WorldWideScience

Sample records for echelle gratings

  1. High Efficiency Low Scatter Echelle Grating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high efficiency low scatter echelle grating will be developed using a novel technique of multiple diamond shaving cuts. The grating will have mirror surfaces on...

  2. Groove shape characteristics of echelle gratings with high diffraction efficiency

    Science.gov (United States)

    Zhang, Shanwen; Mi, Xiaotao; Zhang, Qian; Jirigalantu; Feng, Shulong; Yu, Haili; Qi, Xiangdong

    2017-03-01

    The groove shape characteristics of echelle gratings with high diffraction efficiency are investigated. Using the coordinate transformation method (C method), an r-2 aluminum echelle with 79 grooves/mm is optimized through rigorous numerical simulations and shows high diffraction efficiency of 76-81% in the high Littrow orders. A grating is found to be essentially an echelle if it contains a series of reflective facets with a specific tilt angle that are located far from the nonworking facet of the grating and have a deep groove depth; any groove shape that meets these conditions can be called an echelle grating. The underlying mechanism is analyzed phenomenologically using electromagnetic theory. The universal model proposed here, which represents a new cognitive understanding of the concept of the echelle, is ready for use in manufacturing applications and offers a new perspective for the fabrication of these gratings.

  3. An echelle diffraction grating for imaging spectrometer

    Science.gov (United States)

    Yang, Minyue; Wang, Han; Li, Mingyu; He, Jian-Jun

    2016-09-01

    We demonstrate an echelle diffraction grating (EDG) of 17 input waveguides and 33 output waveguides. For each input waveguide, only 17 of 33 output waveguides are used, receiving light ranging from 1520 nm to 1600 nm wavelength. The channel spacing of the EDG is 5 nm, with loss of -6dB and crosstalk of -17dB for center input waveguide and -15dB for edge input waveguides. Based on the 3 μm SOI platform the device is polarization insensitive. As a simple version of EDG spectrometer it is designed to be a part of the on-chip spectroscopic system of the push-broom scanning imaging spectrometer. The whole on-chip spectrometer consists of an optical on-off switch array, a multi-input EDG and detector array. With the help of on-off switch array the multiple input waveguides of the EDG spectrometer could work in a time division multiplexed fashion. Since the switch can scan very fast (less than 10 microseconds), the imaging spectrometer can be operated in push-broom mode. Due to the CMOS compatibility, the 17_channel EDG scales 2.5×3 mm2. The full version of EDG spectrometer is designed to have 129 input waveguides and 257 output waveguides (129 output channel for each input waveguide), working in wavelength ranging from 1250 nm to 1750 nm, and had similar blazed facet size with the 17_channel one, which means similar fabrication tolerance in grating facets. The waveguide EDG based imaging spectrometer can provide a low-cost solution for remote sensing on unmanned aerial vehicles, with advantages of small size, light weight, vibration-proof, and high scalability.

  4. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    Science.gov (United States)

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  5. Determination of chemical concentration with a 2 dimensional CCD array in the Echelle grating spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Stevens, C.G.

    1994-11-15

    The Echelle grating spectrometer (EGS) uses a stepped Echelle grating, prisms and a folded light path to miniaturize an infrared spectrometer. Light enters the system through a slit and is spread out along Y by a prism. This light then strikes the grating and is diffracted out along X. This spreading results in a superposition of spectral orders since the grating has a high spectral range. These orders are then separated by again passing through a prism. The end result of a measurement is a 2 dimensional image which contains the folded spectrum of the region under investigation. The data lies in bands from top to bottom, for example, with wavenumber increments as small as 0.1 lying from left to right such that the right end of band N is the same as the left end of band N+1. This is the image which must be analyzed.

  6. Facet-rotated echelle grating for cyclic wavelength router with uniform loss and flat passband.

    Science.gov (United States)

    Mu, Ge; Huang, Pingli; Wu, Lin; He, Jian-Jun

    2015-09-01

    A novel method for designing a cyclic echelle grating wavelength router with uniform loss and flat passband is proposed and experimentally demonstrated. A 4×4 cyclic wavelength router with a channel spacing of 400 GHz at 1550 nm wavelength band is designed and fabricated in InP. Measurement results show that the loss of 16 input-output combinations varies from 9 to 19.3 dB in a conventional design, with a nonuniformity of 10.3 dB, while the 1-dB spectral bandwidth is only 0.3 nm. By rotating angles of grating facets according to an appropriately designed distribution function, the loss nonuniformity is reduced to 1.5 dB, and a flat-top spectral response with 1 dB bandwidth of 1.0 nm is achieved simultaneously.

  7. Echelle grating for silicon photonics applications: integration of electron beam lithography in the process flow and first results

    Science.gov (United States)

    Kaschel, Mathias; Letzkus, Florian; Butschke, Jörg; Skwierawski, Piotr; Schneider, Marc; Weber, Marc

    2016-05-01

    We present the technology steps to integrate an Echelle grating in the process flow of silicon-organic hybrid (SOH) modulators or related active devices. The CMOS-compatible process flow on SOI substrates uses a mix of optical i-line lithography and electron beam lithography (EBL). High speed optical data communication depends on wavelength divisions multiplexing and de-multiplexing devices like Echelle gratings. The minimum feature sizes vary from device to device and reach down to 60 nm inside a modulator, while the total area of a single Echelle grating is up to several mm2 of unprocessed silicon. Resist patterning using a variable shape beam electron beam pattern generator allows high resolution. An oxide hard mask is deposited, patterns are structured threefold by EBL and are later transferred to the silicon. We demonstrate a 9-channel multiplexer featuring a 2 dB on-chip loss and an adjacent channel crosstalk better than -22 dB. Additionally a 45-channel Echelle multiplexer is presented with 5 dB on chip loss and a channel crosstalk better than -12 dB. The devices cover an on-chip area of only 0.08 mm2 and 0.5 mm2 with a wavelength spacing of 10.5 nm and 2.0 nm, respectively.

  8. The coronal line regions of planetary nebulae NGC6302 and NGC6537 3-13 $\\mu$m grating and echelle spectroscopy

    CERN Document Server

    Casassus, S; Barlow, M J; Casassus, Simon; Roche, Patrick F.; Barlow, Mike J.

    1999-01-01

    We report on advances in the study of the cores of NGC6302 and NGC6537 using infrared grating and echelle spectroscopy. In NGC6302, emission lines from species spanning a large range of ionization potential, and in particular [SiIX]3.934um, are interpreted using photoionization models (including CLOUDY), which allow us to reestimate the central star's temperature to be about 250000K. All of the detected lines are consistent with this value, except for [AlV] and [AlVI]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154eV). A similar depletion pattern is observed in NGC6537. Echelle spectroscopy of IR coronal ions in NGC6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (< 22km/s FWHM), with no evidence of the broad wings found in optical lines from species with simila...

  9. Immersion echelle spectrograph

    Science.gov (United States)

    Stevens, Charles G.; Thomas, Norman L.

    2000-01-01

    A small spectrograph containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10.sup.-5 cm.sup.2 sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  10. WES - Weihai Echelle Spectrograph

    CERN Document Server

    Gao, Dong-Yang; Cao, Chen; Hu, Shao-Ming; Wittenmyer, Robert A; Hu, Zhong-Wen; Grupp, Frank; Kellermann, Hanna; Li, Kai; Guo, Di-Fu

    2016-01-01

    The Weihai Echelle Spectrograph (WES) is the first fiber-fed echelle spectrograph for astronomical observation in China. It is primarily used for chemical abundance and asteroseismology studies of nearby bright stars, as well as radial velocity detections for exoplanets. The optical design of WES is based on the widely demonstrated and well-established white-pupil concept. We describe the WES in detail and present some examples of its performance. A single exposure echelle image covers the spectral region 371-1,100 nm in 107 spectral orders over the rectangular CCD. The spectral resolution $R=\\lambda/\\Delta\\lambda$ changes from 40,600 to 57,000 through adjusting the entrance slit width from full to 2.2 pixels sampling at the fiber-exit. The limiting magnitude scales to $V=8$ with a signal-to-noise ratio (SNR) of more than 100 in $V$ for an hour exposure, at the spectral resolution R$\\approx$40,000 in the median seeing of 1.7$^{\\prime\\prime}$ at Weihai Observatory (WHO) for the 1-meter telescope. The radial ve...

  11. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    CERN Document Server

    Hoadley, Keri; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-01-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power $>$ 100,000 over the band pass 1000 $-$ 1600 {\\AA}. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, ...

  12. Optical design of echelle optical splitting system%中阶梯光栅分光光路的设计

    Institute of Scientific and Technical Information of China (English)

    刘海涛; 黄元申; 李柏承; 倪争技

    2013-01-01

    为了实现更宽波段范围内的全谱直读并获得较高的分辨率,对中阶梯光栅光谱仪的分光系统进行了研究.简述了中阶梯光栅与中阶梯光栅光谱仪的基本原理,分析了中阶梯光谱仪和普通光谱仪的区别,详细论述了一种利用中阶梯光栅作为主要分光元件,棱镜作为交叉色散原件的中阶梯光栅分光光路的设计方法,并最终在探测面上得到了可探测分析的二维谱图.通过对设计过程的详细论述,可以为今后从事中阶梯光栅光谱仪光学设计的研究者提供参考.%In order to obtain high resolution spectra in a wider range,research on the spectrophotometric system of echelle spectrometers was conducted.The general theories of echelle gratings and echelle spectrometers were introduced briefly,the difference between the echelle spectrometer and ordinary spectral instrument was analyzed,the optical path of echelle beam splitter was designed by using principles of optical imaging,an echelle grating was used as the main spectral elementa and a prism was used to separate the overlapped diffraction orders as a cross disperser,and a two-dimensional spectrum was obtained at the detection surface.It is wished that the detailed dissertation of the designing is useful for the research of the echelle grating spectrograph.

  13. A set of innovative immersed grating based spectrometer designs for METIS

    NARCIS (Netherlands)

    Agócs, T.; Navarro, R.; Venema, L.; Amerongen, A.H. van; Tol, P.J.J.; Brug, H. van; Brandl, B.R.; Molster, F.; Todd, S.

    2014-01-01

    We present innovative, immersed grating based optical designs for the SMO (Spectrograph Main Optics) module of the Mid-infrared E-ELT Imager and Spectrograph, METIS. The immersed grating allows a significant reduction of SMO volume compared to conventional echelle grating designs, because the diffra

  14. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  15. PEPSI: The high-resolution echelle spectrograph and polarimeter for the Large Binocular Telescope

    CERN Document Server

    Strassmeier, K G; Järvinen, A; Weber, M; Woche, M; Barnes, S I; Bauer, S -M; Beckert, E; Bittner, W; Bredthauer, R; Carroll, T A; Denker, C; Dionies, F; DiVarano, I; Döscher, D; Fechner, T; Feuerstein, D; Granzer, T; Hahn, T; Harnisch, G; Hofmann, A; Lesser, M; Paschke, J; Pankratow, S; Plank, V; Plüschke, D; Popow, E; Sablowski, D; Storm, J

    2015-01-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{\\mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=...

  16. High Resolution Stellar Spectroscopy with VBT Echelle Spectrometer

    Indian Academy of Sciences (India)

    N. Kameswara Rao; S. Sriram; K. Jayakumar; F. Gabriel

    2005-06-01

    The optical design and performance of the recently commissioned fiber fed echelle spectrometer of 2.34 meter Vainu Bappu Telescope are described. The use of it for stellar spectroscopic studies is discussed.

  17. NRES: The Network of Robotic Echelle Spectrographs

    Science.gov (United States)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.

    2017-06-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.

  18. CERES: Collection of Extraction Routines for Echelle Spectra

    Science.gov (United States)

    Brahm, Rafael; Jordán, Andrés; Espinoza, Néstor

    2016-10-01

    The Collection of Extraction Routines for Echelle Spectra (CERES) constructs automated pipelines for the reduction, extraction, and analysis of echelle spectrograph data. This modular code includes tools for handling the different steps of the processing: CCD reductions, tracing of the echelle orders, optimal and simple extraction, computation of the wave-length solution, estimation of radial velocities, and rough and fast estimation of the atmospheric parameters. The standard output of pipelines constructed with CERES is a FITS cube with the optimally extracted, wavelength calibrated and instrumental drift-corrected spectrum for each of the science images. Additionally, CERES includes routines for the computation of precise radial velocities and bisector spans via the cross-correlation method, and an automated algorithm to obtain an estimate of the atmospheric parameters of the observed star.

  19. CERES: A Set of Automated Reduction Routines for Echelle Spectra

    CERN Document Server

    Brahm, Rafael; Espinoza, Néstor

    2016-01-01

    We present the Collection of Extraction Routines for Echelle Spectra (CERES). These routines were developed for the construction of automated pipelines for the reduction, extraction and analysis of spectra acquired with different instruments, allowing the obtention of homogeneous and standardised results. This modular code includes tools for handling the different steps of the processing: CCD reductions, tracing of the echelle orders, optimal and simple extraction, computation of the wavelength solution, estimation of radial velocities, and rough and fast estimation of the atmospheric parameters. Currently, CERES has been used to develop automated pipelines for eleven different spectrographs, namely CORALIE, FEROS, HARPS, PUCHEROS, FIDEOS, CAFE, DuPont/Echelle, Magellan/Mike, Keck/HIRES, Magellan/PFS and APO/ARCES, but the routines can be easily used in order to deal with data coming from other spectrographs. We show the high precision in radial velocity that CERES achieves for some of these instruments and w...

  20. Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study

    CERN Document Server

    Chanumolu, Anantha; Thirupathi, Sivarani

    2015-01-01

    We present a modelling scheme that predicts the centroids of spectral line features for a high resolution Echelle spectrograph to a high accuracy. Towards this, a computing scheme is used, whereby any astronomical spectrograph can be modelled and controlled without recourse to a ray tracing program. The computations are based on paraxial ray trace and exact corrections added for certain surface types and Buchdahl aberration coefficients for complex modules. The resultant chain of paraxial ray traces and corrections for all relevant components is used to calculate the location of any spectral line on the detector under all normal operating conditions with a high degree of certainty. This will allow a semi-autonomous control using simple in-house, programming modules. The scheme is simple enough to be implemented even in a spreadsheet or in any scripting language. Such a model along with an optimization routine can represent the real time behaviour of the instrument. We present here a case study for Hanle Echel...

  1. CERES: A Set of Automated Routines for Echelle Spectra

    Science.gov (United States)

    Brahm, Rafael; Jordán, Andrés; Espinoza, Néstor

    2017-03-01

    We present the Collection of Elemental Routines for Echelle Spectra (CERES). These routines were developed for the construction of automated pipelines for the reduction, extraction, and analysis of spectra acquired with different instruments, allowing the obtention of homogeneous and standardized results. This modular code includes tools for handling the different steps of the processing: CCD image reductions; identification and tracing of the echelle orders; optimal and rectangular extraction; computation of the wavelength solution; estimation of radial velocities; and rough and fast estimation of the atmospheric parameters. Currently, CERES has been used to develop automated pipelines for 13 different spectrographs, namely CORALIE, FEROS, HARPS, ESPaDOnS, FIES, PUCHEROS, FIDEOS, CAFE, DuPont/Echelle, Magellan/Mike, Keck/HIRES, Magellan/PFS, and APO/ARCES, but the routines can be easily used to deal with data coming from other spectrographs. We show the high precision in radial velocity that CERES achieves for some of these instruments, and we briefly summarize some results that have already been obtained using the CERES pipelines.

  2. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong, E-mail: huang@isas.de; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV–VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions. - Highlights: • Echelle spectrometer with a full frame CCD array detector • High and variable spectral resolution from λ/Δλ of 55,000 to 95,000 • Laser-driven continuum light source

  3. NEWS: the near-infrared Echelle for wideband spectroscopy

    Science.gov (United States)

    Veyette, Mark J.; Muirhead, Philip S.; Hall, Zachary J.; Taylor, Brian; Ye, Jimmy

    2016-08-01

    We present an updated optical and mechanical design of NEWS: the Near-infrared Echelle for Wide-band Spectroscopy (formerly called HiJaK: the High-resolution J, H and K spectrometer), a compact, high-resolution, near-infrared spectrometer for 5-meter class telescopes. NEWS provides a spectral resolution of 60,000 and covers the full 0.8-2.5 μm range in 5 modes. We adopt a compact, lightweight, monolithic design and have developed NEWS to be mounted to the instrument cube at the Cassegrain focus of the new 4.3-meter Discovery Channel Telescope.

  4. NEWS: the near-infrared Echelle for wideband spectroscopy

    CERN Document Server

    Veyette, Mark; Hall, Zachary; Taylor, Brian; Ye, Jimmy

    2016-01-01

    We present an updated optical and mechanical design of NEWS: the Near-infrared Echelle for Wide-band Spectroscopy (formerly called HiJaK: the High-resolution J, H and K spectrometer), a compact, high-resolution, near-infrared spectrometer for 5-meter class telescopes. NEWS provides a spectral resolution of 60,000 and covers the full 0.8-2.5 micron range in 5 modes. We adopt a compact, lightweight, monolithic design and developed NEWS to be mounted to the instrument cube at the Cassegrain focus of the the new 4.3-meter Discovery Channel Telescope.

  5. CAFE: Calar Alto Fiber-fed Echelle spectrograph

    CERN Document Server

    Aceituno, J; Grupp, F; Lillo, J; Hernan-Obispo, M; Benitez, D; Montoya, L M; Thiele, U; Pedraz, S; Barrado, D; Dreizler, S; Bean, J

    2013-01-01

    We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new instrument built at the Centro Astronomico Hispano Alem\\'an (CAHA). CAFE is a single fiber, high-resolution ($R\\sim$70000) spectrograph, covering the wavelength range between 3650-9800\\AA. It was built on the basis of the common design for Echelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to $V\\sim$13-14 mag with a precision as good as a few tens of $m s^{-1}$. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, so the wavelentgth coverage; no filter wheel, one slit and so on, with a particular care taken in the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the red...

  6. Design and Construction of VUES: the Vilnius University Echelle Spectrograph

    CERN Document Server

    Jurgenson, Colby; McCracken, Tyler; Sawyer, David; Szymkowiak, Andrew; Giguere, Matt; Santoro, Fernando; Muller, Gary

    2016-01-01

    In February of 2014 the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R = 60,000) spectrograph for the 1.65-meter telescope at the Moletai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400 to 880 nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the ...

  7. A set of innovative immersed grating based spectrometer designs for METIS

    Science.gov (United States)

    Agócs, Tibor; Navarro, Ramon; Venema, Lars; van Amerongen, Aaldert H.; Tol, Paul J. J.; van Brug, Hedser; Brandl, Bernhard R.; Molster, Frank; Todd, Stephen

    2014-07-01

    We present innovative, immersed grating based optical designs for the SMO (Spectrograph Main Optics) module of the Mid-infrared E-ELT Imager and Spectrograph, METIS. The immersed grating allows a significant reduction of SMO volume compared to conventional echelle grating designs, because the diffraction takes place in high refractive index silicon. Additionally, using novel optimization techniques and technical solutions in silicon micromachining offered by the semiconductor industry, further improvements can be achieved. We show optical architectures based on compact, double-pass Three Mirror Anastigmat (TMA) designs, which appear advantageous in terms of one or several of the following: optical performance, reduction of volume, ease of manufacturing and testing. We explore optical designs, where the emphasis is put on manufacturability and we investigate optical solutions, where the ultimate goal is the highest possible optical performance. These novel, silicon immersed grating based design concepts are applicable for future earth and space based spectrometers.

  8. Multilayer coated gratings for phase-contrast computed tomography (CT)

    Science.gov (United States)

    Marton, Zsolt; Bhandari, Harish B.; Wen, Harold H.; Nagarkar, Vivek V.

    2014-03-01

    By using the principle of grating interferometry, X-ray phase contrast imaging can now be performed with incoherent radiation from standard X-ray tube. This approach is in stark contrast with imaging methods using coherent synchrotron X-ray sources or micro-focus sources to improve contrast. The gratings interferometer imaging technique is capable of measuring the phase shift of hard X-rays travelling through a sample, which greatly enhances the contrast of low absorbing specimen compared to conventional amplitude contrast images. The key components in this approach are the gratings which consists of alternating layers of high and low Z (atomic number) materials fabricated with high aspect ratios. Here we report on a novel method of fabricating the grating structures using the technique of electron-beam (ebeam) thin film deposition. Alternating layers of silicon (Z=14) and tungsten (Z=74) were deposited, each measuring 100 nm each, on a specially designed echelle substrate, which resulted in an aspect ratio of ~100:1. Fabrication parameters related to the thin film deposition such as geometry, directionality, film adhesion, stress and the resulting scanning electron micrographs will be discussed in detail. Using e-beam method large-area gratings with precise multilayer coating thicknesses can be fabricated economically circumventing the expensive lithography steps.

  9. Materials and Fabrication Issues for Large Machined Germanium Immersion Gratings

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, P J; Davis, P J; Little, S L; Hale, L C

    2006-05-22

    LLNL has successfully fabricated small (1.5 cm{sup 2} area) germanium immersion gratings. We studied the feasibility of producing a large germanium immersion grating by means of single point diamond flycutting. Our baseline design is a 63.4o blaze echelle with a 6 cm beam diameter. Birefringence and refractive index inhomogeneity due to stresses produced by the crystal growth process are of concern. Careful selection of the grating blank and possibly additional annealing to relieve stress will be required. The Large Optics Diamond Turning Machine (LODTM) at LLNL is a good choice for the fabrication. It can handle parts up to 1.5 meter in diameter and 0.5 meter in length and is capable of a surface figure accuracy of better than 28 nm rms. We will describe the machine modifications and the machining process for a large grating. A next generation machine, the Precision Optical Grinder and Lathe (POGAL), currently under development has tighter specifications and could produce large gratings with higher precision.

  10. Current Calibration Efforts and Performance of the HST Space Telescope Imaging Spectrograph: Echelle Flux Calibration, the BAR5 Occulter, and Lamp Lifetimes

    Science.gov (United States)

    Monroe, TalaWanda R.; Aloisi, Alessandra; Debes, John H.; Jedrzejewski, Robert I.; Lockwood, Sean A.; Peeples, Molly S.; Proffitt, Charles R.; Riley, Allyssa; Walborn, Nolan R.

    2016-06-01

    The variety of operating modes of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) continues to allow STIS users to obtain unique, high quality observations and cutting-edge results 19 years after its installation on HST. STIS is currently the only instrument available to the astronomy community that allows high spectral and spatial resolution spectroscopy in the FUV and NUV, including echelle modes. STIS also supports solar-blind imaging in the FUV. In the optical, STIS provides long-slit, first-order spectra that take advantage of HST's superb spatial resolution, as well as several unique unfiltered coronagraphic modes, which continue to benefit the exoplanet and debris-disk communities. The STIS instrument team monitors the instrument’s health and performance over time to characterize the effects of radiation damage and continued use of the detectors and optical elements. Additionally, the STIS team continues to improve the quality of data products for the user community. We present updates on efforts to improve the echelle flux calibration of overlapping spectral orders due to changes in the grating blaze function since HST Servicing Mission 4, and efforts to push the contrast limit and smallest inner working angle attainable with the coronagraphic BAR5 occulter. We also provide updates on the performance of the STIS calibration lamps, including work to maintain the accuracy of the wavelength calibration for all modes.

  11. AVES: an adaptive optics visual echelle spectrograph for the VLT

    Science.gov (United States)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  12. Design and Construction of VUES: The Vilnius University Echelle Spectrograph

    Science.gov (United States)

    Jurgenson, Colby; Fischer, Debra; McCracken, Tyler; Sawyer, David; Giguere, Matt; Szymkowiak, Andrew; Santoro, Fernando; Muller, Gary

    2016-03-01

    In February 2014, the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R=60,000) spectrograph for the 1.65m telescope at the Molėtai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400nm to 880nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the observatory during a 10-day period in June of 2015.

  13. First Light results from PARAS: The PRL Echelle Spectrograph

    CERN Document Server

    Chakraborty, Abhijit; Roy, Arpita; Pathan, Fazalahmed M; Shah, Vishal; Richardson, Eric H; Ubale, Girish; Shah, Rajesh

    2010-01-01

    We present the first light commissioning results from the Physical Research Laboratory (PRL) optical fiber-fed high resolution cross-dispersed Echelle Spectrograph. It is capable of a single- shot spectral coverage of 3700A to 8600A at R ~ 63,000 and is under very stable conditions of temperature (0.04{\\deg}C at 23{\\deg}C). In the very near future pressure control will also be achieved by enclosing the entire spectrograph in a low-pressure vacuum chamber (~0.01mbar). It is attached to a 1.2m telescope using two 50micron core optical fibers (one for the star and another for simultaneous Th-Ar spectral calibration). The 1.2m telescope is located at Mt. Abu, India, and we are guaranteed about 80 to 100 nights a year for observations with the spectrograph. The instrument will be ultimately used for radial-velocity searches of exoplanets around 1000 dwarf stars, brighter than 10th magnitude, for the next 5 years with a precision of 3 to 5m/s using the simultaneous Th-Ar spectral lamp reference technique. The spect...

