In 9 patients, abnormalities were found on the ENG test, including the saccadic eye movement test, ETT, and OKP. Numbness on the lips occurred in 2 patients, and cerebellar signs were present in 4. None of the patients had facial paralysis. Disequilibrium originating in the central nervous system was suggested in 10 patients. Clinical examinations revealed similar findings in patients with a low signal on T1-weighted MRI and those with an iso-signal. Our results indicate that pontine lesions identified by T2-weighted MRI cause vertigo or dizziness, and, in most cases, these lesions cause abnormal neurological or neurological abnormalities. (author)

  12. Contrast-enhanced MR imaging of metastatic brain tumor at 3 Tesla. Utility of T1-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence

    International Nuclear Information System (INIS)

    Komada, Tomohiro; Naganawa, Shinji; Ogawa, Hiroshi

    2008-01-01

    We evaluated the newly developed whole-brain, isotropic, 3-dimensional turbo spin-echo imaging with variable flip angle echo train (SPACE) for contrast-enhanced T 1 -weighted imaging in detecting brain metastases at 3 tesla (T). Twenty-two patients with suspected brain metastases underwent postcontrast study with SPACE, magnetization-prepared rapid gradient-echo (MP-RAGE), and 2-dimensional T 1 -weighted spin echo (2D-SE) imaging at 3 T. We quantitatively compared SPACE, MP-RAGE, and 2D-SE images by using signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM) and contrast-to-noise ratios (CNRs) for GM-to-WM, lesion-to-GM, and lesion-to-WM. Two blinded radiologists evaluated the detection of brain metastases by segment-by-segment analysis and continuously-distributed test. The CNR between GM and WM was significantly higher on MP-RAGE images than on SPACE images (P 1 -weighted imaging. (author)

  13. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping.

    Science.gov (United States)

    Lankford, Christopher L; Does, Mark D

    2018-02-01

    Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases. MRT der Mamma mit 2D-Spinecho- und Gradientenecho-Sequenzen in diagnostischen Problemfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik); Lukas, P. (Technische Univ. Muenchen (Germany). Inst. und Poliklinik fuer Strahlentherapie und Radiologische Onkologie); Loos, W. (Technische Univ. Muenchen (Germany). Frauenklinik und Poliklinik); Kersting-Sommerhoff, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik)

    1993-05-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T[sub 1] weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied - 26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.)

  15. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    Science.gov (United States)

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T

  16. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results.

    Science.gov (United States)

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M

    2017-07-01

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.

  17. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Hainc, N.; Studler, U.; Bieri, O.; Miska, M.; Wiewiorski, M.; Valderrabano, V.

    2015-01-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm 2 /ms) was significantly higher compared to normal cartilage (1.46 μm 2 /ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  18. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  19. Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour: a preliminary report

    International Nuclear Information System (INIS)

    Noguchi, K.; Watanabe, N.; Nagayoshi, T.; Kanazawa, T.; Toyoshima, S.; Shimizu, M.; Seto, H.

    1999-01-01

    Our purpose was to evaluate diffusion-weighted (DW) echo-planar MRI in differentiating between brain abscess and tumour. We examined two patients with surgically confirmed pyogenic brain abscess and 18 with metastatic brain tumours or high-grade glioma, using a 1.5 T system. The apparent diffusion coefficient (ADC) of each necrotic or solid contrast-enhancing lesion was measured with two different b values (20 and 1200 s/mm 2 ). All capsule-stage brain abscesses (4 lesions) and zones of cerebritis (2 lesions) were identified on high-b-value DWI as markedly high-signal areas of decreased ADC (range, 0.58-0.70 [(10-3 mm 2 /s; mean, 0.63)]). All cystic or necrotic portions of brain tumours (14 lesions) were identified on high-b-value DWI as low-signal areas of increased ADC (range, 2.20-3.20 [(10-3 mm 2 /s; mean, 2.70)]). Solid, contrast-enhancing portions of brain tumours (19 lesions) were identified on high-b-value DWI as high-signal areas of sightly decreased or increased ADC (range, 0.77-1.29 [(10-3 mm 2 /s; mean, 0.94)]). Our preliminary results indicate that DW echo-planar MRI be used for distinguishing between brain abscess and tumour. (orig.) (orig.)

  20. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Hurwitz, Shelley [Departments of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bakshi, Rohit, E-mail: rbakshi@bwh.harvard.edu [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Departments of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2015-08-15

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  1. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    International Nuclear Information System (INIS)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash; Hurwitz, Shelley; Bakshi, Rohit

    2015-01-01

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  2. Feasibility of similarity coefficient map for improving morphological evaluation of T2* weighted MRI for renal cancer

    International Nuclear Information System (INIS)

    Wang Hao-Yu; Bao Shang-Lian; Jiani Hu; Meng Li; Haacke, E. M.; Xie Yao-Qin; Chen Jie; Amy Yu; Wei Xin-Hua; Dai Yong-Ming

    2013-01-01

    The purpose of this paper is to investigate the feasibility of using a similarity coefficient map (SCM) in improving the morphological evaluation of T 2 * weighted (T 2 *W) magnatic resonance imaging (MRI) for renal cancer. Simulation studies and in vivo 12-echo T 2 *W experiments for renal cancers were performed for this purpose. The results of the first simulation study suggest that an SCM can reveal small structures which are hard to distinguish from the background tissue in T 2 *W images and the corresponding T 2 * map. The capability of improving the morphological evaluation is likely due to the improvement in the signal-to-noise ratio (SNR) and the carrier-to-noise ratio (CNR) by using the SCM technique. Compared with T 2 *W images, an SCM can improve the SNR by a factor ranging from 1.87 to 2.47. Compared with T 2 * maps, an SCM can improve the SNR by a factor ranging from 3.85 to 33.31. Compared with T 2 *W images, an SCM can improve the CNR by a factor ranging from 2.09 to 2.43. Compared with T 2 * maps, an SCM can improve the CNR by a factor ranging from 1.94 to 8.14. For a given noise level, the improvements of the SNR and the CNR depend mainly on the original SNRs and CNRs in T 2 *W images, respectively. In vivo experiments confirmed the results of the first simulation study. The results of the second simulation study suggest that more echoes are used to generate the SCM, and higher SNRs and CNRs can be achieved in SCMs. In conclusion, an SCM can provide improved morphological evaluation of T 2 *W MR images for renal cancer by unveiling fine structures which are ambiguous or invisible in the corresponding T 2 *W MR images and T 2 * maps. Furthermore, in practical applications, for a fixed total sampling time, one should increase the number of echoes as much as possible to achieve SCMs with better SNRs and CNRs

  3. T2-Weighted Dixon Turbo Spin Echo for Accelerated Simultaneous Grading of Whole-Body Skeletal Muscle Fat Infiltration and Edema in Patients With Neuromuscular Diseases.

    Science.gov (United States)

    Schlaeger, Sarah; Klupp, Elisabeth; Weidlich, Dominik; Cervantes, Barbara; Foreman, Sarah C; Deschauer, Marcus; Schoser, Benedikt; Katemann, Christoph; Kooijman, Hendrik; Rummeny, Ernst J; Zimmer, Claus; Kirschke, Jan S; Karampinos, Dimitrios C

    2018-04-02

    The assessment of fatty infiltration and edema in the musculature of patients with neuromuscular diseases (NMDs) typically requires the separate performance of T1-weighted and fat-suppressed T2-weighted sequences. T2-weighted Dixon turbo spin echo (TSE) enables the generation of T2-weighted fat- and water-separated images, which can be used to assess both pathologies simultaneously. The present study examines the diagnostic performance of T2-weighted Dixon TSE compared with the standard sequences in 10 patients with NMDs and 10 healthy subjects. Whole-body magnetic resonance imaging was performed including T1-weighted Dixon fast field echo, T2-weighted short-tau inversion recovery, and T2-weighted Dixon TSE. Fatty infiltration and intramuscular edema were rated by 2 radiologists using visual semiquantitative rating scales. To assess intermethod and interrater agreement, weighted Cohen's κ coefficients were calculated. The ratings of fatty infiltration showed high intermethod and high interrater agreement (T1-weighted Dixon fast field echo vs T2-weighted Dixon TSE fat image). The evaluation of edematous changes showed high intermethod and good interrater agreement (T2-weighted short-tau inversion recovery vs T2-weighted Dixon TSE water image). T2-weighted Dixon TSE imaging is an alternative for accelerated simultaneous grading of whole-body skeletal muscle fat infiltration and edema in patients with NMDs.

  4. Clinical utility of partial flip angle T2-weighted spin-echo imaging of the brain

    International Nuclear Information System (INIS)

    Chang, K.H.; Yi, J.G.; Han, M.H.; Han, M.C.; Kim, C.W.; Cho, M.H.; Cho, Z.H.

    1990-01-01

    To assess the clinical usefulness of partial flip angle (PFA) spin-echo (SE) brain imaging, a total of eighty patients were examined with both conventional double echo T2-weighted SE (2500/30, 80/90deg/one excitation) and PFA double echo SE (1200/30, 70/45deg/two excitations) on 2.0T system. Two comparative studies were performed: (1) In 65 patients PFA SE technique was compared with conventional SE without flow compensating gradients, and (2) in 15 patients the former was compared with the latter with flow compensating gradients. Imaging time was nearly identical in each sequence. In both studies we found that PFA T2-weighted SE images were almost identical to those obtained with the conventional SE technique in the contrast characteristics and the detection rate of the abnormalities (100%, 85/85 lesions), and more importantly, PFA SE revealed few flow artifacts in the brain stem, temporal lobes and basal ganglia which were frequently seen on conventional SE without flow compensating gradients. Additionally, PFA SE images demonstrated no suppression of CSF flow void in the aqueduct which was commonly seen on conventional SE with flow compensating gradients. In overall image quality, the PFA SE images, particularly the second echo images, were almost comparable with those of conventional SE with flow compensating gradients. A flip angle of 45deg seems to be close to Ernst angle, the angle at which maximum signal occurs, for a given TR of 1200 msec for CSF and most of the abnormalities containing higher water content. In conclusion, PFA SE sequence (i.e. 1200/30, 70/45deg/2) appears to be useful as a primary or an adjunctive technique in certain clinical circumstances, particularly in imaging of hydrocephalic patients for assessing aqueductal patency. (orig.)

  5. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    Science.gov (United States)

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Fast FLAIR MR imaging finidngs of cerebral infarction : comparison with T2-weighted spin echo imaging

    International Nuclear Information System (INIS)

    Kong, Keun Young; Choi, Woo Suk; Kim, Eui Jong

    1997-01-01

    To evaluate the utility of FLAIR(Fluid Attenuated Inversion Recovery) MR imaging in cerebral infarction by comparing its results with those of T2-weighted spin-echo imaging. We retrospectively evaluated fast FLAIR images and conventional spin echo images of 82 patients (47 men and 20 women ; median age 60.9 years) with cerebral infarction. MR imaging used a 1.5T MR unit with conventional T2(TR 3900, TE 90) and fast FLAIR sequence (TR 8000, TE 105, TI 2400). We analysed the size of the main lesion and number of lesions, and discrimination between old and new lesions and between small infarction and perivascular space. When T2-weighted and FLAIR imaging were compared, the latter showed that the main lesion was larger in 38 cases (46%), similar in 38 (46%), and smaller in six (7%). The number of lesions was greater in 23 cases(28%), similar in 52 (63%), and fewer in seven (9%). FLAIR images discriminated between old and new lesions in 31 cases ; perivascular space and small infarotion were differentiated in eight cases, and CSF inflowing artifact was observed in 66 (80%). In the diagnosis of cerebral infaretion, fast FLAIR provides images that are equal or superior to T2-weighted images. The fast FLAIR sequence may therefore be used as a part of routine MR brain study in the diagnosis of cerebral infarction

  7. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    Science.gov (United States)

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  8. Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Portalez, Daniel [Clinique Pasteur, 45, Department of Radiology, Toulouse (France); Rollin, Gautier; Mouly, Patrick; Jonca, Frederic; Malavaud, Bernard [Hopital de Rangueil, Department of Urology, Toulouse Cedex 9 (France); Leandri, Pierre [Clinique Saint Jean, 20, Department of Urology, Toulouse (France); Elman, Benjamin [Clinique Pasteur, 45, Department of Urology, Toulouse (France)

    2010-12-15

    To compare T2-weighted MRI and functional MRI techniques in guiding repeat prostate biopsies. Sixty-eight patients with a history of negative biopsies, negative digital rectal examination and elevated PSA were imaged before repeat biopsies. Dichotomous criteria were used with visual validation of T2-weighted MRI, dynamic contrast-enhanced MRI and literature-derived cut-offs for 3D-spectroscopy MRI (choline-creatine-to-citrate ratio >0.86) and diffusion-weighted imaging (ADC x 10{sup 3} mm{sup 2}/s < 1.24). For each segment and MRI technique, results were rendered as being suspicious/non-suspicious for malignancy. Sextant biopsies, transition zone biopsies and at least two additional biopsies of suspicious areas were taken. In the peripheral zones, 105/408 segments and in the transition zones 19/136 segments were suspicious according to at least one MRI technique. A total of 28/68 (41.2%) patients were found to have cancer. Diffusion-weighted imaging exhibited the highest positive predictive value (0.52) compared with T2-weighted MRI (0.29), dynamic contrast-enhanced MRI (0.33) and 3D-spectroscopy MRI (0.25). Logistic regression showed the probability of cancer in a segment increasing 12-fold when T2-weighted and diffusion-weighted imaging MRI were both suspicious (63.4%) compared with both being non-suspicious (5.2%). The proposed system of analysis and reporting could prove clinically relevant in the decision whether to repeat targeted biopsies. (orig.)

  9. Diagnostic accuracy of dual-echo (in- and opposed-phase) T1-weighted gradient recalled echo for detection and grading of hepatic iron using quantitative and visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Ramanathan, Subramaniyan; Ryan, John; Khanna, Maneesh; Virmani, Vivek; Avruch, Leonard [The University of Ottawa, The Ottawa Hospital, Ottawa, Ontario (Canada)

    2014-07-15

    Detection and quantification of hepatic iron with dual-echo gradient recalled echo (GRE) has been proposed as a rapid alternative to other magnetic resonance imaging (MRI) techniques. Co-existing steatosis and T1 weighting are limitations. This study assesses the accuracy of routine dual-echo GRE. Between 2010 and 2013, 109 consecutive patients underwent multi-echo (ME) MRI and dual-echo GRE for quantification of hepatic iron. Liver iron concentration (LIC) was calculated from ME-MRI. Relative signal intensity (RSI) and fat signal fraction (FSF) were calculated from dual-echo GRE. Four radiologists subjectively evaluated dual-echo GRE (±subtraction). Diagnostic accuracy was compared between techniques and correlated with biopsy using Fisher's exact test, Spearman correlation and regression. The sensitivity of visual detection of iron ranged from 48 to 55 %. Subtraction did not increase sensitivity (p < 0.001). Inter-observer variability was substantial (κ = 0.72). The specificity of visual detection of iron approached 100 % with false-positive diagnoses observed using subtraction. LIC showed a higher correlation with histopathological iron grade (r = 0.94, p < 0.001) compared with RSI (r = 0.65, p = 0.02). Univariate regression showed an association between RSI and LIC (B = 0.98, p < 0.001, CI 0.73-1.23); however, the association was not significant with multi-variate regression including FSF (p = 0.28). Dual-echo GRE has low sensitivity for hepatic iron. Subtraction imaging can result in false-positive diagnoses. (orig.)

  10. Comparison of fast spin echo, fast multiplanner spoiled gradient recalled and conventional T1 and T2 weighted imaging for experimentally induced hepatic tumors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Suh, Jin Suk; Choi, Pil Sik; Lee, Yeon Hee; Yoo, Hyung Sik; Kim, Ki Whang [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-10-15

    To compare the ability of tumor detection and the lesion conspicuity between T1- and T2-weighted fast scanning sequence and T1- and T2-weighted conventional spin echo techniques in MR imaging of hepatic tumors. Hepatic tumors were induced on 13 male Sprague-Dawley rats by feeding 3'-methyl-dimethylethyl aminoazobenzene mixed with Miller's III formula for 12 weeks. MR images were obtained with 1.5 T magnet with dual TMJ coil(Sigma, GE Medical systems, Milwaukee, USA). Animals were anesthetized with 150 mg/kg of ketamine hydrochloride. T2 weighted fast spin echo(FSE), conventional spin echo(CSE) T2- and T1WI, fast multiplanner spoiled gradient recalled(FMPSPGR) imaging were obtained. Number of detected tumors and contrast-to-noise ratio of the tumors were compared for each sequence. Overall 110 tumors were developed. 75% of the tumors were detected on FSE. 65% on FMPSPGR, 41% on conventional T2WI, and 41% on T1WI images. For tumors more than 5 mm in diameter, sensitivity was 88% on FMPSPGR, 65% on conventional T2WI, and 81% on T1WI images respectively. CNR of the tumor was 28.94 {+-} 21.6 on FSE, 13.57 {+-} 8.64 on FMPSPGR, 12.62 {+-} 10.65 on CSE T2WI, and 9.47 {+-} 8.05 on CSE T1WI images, which was significantly high on FSE(p<0.05). Fast spin echo T2WI shows highest sensitivity and tumor-to-liver contrast. FMPSPGR imaging is also favorably comparable with conventional T1WI. Therefore, these two pulse sequences can be useful in clinical condition for hepatic MR imaging.

  11. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance–Guided Radiotherapy Treatment Planning

    Science.gov (United States)

    Freedman, Joshua N.; Collins, David J.; Bainbridge, Hannah; Rank, Christopher M.; Nill, Simeon; Kachelrieß, Marc; Oelfke, Uwe; Leach, Martin O.; Wetscherek, Andreas

    2017-01-01

    Objectives The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. Materials and Methods Ten patients with primary non–small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. Results High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all

  12. T2-Weighted 4D Magnetic Resonance Imaging for Application in Magnetic Resonance-Guided Radiotherapy Treatment Planning.

    Science.gov (United States)

    Freedman, Joshua N; Collins, David J; Bainbridge, Hannah; Rank, Christopher M; Nill, Simeon; Kachelrieß, Marc; Oelfke, Uwe; Leach, Martin O; Wetscherek, Andreas

    2017-10-01

    The aim of this study was to develop and verify a method to obtain good temporal resolution T2-weighted 4-dimensional (4D-T2w) magnetic resonance imaging (MRI) by using motion information from T1-weighted 4D (4D-T1w) MRI, to support treatment planning in MR-guided radiotherapy. Ten patients with primary non-small cell lung cancer were scanned at 1.5 T axially with a volumetric T2-weighted turbo spin echo sequence gated to exhalation and a volumetric T1-weighted stack-of-stars spoiled gradient echo sequence with golden angle spacing acquired in free breathing. From the latter, 20 respiratory phases were reconstructed using the recently developed 4D joint MoCo-HDTV algorithm based on the self-gating signal obtained from the k-space center. Motion vector fields describing the respiratory cycle were obtained by deformable image registration between the respiratory phases and projected onto the T2-weighted image volume. The resulting 4D-T2w volumes were verified against the 4D-T1w volumes: an edge-detection method was used to measure the diaphragm positions; the locations of anatomical landmarks delineated by a radiation oncologist were compared and normalized mutual information was calculated to evaluate volumetric image similarity. High-resolution 4D-T2w MRI was obtained. Respiratory motion was preserved on calculated 4D-T2w MRI, with median diaphragm positions being consistent with less than 6.6 mm (2 voxels) for all patients and less than 3.3 mm (1 voxel) for 9 of 10 patients. Geometrical positions were coherent between 4D-T1w and 4D-T2w MRI as Euclidean distances between all corresponding anatomical landmarks agreed to within 7.6 mm (Euclidean distance of 2 voxels) and were below 3.8 mm (Euclidean distance of 1 voxel) for 355 of 470 pairs of anatomical landmarks. Volumetric image similarity was commensurate between 4D-T1w and 4D-T2w MRI, as mean percentage differences in normalized mutual information (calculated over all respiratory phases and patients), between

  13. Assessment of the image quality and tumor detectability of breath-hold T2-weighted imaging of liver tumors using a fast gradient MR system

    International Nuclear Information System (INIS)

    Yoshida, Kotaro; Suto, Yuji; Sugihara, Shuji; Tokuda, Yukiko

    1996-01-01

    Fourteen patients with various types of focal liver tumors were imaged with turbo spin-echo (TSE), breath-hold TSE (BH-TSE) and half-Fourier single-shot TSE (HASTE) pulse sequences using a fast gradient magnetic resonance imaging (MRI) system. We compared the T2-weighted images of the liver with the TSE, BH-TSE, HASTE and conventional spin-echo (SE) pulse sequences in order to determine whether those fast T2-weighted images, including fat suppressed images, could replace SE images. In quantitative and qualitative analysis, the fast T2-weighted images were slightly superior to the SE images, but they were inferior in the conspicuousness of liver tumor to the SE images. These findings suggest that the fast T2-weighted images can shorten the examination time of the liver MRI, but cannot replace the T2-weighted SE images because of the low conspicuousness. (author)

  14. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    International Nuclear Information System (INIS)

    Juras, Vladimir; Szomolanyi, Pavol; Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan; Heule, Rahel; Bieri, Oliver; Trattnig, Siegfried

    2016-01-01

    To assess the clinical relevance of T 2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T 2 -mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T 2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T 2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T 2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B 1 and B 0 changes. (orig.)

  15. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R. [NTNU, Norwegian University of Science and Technology, Department of Circulation and Medical Imaging, Faculty of Medicine, Trondheim (Norway); Scheenen, Tom W. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Bathen, Tone F.; Selnaes, Kirsten M. [NTNU, Norwegian University of Science and Technology, Department of Circulation and Medical Imaging, Faculty of Medicine, Trondheim (Norway); St. Olavs Hospital, Trondheim University Hospital, Trondheim (Norway)

    2017-07-15

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K{sup trans} and V{sub e}) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K{sup trans} and V{sub e}. GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K{sup trans}, and V{sub e}. The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. (orig.)

  16. Acute myocardial infarction: susceptibility-weighted cardiac MRI for the detection of reperfusion haemorrhage at 1.5 T

    International Nuclear Information System (INIS)

    Durighel, G.; Tokarczuk, P.F.; Karsa, A.; Gordon, F.; Cook, S.A.; O'Regan, D.P.

    2016-01-01

    Aim: To assess whether susceptibility-weighted imaging (SWI) provides better image contrast for the detection of haemorrhagic ischaemia–reperfusion injury in the heart. Materials and methods: Thirty patients (all men; mean age 53 years) underwent cardiac magnetic resonance imaging (MRI) within 7 days of primary percutaneous intervention for acute ST elevation myocardial infarction (STEMI). Multiple gradient-echo T2* sequences with magnitude and phase reconstructions were acquired. A high-pass filtered phase map was used to create a mask for the SWI reconstructions. The difference in image contrast was assessed in those patients with microvascular obstruction. A mixed effects regression model was used to test the effect of echo time and reconstruction method on phase and contrast-to-noise ratio (CNR). Medians and interquartile ranges (IQR) are reported. Results: T2* in haemorrhagic infarcts was shorter than in non-haemorrhagic infarcts (33.5 ms [24.9–43] versus 49.9 ms [44.6–67.6]; p=0.0007). The effect of echo time on phase was significant (p<0.0001), as was the effect of haemorrhage on phase (p=0.0016). SWI reconstruction had a significant effect on the CNR at all echo times (echoes 1–5, p<0.0001; echo 6, p=0.01; echo 7, p=0.02). The median echo number at which haemorrhage was first visible was less for SWI compared to source images (echo 2 versus echo 5, p=0.0002). Conclusion: Cardiac SWI improves the contrast between myocardial haemorrhage and the surrounding tissue following STEMI and has potential as a new tool for identifying patients with ischaemia–reperfusion injury. - Highlights: • Cardiac susceptibility-weighted imaging (SWI) is feasible at 1.5T. • Combining phase and modulus data allows blood products to be seen at shorter echo times. • This sequence improves visualisation of reperfusion myocardial haemorrhage.

  17. T2-weighted liver MRI using the multiVane technique at 3T: Comparison with conventional T2-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyung A [Dept. of Radiology, Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Kim, Young Kon; Jeong, Woo Kyoung; Choi, Dong Il; Lee, Won Jae [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Philips Healthcare Korea, Philips, Seoul (Korea, Republic of); Jung, Sin Ho; Baek, Sun Young [Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul (Korea, Republic of)

    2015-10-15

    To assess the value of applying MultiVane to liver T2-weighted imaging (T2WI) compared with conventional T2WIs with emphasis on detection of focal liver lesions. Seventy-eight patients (43 men and 35 women) with 86 hepatic lesions and 20 pancreatico-biliary diseases underwent MRI including T2WIs acquired using breath-hold (BH), respiratory-triggered (RT), and MultiVane technique at 3T. Two reviewers evaluated each T2WI with respect to artefacts, organ sharpness, and conspicuity of intrahepatic vessels, hilar duct, and main lesion using five-point scales, and made pairwise comparisons between T2WI sequences for these categories. Diagnostic accuracy (Az) and sensitivity for hepatic lesion detection were evaluated using alternative free-response receiver operating characteristic analysis. MultiVane T2WI was significantly better than BH-T2WI or RT-T2WI for organ sharpness and conspicuity of intrahepatic vessels and main lesion in both separate reviews and pairwise comparisons (p < 0.001). With regard to motion artefacts, MultiVane T2WI or BH-T2WI was better than RT-T2WI (p < 0.001). Conspicuity of hilar duct was better with BH-T2WI than with MultiVane T2WI (p = 0.030) or RT-T2WI (p < 0.001). For detection of 86 hepatic lesions, sensitivity (mean, 97.7%) of MultiVane T2WI was significantly higher than that of BH-T2WI (mean, 89.5%) (p = 0.008) or RT-T2WI (mean, 84.9%) (p = 0.001). Applying the MultiVane technique to T2WI of the liver is a promising approach to improving image quality that results in increased detection of focal liver lesions compared with conventional T2WI.

  18. Artifact free T2*-weighted imaging at high spatial resolution using segmented EPI sequences

    International Nuclear Information System (INIS)

    Heiler, Patrick Michael; Schad, Lothar Rudi; Schmitter, Sebastian

    2010-01-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2 * -weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately √2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2 * -weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  19. Utility decay rates of T1-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro

    2009-01-01

    The availability and applicability of the combination of paramagnetic nitroxyl contrast agent and T 1 -weighted gradient echo (GE)-based dynamic magnetic resonance imaging (MRI) measurement for redox imaging are described. The time courses of T 1 -weighted GE MRI signal intensities according to first-order paramagnetic loss of a nitroxyl contrast agent were simulated for several experimental conditions. The apparent decay rate calculated based on decreasing T 1 -weighted MRI contrast (k MRI ) can show an approximate value of the original decay rate (k true ) discretionarily given for simulation with suitable experimental parameters. The difference between k MRI and k true can be sufficiently small under T 1 -weighted spoiled gradient echo (SPGR) scan conditions (repetition time=75 ms, echo time=3 ms, and flip angle=45deg), with a conventional redox-sensitive nitroxyl contrast agent, such as 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPOL) and/or 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (carbamoyl-PROXYL), and with intravenous (i.v.) doses of below 1.5 γmol/g body weight (b.w.) for mice. The results of this simulation suggest that the k MRI of nitroxyl contrast agents can be the primary index of redox status under biological conditions. (author)

  20. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Bratislava (Slovakia); Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Heule, Rahel; Bieri, Oliver [University of Basel Hospital, Division of Radiological Physics, Department of Radiology, Basel (Switzerland); Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2016-06-15

    To assess the clinical relevance of T{sub 2} relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T{sub 2}-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T{sub 2} mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T{sub 2} values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T{sub 2} values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B{sub 1} and B{sub 0} changes. (orig.)

  1. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, J.W. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Kuhweide, R. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Ampe, W. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); D`Hont, G.D. [Dept. of Otorhinolaryngology, A.Z. St.-Jan Brugge, Bruges (Belgium); Offeciers, E.F. [ENT Dept., Sint-Augustinus Medical Inst., Univ. of Antwerp (Belgium); Faes, W.K. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium); Pattyn, G. [Dept. of Radiology, A.Z. St.-Jan Brugge, Bruges (Belgium)

    1996-04-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  2. Inner ear malformations in patients with sensorineural heating loss: detection with gradient-echo (3DFT-CISS) MRI

    International Nuclear Information System (INIS)

    Casselman, J.W.; Kuhweide, R.; Ampe, W.; D'Hont, G.D.; Offeciers, E.F.; Faes, W.K.; Pattyn, G.

    1996-01-01

    The sensitivity of different MRI sequences in the detection of inner ear malformations in patients presenting with sensorineural hearing loss (SNHL) and/or vertigo was evaluated. We studied 650 patients presenting with SNHL and/or vertigo, clinically not suspected of having inner ear malformations. The sensitivity of T1-weigted, Gd-enhanced T1-weighted and (when available) T2-weighted spin-echo images, and three-dimensional Fourier transformation-constructive interference in steady state (3DFT-CISS) gradient-echo images, to unexpected malformations was assessed. Inner ear malformations were found in 15 (2.3%) of these patients. Enlargement of the endolymphatic duct and sac was the most frequent malformation, found in 11 patients. The 3DFT-CISS images showed all lesions; the other sequences were less sensitive and the pathology was missed, partially or only retrospectively seen in 11 of the 15 patients. Therefore, in addition to the routine unenhanced and Gd-enhanced T1-weighted and T2-weighted images, thin gradient-echo (3DFT-CISS) images are necessary to detect all clinically unexpected inner ear malformations in patients presenting with vertigo and/or SNHL. (orig.)

  3. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage.

    Science.gov (United States)

    Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried

    2016-06-01

    To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.

  4. MRI of the popliteofibular ligament: isotropic 3D WE-DESS versus coronal oblique fat-suppressed T2W MRI

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Lee, J.C.; Healy, J.C.

    2007-01-01

    The objective was to compare isotropic 3D water excitation double-echo steady state (WE-DESS) MRI with coronal oblique fat-suppressed T2-weighted (FS T2W) images in the identification of the popliteofibular ligament (PFL). A prospective analysis of 122 consecutive knee MRIs was performed in patients referred for knee pain from the orthopaedic clinic. In addition to the standard knee sequences, isotropic WE-DESS volume acquisition through the whole knee and coronal oblique FS T2W fast spin echo sequences through the posterolateral corner were obtained. The presence of the popliteus and biceps femoris tendons, lateral collateral and PFL was documented. Anterior cruciate ligament injury was present in 33 cases and these were excluded from the study because of the risk of associated PFL injury, leaving a total of 89 cases. Of the 42 patients in whom arthroscopic evaluation was subsequently obtained, none were found to have an injury to the PFL. The lateral collateral ligament, biceps femoris and popliteus tendon were identified in all cases on all sequences. The PFL was seen in 81 (91.0%; 95% CI 85.1-97.0%) patients using the WE-DESS sequence and 63 (70.8%; 95% CI 61.3-80.2%) patients using the coronal oblique FS T2W sequence, a statistically significant difference (p < 0.00005). Isotropic 3D WE-DESS MRI significantly enhances our ability to identify the popliteofibular ligament compared with coronal oblique fat-suppressed T2-weighted images. (orig.)

  5. Uterine cervical carcinoma: a comparison of two- and three-dimensional T2-weighted turbo spin-echo MR imaging at 3.0 T for image quality and local-regional staging

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.R. [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, 222, Banpo-daero, Seocho-gu, Seoul (Korea, Republic of); The Catholic University of Korea, Department of Radiology, Incheon St. Mary' s Hospital, College of Medicine, Bupyeong 6-dong, Bupyeong-gu, Incheon (Korea, Republic of); Rha, S.E.; Choi, B.G.; Oh, S.N.; Park, M.Y.; Byun, J.Y. [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, 222, Banpo-daero, Seocho-gu, Seoul (Korea, Republic of)

    2013-04-15

    To compare three-dimensional (3D) T2-weighted turbo spin-echo (TSE) with multiplanar two-dimensional (2D) T2-weighted TSE for the evaluation of invasive cervical carcinoma. Seventy-five patients with cervical carcinoma underwent MRI of the pelvis at 3.0 T, using both 5-mm-thick multiplanar 2D (total acquisition time = 12 min 25 s) and 1-mm-thick coronal 3D T2-weighted TSE sequences (7 min 20 s). Quantitative analysis of signal-to-noise ratio (SNR) and qualitative analysis of image quality were performed. Local-regional staging was performed in 45 patients who underwent radical hysterectomy. The estimated SNR of cervical carcinoma and the relative tumour contrast were significantly higher on 3D imaging (P < 0.0001). Tumour conspicuity was better with the 3D sequence, but the sharpness of tumour margin was better with the 2D sequence. No significant difference in overall image quality was noted between the two sequences (P = 0.38). There were no significant differences in terms of the diagnostic accuracy, sensitivity, and specificity of parametrial invasion, vaginal invasion, and lymph node metastases. Multiplanar reconstruction 3D T2-weighted imaging is largely equivalent to 2D T2-weighted imaging for overall image quality and staging accuracy of cervical carcinoma with a shorter MR data acquisition, but has limitations with regard to the sharpness of the tumour margin. circle 3D T2-weighted MR sequence is equivalent to 2D for cervical carcinoma staging. (orig.)

  6. Performance of PROPELLER relative to standard FSE T2-weighted imaging in pediatric brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Vertinsky, A.T. [Vancouver General Hospital, Department of Radiology, Vancouver (Canada); University of British Columbia, Department of Radiology, Vancouver (Canada); Rubesova, Erika; Bammer, Sabine; White, Allan; Barnes, Patrick D. [Stanford University Medical Center, Lucile Salter Packard Children' s Hospital, Palo Alto, CA (United States); Krasnokutsky, Michael V. [Madigan Army Medical Center, Department of Radiology, Tacoma, WA (United States); Uniformed Services University of Health Sciences, Department of Radiology, Bethesda, MD (United States); Rosenberg, Jarrett; Bammer, Roland [Lucas Center, Stanford University, Department of Radiology, Palo Alto, CA (United States)

    2009-10-15

    T2-weighted fast spin-echo imaging (T2-W FSE) is frequently degraded by motion in pediatric patients. MR imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) employs alternate sampling of k-space to achieve motion reduction. To compare T2-W PROPELLER FSE (T2-W PROP) with conventional T2-W FSE for: (1) image quality; (2) presence of artefacts; and (3) ability to detect lesions. Ninety-five pediatric patients undergoing brain MRI (1.5 T) were evaluated with T2-W FSE and T2-W PROP. Three independent radiologists rated T2-W FSE and T2-W PROP, assessing image quality, presence of artefacts, and diagnostic confidence. Chi-square analysis and Wilcoxon signed rank test were used to assess the radiologists' responses. Compared with T2-W FSE, T2-W PROP demonstrated better image quality and reduced motion artefacts, with the greatest benefit in children younger than 6 months. Although detection rates were comparable for the two sequences, blood products were more conspicuous on T2-W FSE. Diagnostic confidence was higher using T2-W PROP in children younger than 6 months. Average inter-rater agreement was 87%. T2-W PROP showed reduced motion artefacts and improved diagnostic confidence in children younger than 6 months. Thus, use of T2-W PROP rather than T2-W FSE should be considered in routine imaging of this age group, with caution required in identifying blood products. (orig.)

  7. Performance of PROPELLER relative to standard FSE T2-weighted imaging in pediatric brain MRI

    International Nuclear Information System (INIS)

    Vertinsky, A.T.; Rubesova, Erika; Bammer, Sabine; White, Allan; Barnes, Patrick D.; Krasnokutsky, Michael V.; Rosenberg, Jarrett; Bammer, Roland

    2009-01-01

    T2-weighted fast spin-echo imaging (T2-W FSE) is frequently degraded by motion in pediatric patients. MR imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) employs alternate sampling of k-space to achieve motion reduction. To compare T2-W PROPELLER FSE (T2-W PROP) with conventional T2-W FSE for: (1) image quality; (2) presence of artefacts; and (3) ability to detect lesions. Ninety-five pediatric patients undergoing brain MRI (1.5 T) were evaluated with T2-W FSE and T2-W PROP. Three independent radiologists rated T2-W FSE and T2-W PROP, assessing image quality, presence of artefacts, and diagnostic confidence. Chi-square analysis and Wilcoxon signed rank test were used to assess the radiologists' responses. Compared with T2-W FSE, T2-W PROP demonstrated better image quality and reduced motion artefacts, with the greatest benefit in children younger than 6 months. Although detection rates were comparable for the two sequences, blood products were more conspicuous on T2-W FSE. Diagnostic confidence was higher using T2-W PROP in children younger than 6 months. Average inter-rater agreement was 87%. T2-W PROP showed reduced motion artefacts and improved diagnostic confidence in children younger than 6 months. Thus, use of T2-W PROP rather than T2-W FSE should be considered in routine imaging of this age group, with caution required in identifying blood products. (orig.)

  8. Artifact free T2{sup *}-weighted imaging at high spatial resolution using segmented EPI sequences

    Energy Technology Data Exchange (ETDEWEB)

    Heiler, Patrick Michael; Schad, Lothar Rudi [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Schmitter, Sebastian [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology

    2010-07-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2{sup *}-weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately {radical}2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2{sup *}-weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  9. Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine.

    Science.gov (United States)

    Sayah, Anousheh; Jay, Ann K; Toaff, Jacob S; Makariou, Erini V; Berkowitz, Frank

    2016-09-01

    Reducing lumbar spine MRI scanning time while retaining diagnostic accuracy can benefit patients and reduce health care costs. This study compares the effectiveness of a rapid lumbar MRI protocol using 3D T2-weighted sampling perfection with application-optimized contrast with different flip-angle evolutions (SPACE) sequences with a standard MRI protocol for evaluation of lumbar spondylosis. Two hundred fifty consecutive unenhanced lumbar MRI examinations performed at 1.5 T were retrospectively reviewed. Full, rapid, and complete versions of each examination were interpreted for spondylotic changes at each lumbar level, including herniations and neural compromise. The full examination consisted of sagittal T1-weighted, T2-weighted turbo spin-echo (TSE), and STIR sequences; and axial T1- and T2-weighted TSE sequences (time, 18 minutes 40 seconds). The rapid examination consisted of sagittal T1- and T2-weighted SPACE sequences, with axial SPACE reformations (time, 8 minutes 46 seconds). The complete examination consisted of the full examination plus the T2-weighted SPACE sequence. Sensitivities and specificities of the full and rapid examinations were calculated using the complete study as the reference standard. The rapid and full studies had sensitivities of 76.0% and 69.3%, with specificities of 97.2% and 97.9%, respectively, for all degenerative processes. Rapid and full sensitivities were 68.7% and 66.3% for disk herniation, 85.2% and 81.5% for canal compromise, 82.9% and 69.1% for lateral recess compromise, and 76.9% and 69.7% for foraminal compromise, respectively. Isotropic SPACE T2-weighted imaging provides high-quality imaging of lumbar spondylosis, with multiplanar reformatting capability. Our SPACE-based rapid protocol had sensitivities and specificities for herniations and neural compromise comparable to those of the protocol without SPACE. This protocol fits within a 15-minute slot, potentially reducing costs and discomfort for a large subgroup of

  10. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo.

    Directory of Open Access Journals (Sweden)

    David Milford

    Full Text Available T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset. We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

  11. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.