  14. IP Pegasi in outburst: Echelle spectroscopy & Modulation Doppler Tomography

    CERN Document Server

    Papadaki, C; Steeghs, D

    2008-01-01

    We analyse a unique set of time-resolved echelle spectra of the dwarf nova IP Peg, obtained at ESO's NTT with EMMI. The dataset covers the wavelength range of 4000-7500A and shows Balmer, HeI, HeII and heavier elements in emission. IP Peg was observed one day after the peak of an outburst. The trailed spectra, spectrograms and Doppler maps show characteristics typical of IP Pegasi during the early stages of its outburst. The high-ionisation line of HeII 4686A is the most centrally located line and has the greatest radial extension compared to the HeI lines. The Balmer lines extend from close to the white dwarf up to approximately 0.45 times R_L, with the outer radius gradually increasing when moving from H delta to H alpha. The application, for the first time, of the modulation Doppler tomography technique, maps any harmonically varying components present in the system configuration. We find, as expected, that part of the strong secondary star emission in Balmer and HeI lines is modulated predominantly with t...

  15. Echelle long-slit optical spectroscopy of evolved stars

    CERN Document Server

    Contreras, C Sanchez; de Paz, A Gil; Goodrich, R

    2008-01-01

    We present echelle long-slit optical spectra of a sample of objects evolving off the AGB, most of them in the pre-planetary nebula (pPN) phase, obtained with the ESI and MIKE spectrographs at Keck-II and Magellan-I, respectively. The total wavelength range covered with ESI (MIKE) is ~3900 to 10900 A (~3600 to 7200A). In this paper, we focus our analysis mainly on the Halpha profiles. Prominent Halpha emission is detected in half of the objects, most of which show broad Halpha wings (up to ~4000 km/s). In the majority of the Halpha-emission sources, fast, post-AGB winds are revealed by P-Cygni profiles. In ~37% of the objects Halpha is observed in absorption. In almost all cases, the absorption profile is partially filled with emission, leading to complex, structured profiles that are interpreted as an indication of incipient post-AGB mass-loss. All sources in which Halpha is seen mainly in absorption have F-G type central stars, whereas sources with intense Halpha emission span a larger range of spectral type...

  16. Off-the-shelf Echelle Spectroscopy: Two Devices on the Test Block

    Science.gov (United States)

    Eversberg, Thomas

    2016-11-01

    Today, various Echelle spectrographs for small telescopes are available on the market. These instruments are ready-to-use, including professional data reduction chains. Manufacturers claim that their compact instruments can deliver professionally usable data for very low prices. This paper presents extensive tests of the two most popular small-scale Echelle spectrographs for telescopes in the 1 m domain with a focus on radial velocity accuracy.

  17. History of grating images

    Science.gov (United States)

    Iwata, Fujio

    2001-06-01

    Toppan Printing Co., Ltd. originated the name of 'grating image'. It means an image that consists of diffraction grating dots that look similar to the halftone dots of conventional printing. We proposed this new display method using simple gratings in order to enhance the visual effects when illumination is made by a fluorescent lamp. We considered the use of simple gratings as elemental dots, and used a number of elemental dots to display a 2D image. This method produces an effect something like the halftone dots of printing. The grating image technology grows from its starting to become able to produce 3D images and a 3D-video system using an electron beam grating-writing system.

  18. Grating image technology

    Science.gov (United States)

    Iwata, Fujio

    1995-07-01

    The word 'grating image' was first named by Toppan Printing Company, Ltd. It means that an image consists of grating dots. In 1988, we presented this new technology at the Optical Security Systems Symposium, in Switzerland. Then it was improved and applied in display application. Recently, it was further applied in 3D video systems. In this report, the development history and the recent situations of grating image technology are described.

  19. An elastomeric grating coupler

    NARCIS (Netherlands)

    Kocabas, A.; Ay, F.; Dana, A.; Aydinli, A.

    2006-01-01

    We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to

  20. Bragg gratings in Topas

    DEFF Research Database (Denmark)

    Zhang, C.; Webb, D.J.; Kalli, K.

    We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...

  1. Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies

    Science.gov (United States)

    Aryal, S.; Hewawasam, K.; Maguire, R.; Chakrabarti, S.; Cook, T.; Martel, J.; Baumgardner, J. L.

    2015-12-01

    Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies Saurav Aryal1 , Kuravi Hewawasam1, Ryan Maguire1, Supriya Chakrabarti1, Timothy Cook1, Jason Martel1 and Jeffrey L Baumgardner2, (1) University of Massachusetts Lowell, Lowell, MA, United States, (2)Boston University, Boston, MA, United StatesA High-Throughput and Multi-slit Imaging Spectrograph (HiT&MIS) has been developed by our group. The spectrograph uses an echelle grating that operates at high dispersion orders (28-43) such that extended sources for airglow and auroral emissions can be observed at high resolution (about 0.02 nm). By using four slits (instead of the conventional one slit setup), with the appropriate foreoptics it images extended emissions along a long field of view of about 0.1° × 50°. It observes spectral regions around six prominent atmospheric emission lines (HI 656.3 nm, HI 486.1 nm, OI 557.7 nm, OI 630.0 nm, OI 777.4 nm and N+2 427.8 nm) using order sorting interference filters at the entrance slits and a filter mosaic on an image plane. We present observations from the instrument during the June 22, 2015 G4 storm. OI 557.7 nm (green line) and OI 630.0 nm (red line) showed strong brightness enhancements that lasted throughout the night from 8 P.M June 22, 2015 to 3 AM June 23,2015 when compared to the same times after the storm had passed.

  2. An Optical Design of Small-size Echelle Spectrograph%一种小型中阶梯光栅光谱仪的光学设计

    Institute of Scientific and Technical Information of China (English)

    冯帆; 段发阶; 伯恩; 吕昌荣; 梁春疆

    2014-01-01

    With the rapid development of spectral analysis technology in the information age, spectral instrument becomes a preferred access to information in various fields for its performance like high precision, low intrusion and small form factor. With the basic theory of optical design as guidance, echelle grating as key part, high resolution and wide detection wavelength as design target, a small size echelle spectrograph based on Czerny-Turner optical structure is designed. The structure of the system parameters is obtained based on the theoretical computation, and the optical system is simulated by the optical design software Zemax. The design results show that the theoretical resolution of the system, which works in the spectrum range from 200 nm to 800 nm, is better than 0.1 nm.%随着信息时代光谱分析技术的飞速发展,光谱仪器的高精度、低干扰、体积小型化等性能优势使其成为各领域各行业的优选信息获取手段。本文以光学设计的基本原理为指导、中阶梯光栅为核心、宽波长范围和高分辨力为设计目标,设计了一种基于切尼尔-特纳型光路结构的小型中阶梯光栅光谱仪系统。通过理论分析和计算,确定了系统的结构参数,并使用Zemax软件进行光学仿真。结果表明,该系统在200~800 nm的波段上理论分辨力优于0.1 nm。

  3. Extracting Radial Velocities of A- and B-type Stars from Echelle Spectrograph Calibration Spectra

    Science.gov (United States)

    Becker, Juliette C.; Johnson, John Asher; Vanderburg, Andrew; Morton, Timothy D.

    2015-04-01

    We present a technique to extract radial velocity (RV) measurements from echelle spectrograph observations of rapidly rotating stars (V sin i≳ 50 km s-1). This type of measurement is difficult because the line widths of such stars are often comparable to the width of a single echelle order. To compensate for the scarcity of lines and Doppler information content, we have developed a process that forward-models the observations, fitting the RV shift of the star for all echelle orders simultaneously with the echelle blaze function. We use our technique to extract RV measurements from a sample of rapidly rotating A- and B-type stars used as calibrator stars observed by the California Planet Survey observations. We measure absolute RVs with a precision ranging from 0.5-2.0 km s-1 per epoch for more than 100 A- and B-type stars. In our sample of 10 well-sampled stars with RV scatter in excess of their measurement uncertainties, three of these are single-lined binaries with long observational baselines. From this subsample, we present detections of two previously unknown spectroscopic binaries and one known astrometric system. Our technique will be useful in measuring or placing upper limits on the masses of sub-stellar companions discovered by wide-field transit surveys, and conducting future spectroscopic binarity surveys and Galactic space-motion studies of massive and/or young, rapidly rotating stars.

  4. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  5. Gratings in polymeric waveguides

    Science.gov (United States)

    Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.

    2007-04-01

    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.

  6. High Dispersion Spectroscopy with Ond\\v{r}ejov Echelle Spectrograph

    CERN Document Server

    Grossová, Romana

    2016-01-01

    Echelle spectrographs with their high resolution plays important role in determination of characteristics of stellar lines. Wide field of applications is focused mainly on the measurements of precise radial velocity applied in exoplanetary research. In my diploma thesis I am concentrated on the calibration of the Ond\\v{r}ejov Echelle Spectrograph at Astronomical Institute of the Czech Academy of Sciences. My role was to investigate the wide field of opportunities how to process the data with the best possible results. Successful reduction was performed by both Image Reduction and Analysis Facility (IRAF) and for Open source Pipeline for ESPaDOnS Reduction and Analysis. This thesis includes the comparison of both pipelines.

  7. A new generation of spectral extraction and analysis package for Fiber Optics Cassegrain Echelle Spectrograph (FOCES)

    Science.gov (United States)

    Wang, Liang; Grupp, Frank; Kellermann, Hanna; Brucalassi, Anna; Schlichter, Jörg; Hopp, Ulrich; Bender, Ralf

    2016-08-01

    We describe a new generation of spectral extraction and analysis software package (EDRS2) for the Fibre Optics Cassegrain Echelle Spectrograph (FOCES), which will be attached to the 2m Fraunhofer Telescope on the Wendelstein Observatory. The package is developed based on Python language and relies on a variety of third party, open source packages such as Numpy and Scipy. EDRS2 contains generalized image calibration routines including overscan correction, bias subtraction, flat fielding and background correction, and can be supplemented by user customized functions to fit other echelle spectrographs. An optimal extraction method is adopted to obtain the one dimensional spectra, and the output multi order, wavelength calibrated spectra are saved in FITS files with binary table format. We introduce the algorithm and performance of major routines in EDRS2.

  8. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook

    2008-01-01

    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  9. An elastomeric grating coupler

    Science.gov (United States)

    Kocabas, Askin; Ay, Feridun; Dâna, Aykutlu; Aydinli, Atilla

    2006-01-01

    We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to the surface of the waveguide with van der Waals forces and makes conformal contact without any applied pressure. As a demonstration of the feasibility of the approach, we use it to measure the refractive index of a silicon oxynitride film. This technique is nondestructive, reversible, low cost and can easily be applied to the characterization of optical materials for integrated optics.

  10. Integral Method for Gratings

    CERN Document Server

    Maystre, Daniel

    2014-01-01

    The chapter contains a detailed presentation of the surface integral theory for modelling light diffraction by surface-relief diffraction gratings having a one-dimensional periodicity. Several different approaches are presented, leading either to a single integral equation, or to a system of coupled integral equations. Special attention is paid to the singularities of the kernels, and to different techniques to accelerate the convergence of the numerical computations. The theory is applied to gratings having different profiles with or without edges, to real metal and dielectrics, and to perfectly conducting substrates.

  11. Circular Fibonacci gratings.

    Science.gov (United States)

    Gao, Nan; Zhang, Yuchao; Xie, Changqing

    2011-11-01

    We introduce circular Fibonacci gratings (CFGs) that combine the concept of circular gratings and Fibonacci structures. Theoretical analysis shows that the diffraction pattern of CFGs is composed of fractal distributions of impulse rings. Numerical simulations are performed with two-dimensional fast Fourier transform to reveal the fractal behavior of the diffraction rings. Experimental results are also presented and agree well with the numerical results. The fractal nature of the diffraction field should be of great theoretical interest, and shows potential to be further developed into practical applications, such as in laser measurement with wideband illumination.

  12. Sensored fiber reinforced polymer grate

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael P.; Mack, Thomas Kimball

    2017-08-01

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based on a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.

  13. Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, V K; Alti, K; Nayak, R; Bernard, R; Kartha, V B; Santhosh, C [Centre for Atomic and Molecular Physics, Manipal University, Manipal (India); Khetarpal, N [Department of Biotechnology, Manipal University, Manipal (India); Gupta, G P; Suri, B M, E-mail: santhosh.cls@manipal.ed [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    2010-04-15

    Laser-Induced Breakdown Spectroscopy (LIBS) is well recognized as a promising tool for in situ/remote elemental analysis of environmental, archeological, clinical, and hazardous samples. With the aim of quantifying trace elements in such samples, using LIBS technique, an echelle spectrograph-ICCD system with high sensitivity and good resolution has been assembled. Various important parameters of this system were studied and optimized. Conditions for getting good quality LIBS spectra and signal for multielemental analysis have been achieved, and these are discussed and illustrated in this paper.

  14. A Flexible and Modular Data Reduction Library for Fiber-fed Echelle Spectrographs

    CERN Document Server

    Sosnowska, Danuta; Figueira, Pedro; Modigliani, Andrea; Di Marcantonio, Paolo; Megevand, Denis; Pepe, Francesco

    2015-01-01

    Within the ESPRESSO project a new flexible data reduction library is being built. ESPRESSO, the Echelle SPectrograph for Rocky Exoplanets and Stable Spectral Observations is a fiber-fed, high-resolution, cross-dispersed echelle spectrograph. One of its main scientific goals is to search for terrestrial exoplanets using the radial velocity technique. A dedicated pipeline is being developed. It is designed to be able to reduce data from different similar spectrographs: not only ESPRESSO, but also HARPS, HARPS-N and possibly others. Instrument specifics are configurable through an input static configuration table. The first written recipes are already tested on HARPS and HARPS-N real data and ESPRESSO simulated data. The final scientific products of the pipeline will be the extracted 1-dim and 2-dim spectra. Using these products the radial velocity of the observed object can be computed with high accuracy. The library is developed within the standard ESO pipeline environment. It is being written in ANSI C and ma...

  15. Spectroscopic Survey of Eclipsing Binaries with a Low Cost \\'{E}chelle Spectrograph -- Scientific Commissioning

    CERN Document Server

    Kozłowski, Stanisław K; Sybilski, Piotr; Ratajczak, Milena; Pawłaszek, Rafał K; Hełminiak, Krzysztof G

    2016-01-01

    We present scientific results obtained with a recently commissioned \\'{e}chelle spectrograph on the 0.5-m Solaris-1 telescope in the South African Astronomical Observatory. BACHES is a low-cost slit \\'{e}chelle spectrograph that has a resolution of 21,000 at 5,500 \\AA. The described setup is fully remotely operated and partly automated. Custom hardware components have been designed to allow both spectroscopic and photometric observations. The setup is controlled via dedicated software. The throughput of the system allows us to obtain spectra with an average SNR of 22 at 6375 {\\AA} for a 30-min exposure of a $V=10$ mag target. The stability of the instrument is influenced mainly by the ambient temperature changes. We have obtained radial velocity RMS values for a bright (V = 5.9 mag) spectroscopic binary as good as 0.59 km s$^{-1}$ and 1.34 km s$^{-1}$ for a $V = 10.2$ mag eclipsing binary. Radial velocity measurements have been combined with available photometric light curves. We present models of six eclipsi...

  16. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yang; Liu Yuan; Gao Dingshan, E-mail: dsgao@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  17. Stretchable diffraction gratings for spectrometry

    NARCIS (Netherlands)

    Simonov, A.N.; Grabarnik, S.; Vdovine, G.V

    2007-01-01

    We have investigated the possibility of using transparent stretchable diffraction gratings for spectrometric applications. The gratings were fabricated by replication of a triangular-groove master into a transparent viscoelastic. The sample length, and hence the spatial period, can be reversibly cha

  18. Picosecond Holographic-Grating Spectroscopy

    NARCIS (Netherlands)

    Duppen, K.

    1987-01-01

    Interfering light waves produce an optical interference pattern in any medium that interacts with light. This modulation of some physical parameter of the system acts as a classical holographic grating for optical radiation. When such a grating is produced through interaction of pulsed light waves w

  19. Grating-based red lasers

    Science.gov (United States)

    Pezeshki, Bardia; Hagberg, Mats; Zelinski, Michael; Zou, Sarah; Kolev, Emil I.

    1999-04-01

    We have demonstrated a number of high power and single- frequency lasers at 635 - 680 nm by incorporating a grating reflector within the device, including DBRs, tunable DBRs, monolithic MOPAs, DFBs, and angled-grating DFBs. The DBR laser, with an unpumped grating as the rear reflector, is the simplest single-frequency structure, with about 20 mW output power. The device can be tuned about 3 nm by injecting current in the rear grating. Higher output power can be obtained by combining the DBR with a flared amplifier to form a monolithic MOPA with over 250 mW CW output power. Unlike DBR structures, the DFBs have a grating throughout their gain region, and therefore show no mode hops. Wavelengths as short as 634 nm and output powers as high as 90 mW have been obtained with DFBs. An angle-grating DFB is a broad area device where the angled grating forces lasing in a single spatial and longitudinal mode. More than 400 mW in single-frequency power has been obtained at 660 nm from such a structure. In general, grating-based red lasers are useful for interferometry, spectroscopy, and fiber-coupling applications.

  20. Slow plasmons in grating cavities

    Science.gov (United States)

    Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun

    2016-03-01

    Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.

  1. Circumstellar discs in X/gamma-ray binaries: first results from the Echelle spectrograph

    CERN Document Server

    Zamanov, R; Martí, J

    2015-01-01

    Here we report our first spectral observations of Be/X-ray and gamma-ray binaries obtained with the new Echelle spectrograph of the National Astronomical Observatory Rozhen. For four objects (LSI+61303, gamma Cas, MWC 148, 4U 2206+54), we report the parameters and estimate the sizes of their circumstellar discs using different emission lines (H-alpha, H-beta, H-gamma, HeI and FeII). For MWC 148, we find that the compact object goes deeply through the disc. The flank inflections of H-alpha can be connected with inner ring formed at the periastron passage or radiation transfer effects. We point out an intriguing similarity between the optical emission lines of the $\\gamma$-ray binary MWC 148 and the well known Be star $\\gamma$ Cas.

  2. The list of tantalum lines for wavelengths calibration of the Hamilton echelle-spectrograph

    CERN Document Server

    Pakhomov, Yu V

    2015-01-01

    We present solution of the problem of wavelength calibration for Hamilton Echelle spectrograph using hollow cathode lamp, which was operated at Lick Observatory Shane telescope before June 9, 2011. The spectrum of the lamp claimed to be thorium-argon, contains, in addition to the lines of thorium and argon, a number of the unrecognized lines identified by us with tantalum. Using atomic data for measured lines of tantalum and thorium, we estimated the temperature of the gas in the lamp as T=3120+/-60 K. From the atomic line database VALD3 we selected all lines of TaI and TaII which can be seen in the spectrum of the lamp and compiled a list for the use in the processing of spectral observations. We note a limitation of the accuracy of calibration due to the influence of the hyperfine line splitting.

  3. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    CERN Document Server

    Doerr, H -P; Holzwarth, R; Schmidt, T Kentischer und W

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  4. Digital TV-echelle spectrograph for simultaneous multielemental analysis using microcomputer control

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J.B.; Case, A.L.

    1980-12-01

    A digital TV-echelle spectrograph with microcomputer control was developed for simultaneous multielemental analysis. The optical system is a commercially available unit originally equipped for film and photomultiplier (single element) readout. The film port was adapted for the intensifier camera. The camera output is digitized and stored in a microcomputer-controlled, 512 x 512 x 12 bit memory and image processor. Multiple spectra over the range of 200 to 800 nm are recorded in a single exposure. Spectra lasting from nanoseconds to seconds are digitized and stored in 0.033 s and displayed on a TV monitor. An inexpensive microcomputer controls the exposure, reads and displays the intensity of predetermined spectral lines, and calculates wavelengths of unknown lines. The digital addresses of unknown lines are determined by superimposing a cursor on the TV display. The microcomputer also writes into memory wavelength fiducial marks for alignment of the TV camera.

  5. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Science.gov (United States)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  6. Transformation a Echelle Fixe et Groupe de Renormalisation pour les Objets Fractals et Multifractals

    Science.gov (United States)

    Tremblay, Real

    Dans un premier temps, la description mathematique des fractals et des multifractais est resumee. Une description de quelques-uns des principaux systemes ou apparaissent des spectres d'exposants multifractals est presentee. L'accent est mis sur deux archetypes, le modele de percolation et le modele de rupture dielectrique. Un modele original de cascade multifractale avec interactions inspire des modeles phenomenologiques de la turbulence est presente et son spectre d'exposants calcule analytiquement. Ce travail elargit la classe de modeles pour lesquels on connait le spectre d'exposants exactement. Dans la seconde partie, on trouve une analyse critique de la transformation a echelle fixe. Sont discutees plus particulierement les proprietes que doivent posseder les diagrammes de base pour obtenir une transformation invariante d'echelle. Les differentes hypotheses arbitraires de la theorie sont mises en evidence. L'une de ces hypotheses concerne le traitement auto-coherent des conditions aux frontieres. Considerant cette hypothese comme valable, la theorie utilise la distribution de trous dans un ensemble de Cantor aleatoire. Un calcul exact de cette distribution est donne ici. Enfin, en troisieme et dernier lieu, on retrouve une analyse exhaustive du probleme du crossover dans le modele de percolation avec une resistance non-nulle pour les liens normalement isolants. A l'aide du groupe de renormalisation de Migdal-Kadanoff, on montre qu'il existe un seul exposant de crossover et une seule longueur de coherence. D'autres longueurs de correlation peuvent etre definies, mais elles demeurent dans un rapport fixe le long des axes propres du groupe de renormalisation. La multifractalite est donc, pour ce modele et ceux qui peuvent etre formules de facon analogue, compatible avec l'existence d'une seule longueur de coherence. Ces resultats sont d'application directe pour les proprietes electriques des milieux desordonnes.

  7. Switchable Bragg gratings

    DEFF Research Database (Denmark)

    Marckmann, Carl Johan

    2003-01-01

    The subject of this ph.d. thesis was the development of an electrically switchable Bragg grating made in an optical waveguide using thermal poling to be applied within optical telecommunication systems. The planar waveguides used in this thesis were fabricated at the Micro- and Nanotechnology....... This result is very useful in the production of telecommunication devices since polarization independence of the second-order nonlinearity is wanted. In order to increase the second-order nonlinearity, it was found that the introduction of a high refractive index trapping layer was favorable. During...... the thesis, the thermal poling induced second-order nonlinearity was increased by approximately 64% making a silica based optical switch possible. Finally, a possible explanation to the very high, but short-lived, poling results obtained by some groups was discovered....

  8. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...

  9. Extreme Silica Optical Fibre Gratings

    Directory of Open Access Journals (Sweden)

    Kevin Cook

    2008-10-01

    Full Text Available A regenerated optical fibre Bragg grating that survives temperature cycling up to 1,295°C is demonstrated. A model based on seeded crystallisation or amorphisation is proposed.

  10. Hollow-core grating fiber

    Science.gov (United States)

    Barillé, R.; Tajalli, P.; Roy, P.; Ahmadi-kandjani, S.; Kucharski, S.; Ortyl, E.

    2012-02-01

    We propose a new type of hollow-core fiber where the propagation is ensured by a photoinduced self-pattern acting as a surface relief grating (SRG). The SRG is written by launching a suitable laser beam with proper polarization in a capillary glass fiber with the inner surface previously coated with an azopolymer thin film. Such a grating acts as a wavelength/angle dependant reflective mirror and enhances the confinement and the propagation of the light.

  11. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  12. Stretchable diffraction gratings for spectrometry.

    Science.gov (United States)

    Simonov, Aleksey N; Grabarnik, Semen; Vdovin, Gleb

    2007-07-23

    We have investigated the possibility of using transparent stretchable diffraction gratings for spectrometric applications. The gratings were fabricated by replication of a triangular-groove master into a transparent viscoelastic. The sample length, and hence the spatial period, can be reversibly changed by mechanical stretching. When used in a monochromator with two slits, the stretchable grating permits scanning the spectral components over the output slit, converting the monochromator into a scanning spectrometer. The spectral resolution of such a spectrometer was found to be limited mainly by the wave-front aberrations due to the grating deformation. A model relating the deformation-induced aberrations in different diffraction orders is presented. In the experiments, a 12-mm long viscoelastic grating with a spatial frequency of 600 line pairs/mm provided a full-width at half-maximum resolution of up to ~1.2 nm in the 580-680 nm spectral range when slowly stretched by a micrometer screw and ~3 nm when repeatedly stretched by a voice coil at 15 Hz. Comparison of aberrations in transmitted and diffracted beams measured by a Shack- Hartmann wave-front sensor showed that astigmatisms caused by stretch-dependent wedge deformation are the main factors limiting the resolution of the viscoelastic-grating-based spectrometer.

  13. BACHES - a compact \\'echelle spectrograph for radial velocity surveys with small telescopes

    CERN Document Server

    Kozłowski, S K; Ratajczak, M; Sybilski, P; Pawłaszek, R K; Hełminiak, K G

    2014-01-01

    We evaluate a pre-production BACHES \\'{e}chelle spectrograph in terms of its usefulness for radial velocity surveys of binary stars with small telescopes in a remote and autonomous. We use the Solaris-4 observatory located in Casleo, Argentina, that is part of a global network of autonomous observatories as the test-bed for the instrument. The setup is designed in such a way that spectroscopy and photometry can be carried out using the same telescope without the need to mechanically modify the imaging train. We observe single spectroscopic standard stars as well as binary stars up to 9.75 mag. We present results of mechanical tests of the instruments and spectroscopic observations carried out between Nov 26th and Dec 8th 2013. We conclude that BACHES is a very compact and capable spectrograph well suited for remote and autonomous operation. Coupled to a 0.5-m telescope it is capable of obtaining spectra of 10 mag targets with a SNR of 20 for 30-minute exposures. This is a very good result considering the pric...

  14. The PRL Stabilized High Resolution Echelle Fiber-fed Spectrograph: Instrument Description & First Radial Velocity Results

    CERN Document Server

    Chakraborty, Abhijit; Roy, Arpita; Dixit, Vaibhav; Richardson, Eric Harvey; Dongre, Varun; Pathan, F M; Chaturvedi, Priyanka; Shah, Vishal; Ubale, Girish P; Anandarao, B G

    2013-01-01

    We present spectrograph design details and initial radial velocity results from the PRL optical fiber-fed high-resolution cross-dispersed echelle spectrograph (PARAS), which has recently been commissioned at the Mt Abu 1.2 m telescope, in India. Data obtained as part of the post-commissioning tests with PARAS show velocity precision better than 2m/s over a period of several months on bright RV standard stars. For observations of sigma-Dra we report 1.7m/s precision for a period of seven months and 2.1m/s for HD 9407 over a period of 2 months. PARAS is capable of a single-shot spectral coverage of 3800A - 9500A at a resolution of about 67,000. The RV results were obtained between 3800A and 6900A using simultaneous wavelength calibration with a Thorium-Argon (ThAr) hollow cathode lamp. The spectrograph is maintained under stable conditions of temperature with a precision of 0.01 - 0.02C (rms) at 25.55C, and enclosed in a vacuum vessel at pressure of 0.1 +/-0.03 mbar. The blaze peak efficiency of the spectrograp...

  15. PEPSI: the Potsdam Echelle Polarimetric and Spectroscopic Instrument for the LBT

    Science.gov (United States)

    Strassmeier, K. G.; Woche, M.; Ilyin, I.; Popow, E.; Bauer, S.-M.; Dionies, F.; Fechner, T.; Weber, M.; Hofmann, A.; Storm, J.; Materne, R.; Bittner, W.; Bartus, J.; Granzer, T.; Denker, C.; Carroll, T.; Kopf, M.; DiVarano, I.; Beckert, E.; Lesser, M.

    2008-07-01

    We present the status of PEPSI, the bench-mounted fibre-fed and stabilized "Potsdam Echelle Polarimetric and Spectroscopic Instrument" for the 2×8.4m Large Binocular Telescope in southern Arizona. PEPSI is under construction at AIP and is scheduled for first light in 2009/10. Its ultra-high-resolution mode will deliver an unprecedented spectral resolution of approximately R=310,000 at high efficiency throughout the entire optical/red wavelength range 390-1050nm without the need for adaptive optics. Besides its polarimetric Stokes IQUV mode, the capability to cover the entire optical range in three exposures at resolutions of 40,000, 130,000 and 310,000 will surpass all existing facilities in terms of light-gathering-power times spectral-coverage product. A solar feed will make use of the spectrograph also during day time. As such, we hope that PEPSI will be the most powerful spectrometer of its kind for the years to come.

  16. Upgraded control, acquisition program and user interface for the Manchester Echelle Spectrometer at San Pedro Martir

    Science.gov (United States)

    Gutiérrez, Leonel; Murillo, J.; Quiroz, Fernando; Pedrayes, Maria H.; Meaburn, John; López, Jose A.

    2002-12-01

    We describe the recent upgrade of the Manchester Echelle Spectrometer, currently in use at San Pedro Mártir. This upgrade has included a user interface and a new CCD acquisition software. The spectrometer control is now done by a microcontroller, whose inputs are new sensors and encoders installed inside the spectrometer. The instrument control is now fully carried out from a graphical user interface running in a personal computer. The acquisition computer sends the images to the GUI through an ethernet link. In this paper, we present the general scheme and the programs developed for Linux (in C++ and Tcl/Tk) that permits an easy integral operation of the instrument, as well as the creation of scripts intended to the optimization of the observing run and the future interaction with the telescope and the guider. This upgraded system has been operated successfully during several campaigns in the 2.1-meter telescope at Observatorio Astronómico Nacional in San Pedro Mártir.

  17. HIRDES - The High-Resolution Double-Echelle Spectrograph for the World Space Observatory Ultraviolet (WSO/UV)

    CERN Document Server

    Werner, K; Gringel, W; Kappelmann, N; Becker-Ross, H; Florek, S; Graue, R; Kampf, D; Reutlinger, A; Neumann, C; Shustov, B; Moisheev, A; Skripunov, E

    2007-01-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102-310nm spectral band is split to feed two echelle spectrographs covering the UV range 174-310nm and the vacuum-UV range 102-176nm with high spectral resolution (R>50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. T...

  18. Efficient iterative technique for designing bragg gratings

    DEFF Research Database (Denmark)

    Plougmann, Nikolai; Kristensen, Martin

    2004-01-01

    We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings.......We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings....

  19. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  20. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  1. The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT

    Science.gov (United States)

    Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.

    2004-05-01

    We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.

  2. A Composite Grating for Moire Interferometry.

    Science.gov (United States)

    1987-07-01

    shown in Figure 7 in which two virtual reference gratings of frequencies 2400 and 600 lines/mm were used. This arrangement corresponds to a fringe...fields at the two virtual reference grating frequencies of 2400/600 lines/mm. The light paths of the two virtual reference gratings are controlled by...frequencies were selectively recorded. Figure 10 and 11 shows two moire fringe patterns for virtual reference grating frequencies of 2400 lines/mm and 600

  3. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo

    2017-03-01

    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  4. Grating-Coupled Waveguide Cloaking

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Fu; QU Shao-Bo; XU Zhuo; MA Hua; WANG Cong-Min; XIA Song; WANG Xin-Hua; ZHOU Hang

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW),a new strategy for realizing EM cloaking is presented.Using metallic grating,incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind,enabling EM waves to pass around the obstacle.Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged.Circular,rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking.Electric field animations and radar cross section (RCS)comparisons convincingly demonstrate the cloaking effect.

  5. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well...

  6. 3D Printed Terahertz Focusing Grating Couplers

    Science.gov (United States)

    Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin

    2017-02-01

    We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.

  7. Running gratings in photoconductive materials

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Lyuksyutov, S. F.

    2005-01-01

    gratings at small-contrast approximation and also are applicable for the description of space-charge wave domains. We discuss spatial domain and subharmonic beam formation in bismuth silicon oxide (BSO) crystals in the framework of the small-contrast approximation of STPM. The experimental results...

  8. Calculation of thermal noise in grating reflectors

    CERN Document Server

    Heinert, Daniel; Friedrich, Daniel; Hild, Stefan; Kley, Ernst-Bernhard; Leavey, Sean; Martin, Iain W; Nawrodt, Ronny; Tünnermann, Andreas; Vyatchanin, Sergey P; Yamamoto, Kazuhiro

    2013-01-01

    Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflective structures exists. In this work we present a theoretical calculation of a grating reflector's noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.

  9. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  10. Grating light modulator for projection display

    Institute of Scientific and Technical Information of China (English)

    Jiyong Sun; Shanglian Huang; Jie Zhang; Zhihai Zhang; Yong Zhu

    2009-01-01

    A novel grating light modulator for projection display is introduced. It consists of an upper moveable grat-ing, a bottom mirror, and four supporting posts between them. The moveable grating and the bottom mir-ror compose a phase grating whose phase difference is controlled by the actuating voltage. When the phase difference is 2kπ, the grating light modulator will switch the incident light to zero-order diffraction; when the phase difference is (2k - 1)π, the grating light modulator will diffract light to first-order diffraction. A 16 × 16 modulator array is fabricated by the surface micromachining technology. The device works well when it is actuated by a voltage with 1-kHz frequency and 10-V amplitude. The fabricated grating light modulator can show blackness and brightness when controlled by the voltage. This modulator has potential applications in projection display system.

  11. Effective grating theory for resonance domain surface-relief diffraction gratings.

    Science.gov (United States)

    Golub, Michael A; Friesem, Asher A

    2005-06-01

    An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.

  12. Cross-fiber Bragg grating transducer

    Science.gov (United States)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  13. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    ZHANG WeiPing; HE XiaoRong

    2007-01-01

    This paper reports on a new property of grating,namely spectral combination,and on bi-grating diffraction imaging that is based on spectral combination.The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam.The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image.We gave the conditions necessary for obtaining the spectral combination.We also presented the equations that relate the two gratings' spatial frequencies,diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  14. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  15. Plasmonic Transmission Gratings – Fabrication and Characterization

    DEFF Research Database (Denmark)

    Sierant, Aleksandra; Jany, Benedykt; Bartoszek-Bober, Dobrosława

    realization is given by the use of a metallic diffraction grating, where the diffracted light couples to the SPP. Here, we propose metallic periodic transmission gratings, processed onto a glass substrate, with various periods and fill factors. The gratings are milled in a plain gold layer with a focused ion...... beam (FIB) microscope, using gallium and a neutralizing electron beam. We investigate the SPP coupling strength with respect to varying top layers and under collimated, oblique-angled excitation, with respect to the effect of finite gratings as opposed to perfect periodicity. We characterize...

  16. 基于精确光谱响应匹配的星载成像光谱仪交叉辐射定标%Optical Design and Performance Analysis of Light and Small Echelle Spectrograph

    Institute of Scientific and Technical Information of China (English)

    周冠华; 姜禾; 赵慧洁; 贾斐

    2012-01-01

    星载遥感器在轨运行中受到外太空环境以及遥感器自身特性衰变的影响,辐射特性会发生变化.为确保星载遥感数据能真实地反映被观测地物目标特征及其变化规律,需要定期对星载遥感器进行在轨辐射定标.环境小卫星超光谱成像仪(HJ1A/HSI)由于缺乏配套的星上定标系统,基于场地定标的方法难以满足高频次定标的需求.以EO-1/Hyperion为参考遥感器,以HJ1A/HSI为待定标遥感器,通过反卷积方法对两成像光谱仪光谱通道之间进行精确光谱响应匹配,消除波段设置的差异性,显著降低了HSI定标系数的不确定度.基于本定标方法得到的HSI 115个波段的绝对定标系数中,Band 1至Band 60之间的定标系数的不确定度稳定在5%~8%,除760 nm附近的氧气吸收波段与940 nm附近的水汽吸收波段外,其余波段的定标系数的不确定度为7%~18%,随着波长的增加,不确定度增大.与传统波段匹配方法相比,提高了约50%的精度,该定标精度基本可以满足遥感数据定量化应用的需求.该方法解决了在轨星载成像光谱仪光谱通道设置差异大、交叉定标精度低,难以实用的问题,为星载成像光谱仪高频率更新辐射定标数据提供了一种有效方法.%The present paper analyzed the influence of the pinhole diameter, grating parameters, CCD pixel size, prism parameters, system aberrations and found that the first three are the main factors, and then deduced the mutual restraint relationship among them. On this basis, a portable high-resolution echelle spectrograph was designed. Applying this design, aberration was fully corrected and spectral resolution achieved the demand. With the Hg lamp calibrated and restored, the actual resolution gets up to 0. 038 ran which is significantly better than target (0. 05@200 nm), while the ordinary grating spectrometers need 500 mm focal length to achieve this resolution. From this result, the

  17. Biosensing with optical fiber gratings

    Directory of Open Access Journals (Sweden)

    Chiavaioli Francesco

    2017-06-01

    Full Text Available Optical fiber gratings (OFGs, especially long-period gratings (LPGs and etched or tilted fiber Bragg gratings (FBGs, are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors, and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  18. Unexpected series of regular frequency spacing of delta Scuti stars in the non-asymptotic regime -- II. Sample -- echelle diagrams and rotation

    CERN Document Server

    Paparó, M; Hareter, M; Guzik, J A

    2016-01-01

    A sequence search method was developed for searching for regular frequency spacing in delta Scuti stars by visual inspection and algorithmic search. The sample contains 90 delta Scuti stars observed by CoRoT. An example is given to represent the visual inspection. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering and the spacings derived by two methods (three approaches: VI, SSA and FT) are given for each target. Echelle diagrams are presented for 77 targets, for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets and multiplets not only for single frequencies, but for the complete echelle ridges in 31 delta Scuti stars. Using several possible ass...

  19. Fiber Bragg Grating Based Thermometry

    CERN Document Server

    Ahmed, Zeeshan; Guthrie, William; Quintavalle, John

    2016-01-01

    In recent years there has been considerable interest in developing photonic temperature sensors such as the Fiber Bragg gratings (FBG) as an alternative to resistance thermometry. In this study we examine the thermal response of FBGs over the temperature range of 233 K to 393 K. We demonstrate, in a hermetically sealed dry Argon environment, that FBG devices show a quadratic dependence on temperature with expanded uncertainties (k = 2) of ~500 mK. Our measurements indicate that the combined measurement uncertainty is dominated by uncertainty in determining the peak center fitting and by thermal aging of polyimide coated fibers.

  20. ELISA : ECHELLE LIÉGEOISE DE L’INDICE DE SÉVÉRITÉ À L’ADMISSION

    OpenAIRE

    Jobe, Jérôme; GHUYSEN, Alexandre; D'Orio, Vincenzo

    2012-01-01

    Les services d’urgence sont régulièrement confrontés au problème d’encombrement à l’admission par une demande qui dépasse l’offre de soins. Il est essentiel de réguler le flux d’entrée par la mise en place d’un dispositif de tri. Ce mécanisme s’affine depuis une quinzaine d’années. Nous proposons un algorithme de tri (ELISA ou Echelle Liégeoise de l’Indice de Sévérité à l’Admission) qui vise à définir l’état d’urgence selon 5 niveaux depuis la catégorie U1 (urgence absolue) à U5 (urgence rela...

  1. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reports on a new property of grating, namely spectral combination, and on bi-grating diffraction imaging that is based on spectral combination. The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam. The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image. We gave the conditions necessary for obtaining the spectral combination. We also presented the equations that relate the two gratings’ spatial frequencies, diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  2. Diffractive Optics of Anisotropic Polarization Gratings

    NARCIS (Netherlands)

    Xu, M.

    2009-01-01

    Diffraction gratings are being used to manipulate light in many different applications, such as in flat panel display systems, modern lighting systems, and optical recording. Diffraction gratings can be made polarization selective due to form birefringence. An alternative approach to polarization

  3. Antireflective characteristics of hemispherical grid grating

    Institute of Scientific and Technical Information of China (English)

    REN Zhibin; JIANG Huilin; LIU Guojun; SUN Qiang

    2005-01-01

    In this paper, the optical characteristics of new type hemispherical grid subwavelength grating are studied by using multi-level column structure approximation and rigorous coupled-wave analysis. This kind of grating could be fabricated by chemical methods, thus simplifying the fabrication technology of subwavelength gratings for visible light. By computer simulation and calculation, the hemispherical grid subwavelength gratings are proved to have antireflective characteristics. Two design schemes of this kind of grating are presented. In the first scheme, the grating could achieve a reflectivity as low as 3.4416×10-7, which can be adapted to 0.46―0.7 μm of visible waveband and ±12° incident angle field. In the second scheme, the grating can achieve a reflectivity as low as 3.112×10-4 and adapted to the whole visible waveband and ±23° incident angle field. The application field of the latter scheme is wider than that of the former. The results of this paper could provide reference for the applications of the hemispherical grid subwavelength gratings for the visible waveband.

  4. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  5. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  6. Reflectivity-modulated grating-mirror

    DEFF Research Database (Denmark)

    2012-01-01

    The invention relates to vertical cavity lasers (VCL) incorporating a reflectivity-modulated grating mirror (1) for modulating the laser output. A cavity is formed by a bottom mirror (4), an active region (3), and an outcoupling top grating mirror (1) formed by a periodic refractive index grating...... to the oscillation axis. A modulated voltage (91) is applied in reverse bias between the n- and p-doped layers to modulate the refractive index of the electrooptic material layer (12) and thereby the reflectivity spectrum of the grating mirror (1). The reflectivity of the grating mirror (1) can be modulated between...... a reflectivity with little or no out coupling and a reflectivity with normal out coupling, wherein lasing in the VCL is supported at both the first and the second reflectivity. As the out coupling mirror modulates the output, the lasing does not need to be modulated, and the invention provides the advantage...

  7. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  8. Grating droplets with a mesh

    Science.gov (United States)

    Soto, Dan; Le Helloco, Antoine; Clanet, Cristophe; Quere, David; Varanasi, Kripa

    2016-11-01

    A drop thrown against a mesh can pass through its holes if impacting with enough inertia. As a result, although part of the droplet may remain on one side of the sieve, the rest will end up grated through the other side. This inexpensive method to break up millimetric droplets into micrometric ones may be of particular interest in a wide variety of applications: enhancing evaporation of droplets launched from the top of an evaporative cooling tower or preventing drift of pesticides sprayed above crops by increasing their initial size and atomizing them at the very last moment with a mesh. In order to understand how much liquid will be grated we propose in this presentation to start first by studying a simpler situation: a drop impacting a plate pierced with a single off centered hole. The study of the role of natural parameters such as the radius drop and speed or the hole position, size and thickness allows us to discuss then the more general situation of a plate pierced with multiple holes: the mesh.

  9. Thermomechanical analysis of a composite grating

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Jose [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Araujo, Marcia [PETROBRAS, Rio de Janeiro, RJ (Brazil); DeJoode, Alex; Abd, Imad [Reverse Engineering Ltd, Didsbury, Manchester (United Kingdom)

    2000-07-01

    The aim of the work carried out was to assess the structural performance of polymer composite gratings during a fire. The gratings are made from Fibre Reinforced Plastic (GRP) and are proposed for use as walkways on offshore platforms. During a fire, the gratings are subjected to high temperatures which reduce their structural performance. A numerical model based on experimental results, as well as data published in the literature was developed. The investigation focused on assessing the grating load capacity to carry a fire-fighter and fire-fighting equipment during a fire situation. It was assumed that 120 deg C would be the highest practical temperature for a fire-fighter to attack a fire. Subsequently, the grating performance was investigated for a range of temperatures from ambient to 120 deg C with the temperatures 60, 90 and 120 deg C representing the key targets for lower middle and upper limits. The requirements to assess the mechanical performance of the grating at the local level and global levels necessitated the need to develop a numerical technique to enhance the conventional functionality of the finite element code. The developed material model and the associated numerical technique produced a sophisticated numerical tool capable of assessing the structural response of the gratings at elevated temperatures up to 120 deg C. The comparison between the numerical results and the measured data illustrates robustness of the developed numerical tools, although certain predictions showed relatively poorer agreement than anticipated. (author)

  10. Planar double-grating microspectrometer.

    Science.gov (United States)

    Grabarnik, Semen; Wolffenbuttel, Reinoud; Emadi, Arwin; Loktev, Mikhail; Sokolova, Elena; Vdovin, Gleb

    2007-03-19

    We report on a miniature spectrometer with a volume of 0.135 cm(3) and dimensions of 3x3x11 mm, mounted directly on the surface of a CCD sensor. The spectrometer is formed by two flat diffraction gratings that are designed to perform both the dispersion and imaging functions, eliminating the need for any spherical optics. Two separate parts of the device were fabricated with the single-mask 1 mum lithography on a single glass wafer. The wafer was diced and the device was assembled and directly mounted onto a CCD sensor. The resolution of 3 nm, spectral range of 450 to 750 nm and the optical throughput of ~9% were measured to be in a complete agreement with the model used for the development of the device.

  11. 21 CFR 133.147 - Grated American cheese food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated American cheese food. 133.147 Section 133... Cheese and Related Products § 133.147 Grated American cheese food. (a)(1) Grated American cheese food is... granular mixture. (2) Grated American cheese food contains not less than 23 percent of milkfat,...

  12. Large size metallic glass gratings by embossing

    Science.gov (United States)

    Ma, J.; Yi, J.; Zhao, D. Q.; Pan, M. X.; Wang, W. H.

    2012-09-01

    Bulk metallic glasses have excellent thermoforming ability in their wide supercooled liquid region. We show that large-size metallic glass grating (˜8 × 8 mm2) with fine periodicity and ultra smooth surface feature can be readily fabricated by hot embossing. The method for fabrication of gratings is proved to be much cheaper, and requires low pressure and short time (less than 30 s). The metallic glass gratings exhibit comparable optical properties such as rainbow-like spectrum when shone by fluorescent lamp light.

  13. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  14. Advanced experimental applications for x-ray transmission gratings Spectroscopy using a novel grating fabrication method

    CERN Document Server

    Hurvitz, G; Strum, G; Shpilman, Z; Levy, I; Fraenkel, M

    2012-01-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses Focused-Ion-Beam (FIB) technology to fabricate high-quality free standing grating bars on Transmission Electron Microscopy grids (TEM-grid). High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  15. Influence of grating thickness in low-contrast subwavelength grating concentrating lenses

    Science.gov (United States)

    Ye, Mao; Yi, Ya Sha

    2016-07-01

    Conventional subwavelength grating concentrating lenses are designed based on calculated phase overlap, wherein the phase change is fixed by the grating thickness, bar-width, and airgap, and therefore the focus. We found that certain concentration effects can still be maintained by changing the grating thickness with the same bar-widths and airgap dimensions. Following that, we discovered the existence of the grating thickness threshold; light concentration intensity spikes upon exceeding this limit. However, the light concentration property does not change continuously with respect to a steady increase in grating thickness. This observation indicates that there exists a concentration mode self-interference effect along the light propagation direction inside the gratings. Our results may provide guidance in designing and fabricating microlenses in a potentially more easy and controllable manner. Such approaches can be utilized in various integrated nanophotonics applications ranging from optical cavities and read/write heads to concentrating photovoltaics.

  16. Long period fiber gratings induced by mechanical resonance

    CERN Document Server

    Shahal, Shir; Duadi, Hamootal; Fridman, Moti

    2015-01-01

    We present a simple, and robust method for writing long period fiber gratings with low polarization dependent losses. Our method is based on utilizing mechanical vibrations of the tapered fiber while pooling it. Our method enables real-time tunability of the periodicity, efficiency and length of the grating. We also demonstrate complex grating by writing multiple gratings simultaneously. Finally, we utilized the formation of the gratings in different fiber diameters to investigate the Young's modulus of the fiber.

  17. Access Platforms for Offshore Wind Turbines Using Gratings

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.

    2008-01-01

    The paper deals with forces generated by a stationary jet on different types of gratings and a solid plate. The force reduction factors for the different gratings compared to the solid plate mainly depend on the porosity of the gratings, but the geometry of the grating is also of some importance........ The derived reduction factors are expected to be applicable to design of offshore wind turbine access platforms with gratings where slamming also is an important factor....

  18. Liquid crystal on subwavelength metal gratings

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation)

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  19. Theory of photorefractive dynamic grating formulation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The photorefractive holographic recording and two-beam coupling are both dynamic grating formulation process. The interference light intensity of the two coherent beams induces a phase grating though photo-induced refractive index variation and the phase grating changing the intensities of the two beams through beam-coupling take place at the same time. By solving simultaneously the band transport equations and wave-coupled equations, and using the light intensity modulation as the main variable, the analytic solution is obtained, which is valid for any light intensity modulation and constant light excitation efficiency. Here all the mechanics of drift, diffusion and photovoltaic effect are considered. The result shows that the modulation of the dynamic grating varies more slowly compared with that of the linear modulation approximation.

  20. Hydraulic Capacity of an ADA Compliant Street Drain Grate

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, Steven A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, Cezary [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratory’s Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standard vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.

  1. Spatial heterodyne interferometry with polarization gratings.

    Science.gov (United States)

    Kudenov, Michael W; Miskiewicz, Matthew N; Escuti, Michael J; Dereniak, Eustace L

    2012-11-01

    The implementation of a polarization-based spatial heterodyne interferometer (SHI) is described. While a conventional SHI uses a Michelson interferometer and diffraction gratings, our SHI exploits mechanically robust Wollaston prisms and polarization gratings. A theoretical model for the polarization SHI is provided and validated with data from our proof of concept experiments. This device is expected to provide a compact monolithic sensor for subangstrom resolution spectroscopy in remote sensing, biomedical imaging, and machine vision applications.

  2. Sampled phase-shift fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    Xu Wang(王旭); Chongxiu Yu(余重秀); Zhihui Yu(于志辉); Qiang Wu(吴强)

    2004-01-01

    A phase-shift fiber Bragg grating (FBG) with sampling is proposed to generate a multi-channel bandpass filter in the background of multi-channel stopbands. The sampled noire fiber gratings are analyzed by Fourier transform theory first, and then simulation and experiment are performed, the results show that transmission peaks are opened in every reflective channel, the spectrum shape of every channel is identical.It can be used to fabricate multi-wavelength distributed feedback (DFB) fiber laser.

  3. Library of medium-resolution fiber optic echelle spectra of F, G, K and M field dwarfs to giant stars

    CERN Document Server

    Montes, D; Welty, A D; Montes, David; Ramsey, Lawrence W.; Welty, Alan D.

    1999-01-01

    We present a library of Penn State Fiber Optic Echelle (FOE) observations of a sample of field stars with spectral types F to M and luminosity classes V to I. The spectral coverage is from 3800 AA to 10000 AA with nominal a resolving power 12000. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity such as the Balmer lines (H_alpha, H_beta), Ca II H & K, Mg I b triplet, Na I D_{1} and D_{2}, He I D_{3}, and Ca II IRT lines. There are also a large number of photospheric lines, which can also be affected by chromospheric activity, and temperature sensitive photospheric features such as TiO bands. The spectra have been compiled with the goal of providing a set of standards observed at medium resolution. We have extensively used such data for the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways ranging from radial vel...