    Science.gov (United States)

    Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong

    2015-02-01

    Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and

  12. MRI of the cervical spine with T1-weighted multislice flash sequences

    International Nuclear Information System (INIS)

    Schubeus, P.; Sander, B.; Schoerner, W.; Tosch, U.; Lanksch, W.R.; Felix, R.; Klinikum Rudolf Virchow, Berlin

    1990-01-01

    A study has been carried out to evaluate contrast and image quality of cervical structures using multislice 2D-flash sequences with long repetition times (TR = 400 ms.) and short echo delay times (TE = 5.8 ms.). The examinations were carried out using ten normals with an MRI of 1.5 Tesla and flip angles of 10, 20, 30, 50, 70 and 90deg. The best contrast between intervertebral disc and surrounding tissue was obtained between 50 and 70deg, best contrast between compact bone and CSF with 10deg. In order to demonstrate degenerative changes of the cervical spine, it appears sensible to use a combination of these angles. The described sequences produce good images of the cervical structures with little image degradation. Compared to T 1 -weighted spin-echo sequences, the method has a number of significant advantages, such as variations in image contrast, higher maximal number of slices, continuous imaging and less imaging time. (orig.) [de

  13. Comparing consistency of R2* and T2*-weighted BOLD analysis of resting state fetal fMRI

    Science.gov (United States)

    Seshamani, Sharmishtaa; Blazejewska, Anna I.; Gatenby, Christopher; Mckown, Susan; Caucutt, Jason; Dighe, Manjiri; Studholme, Colin

    2015-03-01

    Understanding when and how resting state brain functional activity begins in the human brain is an increasing area of interest in both basic neuroscience and in the clinical evaluation of the brain during pregnancy and after premature birth. Although fMRI studies have been carried out on pregnant women since the 1990's, reliable mapping of brain function in utero is an extremely challenging problem due to the unconstrained fetal head motion. Recent studies have employed scrubbing to exclude parts of the time series and whole subjects from studies in order to control the confounds of motion. Fundamentally, even after correction of the location of signals due to motion, signal intensity variations are a fundamental limitation, due to coil sensitivity and spin history effects. An alternative technique is to use a more parametric MRI signal derived from multiple echoes that provides a level of independence from basic MRI signal variation. Here we examine the use of R2* mapping combined with slice based multi echo geometric distortion correction for in-utero studies. The challenges for R2* mapping arise from the relatively low signal strength of in-utero data. In this paper we focus on comparing activation detection in-utero using T2W and R2* approaches. We make use a subset of studies with relatively limited motion to compare the activation patterns without the additional confound of significant motion. Results at different gestational ages indicate comparable agreement in many activation patterns when limited motion is present, and the detection of some additional networks in the R2* data, not seen in the T2W results.

  14. Diffusion-weighted MRI of maple syrup urine disease encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, F.; Mavilla, L. [Servizio di Neuroradiologia, Azienda Ospedaliera Policlinico, Modena (Italy); Berardi, A.; Ferrari, F. [Servizio di Neonatologia, Azienda Ospedaliera Policlinico, Modena (Italy); Burlina, A.B. [Dipartimento di Pediatria, Azienda Ospedaliera, Universita di Padova, Padua (Italy)

    2002-06-01

    We report the case of a newborn child with maple syrup urine disease (MSUD), diagnosed at 10 days of life. Diffusion-weighted echoplanar MRI showed marked hyperintensity of the cerebellar white matter, the brainstem, the cerebral peduncles, the thalami, the dorsal limb of the internal capsule and the centrum semiovale, while conventional dual-echo sequence evidenced only a weak diffuse T2 hyperintensity in the cerebellar white matter and in the dorsal brainstem. The apparent diffusion coefficient (ADC) of these regions was markedly (>80%) decreased. Therefore, in agreement with current hypotheses on MSUD pathogenesis, MSUD oedema proves to be a cytotoxic oedema. Diffusion-weighted MRI may be a valuable tool, more sensitive than conventional spin-echo techniques, to assess the extent and progression of cytotoxicity in MSUD, as well as the effectiveness of the therapeutic interventions. (orig.)

  15. Diffusion-weighted MRI of maple syrup urine disease encephalopathy

    International Nuclear Information System (INIS)

    Cavalleri, F.; Mavilla, L.; Berardi, A.; Ferrari, F.; Burlina, A.B.

    2002-01-01

    We report the case of a newborn child with maple syrup urine disease (MSUD), diagnosed at 10 days of life. Diffusion-weighted echoplanar MRI showed marked hyperintensity of the cerebellar white matter, the brainstem, the cerebral peduncles, the thalami, the dorsal limb of the internal capsule and the centrum semiovale, while conventional dual-echo sequence evidenced only a weak diffuse T2 hyperintensity in the cerebellar white matter and in the dorsal brainstem. The apparent diffusion coefficient (ADC) of these regions was markedly (>80%) decreased. Therefore, in agreement with current hypotheses on MSUD pathogenesis, MSUD oedema proves to be a cytotoxic oedema. Diffusion-weighted MRI may be a valuable tool, more sensitive than conventional spin-echo techniques, to assess the extent and progression of cytotoxicity in MSUD, as well as the effectiveness of the therapeutic interventions. (orig.)

  16. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T.

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2015-01-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less

  17. MR Imaging of the Spine at 3.0T with T2-Weighted IDEAL Fast Recovery Fast Spin-Echo Technique

    International Nuclear Information System (INIS)

    Ren, Ai Jun; Guo, Yong; Tian, Shu Ping; Shi, Li Jing; Huang, Min Hua

    2012-01-01

    To compare the iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) method with a fat-saturated T2-weighted (T2W) fast recovery fast spin-echo (FRFSE) imaging of the spine. Images acquired at 3.0 Tesla (T) in 35 patients with different spine lesions using fat-saturated T2W FRFSE imaging were compared with T2W IDEAL FRFSE images. Signal-to-noise ratio (SNR)-efficiencies measurements were made in the vertebral bodies and spinal cord in the mid-sagittal plane or nearest to the mid-sagittal plane. Images were scored with the consensus of two experienced radiologists on a four-point grading scale for fat suppression and overall image quality. Statistical analysis of SNR-efficiency, fat suppression and image quality scores was performed with a paired Student's t test and Wilcoxon's signed rank test. Signal-to-noise ratio-efficiency for both vertebral body and spinal cord was higher with T2W IDEAL FRFSE imaging (p < 0.05) than with T2W FRFSE imaging. T2W IDEAL FRFSE demonstrated superior fat suppression (p < 0.01) and image quality (p < 0.01) compared to fat-saturated T2W FRFSE. As compared with fat-saturated T2W FRFSE, IDEAL can provide a higher image quality, higher SNR-efficiency, and consistent, robust and uniform fat suppression. T2W IDEAL FRFSE is a promising technique for MR imaging of the spine at 3.0T.

  18. MRI of the cervical spine with 3D gradient echo sequence at 3 T: initial experience

    International Nuclear Information System (INIS)

    Xiao, L.; Siu, C.W.J.; Yeung, K.; Leung, A.; Yuen, M.K.; Wong, Y.C.

    2015-01-01

    Aim: The aim of this study was to compare three-dimensional (3D) high resolution T2*-weighted gradient echo (3D FFE) magnetic resonance (MR) sequence with conventional 2D T2-weighted turbo spin echo (TSE) MR sequence for imaging of the cervical spine, especially to assess the detectability of the internal anatomy of the cervical spinal cord, i.e. to distinguish the grey and white matter. Methods: Fifteen volunteers were examined at 3.0T MR unit. Signal-to-noise (SNR), contrast-to-noise (CNR) and image homogeneity were evaluated. In the visual analysis, the visibility of anatomical structures of the cervical spine and artifacts were assessed. The nonparametric method of paired sample t-test was adopted to evaluate the differences between the sequences. Results: The 3D FFE sequence provided better results for CNR, cerebrospinal fluid (CSF) versus white matter, grey matter, disk and bone. Moreover, it yielded good results for the CNR grey matter versus white matter. The butterfly-shaped “H” is clearly displayed in the 3D FFE sequence. The statistical analysis revealed the statistically significant difference between the 2D TSE and 3D FFE sequences for the contrast of CSF versus spinal cord (both grey matter and white matter). Conclusion: The 3D FFE sequence in MR imaging of the cervical spinal cord is superior in delineation of spinal cord anatomical structures compared to 2D TSE sequence. -- Highlights: •We investigate the potential of 3D FFE sequence to distinguish the grey-white of the cervical spinal cord at 3T MRI system. •We optimized The 3D FFE sequence was optimized to increase the grey-white contrast. •Utilizing medium TE for T2W and the shortest TR for reduction of susceptibility related artifacts and motion artefacts. •This technique may increase the confidence in the diagnosis of disease with the improved delineation of cord anatomy

  19. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Fatemi, A [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy. The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.

  20. Evaluation of iron colloid-enhanced T{sub 2}-weighted fast MR imaging of hepatocellular carcinoma. Comparison of SE, TSE and TGSE sequences

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Shuji; Suto, Yuji; Kamba, Masayuki; Yoshida, Kotarou; Ohta, Yoshio [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1996-06-01

    We have applied chondroitin sulfate iron colloid (CSIC) as a contrast agent for MRI in detecting hepatocellular carcinoma (HCC) on conventional spin-echo sequences (SE). In this report, we evaluated CSIC-enhanced T{sub 2}-weighted fast MR imaging of HCC. MR imaging were performed before and after i.v. administration of CSIC in 15 patients with 46 HCCs. T{sub 2}-weighted SE (1800/80/2, 210 x 256 matrix), T{sub 2}-weighted turbo spin-echo (TSE1800) (1800/90/5, echo train length=7, 252 x 256 matrix), TSE (3500/90/5, echo train length=7, 252 x 256 matrix) (TSE7), TSE (3500/99/5, echo train length=11, 242 x 256 matrix) (TSE11) and T{sub 2}-weighted turbo-gradient spine-echo (TGSE) (4500/108/4, echo train length=33, 252 x 256 matrix) images were compared quantitatively and qualitatively. In all sequences, liver signal-to-noise ratio (SNR) was significantly decreased and lesion-to-liver contrast-to-noise ratio (CNR) was significantly increased after CSIC administration. Although decreased ratio in liver and tumor SNR caused by CSIC was smaller on TSE sequences compared with SE and TGSE, increased ratio in lesion-to-liver CNR was largest on TSE7. Either before or after i.v. administration of CSIC, the number of detectable lesions was largest on TSE7. TSE with used longer TR, TE and decreased echo factor was useful method for CSIC-enhanced abdominal MR imaging. (author)

  1. 7 Tesla quantitative hip MRI: T1, T2 and T2* mapping of hip cartilage in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Lazik, Andrea; Theysohn, Jens M.; Geis, Christina [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Johst, Soeren; Kraff, Oliver [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Ladd, Mark E. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); German Cancer Research Center (DKFZ), Medical Physics in Radiology, Heidelberg (Germany); Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany)

    2016-05-15

    To evaluate the technical feasibility and applicability of quantitative MR techniques (delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 mapping, T2* mapping) at 7 T MRI for assessing hip cartilage. Hips of 11 healthy volunteers were examined at 7 T MRI with an 8-channel radiofrequency transmit/receive body coil using multi-echo sequences for T2 and T2* mapping and a dual flip angle gradient-echo sequence before (T1{sub 0}) and after intravenous contrast agent administration (T1{sub Gd}; 0.2 mmol/kg Gd-DTPA{sup 2-} followed by 0.5 h of walking and 0.5 h of rest) for dGEMRIC. Relaxation times of cartilage were measured manually in 10 regions of interest. Pearson's correlations between R1{sub delta} = 1/T1{sub Gd} - 1/T1{sub 0} and T1{sub Gd} and between T2 and T2* were calculated. Image quality and the delineation of acetabular and femoral cartilage in the relaxation time maps were evaluated using discrete rating scales. High correlations were found between R1{sub delta} and T1{sub Gd} and between T2 and T2* relaxation times (all p < 0.01). All techniques delivered diagnostic image quality, with best delineation of femoral and acetabular cartilage in the T2* maps (mean 3.2 out of a maximum of 4 points). T1, T2 and T2* mapping of hip cartilage with diagnostic image quality is feasible at 7 T. To perform dGEMRIC at 7 T, pre-contrast T1 mapping can be omitted. (orig.)

  2. Endometrial cancer: preoperative staging using three-dimensional T2-weighted turbo spin-echo and diffusion-weighted MR imaging at 3.0 T: a prospective comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Masatoshi; Kim, Tonsok; Onishi, Hiromitsu; Nakamoto, Atsushi; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Suita, Osaka (Japan); Imaoka, Izumi; Kagawa, Yuki; Murakami, Takamichi [Kinki University School of Medicine, Department of Radiology, Osaka (Japan); Ueguchi, Takashi; Tatsumi, Mitsuaki [Osaka University Hospital, Department of Radiology, Osaka (Japan); Enomoto, Takayuki [Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology, Osaka (Japan); Niigata University School of Medicine, Department of Obstetrics and Gynecology, Niigata (Japan); Kimura, Tadashi [Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology, Osaka (Japan)

    2013-08-15

    To prospectively assess the efficacy of 3-T magnetic resonance (MR) imaging using the three-dimensional turbo spin-echo T2-weighted and diffusion-weighted technique (3D-TSE/DW) compared with that of conventional imaging using the two-dimensional turbo spin-echo T2-weighted and dynamic contrast-enhanced technique (2D-TSE/DCE) for the preoperative staging of endometrial cancer, with pathological analysis as the reference standard. Seventy-one women with endometrial cancer underwent MR imaging using 3D-TSE/DW (b = 1,000 s/mm{sup 2}) and 2D-TSE/DCE. Two radiologists independently assessed the two imaging sets. Accuracy, sensitivity, and specificity for staging were analysed with the McNemar test; the areas under the receiver operating characteristic curve (Az) were compared with a univariate z-score test. The results for assessing deep myometrial invasion, accuracy, sensitivity, specificity and Az, respectively, were as follows: 3D-TSE/DW - observer 1, 87 %, 95 %, 85 % and 0.96; observer 2, 92 %, 84 %, 94 % and 0.95; 2D-TSE/DCE - observer 1, 80 %, 79 %, 81 % and 0.89; observer 2, 86 %, 84 %, 87 % and 0.86. Most of the values were higher with 3D-TSE/DW without significant differences (P > 0.12). For assessing cervical stromal invasion, there were no significant differences in those values for both observers (P > 0.6). Accuracy of 3D-TSE/DW was at least equivalent to that of the conventional technique for the preoperative assessment of endometrial cancer. (orig.)

  3. Fat-suppressed T2-weighted MRI appearance of subchondral insufficiency fracture of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, Kazuhiko; Yamamoto, Takuaki; Motomura, Goro; Karasuyama, Kazuyuki; Kubo, Yusuke; Iwamoto, Yukihide [Kyushu University, Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan)

    2016-11-15

    Our aims were to investigate the imaging appearance of subchondral insufficiency fracture (SIF) of the femoral head based on fat-suppressed T2-weighted MRI, and evaluate its correlation with the clinical outcomes following conservative treatment. We retrospectively evaluated 40 hips in 37 patients with SIF of the femoral head (12 males and 25 females; mean age 55.8 years, range 22-78 years). MRI examinations were performed within 3 months after the onset of hip pain. Using fat-suppressed T2-weighted imaging, we evaluated the hips for the intensity of the subchondral bone (corresponding to the area superior to the low intensity band on T1-weighted images) as well as bone marrow edema, joint effusion, and presence of the band lesion. We then correlated the intensity of the subchondral bone with clinical outcomes. The hips were classified into three types based on subchondral intensity on fat-suppressed T2-weighted images: type 1 (21 hips) showed high intensity, type 2 (eight hips) showed heterogeneous intensity, and type 3 (11 hips) showed low intensity. The mean period between pain onset and MRI examination was significantly longer for type 2 hips than for type 1. Healing rates were 86 % for type 1, 75 % for type 2, and 18 % for type 3. SIF cases were classified into three types based on subchondral intensity on fat-suppressed T2-weighted imaging performed within 3 months after pain onset. Type 3 SIF tended to be intractable to conservative treatment compared to type 1 and type 2. (orig.)

  4. Exact algebraization of the signal equation of spoiled gradient echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)

    2010-08-07

    The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.

  5. BLADE acquisition method improves T2-weighted MR images of the female pelvis compared with a standard fast spin-echo sequence

    International Nuclear Information System (INIS)

    Fujimoto, Koji; Koyama, Takashi; Tamai, Ken; Morisawa, Nobuko; Okada, Tomohisa; Togashi, Kaori

    2011-01-01

    Purpose: To investigate feasibility of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER or BLADE) T2-weighted imaging (T2WI) of the female pelvis by comparing it with standard fast spin-echo T2WI (STD-T2WI). Materials and methods: Sagittal STD-T2WI and BLADE-T2WI of the female pelvis were performed with (36 patients) or without (15 patients) administration of butylscopolamine on a 1.5 T MR unit. Two radiologists independently rated depiction of the uterus, ovary, intestines, bladder, gynecological lesions, overall quality, and artifacts using a four-point scale. Results were compared between STD-T2WI vs. BLADE-T2WI either with (B+) or without (B−) administration of butylscopolamine, BLADE-T2WI (B−) vs. BLADE-T2WI (B+), and STD-T2WI (B+) vs. BLADE-T2WI (B−). Results: When butylscopolamine was administrated, depiction of the uterus, ovary, intestines, gynecological lesions, and overall image quality was rated higher and artifacts were rated fewer for BLADE-T2WI with significance compared with STD-T2WI. When the drug was not administrated, significant difference was observed in depiction of the lesion, overall quality, and artifacts. Depiction of the uterus, gynecological lesion, and overall quality was rated significantly higher and artifacts were fewer in BLADE-T2WI (B+) than in BLADE-T2WI (B−). Conclusion: BLADE method was feasible for female pelvic MRI, with best image quality in BLADE-T2WI (B+).

  6. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast

    International Nuclear Information System (INIS)

    Hodgson, R.J.; Emery, P.; Grainger, A.J.; O'Connor, P.J.; Evans, R.; Coates, L.; Marzo-Ortega, H.; Helliwell, P.; McGonagle, D.; Robson, M.D.

    2011-01-01

    To compare conventional MRI, ultrashort echo time MRI and ultrasound for assessing the extent of tendon abnormalities in spondyloarthritis. 25 patients with spondyloarthritis and Achilles symptoms were studied with MRI and ultrasound. MR images of the Achilles tendon were acquired using T1-weighted spin echo, gradient echo and ultrashort echo time (UTE) sequences with echo times (TE) between 0.07 and 16 ms, before and after intravenous contrast medium. Greyscale and power Doppler ultrasound were also performed. The craniocaudal extent of imaging abnormalities measured by a consultant musculoskeletal radiologist was compared between the different techniques. Abnormalities were most extensive on spoiled gradient echo images with TE=2 ms. Contrast enhancement after intravenous gadolinium was greatest on the UTE images (TE=0.07 ms). Fewer abnormalities were demonstrated using unenhanced UTE. Abnormalities were more extensive on MRI than ultrasound. Contrast enhancement was more extensive than power Doppler signal. 3D spoiled gradient echo images with an echo time of 2 ms demonstrate more extensive tendon abnormalities than the other techniques in spondyloarthritis. Abnormalities of vascularity are best demonstrated on enhanced ultrashort echo time images. (orig.)

  7. Pre-treatment functional MRI of breast cancer: T2* evaluation at 3 T and relationship to dynamic contrast-enhanced and diffusion-weighted imaging.

    Science.gov (United States)

    Kousi, Evanthia; O'Flynn, Elizabeth A M; Borri, Marco; Morgan, Veronica A; deSouza, Nandita M; Schmidt, Maria A

    2018-05-31

    Baseline T2* relaxation time has been proposed as an imaging biomarker in cancer, in addition to Dynamic Contrast-Enhanced (DCE) MRI and diffusion-weighted imaging (DWI) parameters. The purpose of the current work is to investigate sources of error in T2* measurements and the relationship between T2* and DCE and DWI functional parameters in breast cancer. Five female volunteers and thirty-two women with biopsy proven breast cancer were scanned at 3 T, with Research Ethics Committee approval. T2* values of the normal breast were acquired from high-resolution, low-resolution and fat-suppressed gradient-echo sequences in volunteers, and compared. In breast cancer patients, pre-treatment T2*, DCE MRI and DWI were performed at baseline. Pathologically complete responders at surgery and non-responders were identified and compared. Principal component analysis (PCA) and cluster analysis (CA) were performed. There were no significant differences between T2* values from high-resolution, low-resolution and fat-suppressed datasets (p > 0.05). There were not significant differences between baseline functional parameters in responders and non-responders (p > 0.05). However, there were differences in the relationship between T2* and contrast-agent uptake in responders and non-responders. Voxels of similar characteristics were grouped in 5 clusters, and large intra-tumoural variations of all parameters were demonstrated. Breast T2* measurements at 3 T are robust, but spatial resolution should be carefully considered. T2* of breast tumours at baseline is unrelated to DCE and DWI parameters and contribute towards describing functional heterogeneity of breast tumours. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation

    International Nuclear Information System (INIS)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R.; Graessner, J.; Petersen, K.; Reitmeier, F.; Jaehne, M.

    2006-01-01

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm 2 , 500 sec/mm 2 and 1000 sec/mm 2 . Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10 -3 mm 2 /sec (95% CI, 1

  9. 3D hybrid profile order technique in a single breath-hold 3D T2-weighted fast spin-echo sequence: Usefulness in diagnosis of small liver lesions.

    Science.gov (United States)

    Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2018-01-01

    We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.

  10. MRI of intracerebral haematoma at low field (0.15T) using T2 dependent partial saturation sequences

    International Nuclear Information System (INIS)

    Bydder, G.M.; Pennock, J.M.; Porteous, R.; Dubowitz, L.M.S.; Gadian, D.G.; Young, I.R.

    1988-01-01

    Results of MRI at 0.15T in twelve successive patients with intracerebral haematoma are reviewed. Using T 2 weighted spin echo (SE) and partial saturation (PS without a refocussing 180 0 pulse) sequences, low intensity areas were seen in eleven of the twelve cases. These included central regions (three cases), a peripheral rim (seven cases) and more diffuse patterns involving the brainstem and cerebral hemispheres (two cases). One case initially displayed a peripheral rim and later a central low intensity region. Central low intensity regions were seen in acute, subacute, and chronic cases. Follow up in five cases displayed an increase in signal within the haematoma in three cases and a decrease in signal intensity in two cases. Low signal intensity areas can be seen within and around intracerebral haematomas imaged with T 2 weighted sequences at low field strength. (orig.)

  11. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors. A pilot study

    International Nuclear Information System (INIS)

    Morana, Giovanni; Tortora, Domenico; Severino, Mariasavina; Rossi, Andrea; Alves, Cesar Augusto; Finlay, Jonathan L.; Nozza, Paolo; Ravegnani, Marcello; Pavanello, Marco; Milanaccio, Claudia; Garre, Maria Luisa; Maghnie, Mohamad

    2018-01-01

    The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naive intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT. (orig.)

  12. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Morana, Giovanni; Tortora, Domenico; Severino, Mariasavina; Rossi, Andrea [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Alves, Cesar Augusto [Hospital Das Clinicas, Radiology Department, Sao Paulo (Brazil); Finlay, Jonathan L. [Nationwide Children' s Hospital and The Ohio State University, Division of Hematology, Oncology and BMT, Columbus, OH (United States); Nozza, Paolo [Istituto Giannina Gaslini, Pathology Unit, Genoa (Italy); Ravegnani, Marcello; Pavanello, Marco [Istituto Giannina Gaslini, Neurosurgery Unit, Genoa (Italy); Milanaccio, Claudia; Garre, Maria Luisa [Istituto Giannina Gaslini, Neuro-oncology Unit, Genoa (Italy); Maghnie, Mohamad [Istituto Giannina Gaslini, University of Genova, Pediatric Endocrine Unit, Genoa (Italy)

    2018-01-15

    The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naive intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT. (orig.)

  13. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  15. T2 Mapping of the Sacroiliac Joints With 3-T MRI: A Preliminary Study.

    Science.gov (United States)

    Lefebvre, Guillaume; Bergère, Antonin; Rafei, Mazen El; Duhamel, Alain; Teixeira, Pedro; Cotten, Anne

    2017-08-01

    The objective of this study was to assess the feasibility of T2 relaxation time measurements of the sacroiliac joints. The sacroiliac joints of 40 patients were imaged by 3-T MRI using an oblique axial multislice multiecho spin-echo T2-weighted sequence. Manual plotting and automatic subdivision of ROIs allowed us to obtain T2 values for up to 48 different areas per patient (posterior and anterior parts, sacral, intermediate, and iliac parts). Intraand interobserver reproducibility of T2 values were calculated after independent assessment by two musculoskeletal radiologists. A total of 1656 measurement sites could be analyzed. Mean (± SD) T2 values were 40.6 ± 6.7 ms and 41.2 ± 6.3 ms for observer 1 and 39.9 ± 6.6 ms for observer 2. The intraobserver intraclass correlation coefficient was 0.72 (95% CI, 0.70-0.74), and the interobserver intraclass correlation coefficient was 0.71 (95% CI, 0.68-0.72). Our study shows the feasibility of T2 relaxation time measurements at the sacroiliac joints.

  16. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions.

    Science.gov (United States)

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco

    2015-10-01

    To assess the role of STIR, T2-weighted TSE and DWIBS sequences for detecting and characterizing breast lesions and to compare unenhanced (UE)-MRI results with contrast-enhanced (CE)-MRI and histological findings, having the latter as the reference standard. Two hundred eighty consecutive patients (age range, 27-73 years; mean age±standard deviation (SD), 48.8±9.8years) underwent MR examination with a diagnostic protocol including STIR, T2-weighted TSE, THRIVE and DWIBS sequences. Two radiologists blinded to both dynamic sequences and histological findings evaluated in consensus STIR, T2-weighted TSE and DWIBS sequences and after two weeks CE-MRI images searching for breast lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for UE-MRI and CE-MRI were calculated. UE-MRI results were also compared with CE- MRI. UE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 94%, 79%, 86%, 79% and 94%, respectively. CE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively. No statistically significant difference between UE-MRI and CE-MRI was found. Breast UE-MRI could represent an accurate diagnostic tool and a valid alternative to CE-MRI for evaluating breast lesions. STIR and DWIBS sequences allow to detect breast lesions while T2-weighted TSE sequences and ADC values could be useful for lesion characterization. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Reference-free unwarping of single-shot spatiotemporally encoded MRI using asymmetric self-refocused echoes acquisition

    Science.gov (United States)

    Chen, Ying; Chen, Song; Zhong, Jianhui; Chen, Zhong

    2015-05-01

    This paper presents a phase evolution rewinding algorithm for correcting the geometric and intensity distortions in single-shot spatiotemporally encoded (SPEN) MRI with acquisition of asymmetric self-refocused echo trains. Using the field map calculated from the phase distribution of the source image, the off-resonance induced phase errors are successfully rewound through deconvolution. The alias-free partial Fourier transform reconstruction helps improve the signal-to-noise ratio of the field maps and the output images. The effectiveness of the proposed algorithm was validated through 7 T MRI experiments on a lemon, a water phantom, and in vivo rat head. SPEN imaging was evaluated using rapid acquisition by sequential excitation and refocusing (RASER) which produces uniform T2 weighting. The results indicate that the new technique can more robustly deal with the cases in which the images obtained with conventional single-shot spin-echo EPI are difficult to be restored due to serious field variations.

  19. Peripheral nerve MRI: precision and reproducibility of T2*-derived measurements at 3.0-T. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tagliafico, Alberto [University of Genoa, Institute of Anatomy, Department of Experimental Medicine, Genoa (Italy); Bignotti, Bianca; Martinoli, Carlo [University of Genoa, Radiology Department, Genoa, Genova (Italy); Tagliafico, Giulio [CNR-IMATI, Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Genova (Italy)

    2015-05-01

    To prospectively evaluate the precision and reproducibility of T2*-derived measurements of the peripheral nerves. The study was approved by the local ethics committee and written informed consent was obtained. Bilateral upper and lower limb MRI examination was performed in 40 healthy subjects on a 3.0-T scanner. MRI protocol included T1-turbo spin-echo, T2-turbo spin-echo with fat suppression, and multiecho gradient recalled echo. Measurements of T2* times on T2* maps at different anatomical levels were performed. Three authors measured independently and in different sessions at baseline and after 4 weeks. Non-parametric tests and Bland-Altman statistics were used. Minimum and maximum percentage variability were 10 % and 19 % for T2* (84-91 % of reproducibility). Maximum values of minimum detectable differences between limbs was 16 % (with 95 % CI: 2-37). Intra- and inter-observer agreement of the three radiologists for T2* was considered good. Evaluating the combined influence of the observer and of the repeated measurements the reproducibility was 87-98 %. T2* measurement of the peripheral nerves is precise and reproducible. The healthy contralateral side can be used as an internal control. Variations in T2* values up to 16 % have to be considered. (orig.)

  20. Diffusion-weighted MRI - a new parameter for advanced rectal carcinoma?

    International Nuclear Information System (INIS)

    Hein, P.A.; Lukas, P.; DeVries, A.F.; Pfeiffer, K.-P.

    2003-01-01

    Purpose: To evaluate the predictive value of apparent diffusion coefficient (ADC) on therapy outcome of combined chemoradiation in patients with primary carcinoma of the rectum. Materials and Method: Prior to standardized, combined, neoadjuvant chemoradiation, 16 patients with primary carcinoma of the rectum (cT3) were examined with magnetic resonance imaging (MRI). Diffusion weighted spin echo echo-planar images (SE-EPI) and contrast-enhanced T 1 -weighted spin echo (SE) images at 1.5 Tesla were obtained. The mean ADC of the tumor region was calculated and correlated with the therapy outcome substantiated by postsurgical histopathologic staging. Results: Tumor downstaging (pT0-2) occurred in 9 patients (therapy responders) and no down-staging (pT3) in 7 patients (therapy non-responders). The mean ADC measured 0.476±0.114 x 10 -3 mm 2 /s in the responder group and 0.703±0.085 x 10 -3 mm 2 /s in the non-responder group. Comparison of the mean ADC between the groups reached statistical significance (p=0.001). Conclusion: The mean ADC might be a new quantitative parameter to predict therapy outcome of combined preoperative chemoradiation in patients with primary carcinoma of the rectum. (orig.) [de

  1. Fast spin-echo T2-weighted MR imaging of tongue cancer; the value of fat-suppression

    International Nuclear Information System (INIS)

    Kim, Zu Byoung; Na, Dong Gyu; Ryoo, Jae Wook; Kim, Kyeong Ah; Byun, Hong Sik; Baek, Chung Whan; Son, Yong Ik

    2000-01-01

    To compare the diagnostic efficacy of fast spin-echo (FSE) T2-weighted MR imaging with and without fat suppression. Twelve patients (7 men and 5 women; mean age, 48 years) with pathologically proven cancer of the tongue were included in this study. In all of these, FSE T2-weighted MR images with and without fat suppression were obtained in the same imaging planes before surgery or biopsy. Two radiologists visually compared the images thus obtained in terms of detection, extent, and conspicuity of the tumor, and the contrast-to-noise ratio (CNR) of each tumor was also calculated. In all patients, both imaging modalities were equal in terms of tumor detection. In 4 of 12(33%), the extent of the tumor was greater with fat suppression, while in eight (67%), it was almost the same both with and without. In ten patients (83%), the tumor was more conspicuous with fat suppression, and percentage CNRs were significantly higher with fat suppression than without (180±70% and 113±61%, respectively; p=0.02). For the evaluation of patients with tongue cancer, fat-suppressed FSE T2-weighted MR imaging is superior to its conventional equivalent

  2. High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence

    International Nuclear Information System (INIS)

    Naganawa, S.; Yamakawa, K.; Fukatsu, H.; Ishigaki, T.; Nakashima, T.; Sugimoto, H.; Aoki, I.; Miyazaki, M.; Takai, H.

    1996-01-01

    The purpose of this study was to assess the value of a long echo-train-length 3D fast spin-echo (3D-FSE) sequence in visualizing the inner ear structures. Ten normal ears and 50 patient ears were imaged on a 1.5T MR unit using a head coil. Axial high-resolution T2-weighted images of the inner ear and the internal auditory canal (IAC) were obtained in 15 min. In normal ears the reliability of the visualization for the inner ear structures was evaluated on original images and the targeted maximum intensity projection (MIP) images of the labyrinth. In ten normal ears, 3D surface display (3D) images were also created and compared with MIP images. On the original images the cochlear aqueduct, the vessels in the vicinity of the IAC, and more than three branches of the cranial nerves were visualized in the IAC in all the ears. The visibility of the endolympathic duct was 80%. On the MIP images the visibility of the three semicircular canals, anterior and posterior ampulla, and of more than two turns of the cochlea was 100%. The MIP images and 3D images were almost comparable. The visibility of the endolymphatic duct was 80% in normal ears and 0% in the affected ears of the patients with Meniere's disease (p<0.001). In one patient ear a small intracanalicular tumor was depicted clearly. In conclusion, the long echo train length T2-weighted 3D-FSE sequence enables the detailed visualization of the tiny structures of the inner ear and the IAC within a clinically acceptable scan time. Furthermore, obtaining a high contrast between the soft/bony tissue and the cerebrospinal/endolymph/perilymph fluid would be of significant value in the diagnosis of the pathologic conditions around the labyrinth and the IAC. (orig.)

  3. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der [Leiden University Medical Center, Department of Radiology, PO Box 9600, Leiden (Netherlands); Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Isala Hospital, Department of Neonatology, Zwolle (Netherlands)

    2014-03-15

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age <32 weeks) detected by T2*-W gradient echo MRI to white matter injury and neurodevelopmental outcome at 2 years. In 101 preterm infants, presence and location of hemosiderin were assessed on T2*-W gradient echo MRI performed around term-equivalent age (range: 40-60 weeks). White matter injury was defined as the presence of >6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  4. Prediction of prostate cancer extracapsular extension with high spatial resolution dynamic contrast-enhanced 3-T MRI

    International Nuclear Information System (INIS)

    Bloch, B.N.; Genega, Elizabeth M.; Costa, Daniel N.; Pedrosa, Ivan; Rofsky, Neil M.; Smith, Martin P.; Kressel, Herbert Y.; Ngo, Long; Sanda, Martin G.; DeWolf, William C.

    2012-01-01

    To assess the value of dynamic contrast-enhanced (DCE) combined with T2-weighted (T2W) endorectal coil (ERC) magnetic resonance imaging (MRI) at 3 T for determining extracapsular extension (ECE) of prostate cancer. In this IRB-approved study, ERC 3-T MRI of the prostate was performed in 108 patients before radical prostatectomy. T2W fast spin-echo and DCE 3D gradient echo images were acquired. The interpretations of readers with varied experience were analysed. MRI-based staging results were compared with radical prostatectomy histology. Descriptive statistics were generated for prediction of ECE and staging accuracies were determined by the area under the receiver-operating characteristic curve. The overall sensitivity, specificity, positive predictive value and negative predictive value for ECE were 75 %, 92 %, 79 % and 91 %, respectively. Diagnostic accuracy for staging was 86 %, 80 % and 91 % for all readers, experienced and less experienced readers, respectively. ERC 3-T MRI of the prostate combining DCE and T2W imaging is an accurate pretherapeutic staging tool for assessment of ECE in clinical practice across varying levels of reader experience. (orig.)

  5. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    Science.gov (United States)

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  6. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    Science.gov (United States)

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  7. A 3D T1-weighted gradient-echo sequence for routine use in 3D radiosurgical treatment planning of brain metastases: first clinical results

    International Nuclear Information System (INIS)

    Hawighorst, H.; Schad, L.R.; Gademann, G.; Knopp, M.V.; Wenz, F.; Kaick, G. van

    1995-01-01

    The authors report on a 3D sequence for MRI of the brain and its application in radiosurgical treatment planning of 35 brain metastases. The measuring sequence, called magnetization - prepared rapid gradient echo (MPRAGE), was compared with 2D T1-weighted spin-echo (SE) sequences following intravenous contrast-medium application in 19 patients with brain metastases. The average diameter of all lesions was similar in both sequences, with 16.8 and 17.0 mm for SE and MPRAGE, respectively. Target point definition was equal in 29 metastases, and in 6 cases superior on MPRAGE, due to better gray-white matter contrast and increased contrast enhancement. In cases of bleeding metastases there was improved depiction of internal structures in 3D MRI. Postprocessing of 3D MPRAGE data created multiplanar reconstruction along any chosen plane with isotropic spatial resolution, which helped to improve radiosurgical isodose distribution in 4 cases when compared to 2D SE. However, sensitivity of 3D MPRAGE to detect small lesions (< 3 mm) was decreased in one patient with more than 50 metastases. We conclude that 3D gradient-echo (GE) imaging might be of great value for radiosurgical treatment planning, but does not replace 2D SE with its current parameters. (orig.)

  8. Differentiation between simple cyst and hepatic hemangioma utilizing T2-weighted magnetic resonance imaging with gradient-echo (b-FFE) technique

    International Nuclear Information System (INIS)

    Burim, Carolina Valente; D'Ippolito, Giuseppe; Pecci Neto, Luiz; Torlai, Fabiola Goda; Tiferes, Dario Ariel

    2008-01-01

    Objective: to establish the role of MRI T2-weighted sequences in the differentiation between simple cysts and hepatic hemangiomas. Materials and methods: a double-blinded, prospective, observational, cross sectional study evaluated 52 patients with 91 hepatic lesions (34 simple cysts and 57 hemangiomas) submitted to abdominal magnetic resonance imaging. The combined analysis of all sequences was considered as the golden-standard. TSE sequences with long echo trains and b-FFE sequences were subjectively analyzed by two independent observers for differentiating cysts from hemangiomas. The kappa test (κ) was utilized in the analysis of the methods accuracy and inter- and intra-observer agreement (p * ). Results: cysts and hemangiomas dimensions ranged respectively between 0.5 and 6.5 cm (mean 1.89 cm), and 0.8 and 11 cm (mean = 2.62 cm). The analysis of the sequences with long-TE and the golden-standard demonstrated a non-statistically significant agreement (k: 0.00-0.10). The agreement between the evaluation of the b-FFE sequence and the golden-standard ranged from substantial (κ: 0.62-0.71) to almost perfect (κ: 0.86) for both observers. The inter- and intra-observer agreement for the b-FFE sequence ranged from substantial (κ: 0.62-0.70) to almost perfect (κ: 0.85-0.91). Conclusion: T2-weighted images acquired with the b-FFE technique present a high accuracy and reproducibility in the differentiation between cysts and hepatic hemangiomas. (author)

  9. Diagnosis of nerve root compromise of the lumbar spine: Evaluation of the performance of three-dimensional isotropic T2-weighted turbo spin-echo SPACE sequence at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Kyeong; Jee, Won Hee; Jung, Joon Yong; Jang, Jin Hee; Kim, Jin Sung; Kim, Young Hoon; Ha, Kee Yong [Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2017-01-15

    To explore the performance of three-dimensional (3D) isotropic T2-weighted turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip angle evolution (SPACE) sequence on a 3T system, for the evaluation of nerve root compromise by disc herniation or stenosis from central to extraforaminal location of the lumbar spine, when used alone or in combination with conventional two-dimensional (2D) TSE sequence. Thirty-seven patients who had undergone 3T spine MRI including 2D and 3D sequences, and had subsequent spine surgery for nerve root compromise at a total of 39 nerve levels, were analyzed. A total of 78 nerve roots (48 symptomatic and 30 asymptomatic sites) were graded (0 to 3) using different MRI sets of 2D, 3D (axial plus sagittal), 3D (all planes), and combination of 2D and 3D sequences, with respect to the nerve root compromise caused by posterior disc herniations, lateral recess stenoses, neural foraminal stenoses, or extraforaminal disc herniations; grading was done independently by two readers. Diagnostic performance was compared between different imaging sets using the receiver operating characteristics (ROC) curve analysis. There were no statistically significant differences (p = 0.203 to > 0.999) in the ROC curve area between the imaging sets for both readers 1 and 2, except for combined 2D and 3D (0.843) vs. 2D (0.802) for reader 1 (p = 0.035), and combined 2D and 3D (0.820) vs. 3D including all planes (0.765) for reader 2 (p = 0.049). The performance of 3D isotropic T2-weighted TSE sequence of the lumbar spine, whether axial plus sagittal images, or all planes of images, was not significantly different from that of 2D TSE sequences, for the evaluation of nerve root compromise of the lumbar spine. Combining 2D and 3D might possibly improve the diagnostic accuracy compared with either one.

  10. MUSIC. a fast T2* - sensitive MRI technique with enhanced volume coverage

    International Nuclear Information System (INIS)

    Loenneker, Thomas; Hennig, Juergen

    1994-01-01

    A fast imaging method based on gradient-recalled echoes and echo time inter-leaved multi-slice excitation is presented. This method maintains the sensitivity of T 2 * by using a long echo time of at least 35 milliseconds. Bipolar gradients are used to shift the gradient echoes in order to ensure constant TE for each slab and prevent ghost-artefacts within the images caused by spin- or stimulated echoes. This method enhances the total imaging time of a conventional multi-slice gradient echo technique, while maintaining the high volume coverage. Thus, stimulated human cortical activation maps can be detected on standard clinical MR instruments at several planes within measuring times of a few seconds. The efficiency of the technique is demonstrated in the detection of temporary changes in T 2 * in functional MRI experiments of the human visual cortex at a magnetic field strength of 2 tesla. (author). 18 refs., 6 figs

  11. BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T

    International Nuclear Information System (INIS)

    Landuyt, W.; Bogaert, W. van den; Lambin, P.; Hermans, R.; Bosmans, H.; Sunaert, S.; Beatse, E.; Farina, D.; Meijerink, M.; Zhang, H.; Marchal, G.

    2001-01-01

    The aim of this study was to evaluate the feasibility of functional MR imaging (fMRI) at 1.5 T, exploiting blood oxygenation level-dependent (BOLD) contrast, for detecting changes in whole-tumour oxygenation induced by carbogen (5% CO 2 +95% O 2 ) inhalation of the host. Adult WAG/Rij rats with rhabdomyosarcomas growing subcutaneously in the lower flank were imaged when tumours reached sizes between 1 and 11 cm 3 (n=12). Air and carbogen were alternatively supplied at 2 l/min using a snout mask. Imaging was done on a 1.5-T MR scanner using a T2*-weighted gradient-echo, echo-planar imaging (GE-EPI) sequence. Analysis of the whole-tumour EPI images was based on statistical parametric maps. Voxels with and without signal intensity changes (SIC) were recorded. Significance thresholds were set at p<0.05, corrected for multiple comparisons. In continuous air breathing condition, 3 of 12 tumours showed significant negative SIC and 1 tumour had a clear-cut positive SIC. The remaining tumours showed very little or no change. When switching to carbogen breathing, the SIC were significantly positive in 10 of 12 tumours. Negative SIC were present in 4 tumours, of which three were simultaneously characterised by positive SIC. The overall analysis indicated that 6 of the 12 tumours could be considered as strong positive responders to carbogen. Our research demonstrates the applicability of fMRI GE-EPI at 1.5 T to study whole-tumour oxygenation non-invasively. The observed negative SIC during air condition may reflect the presence of transient hypoxia during these measurements. Selection of tumours on the basis of their individual response to carbogen is possible, indicating a role of such non-invasive measurements for using tailor-made treatments. (orig.)

  12. Moderately T2-weighted images obtained with the single-shot fast spin-echo technique. Differentiating between malignant and benign urinary obstructions

    International Nuclear Information System (INIS)

    Obuchi, Masao; Sugimoto, Hideharu; Kubota, Hayato; Yamamoto, Wakako; Kinebuchi, Yuko; Honda, Minoru; Takahara, Taro

    2002-01-01

    The purpose of this study was to determine whether a distinction could be made between benign and malignant urinary obstructions in moderately T 2 -weighted images obtained with the single-shot fast spin-echo technique. Forty-four lesions in 39 patients with urinary obstruction were evaluated with the single-shot fast spin-echo (SSFSE) technique with an effective TE of 90-100 ms and without fat saturation. Benign and malignant lesions were compared for the presence of ureteral wall thickening and a signal intensity relative to the proximal ureteral wall. Statistically significant differences were found between benign and malignant lesions in both morphologic change (P 2 -weighted SSFSE technique without fat saturation can accurately distinguish between benign and malignant urinary obstructions. (author)

  13. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    International Nuclear Information System (INIS)

    Neumann, K.; Hosten, N.; Venz, S.

    1995-01-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  14. Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, K. [Zentralinstitut fuer Roentgendiagnostik, Universitaetsklinikum Essen, Gesamthochschule Essen (Germany); Hosten, N. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Venz, S. [Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany)

    1995-11-01

    Opposed-phase gradient echo (GRE) MRI at 0.5 T was compared with T1-weighted GRE MRI and bone scintigraphy regarding the detection of malignant bone marrow infiltrates of the spine and pelvis. Seventeen control patients and 41 patients with suspected skeletal metastases were studied with plain and gadolinium-enhanced MRI. In the control group only a vertebral haemangioma showed contrast enhancement, while all metastases (confirmed histologically or by follow-up) were enhancing. Opposed-phase surface coil MRI showed a significantly higher contrast-to-noise ratio of 56 metastases than T1-weighted images. In 28 patients body coil opposed-phase MRI detected more metastatic foci of the spine and pelvis than did bone scintigraphy (84 vs 56). No scintigraphically visualised lesion was missed by MRI. In conclusion, body coil gadolinium-enhanced opposed-phase GRE MRI may be applied as a screening method for skeletal metastases of the spine and pelvis at intermediate field strengths. (orig.)

  15. T1-weighted MRI for the detection of coronary artery plaque haemorrhage

    International Nuclear Information System (INIS)

    Oei, May Lin; Ozgun, Murat; Seifarth, Harald; Bunck, Alexander; Fischbach, Roman; Heindel, Walter; Maintz, David; Orwat, Stefan; Botnar, Rene

    2010-01-01

    Hyperintense areas in atherosclerotic plaques on pre-contrast T1-weighted MRI have been shown to correlate with intraplaque haemorrhage. We evaluated the presence of T1 hyperintensity in coronary artery plaques in coronary artery disease (CAD) patients and correlated results with multi-detector computed tomography (MDCT) findings. Fifteen patients with CAD were included. Plaques detected by MDCT were categorised based on their Hounsfield number. T1-weighted inversion recovery (IR) MRI prepared coronary MRI for the detection of plaque and steady-state free-precession coronary MR-angiography for anatomical correlation was performed. After registration of MDCT and MRI, regions of interest were defined on MDCT-visible plaques and in corresponding vessel segments acquired with MRI. MDCT density and MR signal measurement were performed in each plaque. Forty-three plaques were identified with MDCT. With IR-MRI 5/43 (12%) plaques were hyperintense, 2 of which were non-calcified and 3 mixed. Average signal-to-noise and contrast-to-noise ratios of hyperintense plaques were 15.7 and 9.1, compared with 5.6 and 1.2 for hypointense plaques. Hyperintense plaques exhibited a significantly lower CT density than hypointense plaques (63.6 vs. 140.8). There was no correlation of plaque signal intensity with degree of stenosis. T1-weighted IR-MRI may be useful for non-invasive detection and characterisation of intraplaque haemorrhage in coronary artery plaques. (orig.)

  16. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Comparison of 3D and 2D FSE T2-weighted MRI in the diagnosis of deep pelvic endometriosis: Preliminary results

    International Nuclear Information System (INIS)

    Bazot, M.; Stivalet, A.; Daraï, E.; Coudray, C.; Thomassin-Naggara, I.; Poncelet, E.

    2013-01-01

    Aim: To evaluate image quality and diagnostic accuracy of two- (2D) and three-dimensional (3D) T2-weighted magnetic resonance imaging (MRI) for the evaluation of deep infiltrating endometriosis (DIE). Materials and methods: One hundred and ten consecutive patients with suspicion of endometriosis were recruited at two institutions over a 5-month period. Twenty-three women underwent surgery, 18 had DIE at histology. Two readers independently evaluated 3D and 2D MRI for image quality and diagnosis of DIE. Descriptive analysis, chi-square test for categorical or nominal variables, McNemar test for comparison between 3D and 2D T2-weighted MRI, and weighted “statistics” for intra- and interobserver agreement were used for statistical analysis. Results: Both readers found that 3D yielded significantly lower image quality than 2D MRI (p < 0.0001). Acquisition time for 3D was significantly shorter than 2D MRI (p < 0.01). 3D offered similar accuracy to diagnose DIE compared to 2D MRI. For all locations of endometriosis, a high or variable intra-observer agreement was observed for reader 1 and 2, respectively. Conclusions: Despite a lower overall image quality, 3D provides significant time saving and similar accuracy than multiplanar 2D MRI in the diagnosis of specific DIE locations.

  18. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    International Nuclear Information System (INIS)

    Uemura, A.; O'uchi, T.; Sakamoto, T.; Yashiro, N.

    2002-01-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  20. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, A.; O' uchi, T.; Sakamoto, T.; Yashiro, N. [Department of Radiology, Kameda Medical Center, Kamogawa, Chiba (Japan)

    2002-04-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  1. Analysis of the acoustic sound in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tetsuro; Hara, Akira; Kusakari, Jun; Yoshioka, Hiroshi; Niitsu, Mamoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Ase, Yuji

    1999-04-01

    The noise level and power spectra of the acoustic sound exposed during the examination of Magnetic Resonance Imaging (MRI) using a MRI scanner (Philips Gyroscan 1.5 T) were measured at the position of the human auricle. The overall noise levels on T1-weighted images and T2-weighted images with Spin Echo were 105 dB and 98 dB, respectively. The overall noise level on T2-weighted images with Turbo Spin Echo was 110 dB. Fourier analysis revealed energy peaks ranging from 225 to 325 Hz and a steep high frequency cutoff for each pulse sequence. The MRI noise was not likely to cause permanent threshold shift. However, because of the inter-subject variation in susceptibility to acoustic trauma and to exclude the anxiety in patients, ear protectors were recommended for all patients during MRI testing. (author)

  2. A new look at the fetus: Thick-slab T2-weighted sequences in fetal MRI

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Mittermayer, Christoph; Prayer, Daniela

    2006-01-01

    Although magnetic resonance imaging (MRI) of the fetus is considered an established adjunct to fetal ultrasound, stacks of images alone cannot provide an overall impression of the fetus. The present study evaluates the use of thick-slab T2-weighted MR images to obtain a three-dimensional impression of the fetus using MRI. A thick-slab T2-weighted sequence was added to the routine protocol in 100 fetal MRIs obtained for various indications (19th to 37th gestational weeks) on a 1.5 T magnet using a five-element phased-array surface coil. Slice thickness adapted to fetal size and uterine geometry varied between 25 and 50 mm, as did the field of view (250-350 mm). Acquisition of one image took less than 1 s. The pictorial essay shows that these images visualize fetal anatomy in a more comprehensive way than is possible with a series of 3-4 mm thick slices. These thick-slab images facilitate the assessment of the whole fetus, fetal proportions, surface structures, and extremities. Fetal pathology may be captured in one image. Thick-slab T2-weighted images provide additional information that cannot be gathered from a series of images and are considered a valuable adjunct to conventional 2D MR images

  3. A new look at the fetus: Thick-slab T2-weighted sequences in fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Vienna (Austria)]. E-mail: peter.brugger@meduniwien.ac.at; Mittermayer, Christoph [Department of Neonatology and Intensive Care, University Hospital of Vienna (Austria); Prayer, Daniela [Department of Neuroradiology, University Clinics of Radiodiagnostics, Medical University of Vienna, Vienna (Austria)

    2006-02-15

    Although magnetic resonance imaging (MRI) of the fetus is considered an established adjunct to fetal ultrasound, stacks of images alone cannot provide an overall impression of the fetus. The present study evaluates the use of thick-slab T2-weighted MR images to obtain a three-dimensional impression of the fetus using MRI. A thick-slab T2-weighted sequence was added to the routine protocol in 100 fetal MRIs obtained for various indications (19th to 37th gestational weeks) on a 1.5 T magnet using a five-element phased-array surface coil. Slice thickness adapted to fetal size and uterine geometry varied between 25 and 50 mm, as did the field of view (250-350 mm). Acquisition of one image took less than 1 s. The pictorial essay shows that these images visualize fetal anatomy in a more comprehensive way than is possible with a series of 3-4 mm thick slices. These thick-slab images facilitate the assessment of the whole fetus, fetal proportions, surface structures, and extremities. Fetal pathology may be captured in one image. Thick-slab T2-weighted images provide additional information that cannot be gathered from a series of images and are considered a valuable adjunct to conventional 2D MR images.

  4. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  5. Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.

    Science.gov (United States)

    Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C

    2017-07-01

    To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American

  6. Evaluation of neonatal brain myelination using the T1- and T2-weighted MRI ratio.

    Science.gov (United States)

    Soun, Jennifer E; Liu, Michael Z; Cauley, Keith A; Grinband, Jack

    2017-09-01

    To validate the T1- and T2-weighted (T1w/T2w) MRI ratio technique in evaluating myelin in the neonatal brain. T1w and T2w MR images of 10 term neonates with normal-appearing brain parenchyma were obtained from a single 1.5 Tesla MRI and retrospectively analyzed. T1w/T2w ratio images were created with a postprocessing pipeline and qualitatively compared with standard clinical sequences (T1w, T2w, and apparent diffusion coefficient [ADC]). Quantitative assessment was also performed to assess the ratio technique in detecting areas of known myelination (e.g., posterior limb of the internal capsule) and very low myelination (e.g., optic radiations) using linear regression analysis and the Michelson Contrast equation, a measure of luminance contrast intensity. The ratio image provided qualitative improvements in the ability to visualize regional variation in myelin content of neonates. Linear regression analysis demonstrated a significant inverse relationship between the ratio intensity values and ADC values in the posterior limb of the internal capsule and the optic radiations (R 2  = 0.96 and P ratio images were 1.6 times higher than T1w, 2.6 times higher than T2w, and 1.8 times higher than ADC (all P ratio improved visualization of the corticospinal tract, one of the earliest myelinated pathways. The T1w/T2w ratio accentuates contrast between myelinated and less myelinated structures and may enhance our diagnostic ability to detect myelination patterns in the neonatal brain. 2 Technical Efficacy: Stage2 J. MAGN. RESON. IMAGING 2017;46:690-696. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T

    NARCIS (Netherlands)

    Koopmans, P.J.; Boyacioglu, R.; Barth, M.; Norris, David Gordon

    2012-01-01

    This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power

  8. 3D T2-weighted imaging to shorten multiparametric prostate MRI protocols.

    Science.gov (United States)

    Polanec, Stephan H; Lazar, Mathias; Wengert, Georg J; Bickel, Hubert; Spick, Claudio; Susani, Martin; Shariat, Shahrokh; Clauser, Paola; Baltzer, Pascal A T

    2018-04-01

    To determine whether 3D acquisitions provide equivalent image quality, lesion delineation quality and PI-RADS v2 performance compared to 2D acquisitions in T2-weighted imaging of the prostate at 3 T. This IRB-approved, prospective study included 150 consecutive patients (mean age 63.7 years, 35-84 years; mean PSA 7.2 ng/ml, 0.4-31.1 ng/ml). Two uroradiologists (R1, R2) independently rated image quality and lesion delineation quality using a five-point ordinal scale and assigned a PI-RADS score for 2D and 3D T2-weighted image data sets. Data were compared using visual grading characteristics (VGC) and receiver operating characteristics (ROC)/area under the curve (AUC) analysis. Image quality was similarly good to excellent for 2D T2w (mean score R1, 4.3 ± 0.81; R2, 4.7 ± 0.83) and 3D T2w (mean score R1, 4.3 ± 0.82; R2, 4.7 ± 0.69), p = 0.269. Lesion delineation was rated good to excellent for 2D (mean score R1, 4.16 ± 0.81; R2, 4.19 ± 0.92) and 3D T2w (R1, 4.19 ± 0.94; R2, 4.27 ± 0.94) without significant differences (p = 0.785). ROC analysis showed an equivalent performance for 2D (AUC 0.580-0.623) and 3D (AUC 0.576-0.629) T2w (p > 0.05, respectively). Three-dimensional acquisitions demonstrated equivalent image and lesion delineation quality, and PI-RADS v2 performance, compared to 2D in T2-weighted imaging of the prostate. Three-dimensional T2-weighted imaging could be used to considerably shorten prostate MRI protocols in clinical practice. • 3D shows equivalent image quality and lesion delineation compared to 2D T2w. • 3D T2w and 2D T2w image acquisition demonstrated comparable diagnostic performance. • Using a single 3D T2w acquisition may shorten the protocol by 40%. • Combined with short DCE, multiparametric protocols of 10 min are feasible.

  9. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Science.gov (United States)

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  10. Single-Shot Echo-Planar Diffusion-Weighted MR Imaging at 3T and 1.5T for Differentiation of Benign Vertebral Fracture Edema and Tumor Infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Jin; Lee, So Yeon; Rho, Myung Ho; Chung, Eun Chul; Kim, Mi Sung; Kwon, Heon Ju; Youn, In Young [Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181 (Korea, Republic of)

    2016-11-01

    To compare the apparent diffusion coefficient (ADC) value using single-shot echo-planar imaging sequences at 3T and 1.5T for differentiation of benign fracture edema and tumor infiltration of the vertebral body. A total of 46 spinal examinations were included in the 1.5T MRI group, and a total of 40 spinal examinations were included in the 3T MRI group. The ADC values of the lesion were measured and calculated. The diagnostic performance of the conventional MR image containing sagittal T2-weighted fat saturated image and each diffusion weighted image (DWI) with an ADC value with different b values were evaluated. The mean ADC value of the benign lesions was higher than that of the malignant lesions on 1.5T and 3T (p < 0.05). The sensitivity of the diagnostic performance was higher with an additional DWI in both 1.5T and 3T, but the sensitivities were similar with the addition of b values of 400 and 1000. The specificities of the diagnostic performances did not show significant differences (p value > 0.05). The diagnostic accuracies were higher when either of the DWIs (b values of 400 and 1000) was added to routine MR image for 1.5T and 3T. Statistical differences between 1.5T and 3T or between b values of 400 and 1000 were not seen. The ADC values of the benign lesions were significantly higher than those of the malignant lesions on 1.5T and 3T. There was no statistically significant difference in the diagnostic performances when either of the DWIs (b values of 400 and 1000) was added to the routine MR image for 1.5T and 3T.

  11. Signal-shot echo-planner diffusion-weighted MR imaging at 3T and 1.5T for differentiation of benign vertebral fracture edema and tumor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Jin; Lee, So Yeon; Rho, Myung Ho; Chung, Eun Chul; Kim, Mi Sung; Kwon, Heon Ju; Youn, In Young [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    To compare the apparent diffusion coefficient (ADC) value using single-shot echo-planar imaging sequences at 3T and 1.5T for differentiation of benign fracture edema and tumor infiltration of the vertebral body. A total of 46 spinal examinations were included in the 1.5T MRI group, and a total of 40 spinal examinations were included in the 3T MRI group. The ADC values of the lesion were measured and calculated. The diagnostic performance of the conventional MR image containing sagittal T2-weighted fat saturated image and each diffusion weighted image (DWI) with an ADC value with different b values were evaluated. The mean ADC value of the benign lesions was higher than that of the malignant lesions on 1.5T and 3T (p < 0.05). The sensitivity of the diagnostic performance was higher with an additional DWI in both 1.5T and 3T, but the sensitivities were similar with the addition of b values of 400 and 1000. The specificities of the diagnostic performances did not show significant differences (p value > 0.05). The diagnostic accuracies were higher when either of the DWIs (b values of 400 and 1000) was added to routine MR image for 1.5T and 3T. Statistical differences between 1.5T and 3T or between b values of 400 and 1000 were not seen. The ADC values of the benign lesions were significantly higher than those of the malignant lesions on 1.5T and 3T. There was no statistically significant difference in the diagnostic performances when either of the DWIs (b values of 400 and 1000) was added to the routine MR image for 1.5T and 3T.

  12. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT.

    Science.gov (United States)

    Meier-Schroers, Michael; Sprinkart, Alois Martin; Becker, Manuel; Homsi, Rami; Thomas, Daniel

    2018-03-07

     To determine the suitability of T2-weighted PROPELLER MRI for the assessment of pulmonary emphysema.  60 participants in a lung cancer screening program (30 subjects with pulmonary emphysema, and 30 control subjects without emphysema) were included for this retrospective study. All subjects were examined with low-dose CT (LDCT) and MRI within the screening program. The use of a T2-weighted PROPELLER sequence for the assessment of emphysema was analyzed and correlated with the results of LDCT. The presence and the extent of pulmonary emphysema were first assessed qualitatively using a three-point score, and then quantitatively with a semi-automated software program to obtain emphysema indices.  All 30 cases with pulmonary emphysema were accurately detected by MRI. There were 3 cases with emphysema according to MRI without emphysematous changes on LDCT (false-positive results). The qualitative scores as well as the emphysema indices were significantly higher in the emphysema group compared to the control group for MRI and LDCT (p emphysema group and r = 0.668/p emphysema index: r = 0.960/p emphysema group and r = 0.746/p pulmonary emphysema may be assessed qualitatively and quantitatively by T2-weighted PROPELLER MRI with very good correlation to LDCT.   · T2-weighted PROPELLER MRI may be suitable for the assessment of pulmonary emphysema.. · There was significant correlation between MRI and LDCT regarding qualitative scores and quantitative emphysema indices in our study with correlation coefficients for different subgroups ranging from r = 0.668 to r = 0.960.. · T2-weighted PROPELLER MRI may have the potential to be used for follow-up examinations in patients with severe emphysema to avoid radiation exposure of repeated CTs.. · Meier-Schroers M, Sprinkart AM, Becker M et al. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT

  13. Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone

    Science.gov (United States)

    Rampun, Andrik; Zheng, Ling; Malcolm, Paul; Tiddeman, Bernie; Zwiggelaar, Reyer

    2016-07-01

    In this paper we propose a prostate cancer computer-aided diagnosis (CAD) system and suggest a set of discriminant texture descriptors extracted from T2-weighted MRI data which can be used as a good basis for a multimodality system. For this purpose, 215 texture descriptors were extracted and eleven different classifiers were employed to achieve the best possible results. The proposed method was tested based on 418 T2-weighted MR images taken from 45 patients and evaluated using 9-fold cross validation with five patients in each fold. The results demonstrated comparable results to existing CAD systems using multimodality MRI. We achieved an area under the receiver operating curve (A z ) values equal to 90.0%+/- 7.6% , 89.5%+/- 8.9% , 87.9%+/- 9.3% and 87.4%+/- 9.2% for Bayesian networks, ADTree, random forest and multilayer perceptron classifiers, respectively, while a meta-voting classifier using average probability as a combination rule achieved 92.7%+/- 7.4% .

  14. Cerebral staging of lung cancer: is one single contrast-enhanced T1-weighted three-dimensional gradient-echo sequence sufficient?

    Energy Technology Data Exchange (ETDEWEB)

    Ohana, Mickael; Jeung, Mi-Young; Roy, Catherine [Nouvel Hopital Civil-Hopitaux Universitaires de Strasbourg, Service de Radiologie B/Radiology Department, Strasbourg (France); Bazille, Gauthier [Clinique Saint Anne-Groupe Radiologique MIM, Strasbourg (France)

    2014-08-15

    Gadolinium-enhanced magnetic resonance imaging (MRI) is the gold standard for cerebral staging in thoracic oncology. We hypothesize that a minimalist examination, consisting of a single contrast-enhanced T1-weighted three-dimensional gradient-echo sequence (CE 3D-GRE), would be sufficient for the cerebral staging of nonsymptomatic lung cancer patients. Seventy nonsymptomatic patients (50 % men; 62 years ± 10.2) referred for cerebral staging of a lung cancer were retrospectively included. All underwent a standard 3 T MRI examination with T1, FLAIR, T2* GRE, diffusion, and CE 3D-GRE sequences, for a total examination time of 20 min. The sole CE 3D-GRE (acquisition time: 6 min) was extracted and blindly interpreted by two radiologists in search of brain metastases. Hemorrhagic features of potential lesions and relevant incidental findings were also noted. Discrepant cases were reviewed by a third reader. The full MRI examination and follow-up studies were used as a reference to calculate sensitivity and specificity of the sole CE 3D-GRE. Thirty-eight point six percent (27 out of 70) of the patients had brain metastases. Performances and reader's agreement with the sole CE 3D-GRE sequence were excellent for the diagnosis of brain metastases (sensitivity = 96.3 %, specificity = 100 %, κ = 0.91) and incidental findings (sensitivity = 85.7 %, specificity = 100 %, κ = 0.62) but insufficient for the identification of hemorrhages within the metastases (sensitivity = 33.3 %, specificity = 85.7 %, κ = 0.47). In the specific case of lung cancer, cerebral staging in nonsymptomatic patients can be efficiently achieved with a minimalistic protocol consisting of a single CE 3D-GRE sequence, completed if positive with a T2* sequence for hemorrhagic assessment, thus halving appointment delays. (orig.)

  15. T2 relaxation times of the glenohumeral joint at 3.0 T MRI in patients with and without primary and secondary osteoarthritis.

    Science.gov (United States)

    Lee, So-Yeon; Park, Hee-Jin; Kwon, Heon-Ju; Kim, Mi Sung; Choi, Seon Hyeong; Choi, Yoon Jung; Kim, Eugene

    2015-11-01

    Quantitative magnetic resonance imaging (MRI) of cartilage has recently been applied to patients with osteoarthritis (OA). T2 mapping is a sensitive method of detecting changes in the chemical composition and structure of cartilage. To establish baseline T2 values of glenohumeral joint cartilage at 3.0 T and compare T2 values among subjects with and without OA. The study involved 30 patients (18 women, 12 men; median age, 67 years; age range, 51-78 years) with primary (n = 7) and secondary OA (n = 23) in the glenohumeral joint and 34 subjects without OA (19 women, 15 men; median age, 49 years; age range, 23-63 years). All subjects were evaluated by radiography and 3.0 T MRI including a multi-echo T2-weighted spin echo pulse sequence. The T2 value of the cartilage was measured by manually drawing the region of interest on the T2 map. Per-zone comparison of T2 values was performed using Mann-Whitney U test. Median T2 values differed significantly between subjects without OA (36.00 ms [interquartile range, 33.89-37.31 ms]) and those with primary (37.52 ms [36.84-39.11], P = 0.028), but not secondary (36.87 ms [34.70-41.10], P = 0.160) OA. Glenohumeral cartilage T2 values were higher in different zones between patients with primary and secondary OA than in subjects without OA. These T2 values can be used for comparison to assess cartilage degeneration in patients with shoulder OA. Significant differences in T2 were observed among subjects without OA and those with primary and secondary OA. © The Foundation Acta Radiologica 2014.

  16. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative TMRI.

    Science.gov (United States)

    Lau, Brian C; Thuillier, Daniel U; Pedoia, Valentina; Chen, Ellison Y; Zhang, Zhihong; Feeley, Brian T; Souza, Richard B

    2016-01-01

    Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p=0.002 and p=0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. Level IV. Published by Elsevier B.V.

  17. Evaluation of pneumonia in children: comparison of MRI with fast imaging sequences at 1.5T with chest radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Yikilmaz, Ali; Koc, Ali; Coskun, Abdulhakim (Dept. of Radiology, Erciyes Medical School, Kayseri (Turkey)); Ozturk, Mustafa K (Dept. of Pediatric Infectious Diseases, Erciyes Medical School, Kayseri (Turkey)); Mulkern, Robert V; Lee, Edward Y (Dept. of Radiology and Dept. of Medicine, Pulmonary Div., Children' s Hospital Boston and Harvard Medical School, Boston (United States)), email: Edward.lee@childrens.harvard.edu

    2011-10-15

    Background Although there has been a study aimed at magnetic resonance imaging (MRI) evaluation of pneumonia in children at a low magnetic field (0.2T), there is no study which assessed the efficacy of MRI, particularly with fast imaging sequences at 1.5T, for evaluating pneumonia in children. Purpose To investigate the efficacy of chest MRI with fast imaging sequences at 1.5T for evaluating pneumonia in children by comparing MRI findings with those of chest radiographs. Material and Methods This was an Institutional Review Board-approved, HIPPA-compliant prospective study of 40 consecutive pediatric patients (24 boys, 16 girls; mean age 7.3 years +- 6.6 years) with pneumonia, who underwent PA and lateral chest radiographs followed by MRI within 24 h. All MRI studies were obtained in axial and coronal planes with two different fast imaging sequences: T1-weighted FFE (Fast Field Echo) (TR/TE: 83/4.6) and T2-weighted B-FFE M2D (Balanced Fast Field Echo Multiple 2D Dimensional) (TR/TE: 3.2/1.6). Two experienced pediatric radiologists reviewed each chest radiograph and MRI for the presence of consolidation, necrosis/abscess, bronchiectasis, and pleural effusion. Chest radiograph and MRI findings were compared with Kappa statistics. Results All consolidation, lung necrosis/abscess, bronchiectasis, and pleural effusion detected with chest radiographs were also detected with MRI. There was statistically substantial agreement between chest radiographs and MRI in detecting consolidation (k = 0.78) and bronchiectasis (k = 0.72) in children with pneumonia. The agreement between chest radiographs and MRI was moderate for detecting necrosis/abscess (k = 0.49) and fair for detecting pleural effusion (k = 0.30). Conclusion MRI with fast imaging sequences is comparable to chest radiographs for evaluating underlying pulmonary consolidation, bronchiectasis, necrosis/abscess, and pleural effusion often associated with pneumonia in children

  18. Comparison of 3D turbo spin-echo SPACE sequences with conventional 2D MRI sequences to assess the shoulder joint

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, Jost Karsten, E-mail: jost.kloth@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Winterstein, Marianne, E-mail: marianne.winterstein@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Akbar, Michael, E-mail: michael.akbar@med.uni-heidelberg.de [Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstraße 200a, D-69118 Heidelberg (Germany); Meyer, Esther, E-mail: esther.meyer@siemens.com [Siemens Healthcare, Erlangen (Germany); Paul, Dominik, E-mail: dominik.paul@siemens.com [Siemens Healthcare, Erlangen (Germany); Kauczor, Haus-Ulrich, E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Weber, Marc-André, E-mail: marcandre.weber@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany)

    2014-10-15

    Highlights: • 3D SPACE and conventional 2D TSE MRI for assessment of the shoulder joint were compared. • Concordance for most pathologys was substantial to almost perfect. • Examination time could be reduced up to 8 min (27%). • Regarding rotator cuff injuries an additional sagittal T2w TSE sequence in 3D protocol is recommended. - Abstract: Purpose: To determine the accuracy and reliability of three-dimensional (3D) T1- and proton density (PD)-weighted turbo spin-echo (TSE) sampling perfection with application-optimized contrasts using different flip-angle evolution (SPACE) compared with conventional 2D sequences in assessment of the shoulder-joint. Materials and methods: Ninety-three subjects were examined on a 3-T MRI system with both conventional 2D-TSE sequences in T1-, T2- and PD-weighting and 3D SPACE sequences in T1- and PD-weighting. All examinations were assessed independently by two reviewers for common pathologies of the shoulder-joint. Agreement between 2D- and 3D-sequences and inter-observer-agreement was evaluated using kappa-statistics. Results: Using conventional 2D TSE sequences as standard of reference, sensitivity, specificity, and accuracy values of 3D SPACE were 81.8%, 95.1%, and 93.5% for injuries of the supraspinatus-tendon (SSP), 81.3%, 93.5%, and 91.4% for the cartilage layer and 82.4%, 98.5%, and 97.5% for the long biceps tendon. Concordance between 2D and 3D was almost perfect for tendinopathies of the SSP (κ = 0.85), osteoarthritis (κ = 1), luxation of the biceps tendon (κ = 1) and adjacent bone marrow (κ = 0.92). Inter-observer-agreement was generally higher for conventional 2D TSE sequences (κ, 0.23–1.0), when compared to 3D SPACE sequences (κ, −0.33 to 1.0) except for disorders of the long biceps tendon and supraspinatus tendon rupture. Conclusion: Because of substantial and almost perfect concordance with conventional 2D TSE sequences for common shoulder pathologies, MRI examination-time can be reduced by nearly 40

  19. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI

    International Nuclear Information System (INIS)

    Welsch, Goetz H.; Trattnig, Siegfried; Quirbach, Sebastian; Hughes, Timothy; Olk, Alexander; Blanke, Matthias; Marlovits, Stefan; Mamisch, Tallal C.

    2010-01-01

    To use T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee, and to compare and correlate both methodologies. 3.0-Tesla MRI was performed on 30 patients (34.6 ± 9.9 years) with a follow-up period of 28.1 ± 18.8 months after MACT. Multi-echo, spin-echo-based T2 mapping using six echoes and gradient-echo-based T2* mapping using six echoes were prepared. T2 and T2* maps were obtained using a pixel-wise, mono-exponential, non-negative least-squares fit analysis. Region-of-interest analysis was performed for mean (full-thickness) as well as deep and superficial aspects of the cartilage repair tissue and control cartilage sites. Mean T2 values (ms) were comparable for the control cartilage (53.4 ± 11.7) and the repair tissue (55.5 ± 11.6) (p > 0.05). Mean T2* values (ms) for control cartilage (30.9 ± 6.6) were significantly higher than those of the repair tissue (24.5 ± 8.1) (p < 0.001). Zonal stratification was more pronounced for T2* than for T2. The correlation between T2 and T2* was highly significant (p < 0.001), with a Pearson coefficient between 0.276 and 0.433. T2 and T2* relaxation time measurements in the evaluation of cartilage repair tissue and its zonal variation show promising results, although the properties visualised by T2 and T2* may differ. (orig.)

  20. T2-weighted MR imaging of liver lesions: a prospective evaluation comparing turbo spin-echo, breath-hold turbo spin-echo and half-Fourier turbo spin-echo (HASTE) sequences

    International Nuclear Information System (INIS)

    Martin, J.; Villajos, M.; Oses, M. J.; Veintemillas, M.; Rue, M.; Puig, J.; Sentis, M.

    2000-01-01

    To compare turbo spin-echo (TSE), breath-hold TSE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences quantitatively and qualitatively in T2-weighted images of liver lesions. The authors evaluated prospectively 89 liver lesions in 73 patients using a 1.0-T magnetic resonance system to compare TSE, breath-hold TSE and HASTE sequences. The quantitative parameters were: lesion-to-liver contrast and lesion-to-liver contrast-to-noise ratio. The qualitative analysis was performed by two observers in consensus who examined four parameters: respiratory artifacts, lesion edge definition, intrahepatic vessel definition and image quality. Repeated measures analysis of variance was utilized to compare the quantitative variables and Friedman's nonparametric test for the qualitative parameters. In quantitative terms, the lesion-to-liver contrast was similar in TSE and breath-hold TSE sequences (2.45±1.44 versus 2.60±1.66), both of which were significantly better than the HASTE sequence (1.12±0.72; p<0.001). The lesion-to-liver contrast-to-noise ratio was significantly higher in the TSE sequence (62.60±46.40 versus 40.22±25.35 versus 50.90±32.10 for TSE, breath-hold TSE and HASTE sequences, respectively; p<0.001). In the qualitative comparisons, the HASTE sequence was significantly better than the TSE and breath-hold TSE sequences (p<0.001) in terms of artifacts and definition of lesion edge and intrahepatic vessels. Image quality was also significantly greater in the HASTE sequence (p<0.001). In quantitative terms, the TSE sequence is better than the breath-hold TSE and HASTE sequences, but there are no movement artifacts in the HASTE sequence, which is also significantly superior to TSE and breath-hold TSE sequences in qualitative terms and, thus, can be employed for T2-weighted images in liver studies. (Author) 17 refs

  1. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  2. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  3. Evaluation of the Subscapularis Tendon Tears on 3T Magnetic Resonance Arthrography: Comparison of Diagnostic Performance of T1-Weighted Spectral Presaturation with Inversion-Recovery and T2-Weighted Turbo Spin-Echo Sequences.

    Science.gov (United States)

    Lee, Hoseok; Ahn, Joong Mo; Kang, Yusuhn; Oh, Joo Han; Lee, Eugene; Lee, Joon Woo; Kang, Heung Sik

    2018-01-01

    To compare the T1-weighted spectral presaturation with inversion-recovery sequences (T1 SPIR) with T2-weighted turbo spin-echo sequences (T2 TSE) on 3T magnetic resonance arthrography (MRA) in the evaluation of the subscapularis (SSC) tendon tear with arthroscopic findings as the reference standard. This retrospective study included 120 consecutive patients who had undergone MRA within 3 months between April and December 2015. Two musculoskeletal radiologists blinded to the arthroscopic results evaluated T1 SPIR and T2 TSE images in separate sessions for the integrity of the SSC tendon, examining normal/articular-surface partial-thickness tear (PTTa)/full-thickness tear (FTT). Diagnostic performance of T1 SPIR and T2 TSE was calculated with arthroscopic results as the reference standard, and sensitivity, specificity, and accuracy were compared using the McNemar test. Interobserver agreement was measured with kappa (κ) statistics. There were 74 SSC tendon tears (36 PTTa and 38 FTT) confirmed by arthroscopy. Significant differences were found in the sensitivity and accuracy between T1 SPIR and T2 TSE using the McNemar test, with respective rates of 95.9-94.6% vs. 71.6-75.7% and 90.8-91.7% vs. 79.2-83.3% for detecting tear; 55.3% vs. 31.6-34.2% and 85.8% vs. 78.3-79.2%, respectively, for FTT; and 91.7-97.2% vs. 58.3-61.1% and 89% vs. 78-79.3%, respectively, for PTTa. Interobserver agreement for T1 SPIR was almost perfect for T1 SPIR (κ = 0.839) and substantial for T2 TSE (κ = 0.769). T1-weighted spectral presaturation with inversion-recovery sequences is more sensitive and accurate compared to T2 TSE in detecting SSC tendon tear on 3T MRA.

  4. Carcinoma of the uterine cervix. High-resolution turbo spin-echo MR imaging with contrast-enhanced dynamic scanning and T2-weighting

    International Nuclear Information System (INIS)

    Abe, Y.; Yamashita, Y.; Namimoto, T.; Takahashi, M.; Katabuchi, H.; Tanaka, N.; Okamura, H.