  4. Surface-relief and polarization gratings for solar concentrators.

    Science.gov (United States)

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2011-08-01

    Transmission gratings that combine a large diffraction angle with a high diffraction efficiency and a low angular and wavelength dispersion could be used to collect sunlight in a light guide. In this paper we compare the diffractive properties of polarization gratings and classical surface-relief gratings and explore their possible use in solar concentrators. It is found that polarization gratings and surface-relief gratings have qualitatively comparable diffraction characteristics when their thickness parameters are within the same regime. Relatively large grating periods result in high diffraction efficiencies over a wide range of incident angles. For small grating periods the efficiency and the angular acceptance are decreased. Surface-relief gratings are preferred over polarization gratings as in-couplers for solar concentrators.

  5. Analytical and numerical study on grating depth effects in grating coupled waveguide sensors

    DEFF Research Database (Denmark)

    Horvath, R.; Wilcox, L.C.; Pedersen, H.C.;

    2005-01-01

    The in-coupling process for grating-coupled planar optical waveguide sensors is investigated in the case of TE waves. A simple analytical model based on the Rayleigh-Fourier-Kiselev method is applied to take into account the depth of the grating coupler, which is usually neglected in the modeling...

  6. A novel single-order diffraction grating: Random position rectangle grating

    Science.gov (United States)

    Zuhua, Yang; Qiangqiang, Zhang; Jing, Wang; Quanping, Fan; Yuwei, Liu; Lai, Wei; Leifeng, Cao

    2016-05-01

    Spectral diagnosis of radiation from laser plasma interaction and monochromation of radiation source are hot and important topics recently. Grating is one of the primary optical elements to do this job. Although easy to fabricate, traditional diffraction grating suffers from multi-order diffraction contamination. On the other hand, sinusoidal amplitude grating has the nonharmonic diffraction property, but it is too difficult to fabricate, especially for x-ray application. A novel nonharmonic diffraction grating named random position rectangle grating (RPRG) is proposed in this paper. Theoretical analysis and experiment results show that the RPRG is both higher order diffraction suppressing and not difficult to fabricate. Additionally, it is highly efficient; its first order absolute theoretical diffraction efficiency reaches 4.1%. Our result shows that RPRG is a novel tool for radiation diagnosis and monochromation. Project supported by the National Natural Science Foundation of China (Grant No. 11375160) and the National Science Instruments Major Project of China (Grant No. 2012YQ130125).

  7. Encoded cell grating array in anti-counterfeit technology

    Institute of Scientific and Technical Information of China (English)

    Zhongyu Chen; N. K. Bao; Po S. Chung

    2005-01-01

    @@ The dot matrix hologram (DMH) has been widely used in anti-counterfeiting label. With the same technology and cell array configuration, we can encode to the incidence beam. These codes can be some image matrix grating with different grating gap and different grating orientation. When the multi-level phase diffractive grating is etched, the incidence beam on the cell appears as an encoding image. When the encoded grating and DMH are used in the same label synchronously, the technology of multi-encoded grating array enhances the anti-counterfeit ability.

  8. Iridescence in Meat Caused by Surface Gratings

    Directory of Open Access Journals (Sweden)

    Ali Kemal Yetisen

    2013-11-01

    Full Text Available The photonic structure of cut muscle tissues reveals that the well-ordered gratings diffract light, producing iridescent colours. Cut fibrils protruding from the muscle surface create a two-dimensional periodic array, which diffract light at specific wavelengths upon illumination. However, this photonic effect misleads consumers in a negative way to relate the optical phenomenon with the quality of the product. Here we discuss the fundamentals of this optical phenomenon and demonstrate a methodology for quantitatively measuring iridescence caused by diffraction gratings of muscle tissue surface of pork (Sus scrofa domesticus using reflection spectrophotometry. Iridescence was discussed theoretically as a light phenomenon and spectral measurements were taken from the gratings and monitored in real time during controlled drying. The findings show that the intensity of diffraction diminishes as the surface grating was dried with an air flow at 50 °C for 2 min while the diffracted light wavelength was at 585 ± 9 nm. Our findings indicate that the diffraction may be caused by a blazed surface grating. The implications of the study include providing guidelines to minimise the iridescence by altering the surface microstructure, and in consequence, removing the optical effect.

  9. Arc-Induced Long Period Fiber Gratings

    Directory of Open Access Journals (Sweden)

    Gaspar Rego

    2016-01-01

    Full Text Available Long period fiber gratings produced by the electric arc technique have found an increasing interest by the scientific community due to their ease to fabricate, virtually enabling the inscription in any kind of fiber, low cost, and flexibility. In 2005 we have presented the first review on this subject. Since then, important achievements have been reached such as the identification of the mechanisms responsible for gratings formation, the type of symmetry, the conditions to increase fabrication reproducibility, and their inscription in the turning points with grating periods below 200 μm. Several interesting applications in the sensing area, including those sensors working in reflection, have been demonstrated and others are expected, namely, related to the monitoring of extreme temperatures, cryogenic and high temperatures, and high sensitivity refractometric sensors resulting from combining arc-induced gratings in the turning points and the deposition of thin films in the transition region. Therefore, due to its pertinence, in this paper we review the main achievements obtained concerning arc-induced long period fiber gratings, with special focus on the past ten years.

  10. Background and Scattered-Light Subtraction in the High-Resolution Echelle Modes of the Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Howk, J. Christopher; Sembach, Kenneth R.

    2000-05-01

    We present a simple, effective approach for estimating the on-order backgrounds of spectra taken with the highest resolution modes of the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope. Our scheme for determining the on-order background spectrum for STIS E140H and E230H observations uses moderate-order polynomial fits to the interorder scattered light visible in the two-dimensional STIS MAMA images. We present a suite of high-resolution STIS spectra to demonstrate that our background-subtraction routine produces the correct overall zero point as judged by the small residual flux levels in the centers of strongly saturated interstellar absorption lines. Although there are multiple sources of background light in STIS echelle mode data, this simple approach works very well for wavelengths longward of Lyα (λ>~1215 Å). At shorter wavelengths, the smaller order separation and generally lower signal-to-noise ratios of the data can reduce the effectiveness of our background estimation procedure. Slight artifacts in the background-subtracted spectrum can be seen in some cases, particularly at wavelengths of B2B and the GHRS first-order G160M observations of the early-type star HD 218915. We find no significant differences between the GHRS data and the STIS data reduced with our method in either case. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. The GMT-Consortium Large Earth Finder (G-CLEF): an optical Echelle spectrograph for the Giant Magellan Telescope (GMT)

    Science.gov (United States)

    Szentgyorgyi, Andrew; Baldwin, Daniel; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzmán, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Miin; Mendes de Oliveira, Claudia Mendes; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Onyuksel, Cem; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) will be a cross-dispersed, optical band echelle spectrograph to be delivered as the first light scientific instrument for the Giant Magellan Telescope (GMT) in 2022. G-CLEF is vacuum enclosed and fiber-fed to enable precision radial velocity (PRV) measurements, especially for the detection and characterization of low-mass exoplanets orbiting solar-type stars. The passband of G-CLEF is broad, extending from 3500Å to 9500Å. This passband provides good sensitivity at blue wavelengths for stellar abundance studies and deep red response for observations of high-redshift phenomena. The design of G-CLEF incorporates several novel technical innovations. We give an overview of the innovative features of the current design. G-CLEF will be the first PRV spectrograph to have a composite optical bench so as to exploit that material's extremely low coefficient of thermal expansion, high in-plane thermal conductivity and high stiffness-to-mass ratio. The spectrograph camera subsystem is divided into a red and a blue channel, split by a dichroic, so there are two independent refractive spectrograph cameras. The control system software is being developed in model-driven software context that has been adopted globally by the GMT. G-CLEF has been conceived and designed within a strict systems engineering framework. As a part of this process, we have developed a analytical toolset to assess the predicted performance of G-CLEF as it has evolved through design phases.

  12. III-Nitride grating grown on freestanding HfO2 gratings

    Directory of Open Access Journals (Sweden)

    Wu Tong

    2011-01-01

    Full Text Available Abstract We report here the epitaxial growth of III-nitride material on freestanding HfO2 gratings by molecular beam epitaxy. Freestanding HfO2 gratings are fabricated by combining film evaporation, electron beam lithography, and fast atom beam etching of an HfO2 film by a front-side silicon process. The 60-μm long HfO2 grating beam can sustain the stress change during the epitaxial growth of a III-nitride material. Grating structures locally change the growth condition and vary indium composition in the InGaN/GaN quantum wells and thus, the photoluminescence spectra of epitaxial III-nitride grating are tuned. Guided mode resonances are experimentally demonstrated in fabricated III-nitride gratings, opening the possibility to achieve the interaction between the excited light and the grating structure through guided mode resonance. PACS: 78.55.Cr; 81.65.Cf; 81.15.Hi.

  13. High-index-contrast subwavelength grating VCSEL

    DEFF Research Database (Denmark)

    Gilet, Philippe; Olivier, Nicolas; Grosse, Philippe

    2010-01-01

    In this article, we report our results on 980nm high-index-contrast subwavelength grating (HCG) VCSELs for optical interconnection applications. In our structure, a thin undoped HCG layer replaces a thick p-type Bragg mirror. The HCG mirror can feasibly achieve polarization-selective reflectivities...... close to 100%. The investigated structure consists of a HCG mirror with an underneath /4-thick oxide gap, four p-type GaAlAs/GaAs pairs for current spreading, three InGaAs/GaAs quantum wells, and an n-type GaAlAs/GaAs Bragg mirror. The HCG structure was defined by e-beam lithography and dry etching....... The current oxide aperture and the oxide gap underneath the HCG were simultaneously formed by the selective wet oxidation process. Compared to air-gap high contrast grating mirrors demonstrated elsewhere, our grating mirrors are particular since they are supported by thinner /4 aluminium oxide layer, and thus...

  14. Development of Aspherical Active Gratings at NSRRC

    Science.gov (United States)

    Tseng, Tse-Chuan; Wang, Duan Jen; Perng, Shen-Yaw; Chen, Chien-Te; Lin, Chia-Jui; Kuan, Chien-Kuang; Ho, His-Chou; Wang, Jeremy; Fung, H. S.; Chang, Shuo-Hung

    2007-01-01

    An active grating based on a novel optical concept with bendable polynomial surface profile to reduce the coma and defocus aberrations had been designed and proved by the prototype testing. Due to the low glass transition temperature of the glue and the difference of thermal expansion coefficient between the 17-4 steel bender and silicon, the prototype distorted from flat polished condition when thermally de-blocked the polishing pitch. To improve the thermal deformation of the active grating in the polishing process, a new invar bender and high curing temperature glue were adapted to glue a silicon substrate on the bender. After some tests and manufacturer polishing, it showed acceptable conditions. In this paper we will present the design and preliminary tests of the invar active grating. Meanwhile, the design and analysis of a new 17-4 PH steel bender to be electro-less nickel plating and mechanical ruling for a new beamline will also be discussed.

  15. Theoretical analysis on x-ray cylindrical grating interferometer

    CERN Document Server

    Cong, Wenxiang; Wang, Ge

    2015-01-01

    Grating interferometer is a state of art x-ray imaging approach, which can simultaneously acquire information of x-ray attenuation, phase shift, and small angle scattering. This approach is very sensitive to micro-structural variation and offers superior contrast resolution for biological soft tissues. The present grating interferometer often uses flat gratings, with serious limitations in the field of view and the flux of photons. The use of curved gratings allows perpendicular incidence of x-rays on the gratings, and gives higher visibility over a larger field of view than a conventional interferometer with flat gratings. In the study, we present a rigorous theoretical analysis of the self-imaging of curved transmission gratings based on Rayleigh-Sommerfeld diffraction. Numerical simulations have demonstrated the self-imaging phenomenon of cylindrical grating interferometer. The theoretical results are in agreement with the results of numerical simulations.

  16. Strongly Dispersive Transient Bragg Grating for High Harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, J.; Spector, L.S.; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Gaarde, M.B.; /SLAC, PULSE /Louisiana State U.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2010-06-04

    We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

  17. Polymeric waveguide Bragg grating filter using soft lithography

    Science.gov (United States)

    Kocabas, Askin; Aydinli, Atilla

    2006-10-01

    We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

  18. Transmission grating stretcher for contrast enhancement of high power lasers.

    Science.gov (United States)

    Tang, Yunxin; Hooker, Chris; Chekhlov, Oleg; Hawkes, Steve; Collier, John; Rajeev, P P

    2014-12-01

    We propose, for the first time, a transmission grating stretcher for high power lasers and demonstrate its superiority over conventional, reflective gold grating stretchers in terms of pulse temporal quality. We show that, compared to a conventional stretcher with the same stretching factor, the transmission-grating based stretcher yields more than an order of magnitude improvement in the contrast pedestal. We have also quantitatively characterized the roughness of the grating surfaces and estimated its impact on the contrast pedestal.

  19. Multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Yashina, Nataliya P.

    2012-08-01

    Modern scatterometry problems arising in the lithography production of periodic gratings are in the focus of the work. The performance capabilities of a novel theoretical and numerical modeling oriented to these problems are considered. The approach is based on rigorous solutions of 2-D initial boundary value problems of the gratings theory. The quintessence and advantage of the method is the possibility to perform an efficient analysis simultaneously and interactively both for steady state and transient processes of the resonant scattering of electromagnetic waves by the infinite and compact periodic structures. © 2012 IEEE.

  20. Novel algorithm for synthesis of fiber gratings

    Institute of Scientific and Technical Information of China (English)

    Bo LV; Ming CHEN; Dan LU; Taorong GONG; Tangjun LI; Shuisheng JIAN

    2009-01-01

    A novel algorithm for the synthesis of fiber gratings is presented.For the first time we propose an effective optimal approach to construct a coupling coefficient function by employing 4th-order Runge-Kutta (R-K) analysis method for calculating the reflection spectra of fiber gratings.The numerical results show that with this proposed method, some required optical filters have been yielded with better features compared with other methods such as Gel'Fand-Levitan-Marchenko (GLM) algorithm.In addition, the performance of different interpolation functions particularly utilized in our algorithm, including linear-type, spline-type, and Hermit-type, are discussed in detail.

  1. Sangac interferometer on the holographic bragg grating

    CERN Document Server

    Tikhonov, E A

    2015-01-01

    The ring interferometer with zero optical path difference known as Sagnac one is offered with a diffraction splitting of the entering light beam. As the beamsplitter, a transmission holographic Bragg grating is used. Conditions of normal operation of this interferometer achieve under the equal intensity of beam copies and the adjustable phase shift between them in its two interferometer shoulders. These conditions are met with the holographic grating, which provides the phase shift 180^0 on the central Bragg wavelength. Experimental approbation of the modified interferometer validates the expected results.

  2. Laser Trimming for Adjustment of Grating Offset in Phase-Shifted Fiber Grating Coupler for All-Optical Switching Application

    Institute of Scientific and Technical Information of China (English)

    Hirohisa; Yokota; Yutaka; Sasaki

    2003-01-01

    We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.

  3. Light scanner based on a viscoelastic stretchable grating

    NARCIS (Netherlands)

    Simonov, A.N.; Akhzar-Mehr, O.; Vdovine, G.V.

    2005-01-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings wi

  4. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper;

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  5. Fabrication of Dammann Gratings Inside Glasses by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    NAKAYA Takayuki; QIU Jian-Rong; ZHOU Chang-He; HIRAO Kazuyuki

    2004-01-01

    @@ Dammann grating is useful in information technology as an optical splitter. It is usually fabricated through complicated processes. Here we report on the direct fabrication of a 6 × 6 Dammann grating in a silica glass by an 800nm femtosecond laser. We also discuss the relationship between diffraction efficiency of 1 × 2 Dammann grating and laser irradiation conditions.

  6. Light scanner based on a viscoelastic stretchable grating

    NARCIS (Netherlands)

    Simonov, A.N.; Akhzar-Mehr, O.; Vdovine, G.V.

    2005-01-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings wi

  7. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  8. Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings.

    Science.gov (United States)

    Romero, Louis A; Dickey, Fred M

    2007-08-01

    We give an analytical basis for the theory of optimal beam splitting by one-dimensional gratings. In particular, we use methods from the calculus of variations to derive analytical expressions for the optimal phase function.

  9. CARMENES: Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle Spectrograph

    CERN Document Server

    Quirrenbach, A; Mandel, H; Caballero, J A; Ribas, I; Reiners, A; Mundt, R; Abril, M; Afonso, C; Bean, J L; Bejar, V J S; Becerril, S; Boehm, A; Cardenas, C; Claret, A; Colome, J; Costillo, L P; Dreizler, S; Fernandez, M; Francisco, X; Garrido, R; Hernandez, J I Gonzalez; Guenther, E W; Gutierrez-Soto, J; Joergens, V; Hatzes, A P; Henning, T; Herrero, E; Kurster, M; Laun, W; Lenzen, R; Mall, U; Martin, E L; Martin-Ruiz, S; Montes, D; Morales, J C; Munoz, R Morales; Moya, A; Naranjo, V; Rabaza, O; Ramon, A; Rebolo, R; Reffert, S; Rodler, F; Rodriguez, E; Trinidad, A Rodriguez; Rohloff, R -R; Carrasco, M A Sanchez; Schmidt, C; Seifert, W; Setiawan, J; Stahl, O; Suarez, J C; Wiedemann, G; del Burgo, C; Galadi, D; Sanchez-Blanco, E; Xu, W

    2009-01-01

    CARMENES, Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle Spectrograph, is a study for a next-generation instrument for the 3.5m Calar Alto Telescope to be designed, built, integrated, and operated by a consortium of nine German and Spanish institutions. Our main objective is finding habitable exoplanets around M dwarfs, which will be achieved by radial velocity measurements on the m/s level in the near-infrared, where low-mass stars emit the bulk of their radiation.

  10. Development of illumination optics in optical scheme of high-resolution fiber-fed echelle-spectrograph for the Big Telescope Alt-azimuth (BTA)

    Science.gov (United States)

    Kukushkin, D. E.; Sazonenko, D. A.; Bakholdin, A. V.; Valyavin, G. G.

    2016-08-01

    The report describes the development and optimization of optical scheme of the illumination optics of the entrance slit for the high-resolution fiber-fed echelle-spectrograph. The optical system of the illuminator provides the necessary agreement of the numerical apertures of the fiber and spectrograph, as well as it allows to install the necessary equipment to obtain the required structure of the image. As a result of the designing two components illumination system was obtained, which has a good transmission in a specified spectral range and low cost. This research provides a good instrument for performing modern researches for the astronomy.

  11. Echelle spectra of SN2014J from the Apache Point Observatory 3.5m telescope, UT January 27 and January 30, 2014

    Science.gov (United States)

    Ritchey, Adam M.; Welty, Daniel E.; Dahlstrom, Julie A.; York, Donald G.

    2014-02-01

    Optical spectra of SN2014J were recorded with the ARC echelle spectrograph at Apache Point Observatory, at approximately UT Jan. 27.2 (7 spectra, 8400 s) and UT Jan. 30.4, (6 spectra, 7200s), through thin clouds in seeing averaging 1.0 arcsec. The resolving power is 31,500. Useful interstellar spectra were obtained from 3850A to 9000A; estimated S/N values (photon counts only) near 6563A are 500 on Jan 27 and 400 on Jan 30, and about 1/3 those values at Ca II 3933A.

  12. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.

    2005-01-01

    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of...

  13. Gratings in plasmonic V-groove waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Cuesta, Irene Fernandez; Kristensen, Anders

    2011-01-01

    We introduce visible light optical gratings to surface plasmon V-groove waveguides. Gradient e-beam dosage onto silicon stamp enables structuring V-grooves of varying depth. Nanoimprint lithography maintains a Λ=265 nm corrugation for gold surface devices....

  14. Speed enhancement in VCSELs employing grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2013-01-01

    In recent years, various approaches to improve the speed of directly modulated vertical-cavity surface-emitting lasers (VCSELs) have been reported and demonstrated good improvement. In this paper, we propose and numerically investigate a new possibility of using high-index-contrast grating (HCG...

  15. Exciton-polaritons in Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Creatore, C [Department of Physics ' A. Volta' , Universita di Pavia, via Bassi 6, I-27100, Pavia (Italy); Mouchliadis, L; Langbein, W [School of Physics and Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff (United Kingdom); Biancalana, F [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen (Germany); Osborne, S, E-mail: creatore@fisicavolta.unipv.i [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2010-02-01

    We study the strong coupling between photons and bulk excitons in a one-dimensional Bragg grating. The dispersion of the resulting Bragg-polariton states resembles the dispersion of quantum-well microcavity polaritons. We report on a parametric scattering process at two 'magic frequencies' occurring due to the strong excitonic nonlinearity.

  16. Hybrid grating reflectors: Origin of ultrabroad stopband

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  17. Gratings in plasmonic V-groove waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Cuesta, Irene Fernandez; Kristensen, Anders

    2011-01-01

    We introduce visible light optical gratings to surface plasmon V-groove waveguides. Gradient e-beam dosage onto silicon stamp enables structuring V-grooves of varying depth. Nanoimprint lithography maintains a Λ=265 nm corrugation for gold surface devices....

  18. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  19. Concave diffraction gratings fabricated with planar lithography

    NARCIS (Netherlands)

    Grabarnik, S.; Emadi, A.; Wu, H.; De Graaf, G.; Wolffenbuttel, R.F.

    2008-01-01

    This paper reports on the development and validation of a new technology for the fabrication of variable line-spacing non-planar diffraction gratings to be used in compact spectrometers. The technique is based on the standard lithographic process commonly used for pattern transfer onto a flat substr

  20. Optical position encoder based on four-section diffraction grating

    Science.gov (United States)

    Zherdev, A. Y.; Odinokov, S. B.; Lushnikov, D. S.; Markin, V. V.; Gurylev, O. A.; Shishova, M. V.

    2017-05-01

    Optical position encoder consists of movable coding grating and fixed analyzing grating. Light passing and diffracting through these two gratings creates interference signal on optical detector. Decoding of interference signal phase allows to determinate current position. Known optical position encoders use several accurate adjusted optical channels and detectors to gather several signals with different phase for higher encoder accuracy. We propose to use one optical channel with several-section analyzing diffraction grating for this purpose to simplify optical scheme and adjusting requirements. Optical scheme of position encoder based on four-section analyzing diffraction grating is developed and described in this paper.

  1. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  2. Field analysis of two-dimensional integrated optical gratings

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.

  3. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  4. Fiber-bragg grating-loop ringdown method and apparatus

    Science.gov (United States)

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  5. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu

    2010-08-11

    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  6. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  7. First order Bragg grating filters in silicon on insulator waveguides

    Science.gov (United States)

    Waugh, Peter Michael

    2008-08-01

    The subject of this project is the design; analysis, fabrication and characterisation of first order Bragg Grating optical filters in Silicon-on-Insulator (SOI) planar waveguides. It is envisaged that this work will result in the possibility of Bragg Grating filters for use in Silicon Photonics. It is the purpose of the work to create as far as is possible flat surface waveguides so as to facilitate Thermo-Optic tuning and also the incorporation into rib-waveguide Silicon Photonics. The spectral response of the shallow Bragg Gratings was modelled using Coupled Mode Theory (CMT) by way of RSoft Gratingmod TM. Also the effect of having a Bragg Grating with alternate layers of refractive index of 1.5 and 3.5 was simulated in order to verify that Silica and Silicon layered Bragg Gratings could be viable. A series of Bragg Gratings were patterned on 1.5 micron SOI at Philips in Eindhoven, Holland to investigate the variation of grating parameters with a) the period of the gratings b) the mark to space ratio of the gratings and c) the length of the region converted to Bragg Gratings (i.e. the number of grating period repetitions). One set of gratings were thermally oxidised at Philips in Eindhoven and another set were ion implanted with Oxygen ions at the Ion Beam Facility, University of Surrey, England. The gratings were tested and found to give transmission minima at approximately 1540 nanometres and both methods of creating flat surfaces were found to give similar minima. Atomic Force Microscopy was applied to the grating area of the as-implanted samples in the Advanced Technology Institute, University of Surrey, which were found to have surface undulations in the order of 60 nanometres.

  8. Development and validation of the 'Echelle de Motivation envers l'Activité Physique en contexte de Santé': A motivation scale towards health-oriented physical activity in French.

    Science.gov (United States)

    Boiché, Julie; Gourlan, Mathieu; Trouilloud, David; Sarrazin, Philippe

    2016-11-21

    This article presents the validation of the 'Echelle de Motivation envers l'Activité Physique en contexte de Santé' including the six forms of motivation underlined by self-determination theory. Study 1 underlines the content validity of a pool of 30 items (N = 20). Study 2 supports the six-factor structure validity of the 18-item Echelle de Motivation envers l'Activité Physique en contexte de Santé (N = 309). Study 3 (N = 191) confirms structure validity, as well as concurrent validity and 2-week temporal reliability. The Echelle de Motivation envers l'Activité Physique en contexte de Santé can be considered as a valid and reliable tool to use in prevention or rehabilitation contexts.

  9. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera

    Science.gov (United States)

    Mohamed, Walid Tawfik Y.

    2008-02-01

    Laser-induced breakdown spectroscopy (LIBS) is a laser-based technique that can provide non-intrusive, qualitative and quantitative measurement of metals in various environments. LIBS uses the plasma generated by a high-energy laser beam to prepare and excite the sample in one step. In the present work, LIBS has been applied to perform elemental analysis of six trace elements simultaneously in aluminum alloy targets. The plasma is generated by focusing a pulsed Nd:YAG laser on the target in air at atmospheric pressure. LIBS limit of detection (LOD) is affected by many experimental parameters such as interferences, self-absorption, spectral overlap and matrix effect. We aimed to improve the LIBS LOD by optimizing these experimental parameters as possible. In doing so, a portable Echelle spectrometer with intensified CCD camera was used to detect the LIBS plasma emission. This advanced Echelle spectrometer provides a constant spectral resolution (CSR) of 7500 corresponding to 4 pixels FWHM over a wavelength range 200-1000 nm displayable in a single spectrum. Then, the calibration curves for iron, beryllium, magnesium, silicon, manganese and copper as minor elements were achieved with linear regression coefficients between 98-99% on average in aluminum standard sample alloys. New LOD values were achieved in the ppm range with high precision (RSD 3-8%). From the application view point, improving LIBS LOD is very important in the on-line industrial process control to follow-up multi-elements for the correct alloying in metals.

  10. Study of the Matrix Effect on the Plasma Characterization of Six Elements in Aluminum Alloys using LIBS with a Portable Echelle Spectrometer

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Volume 2 PROGRESS IN PHYSICS April, 2007 Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of Fe, Mg, Be, Si, Mn, and Cu in aluminum alloy targets. The generated plasma emissions due to focusing of a 100 mj Nd: YAG pulsed laser at 1064 nm at the target surface were detected using a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density N e and electron temperature T e assuming the LTE and optically thin plasma conditions. The obtained average values of T e and N e were 7600 K and 3 × 10 17 cm − 3 , respectively, for the six elements in the aluminum alloy samples. The electron density increases with the element concentration while the plasma temperature does not has significance change with concentration. For industrial applications, LIBS with the portable Echelle spectrometer could be applied in the on-line production control that following up elemental concentration in metals and pharmaceuticals by only measuring N e.

  11. Novel gratings for next-generation instruments of astronomical observations

    Science.gov (United States)

    Ebizuka, N.; Okamoto, T.; Takeda, M.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2017-05-01

    We will introduce current status of development of a birefringence volume phase holographic (B-VPH) grating, volume binary (VB) grating and reflector facet transmission (RFT) grating developing as the novel dispersive optical element for astronomical instruments for the 8.2m Subaru Telescope, for next generation 30 m class huge ground-based telescopes and for next generation large space-bone telescopes. We will also introduce a hybrid grism developed for MOIRCS (Multi-Object InfraRed Camera and Spectrograph) of the Subaru Telescope and a quasi-Bragg (QB) immersion grating. Test fabrication of B-VPH gratings with a liquid crystal (LC) of UV curable and normal LCs or a resin of visible light curable are performed. We successfully fabricated VB gratings of silicon as a mold with ridges of a high aspect ratio by means of the cycle etching process, oxidation and removal of silicon oxide. The RFT grating which is a surface-relief (SR) transmission grating with sawtooth shaped ridges of an acute vertex angle. The hybrid grism, as a prototype of the RFT grating, combines a high-index prism and SR transmission grating with sawtooth shape ridges of an acute vertex angle. The mold of the SR grating for the hybrid grism on to a work of Ni-P alloy of non-electrolysic plating successfully fabricated by using our ultra-precision machine and a single-crystal diamond bite. The QB immersion grating was fabricated by a combination of an inclined QB grating, Littrow prism and surface reflection mirror.

  12. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  13. Stationary Light Pulses without Bragg Gratings

    CERN Document Server

    Lin, Yen-Wei; Peters, Thorsten; Liao, Wen-Te; Cho, Hung-Wen; Guan, Pei-Chen; Yu, Ite A

    2008-01-01

    The underlying mechanism of the stationary light pulse (SLP) was identified as a band gap being created by a Bragg grating formed by two counter-propagating coupling fields of similar wavelength. Here we present a more general view of the formation of SLPs, namely several balanced four-wave mixing processes sharing the same ground-state coherence. Utilizing this new concept we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg grating can be established. We also demonstrate the production of a SLP directly from a propagating light pulse without prior storage. Being easily controlled externally makes SLPs a very versatile tool for low-light-level nonlinear optics and quantum information manipulation.

  14. 3D measurement using circular gratings

    Science.gov (United States)

    Harding, Kevin

    2013-09-01

    3D measurement using methods of structured light are well known in the industry. Most such systems use some variation of straight lines, either as simple lines or with some form of encoding. This geometry assumes the lines will be projected from one side and viewed from another to generate the profile information. But what about applications where a wide triangulation angle may not be practical, particularly at longer standoff distances. This paper explores the use of circular grating patterns projected from a center point to achieve 3D information. Originally suggested by John Caulfield around 1990, the method had some interesting potential, particularly if combined with alternate means of measurement from traditional triangulation including depth from focus methods. The possible advantages of a central reference point in the projected pattern may offer some different capabilities not as easily attained with a linear grating pattern. This paper will explore the pros and cons of the method and present some examples of possible applications.

  15. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...

  16. Strong Optical Confinement between Flat Dielectric Gratings

    CERN Document Server

    Li, Jingjing; Fiorentino, Marco; Beausoleil, Raymond G

    2011-01-01

    We present a novel type of optical micro-cavity based on a Fabry-Perot resonance between parallel high contrast gratings with non-periodic patterns. Tight lateral confinement is obtained via the phase front distortion properties of these gratings. In such cavities, energy stored in the optical field resides primarily in free space, therefore is readily accessible to particles (atoms, molecules, nanocrystals, etc.) for sensing, trapping, or spectroscopic applications. We describe the physics of these resonators, and propose a design method based on stochastic optimization. We present numerical simulations of two and three dimensional cavities that have diffraction-limited mode volumes with quality factors in the range of $10^4$--$10^6$. The cavity has a purely planar geometry and can be fabricated in silicon for near-infrared applications using standard CMOS processes. These ideas can be extended to the visible domain using commonly available III-V materials.

  17. Optical Properties of Topological Insulator Bragg Gratings

    CERN Document Server

    Crosse, J A

    2015-01-01

    Using the transfer matrix formalism, we study the transmission properties of a Bragg grating constructed from a layered axionic material. Such a material can be realized by a topological insulator subject to a time-symmetry breaking perturbation, such as an external magnetic field or surface magnetic impurities. Whilst the reflective properties of the structure are only negligibly changed by the presence of the axionic material, the grating induces Faraday and Kerr rotations in the transmitted and reflected light, respectively. These rotations are proportional to the number of layers and the strength of the time-symmetry breaking perturbation. In areas of low reflectivity the rotation angle of TE polarization decreases with increasing incidence angle while the TM polarization increases with increasing incidence angle with the converse occurring in areas of high reflectivity. The formalism and results will be useful in the development of optical and photonic devices based on topological insulators, devices whi...

  18. High reflection mirrors for pulse compression gratings.

    Science.gov (United States)

    Palmier, S; Neauport, J; Baclet, N; Lavastre, E; Dupuy, G

    2009-10-26

    We report an experimental investigation of high reflection mirrors used to fabricate gratings for pulse compression application at the wavelength of 1.053microm. Two kinds of mirrors are studied: the mixed Metal MultiLayer Dielectric (MMLD) mirrors which combine a gold metal layer with some e-beam evaporated dielectric bilayers on the top and the standard e-beam evaporated MultiLayer Dielectric (MLD) mirrors. Various samples were manufactured, damage tested at a pulse duration of 500fs. Damage sites were subsequently observed by means of Nomarski microscopy and white light interferometer microscopy. The comparison of the results evidences that if MMLD design can offer damage performances rather similar to MLD design, it also exhibits lower stresses; being thus an optimal mirror substrate for a pulse compression grating operating under vacuum.

  19. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  20. Robust topology design of periodic grating surfaces

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Sigmund, Ole

    2012-01-01

    Modern nanoscale manufacturing techniques allow for a high degree of flexibility in designing surface microstructures and nanostructures. Injection molding of nanosized features allows for mass production of plastic components with a tailored nanostructure producing specific optical effects...... depending on the purpose. This work details the use of topology optimization for designing periodic polymer grating surfaces with complex optical properties. A method based on robust topology optimization is formulated for designing the nanostructure of plastic surfaces with extreme reflection...

  1. Theoretical and measured performance of diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, M.A. E-mail: m.bowler@dl.ac.uk; Finetti, P.; Holland, D.M.P.; Humphrey, I.; Quinn, F.M.; Roper, M.D

    2001-07-21

    At the SRS at Daresbury Laboratory, we are undertaking a programme comparing the results from efficiency calculations of diffraction gratings, mainly using the GRADIF code of Neviere, with measured efficiencies. The deviations from the predicted performance are larger for higher orders than for first order. Higher order contamination is important in determining the usability of the beamline for certain types of experiments, particularly at energies below 100 eV.

  2. Theoretical and measured performance of diffraction gratings

    CERN Document Server

    Bowler, M A; Holland, D M P; Humphrey, I; Quinn, F M; Röper, M D

    2001-01-01

    At the SRS at Daresbury Laboratory, we are undertaking a programme comparing the results from efficiency calculations of diffraction gratings, mainly using the GRADIF code of Neviere, with measured efficiencies. The deviations from the predicted performance are larger for higher orders than for first order. Higher order contamination is important in determining the usability of the beamline for certain types of experiments, particularly at energies below 100 eV.

  3. Detailed Investigations of Load Coefficients on Grates

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.; Frigaard, Peter

    In this report is presented the results of model tests carried out at Dept. of Civil Engineering, aalborg University (AAU) on behalf of DONG Energy A/S and Vattenfall A/S, Denmark. The objective of the tests was to investigate the load coefficient on different grates and a solid plate for designi...... offshore windmill access platforms against run-up generated forces with special attention to the influence of air entrainment and the angle of attack....

  4. Grating Spectroscopes and How to Use Them

    CERN Document Server

    Harrison, Ken M

    2012-01-01

    Transmission grating spectroscopes look like simple filters and are designed to screw into place on the eyepiece tube of a telescope for visual use, or into a camera adapter for digicam or CCD imaging. They are relatively inexpensive and by far the easiest type of astronomical spectroscope to use, and so are the starting point for most beginners. Using the most popular commercially made filter gratings - from Rainbow Optics in the United States to Star Analyser in the United Kingdon - as examples, the book provides all the information needed to set up and use the grating to obtain stellar spectra. It also presents methods of analyzing the results. No heavy mathematics or formulas are involved, although a reasonable level of proficiency in using an astronomic telescope and, if relevant, imaging camera, is assumed. This book contains many practical hints and tips - something that is almost essential to success when starting out. It encourages new users to get quick results, and by following the worked examples,...

  5. Grating Loaded Cantilevers for Displacement Measurements

    Science.gov (United States)

    Karademir, Ertugrul; Olcum, Selim; Atalar, Abdullah; Aydinli, Atilla

    2010-03-01

    A cantilever with a grating coupler engraved on its tip is used for measuring displacement. The coupled light in the cantilever is guided to a single mode optical waveguide defined at the base of the cantilever. The grating period is 550 nm and is fabricated on a SOI wafer using nanoimprint lithography. The waveguide and the cantilever are defined by an RIE and cantilevers released by KOH and HF solutions. Light with 1550 nm wavelength, is directed onto the grating coupler and detected at the cleaved end of the SOI waveguide. The angle of incidence is controlled by a motorized rotary stage. Light couples into the waveguide at a characteristic angle with a full width at half maximum of approximately 6.9 mrads translating into a Q factor of 87.5. The displacement sensitivity is measured by driving the cantilever with a frequency controlled piezoelectric element. The modulation of the light at the waveguide output is lock-in detected by a biased infrared detector. The resulting 43%mrad-1 sensitivity can be increased with further optimization.

  6. Grating THz laser with optical pumping

    Science.gov (United States)

    Khoury, Jed; Haji-saeed, Bahareh; Woods, Charles; Kierstead, John

    2010-04-01

    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  7. Composite cure monitoring with Bragg grating sensors

    Science.gov (United States)

    Slattery, Kerry T.; Corona-Bittick, Kelli; Dorr, Donald J.

    1998-03-01

    Residual stress is induced in fiber composite materials during the cure process because the thermal expansion coefficient of the fiber is generally much lower than that of the polymer matrix. The two materials are 'locked' together at the cure temperature. Then, as they cool, the matrix attempts to contract more than the fiber leading to tension in the matrix and compression in the fiber. This can lead to the formation of microcracks parallel to the fibers in thick composite piles or yarns. The magnitude of residual stress can be reduced by modifying the cure cycle; however, optimizing the cure cycle requires a complete understanding of the state of cure throughout the composite. This is a complex problem -- especially in thick composites. Pilot studies have been performed placing Bragg gratin sensors in glass fabric preforms and monitoring the response of the grating during resin infusion and cure. The typical response shows the initial thermal expansion of the Bragg grating, a rapid contraction of the grating as the resin gels, slower contraction during cure, and thermal contraction at the composite thermal expansion coefficient during cool down. This data is then sued with micromechanical models of the fiber/matrix interaction during cure to establish material parameters for cure simulation. Once verified, these cure simulation methods will be used to optimize tooling design and cure cycles in composite components.

  8. Measuring vibration by using fiber Bragg grating and demodulating it by blazed grating

    Institute of Scientific and Technical Information of China (English)

    Xiaojin Guo(郭晓金); Zongmin Yin(殷宗敏); Ning Song(宋宁)

    2004-01-01

    A method of measuring vibration by using fiber Bragg grating (FBG) and demodulating the spectrum by blazed grating is introduced. The sensor system is made of a simple supported beam with a FBG adhered to its upper surface. A blazed grating is used to demodulate the changing spectrum that is got from the sensor system, and a line charge-coupled device (CCD) is used to accept the diffraction spectrum.Through analyzing the number of the CCD's pixels, we can get the amplitude of vibration and the change of the temperature. The experimental results show that the vibration amplitude of the exciter matches the detected signal under the stable frequency. The temperature shift and vibration signal are also successfully separated.

  9. Towards freeform curved blazed gratings using diamond machining

    Science.gov (United States)

    Bourgenot, C.; Robertson, D. J.; Stelter, D.; Eikenberry, S.

    2016-07-01

    Concave blazed gratings greatly simplify the architecture of spectrographs by reducing the number of optical components. The production of these gratings using diamond-machining offers practically no limits in the design of the grating substrate shape, with the possibility of making large sag freeform surfaces unlike the alternative and traditional method of holography and ion etching. In this paper, we report on the technological challenges and progress in the making of these curved blazed gratings using an ultra-high precision 5 axes Moore-Nanotech machine. We describe their implementation in an integral field unit prototype called IGIS (Integrated Grating Imaging Spectrograph) where freeform curved gratings are used as pupil mirrors. The goal is to develop the technologies for the production of the next generation of low-cost, compact, high performance integral field unit spectrometers.

  10. Phasor analysis of binary diffraction gratings with different fill factors

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Antonio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain); Sanchez-Lopez, Ma del Mar [Instituto de BioingenierIa y Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, 03202 Elche (Spain); Moreno, Ignacio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain)

    2007-09-11

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors.

  11. Simulation of Novel Tunable Nonlinear Chirped Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-min; YU Zhong-yuan; ZHANG Xiao-guang; YU Li; YANG Bo-jun

    2003-01-01

    A novel tunable chirped fiber Bragg grating technology is proposed and simulated numerically by Matlab. If we adhere a uniform fiber grating with super magnetostrictive film and expose them in a non-uniform magnetic field, the period of the grating can be changed with the strain imposed on it by the magnetostrictive effect .The chirped characteristics can be tuned by changing the magnetic filed which is very flexible in designing.

  12. Adaptive perfectly matched layer for Wood's anomalies in diffraction gratings

    CERN Document Server

    Vial, Benjamin; Nicolet, André; Commandré, Mireille; Tisserand, Stéphane

    2015-01-01

    We propose an Adaptive Perfectly Matched Layer (APML) to be used in diffraction grating modeling. With a properly tailored co-ordinate stretching depending both on the incident field and on grating parameters, the APML may efficiently absorb diffracted orders near grazing angles (the so-called Wood's anomalies). The new design is implemented in a finite element method (FEM) scheme and applied on a numerical example of a dielectric slit grating. Its performances are compared with classical PML with constant stretching coefficient.

  13. Refractometric sensors based on long period optical fiber gratings

    OpenAIRE

    2006-01-01

    In this work, results of the design of uniform and nonuniform longperiod gratings are presented, with a view to being used as refractometric sensors. We found an optimal combination of the longitudinal variation of the fiber refractive index and the grating period, which increases the sensor linearity in comparison with a uniform grating, without decreasing its average sensitivity within a range of the external refractive index from 1.41 to 1.44.

  14. Optical implementation of the Hopfield neural network with matrix gratings

    Science.gov (United States)

    Yeh, Sheng L.; Lo, Rong C.; Shi, Cha Y.

    2004-02-01

    We propose a new method for the optical implementation of the Hopfield neural network with a universal tool. The tool is a matrix grating constituted with a group of element gratings. The algorithms for designing a matrix grating are proposed, and a matrix grating is created to execute recognition experiments by use of the Hopfield neural network. The experimental results demonstrate that the proposed method performs well. The stability of the light efficiencies of different optical components used in optical networks is also considered.

  15. Effect of Effective Refractive Index of Grating in FBG Splitter

    Directory of Open Access Journals (Sweden)

    DINESH ARORA

    2011-09-01

    Full Text Available The Fiber Bragg Gratings have been used extensively in the communication industry. Fiber Bragg grating is written directly into the core of the optical fiber and it is quite an attractive technique for wavelength splitter since it provides high reflectivity at a certain wavelength, with negligible transmission losses for others, providing a wavelength-channel selection with low crosstalk between adjacent channels.In this paper we propose a Fiber Bragg Grating base splitter with alteration of effective refractive index of grating for Ethernet passive optical network. With the increase in the effective refractive index the reflectivity of grating is increased. We analysed the effect of effective refractive index on reflectivity of grating. In our work the Bragg wavelength has been fixed at 1550 nm,length of the grating as 10mm and with effective refractive index as 4.0 it has been found that the reflectivity of the grating or the effectiveness of the grating in extracting the wavelength is 92-93%.

  16. Modeling spatially localized photonic nanojets from phase diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Geints, Yu. E., E-mail: ygeints@iao.ru [V.E. Zuev Institute of Atmospheric Optics SB RAS (IAO SB RAS), 1, Academician Zuev Square, Tomsk 634055 (Russian Federation); Tomsk State University, 36, Lenina Avenue, Tomsk 634050 (Russian Federation); Zemlyanov, A. A. [V.E. Zuev Institute of Atmospheric Optics SB RAS (IAO SB RAS), 1, Academician Zuev Square, Tomsk 634055 (Russian Federation)

    2016-04-21

    We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffraction grating rulings.

  17. Diffraction Gratings for High-Intensity Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  18. Improved layer peeling algorithm for strongly reflecting fiber gratings

    Institute of Scientific and Technical Information of China (English)

    Liqun Huang; Weiping Huang; Jinkuan Wang; Guang Yang

    2006-01-01

    @@ An improved algorithm based on the layer peeling (LP) method is proposed and demonstrated.The new method is shown to be effective for mitigating the impact of numerical errors on reconstruction of coupling function for strongly reflecting Bragg gratings.As examples,a flat-top dispersion-free fiber grating and a fiber-grating dispersion compensator are designed by the improved LP method.For a chirp grating,more accurate results are demonstrated in comparison with those obtained by the integral layer peeling (ILP) method.

  19. Wavelength-conserving grating router for intermediate wavelength density

    Science.gov (United States)

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  20. Bragg Fibers with Soliton-like Grating Profiles

    Directory of Open Access Journals (Sweden)

    Bugaychuk S.

    2016-01-01

    Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.

  1. Perambatan Gelombang Optik pada Grating Sinusoidal dengan Chirp dan Taper

    Directory of Open Access Journals (Sweden)

    Isnani Darti

    2009-11-01

    menggunakan MIL, dipelajari perubahan respon optik pada grating sinusoidal akibat variasi amplitudo modulasi indeks (taper dan variasi frekuensi spasial grating (chirp. Hasil simulasi menunjukkan bahwa taper menyebabkan adanya fenomena penghilangan side-lobe pada spektrum transmitansi. Adanya chirp menyebabkan penghalusan side-lobe pada spektrum transmitansi dengan semakin besar parameter chirp menyebabkan peningkatan transmitansi di sekitar pusat band-gap dari grating homogen. Selain implementasi integrasi numerik (Runge-Kutta, MIL merupakan metode eksak sehingga dapat digunakan untuk mengevaluasi validitas metode yang sering digunakan yaitu Persamaan Moda Tergandeng (PMT. Dari hasil perbandingan dapat disimpulkan bahwa secara umum PMT kurang akurat dalam menganalisis struktur grating sinusoidal baik homogen maupun tak-homogen.

  2. Higher Order Diffraction Characteristics of Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-02-01

    Full Text Available The effect of grating saturation on higher order diffraction characteristic of FBG is investigated by using Coupled mode theory. Grating saturation effects were considered in the index distribution model showing the significant influence on the coupling process and hence on the reflectivity characteristics of FBG. Maximum reflectivity curves for first and higher order diffraction of FBG are plotted for different values of saturation coefficient. The effect of change in length and change in refractive index are studied. The behavior of grating for higher order of diffraction is totally different than first order of diffraction. In saturated gratings, the higher order diffraction can be utilized for multiparameter sensing

  3. Modeling Component-based Bragg gratings Application: tunable lasers

    Directory of Open Access Journals (Sweden)

    Hedara Rachida

    2011-09-01

    Full Text Available The principal function of a grating Bragg is filtering, which can be used in optical fibers based component and active or passive semi conductors based component, as well as telecommunication systems. Their ideal use is with lasers with fiber, amplifiers with fiber or Laser diodes. In this work, we are going to show the principal results obtained during the analysis of various types of grating Bragg by the method of the coupled modes. We then present the operation of DBR are tunable. The use of Bragg gratings in a laser provides single-mode sources, agile wavelength. The use of sampled grating increases the tuning range.

  4. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  5. Thin film coated submicron gratings: theory, design, fabrication and application

    Energy Technology Data Exchange (ETDEWEB)

    Heine, C.

    1996-12-31

    The realization of new applications of submicron grating structures requires efficient theoretical methods and elaborate fabrication techniques. In this work rigorous diffraction theory for one-dimensional gratings has been investigated and optimization techniques, based on methods used in thin film optics, have been developed. Submicron gratings embossed in polycarbonate have been fabricated and characterized. This includes transmission measurements which are in good agreement with theoretical calculations. Designs for a wide range of optical filters, which lead to improved optical and mechanical properties, are presented. This has been demonstrated for broadband antireflection structures for solar energy applications, based on MgF{sub 2}-coated gratings. (author) figs., tabs., refs.

  6. Characterization of surface relief gratings of submicron period

    Science.gov (United States)

    Logofătu, P. C.; Apostol, D.; Castex, Marie-Claude; Apostol, Ileana; Damian, V.; Iordache, Iuliana; Müller, Raluca

    2007-08-01

    This paper deals with optical characterization of photo-polymer gratings for parameter control. The gratings were obtained using the photoinduced single step inscription of refractive optical elements technique. The optical characterization was done by measuring the specular and diffracted orders of a laser beam incident on the grating. This technique is specifically known as scatterometry. The laser was a He-Ne with 633 nm wavelength. The measured diffraction efficiencies contain information about the parameters to be determined of the grating, such as pitch, linewidth and shape of the ridges.

  7. Holographic Grating Formation in Cationic Photopolymers with Dark Reaction

    Institute of Scientific and Technical Information of China (English)

    WEI Hao-Yun; CAO Liang-Cai; GU Claire; XU Zhen-Feng; HE Ming-Zhao; HE Qing-Sheng; HE Shu-Rong; JIN Guo-Fan

    2006-01-01

    @@ We propose a new formula to describe the dynamics of holographic grating formation under low intensity pulse exposures in cationic photopolymers, in which the dark reaction contributes dominantly to the grating strength.The formula is based on the living polymerization mechanism and the diffusion-free approximation. The analytical solution indicates that the grating formation time depends on the termination rate constant, while the final grating strength depends linearly on the total exposure energy. These theoretical predictions are verified experimentally using the Aprilis HMC-400μm photopolymer. The results can provide guidelines for the control and optimization of the holographic recording conditions in practical applications.

  8. Scientific Objectives and Design Study of an Adaptive Optics Visual Echelle Spectrograph and Imager Coronograph (AVES-IMCO) for the NAOS Visitor Focus at the VLT

    Science.gov (United States)

    Pallavicini, Roberto; Zerbi, Filippo; Beuzit, Jean-Luc; Bonanno, Giovanni; Bonifacio, Piercarlo; Comari, Maurizio; Conconi, Paolo; Delabre, Bernard; Franchini, Mariagrazia; Marcantonio, Paolo Di; Lagrange, Anne-Marie; Mazzoleni, Ruben; Molaro, Paolo; Pasquini, Luca; Santin, Paolo

    We present the scientific case for an Adaptive Optics Visual Echelle Spectrograph and Imager Coronograph (AVES-IMCO) that we propose as a visitor instrument for the secondary port of NAOS at the VLT. We show that such an instrument would be ideal for intermediate resolution (R=16,000) spectroscopy of faint sky-limited objects down to a magnitude of V=24.0 and will complement very effectively the near-IR imaging capabilities of CONICA. We present examples of science programmes that could be carried out with such an instrument and which cannot be addressed with existing VLT instruments. We also report on the result of a two-year design study of the instrument, with specific reference to its use as parallel instrument of NAOS.