    1998-01-01

    Purpose: To compare high-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging with T2-weighted turbo spin-echo (TSE) imaging in the evaluation of uterine cervical carcinoma. Material and Methods: Thirty-two patients with cervical carcinoma underwent MR imaging on a 1.5 T superconductive unit to have the extension of the disease assessed before treatment. A phased-array coil was used in all patients. In 25 patients, surgical confirmation of the diagnosis was obtained after imaging. Radiation therapy was selected for the remaining 7 patients with advanced carcinoma. Qualitative and quantitative image analyses were also performed. Results: The cervical carcinomas showed maximum contrast in the cervical stroma and myometrium in the early dynamic phase. The tumor/cervical-stroma contrast in the early dynamic phase obtained with the T1-weighted TSE technique (contrast-to-noise ratio 22.6) was significantly higher than that obtained in T2-weighted TSE imaging (contrast-to-noise ratio 4.3). In the evaluation of parametrial invasion, the accuracy of T2-weighted imaging was 71.8% and contrast-enhanced dynamic imaging 81.2%. Conclusion: High-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging in cervical cancer offers improved tumor/cervical-stroma contrast and provides useful information on parametrial invasion. (orig.)

  5. Intracellular lipid in papillary renal cell carcinoma (pRCC): T2 weighted (T2W) MRI and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Van der Pol, Christian B.; Moosavi, Bardia; McInnes, Matthew D.F. [The Ottawa Hospital, The University of Ottawa, Department of Medical Imaging, Ottawa, Ontario (Canada); Mai, Kien T.; Flood, Trevor A. [The Ottawa Hospital, The University of Ottawa, Department of Anatomical Pathology, Ottawa, Ontario (Canada)

    2015-07-15

    To evaluate if pRCCs demonstrate intracellular lipid (i-lipid) at chemical-shift (CS) MRI, and assess T2W-MRI and pathologic characteristics. Sixty-two patients with a pRCC diagnosis underwent MRI over 11 years (IRB-approved). Two radiologists independently assessed for presence of i-lipid on CS-MRI and homogeneity on T2W-MRI. Inter-observer agreement was assessed via an intraclass correlation and results were compared using the Chi-square test. Discordant cases were reviewed to establish consensus. T2W SI-ratios (SI.tumor/SI.kidney) and CS-SI index were compared using independent t-tests and Spearman correlation. Two pathologists re-evaluated the histopathology. Nine of the 62 pRCCs (14.5 %) demonstrated i-lipid; agreement was moderate (ICC = 0.63). Pathology review depicted clear cells in four tumours and foamy histiocytes in five tumours. 25.8-35.4 % (ICC = 0.65) of tumours were homogeneous on T2W-MRI. No pRCC with i-lipid was considered homogeneous (p = 0.01-0.04). Overall, T2W SI-ratio and CS-SI index were 0.89 (±0.29) and -3.63 % (-7.27 to 11.42). pRCC with i-lipid had significantly higher T2W SI-ratio (p = 0.003). There was a correlation between the CS-SI index and T2W SI-ratio, (r = 0.44, p < 0.001). Intracellular lipid is uncommonly detected in pRCCs due to clear cell changes and foamy histiocytes. These tumours are associated with heterogeneously-increased SI in T2W-MRI. (orig.)

  6. Morphological imaging and T2 and T2* mapping of hip cartilage at 7 Tesla MRI under the influence of intravenous gadolinium

    International Nuclear Information System (INIS)

    Lazik-Palm, Andrea; Geis, Christina; Goebel, Juliane; Theysohn, Jens M.; Kraff, Oliver; Johst, Soeren; Ladd, Mark E.; Quick, Harald H.

    2016-01-01

    To investigate the influence of intravenous gadolinium on cartilage T2 and T2* relaxation times and on morphological image quality at 7-T hip MRI. Hips of 11 healthy volunteers were examined at 7 T. Multi-echo sequences for T2 and T2* mapping, 3D T1 volumetric interpolated breath-hold examination (VIBE) and double-echo steady-state (DESS) sequences were acquired before and after intravenous application of gadolinium according to a delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) protocol. Cartilage relaxation times were measured in both scans. Morphological sequences were assessed quantitatively using contrast ratios and qualitatively using a 4-point Likert scale. Student's t-test, Pearson's correlation (ρ) and Wilcoxon sign-rank test were used for statistical comparisons. Pre- and post-contrast T2 and T2* values were highly correlated (T2: acetabular: ρ = 0.76, femoral: ρ = 0.77; T2*: acetabular: ρ = 0.80, femoral: ρ = 0.72). Gadolinium enhanced contrasts between cartilage and joint fluid in DESS and T1 VIBE according to the qualitative (p = 0.01) and quantitative (p < 0.001) analysis. The delineation of acetabular and femoral cartilage and the labrum predominantly improved with gadolinium. Gadolinium showed no relevant influence on T2 or T2* relaxation times and improved morphological image quality at 7 T. Therefore, morphological and quantitative sequences including dGEMRIC can be conducted in a one-stop-shop examination. (orig.)

  7. Morphological imaging and T2 and T2* mapping of hip cartilage at 7 Tesla MRI under the influence of intravenous gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Lazik-Palm, Andrea; Geis, Christina; Goebel, Juliane; Theysohn, Jens M. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Kraff, Oliver; Johst, Soeren [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Ladd, Mark E. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg (Germany); Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High-Field and Hybrid MR Imaging, Essen (Germany)

    2016-11-15

    To investigate the influence of intravenous gadolinium on cartilage T2 and T2* relaxation times and on morphological image quality at 7-T hip MRI. Hips of 11 healthy volunteers were examined at 7 T. Multi-echo sequences for T2 and T2* mapping, 3D T1 volumetric interpolated breath-hold examination (VIBE) and double-echo steady-state (DESS) sequences were acquired before and after intravenous application of gadolinium according to a delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) protocol. Cartilage relaxation times were measured in both scans. Morphological sequences were assessed quantitatively using contrast ratios and qualitatively using a 4-point Likert scale. Student's t-test, Pearson's correlation (ρ) and Wilcoxon sign-rank test were used for statistical comparisons. Pre- and post-contrast T2 and T2* values were highly correlated (T2: acetabular: ρ = 0.76, femoral: ρ = 0.77; T2*: acetabular: ρ = 0.80, femoral: ρ = 0.72). Gadolinium enhanced contrasts between cartilage and joint fluid in DESS and T1 VIBE according to the qualitative (p = 0.01) and quantitative (p < 0.001) analysis. The delineation of acetabular and femoral cartilage and the labrum predominantly improved with gadolinium. Gadolinium showed no relevant influence on T2 or T2* relaxation times and improved morphological image quality at 7 T. Therefore, morphological and quantitative sequences including dGEMRIC can be conducted in a one-stop-shop examination. (orig.)

  8. Paradoxical signal pattern of mediastinal cysts on T2-weighted MR imaging: phantom and clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Ken, E-mail: k-ueda@radiol.med.osaka-u.ac.jp [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Yanagawa, Masahiro [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Ueguchi, Takashi [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Satoh, Yukihisa; Kawai, Misa; Gyobu, Tomoko; Sumikawa, Hiromitsu; Honda, Osamu; Tomiyama, Noriyuki [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan)

    2014-06-15

    Purpose: To evaluate the intracystic MRI (magnetic resonance imaging) signal intensity of mediastinal cystic masses on T2-weighted images. Materials and methods: A phantom study was performed to evaluate the signal intensity of a mediastinal cystic mass phantom (rubber balloon containing water) adjacent to a cardiac phantom pulsing at the rate of 60/min. T2-weighted images (sequence, fast spin echo [FSE] and single shot fast spin echo [SSFSE]) were acquired for the mediastinal cystic mass phantom. Further, a clinical study was performed in 33 patients (16 men, 17 women; age range, 19-85 years; mean, 65years) with thymic cysts or pericardial cysts. In all patients, T2-weighted images (FSE and SSFSE) were acquired. The signal intensity of cystic lesion was evaluated and was compared with that of muscle. A region of interest (ROI) was positioned on the standard MR console, and signal intensity of the cystic mass (cSI), that of the muscle (mSI), and the rate of absolute value of cSI–mSI to standard deviation (SD) of background noise (|cSI–mSI|/SD = CNR [contrast-to-noise ratio]) were measured. Results: The phantom study demonstrated that the rate phantom-ROI/saline-ROI was higher in SSFSE (0.36) than in FSE (0.19). In clinical cases, the degree of the signal intensity was higher in SSFSE than in FSE. The CNR was significantly higher in SSFSE (mean ± standard deviation, 111.0 ± 47.6) than in FSE (72.8 ± 36.6) (p < 0.001, Wilcoxon signed-rank test). Conclusions: Anterior mediastinal cysts often show lower signal intensity than the original signal intensity of water on T2-weighted images. SSFSE sequence reduces this paradoxical signal pattern on T2-weighted images, which may otherwise cause misinterpretation when assessing cystic lesions.

  9. Paradoxical signal pattern of mediastinal cysts on T2-weighted MR imaging: phantom and clinical study

    International Nuclear Information System (INIS)

    Ueda, Ken; Yanagawa, Masahiro; Ueguchi, Takashi; Satoh, Yukihisa; Kawai, Misa; Gyobu, Tomoko; Sumikawa, Hiromitsu; Honda, Osamu; Tomiyama, Noriyuki

    2014-01-01

    Purpose: To evaluate the intracystic MRI (magnetic resonance imaging) signal intensity of mediastinal cystic masses on T2-weighted images. Materials and methods: A phantom study was performed to evaluate the signal intensity of a mediastinal cystic mass phantom (rubber balloon containing water) adjacent to a cardiac phantom pulsing at the rate of 60/min. T2-weighted images (sequence, fast spin echo [FSE] and single shot fast spin echo [SSFSE]) were acquired for the mediastinal cystic mass phantom. Further, a clinical study was performed in 33 patients (16 men, 17 women; age range, 19-85 years; mean, 65years) with thymic cysts or pericardial cysts. In all patients, T2-weighted images (FSE and SSFSE) were acquired. The signal intensity of cystic lesion was evaluated and was compared with that of muscle. A region of interest (ROI) was positioned on the standard MR console, and signal intensity of the cystic mass (cSI), that of the muscle (mSI), and the rate of absolute value of cSI–mSI to standard deviation (SD) of background noise (|cSI–mSI|/SD = CNR [contrast-to-noise ratio]) were measured. Results: The phantom study demonstrated that the rate phantom-ROI/saline-ROI was higher in SSFSE (0.36) than in FSE (0.19). In clinical cases, the degree of the signal intensity was higher in SSFSE than in FSE. The CNR was significantly higher in SSFSE (mean ± standard deviation, 111.0 ± 47.6) than in FSE (72.8 ± 36.6) (p < 0.001, Wilcoxon signed-rank test). Conclusions: Anterior mediastinal cysts often show lower signal intensity than the original signal intensity of water on T2-weighted images. SSFSE sequence reduces this paradoxical signal pattern on T2-weighted images, which may otherwise cause misinterpretation when assessing cystic lesions

  10. Radiographs and low field MRI (0.2T) as predictors of efficacy in a weight loss trial in obese women with knee osteoarthritis

    DEFF Research Database (Denmark)

    Gudbergsen, Henrik; Boesen, Mikael; Christensen, Robin

    2011-01-01

    To study the predictive value of baseline radiographs and low-field (0.2T) MRI scans for the symptomatic outcome of clinically significant weight loss in obese patients with knee osteoarthritis.......To study the predictive value of baseline radiographs and low-field (0.2T) MRI scans for the symptomatic outcome of clinically significant weight loss in obese patients with knee osteoarthritis....

  11. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuhao; Mo, Xiaokai [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Shantou University Medical College, Graduate College, Shantou, Guangdong (China); Feng, Qianjin; Yang, Wei; Lu, Zixiao; Deng, Chunyan [Southern Medical University, The Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Guangzhou, Guangdong (China); Zhang, Lu; Lian, Zhouyang; Liu, Jing; Luo, Xiaoning; Pei, Shufang; Huang, Wenhui; Liang, Changhong; Zhang, Bin; Zhang, Shuixing [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China)

    2018-02-15

    To predict sentinel lymph node (SLN) metastasis in breast cancer patients using radiomics based on T{sub 2}-weighted fat suppression (T{sub 2}-FS) and diffusion-weighted MRI (DWI). We enrolled 146 patients with histologically proven breast cancer. All underwent pretreatment T{sub 2}-FS and DWI MRI scan. In all, 10,962 texture and four non-texture features were extracted for each patient. The 0.623 + bootstrap method and the area under the curve (AUC) were used to select the features. We constructed ten logistic regression models (orders of 1-10) based on different combination of image features using stepwise forward method. For T{sub 2}-FS, model 10 with ten features yielded the highest AUC of 0.847 in the training set and 0.770 in the validation set. For DWI, model 8 with eight features reached the highest AUC of 0.847 in the training set and 0.787 in the validation set. For joint T{sub 2}-FS and DWI, model 10 with ten features yielded an AUC of 0.863 in the training set and 0.805 in the validation set. Full utilisation of breast cancer-specific textural features extracted from anatomical and functional MRI images improves the performance of radiomics in predicting SLN metastasis, providing a non-invasive approach in clinical practice. (orig.)

  12. Spontaneous cerebral microbleeds on gradient echo MR imaging in the stroke patients

    International Nuclear Information System (INIS)

    Kwak, Seong Ho; Song, Chang June; Kim, Dae Bong; Jeong, Geum Chae

    2003-01-01

    To investigate the spontaneous cerebral microbleeding occurring at gradient-echo MRI, and its relationship with associated stroke lesions and risk factors. Between September 2001 and December, 2002, 32 patients (21 men and 11 women; mean age 63 years) in whom cerebral microbleeding occurred at gradient-echo MRI were retrospectively investigated. Using a 1.5T MR imager, spin-echo T1-weighted, fast spin-echo T2-weighted, diffusion-weighted, and gradient-echo images were obtained. The number and location of microbleeds seen on gradient echo images, patients data, and associated stroke lesions such as intracerebral hemorrhage and lacunar and territorial infarction were assessed. Among the 32 patients, 563 microbleeds and between 1 and 66 (mean, 17.6) were noted at gradient-echo imaging. Microbleeding occurred in the cortical/subcortical area (n=216), the basal ganglia (n=173), thalamus (n=92), cerebellum (n=41), brainstem (n=36) and corpus callosum (n=1), and in 20 patients was bilateral. Patients had a history of hypertension (n=26), hypertriglycemia (n=12), heart disease (n=4), and diabetes mellitus (n=3). Stroke lesions were seen in 27 patients, intracerebral hemorrhage in ten, lacunar infarction in 24, and territorial infarction in four. The incidence and number of microbleeds was greater in older patients and in those with hypertension, hypertriglycemia, and stroke lesions such as intracerebral hemorrhage or lacunar infarction. The detection of microbleeding at gradient-echo imaging is helpful, since it predicts the possibility of cerebral hemorrhage in these patients

  13. Application of three-dimensional fast spin-echo T2-weighted image in lesions of the inner ear

    International Nuclear Information System (INIS)

    Xian Junfang; Wang Zhenchang; Yan Fei; Niu Yantao; Zhu Ye; Wang Yan; Tian Qichang; Lan Baosen

    1999-01-01

    Objective: To investigate the advantage of three-dimensional fast spin-echo T 2 -weighted image (3D FSE T 2 WI) in depicting normal structures and lesions of the inner ear. Methods: 3D FSE T 2 WI and 2D FSE T 2 WI were performed in 10 healthy volunteers and 20 cases with inner ear diseases. Advantages and disadvantages of the two techniques were compared. CT was performed in 6 cases with enlarged endo-lymphatic sac and 1 cases of Mondini malformation. Results: 3D FSE T 2 WI enabled visualization of detailed anatomic structures. Enlarged endo-lymphatic sacs were clearly revealed in 9 cases on 16 sides by 3D FSE T 2 WI, while only a part but not the whole of the enlarged endo-lymphatic sac could be shown on 2D FSE T 2 WI. In 6 cases, 3D FSE T 2 WI displayed enlarged endo-lymphatic sac on 11 sides and normal on 1 side; however, CT revealed enlarged vestibular aqueduct on all 12 sides. One case with small acoustic neuroma (only 4 mm in diameter) was clearly demonstrated on 3D FSE T 2 WI but not well shown on 2D FSE T 2 WI. One case with cochlear Mondini malformation associated with dysplasia of vestibule and semicircular canals was displayed more clearly on 3D FSE T 2 WI than on 2D FSE T 2 WI. Conclusions: 3D FSE T 2 WI can clearly display normal structures and lesions of the inner ear

  14. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla.

    Science.gov (United States)

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2013-11-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.

  15. Liver Lobe Based Multi-Echo Gradient Recalled Echo T2*-Weighted Imaging in Chronic Hepatitis B-Related Cirrhosis: Association with the Presence and Child-Pugh Class of Cirrhosis.

    Directory of Open Access Journals (Sweden)

    Dan Wang

    Full Text Available To investigate whether liver lobe based T2* values measured on gradient recalled echo T2*-weighted imaging are associated with the presence and Child-Pugh class of hepatitis B-related cirrhosis.Fifty-six patients with hepatitis B-related cirrhosis and 23 healthy control individuals were enrolled in this study and underwent upper abdominal T2*-weighted magnetic resonance imaging. T2* values of the left lateral lobe (LLL, left medial lobe (LML, right lobe (RL and caudate lobe (CL were measured on T2*-weighted imaging. Statistical analyses were performed to determine the association between liver lobe based T2* values and the presence and Child-Pugh class of cirrhosis.The T2* values of the LLL, LML and RL decreased with the progression of cirrhosis from Child-Pugh class A to C (r = -0.231, -0.223, and -0.395, respectively; all P 0.05. To a certain extent, Mann-Whitney U tests with Bonferroni correction for multigroup comparisons showed that the T2* values of the LLL, LML and RL could distinguish cirrhotic liver from healthy liver (all P 0.05. Receiver operating characteristic analysis demonstrated that the T2* value of the RL could best distinguish cirrhosis from healthy liver, with an area under the receiver operating characteristic curve (AUC of 0.713 among T2* values of the liver lobes, and that only the T2* value of the RL could distinguish Child-Pugh class C from A-B, with an AUC of 0.697 (all P < 0.05.The T2* value of the RL can be associated with the presence and Child-Pugh class of hepatitis B-related cirrhosis.

  16. White Matter Hyperintensities on T2-Weighted MRI Images among DNA-Verified Older Familial Hypercholesterolemia Patients

    Energy Technology Data Exchange (ETDEWEB)

    Hyttinen, L. (Dept. of Internal Medicine, North Karelia Central Hospital, Joensuu (Finland)); Autti, T.; Soljanlahti, S. (Medical Imaging Center, Helsinki Univ. Central Hospital, Helsinki (Finland)); Rauma, S. (Dept. of Radiology, North Karelia Central Hospital, Joensuu (Finland)); Vuorio, A.F. (Dept. of Medicine, Univ. of Helsinki, Helsinki (Finland)); Strandberg, T.E. (Dept. of Health Sciences/Geriatrics, Univ. of Oulu, Oulu (Finland))

    2009-04-15

    Background: Familial hypercholesterolemia (FH) is a genetic disorder, causing an increased risk of coronary heart disease (CHD) if untreated. Silent brain infarctions and white matter hyperintensities (WMHIs) observed on T2-weighted magnetic resonance images (MRI) are associated with increased risk for stroke and myocardial infarction. Age is a strong predictor of WMHIs. Purpose: To use MRI to assess the presence of clinically silent brain lesions in older FH patients, and to compare the occurrence and size of these lesions in older FH patients with middle-aged FH patients and healthy controls. Material and Methods: A total of 43 older (age = 65 years) FH patients with the same FH North Karelia mutation, living in Finland, were identified. In this comprehensive cohort, 1.5T brain MRI was available for 33 individuals (age 65-84 years, M/F 9/24, mean duration of statin treatment 15.3 years). This group was divided into two age categories: 65-74 years (FHe1 group, n=23) and 75-84 years (FHe2 group, n=10). Infarcts, including lacunas, and WMHIs on T2-weighted images were recorded. Data from brain MRI were compared to those of a group of middle-aged FH patients with CHD (n=19, age 48-64 years) and with middle-aged healthy controls (n=29, age 49-63 years). Results: Only two (6%) of the older FH patients had clinically silent brain infarcts detected by MRI. The amount of large WMHIs (>5 mm in diameter) was similar in the FHe1 group compared with the groups of middle-aged FH patients and healthy controls, even though the FHe1 group was 13 years older. The total amount of WMHIs and the amount of large WMHIs were greatest in the FHe2 group. Conclusion: FH patients aged 65 to 74 years receiving long-term statin treatment (15 years) did not have more WMHIs on brain MRI compared to middle-aged FH patients and healthy controls.

  17. White Matter Hyperintensities on T2-Weighted MRI Images among DNA-Verified Older Familial Hypercholesterolemia Patients

    International Nuclear Information System (INIS)

    Hyttinen, L.; Autti, T.; Soljanlahti, S.; Rauma, S.; Vuorio, A.F.; Strandberg, T.E.

    2009-01-01

    Background: Familial hypercholesterolemia (FH) is a genetic disorder, causing an increased risk of coronary heart disease (CHD) if untreated. Silent brain infarctions and white matter hyperintensities (WMHIs) observed on T2-weighted magnetic resonance images (MRI) are associated with increased risk for stroke and myocardial infarction. Age is a strong predictor of WMHIs. Purpose: To use MRI to assess the presence of clinically silent brain lesions in older FH patients, and to compare the occurrence and size of these lesions in older FH patients with middle-aged FH patients and healthy controls. Material and Methods: A total of 43 older (age = 65 years) FH patients with the same FH North Karelia mutation, living in Finland, were identified. In this comprehensive cohort, 1.5T brain MRI was available for 33 individuals (age 65-84 years, M/F 9/24, mean duration of statin treatment 15.3 years). This group was divided into two age categories: 65-74 years (FHe1 group, n=23) and 75-84 years (FHe2 group, n=10). Infarcts, including lacunas, and WMHIs on T2-weighted images were recorded. Data from brain MRI were compared to those of a group of middle-aged FH patients with CHD (n=19, age 48-64 years) and with middle-aged healthy controls (n=29, age 49-63 years). Results: Only two (6%) of the older FH patients had clinically silent brain infarcts detected by MRI. The amount of large WMHIs (>5 mm in diameter) was similar in the FHe1 group compared with the groups of middle-aged FH patients and healthy controls, even though the FHe1 group was 13 years older. The total amount of WMHIs and the amount of large WMHIs were greatest in the FHe2 group. Conclusion: FH patients aged 65 to 74 years receiving long-term statin treatment (15 years) did not have more WMHIs on brain MRI compared to middle-aged FH patients and healthy controls

  18. T1-weighted dual-echo MRI for fat quantification in pediatric nonalcoholic fatty liver disease.

    Science.gov (United States)

    Pacifico, Lucia; Martino, Michele Di; Catalano, Carlo; Panebianco, Valeria; Bezzi, Mario; Anania, Caterina; Chiesa, Claudio

    2011-07-07

    To determine in obese children with nonalcoholic fatty liver disease (NAFLD) the accuracy of magnetic resonance imaging (MRI) in assessing liver fat concentration. A case-control study was performed. Cases were 25 obese children with biopsy-proven NAFLD. Controls were 25 obese children matched for age and gender, without NAFLD at ultrasonography and with normal levels of aminotransferases and insulin. Hepatic fat fraction (HFF) by MRI was obtained using a modification of the Dixon method. HFF ranged from 2% to 44% [mean, 19.0% (95% CI, 15.1-27.4)] in children with NAFLD, while in the controls this value ranged from 0.08% to 4.69% [2.0% (1.3-2.5), P steatosis (r = 0.883, P steatosis, the mean HFF was 8.7% (95% CI, 6.0-11.6) for mild, 21.6% (15.3-27.0) for moderate, and 39.7% (34.4-45.0) for severe fatty liver infiltration. With a cutoff of 4.85%, HFF had a sensitivity of 95.8% for the diagnosis of histological steatosis ≥ 5%. All control children had HFF lower than 4.85%; thus, the specificity was 100%. After 12 mo, children with weight loss displayed a significant decrease in HFF. MRI is an accurate methodology for liver fat quantification in pediatric NAFLD.

  19. Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma

    International Nuclear Information System (INIS)

    Loebel, Ulrike; Sedlacik, Jan; Sabin, Noah D.; Hillenbrand, Claudia M.; Patay, Zoltan; Kocak, Mehmet; Broniscer, Alberto

    2010-01-01

    We compared the sensitivity and specificity of T2*-weighted gradient-echo imaging (T2*-GRE) and susceptibility-weighted imaging (SWI) in determining prevalence and cumulative incidence of intratumoral hemorrhages in children with diffuse intrinsic pontine glioma (DIPG) undergoing antiangiogenic and radiation therapy. Patients were recruited from an institutional review board-approved prospective phase I trial of vandetanib administered in combination with radiation therapy. Patient consent was obtained before enrollment. Consecutive T2*-GRE and SWI exams of 17 patients (F/M: 9/8; age 3-17 years) were evaluated. Two reviewers (R1 and R2) determined the number and size of hemorrhages at baseline and multiple follow-ups (92 scans, mean 5.4/patient). Statistical analyses were performed using descriptive statistics, graphical tools, and mixed-effects Poisson regression models. Prevalence of hemorrhages at diagnosis was 41% and 47%; the cumulative incidences of hemorrhages at 6 months by T2*-GRE and SWI were 82% and 88%, respectively. Hemorrhages were mostly petechial; 9.7% of lesions on T2*-GRE and 5.2% on SWI were hematomas (>5 mm). SWI identified significantly more hemorrhages than T2*-GRE did. Lesions were missed or misinterpreted in 36/39 (R1/R2) scans by T2*-GRE and 9/3 scans (R1/R2) by SWI. Hemorrhages had no clinically significant neurological correlates in patients. SWI is more sensitive than T2*-GRE in detecting hemorrhages and differentiating them from calcification, necrosis, and artifacts. Also, petechial hemorrhages are more common in DIPG at diagnosis than previously believed and their number increases during the course of treatment; hematomas are rare. (orig.)

  20. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis.

    Directory of Open Access Journals (Sweden)

    Xavier Helluy

    Full Text Available Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis.Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast.This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise localization of

  1. T2*-weighted image/T2-weighted image fusion in postimplant dosimetry of prostate brachytherapy

    International Nuclear Information System (INIS)

    Katayama, Norihisa; Takemoto, Mitsuhiro; Yoshio, Kotaro

    2011-01-01

    Computed tomography (CT)/magnetic resonance imaging (MRI) fusion is considered to be the best method for postimplant dosimetry of permanent prostate brachytherapy; however, it is inconvenient and costly. In T2 * -weighted image (T2 * -WI), seeds can be easily detected without the use of an intravenous contrast material. We present a novel method for postimplant dosimetry using T2 * -WI/T2-weighted image (T2-WI) fusion. We compared the outcomes of T2 * -WI/T2-WI fusion-based and CT/T2-WI fusion-based postimplant dosimetry. Between April 2008 and July 2009, 50 consecutive prostate cancer patients underwent brachytherapy. All the patients were treated with 144 Gy of brachytherapy alone. Dose-volume histogram (DVH) parameters (prostate D90, prostate V100, prostate V150, urethral D10, and rectal D2cc) were prospectively compared between T2 * -WI/T2-WI fusion-based and CT/T2-WI fusion-based dosimetry. All the DVH parameters estimated by T2 * -WI/T2-WI fusion-based dosimetry strongly correlated to those estimated by CT/T2-WI fusion-based dosimetry (0.77≤ R ≤0.91). No significant difference was observed in these parameters between the two methods, except for prostate V150 (p=0.04). These results show that T2 * -WI/T2-WI fusion-based dosimetry is comparable or superior to MRI-based dosimetry as previously reported, because no intravenous contrast material is required. For some patients, rather large differences were observed in the value between the 2 methods. We thought these large differences were a result of seed miscounts in T2 * -WI and shifts in fusion. Improving the image quality of T2 * -WI and the image acquisition speed of T2 * -WI and T2-WI may decrease seed miscounts and fusion shifts. Therefore, in the future, T2 * -WI/T2-WI fusion may be more useful for postimplant dosimetry of prostate brachytherapy. (author)

  2. Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network.

    Science.gov (United States)

    Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui

    2018-04-24

    An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.

  3. The facial nerve in the temporal bone as visualised via thin-layer paratransversal and sagittal MR tomographic images by means of T1 spin-echo and FLASH sequences

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.; Jaeger, L.J.E.; Bruegel, F.J.; Grevers, G.; Reiser, M.F.

    1995-01-01

    It is difficult to effect visualization and delineation of the facial nerve and its neighbouring structures in the temporal bone with conventional MRI examination protocols. We tested temporal bone MRI with 2 mm slices and compared T 1 -weighted FLASH (T R =400 ms, T E =10 ms, 90 flip angle) and spin-echo (T R =540 ms, T E =15 ms) sequences. 5 volunteers and 14 patients were examined with the head coil of a 1.0 T whole body MRI scanner (Impact, Siemens, Erlangen) with para-transversal images orientated parallel to the inferior outline of the clivus and sagittal images orientated along the brainstem. The facial nerve and its neighbouring structures could be reliably visualized and differentiated along its entire course. The FLASH sequence was superior to the spin-echo sequence. 8 of 11 patients with peripheral facial nerve palsy showed contrast enhancement. In two patients, local swelling of the affected facial nerve was evident. (orig./MG) [de

  4. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    Science.gov (United States)

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, pPEPSI than for the GRE sequence (pPEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  5. Confidence in Assessment of Lumbar Spondylolysis Using Three-Dimensional Volumetric T2-Weighted MRI Compared With Limited Field of View, Decreased-Dose CT.

    Science.gov (United States)

    Delavan, Joshua Adam; Stence, Nicholas V; Mirsky, David M; Gralla, Jane; Fadell, Michael F

    2016-07-01

    spondylolysis, 2D MRI is still very good at detecting spondylolysis while remaining sensitive for detection of alternative diagnoses such as disc abnormalities and pars stress reaction. The data suggest that standard 2D MRI sequences should not be entirely replaced by a volumetric T2-weighted 3D sequence (despite promising features of rapid acquisition time, increased spatial resolution, and reconstruction capability). © 2016 The Author(s).

  6. MRI T2 Mapping of the Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla.

    Science.gov (United States)

    Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha

    2018-06-12

    This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.

  7. Signal-to-noise ratio, T2 , and T2* for hyperpolarized helium-3 MRI of the human lung at three magnetic field strengths.

    Science.gov (United States)

    Komlosi, Peter; Altes, Talissa A; Qing, Kun; Mooney, Karen E; Miller, G Wilson; Mata, Jaime F; de Lange, Eduard E; Tobias, William A; Cates, Gordon D; Mugler, John P

    2017-10-01

    To evaluate T 2 , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 ( 3 He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T. Sixteen healthy volunteers were imaged using a commercial whole body scanner at 0.43T, 0.79T, and 1.5T. Whole-lung T 2 values were calculated from a Carr-Purcell-Meiboom-Gill spin-echo-train acquisition. T2* maps and SNR were determined from dual-echo and single-echo gradient-echo images, respectively. Mean whole-lung SNR values were normalized by ventilated lung volume and administered 3 He dose. As expected, T 2 and T2* values demonstrated a significant inverse relationship to field strength. Hyperpolarized 3 He images acquired at all three field strengths had comparable SNR values and thus appeared visually very similar. Nonetheless, the relatively small SNR differences among field strengths were statistically significant. Hyperpolarized 3 He images of the human lung with similar image quality were obtained at three field strengths ranging from 0.43T and 1.5T. The decrease in susceptibility effects at lower fields that are reflected in longer T 2 and T2* values may be advantageous for optimizing pulse sequences inherently sensitive to such effects. The three-fold increase in T2* at lower field strength would allow lower receiver bandwidths, providing a concomitant decrease in noise and relative increase in SNR. Magn Reson Med 78:1458-1463, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Partial flip angle spin-echo imaging to obtain T1 weighted images with electrocardiographic gating

    International Nuclear Information System (INIS)

    Kawamitsu, Hideaki; Sugimura, Kazuro; Kasai, Toshifumi; Kimino, Katsuji

    1993-01-01

    ECG-gated spin-echo (SE) imaging can reduce physiologic motion artifact. However, it does not provide strong T 1 -weighted images, because the repetition time (TR) depends on heart rate (HR). For odd-echo SE imaging, T 1 contrast can be maximized by using a smaller flip angle (FA) of initial excitation RF pulses. We investigated the usefulness of partial FA SE imaging in order to obtain more T 1 -dependent contrast with ECG gating and determined the optimal FA at each heart rate. In computer simulation and phantom study, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each FA (0∼180deg) and each HR (55∼90 beats per minute (bpm)) were compared with those obtained with conventional T 1 -weighted SE imaging (TR=500 ms, TE=20 ms, FA=90deg). The optimal FA was decreased by reducing HR. The FA needed to obtain T 1 -dependent contrast identical to that with T 1 -weighted SE imaging was 43deg at a HR of 65 bpm, 53deg at 70 bpm, 60deg at 75 bpm. This predicted FA were in excellent agreement with that obtained with clinical evaluation. The predicted SNR was decreased by reducing FA. The SNR of partial FA SE imaging at HR of 65 bpm (FA=43deg) was 80% of that with conventional T 1 -weighted SE imaging. However, this imaging method presented no marked clinical problem. ECG-gated partial FA SE imaging provides better T 1 -dependent contrast than conventional ECG-gated SE imaging, especially for Gd-DTPA enhanced imaging. (author)

  9. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  10. Functional imaging of parotid glands: Diffusion-weighted echo-planar MRI before and after stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, C.R.; Cramer, M.C.; Gossrau, P.; Adam, G. [University Hospital Hamburg-Eppendorf (Germany). Department of Diagnostic and Interventional Radiology; Graessner, J. [Siemens AG, Hamburg (Germany). Medical Solutions; Reitmeier, F.; Jaehne, M. [University Hospital Hamburg-Eppendorf (Germany). Department of Oto-, Rhino-, Laryngology; Fiehler, J. [University Hospital Hamburg-Eppendorf (Germany). Department of Neuroradiology; Schoder, V. [University Hospital Hamburg-Eppendorf (Germany). Institute for Medical Biometry and Epidemiology

    2004-10-01

    Purpose: To investigate the feasibility of diffusion-weighted (DW) echo-planar imaging (EPI) for measuring different functional conditions of the parotid gland and to compare different measurement approaches. Materials and Methods: Parotid glands of 27 healthy volunteers were examined with a DW EPI sequence (TR 1,500 msec, TE 77 msec, field-of-view 250 x 250 mm, pixel size 2.10 x 1.95 mm, section thickness 5 mm) before and after oral stimulation with commercially available lemon juice. The b factors used were 0, 500, and 1,000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain) and evaluated with a manually placed circular region of interest (ROI) containing 100-200 pixel. Additional ROIs including the entire parotid gland were placed on either side. The results of both measurements were compared, using the Student's t test based on the median ADC values for each person. A two-tailed p-value of less than.05 was determined to indicate statistical significance. To compare both measurement approaches, the Pearson's correlation coefficient (r) was calculated. Results: Diffusion-weighted echo-planar MR imaging successfully visualized the parotid gland of all volunteers. In a first step, the median ADC value per person was computed. Using ROIs of 100-200 pixels, the mean was calculated to be 1.08 x 10{sup -3} mm{sup 2}/sec{+-}0.12 x 10{sup -3} mm{sup 2}/sec for both parotid glands prior to simulation. After stimulation, the mean ADC was measured at 1.15 x 10{sup -3} mm{sup 2}/sec{+-}0.11 x 10{sup -3} mm{sup 2}/sec for both parotid glands. Evaluating the entire parotid gland, the ADC was 1.12 x 10{sup -3} mm{sup 2}/sec{+-}0.08 x 10{sup -3} mm{sup 2}/sec prior to simulation, whereas the ADC increased to 1.18 x 10{sup -3} mm{sup 2}/sec{+-}0.09 x 10{sup -3} mm{sup 2}/sec after simulation with lemon juice. For both types of measurements, the increase in ADC after

  11. Quantitative T1 and T2* carotid atherosclerotic plaque imaging using a three-dimensional multi-echo phase-sensitive inversion recovery sequence: a feasibility study.

    Science.gov (United States)

    Fujiwara, Yasuhiro; Maruyama, Hirotoshi; Toyomaru, Kanako; Nishizaka, Yuri; Fukamatsu, Masahiro

    2018-06-01

    Magnetic resonance imaging (MRI) is widely used to detect carotid atherosclerotic plaques. Although it is important to evaluate vulnerable carotid plaques containing lipids and intra-plaque hemorrhages (IPHs) using T 1 -weighted images, the image contrast changes depending on the imaging settings. Moreover, to distinguish between a thrombus and a hemorrhage, it is useful to evaluate the iron content of the plaque using both T 1 -weighted and T 2 *-weighted images. Therefore, a quantitative evaluation of carotid atherosclerotic plaques using T 1 and T 2 * values may be necessary for the accurate evaluation of plaque components. The purpose of this study was to determine whether the multi-echo phase-sensitive inversion recovery (mPSIR) sequence can improve T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of an IPH. T 1 and T 2 * values measured using mPSIR were compared to values from conventional methods in phantom and in vivo studies. In the phantom study, the T 1 and T 2 * values estimated using mPSIR were linearly correlated with those of conventional methods. In the in vivo study, mPSIR demonstrated higher T 1 contrast between the IPH phantom and sternocleidomastoid muscle than the conventional method. Moreover, the T 1 and T 2 * values of the blood vessel wall and sternocleidomastoid muscle estimated using mPSIR were correlated with values measured by conventional methods and with values reported previously. The mPSIR sequence improved T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of the neck region. Although further study is required to evaluate the clinical utility, mPSIR may improve carotid atherosclerotic plaque detection and provide detailed information about plaque components.

  12. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    Energy Technology Data Exchange (ETDEWEB)

    Radlbauer, Rudolf, E-mail: rudolf.radlbauer@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Lomoschitz, Friedrich, E-mail: friedrich.lomoschitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Salomonowitz, Erich, E-mail: erich.salomonowitz@stpoelten.lknoe.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Eberhardt, Knut E., E-mail: info@mrt-kompetenzzentrum.d [MRT Competence Center Schloss Werneck, Balthasar-Neumann-Platz 2, 97440 Werneck (Germany); Stadlbauer, Andreas, E-mail: andi@nmr.a [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten (Austria); Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany)

    2010-08-15

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  13. MR imaging of the knee: Improvement of signal and contrast efficiency of T1-weighted turbo spin echo sequences by applying a driven equilibrium (DRIVE) pulse

    International Nuclear Information System (INIS)

    Radlbauer, Rudolf; Lomoschitz, Friedrich; Salomonowitz, Erich; Eberhardt, Knut E.; Stadlbauer, Andreas

    2010-01-01

    The purpose of this study was to assess the effect of a driven equilibrium (DRIVE) pulse incorporated in a standard T1-weighted turbo spin echo (TSE) sequence as used in our routine MRI protocol for examination of pathologies of the knee. Sixteen consecutive patients with knee disorders were examined using the routine MRI protocol, including T1-weighted TSE-sequences with and without a DRIVE pulse. Signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of anatomical structures and pathologies were calculated and compared for both sequences. The differences in diagnostic value of the T1-weighted images with and without DRIVE pulse were assessed. SNR was significantly higher on images acquired with DRIVE pulse for fluid, effusion, cartilage and bone. Differences in the SNR of meniscus and muscle between the two sequences were not statistically significant. CNR was significantly increased between muscle and effusion, fluid and cartilage, fluid and meniscus, cartilage and meniscus, bone and cartilage on images acquired using the DRIVE pulse. Diagnostic value of the T1-weighted images was found to be improved for delineation of anatomic structures and for diagnosing a variety of pathologies when a DRIVE pulse is incorporated in the sequence. Incorporation of a DRIVE pulse into a standard T1-weighted TSE-sequence leads to significant increase of SNR and CNR of both, anatomical structures and pathologies, and consequently to an increase in diagnostic value within the same acquisition time.