  9. ECHELLE SPECTROSCOPY OF THE NUCLEI OF THE HIGHLY COLLIMATED BIPOLAR PLANETARY NEBULAE M 2-9 AND M 1-91

    Directory of Open Access Journals (Sweden)

    S. Torres-Peimbert

    2010-01-01

    Full Text Available Presentamos espectroscopía echelle del núcleo sin resolver de las nebulosas bipolares M 2-9 and M 1-91. Los espectros están dominados por líneas de emisión emitidas en un amplio intervalo de condiciones físicas. De las observaciones identificamos las líneas de emisión, las condiciones físicas y los movimientos relativos de las diferentes especies ionizadas en la región circunestelar de ambos objetos. Proponemos que las líneas prohibidas observadas se originan en la parte interior del toro extendido que rodea a cada objeto.

  10. CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Mandel, H.; Caballero, J. A.; Mundt, R.; Ribas, I.; Reiners, A.; Abril, M.; Aceituno, J.; Afonso, C.; Barrado y Navascues, D.; Bean, J. L.; Béjar, V. J. S.; Becerril, S.; Böhm, A.; Cárdenas, M. C.; Claret, A.; Colomé, J.; Costillo, L. P.; Dreizler, S.; Fernández, M.; Francisco, X.; Galadí, D.; Garrido, R.; González Hernández, J. I.; Guàrdia, J.; Guenther, E. W.; Gutiérrez-Soto, F.; Joergens, V.; Hatzes, A. P.; Helmling, J.; Henning, T.; Herrero, E.; Kürster, M.; Laun, W.; Lenzen, R.; Mall, U.; Martin, E. L.; Martín-Ruiz, S.; Mirabet, E.; Montes, D.; Morales, J. C.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Rabaza, O.; Ramón, A.; Rebolo, R.; Reffert, S.; Rodler, F.; Rodríguez, E.; Rodríguez Trinidad, A.; Rohloff, R. R.; Sánchez Carrasco, M. A.; Schmidt, C.; Seifert, W.; Setiawan, J.; Solano, E.; Stahl, O.; Storz, C.; Suárez, J. C.; Thiele, U.; Wagner, K.; Wiedemann, G.; Zapatero Osorio, M. R.; del Burgo, C.; Sánchez-Blanco, E.; Xu, W.

    2010-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing a simultaneous ThAr calibration.

  11. Holographic Recording and Applications of Multiplexed Volume Bragg Gratings in Photo-Thermo-Refractive Glass

    Science.gov (United States)

    2014-10-06

    applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Volume Bragg grating (VBG) structures are capable of diffracting...research in the holographic recording of volume Bragg gratings in photo- thermo -refractive (PTR) glass has shown that these gratings are extremely...ABSTRACT Holographic recording and applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Report Title Volume Bragg grating (VBG

  12. Low-Dispersion Fibre Bragg Gratings Written Using the Polarization Control Method

    DEFF Research Database (Denmark)

    Deyerl, Hans Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm;

    2002-01-01

    We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings.......We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings....

  13. An explanation for the non-uniform grating effects during recording of diffraction gratings in photopolymers.

    Science.gov (United States)

    Blaya, S; Acebal, P; Carretero, L; Murciano, A; Madrigal, R F; Fimia, A

    2010-01-18

    The recent results reported in reference 1 have produced an increased interest in explaining deviations from the ideal behavior of the energetic variation of the diffraction efficiency of holographic gratings. This ideal behavior occurs when uniform gratings are recorded, and the index modulation is proportional to the energetic exposure. As a result, a typical sin(2) curve is obtained reaching a maximum diffraction efficiency and saturation at or below this value. However, linear deviations are experimentally observed when the first maximum on the curve is lower than the second. This effect does not correspond to overmodulation and recently in PVA/acrylamide photopolymers of high thickness it has been explained by the dye concentration in the layer and the resulting molecular weight of the polymer chains generated in the polymerization process. In this work, new insights into these deviations are gained from the analysis of the non-uniform gratings recorded. Therefore, we show that deviations from the linear response can be explained by taking into account the energetic evolution of the index modulation as well as the fringe bending in the grating.

  14. Gratings in passive and active optical waveguides

    DEFF Research Database (Denmark)

    Berendt, Martin Ole

    1999-01-01

    attenuated. In either case the cladding mode coupling gives loss on the short wavelength side of the reflection band. The cladding mode coupling loss is a major problem for the utilization of fiber Bragg gratings in wavelength division multiplexed (WDM) system. In this project, a numerical model for cladding...... investigated. Pump induced temperature gratdient in the DFB structure has been found to degrade the output power. Selective cooling to compensate the temperature gradient more than doubled the output power. The experiment indicates that ouput power in excess of 10mW, with 80 mW of 980 nm pumping is feasible...

  15. Longitudinal coupling effect in microfiber Bragg gratings

    Science.gov (United States)

    Zhao, Ping; Zhang, Jihua; Wang, Guanghui; Jiang, Meng; Ping Shum, Perry; Zhang, Xinliang

    2012-10-01

    We theoretically present longitudinal coupling effect (LCE) in air-cladding microfiber Bragg gratings (MFBGs). Distinct from conventional weakly-guiding optical fibers, large longitudinal electric field (Ez) exists in wavelength-scale microfibers. Due to LCE, MFBG reflectivity can be reduced by more than 30% within the band-gap and the full width at half maximum (FWHM) is obviously narrowed. This theoretical analytical work is instructive to precisely design and fabricate MFBGs that are promising in the areas of optical sensing and nanophotonics.

  16. Fractal signatures in the aperiodic Fibonacci grating.

    Science.gov (United States)

    Verma, Rupesh; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2014-05-01

    The Fibonacci grating (FbG) is an archetypal example of aperiodicity and self-similarity. While aperiodicity distinguishes it from a fractal, self-similarity identifies it with a fractal. Our paper investigates the outcome of these complementary features on the FbG diffraction profile (FbGDP). We find that the FbGDP has unique characteristics (e.g., no reduction in intensity with increasing generations), in addition to fractal signatures (e.g., a non-integer fractal dimension). These make the Fibonacci architecture potentially useful in image forming devices and other emerging technologies.

  17. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The....... The simulation sheds light on issues that are not amenable to analytical solutions, such as the spectral content of the wave forms, cross talk in three-beam interaction, and the range of applications of the band-transport model. (C) 1998 Optical Society of America....

  18. High-refractive-index measurement with an elastomeric grating coupler

    NARCIS (Netherlands)

    Kocabas, Askin; Ay, Feridun; Dana, Aykutiu; Kiyat, Isa; Aydinli, Atilla

    2005-01-01

    An elastomeric grating coupler fabricated by the replica molding technique is used to measure the modal indices of a silicon-on-insulator (SOI) planar waveguide structure. Because of the van der Waals interaction between the grating mold and the waveguide, the elastomeric stamp makes conformal conta

  19. Cryogenic VPH gratings for the CELT/TMT

    Science.gov (United States)

    Blais-Ouellette, Sebastien; Guzman, Dani; Elgamil, Amal; Rallison, Richard

    2004-09-01

    Characterization of Volume Phase Holographic gratings at cryogenic temperatures have been conducted using a new test facility at Caltech. The new test bench includes a cryostat that allows large angles for incident and diffracted light. Gratings under tests are shielded from thermal background, and precisely and uniformly temperature controlled. Preliminary results are presented and show little temperature dependence of the efficiency function.

  20. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  1. Analysis of the optical parameters of phase holographic gratings

    Directory of Open Access Journals (Sweden)

    Є.О. Тихонов

    2008-03-01

    Full Text Available  Suitability of 2- wave approximation of the coupled waves theory tor description of holographic phase gratings recorded on photopolymer compound ФПК-488 is proved. Using the basic formulas of the theory, main grating optical parameters - a depth of modulation and finished thickness are not measured immediately are determined.

  2. Pre-correction of projected gratings for surface profile measurement

    Science.gov (United States)

    Sun, Cuiru; Lu, Hua

    2008-11-01

    This paper discusses errors caused by unequal grating pitch in applying the phase-shifted digital grating projection method for object profile measurement. To address the related issues, a new scheme is proposed to effectively improve the uniformity of the projected grating pitch across the object surface with no additional hardware cost. The improvement is mainly realized via a grating pitch pre-correction algorithm assisted by Digital Speckle/Image Correlation (DSC/DIC). DIC is utilized to accurately determine the surface grating pitch variation when an originally equal-pitched grating pattern is slant projected to the surface. With the actual pitch distribution function determined, a pre-corrected grating with unequal pitch is generated and projected, and the iterative algorithm reaches a constant pitched surface grating. The mapping relationship between the object surface profile (or out-of-plane displacement) and the fringe phase changes is obtained with a real-time subtraction based calibration. A quality guide phase unwrapping method is also adopted in the fringe processing. Finally, a virtual reference phase plane obtained by a 3-point plane fitting algorithm is subtracted to eliminate the carrier phase. The study shows that a simple optical system implemented with the mentioned improvements remarkably increase the accuracy and the efficiency of the measurement.

  3. Birefringent Bragg Gratings in Highly-Nonlinear Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Kevin Cook; John Canning; John Holdsworth

    2008-01-01

    Efficient writing of Bragg gratings in 12-ring highly-nonlinear photonic crystal fibers is described. Experimental and numerical investigations are performed to reveal the optimum angle for coupling UV writing light to the core. Furthermore, we show that the formation of a strongly briefringent grating is at a particular angle of orientation.

  4. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  5. 75 FR 41889 - Certain Steel Grating From China

    Science.gov (United States)

    2010-07-19

    ... Register on February 25, 2010 (75 FR 8746). The hearing was held in Washington, DC, on May 25, 2010, and... COMMISSION Certain Steel Grating From China Determination On the basis of the record \\1\\ developed in the... steel grating from China, provided for in subheading 7308.90.70 of the Harmonized Tariff Schedule of...

  6. Transmission gratings for beam sampling and beam splitting.

    Science.gov (United States)

    Popov, E K; Loewen, E G; Neviére, M

    1996-06-01

    Transmission gratings have rarely been used for beam sampling because they require special properties from dielectric overcoatings, which, to the best of our knowledge, are described here for the first time. Although such gratings are often used as beam splitters, their nature can be modified along the same principles with thin metal coatings, which are described.

  7. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  8. Compact Bragg Gratings for Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I; Nikolajsen, Thomas

    2006-01-01

    lengths (from 20 to 160 mm), heights (tens of nm) and widths of the metal ridges forming the grating, and demonstrate the reflectivity of up to 60% and bandwidths ranging from 5 to 40 nm. By using a simple lossless-uniform-grating description, we estimate the effective refractive index modulation in LR...

  9. Wavelength-independent field enhancement in subwavelength gratings

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Novitsky, Andrey; Shyroki, D.

    2011-01-01

    We show that lamellar metal gratings exhibit total transmission of incident radiation and strong nonresonant electric field enhancement in extremely subwavelength regime (in the nanometer-sized slits). With high accuracy the enhancement equals the ratio of the grating period to the slit width...

  10. Synthesis of Planar Reflective Gratings for Silicon Interconnects

    Directory of Open Access Journals (Sweden)

    Serge Bidnyk

    2008-05-01

    Full Text Available The design and simulations of planar reflective gratings for building optical interconnects in silicon-on-insulator (SOI were studied for a range of silicon core thicknesses of 0.1 to 10 μm. The verticality of the grating facets has been shown to be the main contributing factor to the cumulative crosstalk in thick silicon cores. The dispersion property of the slab was found to limit the minimal thickness of the core for polarization-insensitive gratings. The effects of polarization-dependent confinement on optical crosstalk were studied. The findings were used to design and simulate a polarization-insensitive 18-channel coarse wavelength division demultiplexer (CWDM with a free spectral range of over 600 nm. The CWDM demultiplexer uses a 1.7 μm silicon core and combines a shallow-etch tapered rib structure and multimode silicon channels to produce box-like passbands for integrated receiver applications. The diffraction grating was constructed using double astigmatic point design with phase-corrected grating facets to reduce astigmatism. Optical properties of the planar gratings have been simulated using quasivectorial diffraction grating theory. The simulation results confirm that there is high diffraction efficiency and low optical crosstalk over the entire range of operation. Applications of planar silicon gratings to the synthesis of silicon interconnects are discussed.

  11. Surface relief and polarization gratings for solar concentrators

    NARCIS (Netherlands)

    De Jong. T.M.; De Boer, D.K.G.; Bastiaansen, C.W.M.

    2012-01-01

    Transmission gratings that combine a large diffraction angle with ahigh diffraction efficiency and low angular and wavelength dispersion could be used to collect sunlight in a light guide. In this paperwe determine what characteristics a grating should have in order tobe useful for such a solar

  12. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  13. Light scanner based on a viscoelastic stretchable grating.

    Science.gov (United States)

    Simonov, A N; Akhzar-Mehr, O; Vdovin, G

    2005-05-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at lambda = 633 nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6 degrees to 5.4 degrees while the diffraction efficiency remained almost constant at approximately 17%. Dynamic scanning of a laser beam at frequencies of approximately 1 kHz is demonstrated by use of electromechanically driven viscoelastic gratings.

  14. Light scanner based on a viscoelastic stretchable grating

    Science.gov (United States)

    Simonov, A. N.; Akhzar-Mehr, O.; Vdovin, G.

    2005-05-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings with triangular and rectangular profiles have been characterized at lambda = 633 nm. It is demonstrated that the reversible elongation can exceed 20% of the initial length. For the triangular profile grating, the diffraction angle of the first order changed from 6.6μ to 5.4μ while the diffraction efficiency remained almost constant at ~17%. Dynamic scanning of a laser beam at frequencies of ~1 kHz is demonstrated by use of electromechanically driven viscoelastic gratings.

  15. Specification of multiple image characteristics viewed through a grating

    Science.gov (United States)

    Abolhassani, Mohammad

    2016-11-01

    When a person observes an object, illuminated incoherently by a quasi-monochromatic source, through a grating, he will see more than one image. Angular positions of these images are derived in terms of wavelength, period of the grating, separation between the object and the grating, and position of the object relative to the observer. In a special case, when the object is another grating, the condition of coincidence of its multiple images is investigated. The relation derived is, to some extent, similar to that seen in the Lau effect. As a secondary outcome, it is shown that the sum of the squared modulus of the odd Fourier series coefficients for a binary grating function is equal to that of the even coefficients.

  16. Excitation of a surface plasmon with an elastomeric grating

    Science.gov (United States)

    Kocabas, A.; Dâna, A.; Aydinli, A.

    2006-07-01

    We report on a new method to excite surface plasmon polaritons on a thin metal slab surface using an elastomeric grating which is fabricated by replica molding technique. The grating is placed on the metal surface which creates a periodic perturbation on the surface matching the momentum of the incident light to that of the surface plasmon. The conformal contact between the metal surface and the elastomeric grating changes the dielectric medium periodically and allows the observation of an effective surface plasmon polariton at the metal-air and metal-polymer interfaces of the grating. To clarify the nature of the observed plasmon, comparison of the elastomeric grating with elastomeric slabs was performed with the attenuated total reflection method.

  17. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  18. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    Science.gov (United States)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  19. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  20. Electro-optically tunable diffraction grating with photoaligned liquid crystals

    Science.gov (United States)

    Węgłowski, Rafał; Kozanecka-Szmigiel, Anna; Piecek, Wiktor; Konieczkowska, Jolanta; Schab-Balcerzak, Ewa

    2017-10-01

    This work shows the possibility of fabricating one- and two-dimensional diffraction structures based on liquid crystals photoaligned with the layers of photosensitive azobenzene poly(ester imide). The gratings involve a micron-sized planar-twisted nematic alignment. The diffraction efficiency of these gratings is controlled by a uniform electric field applied across the cell. The electro-optical measurements showed short switching times (0.8 ms and 7 ms for τrise and τdecay respectively) and low driving electric fields (1 . 5 V / μm) of 1st order diffracted light. The LC grating is regarded as an amplitude grating in the low electric field region and a phase grating in the high electric field region. Moreover the diffraction efficiency is polarization-independent in the wide range of external electric fields.

  1. Electromagnetically Induced Grating Without Absorption Using Incoherent Pump

    Science.gov (United States)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang

    2017-10-01

    We propose a scheme for creating electromagnetically induced grating in a four-level double- Λ atomic system driven by a coupling field and an incoherent pump field. Owing to the incoherent pumping process, large refractivity accompanied with vanishing absorption or even gain across the probe field can be built up in the atoms, thus phase grating or gain-phase grating, which diffracts a probe light into different directions, can be formed with the help of a standing-wave coupling field. The diffraction efficiency of the gratings can be tuned by the coupling field intensity and the incoherent pump rate, hence the proposed gratings should be suitable for beam splitter and optical switching in optical communication and networking.

  2. Anchoring properties of substrate with a grating surface

    Institute of Scientific and Technical Information of China (English)

    Ye Wen-Jiang; Xing Hong-Yu; Yang Guo-Chen

    2007-01-01

    The anchoring properties of substrate with a grating surface are investigated analytically. The alignment of nematic liquid crystal (NLC) in a grating surface originates from two mechanisms, thus the anchoring energy consists of two parts. One originates from the interaction potential between NLC molecules and the molecules on the substrate surface,and the other stems from the increased elastic strain energy. Based on the two mechanisms, the expression of anchoring energy per unit area of a projected plane of this grating surface is deduced and called the equivalent anchoring energy formula. Both the strength and the easy direction of equivalent anchoring energy are a function of the geometrical parameters (amplitude and pitch) of a grating surface. By using this formula, the grating surface can be replaced by its projected plane and its anchoring properties can be described by the equivalent anchoring energy formula.

  3. Analytical Alignment Tolerances for Off-Plane Reflection Grating Spectroscopy

    CERN Document Server

    Allured, Ryan

    2013-01-01

    Future NASA X-ray Observatories will shed light on a variety of high-energy astrophysical phenomena. Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3--1.5 keV band, allowing for unprecedented diagnostics of energetic astrophysical processes. A grating spectrometer consists of multiple aligned gratings intersecting the converging beam of a Wolter-I telescope. Each grating will be aligned such that the diffracted spectra overlap at the focal plane. Misalignments will degrade both spectral resolution and effective area. In this paper we present an analytical formulation of alignment tolerances that define grating orientations in all six degrees of freedom. We verify our analytical results with raytrace simulations to fully explore the alignment parameter space. We also investigate the effect of misalignments on diffraction efficiency.

  4. Plasmonic band gap cavities on biharmonic gratings

    Science.gov (United States)

    Kocabas, Askin; Seckin Senlik, S.; Aydinli, Atilla

    2008-05-01

    In this paper, we have experimentally demonstrated the formation of plasmonic band gap cavities in infrared and visible wavelength range. The cavity structure is based on a biharmonic metallic grating with selective high dielectric loading. A uniform metallic grating structure enables strong surface plasmon polariton (SPP) excitation and a superimposed second harmonic component forms a band gap for the propagating SPPs. We show that a high dielectric superstructure can dramatically perturb the optical properties of SPPs and enables the control of the plasmonic band gap structure. Selective patterning of the high index superstructure results in an index contrast in and outside the patterned region that forms a cavity. This allows us to excite the SPPs that localize inside the cavity at specific wavelengths, satisfying the cavity resonance condition. Experimentally, we observe the formation of a localized state in the band gap and measure the dispersion diagram. Quality factors as high as 37 have been observed in the infrared wavelength. The simplicity of the fabrication and the method of testing make this approach attractive for applications requiring localization of propagating SPPs.

  5. Study on talbot pattern for grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Oh, Oh Sung; Lee, Seung Wook [Dept. of School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [Neutron Instrument Division, Korea Atomic Energy Reserch Institute, Daejeon (Korea, Republic of)

    2015-04-15

    One of properties which X-ray and Neutron can be applied nondestructive test is penetration into the object with interaction leads to decrease in intensity. X-ray interaction with the matter caused by electrons, Neutron caused by atoms. They share applications in nondestructive test area because of their similarities of interaction mechanism. Grating interferometer is the one of applications produces phase contrast image and dark field image. It is defined by Talbot interferometer and Talbot-Lau interferometer according to Talbot effect and Talbot-Lau effect respectively. Talbot interferometer works with coherence beam like X-ray, and Talbot-Lau has an effect with incoherence beam like Neutron. It is important to expect the interference in grating interferometer compared normal nondestructive system. In this paper, simulation works are conducted according to Talbot and Talbot-Lau interferometer in case of X-ray and Neutron. Variation of interference intensity with X-ray and Neutron based on wave theory is constructed and calculate elements consist the system. Additionally, Talbot and Talbot-Lau interferometer is simulated in different kinds of conditions.

  6. Optimization of direct-write polarization gratings

    Science.gov (United States)

    Miskiewicz, Matthew N.; Escuti, Michael J.

    2015-02-01

    We recently reported on a mathematical formalism for analyzing the result of a direct-write scanning system applied to photoaligned liquid crystal films. We use that formalism to study the direct-write recording of polarization gratings (PGs). First, we evaluate three scan paths in simulation and experiment, describe their tradeoffs and practical constraints, and identify the most favorable. Second, we explore the parameter space of direct-write PGs in simulation, which includes four dimensions in general: grating period, line spacing, beam size, and spatially averaged fluence. Using this analysis, we predict that a certain portion of the parameter space should be optimal, leading to high diffraction efficiency and well-aligned PGs. Finally, we experimentally fabricate and characterize nine PGs with scan parameters within and around this optimal parameter space and conclude that the prediction is validated. This work is the first in-depth study of direct-write PGs; it identifies many challenges and solutions, and shows, for the first time, direct-write recorded PGs with quality equivalent to those recorded via holography. In particular, we demonstrate a PG (20 μm period) with first-order diffraction efficiency 99.5%, 0.2% haze, and polarization contrast of 2000.

  7. Holographic dielectric grating: theory and practice.

    Science.gov (United States)

    Chang, M; George, N

    1970-03-01

    Lossy dielectric gratings have been analyzed using a Raman-Nath formalism modified to incorporate losses. Four second-order coupled wave equations are retained for computation of the zero, first- and second-order diffracted beams for a multitude of practical cases. Significant differences are found in comparison with computations in which only two coupled waves are retained. The entire range of losses and thicknesses encountered for holograms in film emulsions has been studied using this unified approach. Graphs have been prepared to show the efficiency, i.e., power diffracted in the first-order relative to the total incident power, vs the index modulation for a wide range of thicknesses and losses. At a given thickness, optimum frequency requires a specific exposure. The efficiency for an optimum exposure is plotted vs the loss factor with thickness as a parameter. New experimental data are presented for bleached gratings in which several diffracted orders are measured and compared to our theory for a wide range of index modulation and loss factors.

  8. Optimization of top polymer gratings to improve GaN LEDs light transmission

    Institute of Scientific and Technical Information of China (English)

    Xiaomin Jin; Bei Zhang; Tao Dai; Wei Wei; Xiangning; Guoyi Zhang; Simeon Trieu; Fei Wang

    2008-01-01

    @@ We present a grating model of two-dimensional (2D) rigorous coupled wave analysis (RCWA) to study top diffraction gratings on light-emitting diodes(LEDs). We compare the integrated-transmission of the non-grating,rectangular-grating,and triangular-grating cases for the same grating period of 6μm,and show that the triangular grating has the best performance. For the triangular grating with 6-μmperiod, the LED achieves the highest light transmission at 6-μ gratingbottom width and 2.9-μm grating depth. Compared with the non-grating case, the optimized light transmission improvement is about 74.6%.The simulation agrees with the experimental data of the thin ploymer grating encapsulated flip-chip(FC) GaN-based LEDs for the light extraction improvement.

  9. The Interaction of Optical Guided Modes with Waveguide Diffraction Gratings.

    Science.gov (United States)

    Weller-Brophy, Laura Ann

    In this thesis the results of a theoretical and experimental investigation of the coupling of guided modes by waveguide gratings are presented. This work is motivated by the potential application of waveguide gratings to integrated optical devices. The coupling of guided modes obliquely incident to both periodic and aperiodic gratings is a mechanism basic to the operation of integrated optical components such as filters, reflectors, beamsplitters, and modulators. It is shown in the Introduction to this thesis, that this mechanism is not modeled consistently by the analyses presented in the literature. For the case of TM-TM coupling, virtually each analytical treatment predicts a different value for the grating reflectivity. In addition, it is found that the typical Coupled-Mode formalisms used to derive the grating reflectivity do not offer an intuitive picture of the operation of waveguide gratings. These two particular problem areas serve as the focal points of this thesis. The latter of these is addressed through the development of a thin film model of the operation of waveguide gratings. This model presents an intuitively appealing picture of the interaction of waveguide gratings and guided modes. It also yields grating reflectivities which are in excellent agreement with those obtained through the numerical solution of the Coupled-Mode equations for both periodic and aperiodic gratings. The bulk of this research project is directed towards resolving the conflicting theoretical grating analyses presented in the literature. A new derivation of the coupling of guided modes obliquely incident to periodic gratings is presented in Chapter II of this thesis. This derivation is based on the Local Normal Mode expansion used by Marcuse for the case of normal incidence. It produces coupling coefficients which are nearly identical to those derived using the rigorous Boundary Perturbation technique. The coupling coefficients predicted by this Local Normal Mode formalism

  10. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    . Though both sides of the grating layer are not surrounded by low refractive-index materials as in high-index-contrast gratings (HCGs), the HG can provide a near-unity reflectivity over a broader wavelength range than HCGs, or work as a resonator with a quality (Q) factor as high as 109. The physics......-factor is investigated, which shows that the uncertainty in the Q-factor can be several orders of magnitude larger than the uncertainty in the resonance frequency. Next, the HG is shown to possess a near-unity reflectivity in a broad wavelength range, which can be broader than the HCG, since the cap layer introduces...... more guided mode resonances (GMRs) in the reflectivity spectrum. The fabrication tolerance of the HG is investigated numerically, which shows that the broadband near-unity reflectivity characteristic is prone to common fabrication errors. An experimental demonstration of the HG reflector confirms its...