  14. Hemodynamic analysis of bladder tumors using T1-dynamic contrast-enhanced fast spin-echo MRI

    International Nuclear Information System (INIS)

    Kanazawa, Yuki; Miyati, Tosiaki; Sato, Osamu

    2012-01-01

    Objectives: To evaluate the hemodynamics of bladder tumors, we developed a method to calculate change in R 1 value (ΔR 1 ) from T 1 -dynamic contrast-enhanced fast spin-echo magnetic resonance imaging (T 1 DCE-FSE-MRI). Materials and methods: On a 1.5-T MR system, T 1 DCE-FSE-MRI was performed. This study was applied to 12 patients with urinary bladder tumor, i.e. urothelial carcinoma. We compared ΔR 1 –time and ΔSI–time between a peak in the ΔR 1 –time and ΔSI–time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope 0–180 ). Results: The mean slope of the first pass was significantly higher for bladder tumors on both the ΔR 1 –time and the ΔSI–time curve compared with normal bladder walls. Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope 0–180 in the ΔR 1 -time curve. However, no significant difference in the mean Slope 0–180 was observed on the ΔSI-time curve between bladder tumors and normal bladder walls. Conclusion: T 1 DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE images. Use of ΔR 1 analysis with T 1 DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

  15. MRI findings of sacroiliitis in ankylosing spondylitis: roles of MPGR and delayed post-contrast T1-weighted images

    International Nuclear Information System (INIS)

    Jeon, Eui Yong; Joo, Kyung Bin; Koo, Ja Hong; Moon, Won Jin; Hahm, Chang Kok; Kim, Tae Hwan; Kim, Seong Yoon

    1997-01-01

    For early diagnosis of sacroiliitis in spondyloarthropathy, the MRI findings of sacroiliitis, roles of MPGR(multiplanar Gradient Recalled Acquisition in Steady State), and delayed post-contrast T1-weighted images were evaluated. Twenty six patients with seronegative spondyloarthropathy(Probable clinical diagnosis of ankylosing spondylitis) were grouped as either less than radiographic grade 1(group A) or more than grade 2(group B). The MRI findings of both sacroiliac joints were evaluated in every patient, and predominant sites were determined. The two groups were then compared. In 17 patients, the number of enhancing panni seen on early and delayed post-contrast T1-weighted images was counted and compared between the two groups. Panni were found in all cases, and in both groups, predominant patterns of involvement were the lower and iliac aspects of the sacroiliac joints in both groups; in group A, the synovial joints and punctate pannus were predominantly involved, and in group B, the ligamentous joints as well as the synovial joints and linear pannus. In group B, More periarticular fat accumulation than periarticular osteitis was found. For the evaluation of changes in joint space, MPGR images were superior to spin echo images. For the delineation of enhancing pannus less than radiographic grade I, delayed post-contrast images were statistically superior to those which were early post-contrast. MRI can detect early sacroiliitic change according to the predominant sites of involvement, and deslyed post-contrast images play a role in the diagnosis of early sacroiliitis. MPGR imaging is good for the evaluation of joint space change

  16. MRI findings of sacroiliitis in ankylosing spondylitis: roles of MPGR and delayed post-contrast T1-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Eui Yong; Joo, Kyung Bin; Koo, Ja Hong; Moon, Won Jin; Hahm, Chang Kok; Kim, Tae Hwan; Kim, Seong Yoon [Hanyang Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    For early diagnosis of sacroiliitis in spondyloarthropathy, the MRI findings of sacroiliitis, roles of MPGR(multiplanar Gradient Recalled Acquisition in Steady State), and delayed post-contrast T1-weighted images were evaluated. Twenty six patients with seronegative spondyloarthropathy(Probable clinical diagnosis of ankylosing spondylitis) were grouped as either less than radiographic grade 1(group A) or more than grade 2(group B). The MRI findings of both sacroiliac joints were evaluated in every patient, and predominant sites were determined. The two groups were then compared. In 17 patients, the number of enhancing panni seen on early and delayed post-contrast T1-weighted images was counted and compared between the two groups. Panni were found in all cases, and in both groups, predominant patterns of involvement were the lower and iliac aspects of the sacroiliac joints in both groups; in group A, the synovial joints and punctate pannus were predominantly involved, and in group B, the ligamentous joints as well as the synovial joints and linear pannus. In group B, More periarticular fat accumulation than periarticular osteitis was found. For the evaluation of changes in joint space, MPGR images were superior to spin echo images. For the delineation of enhancing pannus less than radiographic grade I, delayed post-contrast images were statistically superior to those which were early post-contrast. MRI can detect early sacroiliitic change according to the predominant sites of involvement, and deslyed post-contrast images play a role in the diagnosis of early sacroiliitis. MPGR imaging is good for the evaluation of joint space change.

  17. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI.

    Science.gov (United States)

    Clavijo Jordan, M Veronica; Beeman, Scott C; Baldelomar, Edwin J; Bennett, Kevin M

    2014-01-01

    Inorganic doping was used to create flexible, paramagnetic nanoparticle contrast agents for in vivo molecular magnetic resonance imaging (MRI) with low transverse relaxivity (r2). Most nanoparticle contrast agents formed from superparamagnetic metal oxides are developed with high r2. While sensitive, they can have limited in vivo detection due to a number of constraints with T2 or T2*-weighted imaging. T1-weighted imaging is often preferred for molecular MRI, but most T1-shortening agents are small chelates with low metal payload or are nanoparticles that also shorten T2 and limit the range of concentrations detectable with T1-weighting. Here we used tungsten and iron deposition to form doped iron oxide crystals inside the apoferritin cavity to form a WFe nanoparticle with a disordered crystal and un-coupled atomic magnetic moments. The atomic magnetic moments were thus localized, resulting in a principally paramagnetic nanoparticle. The WFe nanoparticles had no coercivity or saturation magnetization at 5 K and sweeping up to ± 20,000 Oe, while native ferritin had a coercivity of 3000 Oe and saturation at ± 20,000 Oe. This tungsten-iron crystal paramagnetism resulted in an increased WFe particle longitudinal relaxivity (r1) of 4870 mm(-1) s(-1) and a reduced transverse relaxivity (r2) of 9076 mm(-1) s(-1) compared with native ferritin. The accumulation of the particles was detected with T1-weighted MRI in concentrations from 20 to 400 nm in vivo, both injected in the rat brain and targeted to the rat kidney glomerulus. The WFe apoferritin nanoparticles were not cytotoxic up to 700 nm particle concentrations, making them potentially important for targeted molecular MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  18. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    International Nuclear Information System (INIS)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Czito, Brian G.; Bashir, Mustafa R.

    2015-01-01

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundant images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N_R) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N_R and the following factors: number of slices (N_S), number of 4D-MRI respiratory bins (N_B), and starting phase at image acquisition (P_0). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study

  19. Contrast-enhanced turbo spin-echo(TSE) T1-weighted imaging: improved contrast of enhancing lesions

    International Nuclear Information System (INIS)

    Choi, Sung Wook; Lee, Ghi Jai; Shim, Jae Chan; Lee, Young Ju; Jeong, Se Hyung; Kim, Ho kyun

    1997-01-01

    The purpose of this study was to evaluate the effect of contrast improvement of enhancing brain lesions by inherent magnetization transfer effect in turbo spin-echo(TSE)T1-weighted MR imaging. Twenty-six enhancing lesions of 19 patients were included in this study. Using a 1.0T superconductive MR unit, contrast-enhanced SE T1-weighted images(TR=3D600 msec, TE=3D12 msec, NEX=3D2, acquistition time=3D4min 27sec) and contrast-enhanced TSE T1-weighted images(TR=3D600 msec, TE=3D12, acquistition time=3D1min 44sec) were obtained. Signal intensities at enhancing lesions and adjacent white matter were measured in the same regions of both images. Signal-to-noise ratio(SNR) of enhancing lesions and adjacent white matter, and con-trast-to-noise ratio(CNR) and lesion-to-background contrast (LBC) of enhancing lesions were calculated and statistically analysed using the paired t-test. On contrast-enhanced TSE T1-weighted images, SNR of enhancing lesions and adjacent white matter decreased by 18%(p<0.01) and 32%(p<0.01), respectively, compared to contrast-enhanced SE T1-weighted images. CNR and LBC of enhancing lesions increased by 16%(p<0.05) and 66%(p<0.01), respectively. Due to the proposed inherent magnetization transfer effects in TSE imaging, con-trast-enhanced T1-weighted TSE images demonstrated a statistically significant improvement in CNR and LBC, compared to conventional contrast-enhanced T1-weighted SE images, and scan time was much shorter

  20. 3 T MRI of hepatocellular carcinomas in patients with cirrhosis: Does T2-weighted imaging provide added value?

    International Nuclear Information System (INIS)

    Guo, L.; Liang, C.; Yu, T.; Wang, G.; Li, N.; Sun, H.; Gao, F.; Liu, C.

    2012-01-01

    Aim: To assess whether T2-weighted imaging (T2WI) provides any added value for the detection of hepatocellular carcinoma (HCC) in patients with cirrhosis, especially for lesions smaller than 2 cm. Materials and methods: Sixty-five patients with cirrhosis underwent liver 3 T MRI. Images were qualitatively analysed independently by two observers in two separate sessions, including a dynamic enhanced session and a combination of dynamic and T2WI. The diagnostic accuracy was evaluated using the alternating free-response receiver operating characteristic. Sensitivity and positive predictive values were calculated for all HCCs and for the subgroup of HCCs that were smaller than 2 cm. Additionally, artefacts on T2WI were evaluated by two observers in consensus. Results: Ninety HCCs (>2 cm n = 36; ≤2 cm n = 54) were detected in 46 patients. For all HCCs and for lesions smaller than 2 cm, the sensitivities were significantly higher for the combined session than the dynamic session alone (p < 0.05). Conversely, for the Az and positive predictive values, there was no significant difference between the two sessions. For smaller HCC, 9% (5/54) and 7% (4/54) of the 54 HCCs were correctly interpreted by observers 1 and 2, respectively, only when T2WI was included. Three false-positive lesions (≤2 cm) were correctly diagnosed by one of the observers after combining T2WI. Conspicuity of only one large HCC was severely reduced by the artefacts from massive ascites. Conclusion: At 3 T liver imaging, combining with T2WI can improve the sensitivity of detection of HCC compared with dynamic MRI alone by increasing observer confidence, especially for lesions smaller than 2 cm. Additionally, T2 image quality was not significantly affected by artefacts.

  1. 3 T MRI of hepatocellular carcinomas in patients with cirrhosis: Does T2-weighted imaging provide added value?

    Energy Technology Data Exchange (ETDEWEB)

    Guo, L.; Liang, C.; Yu, T.; Wang, G.; Li, N.; Sun, H.; Gao, F. [Shandong Medical Imaging Research Institute, Shandong University, Jinan (China); Liu, C., E-mail: liucheng1025@163.com [Shandong Medical Imaging Research Institute, Shandong University, Jinan (China)

    2012-04-15

    Aim: To assess whether T2-weighted imaging (T2WI) provides any added value for the detection of hepatocellular carcinoma (HCC) in patients with cirrhosis, especially for lesions smaller than 2 cm. Materials and methods: Sixty-five patients with cirrhosis underwent liver 3 T MRI. Images were qualitatively analysed independently by two observers in two separate sessions, including a dynamic enhanced session and a combination of dynamic and T2WI. The diagnostic accuracy was evaluated using the alternating free-response receiver operating characteristic. Sensitivity and positive predictive values were calculated for all HCCs and for the subgroup of HCCs that were smaller than 2 cm. Additionally, artefacts on T2WI were evaluated by two observers in consensus. Results: Ninety HCCs (>2 cm n = 36; {<=}2 cm n = 54) were detected in 46 patients. For all HCCs and for lesions smaller than 2 cm, the sensitivities were significantly higher for the combined session than the dynamic session alone (p < 0.05). Conversely, for the Az and positive predictive values, there was no significant difference between the two sessions. For smaller HCC, 9% (5/54) and 7% (4/54) of the 54 HCCs were correctly interpreted by observers 1 and 2, respectively, only when T2WI was included. Three false-positive lesions ({<=}2 cm) were correctly diagnosed by one of the observers after combining T2WI. Conspicuity of only one large HCC was severely reduced by the artefacts from massive ascites. Conclusion: At 3 T liver imaging, combining with T2WI can improve the sensitivity of detection of HCC compared with dynamic MRI alone by increasing observer confidence, especially for lesions smaller than 2 cm. Additionally, T2 image quality was not significantly affected by artefacts.

  2. Predictive value of PWI for blood supply and T1-spin echo MRI for consistency of pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zengyi; He, Wenqiang; Zhao, Yao; Zhang, Qilin; Li, Shiqi; Wang, Yongfei [Fudan University, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Shanghai (China); Shanghai Pituitary Tumor Center, Shanghai (China); Yuan, Jie; Wu, Yue; Yao, Zhenwei [Fudan University, Department of Radiology, Huashan Hospital, Shanghai Medical College, Shanghai (China); Chen, Hong [Fudan University, Department of Neuropathology, Huashan Hospital, Shanghai Medical College, Shanghai (China)

    2016-01-15

    It is a common view that consistency and blood supply of pituitary adenoma (PA) can influence the surgical effect. The aim of this study was to determine whether MRI signal intensity (SI) was correlated to the consistency or blood supply of pituitary macroadenoma. Forty eight pituitary macroadenoma patients were underwent preoperative MRI, including precontrast and contrast-enhanced (CE) T1-spin echo (T1-SE) imaging, CE-sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) imaging, and perfusion-weighted imaging (PWI). The tumor consistency and blood supply were determined by neurosurgeons. The expression of collagen IV and MIB-1 was detected with immunohistology. The correlation of the relative SI (rSI) values (tumor to normal frontal white matter SI) and PWI data to the tumor consistency, blood supply, and the expression level of collagen IV and MIB-1 was statistically studied by Kruskal-Wallis rank test (K-W test). A significant correlation was observed between the tumor consistency and the rSI on precontrast T1-SE imaging (P = 0.004) but not on CE T1-SE and CE SPACE imaging. The expression of collagen IV was also significantly associated with rSI on T1-SE imaging (P = 0.010). The blood supply was correlated with the relative CBV (rCBV) (P = 0.030). In addition, the expression of MIB-1 was correlated with rSI of CE T1-SE imaging (P = 0.007). Our results suggest that T1-SE imaging may be a simple and useful method for predicting consistency of PA. CBV value can provide helpful information for assessing the blood supply of pituitary macroadenoma. (orig.)

  3. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis

    Science.gov (United States)

    Helluy, Xavier; Sauter, Martina; Ye, Yu-Xiang; Lykowsky, Gunthard; Kreutner, Jakob; Yilmaz, Ali; Jahns, Roland; Boivin, Valerie; Kandolf, Reinhard; Jakob, Peter M.; Hiller, Karl-Heinz; Klingel, Karin

    2017-01-01

    Objective Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis. Results Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast. Conclusion This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise

  4. Semiquantitative assessment of focal cartilage damage at 3 T MRI: A comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W., E-mail: froemer@bu.edu [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Kwoh, C. Kent [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); VA Pittsburgh Healthcare System (United States); Hannon, Michael J. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Crema, Michel D. [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Moore, Carolyn E. [Department of Nutrition and Food Sciences, Texas Woman' s University (United States); Jakicic, John M. [Department of Health and Physical Activity, University of Pittsburgh (United States); Green, Stephanie M. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Guermazi, Ali [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States)

    2011-11-15

    Purpose: The aim of the study was to compare semiquantitative assessment of focal cartilage damage using the dual echo at steady state (DESS)- and intermediate-weighted (IW) fat suppressed (fs) sequences at 3 T MRI. Methods: Included were 201 subjects aged 35-65 with frequent knee pain. MRI was performed with the same sequence protocol as in the Osteoarthritis Initiative (OAI): sagittal IW fs, triplanar DESS and coronal IW sequences. Cartilage status was scored according to the WORMS system using all five sequences. A total of 243 focal defects were detected. In an additional consensus reading, the lesions were evaluated side-by-side using only the sagittal DESS and IW fs sequences. Lesion conspicuity was graded from 0 to 3, intrachondral signal changes adjacent to the defect were recorded and the sequence that depicted the lesion with larger diameter was noted. Wilcoxon signed-rank tests, controlled for clustering by person, were used to examine differences between the sequences. Results: 37 (17.5%) of the scorable lesions were located in the medial tibio-femoral (TF), 48 (22.7%) in the lateral TF and 126 (59.7%) in the patello-femoral compartment. 82.5% were superficial and 17.5% full-thickness defects. Conspicuity was superior for the IW sequence (p < 0.001). The DESS sequence showed more associated intrachondral signal changes (p < 0.001). In 103 (48.8%) cases, the IW fs sequence depicted the lesions as being larger (p < 0.001). Conclusions: The IW fs sequence detected more and larger focal cartilage defects than the DESS. More intrachondral signal changes were observed with the DESS.

  5. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  6. Methods of fetal MR: beyond T2-weighted imaging

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Stuhr, Fritz; Lindner, Christian; Prayer, Daniela

    2006-01-01

    The present work reviews the basic methods of performing fetal magnetic resonance imaging (MRI). Since fetal MRI differs in many respects from a postnatal study, several factors have to be taken into account to achieve satisfying image quality. Image quality depends on adequate positioning of the pregnant woman in the magnet, use of appropriate coils and the selection of sequences. Ultrafast T2-weighted sequences are regarded as the mainstay of fetal MR-imaging. However, additional sequences, such as T1-weighted images, diffusion-weighted images, echoplanar imaging may provide further information, especially in extra- central-nervous system regions of the fetal body

  7. Methods of fetal MR: beyond T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria)]. E-mail: peter.brugger@meduniwien.ac.at; Stuhr, Fritz [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria); Lindner, Christian [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria); Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria)

    2006-02-15

    The present work reviews the basic methods of performing fetal magnetic resonance imaging (MRI). Since fetal MRI differs in many respects from a postnatal study, several factors have to be taken into account to achieve satisfying image quality. Image quality depends on adequate positioning of the pregnant woman in the magnet, use of appropriate coils and the selection of sequences. Ultrafast T2-weighted sequences are regarded as the mainstay of fetal MR-imaging. However, additional sequences, such as T1-weighted images, diffusion-weighted images, echoplanar imaging may provide further information, especially in extra- central-nervous system regions of the fetal body.

  8. Assessment of Silent T1-weighted head imaging at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Costagli, Mauro; Tiberi, Gianluigi; Tosetti, Michela [Imago7 Foundation, Pisa (Italy); IRCCS Stella Maris, Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance, Pisa (Italy); Symms, Mark R. [GE Applied Science Laboratory, Pisa (Italy); Angeli, Lorenzo [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Pisa (Italy); Kelley, Douglas A.C. [GE Healthcare Technologies, San Francisco, CA (United States); Biagi, Laura [IRCCS Stella Maris, Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance, Pisa (Italy); Farnetani, Andrea [University of Ferrara, Engineering Department, Ferrara (Italy); Materiacustica s.r.l., Ferrara (Italy); Rua, Catarina [University of Pisa, Department of Physics, Pisa (Italy); Donatelli, Graziella [Azienda Ospedaliero-Universitaria Pisana (AOUP), Neuroradiology Unit, Department of Diagnostic and Interventional Radiology, Pisa (Italy); Cosottini, Mirco [Imago7 Foundation, Pisa (Italy); University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Pisa (Italy)

    2016-06-15

    This study aimed to assess the performance of a ''Silent'' zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system. The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared to conventional T1-weighted imaging (FSPGR). Adequacy for automated segmentation was evaluated in comparison with FSPGR acquired at 7 T and 1.5 T. Specific absorption rate (SAR) was also measured. Tissue contrast and homogeneity in Silent were remarkable in deep brain structures and in the occipital and temporal lobes. Mean tissue contrast was significantly (p < 0.002) higher in Silent (0.25) than in FSPGR (0.11), which favoured automated tissue segmentation. On the other hand, Silent images had lower SNR with respect to conventional imaging: average SNR of FSPGR was 2.66 times that of Silent. Silent images were affected by artefacts related to projection reconstruction, which nevertheless did not compromise the depiction of brain tissues. Silent acquisition was 35 dB(A) quieter than FSPGR and less than 2.5 dB(A) louder than ambient noise. Six-minute average SAR was <2 W/kg. The ZTE Silent sequence provides high-contrast T1-weighted imaging with low acoustic noise at 7 T. (orig.)

  9. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    Science.gov (United States)

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  10. Fetal MRI: An approach to practice: A review

    OpenAIRE

    Saleem, Sahar N.

    2013-01-01

    MRI has been increasingly used for detailed visualization of the fetus in utero as well as pregnancy structures. Yet, the familiarity of radiologists and clinicians with fetal MRI is still limited. This article provides a practical approach to fetal MR imaging. Fetal MRI is an interactive scanning of the moving fetus owed to the use of fast sequences. Single-shot fast spin-echo (SSFSE) T2-weighted imaging is a standard sequence. T1-weighted sequences are primarily used to demonstrate fat, cal...

  11. The contribution of MRI to the diagnosis of diffuse meningeal lesions

    International Nuclear Information System (INIS)

    Kreuzberg, B.; Kastner, J.; Ferda, J.

    2004-01-01

    We analysed MRI findings in patients in whom a diffuse abnormality of the meninges was revealed by MRI. We looked at T1 and T2-weighted spin-echo or fast spin-echo images and contrast-enhanced T1-weighted images. There were 15 patients with abnormalities on MRI, clinically suspected in ten. Four had meningoencephalitis, one meningeal and subcortical sarcoidosis nodules, four meningeal malignancies - one disseminated oligodendroglioma, one with meningeal infiltration around an adenocarcinoma, three meningeal infiltration by a haematological malignancy, and one a chronic subdural haematoma without a history of injury. We excluded patients with primary meningeal tumours and typical injury-related meningeal bleeding. The relatively small number of patients is due to both the infrequency of diffuse meningeal disease and to the low frequency of suspected meningeal pathology as an indication for MRI. The latter's diagnostic contribution is greatest in infectious disease and neoplastic infiltration, and less obvious in haematological malignancies. Contrast-enhanced T1-weighted images are most useful. (orig.)

  12. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki

    2001-01-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  13. T2-weighted fast spin-echo MR imaging of the pelvis

    International Nuclear Information System (INIS)

    Francis, I.R.; Steiner, R.M.; Herfkens, R.J.; Jain, K.; Glover, G.H.

    1991-01-01

    A fast Se (FSE) sequence capable of acquiring SE images with a wide range of TRs and TEs in short imaging times has been recently introduced. I this paper, the authors evaluated the value of this technique compared with standard T2-weighted SE imaging. Twenty-five patients were evaluated with T2-weighted SE and FSE images on a 1.5-T GE Signa imager. Imaging times ranged from 3 to 5 minutes for the FSE acquisition and from 12 to 15 minutes for the SE images. Three observers performed a comparison by using a 10-point scale for organ definition and lesion conspicuity, with differences settled by consensus reading. Pelvic organ definition was superior and pelvic tumors and free fluid were also more conspicuous on FSE images. In 2/25 patients ringing artifacts were present

  14. Fat-suppressed MRI of musculoskeletal infection: fast T2-weighted techniques versus gadolinium-enhanced T1-weighted images

    International Nuclear Information System (INIS)

    Miller, T.T.; Randolph, D.A. Jr.; Staron, R.B.; Feldman, F.; Cushin, S.

    1997-01-01

    Purpose. To investigate gadolinium's role in imaging musculoskeletal infection by comparing the conspicuity and extent of inflammatory changes demonstrated on gadolinium-enhanced fat-suppressed T1-weighted images versus fat-suppressed fast T2-weighted sequences. Design. Eighteen patients with infection were imaged in a 1.5-T unit, using frequency-selective and/or inversion recovery fat-suppressed fast T2-weighted images (T2WI) and gadolinium-enhanced frequency-selective fat-suppressed T1-weighted images (T1WI). Thirty-four imaging planes with both a fat-suppressed gadolinium-enhanced T1-weighted sequence and a fat-suppressed T2-weighted sequence were obtained. Comparison of the extent and conspicuity of signal intensity changes was made for both bone and soft tissue in each plane. Results. In bone, inflammatory change was equal in extent and conspicuity on fat-suppressed T2WI and fat-suppressed T1WI with gadolinium in 19 planes, more extensive or conspicuous on T2WI in three planes, and less so on T2WI in two planes. Marrow was normal on all three sequences in 10 cases. In soft tissue, inflammatory change was seen equally well in 20 instances, more extensively or conspicuously on the T2WI in 11 instances, and less so on T2WI in 2 instances. One case had no soft tissue involvement on any of the sequences. Five abscesses and three joint effusions were present, all more conspicuously delineated from surrounding inflammatory change on the fat-saturated T1WI with gadolinium. The average imaging time for the fat-saturated T1WI with gadolinium was 6.75 min, while that of the T2-weighted sequences was 5.75 min. Conclusion. Routine use of gadolinium is not warranted. Instead, gadolinium should be reserved for clinically suspected infection in or around a joint, and in cases refractory to medical or surgical treatment due to possible abscess formation. (orig.)

  15. Bilateral Pulvinar Signal Intensity Decrease on T2-Weighted Images in Patients with Aspartylglucosaminuria

    International Nuclear Information System (INIS)

    Autti, T.; Loennqvist, T.; Joensuu, R.

    2008-01-01

    Background: Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal disease caused by deficiency of aspartylglucosaminidase. A thalamic T2 signal intensity decrease is associated with lysosomal diseases. Purpose: To investigate thalamic signal intensity in AGU by performing a retrospective review of brain magnetic resonance (MR) imaging studies of AGU patients. Material and Methods: A total of 25 MR examinations were available for 11 patients aged between 3 and 32 years (four patients underwent bone marrow transplantation). Of these, 13 examinations were performed after bone marrow transplantation. Five patients had from two to six examinations, and six patients had one examination each. In every patient, the diagnosis of AGU was confirmed by blood and urine tests. Eighteen examinations were performed with a 1.0T imager including dual spin-echo T2 and proton density (PD) axial and coronal images, and 10 examinations also included T1-weighted images. Seven examinations were performed with a 1.5T imager including turbo spin-echo axial and coronal T2-weighted images and axial fluid-attenuated inversion recovery (FLAIR) images; three examinations included T1-weighted three-dimensional magnetization-prepared rapid acquisition gradient-echo (3D MPRAGE) images. The signal intensity of the thalamus and pulvinar in every sequence was compared to that of the putamina. Results: In AGU, thalamic alterations were first detectable on T2-weighted images (25 examinations in 11 patients) from the age of 3 years 6 months, showing decreased signal intensity in 21 of 24 examinations. T1-weighted images (13 examinations) showed slightly increased thalamic signal intensity in five out of seven examinations from the age of 7 years, and PD images (19 examinations) showed decreased signal intensity from the age of 16 years (three examinations). The pulvinar showed decreased signal intensity on spin-echo T2-weighted images for 14 of 18 examinations or on FLAIR sequences for seven

  16. Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Monma, Masahiko; Yamada, Kazuhiro; Kimura, Hirohiko; Uematsu, Hidemasa; Fujiwara, Yasuhiro; Yamaguchi, Isao

    2007-01-01

    The purpose of this study was to propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T 1 -weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. The method of this study was to estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T 2 * effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. In the phantom study, the uniformity of the T 1 -weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. The present method improves the image uniformity of high-field T 1 -weighted SE images. (author)

  17. Can T1 w/T2 w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin water fractions.

    Science.gov (United States)

    Uddin, Md Nasir; Figley, Teresa D; Marrie, Ruth Ann; Figley, Chase R

    2018-03-01

    Given the growing popularity of T 1 -weighted/T 2 -weighted (T 1 w/T 2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T 1 w/T 2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T 2 w image acquisition, and to compare the resulting T 1 w/T 2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T 1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T 2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T 1 w/T 2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. Although the GRASE sequence systematically underestimated T 1 w/T 2 w values compared to the FSE sequence (revealed by Bland-Altman and mountain plots), linear regressions across participants and ROIs revealed consistently high correlations between the two methods (r 2 = 0.62 for all ROIs, r 2 = 0.62 for WM structures and r 2 = 0.73 for SGM structures). However, correlations between either FSE-based or GRASE-based T 1 w/T 2 w ratios and MWFs were extremely low in WM structures (FSE-based, r 2 = 0.000020; GRASE-based, r 2 = 0.0014), low across all ROIs (FSE-based, r 2 = 0.053; GRASE-based, r 2 = 0.029) and moderate in SGM structures (FSE-based, r 2 = 0.20; GRASE-based, r 2 = 0.17). Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T 1 w/T 2 w ratios, and low correlations between T 1 w/T 2 w ratios and MWFs. This

  18. Child dermoid cyst mimicking a craniopharyngioma: the benefit of MRI T2-weighted diffusion sequence.

    Science.gov (United States)

    Amelot, Aymeric; Borha, Alin; Calmon, Raphael; Barbet, Patrick; Puget, Stephanie

    2018-02-01

    Brain dermoid cysts are very rare lesions. Although benign, these cysts may be associated with devastating complications due to mass effect or meningitis. The discovery of completely asymptomatic dermoid cysts in the pediatric population is exceedingly rare. Despite the advances in imaging modalities, it sometimes remains difficult to exclude the differential diagnosis of craniopharyngioma. We describe a 12-year-old boy addressed for suspicion of craniopharyngioma diagnosed by decreased visual acuity, bitemporal hemianopia and a CT scan showing a large hypodense suprasellar lesion with intralesional calcifications. Despite the unusual localization and size of this lesion, the absence of dermal sinus commonly found, and before visualizing a hyperintense mass on MRI-diffusion, the diagnosis of craniopharyngioma was ruled out in favor of a dermoid cyst. Radical excision was performed. In the suprasellar area, craniopharyngioma and dermoid cyst may have very similar radiological aspects: low density masses on CT scan and a hyperintense signal on T1-weighted MRI sequences with a variable signal on T2-weighted sequences. Hitherto, only two cases in literature have described suprasellar dermoid cyst. Their initial diagnosis was facilitated by the presence of a dermal sinus.

  19. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  20. Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Law, Travis; Anthony, Marina-Portia; Kim, Mina; Khong, Pek-Lan; Chan, Queenie; Samartzis, Dino

    2013-01-01

    The purpose of this study was to report the feasibility of the ultrashort time-to-echo (UTE) MRI technique to assess cartilaginous endplate (CEP) defects in humans in vivo and to assess their relationship with intervertebral disc (IVD) degeneration. Nine volunteer subjects (mean age=43.9 years; range=22–61 years) were recruited, representing 54 IVDs and 108 CEPs. The subjects underwent T2-weighted and UTE MRI to assess for the presence and severity of IVD degeneration, and for the presence of CEP defects, respectively, from T12 to S1. IVD degeneration was graded according to the Schneiderman et al. classification on T2-weighted MRI. CEP defects were defined on UTE MRI as discontinuity of high signal over four consecutive images and were independently assessed by two observers. Thirty-seven out of 108 (34.3%) CEPs had defects, which mainly occurred at T12/L1, L1/L2 and L4/L5 (P=0.008). Multivariate logistic regression revealed that lower body mass index (P=0.009) and younger (P=0.034) individuals had a decreased likelihood of having CEP defects. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration (P=0.036). A higher prevalence of degenerated IVDs with CEP defects was found at L4/5 and L5/S1, while degenerated IVDs with no CEP defects were found throughout the whole lumbar region. Mean IVD degeneration scores of the L4/5 and L5/S1 levels with CEP defects were higher in comparison with those with no CEP defects. Our study demonstrates the feasibility of using UTE MRI in humans in vivo to assess the integrity of the CEP. A statistically significant association was found to exist between the presence of CEP defects and IVD degeneration. In the lower lumbar region, more severe degeneration was found to occur in the IVDs with CEP defects than in those without defects.

  1. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation; Diffusionsgewichtete MRT zur Funktionsdiagnostik der Glandula submandibularis

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R. [Zentrum fuer Bildgebende Diagnostik und Intervention, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Graessner, J. [Siemens Medical Solutions (Germany); Petersen, K. [Zentrum fuer Psychosoziale Medizin, Klinik und Poliklinik fuer Psychiatrie und Psychotherapie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Reitmeier, F.; Jaehne, M. [Kopf und Hautzentrum, Klinik und Poliklinik fuer Hals-, Nasen- und Ohrenheilkunde, Universitaetsklinikum Hamburg Eppendorf (Germany)

    2006-09-15

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm{sup 2}, 500 sec/mm{sup 2} and 1000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10{sup -3

  2. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer.

    Science.gov (United States)

    Gnep, Khémara; Fargeas, Auréline; Gutiérrez-Carvajal, Ricardo E; Commandeur, Frédéric; Mathieu, Romain; Ospina, Juan D; Rolland, Yan; Rohou, Tanguy; Vincendeau, Sébastien; Hatt, Mathieu; Acosta, Oscar; de Crevoisier, Renaud

    2017-01-01

    To explore the association between magnetic resonance imaging (MRI), including Haralick textural features, and biochemical recurrence following prostate cancer radiotherapy. In all, 74 patients with peripheral zone localized prostate adenocarcinoma underwent pretreatment 3.0T MRI before external beam radiotherapy. Median follow-up of 47 months revealed 11 patients with biochemical recurrence. Prostate tumors were segmented on T 2 -weighted sequences (T 2 -w) and contours were propagated onto the coregistered apparent diffusion coefficient (ADC) images. We extracted 140 image features from normalized T 2 -w and ADC images corresponding to first-order (n = 6), gradient-based (n = 4), and second-order Haralick textural features (n = 130). Four geometrical features (tumor diameter, perimeter, area, and volume) were also computed. Correlations between Gleason score and MRI features were assessed. Cox regression analysis and random survival forests (RSF) were performed to assess the association between MRI features and biochemical recurrence. Three T 2 -w and one ADC Haralick textural features were significantly correlated with Gleason score (P recurrence (P recurrence following prostate cancer radiotherapy. 3 J. Magn. Reson. Imaging 2017;45:103-117. © 2016 International Society for Magnetic Resonance in Medicine.

  3. MRI and intraocular tamponade media

    Energy Technology Data Exchange (ETDEWEB)

    Manfre, I. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy)); Fabbri, G. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy)); Avitabile, T. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Biondi, P. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Reibaldi, A. (Inst. of Ophthalmology, Univ. of Catania (Italy)); Pero, G. (Dept. of Neuroradiology, Inst. of Neurosurgery, Univ. of Catania (Italy))

    1993-05-01

    Thirteen patients who underwent surgery for retinal detachment and injection of intraocular tamponade media (silicone oil, flurosilicone oil, or perfluoro-carbon liquid) underwent magnetic resonance imaging (MRI), using spin-echo T1- and T2-weighted images. The ophthalmic tamponade media showed different signal intensity, according to their chemical structure. Unlike ophthalmoscopy or ultrasonography, MRI showed no oil-related artefact, making possible recognition of recurrent retinal detachment. (orig.)

  4. MRI and intraocular tamponade media

    International Nuclear Information System (INIS)

    Manfre, I.; Fabbri, G.; Avitabile, T.; Biondi, P.; Reibaldi, A.; Pero, G.

    1993-01-01

    Thirteen patients who underwent surgery for retinal detachment and injection of intraocular tamponade media (silicone oil, flurosilicone oil, or perfluoro-carbon liquid) underwent magnetic resonance imaging (MRI), using spin-echo T1- and T2-weighted images. The ophthalmic tamponade media showed different signal intensity, according to their chemical structure. Unlike ophthalmoscopy or ultrasonography, MRI showed no oil-related artefact, making possible recognition of recurrent retinal detachment. (orig.)

  5. MRI evaluation of the anterolateral ligament of the knee: assessment in routine 1.5-T scans

    International Nuclear Information System (INIS)

    Partezani Helito, Camilo; Pecora, Jose Ricardo; Camanho, Gilberto Luis; Kawamura Demange, Marco; Partezani Helito, Paulo Victor; Pereira Costa, Hugo; Bordalo-Rodrigues, Marcelo

    2014-01-01

    This study evaluated the ability of routine 1.5-T MRI scans to visualize the anterolateral ligament (ALL) and describe its path and anatomic relations with lateral knee structures. Thirty-nine 1.5-T MRI scans of the knee were evaluated. The scans included an MRI knee protocol with T1-weighted sequences, T2-weighted sequences with fat saturation, and proton density (PD)-weighted fast spin-echo sequences. Two radiologists separately reviewed all MRI scans to evaluate interobserver reliability. The ALL was divided into three portions for analyses: femoral, meniscal, and tibial. The path of the ALL was evaluated with regard to known structural parameters previously studied in this region. At least a portion of the ALL was visualized in 38 (97.8 %) cases. The meniscal portion was most visualized (94.8 %), followed by the femoral (89.7 %) and the tibial (79.4 %) portions. The three portions of the ALL were visualized in 28 (71.7 %) patients. The ALL was characterized with greater clarity on the coronal plane and was visualized as a thin, linear structure. The T1-weighted sequences showed a statistically inferior ligament visibility frequency. With regard to the T2 and PD evaluations, although the visualization frequency in PD was higher for the three portions of the ligament, only the femoral portion showed significant values. The ALL can be visualized in routine 1.5-T MRI scans. Although some of the ligament could be depicted in nearly all of the scans (97.4 %), it could only be observed in its entirety in about 71.7 % of the tests. (orig.)

  6. MRI evaluation of the anterolateral ligament of the knee: assessment in routine 1.5-T scans

    Energy Technology Data Exchange (ETDEWEB)

    Partezani Helito, Camilo; Pecora, Jose Ricardo; Camanho, Gilberto Luis; Kawamura Demange, Marco [University of Sao Paulo, Faculty of Medicine, Institute of Orthopedics and Traumatology, Knee Surgery Division, Sao Paulo (Brazil); Partezani Helito, Paulo Victor; Pereira Costa, Hugo; Bordalo-Rodrigues, Marcelo [University of Sao Paulo, Faculty of Medicine, Institute of Orthopedics and Traumatology, Musculoskeletal Radiology Department, Sao Paulo (Brazil)

    2014-10-15

    This study evaluated the ability of routine 1.5-T MRI scans to visualize the anterolateral ligament (ALL) and describe its path and anatomic relations with lateral knee structures. Thirty-nine 1.5-T MRI scans of the knee were evaluated. The scans included an MRI knee protocol with T1-weighted sequences, T2-weighted sequences with fat saturation, and proton density (PD)-weighted fast spin-echo sequences. Two radiologists separately reviewed all MRI scans to evaluate interobserver reliability. The ALL was divided into three portions for analyses: femoral, meniscal, and tibial. The path of the ALL was evaluated with regard to known structural parameters previously studied in this region. At least a portion of the ALL was visualized in 38 (97.8 %) cases. The meniscal portion was most visualized (94.8 %), followed by the femoral (89.7 %) and the tibial (79.4 %) portions. The three portions of the ALL were visualized in 28 (71.7 %) patients. The ALL was characterized with greater clarity on the coronal plane and was visualized as a thin, linear structure. The T1-weighted sequences showed a statistically inferior ligament visibility frequency. With regard to the T2 and PD evaluations, although the visualization frequency in PD was higher for the three portions of the ligament, only the femoral portion showed significant values. The ALL can be visualized in routine 1.5-T MRI scans. Although some of the ligament could be depicted in nearly all of the scans (97.4 %), it could only be observed in its entirety in about 71.7 % of the tests. (orig.)

  7. Comparison of single-shot fast spin-echo sequence and T2-weighted fast spin-echo sequence in MR imaging of the brain

    International Nuclear Information System (INIS)

    Cha, Sung Ho; Seo, Jeong Jin; Jeong, Gwang Woo; Kim, Jae Kyu; Kim, Yun Hyeon; Jeong, Yong Yeon; Kang, Heoung Keun; Oh, Hee Yeon; Yoon, Jong Hoon

    1998-01-01

    The purpose of this study was to evaluate the usefulness of the single-shot fast spinecho (SS-FSE) sequence in comparison with the T2-weighted fast spin-echo (T2-FSE) sequence in brain MR imaging. In 41 patients aged 15-75 years with intracranial lesion, both SS-FSE and T2-FES images were obtained using a 1.5-T MR system. Lesions included cerebral ischemia or infarcts (n=3D23), tumors (n=3D10), hemorrhages (n=3D3), inflammatory diseases (n=3D2), arachnoid cysts(n=3D2), and vascular disease (n=3D1), and the MR images were retrospectively evaluated. To calculate contrast-to-noise ratio (CNR), percentage contrast, and signal-to-noise ratio (SNR)-and thus make a quantitative comparison-the mean signal intensities of lesions, normal brain tissue, and noise out-side the patient were measured. For qualitative comparison, the visibility, margin, and extent of the lesions were rated using a five-grade system, and the degree of MR artifacts was also evaluated. Wilcoxon's signed ranks test was used for statistical analysis. The mean CNR of lesions was significantly higher on SS-FSE (31.3) than on T2-FSE images (27.5) (p=3D0.0131). Mean percentage contrast was also higher on SS-FSE (159.0) than on T2-FSE images (108.5) (p=3D0.0222), but mean SNR was higher on T2-FSE (80.3) than on SS-FSE images (53.5) (p=3D0.0000). No significant differences in lesion visibility were observed between the two imaging sequences, though margin and extent of the lesion were worse on SS-FSE images. For MR artifacts, no significant differences were demonstrated. For the evaluation of most intracranial lesions, MR imaging using the SS-FSE sequence appears to be slightly inferior to the T2-FSE sequence, but may be useful where patients are ill or uncooperative, or where children require sedation.=20

  8. High-resolution heavily T2-weighted magnetic resonance imaging for evaluation of the pituitary stalk in children with ectopic neurohypophysis

    Energy Technology Data Exchange (ETDEWEB)

    Sanharawi, Imane El; Tzarouchi, Loukia [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Cardoen, Liesbeth [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Universite Paris Diderot, Paris (France); Martinerie, Laetitia; Leger, Juliane; Carel, Jean-Claude [Universite Paris Diderot, Paris (France); Inserm U1141, DHU PROTECT, Paris (France); Hopital Robert Debre, APHP, Service d' Endocrinologie Pediatrique, Paris (France); Elmaleh-Berges, Monique [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Inserm U1141, DHU PROTECT, Paris (France); Alison, Marianne [Hopital Robert Debre, APHP, Service de Radiologie Pediatrique, Paris (France); Universite Paris Diderot, Paris (France); Inserm U1141, DHU PROTECT, Paris (France)

    2017-05-15

    In anterior pituitary deficiency, patients with non visible pituitary stalk have more often multiple deficiencies and persistent deficiency than patients with visible pituitary stalk. To compare the diagnostic value of a high-resolution heavily T2-weighted sequence to 1.5-mm-thick unenhanced and contrast-enhanced sagittal T1-weighted sequences to assess the presence of the pituitary stalk in children with ectopic posterior pituitary gland. We retrospectively evaluated the MRI data of 14 children diagnosed with ectopic posterior pituitary gland between 2010 and 2014. We evaluated the presence of a pituitary stalk using a sagittal high-resolution heavily T2-weighted sequence and a 1.5-mm sagittal T1-weighted turbo spin-echo sequence before and after contrast medium administration. A pituitary stalk was present on at least one of the sequences in 10 of the 14 children (71%). T2-weighted sequence depicted the pituitary stalk in all 10 children, whereas the 1.5-mm-thick T1-weighted sequence depicted 2/10 (20%) before contrast injection and 8/10 (80%) after contrast injection (P=0.007). Compared with 1.5-mm-thick contrast-enhanced T1-weighted sequences, high-resolution heavily T2-weighted sequence demonstrates better sensitivity in detecting the pituitary stalk in children with ectopic posterior pituitary gland, suggesting that contrast injection is unnecessary to assess the presence of a pituitary stalk in this setting. (orig.)

  9. High-resolution heavily T2-weighted magnetic resonance imaging for evaluation of the pituitary stalk in children with ectopic neurohypophysis.

    Science.gov (United States)

    El Sanharawi, Imane; Tzarouchi, Loukia; Cardoen, Liesbeth; Martinerie, Laetitia; Leger, Juliane; Carel, Jean-Claude; Elmaleh-Berges, Monique; Alison, Marianne

    2017-05-01

    In anterior pituitary deficiency, patients with non visible pituitary stalk have more often multiple deficiencies and persistent deficiency than patients with visible pituitary stalk. To compare the diagnostic value of a high-resolution heavily T2-weighted sequence to 1.5-mm-thick unenhanced and contrast-enhanced sagittal T1-weighted sequences to assess the presence of the pituitary stalk in children with ectopic posterior pituitary gland. We retrospectively evaluated the MRI data of 14 children diagnosed with ectopic posterior pituitary gland between 2010 and 2014. We evaluated the presence of a pituitary stalk using a sagittal high-resolution heavily T2-weighted sequence and a 1.5-mm sagittal T1-weighted turbo spin-echo sequence before and after contrast medium administration. A pituitary stalk was present on at least one of the sequences in 10 of the 14 children (71%). T2-weighted sequence depicted the pituitary stalk in all 10 children, whereas the 1.5-mm-thick T1-weighted sequence depicted 2/10 (20%) before contrast injection and 8/10 (80%) after contrast injection (P=0.007). Compared with 1.5-mm-thick contrast-enhanced T1-weighted sequences, high-resolution heavily T2-weighted sequence demonstrates better sensitivity in detecting the pituitary stalk in children with ectopic posterior pituitary gland, suggesting that contrast injection is unnecessary to assess the presence of a pituitary stalk in this setting.

  10. Evaluation of liver fat in the presence of iron with MRI using T2* correction: a clinical approach.

    Science.gov (United States)

    Henninger, Benjamin; Benjamin, Henninger; Kremser, Christian; Christian, Kremser; Rauch, Stefan; Stefan, Rauch; Eder, Robert; Robert, Eder; Judmaier, Werner; Werner, Judmaier; Zoller, Heinz; Heinz, Zoller; Michaely, Henrik; Henrik, Michaely; Schocke, Michael; Michael, Schocke

    2013-06-01

    To assess magnetic resonance imaging (MRI) with conventional chemical shift-based sequences with and without T2* correction for the evaluation of steatosis hepatitis (SH) in the presence of iron. Thirty-one patients who underwent MRI and liver biopsy because of clinically suspected diffuse liver disease were retrospectively analysed. The signal intensity (SI) was calculated in co-localised regions of interest (ROIs) using conventional spoiled gradient-echo T1 FLASH in-phase and opposed-phase (IP/OP). T2* relaxation time was recorded in a fat-saturated multi-echo-gradient-echo sequence. The fat fraction (FF) was calculated with non-corrected and T2*-corrected SIs. Results were correlated with liver biopsy. There was significant difference (P T2* corrected FF in patients with SH and concomitant hepatic iron overload (HIO). Using 5 % as a threshold resulted in eight false negative results with uncorrected FF whereas T2* corrected FF lead to true positive results in 5/8 patients. ROC analysis calculated three threshold values (8.97 %, 5.3 % and 3.92 %) for T2* corrected FF with accuracy 84 %, sensitivity 83-91 % and specificity 63-88 %. FF with T2* correction is accurate for the diagnosis of hepatic fat in the presence of HIO. Findings of our study suggest the use of IP/OP imaging in combination with T2* correction. • Magnetic resonance helps quantify both iron and fat content within the liver • T2* correction helps to predict the correct diagnosis of steatosis hepatitis • "Fat fraction" from T2*-corrected chemical shift-based sequences accurately quantifies hepatic fat • "Fat fraction" without T2* correction underestimates hepatic fat with iron overload.

  11. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-12-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.

  12. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    International Nuclear Information System (INIS)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-01-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation

  13. MRT versus CT in the diagnosis of pneumonia. Evaluation of a T2-weighted utrafast turbo-spin-echo sequence (UTSE)

    International Nuclear Information System (INIS)

    Leutner, C.; Lutterbey, G.; Kuhl, C.K.; Flacke, S.; Schild, H.H.; Glasmacher, A.; Theisen, A.; Wardelmann, E.; Grohe, C.

    1999-01-01

    Purpose: To evaluate a T 2 -weighted URSE sequence for the assessment of pulmonary infiltrations in comparison to CT. Methods: 28 MRT scans of 22 patients with confirmed pneumonia were recorded on a 1.5 Tesla apparatus with an expiratory and diastolic triggered, T 2 -weighted ultrafast-spin-echo sequence in axial slice mode with the following parameters: TR eff /T E /Turbofactor 2000-4000/90 ms/21-23; slice thickness/separation 6/0.6 mm; FOV 360 mm; 24 slices. 24 spiral CTs (sice thickness/table advance: 1-2 mm/10 mm) were available for comparison. The separate evaluation of MRTs and CTs was performed by three radiologists in a consensus procedure with regard to pulmonary lesions (e.g., infiltration, round foci, net patterns) and image quality of the MRTs (4-step scale). Results: In 71% of the cases the CTs and MRTs agreed with the diagnosis and representation of the lesions, in 25% MRT was superior. MRT was better for the detection of pulmonary abscesses. In 93% the image quality of the MRT was very good to good. Conclusions: MRT in the technique presented here is in most cases equal to CT for the detection of pneumonia. Diagnosis of pulmonary abscesses seems to be better with MRT. (orig.) [de

  14. Comparison of Superparamagnetic Iron Oxide Labeling Efficiency between Poly-L-Lysine and Protamine Sulfate for Human Mesenchymal Stem Cells: Quantitative Analysis Using Multi-Echo T2 Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Suh, Ji Yeon; Lee, Jeong Hyun; Lee, Chang Kyung; Shin, Ji Hoon; Choi, Choong Gon; Kim, Jeong Kon

    2013-01-01

    To quantify in vitro labeling efficiency of protamine sulfate (PS) and poly-L-lysine (PLL) for labeling of human mesenchymal stem cells (hMSCs) with superparamagnetic iron oxide (SPIO) using multi-echo T2 magnetic resonance (MR) imaging at 4.7 T. The hMSCs were incubated with SPIO-PS or SPIO-PLL complexes. Their effects on the cell metabolism and differentiation capability were evaluated, respectively. The decrease of iron concentrations in the labeled cells were assessed immediately, and at 4 d after labeling using multi-echo T2 MR imaging at 4.7 T. The results were compared with those of Prussian blue colorimetry. The hMSCs were labeled more efficiently by SPIO-PLL than SPIO-PS without any significant effect on cell metabolism and differentiation capabilities. It was feasible to quantify the iron concentrations in SPIO-agarose-phantoms and in agarose mixture with the labeled cells from T2 maps obtained from multi-echo T2 MRI. However, the iron concentration of the labeled cells was significantly higher by T2-maps than the results of Prussian blue colorimetry. The hMSCs can be effectively labeled with SPIO-PLL complexes more than with SPIO-PS without significant change in cell metabolism and differentiation. In vitro quantification of the iron concentrations of the labeled is feasible from multi-echo T2 MRI, but needs further investigation.

  15. Comparison of Superparamagnetic Iron Oxide Labeling Efficiency between Poly-L-Lysine and Protamine Sulfate for Human Mesenchymal Stem Cells: Quantitative Analysis Using Multi-Echo T2 Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Ji Yeon; Lee, Jeong Hyun; Lee, Chang Kyung; Shin, Ji Hoon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-02-15

    To quantify in vitro labeling efficiency of protamine sulfate (PS) and poly-L-lysine (PLL) for labeling of human mesenchymal stem cells (hMSCs) with superparamagnetic iron oxide (SPIO) using multi-echo T2 magnetic resonance (MR) imaging at 4.7 T. The hMSCs were incubated with SPIO-PS or SPIO-PLL complexes. Their effects on the cell metabolism and differentiation capability were evaluated, respectively. The decrease of iron concentrations in the labeled cells were assessed immediately, and at 4 d after labeling using multi-echo T2 MR imaging at 4.7 T. The results were compared with those of Prussian blue colorimetry. The hMSCs were labeled more efficiently by SPIO-PLL than SPIO-PS without any significant effect on cell metabolism and differentiation capabilities. It was feasible to quantify the iron concentrations in SPIO-agarose-phantoms and in agarose mixture with the labeled cells from T2 maps obtained from multi-echo T2 MRI. However, the iron concentration of the labeled cells was significantly higher by T2-maps than the results of Prussian blue colorimetry. The hMSCs can be effectively labeled with SPIO-PLL complexes more than with SPIO-PS without significant change in cell metabolism and differentiation. In vitro quantification of the iron concentrations of the labeled is feasible from multi-echo T2 MRI, but needs further investigation.

  16. MRI-induced retrocalcaneal bursitis

    NARCIS (Netherlands)

    Tol, J. L.; van Dijk, C. N.; Maas, M.

    1999-01-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis.

  17. Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI

    International Nuclear Information System (INIS)

    Hu, Yanle; Esthappan, Jacqueline; Mutic, Sasa; Richardson, Susan; Gay, Hiram A; Schwarz, Julie K; Grigsby, Perry W

    2013-01-01

    For cervical cancer patients treated with MR-guided high dose rate brachytherapy, the accuracy of radiation delivery depends on accurate localization of both tumors and the applicator, e.g. tandem and ovoid. Standard T2-weighted (T2W) MRI has good tumor-tissue contrast. However, it suffers from poor uterus-tandem contrast, which makes the tandem delineation very challenging. In this study, we evaluated the possibility of using proton density weighted (PDW) MRI to improve the definition of titanium tandems. Both T2W and PDW MRI images were obtained from each cervical cancer patient. Imaging parameters were kept the same between the T2W and PDW sequences for each patient except the echo time (90 ms for T2W and 5.5 ms for PDW) and the slice thickness (0.5 cm for T2W and 0.25 cm for PDW). Uterus-tandem contrast was calculated by the equation C = (S u -S t )/S u , where S u and S t represented the average signal in the uterus and the tandem, respectively. The diameter of the tandem was measured 1.5 cm away from the tip of the tandem. The tandem was segmented by the histogram thresholding technique. PDW MRI could significantly improve the uterus-tandem contrast compared to T2W MRI (0.42±0.24 for T2W MRI, 0.77±0.14 for PDW MRI, p=0.0002). The average difference between the measured and physical diameters of the tandem was reduced from 0.20±0.15 cm by using T2W MRI to 0.10±0.11 cm by using PDW MRI (p=0.0003). The tandem segmented from the PDW image looked more uniform and complete compared to that from the T2W image. Compared to the standard T2W MRI, PDW MRI has better uterus-tandem contrast. The information provided by PDW MRI is complementary to those provided by T2W MRI. Therefore, we recommend adding PDW MRI to the simulation protocol to assist tandem delineation process for cervical cancer patients

  18. The Usefulness of Fast-Spin-Echo T2-Weighted MR Imaging in Nutcracker Syndrome: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Heong Leng; Chen, Matt Chiung Yu; Wu, Cgek Siung; Fu, Kuo An; Lin, Cheng Hao [Yuan' s General Hospital, Kaohsiung (China); Weng, Mei Jui; Liang, Huei Lung; Pan, Huay Ben [National Yang-Ming University, Taipei (Korea, Republic of)

    2010-06-15

    Nutcracker syndrome occurs when the left renal vein (LRV) is compressed between the superior mesenteric artery and the aorta, and this syndrome is often characterized by venous hypertension and related pathologies. However, invasive studies such as phlebography and measuring the reno-caval pressure gradient should be performed to identify venous hypertension. Here we present a case of Nutcracker syndrome where the LRV and intra-renal varicosities appeared homogeneously hyperintense on magnetic resonance (MR) fast-spin-echo T2- weighted imaging, which suggested markedly stagnant intravenous blood flow and the presence of venous hypertension. The patient was diagnosed and treated without obtaining the reno-caval pressure gradient. The discomfort of the patient lessened after treatment. Furthermore, on follow-up evaluation, the LRV displayed a signal void, and this was suggestive of a restoration of the normal LRV flow and a decrease in LRV pressure.

  19. SU-E-P-33: Critical Role of T2-Weighted Imaging Combined with Diffusion-Weighted Imaging of MRI in Diagnosis of Loco-Regional Recurrent Esophageal Cancer After Radical Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, G; Qiao, L [Department of Oncology, Shandong University School of Medicine, Jinan, Shandong (China); Liang, N; Xie, J; Zhang, J [Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandon, Jinan, Shandong (China); Luo, H; Zhang, J [Division of Oncology, Department of Graduate, Weifang Medical College, Weifang, Shandong (China)

    2015-06-15

    Purpose: We perform this study to investigate the diagnostic efficacy of T2-weighted MRI (T2WI) and diffusion-weighted MRI (DWI) in confirming local relapses of esophageal cancer in patients highly suspected of recurrence after eradicating surgery. Methods: Forty-two postoperative esophageal cancer patients with clinical suspicions of cancer recurrence underwent 3.0T MRI applying axial, coronal, sagittal T2WI and axial DWI sequences. Two experienced radiologists (R1 and R2) both used two methods (T2WI, T2WI+DWI) to observe the images, and graded the patients ranging from 1 to 5 to represent severity of the disease based on visual signal intensity (patients equal to or more than grade 3 was confirmed as recurrent disease) Results: 27/42patients were verified of recurrent disease by pathologic findings and/or imaging findings during follow-up. The sensitivity, specificity and accuracy of R1 applying T2WI+DWI are 96%, 87% and 93% versus 81%, 80% and 77% on T2WI, these figures by R2 were 96%, 93% and 95% versus 89%, 93% and 90%. The receiver operating curve (ROC) analyses suggest that both of the two readers can obtain better accuracy when adding DWI to T2WI compared with T2WI alone. Kappa test between R1 and R2 indicates excellent inter-observer agreement on T2WI+DWI. Conclusion: Standard T2WI in combination DWI can achieve better accuracy than T2WI alone in diagnosing local recurrence of esophageal cancer, and improve consistency between different readers.

  20. Importance of MRI in the diagnosis and treatment of rhabdomyolysis

    International Nuclear Information System (INIS)

    Moratalla, Monica Ballesta; Braun, Petra; Fornas, Guillermina Montoliu

    2008-01-01

    Background: Rhabdomyolysis is a common disorder resulting from a large variety of causes. We describe the MRI features and their importance for diagnosis and treatment. Patients and methods: Between 2003 and 2006, four male patients (age range: 25-33 years) with rhabdomyolysis were studied via 1.5 T MRI (GE, Siemens). In all the patients, T1- and T2-weighted sequences with and without fat suppression, short tau inversion recovery (STIR) and gradient-echo sequences were obtained in axial, coronal and sagittal planes. In one patient, contrast material was given. Results: Two patients presented rhabdomyolysis due to drug abuse, one due to intense exercise and the last one due to long unconsciousness with compression of the paravertebral musculature. Two patients had acute kidney failure. The affected muscles showed an increased signal intensity on T2-weighted and STIR sequences and decreased on T1-weighted sequences. In one patient, intramuscular hemorrhage was observed on T1-weighted and gradient-echo sequences. In the patient with kidney failure, a globular swelling of the kidney with alteration of the corticomedullary differentiation on T2-weighted sequences with fat saturation and hypointensity of the renal medulla on T1-weighted contrast enhanced images was found. Discussion: Immediate recognition of rhabdomyolysis is important to prevent late complications. MRI is the method of choice to evaluate the distribution and extension of the affected muscles, especially when fasciotomy is considered for treatment. Even though the MRI findings are non-specific, the sensitivity in the detection of muscle involvement is higher than CT or US

  1. Importance of MRI in the diagnosis and treatment of rhabdomyolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moratalla, Monica Ballesta [Department of Radiology, La Fe Hospital, Avenida Campanar, 21, 46009 Valencia (Spain)], E-mail: monica_ballesta@hotmail.com; Braun, Petra; Fornas, Guillermina Montoliu [Department of Radiology, La Fe Hospital, Avenida Campanar, 21, 46009 Valencia (Spain)

    2008-02-15

    Background: Rhabdomyolysis is a common disorder resulting from a large variety of causes. We describe the MRI features and their importance for diagnosis and treatment. Patients and methods: Between 2003 and 2006, four male patients (age range: 25-33 years) with rhabdomyolysis were studied via 1.5 T MRI (GE, Siemens). In all the patients, T1- and T2-weighted sequences with and without fat suppression, short tau inversion recovery (STIR) and gradient-echo sequences were obtained in axial, coronal and sagittal planes. In one patient, contrast material was given. Results: Two patients presented rhabdomyolysis due to drug abuse, one due to intense exercise and the last one due to long unconsciousness with compression of the paravertebral musculature. Two patients had acute kidney failure. The affected muscles showed an increased signal intensity on T2-weighted and STIR sequences and decreased on T1-weighted sequences. In one patient, intramuscular hemorrhage was observed on T1-weighted and gradient-echo sequences. In the patient with kidney failure, a globular swelling of the kidney with alteration of the corticomedullary differentiation on T2-weighted sequences with fat saturation and hypointensity of the renal medulla on T1-weighted contrast enhanced images was found. Discussion: Immediate recognition of rhabdomyolysis is important to prevent late complications. MRI is the method of choice to evaluate the distribution and extension of the affected muscles, especially when fasciotomy is considered for treatment. Even though the MRI findings are non-specific, the sensitivity in the detection of muscle involvement is higher than CT or US.

  2. Improved fat-suppression homogeneity with mDIXON turbo spin echo (TSE) in pediatric spine imaging at 3.0 T.

    Science.gov (United States)

    Pokorney, Amber L; Chia, Jonathan M; Pfeifer, Cory M; Miller, Jeffrey H; Hu, Houchun H

    2017-11-01

    Background Robust fat suppression remains essential in clinical MRI to improve tissue signal contrast, minimize fat-related artifacts, and enhance image quality. Purpose To compare fat suppression between mDIXON turbo spin echo (TSE) and conventional frequency-selective and inversion-recovery methods in pediatric spine MRI. Material and Methods Images from T1-weighted (T1W) and T2-weighted (T2W) TSE sequences coupled with conventional methods and the mDIXON technique were compared in 36 patients (5.8 ± 5.4 years) at 3.0 T. Images from 42 pairs of T1W (n = 16) and T2W (n = 26) scans were acquired. Two radiologists reviewed the data and rated images using a three-point scale in two categories, including the uniformity of fat suppression and overall diagnostic image quality. The Wilcoxon rank-sum test was used to compare the scores. Results The Cohen's kappa coefficient for inter-rater agreement was 0.69 (95% confidence interval [CI], 0.56-0.83). Images from mDIXON TSE were considered superior in fat suppression ( P 3.0 T and should be considered as a permanent replacement of traditional methods, in particular frequency-selective techniques.

  3. Hypocaeruloplasminaemia with heteroallelic caeruloplasmin gene mutation: MRI of the brain

    International Nuclear Information System (INIS)

    Daimon, M.; Moriai, S.; Susa, S.; Yamatani, K.; Kato, T.; Hosoya, T.

    1999-01-01

    We present two patients with hypocaeruloplasminaemia and a heteroallelic caeruloplasmin gene mutation (HypoCPGM). These patients had diabetes mellitus and tremor of the hands, respectively. T2-weighted fast spin-echo MRI showed mildly reduced intensity of the putamen, much more marked on echo-planar imaging. (orig.) (orig.)

  4. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    Science.gov (United States)

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Quantitative Comparison of 2D and 3D MRI Techniques for the Evaluation of Chondromalacia Patellae in 3.0T MR Imaging of the Knee

    Directory of Open Access Journals (Sweden)

    Ali Özgen

    2016-09-01

    Full Text Available INTRODUCTION: Chondromalacia patellae is a very common disorder of patellar cartilage. Magnetic resonance imaging (MRI is a powerful non-invasive tool to investigate patellar cartilage lesions. Although many MRI sequences have been used in MR imaging of the patellar cartilage and the optimal pulse sequence is controversial, fat-saturated proton density images have been considered very valuable to evaluate patellar cartilage. The purpose of this study is to quantitatively compare the diagnostic performance of various widely used 2D and 3D MRI techniques for the evaluation of chondromalacia patellae in 3.0T MR imaging of the knee using T2 mapping images as the reference standard. METHODS: Sevety-five knee MRI exams of 69 adult consecutive were included in the study. Fat-saturated T2-weighted (FST2, fat-saturated proton density (FSPD, water-only T2-weighted DIXON (T2mD, T2-weighted 3 dimensional steady state (3DT2FFE, merged multi-echo steady state (3DmFFE, and water selective T1-weighted fat-supressed (WATSc images were acquired. Quantitative comparison of grade 1 and grade 5 lesions were made using contrast-to-noise (CNR ratios. Grade 2-4 lesions were scored qualitatively and scorings of the lesions were compared statistically. Analysis of variance and Tukey’s tests were used to compare CNR data. Two sample z-test was used to compare the ratio of MR exams positive for grade 1 lesions noted on T2-mapping and other conventional sequences. Paired samples t-test was used to compare two different pulse sequences. RESULTS: In detecting grade 1 lesions, FSPD, FST2 and T2mD images were superior in comparison to other sequences. FSPD and FST2 images were statistically superior in detecting grade 2-4 lesions. Although all grade 5 lesions were noted in every single sequence, FST2 images have the highest mean CNR followed by 3DT2FFE images. DISCUSSION AND CONCLUSION: FST2 sequence is equal or superior in detecting every grade of patellar chondromalacia in

  6. Cardiac T2-mapping using a fast gradient echo spin echo sequence - first in vitro and in vivo experience

    OpenAIRE

    Baessler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C.

    2015-01-01

    Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Ec...

  7. High resolution T{sub 2}{sup *}-weighted magnetic resonance imaging at 3 Tesla using PROPELLER-EPI

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Martin; Reichenbach, Juergen R. [Jena University Hospital (Germany). Medical Physics Group

    2014-09-01

    We report the application of PROPELLER-EPI for high resolution T{sub 2}{sup *}-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 x 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T{sub 2}{sup *}-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. (orig.)

  8. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  9. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke; Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio

    2010-01-01

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  10. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio [Iwate Medical University, Department of Neuropsychiatry, Morioka (Japan)

    2010-02-15

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  11. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  12. T2 mapping of muscle activity using ultrafast imaging

    International Nuclear Information System (INIS)

    Tawara, Noriyuki; Nitta, Osamu; Kuruma, Hironobu; Niitsu, Mamoru; Itoh, Akiyoshi

    2011-01-01

    Measuring exercise-induced muscle activity is essential in sports medicine. Previous studies proposed measuring transverse relaxation time (T 2 ) using muscle functional magnetic resonance imaging (mfMRI) to map muscle activity. However, mfMRI uses a spin-echo (SE) sequence that requires several minutes for acquisition. We evaluated the feasibility of T 2 mapping of muscle activity using ultrafast imaging, called fast-acquired mfMRI (fast-mfMRI), to reduce image acquisition time. The current method uses 2 pulse sequences, spin-echo echo-planar imaging (SE-EPI) and true fast imaging with steady precession (TrueFISP). SE-EPI images are used to calculate T 2 , and TrueFISP images are used to obtain morphological information. The functional image is produced by subtracting the image of muscle activity obtained using T 2 at rest from that produced after exercise. Final fast-mfMRI images are produced by fusing the functional images with the morphologic images. Ten subjects repeated ankle plantar flexion 200 times. In the fused images, the areas of activated muscle in the fast-mfMRI and SE-EPI images were identical. The geometric location of the fast-mfMRI did not differ between the morphologic and functional images. Morphological and functional information from fast-mfMRI can be applied to the human trunk, which requires limited scan duration. The difference obtained by subtracting T 2 at rest from T 2 after exercise can be used as a functional image of muscle activity. (author)

  13. The role of T2*-weighted gradient echo in the diagnosis of tumefactive intrahepatic extramedullary hematopoiesis in myelodysplastic syndrome and diffuse hepatic iron overload: a case report and review of the literature.

    Science.gov (United States)

    Belay, Abel A; Bellizzi, Andrew M; Stolpen, Alan H

    2018-01-15

    Extramedullary hematopoiesis is the proliferation of hematopoietic cells outside bone marrow secondary to marrow hematopoiesis failure. Extramedullary hematopoiesis rarely presents as a mass-forming hepatic lesion; in this case, imaging-based differentiation from primary and metastatic hepatic neoplasms is difficult, often leading to biopsy for definitive diagnosis. We report a case of tumefactive hepatic extramedullary hematopoiesis in the setting of myelodysplastic syndrome with concurrent hepatic iron overload, and the role of T2*-weighted gradient-echo magnetic resonance imaging in differentiating extramedullary hematopoiesis from primary and metastatic hepatic lesions. To the best of our knowledge, T2*-weighted gradient-echo evaluation of extramedullary hematopoiesis in the setting of diffuse hepatic hemochromatosis has not been previously described. A 52-year-old white man with myelodysplastic syndrome and marrow fibrosis was found to have a 4 cm hepatic lesion on ultrasound during workup for bone marrow transplantation. Magnetic resonance imaging revealed diffuse hepatic iron overload and non-visualization of the lesion on T2* gradient-echo sequence suggesting the presence of iron deposition within the lesion similar to that in background hepatic parenchyma. Subsequent ultrasound-guided biopsy of the lesion revealed extramedullary hematopoiesis. Six months later, while still being evaluated for bone marrow transplant, our patient was found to have poor pulmonary function tests. Follow-up computed tomography angiogram showed a mass within his right main pulmonary artery. Bronchoscopic biopsy of this mass once again revealed extramedullary hematopoiesis. He received radiation therapy to his chest. However, 2 weeks later, he developed mediastinal hematoma and died shortly afterward, secondary to respiratory arrest. Mass-forming extramedullary hematopoiesis is rare; however, our report emphasizes that it needs to be considered in the initial differential

  14. Identification of the primary motor cortex: value of T2 echo-planar imaging, diffusion-weighted imaging and quantitative apparent diffusion coefficient measurement at 3 T

    International Nuclear Information System (INIS)

    Dincer, Alp; Erzen, Canan; Oezyurt, Onur; Pamir, M.N.

    2010-01-01

    To investigate the primary motor cortex (PMC) concerning T2 shortening on T2 echo-planar imaging (EPI-T2) and the double-layer sign on diffusion-weighted imaging (DWI), and also to measure its apparent diffusion coefficient (ADC). 3-T MR DWI was performed in 134 adult volunteers and 64 patients. T2 shortening was graded as hypointense or isointense compared with the signal of the superior frontal cortex (SFC). The double-layer sign of the PMC was graded as present or absent. Both findings (T2 shortening and double-layer sign) were evaluated independently by two authors. ADC of the PMC and the SFC were calculated using manually selected ROIs. T2 shortening was found in 131 adults and 62 patients by author 1 and in 132 adults and 61 patients by author 2 (κ = 0.96 and 0.91). The double-layer sign was found in 131 adults and 61 patients by author 1 and in 127 adults and 58 patients by author 2 (κ = 0.94 and 0.91). ADC values of the PMC and the SFC were different for all subjects (p < 0.01). T2 shortening and/or the double-layer sign on 3-T MR can be used to locate the PMC. The difference in ADC values between PMC and SFC is a distinguishing feature. (orig.)

  15. Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Schmitt, J.; Lubrich, J.; Hochmuth, K.; Diebold, T. [Dept. of Diagnostic and Interventional Radiology, Frankfurt Univ. (Germany); Del Tredici, K. [Dept. of Clinical Neuroanatomy, Frankfurt Univ. (Germany); Suedkamp, N. [Dept. of Traumatology and Orthopedics, Humboldt University, Berlin (Germany)

    2001-08-01

    We analyzed prospectively the diagnostic efficacy of contrast-enhanced MRI following anterior cruciate neoligament (ACL) reconstruction. One hundred fifty-six MR examinations were performed 2, 12, 52, 76, and 104 weeks post-operatively on 68 patients with ACL transplants. Sagittal, parasagittal, and coronal images using unenhanced T1- and T2-weighted spin-echo sequences, and post-contrast images utilizing T1-weighted spin-echo and fat-saturated sequences, were acquired. Results were correlated with those of the pivot shift, Lachman, and a mechanical test. The MR examination criteria included morphological analysis, signal intensity, transplant contrast enhancement, secondary signs (e.g., elongation of normal ligaments), and comparison with clinically standardized test results. Two weeks post-operatively all neoligaments showed homogeneous low signal intensity on T1- and T2-weighted spin-echo sequences indistinguishable from that of normal cruciate or patellar ligaments [contrast-to-noise ratio (C/N) on T1:1.6], with a 9% percentile enhancement. At 12-52 weeks, signal intensity increased (C/N:6.7), with a mean 50% percentile enhancement. The 1-year follow-up allowed no definite assessment of the neoligament's course. At 76 and 104 weeks, significant decrements in signal intensity (C/N:3.0) and ligamentous percentile enhancement (25%) occurred. All patients tested displayed stable transplants 2 years post-operatively. Contrast-enhanced MRI allows accurate evaluation of morphology and function up to 3 months post-operatively and 1-2 years following ACL reconstructive surgery. (orig.)

  16. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    Science.gov (United States)

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  17. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles.

    Science.gov (United States)

    Sigmund, Eric E; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; McGorty, KellyAnne; Hodnett, Philip A; Bencardino, Jenny

    2013-11-01

    To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2 -weighted (T2w) imaging. Using an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2w imaging and stimulated echo DTI were applied to eight healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in seven calf muscle compartments, which in patients were classified by their response on T2w: normal (20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post/pre-exercise ratios) of DTI parameters. All diffusivities significantly increased (P DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. Copyright © 2013 Wiley Periodicals, Inc.

  18. Comparison of 7T and 3T MRI in patients with moyamoya disease.

    Science.gov (United States)

    Oh, Byeong Ho; Moon, Hyeong Cheol; Baek, Hyeon Man; Lee, Youn Joo; Kim, Sang Woo; Jeon, Young Jai; Lee, Gun Seok; Kim, Hong Rae; Choi, Jai Ho; Min, Kyung Soo; Lee, Mou Seop; Kim, Young Gyu; Kim, Dong Ho; Kim, Won Seop; Park, Young Seok

    2017-04-01

    Magnetic resonance imaging and magnetic resonance angiography (MRI/MRA) are widely used for evaluating the moyamoya disease (MMD). This study compared the diagnostic accuracy of 7Tesla (T) and 3T MRI/MRA in MMD. In this case control study, 12 patients [median age: 34years; range (10-66years)] with MMD and 12 healthy controls [median age: 25years; range (22-59years)] underwent both 7T and 3T MRI/MRA. To evaluate the accuracy of MRI/MRA in MMD, five criteria were compared between imaging systems of 7T and 3T: Suzuki grading system, internal carotid artery (ICA) diameter, ivy sign, flow void of the basal ganglia on T2-weighted images, and high signal intensity areas of the basal ganglia on time-of-flight (TOF) source images. No difference was observed between 7T and 3T MRI/MRA in Suzuki stage, ICA diameter, and ivy sign score; while, 7T MRI/MRA showed a higher detection rate in the flow void on T2-weighted images and TOF source images (p<0.001). Receiver operating characteristic curves of both T2 and TOF criteria showed that 7T MRI/MRA had higher sensitivity and specificity than 3T MRI/MRA. Our findings indicate that 7T MRI/MRA is superior to 3T MRI/MRA for the diagnosis of MMD in point of detecting the flow void in basal ganglia by T2-weighted and TOF images. Copyright © 2016. Published by Elsevier Inc.

  19. Optimization of T2-weighted imaging for shoulder magnetic resonance arthrography by synthetic magnetic resonance imaging.

    Science.gov (United States)

    Lee, Seung Hyun; Lee, Young Han; Hahn, Seok; Yang, Jaemoon; Song, Ho-Taek; Suh, Jin-Suck

    2017-01-01

    Background Synthetic magnetic resonance imaging (MRI) allows reformatting of various synthetic images by adjustment of scanning parameters such as repetition time (TR) and echo time (TE). Optimized MR images can be reformatted from T1, T2, and proton density (PD) values to achieve maximum tissue contrast between joint fluid and adjacent soft tissue. Purpose To demonstrate the method for optimization of TR and TE by synthetic MRI and to validate the optimized images by comparison with conventional shoulder MR arthrography (MRA) images. Material and Methods Thirty-seven shoulder MRA images acquired by synthetic MRI were retrospectively evaluated for PD, T1, and T2 values at the joint fluid and glenoid labrum. Differences in signal intensity between the fluid and labrum were observed between TR of 500-6000 ms and TE of 80-300 ms in T2-weighted (T2W) images. Conventional T2W and synthetic images were analyzed for diagnostic agreement of supraspinatus tendon abnormalities (kappa statistics) and image quality scores (one-way analysis of variance with post-hoc analysis). Results Optimized mean values of TR and TE were 2724.7 ± 1634.7 and 80.1 ± 0.4, respectively. Diagnostic agreement for supraspinatus tendon abnormalities between conventional and synthetic MR images was excellent (κ = 0.882). The mean image quality score of the joint space in optimized synthetic images was significantly higher compared with those in conventional and synthetic images (2.861 ± 0.351 vs. 2.556 ± 0.607 vs. 2.750 ± 0.439; P optimized TR and TE for shoulder MRA enables optimization of soft-tissue contrast.

  20. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI☆

    Science.gov (United States)

    Lau, Brian C.; Thuillier, Daniel U.; Pedoia, Valentina; Chen, Ellison Y.; Zhang, Zhihong; Feeley, Brian T.; Souza, Richard B.

    2016-01-01

    Background Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Methods Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Results Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p = 0.002 and p = 0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. Conclusions A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. PMID:26746045

  1. Comparison of 3 T and 7 T MRI clinical sequences for ankle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir, E-mail: vladimir.juras@meduniwien.ac.at [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria); Slovak Academy of Sciences, Institute of Measurement Science, Dubravska cesta 9, 84104 Bratislava (Slovakia); Welsch, Goetz, E-mail: welsch@bwh.harvard.edu [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria); Baer, Peter, E-mail: baerpeter@siemens.com [Siemens Healthcare, Richard-Strauss-Strasse 76, D81679 Munich (Germany); Kronnerwetter, Claudia, E-mail: claudia.kronnerwetter@meduniwien.ac.at [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria); Fujita, Hiroyuki, E-mail: hiroyuki.fujita@qualedyn.com [Quality Electrodynamics, LCC, 777 Beta Dr, Cleveland, OH 44143-2336 (United States); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [Medical University of Vienna, Department of Radiology, Vienna General Hospital, Waeringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-08-15

    The purpose of this study was to compare 3 T and 7 T signal-to-noise and contrast-to noise ratios of clinical sequences for imaging of the ankles with optimized sequences and dedicated coils. Ten healthy volunteers were examined consecutively on both systems with three clinical sequences: (1) 3D gradient-echo, T{sub 1}-weighted; (2) 2D fast spin-echo, PD-weighted; and (3) 2D spin-echo, T{sub 1}-weighted. SNR was calculated for six regions: cartilage; bone; muscle; synovial fluid; Achilles tendon; and Kager's fat-pad. CNR was obtained for cartilage/bone, cartilage/fluid, cartilage/muscle, and muscle/fat-pad, and compared by a one-way ANOVA test for repeated measures. Mean SNR significantly increased at 7 T compared to 3 T for 3D GRE, and 2D TSE was 60.9% and 86.7%, respectively. In contrast, an average SNR decrease of almost 25% was observed in the 2D SE sequence. A CNR increase was observed in 2D TSE images, and in most 3D GRE images. There was a substantial benefit from ultra high-field MR imaging of ankles with routine clinical sequences at 7 T compared to 3 T. Higher SNR and CNR at ultra-high field MR scanners may be useful in clinical practice for ankle imaging. However, carefully optimized protocols and dedicated extremity coils are necessary to obtain optimal results.