  11. High efficiency diffraction grating for EUV lithography beamline monochromator

    Science.gov (United States)

    Voronov, D. L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Naulleau, P.; Artemiev, N. A.; Lum, P.; Padmore, H. A.

    2016-09-01

    A blazed diffraction grating for the EUV lithography Beamline 12.0.1 of the Advanced Light Source has been fabricated using optical direct write lithography and anisotropic wet etching technology. A variable line spacing pattern was recorded on a photoresist layer and transferred to a hard mask layer of the grating substrate by a plasma etch. Then anisotropic wet etching was applied to shape triangular grating grooves with precise control of the ultralow blaze angle. Variation of the groove density along the grating length was measured with a Long Trace Profiler (LTP). Fourier analysis of the LTP data confirmed high groove placement accuracy of the grating. The grating coated with a Ru coating demonstrated diffraction efficiency of 69.6% in the negative first diffraction order which is close to theoretical efficiency at the wavelength of 13.5 nm. This work demonstrates an alternative approach to fabrication of highly efficient and precise x-ray diffraction gratings with ultra-low blaze angles.

  12. High-resolution diffraction grating interferometric transducer of linear displacements

    Science.gov (United States)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  13. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    Science.gov (United States)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  14. Characterization of the holographic imaging grating of GOMOS UVIS spectrometer

    Science.gov (United States)

    Graeffe, Jussi; Saari, Heikki K.; Astola, Heikki; Rainio, Kari; Mazuray, Lorand; Pierot, Dominique; Craen, Pierre; Gruslin, Michel; Lecat, Jean-Herve; Bonnemason, Francis; Flamand, Jean; Thevenon, Alain

    1996-11-01

    A Finnish-French group has proposed an imaging spectrometer- based instrument for the ENVISAT Earth observation satellite of ESA, which yields a global mapping of the vertical profile of ozone and other related atmospheric gases. The GOMOS instrument works by measuring the UV-visible spectrum of a star that is occulting behind the Earth's atmosphere. The prime contractor of GOMOS is Matra Marconi Space France. The focal plane optics are designed and manufactured by Spacebel Instrumentation S.A. and the holographic grating by Jobin-Yvon. VTT Automation, Measurement Technology has participated in the GOMOS studies since 1989 and is presently responsible for the verification tests of the imaging quality and opto-mechanical interfaces of the holographic imaging grating of GOMOS. The UVIS spectrometer of GOMOS consists of a holographic, aberration corrected grating and of a CCD detector. The alignment of the holographic grating needs as an input very accurate knowledge of the mechanical interfaces. VTT Automation has designed, built and tested a characterization system for the holographic grating. This system combines the accurate optical imaging measurements with the absolute knowledge of the geometrical parameters at the accuracy of plus or minus 10 micrometers which makes the system unique. The developed system has been used for two breadboard gratings and the qualification model grating. The imaging quality results and their analysis together with alignment procedure utilizing of the knowledge of mechanical interfaces is described.

  15. Metal-coated Bragg grating reflecting fibre

    Science.gov (United States)

    Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.

    2017-03-01

    High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.

  16. Optical Fiber Bragg Grating Michelson Interferometer

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi; JIANG Tian-fu; LIU Li

    2006-01-01

    A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBGs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the signals, a 3×3 coupler is used as a splitter. By combining with software demodulation, the outer inter ference can be obtained from the outputs of the interferometer. This kind of in terferometer can also be wavelength-multiplexed easily by composing a series Michelson interferometer. The experiment results show that the clear interference fringe can be obtained by adjusting the path difference to make it less than interference length of FBG. The signals are also demodulated.

  17. Blazed Gratings Recorded in Absorbent Photopolymers

    Directory of Open Access Journals (Sweden)

    Roberto Fernández

    2016-03-01

    Full Text Available Phase diffractive optical elements, which have many interesting applications, are usually fabricated using a photoresist. In this paper, they were made using a hybrid optic-digital system and a photopolymer as recording medium. We analyzed the characteristics of the input and recording light and then simulated the generation of blazed gratings with different spatial periods in different types of photopolymers using a diffusion model. Finally, we analyzed the output and diffraction efficiencies of the 0 and 1st order so as to compare the simulated values with those measured experimentally. We evaluated the effects of index matching in a standard PVA/AA photopolymer, and in a variation of Biophotopol, a more biocompatible photopolymer. Diffraction efficiencies near 70%, for a wavelength of 633 nm, were achieved for periods longer than 300 µm in this kind of materials.

  18. Grating-based tomography of human tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  19. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  20. Geometric-Phase Polarization Fan-out Grating Fabricated with Deep-UV Interference Lithography

    Science.gov (United States)

    Wan, Chenhao; Lombardo, David; Sarangan, Andrew; Zhan, Qiwen

    2017-06-01

    We report the design, fabrication and testing of a highly efficient polarization fan-out grating for coherent beam combining working at 1550 nm. The grating design exploits the geometric-phase effect. Deep-UV interference lithography is used to fabricate the designed grating. Such a polarization fan-out grating demonstrates several advantages that are ideal for laser beam combining.

  1. Enhanced surface plasmon polariton propagation length using a buried metal grating

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Gomez Casado, A.; Huskens, Jurriaan; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report an enhancement in the propagation length of surface plasmon polaritons (SPPs) on a metallic grating when the grating is buried in the substrate. A template-stripping technique has been used to fabricate the buried grating. Near-field measurements on the buried and an exposed grating show

  2. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    Science.gov (United States)

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically.

  3. Thermally tunable grating using thermo-responsive magnetic fluid

    Science.gov (United States)

    Zaibudeen, A. W.; Philip, John

    2017-04-01

    We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.

  4. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  5. Photonic crystal fiber long-period gratings for biochemical sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Jensen, Jesper Bo; Dufva, Hans Martin

    2006-01-01

    -period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has...... a sensitivity of approximately 1.4nm/1nm in terms of the shift in resonance wavelength in nm per nm thickness of biomolecule layer....

  6. On the Intensity Distribution Function of Blazed Reflective Diffraction Gratings

    CERN Document Server

    Casini, R

    2014-01-01

    We derive from first principles the expression for the angular/wavelength distribution of the intensity diffracted by a blazed reflective grating, according to a scalar theory of diffraction. We considered the most common case of a groove profile with rectangular apex. Our derivation correctly identifies the geometric parameters of a blazed reflective grating that determine its diffraction efficiency, and fixes an incorrect but commonly adopted expression in the literature. We compare the predictions of this scalar theory with those resulting from a rigorous vector treatment of diffraction from one-dimensional blazed reflective gratings.

  7. Optical fibre grating refractometers for resin cure monitoring

    Science.gov (United States)

    Buggy, S. J.; Chehura, E.; James, S. W.; Tatam, R. P.

    2007-06-01

    The use of fibre grating refractometers as a means of monitoring the cure of a UV-cured epoxy resin is presented. The wavelength shift of the attenuation bands of a long period grating and the spectral response of a tilted fibre Bragg grating sensor were measured simultaneously during the cure of the resin and compared with measurements made using a fibre optic Fresnel-based refractometer. The results showed a good correlation (6 × 10-3 rius) and illustrate the potential of the techniques for non-invasive composite material cure monitoring.

  8. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    Science.gov (United States)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  9. Single-grating laser pulse stretcher and compressor.

    Science.gov (United States)

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  10. Fiber Grating Sensor with Enhanced Pressure and Temperature Sensitivity

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-Qi; GUO Zhuan-Yun; LIU Zhi-Guo; ZHAO Dong-Hui; GE Chun-Feng; DONG Xiao-Yi

    2000-01-01

    A technique is used to enhance the pressure and temperature sensitivity of a fiber Bragg grating sensor. The grating is packaged by using polymer jacket, which exhibits no significant chirp due to the adoption of the special technique. The measured pressure and temperature sensitivity of the structured grating is 6.28×10-5 / MPa and5.18×10-5/℃. The wavelength shift due to pressure and temperature can be enhanced about 31.5 times for pressure and 7.7 times for temperature.

  11. Single and Multiple Phase Shifts Tilted Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Christophe Caucheteur

    2009-01-01

    Full Text Available The spectral behavior of single and multiple phase shifts tilted fiber Bragg gratings has been experimentally investigated. To this aim, a simple and cost-effective postprocessing technique based on local thermal treatment was used to create arbitrary phase shifts along the tilted grating structure. In particular, UV written tilted fiber Bragg gratings were treated by the electric arc discharge to erase the refractive index modulation in well-defined regions. We demonstrate that these defects give rise to interference pattern for all modes, and thus defect states can be achieved within all the attenuation bands, enabling a simple wavelength independent spectral tailoring of this class of devices.

  12. Bragg grating chemical sensor with hydrogel as sensitive element

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Liu(刘小梅); Shilie Zheng(郑史烈); Xianmin Zhang(章献民); Jun Cong(丛军); Kangsheng Chen(陈抗生); Jian Xu(徐坚)

    2004-01-01

    A novel fiber Bragg grating (FBG) based chemical sensor using hydrogel, a swellable polymer, as sensitive element is demonstrated. The sensing mechanism relies on the shift of Bragg wavelength due to the stress resulted from volume change of sensitive swellable hydrogel responding to the change of external environment. A polyacrylamide hydrogel fiber grating chemical sensor is made, and the experiments on its sensitivity to the salinity are performed. The sensitivity is low due to the less stress from the shrinking or swelling of hydrogels. Reducing the cross diameter of the grating through etching with hydrofluoric acid can greatly improve the sensitivity of the sensor.

  13. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were...... compared with available gas temperature and species concentration measurements showing good agreement. Combustionof biomass in grate-based boilers is often associated with high emission levels and relatively high amounts of unburnt carbon in the fly ash.Based on the CFD analysis, it is suggested that poor...

  14. Fabrication and characterization of sandwiched optical fibers with periodic gratings.

    Science.gov (United States)

    Chiang, Chia-Chin

    2010-08-01

    This study proposes a novel process for fabricating a sandwiched long-period fiber grating (SLPFG) using a SU-8 thick photoresist technique. The SLPFG consists of a thin cladding optical fiber sandwiched with a double-sided periodical grating coating. By varying the external loads on the SLPFG, the transmission dip of the resonance wavelength is tuned according to a squared-harmonic curve. The SLPFG can thus be utilized as a loss tunable filter or sensor. The resonance dip wavelength is related to the cladding thicknesses of the optical fiber and the periods of the grating. A maximum transmission resonant dip of 34.61dB was achieved.

  15. Deep-groove nickel gratings for solar thermal absorbers

    Science.gov (United States)

    Ahmad, N.; Núñez-Sánchez, S.; Pugh, J. R.; Cryan, M. J.

    2016-10-01

    This paper presents measured and modelled optical absorptance and reflectance for deep-groove nickel nano-gratings in the 450-950 nm wavelength range. The structures have been fabricated using focused ion beam etching and characterised using Fourier spectroscopy and the field distributions on the gratings have been studied using finite difference time domain modelling. Realistic grating structures have been modelled based on focused ion beam cross sections and these results are in good agreement between measured and modelled results. The roles of surface plasmon polaritons and slot modes are highlighted in the strong broadband absorbance that can be achieved with these structures.

  16. The chemical composition of the galactic H II regions M8 and M17. A revision based on deep vlt echelle spectrophotometry

    Directory of Open Access Journals (Sweden)

    Jorge García-Rojas

    2007-01-01

    Full Text Available Presentamos nuevos datos espectrofotométricos de las regiones H II Galácticas M8 y M17. Los datos se obtuvieron a través del espectrógrafo echelle UVES del VLT en el intervalo entre los 3100 y los 10400 Ă. Medimos las intensidades de 375 y 260 líneas de emisión en M8 y M17, respectivamente, incrementando de forma significativa el número de líneas identificadas en estas nebulosas. La mayoría de las líneas detectadas son permitidas. Calculamos las temperaturas y densidades electrónicas usando diferentes diagnósticos, y determinamos las abundancias iónicas de He+, C++, O+ and O++ a partir de líneas debidas únicamente a recombinación, así como las abundancias de un gran número de iones de diferentes elementos usando líneas de excitación colisional. Obtuvimos estimaciones consistentes de t2 usando diferentes indicadores independientes. Detectamos líneas de emisión de la serie de Balmer de deuterio en M8, hasta DÎ; también mostramos que sus intensidades son consistentes con el hecho de que la fluorescencia del continuo es el principal mecanismo de excitación de estas líneas.

  17. Recent progress in the development of pulse compression gratings

    Directory of Open Access Journals (Sweden)

    Hocquet S.

    2013-11-01

    Full Text Available The PETAL facility uses chirped pulse amplification (CPA technique. This system needs large pulse compression gratings that request damage threshold better than 4 J/cm2 in normal beam at 1.053 μm for 500 fs pulses. In this paper, we will show recent grating designs with either multilayer dielectrics or hybrid metal-dielectric structures. We have shown in previous works that damage threshold is driven by the enhancement of the near electric field inside the pillars of the grating. This was evidenced from a macroscopic point of view by means of laser damage testing. We will show that damage morphology during damage initiation at the scale of the grating groove is also consistent with this electric field dependence.

  18. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    The subject of this ph.d. thesis is the fabrication of Bragg gratings in optical waveguides. During the study Bragg gratings were written in both planar waveguides and optical fibers using pulsed or continuous-wave lasers operating in the ultraviolet (UV) range. The main result is the development...... of the novel polarization control method for UV writing of Bragg gratings with advanced apodization profiles including phase shifts. The principle of the polarization control method relies on a spatial separation of the s- and p-polarized components of a linearly polarized UV beam corresponding to half...... were then translated into a polarizer angle profile and the Bragg grating were written using a pulsed excimer laser. Only optical fibers were used in this part of the thesis. The high quality planar waveguides used during the study were produced in the cleanroom facility at the Microelectronic Center...

  19. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  20. Fiber optical Bragg grating sensors embedded in CFRP wires

    Science.gov (United States)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  1. Long-Period Gratings in Planar Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    Kin; Seng; Chiang

    2003-01-01

    Our progress in the study of long-period gratings (LPGs) in planar optical waveguides is reviewed. In particular, experimental LPGs in glass and polymer waveguides are presented to demonstrate the potential of LPG-based waveguide devices.

  2. Long-Period Gratings in Planar Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    Kin Seng Chiang

    2003-01-01

    Our progress in the study of long-period gratings (LPGs) in planar optical waveguides is reviewed. In particular,experimental LPGs in glass and polymer waveguides are presented to demonstrate the potential of LPG-based waveguide devices.

  3. Fabrication of integrated waveguide grating in azo polymers.

    Science.gov (United States)

    Jalilpiran, Saber; Karimi-Alavijeh, Hamidreza; Katebi-Jahromi, Alireza; Gharavi, Alireza

    2011-11-01

    In this Letter, we have introduced a technique, new to our knowledge, to fabricate gratings on a waveguide of azo-functionalized polymeric films using a slit mask and a fast, direct-writing method. To prevent the destruction of the waveguide by the grating formation on the waveguide, we placed a slit mask on the waveguide. By properly adjusting the resonance, this grating can be used as an integrated wavelength filter. We have produced an attenuation of 13.4 dB at 1562 nm with a FWHM of 3.45 nm. The grating has been fabricated as narrow as the width of the waveguide to couple filtered light into the waveguide by using a slit mask. Any light shifted from the resonance will pass through the waveguide undisturbed.

  4. A bistable system with an electromagnetically induced grating

    Institute of Scientific and Technical Information of China (English)

    苏雪梅; 卓仲畅; 王立军; 高锦岳

    2002-01-01

    We propose a scheme of a bistable system with an electromagnetically induced grating and analyse the opticalbistabilities in the system. The stationary equations describing the system have been derived. This bistable systemshows typical hysteresis behaviour.

  5. Photowritten gratings in ion-exchanged glass waveguides.

    Science.gov (United States)

    Roman, J E; Winick, K A

    1993-05-15

    The fabrication of an ion-exchanged waveguide beam deflector containing a photowritten grating is described. The planar waveguide was fabricated by thermal K(+) exchange in a borosilicate glass. The grating was written by photobleaching an absorption defect centered at 330 am, which was created by gamma-ray irradiation of the glass. The bleaching was accomplished with the 351-nm line from an argon laser. The device achieved 35% deflection efficiency at 633 nm, which corresponded to a grating with a photoinduced index change of 2.6 x 10(-5). This is to our knowledge the first demonstration of an ion-exchanged glass waveguide device containing a permanent photowritten grating.

  6. Performance of volume phase gratings manufactured using ultrafast laser inscription

    CERN Document Server

    Lee, David; Cunningham, Colin R

    2012-01-01

    Ultrafast laser inscription (ULI) is a rapidly maturing technique which uses focused ultrashort laser pulses to locally modify the refractive index of dielectric materials in three-dimensions (3D). Recently, ULI has been applied to the fabrication of astrophotonic devices such as integrated beam combiners, 3D integrated waveguide fan-outs and multimode-to-single mode convertors (photonic lanterns). Here, we outline our work on applying ULI to the fabrication of volume phase gratings (VPGs) in fused silica and gallium lanthanum sulphide (GLS) glasses. The VPGs we fabricated had a spatial frequency of 333 lines/mm. The optimum fused silica grating was found to exhibit a first order diffraction efficiency of 40 % at 633 nm, but exhibited approximately 40 % integrated scattered light. The optimum GLS grating was found to exhibit a first order diffraction efficiency of 71 % at 633 nm and less than 5 % integrated scattered light. Importantly for future astronomy applications, both gratings survived cooling to 20 K....

  7. Time/Wavelength Fiber Bragg Grating Multiplexing Sensor Array

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.

  8. Performance of Silicon immersed gratings: Measurement, analysis and modelling

    CERN Document Server

    Rodenhuis, Michiel; Coppens, Tonny H M; Laubert, Phillip P; van Amerongen, Aaldert H

    2015-01-01

    The use of Immersed Gratings offers advantages for both space- and ground-based spectrographs. As diffraction takes place inside the high-index medium, the optical path difference and angular dispersion are boosted proportionally, thereby allowing a smaller grating area and a smaller spectrometer size. Short-wave infrared (SWIR) spectroscopy is used in space-based monitoring of greenhouse and pollution gases in the Earth atmosphere. On the extremely large telescopes currently under development, mid-infrared high-resolution spectrographs will, among other things, be used to characterize exo-planet atmospheres. At infrared wavelengths, Silicon is transparent. This means that production methods used in the semiconductor industry can be applied to the fabrication of immersed gratings. Using such methods, we have designed and built immersed gratings for both space- and ground-based instruments, examples being the TROPOMI instrument for the European Space Agency Sentinel-5 precursor mission, Sentinel-5 (ESA) and th...

  9. Reconfigurable terahertz grating with enhanced transmission of TE polarized light

    Directory of Open Access Journals (Sweden)

    J. W. He

    2017-07-01

    Full Text Available We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD. The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.

  10. Analysis of dispersion characteristics of long period fiber grating

    Science.gov (United States)

    Jain, Vishal; Pawar, Santosh; Kumbhaj, S.; Sen, P. K.

    2016-10-01

    Present work deals with theoretical analysis of dispersion characteristics of long period fiber grating using straight forward coupled mode theory. Simple analytical solutions are obtained for co propagating core and cladding modes under linear regime. These solutions are used to derive expressions for transmission coefficient (tLPG), phase (ϕL), delay (τρ) and group velocity dispersion (Dρ) for proposed grating structure. Attention is paid to study the delay response of the grating, by varrying physical parameters like incident wavelength and coupling strength of grating. Negative values of group delay for certain value of coupling strength shows that long period fiber can be used as dispersion compansator device in optical fiber communication link.

  11. Folded cavity angled-grating broad-area lasers.

    Science.gov (United States)

    Zhao, Yunsong; Zhu, Lin

    2013-10-01

    The angled-grating broad-area laser is a promising candidate for high power, high brightness diode laser source. The key point in the design is the angled gratings which can simultaneously support the unique snake-like zigzag lasing mode and eliminate the direct Fabry-Perot (FP) feedback. Unlike a conventional laser waveguide mode, the phase front of the zigzag mode periodically changes along the propagation direction. By use of the mirror symmetry of the zigzag mode, we propose and demonstrate the folded cavity angled-grating broad-area lasers. One benefit of this design is to reduce the required wafer space compared to a regular angled-grating broad-area laser, especially in a long cavity laser for high power operation. Experimental results show that the folded cavity laser exhibits good beam quality in far field with a slightly larger threshold and smaller slope efficiency due to the additional interface loss.

  12. Damage behaviors of fiber Bragg grating sensor in fabrication

    Science.gov (United States)

    Tang, Liqun; Sang, Dengfeng; Chen, Jinming; Yang, Bao; Liu, Yiping

    2008-11-01

    It is has been noted that for fiber Bragg grating sensor (FBGS), the tensile strengths of fiber Bragg grating sensors (FBGSs) were decreased after the gratings were written, which may reduce the sensor's measurement range obviously. In this paper, we focused on the damage behaviours of FBGS after fabrication experimentally. Firstly, the tensile tests were carried to measure the tensile strengths of naked optical fiber, decoated optical fiber and optical fiber with Bragg gratings to learn deduction of the tensile strength of optical fiber in the cases respectively. Further, the microscope photography was used to observe the surfaces of optical fiber with or without exposure of excimer laser. The main conclusion is that the UV pulse is the main contribution to reduce the strength remarkably, and the mechanical decoating method also can induce the surface damage on the optical fiber.

  13. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  14. Grating geophone signal processing based on wavelet transform

    Science.gov (United States)

    Li, Shuqing; Zhang, Huan; Tao, Zhifei

    2008-12-01

    Grating digital geophone is designed based on grating measurement technique benefiting averaging-error effect and wide dynamic range to improve weak signal detected precision. This paper introduced the principle of grating digital geophone and its post signal processing system. The signal acquisition circuit use Atmega 32 chip as core part and display the waveform on the Labwindows through the RS232 data link. Wavelet transform is adopted this paper to filter the grating digital geophone' output signal since the signal is unstable. This data processing method is compared with the FIR filter that widespread use in current domestic. The result indicates that the wavelet algorithm has more advantages and the SNR of seismic signal improve obviously.

  15. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  16. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...... gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength...

  17. Coherently controlling Raman-induced grating in atomic media

    CERN Document Server

    Arkhipkin, V G; Timofeev, I V

    2015-01-01

    We consider dynamically controllable periodic structures, called Raman induced gratings, in three- and four-level atomic media, resulting from Raman interaction in a standing-wave pump. These gratings are due to periodic spatial modulation of the Raman nonlinearity and fundamentally differ from the ones based on electromagnetically induced transparency. The transmission and reflection spectra of such gratings can be simultaneously amplified and controlled by varying the pump field intensity. It is shown that a transparent medium with periodic spatial modulation of the Raman gain can be opaque near the Raman resonance and yet at the same time it can be a non-linear amplifying mirror. We also show that spectral properties of the Raman induced grating can be controlled with the help of an additional weak control field.

  18. Modeling of microelectromechanical systems deformable mirror diffraction grating

    Science.gov (United States)

    Sirbu, Dan; Pluzhnik, Eugene; Belikov, Ruslan

    2016-07-01

    Model-based wavefront control methods such as electric field conjugation require accurate optical propagation models to create high-contrast regions in the focal plane using deformable mirrors (DMs). Recently, it has been shown that it is possible to exceed the controllable outer-working angle imposed by the Nyquist limit based on the number of actuators by utilizing a diffraction grating. The print-through pattern on MEMS-based DMs formed during the fabrication process creates both an amplitude and a phase diffraction grating that can be used to enable Super-Nyquist wavefront control. Using interferometric measurements of a DM-actuator, we develop a DM-diffraction grating model. We compare the total energy enclosed in the first diffraction order due to the phase, amplitude, and combined phase-amplitude gratings with laboratory measurements.

  19. Photonic crystal fiber long-period gratings for biochemical sensing.

    Science.gov (United States)

    Rindorf, Lars; Jensen, Jesper B; Dufva, Martin; Pedersen, Lars Hagsholm; Høiby, Poul Erik; Bang, Ole

    2006-09-04

    We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long-period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has a sensitivity of approximately 1.4nm/1nm in terms of the shift in resonance wavelength in nm per nm thickness of biomolecule layer.

  20. Structural Health Monitoring Using Fiber Bragg Grating Sensor Matrix Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Bragg Grating had been identified as very important elements, especially for strain measurements in smart structures. In many applications, arrays of FBG...

  1. Diffraction grating characterisation for cold-atom experiments

    CERN Document Server

    McGilligan, James P; Riis, Erling; Arnold, Aidan S

    2016-01-01

    We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions.