  2. Comparison of spin-echo and gradient recalled echo T1 weighted MR images for quantitative voxel-based clinical brain research

    International Nuclear Information System (INIS)

    Barnden, L.R.; Crouch, B.

    2010-01-01

    Full text: New methods to normalise inter-subject global variations in T 1 -weighted MR (T I w) signal levels have permitted their use in voxel based population studies of brain dysfunction. Here we address the question of whether a spin-echo (SE) or a gradient recalled echo (GRE) T I w sequence is better for this purpose. GRE images are commonly referred to as 3D MRL SE has superior signal/noise properties to GRE but is slower to acquire so that typical slice thicknesses are 3-5 mm compared to 1-2 mm for GRE. GRE has better grey/white matter contrast which should permit better spatial normalization. However, unlike SE, GRE is affected by subject-specific magnetic field inhomogeneities that distort the images. We acquired T I brain images for 25 chronic fatigue syndrome (CFS) patients and 25 normal controls (NC) with TRITE/flip-angle of 600 ms/l5 ms/90 deg for SE and 5.76 ms/1.9 ms/9 deg for GRE. For GRE, the magnetic field inhomogeneity related signal level distortions could be corrected, but not the spatial distortions. After spatial normalization we subjected them to voxel-based statistical analysis with adjustment for global signal level using the SPM5 package. Initially, the same spatial normalization deformations were applied to both SE and GRE after coregistering them. Although the SPM regressions of SE and GRE yielded similar spatial distributions of significance, the SE regressions were consistently statistically stronger. For example, in one strong regression, the corrected cluster P value was twenty times stronger (I.Oe-5 versus I.Oe-3). T I w SE have proved better than T I GRE images in quantitative analysis in a clinical research study. (author)

  3. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla

    International Nuclear Information System (INIS)

    Lavdas, Eleftherios; Vlychou, Marianna; Arikidis, Nikos; Kapsalaki, Eftychia; Roka, Violetta; Fezoulidis, Ioannis V.

    2010-01-01

    Background: T1-weighted fluid-attenuated inversion recovery (FLAIR) sequence has been reported to provide improved contrast between lesions and normal anatomical structures compared to T1-weighted fast spin-echo (FSE) imaging at 1.5T regarding imaging of the lumbar spine. Purpose: To compare T1-weighted FSE and fast T1-weighted FLAIR imaging in normal anatomic structures and degenerative and metastatic lesions of the lumbar spine at 3.0T. Material and Methods: Thirty-two consecutive patients (19 females, 13 males; mean age 44 years, range 30-67 years) with lesions of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted FSE and fast T1-weighted FLAIR sequences. Both qualitative and quantitative analyses measuring the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and relative contrast (ReCon) between degenerative and metastatic lesions and normal anatomic structures were conducted, comparing these sequences. Results: On quantitative evaluation, SNRs of cerebrospinal fluid (CSF), nerve root, and fat around the root of fast T1-weighted FLAIR imaging were significantly lower than those of T1-weighted FSE images (P<0.001). CNRs of normal spinal cord/CSF and disc herniation/ CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). ReCon of normal spinal cord/CSF, disc herniation/CSF, and vertebral lesions/CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). On qualitative evaluation, it was found that CSF nulling and contrast at the spinal cord (cauda equina)/CSF interface for T1-weighted FLAIR images were significantly superior compared to those for T1-weighted FSE images (P<0.001), and the disc/spinal cord (cauda equina) interface was better for T1-weighted FLAIR images (P<0.05). Conclusion: The T1-weighted FLAIR sequence may be considered as the preferred lumbar spine imaging

  4. Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.

    Science.gov (United States)

    Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W

    2018-04-01

    Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.

  5. T2-weighted imaging of the heart—A pictorial review

    International Nuclear Information System (INIS)

    Mirakhur, Anirudh; Anca, Nicoleta; Mikami, Yoko; Merchant, Naeem

    2013-01-01

    Spin-Echo techniques in cardiovascular magnetic resonance (CMR) have been used for decades, primarily to image cardiac anatomy. More recently, T2-weighted (T2W) imaging has seen an increased role in CMR protocols, especially in tissue characterization in acute myocardial processes. This article will review current methodologies of cardiac T2W acquisition and their limitations, as well as approach to both semi-quantitative and quantitative analyses. The appearance and utility of T2W imaging in a myriad of pathologic myocardial processes such as acute myocardial infarction, acute viral myocarditis, reversible stress-related cardiomyopathy, hypertrophic cardiomyopathy, and cardiac sarcoidosis, will also be discussed

  6. Hibernoma: MRI features in eight consecutive cases

    International Nuclear Information System (INIS)

    Lee, J.C.; Gupta, A.; Saifuddin, A.; Flanagan, A.; Skinner, J.A.; Briggs, T.W.R.; Cannon, S.R.

    2006-01-01

    Aim: To describe the preoperative magnetic resonance imaging findings of eight histologically-proven cases of hibernoma. Materials and methods: The site, size, and signal characteristics of eight consecutive hibernomas were retrospectively assessed on T1-weighted spin-echo and short T1 inversion recovery (STIR)/fat-saturated T2-weighted fast spin echo magnetic resonance images. Four patients also had gadolinium-enhanced fat-saturated T1-weighted spin echo imaging. Patient age and sex, and duration of symptoms were recorded. Results: Three female and five male patients with an average age 36 years (range 16-53 years) were included. Seven lesions occurred in the thigh, four in the anterior compartment and three in the posterior compartment. One lesion occurred superficial to the scapula. All cases demonstrated common magnetic resonance imaging findings of a well-defined, heterogeneous mass, slightly or clearly hypo-intense to subcutaneous fat on T1-weighted spin-echo images, with prominent thin low signal bands throughout the tumour. The lesions failed to fully suppress on STIR or fat-saturated T2-weighted images. Only one of the four contrast-enhanced studies demonstrated increased vascularity in the tumour. Conclusion: The MRI findings of a lesion that is diffusely slightly hypointense to surrounding subcutaneous fat, should prompt the operator to consider hibernoma in the differential diagnosis

  7. T2{sup *} mapping from multi-echo dixon sequence on gadoxetic acid-enhanced magnetic resonance imaging for the hepatic fat quantification: Can it be used for hepatic function assessment?

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun Suk; Lee, Jeong Min; Yoon, Jeong Hee; Kang, Hyo Jin; Lee, Sang Min; Yang, Hyun Kyung; Han, Joon Koo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-08-01

    To evaluate the diagnostic value of T2{sup *} mapping using 3D multi-echo Dixon gradient echo acquisition on gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) as a tool to evaluate hepatic function. This retrospective study was approved by the IRB and the requirement of informed consent was waived. 242 patients who underwent liver MRIs, including 3D multi-echo Dixon fast gradient-recalled echo (GRE) sequence at 3T, before and after administration of gadoxetic acid, were included. Based on clinico-laboratory manifestation, the patients were classified as having normal liver function (NLF, n = 50), mild liver damage (MLD, n = 143), or severe liver damage (SLD, n = 30). The 3D multi-echo Dixon GRE sequence was obtained before, and 10 minutes after, gadoxetic acid administration. Pre- and post-contrast T2{sup *} values, as well as T2{sup *} reduction rates, were measured from T2{sup *} maps, and compared among the three groups. There was a significant difference in T2{sup *} reduction rates between the NLF and SLD groups (−0.2 ± 4.9% vs. 5.0 ± 6.9%, p = 0.002), and between the MLD and SLD groups (3.2 ± 6.0% vs. 5.0 ± 6.9%, p = 0.003). However, there was no significant difference in both the pre- and post-contrast T2{sup *} values among different liver function groups (p = 0.735 and 0.131, respectively). A receiver operating characteristic (ROC) curve analysis showed that the area under the ROC curve for using T2{sup *} reduction rates to differentiate the SLD group from the NLF group was 0.74 (95% confidence interval: 0.63–0.83). Incorporation of T2{sup *} mapping using 3D multi-echo Dixon GRE sequence in gadoxetic acid-enhanced liver MRI protocol may provide supplemental information for liver function deterioration in patients with SLD.

  8. Sensitivity of MRI in detecting alveolar infiltrates. Experimental studies

    International Nuclear Information System (INIS)

    Biederer, J.; Busse, I.; Grimm, J.; Reuter, M.; Heller, M.; Muhle, C.; Freitag, S.

    2002-01-01

    Purpose: An experimental study using porcine lung explants and a dedicated chest phantom to evaluate the signal intensity of artificial alveolar infiltrates with T 1 - and T 2 -weighted MRI sequences. Material and Methods: 10 porcine lung explants were intubated, transferred into the cavity of a MRI-compatible chest phantom and inflated by continuous evacuation of the artificial pleural space. All lungs were examined with MRI at 1.5 T before and after intra-tracheal instillation of either 100 or 200 ml gelatine-stabilised liquid to simulate alveolar infiltrates. MR-examination comprised gradient echo (2D- and 3D-GRE) and fast spin echo sequences (T 2 -TSE and T 2 -HASTE). The signal intensity of lung parenchyma was evaluated at representative cross sections using a standardised scheme. Control studies were acquired with helical CT. Results: The instilled liquid caused patchy confluent alveolar infiltrates resembling the findings in patients with pneumonia or ARDS. CT revealed typical ground-glass opacities. Before the application of the liquid, only T 2 -HASTE and T 2 -TSE displayed lung parenchyma signals with a signal/noise ratio of 3.62 and 1.39, respectively. After application of the liquid, both T 2 -weighted sequences showed clearly visible infiltrates with an increase in signal intensity of approx. 30% at 100 ml (p 2 -weighted sequences detects artificial alveolar infiltrates with high signal intensity and may be a highly sensitive tool to detect pneumonia in patients. (orig.) [de

  9. Analysis of MRI in chronic alcoholics with brain atrophy

    International Nuclear Information System (INIS)

    Park, Jin Sook; Kim, Myung Soon; Whang, Kum

    1997-01-01

    To quantitatively evaluate by MRI brain atrophy and abnormal parenchymal signal intensity on T2-weighted spin echo image in alcoholics. MRI of 24 alcoholic patients were retrospectively evaluated to measure brain atrophy (cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci) and abnormal high signal lesions of brain parenchyma on T2-weighted spin echo image, and were compared with age matched controls (n=29). The alcoholics and controls were divided into two age groups, younger (30-49 years) and older (50-72 years), and statistical analysis was then performed. Axial and sagittal T1- and T2-weighted spin echo images were obtained using a 0.5 Tesla superconductive system. Statistical significant parameters in the supratentorial region were cerebral sulcal width, distance between lateral ends of frontal horns of both lateral ventricles, and third ventricular width (p < 0.05), and in the infratentorial region were fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). In the younger age group, statistical significant parameters were cerebral sulcal width, third ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05) and in the older group were cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). Abnormal high signal intensity on T2-weighted spin echo images were seen in 46% of alcoholics (11/24) and in 13% of controls (3/29). High signal lesions in the older group were statistically significant (p < 0.05). Atrophic brain changes and periventricular high signal foci on T2-weighted spin echo image are

  10. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Dubravska cesta 9, 84104, Bratislava (Slovakia); Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Szomolanyi, Pavol [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Dubravska cesta 9, 84104, Bratislava (Slovakia); Domayer, Stephan; Hofstaetter, Jochen G. [Department of Orthopedic Surgery, Vienna General Hospital, Medical University of Vienna, A-1090 Vienna (Austria); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [Center of Excellence for High Field MR, Department of Radiology, Medical University of Vienna Waehringer Guertel 18-20, A-1090, Vienna (Austria)

    2013-05-15

    Introduction: The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T{sub 2} mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Materials and methods: Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE = 7.71 ms and TR = 17 ms. The T{sub 2} relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE = 6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. Results: The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r = 0.71, p = 0.007). Relatively high correlation was found between the PSIF signal and T{sub 2} values (r = 0.51, p = 0.036), and between the FISP signal and T{sub 2} values (r = 0.56, p = 0.047). Other correlations were found to be below the moderate level. Conclusion: This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T{sub 2} mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times.

  11. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon

    International Nuclear Information System (INIS)

    Juras, Vladimir; Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan; Szomolanyi, Pavol; Domayer, Stephan; Hofstaetter, Jochen G.; Trattnig, Siegfried

    2013-01-01

    Introduction: The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T 2 mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Materials and methods: Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE = 7.71 ms and TR = 17 ms. The T 2 relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE = 6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. Results: The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r = 0.71, p = 0.007). Relatively high correlation was found between the PSIF signal and T 2 values (r = 0.51, p = 0.036), and between the FISP signal and T 2 values (r = 0.56, p = 0.047). Other correlations were found to be below the moderate level. Conclusion: This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T 2 mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times

  12. T2-weighted MR imaging of the liver: Qualitative and quantitative comparison of SPACE MR imaging with turbo spin-echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, Anthony, E-mail: anthony.dohan@lrb.aphp.fr [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); UMR INSERM 965, Hôpital Lariboisière, 2 Rue Amboise Paré, 75010 Paris (France); Gavini, Jean-Philippe, E-mail: jpgavini@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Placé, Vinciane, E-mail: vinciane.place@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Sebbag, Delphine, E-mail: delphinesebbag@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Vignaud, Alexandre, E-mail: alexandre.vignaud@cea.fr [LRMN, Neurospin, CEA-SACLAY, Bâtiment 145, 91 191 Gif-sur-Yvette Cedex (France); and others

    2013-11-01

    Objective: To qualitatively and quantitatively compare T2-weighted MR imaging of the liver using volumetric spin-echo with sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE) with conventional turbo spin-echo (TSE) sequence for fat-suppressed T2-weighted MR imaging of the liver. Materials and methods: Thirty-three patients with suspected focal liver lesions had SPACE MR imaging and conventional fat-suppressed TSE MR imaging. Images were analyzed quantitatively by measuring the lesion-to-liver contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) of main focal hepatic lesions, hepatic and splenic parenchyma and qualitatively by evaluating the presence of vascular, respiratory motion and cardiac artifacts. Wilcoxon signed rank test was used to search for differences between the two sequences. Results: SPACE MR imaging showed significantly greater CNR for focal liver lesions (median = 22.82) than TSE MR imaging (median = 14.15) (P < .001). No differences were found for SNR of hepatic parenchyma (P = .097), main focal hepatic lesions (P = .35), and splenic parenchyma (P = .25). SPACE sequence showed less artifacts than TSE sequence (vascular, P < .001; respiratory motion, P < .001; cardiac, P < .001) but needed a longer acquisition time (228.4 vs. 162.1 s; P < .001). Conclusion: SPACE MR imaging provides a significantly increased CNR for focal liver lesions and less artifacts by comparison with the conventional TSE sequence. These results should stimulate further clinical studies with a surgical standard of reference to compare the two techniques in terms of sensitivity for malignant lesions.

  13. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the

  14. Diffusion-weighted MRI of the Prostate: Advantages of Zoomed EPI with Parallel-transmit-accelerated 2D-selective Excitation Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Thierfelder, Kolja M.; Scherr, Michael K.; Weiss, Jakob; Mueller-Lisse, Ullrich G.; Theisen, Daniel [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Notohamiprodjo, Mike; Nikolaou, Konstantin [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Dietrich, Olaf [Ludwig-Maximilians-University Hospital Munich, Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Munich (Germany); Pfeuffer, Josef [Siemens Healthcare, Application Development, Erlangen (Germany)

    2014-12-15

    The purpose of our study was to evaluate the use of 2D-selective, parallel-transmit excitation magnetic resonance imaging (MRI) for diffusion-weighted echo-planar imaging (pTX-EPI) of the prostate, and to compare it to conventional, single-shot EPI (c-EPI). The MRI examinations of 35 patients were evaluated in this prospective study. PTX-EPI was performed with a TX-acceleration factor of 1.7 and a field of view (FOV) of 150 x 90 mm{sup 2}, whereas c-EPI used a full FOV of 380 x 297 mm{sup 2}. Two readers evaluated three different aspects of image quality on 5-point Likert scales. To quantify distortion artefacts, maximum diameters and prostate volume were determined for both techniques and compared to T2-weighted imaging. The zoomed pTX-EPI was superior to c-EPI with respect to overall image quality (3.39 ± 0.62 vs 2.45 ± 0.67) and anatomic differentiability (3.29 ± 0.65 vs 2.41 ± 0.65), each with p < 0.0001. Artefacts were significantly less severe in pTX-EPI (0.93 ± 0.73 vs 1.49 ± 1.08), p < 0.001. The quantitative analysis yielded a higher agreement of pTX-EPI with T2-weighted imaging than c-EPI with respect to coronal (ICCs: 0.95 vs 0.93) and sagittal (0.86 vs 0.73) diameters as well as prostate volume (0.94 vs 0.92). Apparent diffusion coefficient (ADC) values did not differ significantly between the two techniques (p > 0.05). Zoomed pTX-EPI leads to substantial improvements in diffusion-weighted imaging (DWI) of the prostate with respect to different aspects of image quality and severity of artefacts. (orig.)

  15. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages.

    Science.gov (United States)

    Vieth, Volker; Schulz, Ronald; Heindel, Walter; Pfeiffer, Heidi; Buerke, Boris; Schmeling, Andreas; Ottow, Christian

    2018-03-13

    To explore the possibility of determining majority via a morphology-based examination of the epiphyseal-diaphyseal fusion by 3.0 T magnetic resonance imaging (MRI), a prospective cross-sectional study developing and applying a new stage classification was conducted. 344 male and 350 female volunteers of German nationality between the ages of 12-24 years were scanned between May 2013 and June 2015. A 3.0 T MRI scanner was used, acquiring a T1-weighted (T1-w) turbo spin-echo sequence (TSE) and a T2-weighted (T2-w) TSE sequence with fat suppression by spectral pre-saturation with inversion recovery (SPIR). The gathered information was sifted and a five-stage classification was formulated as a hypothesis. The images were then assessed using this classification. The relevant statistics were defined, the intra- and interobserver agreements were determined, and the differences between the sexes were analysed. The application of the new classification made it possible to correctly assess majority in both sexes by the examination of the epiphyses of the knee joint. The intra- and interobserver agreement levels were very good (κ > 0.80). The Mann-Whitney-U Test implied significant sex-related differences for most stages. Applying the presented MRI classification, it is possible to determine the completion of the 18th year of life in either sex by 3.0 T MRI of the knee joint. • Based on prospective referential data a new MRI classification was formulated. • The setting allows assessment of the age of an individual's skeletal development. • The classification scheme allows the reliable determination of majority in both sexes. • The staging shows a high reproducibility for instructed and trained professional personnel. • The proposed classification is likely to be adaptable to other long bone epiphyses.

  16. Comparison between FLAIR images and T2-weighted fast spin-echo images of cerebral territory and lacunar infarction

    International Nuclear Information System (INIS)

    Paeng, Mi Hye; Choi, Hye-Young; Lim, Soo Mee; Lee, Jung Sik

    2003-01-01

    To assess the significance of fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) imaging in the diagnosis of intracranial infarctions and to find out differential points between central lacunar infarctions and perivascular spaces. We consecutively selected 25 cases of territorial infarction in 20 patients, 37 cases of central infarction in 40 patients, and 30 patients with perivascular space. Signal intensity and lesion conspicuity were analyzed and compared between FLAIR and FSE T2-weighted images, and differences in signal intensity between central infarction and perivascular spaces were determined. Lesion conspicuity for FLAIR was better than for T2-weighted images in 12 and 15, worse in 4 and 24, and similar in 9 and 16 of territorial and central infarctions, respectively. In nine cases of territorial and one case of central infarction, there was associated hemorrhage. At FLAIR imaging, perivascular spaces showed a fine round low signal without a peripheral high signal rim in 17 patients but no demonstrable signals in 15. Differential diagnosis of perivascular spaces and central infarction was thus not difficult. FLAIR MRI was useful in the diagnosis of infarctions and in differentiating between central small lacular infarctions and perivascular spaces

  17. Fast susceptibility-weighted imaging with three-dimensional short-axis propeller (SAP)-echo-planar imaging.

    Science.gov (United States)

    Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S

    2015-05-01

    Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.

  18. “Hot cross bun” sign in multiple system atrophy with predominant cerebellar ataxia: A comparison between proton density-weighted imaging and T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Seiko, E-mail: nuun077@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Miki, Yukio, E-mail: yukio.miki@med.osaka-cu.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545–8585 (Japan); Kanagaki, Mitsunori, E-mail: mitsuk@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Kondo, Takayuki, E-mail: kondotak@kuhp.kyoto-u.ac.jp [Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Yamamoto, Akira, E-mail: yakira@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Morimoto, Emiko, E-mail: foresta@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Okada, Tomohisa, E-mail: tomokada@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Ito, Hidefumi, E-mail: itohid@kuhp.kyoto-u.ac.jp [Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Takahashi, Ryosuke, E-mail: ryosuket@kuhp.kyoto-u.ac.jp [Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); and others

    2012-10-15

    Objective: To investigate whether proton density-weighted imaging can detect the “hot cross bun” sign in the pons in multiple system atrophy with predominant cerebellar ataxia significantly better than T2-weighted imaging at 3 T. Methods: Sixteen consecutive patients with multiple system atrophy with predominant cerebellar ataxia according to the Consensus Criteria were reviewed. Axial unenhanced proton density-weighted imaging and T2-weighted imaging were obtained using a dual-echo fast spin-echo sequence at 3 T. Two neuroradiologists independently evaluated visualisation of the abnormal pontine signal using a 4-point visual grade from Grade 0 (no “hot cross bun” sign) to Grade 3 (prominent “hot cross bun” sign on two or more sequential slices). Differences in grade between proton density-weighted imaging and T2-weighted imaging were statistically analysed using the Wilcoxon signed-rank test. Results: In 11 patients (69%), a higher grade was given for proton density-weighted imaging than T2-weighted imaging. In 1 patient (6%), grades were the same (Grade 3) on both images. In the remaining 4 patients (25%), signal abnormalities were not detected on either image (Grade 0). The “hot cross bun” sign was thus observed significantly better on proton density-weighted imaging than on T2-weighted imaging (P = 0.001). Conclusions: The “hot cross bun” sign considered diagnostic for multiple system atrophy with predominant cerebellar ataxia is significantly better visualised on proton density-weighted imaging than on T2-weighted imaging at 3 T.

  19. Little Leaguer's shoulder (proximal humeral epiphysiolysis): MRI findings in four boys

    International Nuclear Information System (INIS)

    Obembe, Olufolajimi O.; Gaskin, Cree M.; Anderson, Mark W.; Taffoni, Matthew J.

    2007-01-01

    Shoulder pain is a common problem among adolescent athletes. A possible cause of such pain that can be diagnosed on MRI is a stress injury to the proximal humerus known as Little Leaguer's shoulder (proximal humeral epiphysiolysis). Our objective was to describe the MRI appearance of Little Leaguer's shoulder. Four patients (all boys; age range 11-15 years; median 13 years) with clinical, plain radiographic, and MR imaging findings of Little Leaguer's shoulder were studied retrospectively. MRI demonstrated focal physeal widening in all four boys with extension of physeal signal intensity into the metaphysis on T1-weighted and gradient echo coronal and sagittal sequences. T2-weighted sequences were of limited use in demonstrating the physeal widening, which is critical to the diagnosis. Abnormal high T2-signal intensity was seen in the metaphysis adjacent to the focal physeal widening in all the boys. Focal extension of normal physeal T1-weighted and gradient echo signal intensity into the adjacent metaphysis is a sign of stress injury in the proximal humeral physis (Little Leaguer's shoulder). Children should suspend the offending sport to allow healing. (orig.)

  20. Reticuloendothelial negative contrast media for hepatocellular carcinoma. Initial comparison of chondroitin sulfate iron colloid and Ferrixan in fast T2-weighted MR imaging

    International Nuclear Information System (INIS)

    Sugihara, Shuji; Suto, Yuji; Kamba, Masayuki; Yoshida, Kotaro

    1996-01-01

    Chondroitin sulfate iron colloid (CSIC), a paramagnetic substance, and Ferrixan (SHU555A), a superparamagnetic substance, were administered to 20 patients with 26 nodules of hepatocellular carcinoma, and the visualization of the lesions by fast T2-weighted magnetic resonance imaging (MRI) was quantitatively evaluated. Conventional spin-echo (CSE), turbo spin-echo (TSE), and turbo gradient spin-echo (TGSE) sequences were performed in all patients before and after the administration of the iron colloid preparations. The signal-to-noise ratio (SNR) in the liver decreased significantly after administration of iron colloid preparations by all sequences and at all doses. A reduction in SNR in the liver similar to that obtained with SHU555A could be obtained by increasing the dose of CSIC, which has a weaker T2-shortening effect. In the TSE sequence with a weaker susceptibility effect, the decrease in SNR in the liver tended to be equalized to those in the CSE or TGSE sequences by high dose administration of the iron colloid preparation. We think perhaps that the imaging ability for hepatocellular carcinoma, similar to that of superparamagnetic contrast media, can be obtained with paramagnetic CSIC by administering it at a higher dose. (author)

  1. Reticuloendothelial negative contrast media for hepatocellular carcinoma. Initial comparison of chondroitin sulfate iron colloid and Ferrixan in fast T2-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Shuji; Suto, Yuji; Kamba, Masayuki; Yoshida, Kotaro [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1996-11-01

    Chondroitin sulfate iron colloid (CSIC), a paramagnetic substance, and Ferrixan (SHU555A), a superparamagnetic substance, were administered to 20 patients with 26 nodules of hepatocellular carcinoma, and the visualization of the lesions by fast T2-weighted magnetic resonance imaging (MRI) was quantitatively evaluated. Conventional spin-echo (CSE), turbo spin-echo (TSE), and turbo gradient spin-echo (TGSE) sequences were performed in all patients before and after the administration of the iron colloid preparations. The signal-to-noise ratio (SNR) in the liver decreased significantly after administration of iron colloid preparations by all sequences and at all doses. A reduction in SNR in the liver similar to that obtained with SHU555A could be obtained by increasing the dose of CSIC, which has a weaker T2-shortening effect. In the TSE sequence with a weaker susceptibility effect, the decrease in SNR in the liver tended to be equalized to those in the CSE or TGSE sequences by high dose administration of the iron colloid preparation. We think perhaps that the imaging ability for hepatocellular carcinoma, similar to that of superparamagnetic contrast media, can be obtained with paramagnetic CSIC by administering it at a higher dose. (author)

  2. Lumbosacral lipoma : gadolinium-enhanced fat saturation T1 weighted MR image is necessary?

    International Nuclear Information System (INIS)

    Yoon, Man Won; Kim, Hyun Chul; Chung, Tae Woong; Seo, Jeong Jin; Chung, Gwang Woo; Kim, Yun Hyeon; Kim, Jae Kyu; Park, Jin Gyoon; Kang, Heoung Keun

    1999-01-01

    To evaluate the usefulness of contrast-enhanced fat saturation T1-weighted imaging for the evaluation of spinal lipoma, compared with clinical symptoms and surgical findings. Ten patients with lipomyelomeningocele, confirmed by surgery, were included in this study. In all cases, conventional spin echo T1-and T2-weighted MR imaging, and contrast-enhanced fat saturation T1-weighted imaging was performed to evaluate clinical symptoms, the position of the conus medullaris, the presence of cord tethering, and associated anomalies, and to compare the relative usefulness of the techniques. All ten patients were suffering from lipomyelomeningocele without filum terminale fibrolipoma or intradural lipoma. All cases were associated with cord tethering. As associated anomalies, there were seven cases of syringomyelia without hydrocephalus or anorectal anomaly. To evaluate the position of the spinal conus and the presence of cord tethering, conventional T1-weighted imaging was more useful than the contrast-enhanced fat saturation equivalent. In patients with early-stage spinal lipoma, MRI is useful for evaluation of the causes and position of cord tethering and associated anomalies Our results suggest that contrast-enhanced fat saturation T1-weighted images do not provide additional information concerning spinal lipoma, and that for the diagnosis of this condition, conventional T1 and T2-weighted images are more useful than those obtained by contrast-enhanced fat saturation T1-weighted imaging

  3. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    Energy Technology Data Exchange (ETDEWEB)

    Maramraju, Sri Harsha; Ravindranath, Bosky; Vaska, Paul; Schlyer, David J [Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY (United States); Smith, S David; Schulz, Daniela [Medical Department, Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, Sachin S; Rescia, Sergio [Instrumentation Division, Brookhaven National Laboratory, Upton, NY (United States); Stoll, Sean; Purschke, Martin L; Woody, Craig L [Physics Department, Brookhaven National Laboratory, Upton, NY (United States); Southekal, Sudeepti [Brigham and Women' s Hospital, Boston, MA (United States); Pratte, Jean-Francois, E-mail: schlyer@bnl.gov [Universite de Sherbrooke, Sherbrooke, Quebec (Canada)

    2011-04-21

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  4. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    International Nuclear Information System (INIS)

    Erdem, L. Oktay; Erdem, C. Zuhal; Acikgoz, Bektas; Gundogdu, Sadi

    2005-01-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times

  5. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, L. Oktay [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)]. E-mail: sunarerdem@yahoo.com; Erdem, C. Zuhal [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey); Acikgoz, Bektas [Department of Neurosurgery, Zonguldak Karaelmas University, School of Medicine, Zonguldak (Turkey); Gundogdu, Sadi [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)

    2005-08-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times.

  6. Usefulness of IDEAL T2-weighted FSE and SPGR imaging in reducing metallic artifacts in the postoperative ankles with metallic hardware

    International Nuclear Information System (INIS)

    Lee, Jung Bin; Cha, Jang Gyu; Lee, Min Hee; Lee, Eun Hye; Lee, Young Koo; Jeon, Chan Hong

    2013-01-01

    The aim of this work is to prospectively compare the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL), T2-weighted fast spin-echo (FSE), and spoiled gradient-echo (SPGR) MR imaging to frequency selective fat suppression (FSFS) protocols for minimizing metallic artifacts in postoperative ankles with metallic hardware. The T2-weighted and SPGR imaging with IDEAL and FSFS were performed on 21 ankles of 21 patients with metallic hardware. Two musculoskeletal radiologists independently analyzed techniques for visualization of ankle ligaments and articular cartilage, uniformity of fat saturation, and relative size of the metallic artifacts. A paired t test was used for statistical comparisons of MR images between IDEAL and FSFS groups. IDEAL T2-weighted FSE and SPGR images enabled significantly improved visualization of articular cartilage (p < 0.05), the size of metallic artifact (p < 0.05), and the uniformity of fat saturation (p < 0.05). However, no significant improvement was found in the visibility of ligaments. IDEAL T2-weighted FSE and SPGR imaging effectively reduces the degree of tissue-obscuring artifacts produced by fixation hardware in ankle joints and improves image quality compared to FSFS T2-weighted FSE and SPGR imaging. However, visibility of ligaments was not improved using IDEAL imaging. (orig.)

  7. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    Science.gov (United States)

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for

  8. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  9. Legg-Perthes-Calve disease: staging by MRI using gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Ducou le Pointe, H. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Haddad, S. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Silberman, B. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Filipe, G. (Dept. of Orthopedic Surgery, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Monroc, M. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France)); Montagne, J.P. (Dept. of Pediatric Radiology, Hopital d' Enfants Armand-Trousseau, 75 - Paris (France))

    1994-04-01

    Twenty-one patients (26 hips) with typical signs of Legg-Perthes-Calve (LPC) disease on plain radiographs were explored by MRI. Patients were imaged with a 0.5 T MR unit. Gadolinium-enhanced spinecho MR images were obtained after nonenhanced T1-weighted (spin-echo) and T2[sup *]-weighted (gradient-echo) images. Four different areas were identified in the femoral epiphysis (necrosis, regenerative, cartilaginous and normal fatty bone tissue). The histological evolution of LPC is well described by Catterall and others. Comparing their descriptions with out MR findings, we suggest classification ofLPC into five phases: necrosis: regeneration, reconstruction, reossification and sequelae. (orig.)

  10. Acoustic noise reduction in T 1- and proton-density-weighted turbo spin-echo imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Breuer, Felix; Grodzki, David; Heismann, Björn; Jakob, Peter

    2016-02-01

    To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice. Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison. An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1-4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved. The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.

  11. Optimization of DSC MRI Echo Times for CBV Measurements Using Error Analysis in a Pilot Study of High-Grade Gliomas.

    Science.gov (United States)

    Bell, L C; Does, M D; Stokes, A M; Baxter, L C; Schmainda, K M; Dueck, A C; Quarles, C C

    2017-09-01

    The optimal TE must be calculated to minimize the variance in CBV measurements made with DSC MR imaging. Simulations can be used to determine the influence of the TE on CBV, but they may not adequately recapitulate the in vivo heterogeneity of precontrast T2*, contrast agent kinetics, and the biophysical basis of contrast agent-induced T2* changes. The purpose of this study was to combine quantitative multiecho DSC MRI T2* time curves with error analysis in order to compute the optimal TE for a traditional single-echo acquisition. Eleven subjects with high-grade gliomas were scanned at 3T with a dual-echo DSC MR imaging sequence to quantify contrast agent-induced T2* changes in this retrospective study. Optimized TEs were calculated with propagation of error analysis for high-grade glial tumors, normal-appearing white matter, and arterial input function estimation. The optimal TE is a weighted average of the T2* values that occur as a contrast agent bolus transverses a voxel. The mean optimal TEs were 30.0 ± 7.4 ms for high-grade glial tumors, 36.3 ± 4.6 ms for normal-appearing white matter, and 11.8 ± 1.4 ms for arterial input function estimation (repeated-measures ANOVA, P optimal TE values for high-grade gliomas, and mean values of all 3 ROIs were statistically significant. The optimal TE for the arterial input function estimation is much shorter; this finding implies that quantitative DSC MR imaging acquisitions would benefit from multiecho acquisitions. In the case of a single-echo acquisition, the optimal TE prescribed should be 30-35 ms (without a preload) and 20-30 ms (with a standard full-dose preload). © 2017 by American Journal of Neuroradiology.

  12. Histological grade of differentiation of hepatocellular carcinoma: comparison of the efficacy of diffusion-weighted MRI with T2-weighted imaging and angiography-assisted CT

    International Nuclear Information System (INIS)

    Saito, Kazuhiro; Nishio, Ryota; Saguchi, Toru; Akata, Soichi; Tokuuye, Koichi; Moriyasu, Fuminori; Sugimoto, Katsutoshi

    2012-01-01

    The purpose of this study is to determine the usefulness of diffusion-weighted imaging (DWI) for evaluating the histological grade of differentiation of hepatocellular carcinoma (HCC) compared with T2-weighted imaging (T2WI) and tumour haemodynamics. We retrospectively evaluated 32 patients with 42 pathologically confirmed HCC nodules. These patients underwent MRI, CT during arterial portography and CT hepatic arteriography. We evaluated the relationship between the histological grade of differentiation and the apparent diffusion coefficient (ADC) values, conspicuity of tumour on DWI, DWI and T2WI contrast-to-noise (C/N) ratios and tumour haemodynamics. There was no correlation between the histological grade of differentiation and the ADC values. The DWI C/N ratio was significantly different among all histological grades, but the T2WI C/N ratio was not. Tumour conspicuity on DWI correlated well with the histological grade of differentiation, but tumour haemodynamics only partially correlated with the histological grade of differentiation. DWI was useful for evaluating the histological grade of differentiation of HCC.

  13. Myocardial viability: comparison of free-breathing navigator-echo-gated three-dimensional inversion-recovery gradient-echo MR and standard multiple breath-hold two-dimensional inversion-recovery gradient-echo MR

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Seo, Joon Beom; Do, Kyung Hyun; Yang, Dong Hyun; Lee, Soo Hyun; Ko, Sung Min; Heo, Jeong Nam; Lim, Tae Hwan

    2004-01-01

    To compare a free-breathing, navigator-echo-gated, three-dimensional, inversion-recovery, gradient-echo, MR pulse sequence (3D-MRI) with standard, multiple breath-hold, two-dimensional, inversion-recovery, gradient-echo MR (2D-MRI) for the evaluation of delayed hyperenhancement of nonviable myocardium in patients with chronic ischemic heart disease. Ten patients with chronic ischemic heart disease were enrolled in this study. MRI was performed on a 1.5-T system. 3D-MRI was obtained in the short axis plane at 10 minutes after the administration of Gd-DTPA (0.2 mmol/kg, 4 cc/sec). Prospective gating of the acquisition based on the navigator echo was applied. 2D-MRI was performed immediately after finishing 3D-MRI. The area of total and hyperenhanced myocardium measured on both image sets was compared with paired Student t-test and Bland-Altman method. By using a 60-segment model, the transmural extent and segment width of the hyperenhanced area were recorded by 3-scale grading method. The agreement between the two sequences was evaluated with kappa statistics. We also evaluated the agreement of hyperenhancement among the three portions (apical, middle and basal portion) of the left ventricle with kappa statistics. The two sequences showed good agreement for the measured area of total and hyperenhanced myocardium on paired t-test (ρ = 0.11 and ρ = 0.34, respectively). No systematic bias was shown on Bland-Altman analysis. Good agreement was found for the segmental width (Κ = 0.674) and transmural extent (Κ = 0.615) of hyperenhancement on the segmented analysis. However, the agreement of the transmural extent of hyperenhancement in the apical segments was relatively poor compared with that in the middle or basal portions. This study showed good agreement between 3D-MRI and 2D-MRI in evaluation of non-viable myocardium. Therefore, 3D-MRI may be useful in the assessment of myocardial viability in patients with dyspnea and children because it allows free

  14. Fat-suppressed fast spin-echo mid-TE (TE[effective]=34) MR images: comparison with fast spin-echo T2-weighted images for the diagnosis of tears and anatomic variants of the glenoid labrum

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin School of Medicine, Madison (United States); University of Wisconsin Hospital and Clinics, Dept. of Radiology, Madison, WI (United States); Shinners, T J; Hollister, M C [Dept. of Radiology, Univ. of Wisconsin School of Medicine, Madison (United States); Orwin, J F [Dept. of Orthopedic Surgery, University of Wisconsin School of Medicine, Madison (United States)

    1999-12-01

    Objective. To compare the sensitivity, specificity, and accuracy of fat-suppressed fast spin-echo (FSE) mid-TE (TE[effective]=34) images with fat-suppressed FSE T2-weighted images for the diagnosis of labral abnormalities.Design and patients. The study included 27 consecutive patients who had axial fat-suppressed FSE T2-weighted and fat-suppressed FSE mid-TE MR images, and had labral abnormalities diagnosed at arthroscopy. The acquisition time was about 5 min for each sequence, but the mid-TE sequence allowed a higher spatial resolution than the T2-weighted images (256 x 256 versus 256 x 192). Twenty-eight age-matched patients with arthroscopically normal labra were included as a control group. The labrum was graded on the MR images as normal or abnormal separately by two musculoskeletal radiologists who were masked to the history and arthroscopic results. The surgical findings were used as the gold standard for calculating the sensitivity, specificity, and accuracy for interpreting the correct location of a labral abnormality. The sensitivity, specificity, and accuracy for the two sequences were compared with a McNemar test, and significance defined as P<0.05.Results. For observer 1, the sensitivity for labral abnormalities was 0.59 on the T2-weighted images, and 0.78 on the mid-TE images (P=0.12). The specificity was 0.54 for the T2-weighted, and 0.64 for the mid-TE images (P=0.51). The accuracy was 0.56 for the T2-weighted, and 0.71 for the mid-TE images (P=0.08). For observer 2, the sensitivity/specificity/accuracy was 0.67/0.93/0.80 for the T2-weighted, and 0.70/0.86/0.78 for the mid-TE images (all P>0.5).Conclusion. In this small study there is no statistically significant difference for demonstrating labral abnormalities between FSE T2-weighted images, and higher-resolution fat-suppressed FSE mid-TE (TE[effective]=34) images obtained with a similar acquisition time. Although there was a general trend toward higher sensitivity and accuracy with the mid

  15. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    Science.gov (United States)

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  16. Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: An initial observational cohort study.

    Science.gov (United States)

    Lingam, Ravi Kumar; Mundada, Pravin; Lee, Vickie

    2018-01-10

    To examine the novel use of non-echo-planar diffusion weighted MRI (DWI) in depicting activity and treatment response in active Grave's orbitopathy (GO) by assessing, with inter-observer agreement, for a correlation between its apparent diffusion coefficients (ADCs) and conventional Short tau Inversion Recovery (STIR) MRI signal-intensity ratios (SIRs). A total of 23 actively inflamed muscles and 30 muscle response episodes were analysed in patients with active GO who underwent medical treatment. The MRI orbit scans included STIR sequences and non-echo-planar DWI were evaluated. Two observers independently assessed the images qualitatively for the presence of activity in the extraocular muscles (EOMs) and recorded the STIR signal-intensity (SI), SIR (SI ratio of EOM/temporalis muscle), and ADC values of any actively inflamed muscle on the pre-treatment scans and their corresponding values on the subsequent post-treatment scans. Inter-observer agreement was examined. There was a significant positive correlation (0.57, p < 0.001) between ADC and both SIR and STIR SI of the actively inflamed EOM. There was also a significant positive correlation (0.75, p < 0.001) between SIR and ADC values depicting change in muscle activity associated with treatment response. There was good inter-observer agreement. Our preliminary results indicate that quantitative evaluation with non-echo-planar DWI ADC values correlates well with conventional STIR SIR in detecting active GO and monitoring its treatment response, with good inter-observer agreement.

  17. High signals in the uterine cervix on T2-weighted MRI sequences

    International Nuclear Information System (INIS)

    Graef, De M.; Karam, R.; Daclin, P.Y.; Rouanet, J.P.; Juhan, V.; Maubon, A.J.

    2003-01-01

    The aim of this pictorial review was to illustrate the normal cervix appearance on T2-weighted images, and give a review of common or less common disorders of the uterine cervix that appear as high signal intensity lesions on T2-weighted sequences. Numerous aetiologies dominated by cervical cancer are reviewed and discussed. This gamut is obviously incomplete; however, radiologists who perform MR women's imaging should perform T2-weighted sequences in the sagittal plane regardless of the indication for pelvic MR. Those sequences will diagnose some previously unknown cervical cancers as well as many other unknown cervical or uterine lesions. (orig.)

  18. Utility of single shot fast spin echo technique in evaluating pancreaticobiliary diseases: T2-weighted image and magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Kim, Myeong Jin; Chung, Jae Bok; Ko, Heung Kyu; Kim, Dong Joon; Kim, Joo Hee; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To evaluate the accuracy of T2-weighted imaging an MR cholangiopancreatography using the single shot fast spin-echo technique for evaluating pancreaticobiliary disease. Between March and July 1997, axial and coronal T2-weighted images(TE: 80-200 msec) and MR cholangiopancreatograms (TE: 800-1200 msec) were obtained in two ways [single slab (thickness: 30-50 mm) and multislice acquisition under chemical fat saturation] using SSFSE pulse sequencing in 131 cases of suspected pancreati-cobiliary disease. The accuracy of SSFSE MR imaging was assessed in 89 lesions of 74 patients [male, 48; female, 26; age range, 30-86 (mean, 59) years] confirmed surgicopathologically (50 lesions in 39 patients) and clinically (39 lesions in 35 patients). Two radiologists reviewed the MR images and diagnosis was determined by consensus. Correct diagnosis was confirmed in 84 of 89 lesions (94%). Seven lesions were falsely interpreted, false positive and false negative results accounting for two and five cases, respectively. Two pancreatic cancers were misdiagnosed as pancreatitis and a cancer of the proximal common bile duct(CBD) was interpreted as a distal CBD cancer. The sensitivity of SSFSE MR imaging for malignancy was 93 %. One CBD stone revealed by endoscopic retrograde cholangiopancreatography (ERCP) was not detected on MR images. In contrast, a stone in the CBD seen on MR images was not apparent on subsequent ERCP. Sensitivity and specificity for calculous disease were 96% and 99.7%, respectively. A benign stricture of the ampulla of Vater was falsely interpreted as normal, and correct diagnosis was possible in two falsely diagnosed cases when MR images were reviewed retrospectively. The combination of T2-weighted and cholangiographic images using SSFSE is an accurate method for diagnosing pancreatcobiliary diseases

  19. Evaluation of the SLAP lesion using a low-field (0.2T) magnetic resonance system

    International Nuclear Information System (INIS)

    Cho, Yong Soo; Back, Chang Hee; Lee, Kyung Rae; Shin, Yun Hack

    2007-01-01

    To evaluate the diagnostic capabilities of the low-field (0.2T) magnetic resonance (MR) system in the detection of the superior labrum anterior to posterior (SLAP) lesion. One hundred fifty patients underwent magnetic resonance imaging of the shoulder over a 7-month period. Forty-six patients underwent arthroscopic surgery, and the surgical results were correlated with the findings of the MR imaging. Arthroscopic procedures were performed within a mean of 8 days after MR imaging. MR imaging of the shoulder was conducted as follows: shoulder coil; T1-weighted spin echo, coronal-oblique images; T2-weighted gradient echo, coronal-oblique and axial images; and T2-weighted spin echo, coronal oblique and sagittal-oblique images. Prospectively, one radiologist interpreted the MR images. The results of surgery were as follow: SLAP II in 26 shoulders, SLAP III in 1 shoulder, SLAP IV in 1 shoulder, normal labrum in 6 shoulder. For SLAP lesions with a higher grade than type 2, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the low-field MRI were 85.7%, 55.5%. 75%, 71%, and 74%, respectively. There was relatively good agreement for the comparison of the MR results obtained using a low-field MR system with the surgical findings for identifying SLAP lesions

  20. SU-E-J-157: Improving the Quality of T2-Weighted 4D Magnetic Resonance Imaging for Clinical Evaluation

    International Nuclear Information System (INIS)

    Du, D; Mutic, S; Hu, Y; Caruthers, S; Glide-Hurst, C; Low, D

    2014-01-01

    Purpose: To develop an imaging technique that enables us to acquire T2- weighted 4D Magnetic Resonance Imaging (4DMRI) with sufficient spatial coverage, temporal resolution and spatial resolution for clinical evaluation. Methods: T2-weighed 4DMRI images were acquired from a healthy volunteer using a respiratory amplitude triggered T2-weighted Turbo Spin Echo sequence. 10 respiratory states were used to equally sample the respiratory range based on amplitude (0%, 20%i, 40%i, 60%i, 80%i, 100%, 80%e, 60%e, 40%e and 20%e). To avoid frequent scanning halts, a methodology was devised that split 10 respiratory states into two packages in an interleaved manner and packages were acquired separately. Sixty 3mm sagittal slices at 1.5mm in-plane spatial resolution were acquired to offer good spatial coverage and reasonable spatial resolution. The in-plane field of view was 375mm × 260mm with nominal scan time of 3 minutes 42 seconds. Acquired 2D images at the same respiratory state were combined to form the 3D image set corresponding to that respiratory state and reconstructed in the coronal view to evaluate whether all slices were at the same respiratory state. 3D image sets of 10 respiratory states represented a complete 4D MRI image set. Results: T2-weighted 4DMRI image were acquired in 10 minutes which was within clinical acceptable range. Qualitatively, the acquired MRI images had good image quality for delineation purposes. There were no abrupt position changes in reconstructed coronal images which confirmed that all sagittal slices were in the same respiratory state. Conclusion: We demonstrated it was feasible to acquire T2-weighted 4DMRI image set within a practical amount of time (10 minutes) that had good temporal resolution (10 respiratory states), spatial resolution (1.5mm × 1.5mm × 3.0mm) and spatial coverage (60 slices) for future clinical evaluation

  1. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  2. Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture.

    Science.gov (United States)

    Esses, Steven J; Lu, Xiaoguang; Zhao, Tiejun; Shanbhogue, Krishna; Dane, Bari; Bruno, Mary; Chandarana, Hersh

    2018-03-01

    To develop and test a deep learning approach named Convolutional Neural Network (CNN) for automated screening of T 2 -weighted (T 2 WI) liver acquisitions for nondiagnostic images, and compare this automated approach to evaluation by two radiologists. We evaluated 522 liver magnetic resonance imaging (MRI) exams performed at 1.5T and 3T at our institution between November 2014 and May 2016 for CNN training and validation. The CNN consisted of an input layer, convolutional layer, fully connected layer, and output layer. 351 T 2 WI were anonymized for training. Each case was annotated with a label of being diagnostic or nondiagnostic for detecting lesions and assessing liver morphology. Another independently collected 171 cases were sequestered for a blind test. These 171 T 2 WI were assessed independently by two radiologists and annotated as being diagnostic or nondiagnostic. These 171 T 2 WI were presented to the CNN algorithm and image quality (IQ) output of the algorithm was compared to that of two radiologists. There was concordance in IQ label between Reader 1 and CNN in 79% of cases and between Reader 2 and CNN in 73%. The sensitivity and the specificity of the CNN algorithm in identifying nondiagnostic IQ was 67% and 81% with respect to Reader 1 and 47% and 80% with respect to Reader 2. The negative predictive value of the algorithm for identifying nondiagnostic IQ was 94% and 86% (relative to Readers 1 and 2). We demonstrate a CNN algorithm that yields a high negative predictive value when screening for nondiagnostic T 2 WI of the liver. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:723-728. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  4. MRI texture analysis (MRTA) of T2-weighted images in Crohn's disease may provide information on histological and MRI disease activity in patients undergoing ileal resection

    Energy Technology Data Exchange (ETDEWEB)

    Makanyanga, Jesica; Bhatnagar, Gauraang; Halligan, Steve; Taylor, Stuart A. [University College London and University College London Hospitals NIHR Biomedical Research Centre, Center for Medical Imaging, London (United Kingdom); Ganeshan, Balaji; Groves, Ashley; Miles, Ken [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Rodriguez-Justo, Manuel [University College London, Department of Research Pathology, University College London Cancer Institute, London (United Kingdom)

    2017-02-15

    To associate MRI textural analysis (MRTA) with MRI and histological Crohn's disease (CD) activity. Sixteen patients (mean age 39.5 years, 9 male) undergoing MR enterography before ileal resection were retrospectively analysed. Thirty-six small (≤3 mm) ROIs were placed on T2-weighted images and location-matched histological acute inflammatory scores (AIS) measured. MRI activity (mural thickness, T2 signal, T1 enhancement) (CDA) was scored in large ROIs. MRTA features (mean, standard deviation, mean of positive pixels (MPP), entropy, kurtosis, skewness) were extracted using a filtration histogram technique. Spatial scale filtration (SSF) ranged from 2 to 5 mm. Regression (linear/logistic) tested associations between MRTA and AIS (small ROIs), and CDA/constituent parameters (large ROIs). Skewness (SSF = 2 mm) was associated with AIS [regression coefficient (rc) 4.27, p = 0.02]. Of 120 large ROI analyses (for each MRI, MRTA feature and SSF), 15 were significant. Entropy (SSF = 2, 3 mm) and kurtosis (SSF = 3 mm) were associated with CDA (rc 0.9, 1.0, -0.45, p = 0.006-0.01). Entropy and mean (SSF = 2-4 mm) were associated with T2 signal [odds ratio (OR) 2.32-3.16, p = 0.02-0.004], [OR 1.22-1.28, p = 0.03-0.04]. MPP (SSF = 2 mm) was associated with mural thickness (OR 0.91, p = 0.04). Kurtosis (SSF = 3 mm), standard deviation (SSF = 5 mm) were associated with decreased T1 enhancement (OR 0.59, 0.42, p = 0.004, 0.007). MRTA features may be associated with CD activity. (orig.)

  5. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    Science.gov (United States)

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  6. MRI diagnosis of posterior fossa tumors

    International Nuclear Information System (INIS)

    Yamashita, Yasuyuki; Takahashi, Mutsumasa; Sakamoto, Yuuji; Kojima, Ryutarou; Bussaka, Hiromasa; Korogi, Yukunori

    1988-01-01

    Magnetic resonance images (MRI) of 58 patients with posterior fossa tumors were compared with computed tomography (CT). Spin echo (SE) technique and inversion recovery (IR) technique were obtained using 0.22 tesla resistive magnetic resonance unit. MRI was superior to CT in detecting the lesions and showing internal archtecture, hemorrhage, edema of the tumor and displacement of the normal brain. CT was superior to MRI in demonstrating calcification. MRI and CT were comparable in detecting erosions of the skull base, while MRI was superior to CT in showing erosions of the clivus. Most tumors showed hypointensity on T1 weighted images and hyperintensity on T2 weighted images. Meningioma showed equal or almost equal intensity to cerebral gray matter on both SE images. The boundary of intra-axial tumors was unclear in many cases without contrast enhancement using Gd-DTPA, while most extra-axial tumors showed clear margin surrounded by a thin band (rim). In 81.8 % of acoustic neurinomas, signal void rims were demonstrated on both SE images, and they were considered to be vessels around the tumor. The rims of meningioma, on the other hand, were hypointense on T1 weighted images and hyperintense on T2 weighted images. They were considered to be cerebrospinal fluid or capsule around the tumor. It has been concluded that MRI is the most important technique for diagnosis of posterior fossa tumors. (author)

  7. The corticospinal tract in amyotrophic lateral sclerosis: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, E.; Warmuth-Metz, M. [Department of Neuroradiology, University of Wuerzburg (Germany); Ochs, G.; Pelzl, A. [Department of Neurology, University of Wuerzburg, Wuerzburg (Germany)

    1998-02-01

    Cortical motor neurone loss and corticospinal tract (CST) degeneration are typical of amyotrophic lateral sclerosis (ALS). It is a matter of debate whether qualitative assessment of the CST by MRI is useful in the diagnosis. It is also an open question whether quantitative determination of the T2 relaxation times can improve its value. Signal intensity along the CST on 14 consecutive slices was assessed using arbitrary visual rating on double-echo T2-weighted and proton-density spin-echo images of 21 patients with ALS and 21 age- and sex-matched controls. T2 was determined quantitatively. On the T2-weighted images the patients` ratings did not differ from that of controls. The T2 of patients and controls showed no statistical difference in any slice. There was no correlation between T2 and patient age, duration of the disease, or predominant bulbar, lower or upper motor neurone signs. The only correlation between MRI findings and disease was on the proton-density images: all cases in which the CST was poorly seen were controls; a clearly high-signal CST was seen only in the patients. High conspicuity of the CST was thus specific but not sensitive for the diagnosis of ALS. T2-weighted images and measurement of T2 were not useful for diagnosis. (orig.) With 2 figs., 1 tab., 26 refs.

  8. MRI in neuro-Behcet's disease

    International Nuclear Information System (INIS)

    Tali, E.T.; Atilla, S.; Keskin, T.; Simonson, T.; Isik, S.; Yuh, W.T.C.

    1997-01-01

    Our purpose was to characterise specific MRI findings and to determine their value in neuro-Behcet's disease. We examined 17 patients (14 men, 3 women) with neuro-Behcet's disease using T1- and T2-weighted spin-echo images and contrast-enhanced images at 0.5 T. There were 13 patients (76.5 %) who had single or multiple lesions. Most of these were in the basal ganglia, brain stem or deep white matter region, giving high signal on T2-weighted images and isointense or low signal on T1-weighted images. In 3 cases (17.6 %) there was linear high signal along the posterior limb of the internal capsule on T2-weighted images. This was considered as a potential differentiating feature of neuro-Behcet's disease. Contrast-enhancement was seen in 17 lesions in 7 patients. (orig.). With 5 figs., 2 tabs

  9. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    International Nuclear Information System (INIS)

    Tuite, M.J.; Yandow, D.R.; DeSmet, A.A.; Orwin, J.F.; Quintana, F.A.

    1994-01-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2 * -weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2 * -weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  10. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Yandow, D R [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); DeSmet, A A [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Orwin, J F [Div. of Orthopedic Surgery, Univ. of Wisconsin, Madison, WI (United States); Quintana, F A [Dept. of Biostatistics, Univ. of Wisconsin, Madison, WI (United States)

    1994-10-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2{sup *}-weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2{sup *}-weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  11. Shoulder MRI after surgical treatment of instability

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, Martin [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Lang, Philipp [University of California San Francisco, Department of Radiology, 505 Pamassus Avenue, San Francisco, CA 94143 (United States); Wagner, Ulli [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Moeller, Frank [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Deimling, Urs van [University of Bonn, Department of Orthopedic Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany); Genant, H K [University of California San Francisco, Department of Radiology, 505 Pamassus Avenue, San Francisco, CA 94143 (United States); Schild, Hans H [University of Bonn, Department of Radiology, Sigmund-Freud-Strasse 25, 53105 Bonn (Germany)

    1999-04-01

    Objective: To analyze magnetic resonance imaging (MRI) findings of the shoulder after an instability operation. Materials and methods: Physical examinations, radiographs and MRI of 10 patients after anterior glenoid bone block insertion for ventral instability were compared. MRI included T{sub 1}-weighted spin-echo (TR=600, TE=20 ms) and T{sub 2}*-weighted gradient-echo sequences (TE=600, TE=18, Flip=30 deg.) in the axial, oblique-coronal and oblique-sagittal planes. Results: No patient suffered from recurrent subluxation. We found fusion of the bone block with the anterior glenoid in seven cases, dislocation of the bone block without contact to the glenoid in one case, and no visible bone block in two cases. On MRI, the bone block showed either signal intensity equivalent to fatty bone marrow (n=4) or was devoid of signal consistent with cortical bone or bone sclerosis (n=4). In all patients, a low signal intensity mass, 2-4 cm in diameter, was visible next to the glenoid insertion site. Conclusion: Insertion of a bone block onto the anterior glenoid induces formation of scar tissue, increasing the stability of the shoulder joint. This scar is well visible on MRI and forms independently of the behavior of the bone block itself. MRI is ideally suited for evaluating postoperative shoulder joints after bone-grafting procedures.

  12. Shoulder MRI after surgical treatment of instability

    International Nuclear Information System (INIS)

    Vahlensieck, Martin; Lang, Philipp; Wagner, Ulli; Moeller, Frank; Deimling, Urs van; Genant, H.K.; Schild, Hans H.

    1999-01-01

    Objective: To analyze magnetic resonance imaging (MRI) findings of the shoulder after an instability operation. Materials and methods: Physical examinations, radiographs and MRI of 10 patients after anterior glenoid bone block insertion for ventral instability were compared. MRI included T 1 -weighted spin-echo (TR=600, TE=20 ms) and T 2 *-weighted gradient-echo sequences (TE=600, TE=18, Flip=30 deg.) in the axial, oblique-coronal and oblique-sagittal planes. Results: No patient suffered from recurrent subluxation. We found fusion of the bone block with the anterior glenoid in seven cases, dislocation of the bone block without contact to the glenoid in one case, and no visible bone block in two cases. On MRI, the bone block showed either signal intensity equivalent to fatty bone marrow (n=4) or was devoid of signal consistent with cortical bone or bone sclerosis (n=4). In all patients, a low signal intensity mass, 2-4 cm in diameter, was visible next to the glenoid insertion site. Conclusion: Insertion of a bone block onto the anterior glenoid induces formation of scar tissue, increasing the stability of the shoulder joint. This scar is well visible on MRI and forms independently of the behavior of the bone block itself. MRI is ideally suited for evaluating postoperative shoulder joints after bone-grafting procedures

  13. Fat-Suppressed T2* Sequences for Routine 3.0-Tesla Lumbar Spine Magnetic Resonance Imaging: A Preliminary Report

    International Nuclear Information System (INIS)

    McKinney, A. M.; Gadani, S.; Palmer, C. S.; Vidarsson, L.

    2008-01-01

    Background: Clear depiction of the ligamentum flavum on routine lumbar magnetic resonance imaging (MRI) is essential in accurately describing the extent of degenerative disease. In routine, noncontrast evaluations, focal fatty deposition or hemangiomas can be difficult to distinguish from malignant foci on fast spin-echo (FSE) T2-weighted images. Purpose: To describe the use of T2* fast field echo (T2FFE) in combination with spectral presaturation inversion recovery (SPIR) fat suppression for noncontrast, routine lumbar spine outpatient MR imaging at 3.0 Tesla (3T). Material and Methods: An axial gradient echo (GE) T2FFE sequence was combined with SPIR fat suppression (T2FFE-SPIR), via a 3T Philips Intera (Philips Medical Systems, Best, The Netherlands) scanner, and added to the routine, noncontrast lumbar MRI examinations, which included sagittal FSE T1-weighted (T1WI), T2-weighted (T2WI), short-tau inversion recovery (STIR), and axial FSE T2WI. The sequence was performed in over 500 patients over a 1-year period, without intravenous contrast, and with slice thickness and planes of section identical to the axial FSE T1WI and T2WI images. The sequence typically lasted about 4.5-6 min. Results: The use of T2FFE-SPIR enabled visualization of the ligamentum flavum in degenerative disease, and the exclusion of focal fatty lesions on FSE T2WI. Other benefits included: the identification of malignant foci, the uncommon detection of hemorrhage, and the elimination of spurious flow voids. Several brief examples are provided to demonstrate the utility of this technique. Conclusion: The addition of T2FFE-SPIR to routine, noncontrast protocols in outpatients could provide further confidence in the visualization of the ligamentum flavum in degenerative disease, and can exclude malignancy in T2-bright areas of focal fatty marrow. Larger studies would be helpful to evaluate the accuracy of this technique versus FSE techniques in depicting degenerative, malignant, or inflammatory

  14. Fat-Suppressed T2 Sequences for Routine 3.0-Tesla Lumbar Spine Magnetic Resonance Imaging: A Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, A. M.; Gadani, S.; Palmer, C. S.; Vidarsson, L. (Dept. of Radiology, Hennepin County and Univ. of Minnesota Medical Centers, Minneapolis, MN (United States))

    2008-09-15

    Background: Clear depiction of the ligamentum flavum on routine lumbar magnetic resonance imaging (MRI) is essential in accurately describing the extent of degenerative disease. In routine, noncontrast evaluations, focal fatty deposition or hemangiomas can be difficult to distinguish from malignant foci on fast spin-echo (FSE) T2-weighted images. Purpose: To describe the use of T2 fast field echo (T2FFE) in combination with spectral presaturation inversion recovery (SPIR) fat suppression for noncontrast, routine lumbar spine outpatient MR imaging at 3.0 Tesla (3T). Material and Methods: An axial gradient echo (GE) T2FFE sequence was combined with SPIR fat suppression (T2FFE-SPIR), via a 3T Philips Intera (Philips Medical Systems, Best, The Netherlands) scanner, and added to the routine, noncontrast lumbar MRI examinations, which included sagittal FSE T1-weighted (T1WI), T2-weighted (T2WI), short-tau inversion recovery (STIR), and axial FSE T2WI. The sequence was performed in over 500 patients over a 1-year period, without intravenous contrast, and with slice thickness and planes of section identical to the axial FSE T1WI and T2WI images. The sequence typically lasted about 4.5-6 min. Results: The use of T2FFE-SPIR enabled visualization of the ligamentum flavum in degenerative disease, and the exclusion of focal fatty lesions on FSE T2WI. Other benefits included: the identification of malignant foci, the uncommon detection of hemorrhage, and the elimination of spurious flow voids. Several brief examples are provided to demonstrate the utility of this technique. Conclusion: The addition of T2FFE-SPIR to routine, noncontrast protocols in outpatients could provide further confidence in the visualization of the ligamentum flavum in degenerative disease, and can exclude malignancy in T2-bright areas of focal fatty marrow. Larger studies would be helpful to evaluate the accuracy of this technique versus FSE techniques in depicting degenerative, malignant, or inflammatory

  15. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    Science.gov (United States)

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  16. Magnetic resonance imaging of the cranial nerves in the posterior fossa: a comparative study of t2-weighted spin-echo sequences at 1.5 and 3.0 tesla.

    Science.gov (United States)

    Fischbach, F; Müller, M; Bruhn, H

    2008-04-01

    High-field magnetic resonance imaging (MRI) at 3.0 Tesla (T) is rapidly gaining clinical acceptance. Whether doubling of the field strength of 1.5T and the subsequent increase in signal-to-noise ratio (SNR) leads to a significant improvement of image quality is not automatically given. To evaluate the depiction of fine anatomic detail in the posterior fossa, focusing on brain nerves, on T2-weighted imaging, and to define the potential advantage of imaging at 3.0T versus 1.5T. In total, 10 brainstem nerve pairs of 12 volunteers were identified on T2-weighted MR images of 2- and 5-mm section thickness acquired at 1.5T and 3.0T. The MR images were compared for each subject at both field strengths by three independent readers who rated image quality according to depiction of anatomic detail and contrast by using a rating scale. In general, MR images at 3.0T were considered more conspicuous and less noisy than images at 1.5T. The SNR value measured was almost doubled. With respect to structural identification and contrast according to the rating scale, observer scores were significantly improved both for standard imaging with 5-mm sections and high-resolution imaging with 2-mm sections at 3.0T. Direct comparison revealed a significant increase for evaluated image quality criteria and the number of nerves detected. The comparison revealed a clear advantage in favor of T2-weighted MRI at 3.0T vs. 1.5T in depicting the roots and course of brain nerves in the posterior fossa.

  17. High-intensity facial nerve lesions on T2-weighted images in chronic persistent facial nerve palsy

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, T. [Dept. of Radiology, Sendai City Hospital, Sendai (Japan); Dept. of Radiology, Tottori Univ. (Japan); Ishii, K. [Dept. of Radiology, Sendai City Hospital, Sendai (Japan); Okitsu, T. [Dept. of Otolaryngology, Sendai City Hospital (Japan); Ogawa, T. [Dept. of Radiology, Tottori Univ. (Japan); Okudera, T. [Dept. of Radiology, Research Inst. of Brain and Blood Vessels-Akita, Akita (Japan)

    2001-05-01

    Our aim was to estimate the value of MRI in detecting irreversibly paralysed facial nerves. We examined 95 consecutive patients with a facial nerve palsy (14 with a persistent palsy, and 81 with good recovery), using a 1.0 T unit, with T2-weighted and contrast-enhanced T1-weighted images. The geniculate ganglion and tympanic segment had gave high signal on T2-weighted images in the chronic stage of persistent palsy, but not in acute palsy. The enhancement pattern of the facial nerve in the chronic persistent facial nerve palsy is similar to that in the acute palsy with good recovery. These findings suggest that T2-weighted MRI can be used to show severely damaged facial nerves. (orig.)

  18. Value of multiparametric prostate MRI of the peripheral zone

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Anja M.; Michaely, Henrik J.; Schoenberg, Stefan O.; Dinter, Dietmar J. [University Medical Center Mannheim, Mannheim (Germany). Dept. of Clinical Radiology and Nuclear Medicine; Lemke, Andreas [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Breitinger, Lutz [Privatpraxis fuer Urologie Dr. med. Lutz Breitinger, Mannheim (Germany); Wenz, Frederik [University Medical Center Mannheim, Mannheim (Germany). Dept. of Radiation Oncology; Marx, Alexander [University Hospital Mannheim, Mannheim (Germany). Dept. of Pathology

    2011-07-01

    Rationale and Objectives: MRI of the prostate offers the possibility to localize and stage prostate cancer and may improve detection of disease. Currently, T2-weighted images and spectroscopy are the most commonly used MRI techniques. To assess the value of prostate MRI and its different modalities in the process of diagnosis, the currently available MRI techniques were compared. Materials and Methods: 16 patients were examined on a 1.5 T MR system. All patients underwent the same MR protocol using an endorectal coil: T2-weighted triplanar turbo-spin-echo (TSE), axial echo-planar diffusion-weighted imaging (DWI), 3D chemical-shift imaging MR spectroscopy (MRS) and axial dynamic-contrast-enhanced TurboFLASH (DCE). Parametric maps of the choline+creatine/citrate ratio (CC-CR), apparent diffusion coefficient (ADC) and plasma flow/mean transit time (PF/MTT) were calculated. Additionally, average time for reading and scanning were evaluated. As reference, biopsy results were used. Results: Sensitivity/specificity were 50.0-85.7%/44.4-72.2% for the T2 weighted images, 78.6-100.0%/38.9-55.6% for the ADC maps, 71.4-85.7%/44.4-55.6% for the PF/MTT maps and 64.3-78.6%/50.0-77.8% for the CC-CR. Average scan and reading time were 8:46/1:54 min for T2, 1:28/3:17 min for DWI, 8:41/2:12 min for DCE and 11:36/3:47 for spectroscopy. Conclusion: We found no significant differences in accuracy between the modalities. We observed DWI to be advantageous in examination and reading compared to DCE and MRS, therefore it might be the preferred modality when a shortened protocol is needed. (orig.)

  19. MRI of the liver with the new contrast medium Gd-BOPTA

    International Nuclear Information System (INIS)

    Vogl, T.J.; Pegios, W.; Balzer, J.; Lissner, J.; Pirovano, G.

    1992-01-01

    A phase 1 study on 8 normals has been carried out to determine the effectiveness and safety during MRI of a new hepatobiliary contrast medium Gd-BOPTA for causing enhancement of the upper abdominal organs. Gradient echo sequences (flash), T 1 and T 2 -weighted spin echo sequences and turbo-flash sequences were used. The contrast medium was given as a single infusion in various concentrations (0.005, 0.05, 0.1 and 0.2 mmol/kg body weight). Optimal contrast of liver parenchyma was obtained with a dose of 0.05-0.1 mmol/kg body weight, resulting in contrast increase of 149.1% during gradient echo sequences and 107.8% during T 1 spin echo sequences. In general, the increased contrast lasted for about two hours. Because of the biliary and renal excretion there was an enormous increase in signal intensity of the bile ducts and a significant increase in the kidneys and ureters. The results of the first in-vivo-trial of Gd-BOPTA encourages the performance of further clinical studies of this new hepatobiliary contrast medium. (orig.) [de

  20. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    Science.gov (United States)

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  1. Usefulness of MRI in evaluation of hormonal therapy for the ovarian chocolate cysts

    Energy Technology Data Exchange (ETDEWEB)

    Sugimura, Kazuro; Ishida, Tetsuya; Takemori, Masayuki; Kono, Michio; Yamasaki, Katsuhito

    1988-09-01

    We evaluated the diagnostic capability of MRI in ovarian chocolate cysts treated by Danazol (analogue of testosterone). Both inversion recovery as T1-weighted image and long TE and TR spin echo as T2-weighted image were performed before and during hormonal therapy. Temporal change of signal intensity and size was evaluated in three ovarian chocolate cysts (stage II: 2 cases, stage III: 1 case by Beecham classification, 1966) using the 0.15-T MR system. The high intense signal from all of the cysts was seen on both T1 and T2 weighted images before treatment. There was marked decrease in size of the chocolate cysts during hormonal therapy, and they were of considerably lower signal intensity than initially on T2-weighted image. We concluded that MRI was useful to evaluate hormonal therapy for ovarian chocolate cysts.

  2. T1-weighted MRI as a substitute to CT for refocusing planning in MR-guided focused ultrasound

    International Nuclear Information System (INIS)

    Wintermark, Max; Sumer, Suna; Lau, Benison; Cupino, Alan; Tustison, Nicholas J; Demartini, Nicholas; Elias, William J; Kassell, Neal; Patrie, James T; Xin, Wenjun; Eames, Matt; Snell, John; Hananel, Arik; Aubry, Jean-Francois

    2014-01-01

    Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called ‘virtual CT’ to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland–Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (−0.22–0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the

  3. SPAMM, cine phase contrast imaging and fast spin-echo T2-weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow

    International Nuclear Information System (INIS)

    Connor, S.E.J.; O'Gorman, R.; Summers, P.; Simmons, A.; Moore, E.M.; Chandler, C.; Jarosz, J.M.

    2001-01-01

    AIM: To compare the qualitative assessment of cerebrospinal fluid (CSF) flow using a SPAMM (spatial modulation of magnetization) technique with cine phase contrast images (cine PC) and fast spin echo (FSE) T2-weighted images. MATERIALS AND METHODS: SPAMM, PC and T2-weighted sequences were performed on 22 occasions in 19 patients. Eleven of the studies were performed following a neuroendoscopic third ventriculostomy (NTV), and in these cases, the success of the NTV was determined by clinical follow-up. Two observers used consensus to grade the presence of CSF flow at nine different sites for each study. RESULTS: At 14 of the 178 matched sites, which could be assessed by both SPAMM and cine PC, SPAMM CSF flow grade was higher than that of cine PC. At a further 14/178 matched sites, the cine PC grade was higher than that of SPAMM. There was definite CSF flow at 113/182 (62%) of all the cine PC sites assessed, and 110/181 (61%) of all SPAMM sites assessed whilst 108/198 (54%) of FSE T2-weighted image sites demonstrated flow voids. Cine PC grades were higher than SPAMM at the cerebral aqueduct (P < 0.05, Wilcoxon sign rank test). Definite CSF flow within the anterior third ventricle was present in 4/5 (SPAMM) and 3/5 (cine PC) successful NTVs, 0/2 (SPAMM and cine PC) unsuccessful NTVs and 1/10 (SPAMM and cine PC) patients without NTV. CONCLUSION: SPAMM provides a comparable assessment of intracranial CSF flow to that of cine phase contrast imaging at all CSF sites except the cerebral aqueduct. Connor, S.E.J. et al. (2001)

  4. Closed-form expressions for flip angle variation that maximize total signal in T1-weighted rapid gradient echo MRI.

    Science.gov (United States)

    Drobnitzky, Matthias; Klose, Uwe

    2017-03-01

    Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing

  5. Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo dixon versus conventional fat-suppression techniques.

    Science.gov (United States)

    Le, Yuan; Kipfer, Hal D; Majidi, Shadie S; Holz, Stephanie; Lin, Chen

    2014-09-01

    The purpose of this article is to evaluate and compare the artifacts caused by metal implants in breast MR images acquired with dual-echo Dixon and two conventional fat-suppression techniques. Two types of biopsy markers were embedded into a uniform fat-water emulsion. T1-weighted gradient-echo images were acquired on a clinical 3-T MRI scanner with three different fat-suppression techniques-conventional or quick fat saturation, spectrally selective adiabatic inversion recovery (SPAIR), and dual-echo Dixon-and the 3D volumes of artifacts were measured. Among the subjects of a clinical breast MRI study using the same scanner, five patients were found to have one or more metal implants. The artifacts in Dixon and SPAIR fat-suppressed images were evaluated by three radiologists, and the results were compared with those of the phantom study. In the phantom study, the artifacts appeared as interleaved bright and dark rings on SPAIR and quick-fat-saturation images, whereas they appeared as dark regions with a thin bright rim on Dixon images. The artifacts imaged with the Dixon technique had the smallest total volume. However, the reviewers found larger artifact diameters on patient images using the Dixon sequence because only the central region was recognized as an artifact on the SPAIR images. Metal implants introduce artifacts of different types and sizes, according to the different fat-suppression techniques used. The dual-echo Dixon technique produces a larger central void, allowing the implant to be easily identified, but presents a smaller overall artifact volume by obscuring less area in the image, according to a quantitative phantom study.

  6. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload.

    Science.gov (United States)

    Henninger, B; Kremser, C; Rauch, S; Eder, R; Zoller, H; Finkenstedt, A; Michaely, H J; Schocke, M

    2012-11-01

    To evaluate MRI using T1 and T2* mapping sequences in patients with suspected hepatic iron overload (HIO). Twenty-five consecutive patients with clinically suspected HIO were retrospectively studied. All underwent MRI and liver biopsy. For the quantification of liver T2* values we used a fat-saturated multi-echo gradient echo sequence with 12 echoes (TR = 200 ms, TE = 0.99 ms +  n × 1.41 ms, flip angle 20°). T1 values were obtained using a fast T1 mapping sequence based on an inversion recovery snapshot FLASH sequence. Parameter maps were analysed using regions of interest. ROC analysis calculated cut-off points at 10.07 ms and 15.47 ms for T2* in the determination of HIO with accuracy 88 %/88 %, sensitivity 84 %/89.5 % and specificity 100 %/83 %. MRI correctly classified 20 patients (80 %). All patients with HIO only had decreased T1 and T2* relaxation times. There was a significant difference in T1 between patients with HIO only and patients with HIO and steatohepatitis (P = 0.018). MRI-based T2* relaxation diagnoses HIO very accurately, even at low iron concentrations. Important additional information may be obtained by the combination of T1 and T2* mapping. It is a rapid, non-invasive, accurate and reproducible technique for validating the evidence of even low hepatic iron concentrations. • Hepatic iron overload causes fibrosis, cirrhosis and increases hepatocellular carcinoma risk. • MRI detects iron because of the field heterogeneity generated by haemosiderin. • T2* relaxation is very accurate in diagnosing hepatic iron overload. • Additional information may be obtained by T1 and T2* mapping.

  7. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T

    International Nuclear Information System (INIS)

    Morelli, John; Porter, David; Ai, Fei

    2013-01-01

    Background: Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. Purpose: To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Material and Methods: Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. Results: SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P -4 at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Conclusion: Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain

  8. Epiphyseal dysplasia of the hip. Diagnosis and differential diagnosis with MRI. Epiphysaere Dysplasie des Hueftgelenks, Diagnostik und Differentialdiagnostik mit der MRT

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, J. (Univ. Mainz, Orthopaedische Klinik und Poliklinik (Germany)); Just, M. (Univ. Mainz, Klinik mit Poliklinik fuer Radiologie (Germany))

    1992-07-01

    Sixteen hip joints of eight patients with multiple epiphyseal dysplasia were examined by clinical investigation, plain films and by magnetic resonance imaging (MRI), using T[sub 1]- and T[sub 2]-weighted images and gradient echoes. MRI is useful in demonstrating the congruity of the joint, in the changes of the epiphyseal signal intensities and the epiphyseal line. Individual changes of the signal intensity patterns on T[sub 1]- and T[sub 2]-weighted scans are described. Although MRI exhibits a variety of patterns in different patients, a clearcut differentiation from Legg-Calve-Perthes' disease is possible. (orig.).

  9. Is There an Additional Value of 11C-Choline PET-CT to T2-weighted