  2. Nonlinear pulse propagation in birefringent fiber Bragg gratings.

    Science.gov (United States)

    Pereira, S; Sipe, J

    1998-11-23

    We present two sets of equations to describe nonlinear pulse propagation in a birefringent fiber Bragg grating. The first set uses a coupled-mode formalism to describe light in or near the photonic band gap of the grating. The second set is a pair of coupled nonlinear Schroedinger equations. We use these equations to examine viable switching experiments in the presence of birefringence. We show how the birefringence can both aid and hinder device applications.

  3. Relativistic surface-plasmon enhanced harmonic generation from gratings

    CERN Document Server

    Fedeli, Luca; Cantono, Giada; Macchi, Andrea

    2016-01-01

    The role of relativistic surface plasmons (SPs) in high order harmonic emission from laser-irradiated grating targets has been investigated by means of particle-in-cell simulations. SP excitation drives a strong enhancement of the intensity of harmonics, particularly in the direction close to the surface tangent. The SP-driven enhancement overlaps with the angular separation of harmonics generated by the grating, which is beneficial for applications requiring monochromatic XUV pulses.

  4. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  5. Moiré Fibre Bragg Grating Written on Strained Fibres

    Institute of Scientific and Technical Information of China (English)

    孙磊; 冯新焕; 刘艳格; 张伟刚; 袁树忠; 开桂云; 董孝义

    2004-01-01

    Moiré fibre Bragg gratings are made in a single mode fibre and a polarization-maintaining fibre respectively, using an excimer KrF laser and a phase mask. Two gratings are written at the same location of the optical fibre. The wavelength spacing can be finely tuned from 0 to 1.86nm by straining the optical fibre during UV illumination.

  6. Fibre Bragg Grating Components for Filtering, Switching and Lasing

    OpenAIRE

    2008-01-01

    Fibre Bragg gratings (FBGs) are key components for a vast number of applications in optical communication systems, microwave photonics systems, and optical sensors, etc. The main topic of this thesis is fibre Bragg grating fabrication and applications in direct microwave optical filtering, high speed switching and switchable dual-wavelength fibre lasers. First, a brief overview is given about the photosensitivity in optical fibre, basic FBG fabrication techniques, the popular coupled-mode the...

  7. Femtosecond laser induced index and relief gratings in polymer films

    Institute of Scientific and Technical Information of China (English)

    Yi Dong; Xiaoqiang Yu; Yuming Sun; Yufei Li; Xueyuan Hou; Xian Zhang

    2007-01-01

    A true single-step process suitable for fabrication of micro-periodic structure in polymer films by two photon initiated photopolymerization and laser ablation is presented. By the right choice of the irradiation energy, the irradiated zone is modified or ablated in the 1.44-μm-thick film. The mechanism of grating generation and the potential application of the gratings in integrated optics are discussed.

  8. Guided wave coupling in integrated-optic gratings - Normal incidence

    Science.gov (United States)

    van Roey, J.; Denturck, B.; Lagasse, P. E.

    1984-10-01

    The coupling between the different guided modes of an integrated-optic waveguide grating filter is analyzed. A numerical method based on a finite-difference scheme for the solution of this coupling problem in the case of normal incidence is presented. This allows one to study the influence of the grating profile on the coupling between guided or radiated waves. The exact numerical results are compared with approximate formulas for the coupling coefficient.

  9. On the Intensity Distribution Function of Blazed Reflective Diffraction Gratings

    OpenAIRE

    Casini, R.; Nelson, P G

    2014-01-01

    We derive from first principles the expression for the angular/wavelength distribution of the intensity diffracted by a blazed reflective grating, according to a scalar theory of diffraction. We considered the most common case of a groove profile with rectangular apex. Our derivation correctly identifies the geometric parameters of a blazed reflective grating that determine its diffraction efficiency, and fixes an incorrect but commonly adopted expression in the literature. We compare the pre...

  10. Wave-front-engineered grating mirrors for VCSELs

    DEFF Research Database (Denmark)

    Carletti, Luca; Malureanu, Radu; Mørk, Jesper;

    2012-01-01

    High-index-contrast grating mirrors featuring beam steering abilities for the transmitted beam as well as high reflectivity over a broad bandwidth are suggested. Gratings designed to provide control over the wave front of the transmitted beam are numerically investigated. The proposed structures ...... mirrors would have a significant impact on low cost laser sources fabrication, since a more efficient integration of optoelectronic modules can be achieved by avoiding expensive external lens systems....

  11. Grating-assisted silicon-on-insulator racetrack resonator reflector.

    Science.gov (United States)

    Boeck, Robert; Caverley, Michael; Chrostowski, Lukas; Jaeger, Nicolas A F

    2015-10-05

    We experimentally demonstrate a grating-assisted silicon-on-insulator (SOI) racetrack resonator reflector with a reflect port suppression of 10.3 dB and no free spectral range. We use contra-directional grating couplers within the coupling regions of the racetrack resonator to enable suppression of all but one of the peaks within the reflect port spectrum as well as all but one of the notches within the through port spectrum.

  12. Coupling between counterpropagating cladding modes in fiber Bragg gratings.

    Science.gov (United States)

    Sáez-Rodriguez, D; Cruz, J L; Díez, A; Andrés, M V

    2011-04-15

    We present an experimental demonstration of energy transfer between counterpropagating cladding modes in a fiber Bragg grating (FBG). A strong FBG written in a standard photosensitive optical fiber is illuminated with a single cladding mode, and the power transferred between the forward propagating cladding mode and different backward propagating cladding modes is measured by using two auxiliary long period gratings. Resonances between cladding modes having 30 pm bandwidth and 8 dB rejection have been observed.

  13. Periodically patterned columnar thin films as Blazed gratings

    CERN Document Server

    Dutta, Jhuma; Lakhtakia, Akhlesh

    2012-01-01

    Periodically patterned columnar thin films (PP-CTFs) were made by evaporating CaF2 and directing the vapor flux obliquely towards lithographically fabricated micrometer/sub-micrometer gratings. The growth of the PP-CTFs was controlled by the deposition rate to form prismatic air cavities within them and they function like blazed diffraction gratings with asymmetric diffraction patterns and diffraction efficiencies upto 52% in transmission at visible wavelengths. Scalar diffraction theory qualitatively explained the measured diffraction efficiencies.

  14. Refraction effects in soft x-ray multilayer blazed gratings.

    Science.gov (United States)

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  15. Fourier optics analysis of grating sensors with tilt errors.

    Science.gov (United States)

    Ferhanoglu, Onur; Toy, M Fatih; Urey, Hakan

    2011-06-15

    Dynamic diffraction gratings can be microfabricated with precision and offer extremely sensitive displacement measurements and light intensity modulation. The effect of pure translation of the moving part of the grating on diffracted order intensities is well known. This study focuses on the parameters that limit the intensity and the contrast of the interference. The effects of grating duty cycle, mirror reflectivities, sensor tilt and detector size are investigated using Fourier optics theory and Gaussian beam optics. Analytical findings reveal that fringe visibility becomes <0.3 when the optical path variation exceeds half the wavelength within the grating interferometer. The fringe visibility can be compensated by monitoring the interfering portion of the diffracted order light only through detector size reduction in the expense of optical power. Experiments were conducted with a grating interferometer that resulted in an eightfold increase in fringe visibility with reduced detector size, which is in agreement with theory. Findings show that diffraction grating readout principle is not limited to translating sensors but also can be used for sensors with tilt or other deflection modes.

  16. MEMS-based tunable gratings and their applications

    Science.gov (United States)

    Yu, Yiting; Yuan, Weizheng; Qiao, Dayong

    2015-03-01

    The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.

  17. Unraveling the nucleation and growth of spontaneous surface relief gratings

    Science.gov (United States)

    Mazaheri, Leila; Sabat, Ribal Georges; Lebel, Olivier; Nunzi, Jean-Michel

    2016-12-01

    Nucleation and growth of spontaneous surface relief gratings (SSRGs) on a Disperse Red 1 (DR1) glass-forming derivative were investigated. No interference pattern is applied and surface patterning is induced using single-beam irradiation: the gratings are self-organized. Grating growth is assumed to initiate from an interference pattern formed between the incident light beam and waves scattered at grazing angle by surface defects. However, the mechanism is not yet fully understood and there is not a comprehensive explanation of the structure formation process. Herein, the grating formation procedure is studied by monitoring the surface topology of thin films exposed to one writing beam for various periods of time, under both linear and circular polarizations, using AFM. Even in the absence of surface defects on the initial film, irradiation produces light-induced surface defects due to the reorientation and mass movement of the azo molecules. These defects act as seeds for SSRG around which gratings gradually emerge and propagate throughout the sample. To consolidate this hypothesis, the formation of gratings was studied on samples with controlled surface roughness. Pore-shaped defects do not diffract light on top of the sample, and thus have no impact on SSRG growth, while for hill-shaped defects, growth rate decreases sharply with defect sizes larger than the writing beam wavelength. Two other analogous glass-forming azobenzene derivatives were studied, and in all cases, SSRG formation was correlated with the induction of birefringence in the early stages of the irradiation.

  18. Slow light in fiber Bragg gratings and its applications

    Science.gov (United States)

    Skolianos, George; Arora, Arushi; Bernier, Martin; Digonnet, Michel

    2016-11-01

    Slow-light fiber Bragg gratings (FBGs) belong to a class of gratings designed to exhibit one or more narrow resonances in their reflection and transmission spectra, produced either by introducing a π phase shift near the middle of the grating, or by increasing the index modulation so that the grating behaves like a Fabry-Perot interferometer. These resonances can have very narrow linewidths (optics, optical switching, optical delay lines, and sensing. This paper reviews the principle of these gratings, in particular the more recent slow-light gratings relying on a strong index modulation. It discusses in particular the requirements for achieving large group delays and high sensitivities in sensors, and the fabrication and annealing techniques used to meet these requirements (high index modulation, low loss, index-profile apodization, and optimized length). Several applications are presented, including record-breaking FBGs that exhibit a group delay of 42 ns and Q-factor of ~30 million over a 12.5 mm length, robust acoustic sensors with pressure resolution of ~50 µPa (√Hz)-1 in the few-kHz, and a strain sensor capable of resolving as little as 30 femtostrain (√Hz)-1.

  19. Apodized grating coupler using fully-etched nanostructures

    Science.gov (United States)

    Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia

    2016-08-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).

  20. Improved optical enhancement in binary plasmonic gratings with nanogap spacing

    Science.gov (United States)

    Darweesh, Ahmad A.; Bauman, Stephen J.; Brawley, Zachary T.; Herzog, Joseph B.

    2016-09-01

    This work thoroughly investigates binary nanowire gratings with nanogap spacing. A binary plasmonic grating is a periodic nanostructure for which each period has two different widths. The study has determined that plasmonic gratings with two different widths in each period give rise to optical enhancement that is 2.1 times stronger than that of standard plasmonic grating structures. A map of varying width ratios has been created to illustrate the key geometric characteristic for enhancement optimization. The structure under investigation was a gold structure with a constant height of 15 nm and a nanogap of 5 nm. The period size of the structure depends on the two nanowire widths in each grating period. The optical enhancement (E/E0)2 of the geometry was investigated using a finite element method (FEM) simulation for various wavelengths. The results show a strong correlation between the plasmon wavelength and the periodicity of the gratings. Additionally, the plasmonic charge distributions have been calculated for various periods and geometries. Various resonant modes exist for the charge distribution, significantly affecting the enhancement depending on the nanowire widths.

  1. Numerical Analysis of Fiber Bragg Grating and Long Period Fiber Grating Undergoing Linear and Quadratic Temperature Change

    Institute of Scientific and Technical Information of China (English)

    YUAN Yinquan; DING Liyun

    2009-01-01

    The coupled-mode equations for fiber Bragg grating(FBG)and long period fiber grating(LPFG)undergoing linear and quadratic temperature change were given.The effects of tem-perature gradient and quadratic temperature change on the reflectivity spectrum of fiber Braggs grating and the transmission spectrum of long period fiber grating were investigated using the numerical simulation,and the dependence relationships of the central wavelength shift,the full-width-at-half-maximum,and the peak intensity upon temperature gradient were also obtained.These relation-ships may be used to design a novel fiber optical sensor which can simultaneously measure the tem-perature and temperature gradient.

  2. Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device.

    Science.gov (United States)

    Li, Xinghui; Zhang, Jinchao; Zhou, Qian; Ni, Kai; Pang, Jinchao; Tian, Rui

    2016-04-01

    In this Letter, we propose a variable-line-spacing (VLS) grating pattern for a hybrid diffractive device termed a grating Fresnel (G-Fresnel) lens, which is used in spectrometers to improve spectral resolution over a wide spectral range. The VLS grating pattern disperses light of specific wavelengths with a different angle and position such that the aberration caused by the Fresnel surface can be compensated for. In this manner, high resolution can be achieved over a relatively wide spectral range. The VLS grating pattern is designed based on the least wave-change principle and simulated by ZEMAX. Results reveal that the VLS G-Fresnel device allows a subnanometer resolution over a spectral range of 200 nm.

  3. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    Science.gov (United States)

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration.

  4. Dynamic high pressure measurements using a Fiber Bragg Grating probe and an arrayed waveguide grating spectrometer

    Science.gov (United States)

    Barbarin, Y.; Lefrançois, A.; Magne, S.; Woirin, K.; Sinatti, F.; Osmont, A.; Luc, J.

    2016-08-01

    High pressure shock profiles are monitored using a long Fiber Bragg Grating (FBG). Such thin probe, with a diameter of typically 150 μm, can be inserted directly into targets for shock plate experiments. The shocked FBG's portion is stressed under compression, which increases its optical group index and shortens its grating period. Placed along the 2D symmetrical axis of the cylindrical target, the second effect is stronger and the reflected spectrum shifts towards the shorter wavelengths. The dynamic evolution of FBG spectra is recorded with a customized Arrayed Waveguide Grating (AWG) spectrometer covering the C+L band. The AWG provides 40 channels of 200-GHz spacing with a special flattop design. The output channels are fiber-connected to photoreceivers (bandwidth: DC - 400 MHz or 10 kHz - 2 GHz). The experimental setup was a symmetric impact, completed in a 110-mm diameter single-stage gas gun with Aluminum (6061T6) impactors and targets. The FBG's central wavelength was 1605 nm to cover the pressure range of 0 - 8 GPa. The FBG was 50-mm long as well as the target's thickness. The 20-mm thick impactor maintains a shock within the target over a distance of 30 mm. For the impact at 522 m/s, the sustained pressure of 3.6 GPa, which resulted in a Bragg shift of (26.2 +/- 1.5) nm, is measured and retrieved with respectively thin-film gauges and the hydrodynamic code Ouranos. The shock sensitivity of the FBG is about 7 nm/GPa, but it decreases with the pressure level. The overall spectra evolution is in good agreement with the numerical simulations.

  5. Feasibility of Fiber Bragg Grating and Long-Period Fiber Grating Sensors under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2010-11-01

    Full Text Available This paper presents the feasibility of utilizing fiber Bragg grating (FBG and long-period fiber grating (LPFG sensors for nondestructive evaluation (NDE of infrastructures using Portland cement concretes and asphalt mixtures for temperature, strain, and liquid-level monitoring. The use of hybrid FBG and LPFG sensors is aimed at utilizing the advantages of two kinds of fiber grating to implement NDE for monitoring strains or displacements, temperatures, and water-levels of infrastructures such as bridges, pavements, or reservoirs for under different environmental conditions. Temperature fluctuation and stability tests were examined using FBG and LPFG sensors bonded on the surface of asphalt and concrete specimens. Random walk coefficient (RWC and bias stability (BS were used for the first time to indicate the stability performance of fiber grating sensors. The random walk coefficients of temperature variations between FBG (or LPFG sensor and a thermocouple were found in the range of −0.7499 °C/ to −1.3548 °C/. In addition, the bias stability for temperature variations, during the fluctuation and stability tests with FBG (or LPFG sensors were within the range of 0.01 °C/h with a 15–18 h time cluster to 0.09 °C/h with a 3–4 h time cluster. This shows that the performance of FBG or LPFG sensors is comparable with that of conventional high-resolution thermocouple sensors under rugged conditions. The strain measurement for infrastructure materials was conducted using a packaged FBG sensor bonded on the surface of an asphalt specimen under indirect tensile loading conditions. A finite element modeling (FEM was applied to compare experimental results of indirect tensile FBG strain measurements. For a comparative analysis between experiment and simulation, the FEM numerical results agreed with those from FBG strain measurements. The results of the liquid-level sensing tests show the LPFG-based sensor could discriminate five stationary liquid

  6. Dynamic fiber Bragg grating sensing method

    Science.gov (United States)

    Ho, Siu Chun Michael; Ren, Liang; Li, Hongnan; Song, Gangbing

    2016-02-01

    The measurement of high frequency vibrations is important in many scientific and engineering problems. This paper presents a novel, cost effective method using fiber optic fiber Bragg gratings (FBGs) for the measurement of high frequency vibrations. The method uses wavelength matched FBG sensors, with the first sensor acting as a transmission filter and the second sensor acting as the sensing portion. Energy fluctuations in the reflection spectrum of the second FBG due to wavelength mismatch between the sensors are captured by a photodiode. An in-depth analysis of the optical circuit is provided to predict the behavior of the method as well as identify ways to optimize the method. Simple demonstrations of the method were performed with the FBG sensing system installed on a piezoelectric transducer and on a wind turbine blade. Vibrations were measured with sampling frequencies up to 1 MHz for demonstrative purposes. The sensing method can be multiplexed for use with multiple sensors, and with care, can be retrofitted to work with FBG sensors already installed on a structure.

  7. Multipoint sensor based on fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Zepeda, O; Munoz-Aguirre, S; Beltran-Perez, G; Castillo-Mixcoatl, J, E-mail: mezeos9@yahoo.com [Facultad de Ciencias FIsico-Matematicas, BUAP Av. San Claudio y Rio Verde, Col. San Manuel, CU. C.P. 72570, Puebla, Puebla (Mexico)

    2011-01-01

    In some control and industrial measurement systems of physical variables (pressure, temperature, flow, etc) it is necessary one system and one sensor to control each process. On the other hand, there are systems such as PLC (Programmable Logic Control), which can process several signals simultaneously. However it is still necessary to use one sensor for each variable. Therefore, in the present work the use of a multipoint sensor to solve such problem has been proposed. The sensor consists of an optical fiber laser with two Fabry-Perot cavities constructed using fiber Bragg gratings (FBG). In the same system is possible to measure changes in two variables by detecting the intermodal separation frequency of each cavity and evaluate their amplitudes. The intermodal separation frequency depends on each cavity length. The sensor signals are monitored through an oscilloscope or a PCI card and after that acquired by PC, where they are analyzed and displayed. Results of the evaluation of the intermodal frequency separation peak amplitude behavior with FBG stretching are presented.

  8. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  9. Contrast sensitivity to angular frequency gratings is not higher than to Cartesian gratings

    Directory of Open Access Journals (Sweden)

    Zana Y.

    2004-01-01

    Full Text Available When contrast sensitivity functions to Cartesian and angular gratings were compared in previous studies the peak sensitivity to angular stimuli was reported to be 0.21 log units higher. In experiments carried out to repeat this result, we used the same two-alternative forced-choice paradigm, but improved experimental control and precision by increasing contrast resolution from 8 to 12 bits, increasing the screen refresh rate from 30 Hz interlaced to 85 Hz non-interlaced, linearizing the voltage-luminance relation, modulating luminance in frequencies that minimize pixel aliasing, and improving control of the subject's exposure to the stimuli. The contrast sensitivity functions to Cartesian and angular gratings were similar in form and peak sensitivity (2.4 cycles per visual degree (c/deg and 32 c/360º, respectively to those reported in a previous study (3 c/deg and 32 c/360º, respectively, but peak sensitivity to angular stimuli was 0.13 log units lower than that to Cartesian stimuli. When the experiment was repeated, this time simulating the experimental control level used in the previous study, no difference between the peak sensitivity to Cartesian and angular stimuli was found. This result agrees with most current models that assume Cartesian filtering at the first visual processing stage. The discrepancy in the results is explained in part by differences in the degree of experimental control.

  10. Electronically reconfigurable superimposed waveguide long-period gratings

    Science.gov (United States)

    Kulishov, Mykola; Daxhelet, Xavier; Gaidi, Mounir; Chaker, Mohamed

    2002-08-01

    The perturbation to the refractive index induced by a periodic electric field from two systems of interdigitated electrodes with the electrode-finger period l is analyzed for a waveguide with an electro-optically (EO) active core-cladding. It is shown that the electric field induces two superimposed transmissive refractive-index gratings with different symmetries of their cross-section distributions. One of these gratings has a constant component of an EO-induced refractive index along with its variable component with periodicity l, whereas the second grating possesses only a variable component with periodicity 2l. With the proper waveguide design, the gratings provide interaction between a guided fundamental core mode and two guided cladding modes. Through the externally applied electric potential, these gratings can be independently switched ON and OFF, or they can be activated simultaneously with electronically controlled weighting factors. Coupling coefficients of both gratings are analyzed in terms of their dependence on the electrode duty ratio and dielectric permittivities of the core and cladding. The coupled-wave equations for the superimposed gratings are written and solved. The spectral characteristics are investigated by numerical simulation. It is found that the spectral characteristics are described by a dual-dip transmission spectrum with individual electronic control of the dip depths and positions. Within the concept, a new external potential application scheme is described in which the symmetry of the cross-sectional distribution of the refractive index provides coupling only between the core mode and the cladding modes, preventing interaction of the cladding modes with each another. This simple concept opens opportunities for developing a number of tunable devices for integrated optics by use of the proposed design as a building block.

  11. Fabry-perot multilayers for enhancing the diffraction efficiency of ion-implanted gratings.

    Science.gov (United States)

    Escoubas, L; Flory, F O; Lemarchand, F; Drouard, E; Roux, L; Tisserand, S; Albrand, G

    2001-04-01

    Enhancement of the free-space diffraction efficiency of gratings made by titanium-ion implantation is demonstrated both theoretically and experimentally. Indeed, by insertion of a grating into a multilayer dielectric Fabry-Perot cavity, the diffraction efficiency can be increased to as much as 24 times that of a single grating. The sensitivity of the diffraction efficiency to the optogeometrical parameters of the grating or of the Fabry-Perot cavity is discussed. Moreover, a process for performance of a phase grating inside a Fabry-Perot cavity is described, and experimental results concerning efficiency measurements are compared with computed values for various grating periods.

  12. Diamond turning of high-precision roll-to-roll imprinting molds for fabricating subwavelength gratings

    Science.gov (United States)

    Liu, Chun-Wei; Yan, Jiwang; Lin, Shih-Chieh

    2016-06-01

    Diamond turning of high-precision molds is a vital process for the roll-to-roll-based ultraviolet resin imprinting process in fabricating subwavelength gratings. The effects of the grating shape and grating period on diffraction efficiencies and diffraction angles were simulated. Experiments were then conducted to examine the effects of shape design, grating period, and cutting speed on machinability of the mold. According to the optical measurement results, the performance of the subwavelength gratings matched the design well at various incident angles. The results confirm that diamond turning of high-precision molds is a feasible approach for ensuring the continual mass production of subwavelength gratings.

  13. Sensitivity analysis and optimization method for the fabrication of one-dimensional beam-splitting phase gratings

    National Research Council Canada - National Science Library

    Pacheco, Shaun; Brand, Jonathan F; Zaverton, Melissa; Milster, Tom; Liang, Rongguang

    2015-01-01

    .... Numerical results for three 1x9 beam splitting phase gratings are given. Two optimized gratings with low sensitivity to fabrication errors were compared with a grating designed for optimal efficiency...

  14. Spectral calibration for convex grating imaging spectrometer

    Science.gov (United States)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  15. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    Science.gov (United States)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  16. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    Science.gov (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  17. Photofabrication of surface relief gratings using post functionalized azo polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, S.K.; Kumar, J.; Kim, D.Y.; Jiang, X.; Wang, X.; Li, L.; Sukwattanasinitt, M.; Sandman, D.J.

    1998-07-01

    A series of azobenzene funtionalized polymers has been synthesized by post polymerization azo coupling reaction. Photo-fabrication of surface relief gratings were studied on the polymer films. Epoxy based azo polymers were prepared by post azo coupling reaction to form polymers containing donor-acceptor type azo chromophores. The azo chromophores were designed to contain ionizable groups to impart self-assembling and photoprocessing capabilities to the polymers. The polymers containing 4-(4-(carboxylic acid)phenylazo)aniline chromophores can be directly photofabricated to form surface relief gratings with large surface modulations. Charge interactions had a strong influence on the details of the writing process. A new soluble polydiacetylene, post-functionalized with azobenzene groups was also prepared. Large amplitude surface gratings could be fabricated on this polydiacetylene film as well.

  18. Computer-Generated Holographic Gratings in Soft Matter

    CERN Document Server

    Zito, Gianluigi; Piccirillo, Bruno; Tkachenko, Volodymyr; Santamato, Enrico; Abbate, Giancarlo

    2013-01-01

    Standard multiple-beam holography has been largely used to produce gratings in polymer-liquid crystal composites, like POLICRYPS, H-PDLC gratings and POLIPHEM [1]. In this work we present a different approach to liquid crystalpolymeric grating production, based on the Computer-Generated Holography (CGH). The great advantage of using CGH is that interferometer-based schemes are no longer necessary, avoiding problems related to long term stability of the interference pattern and multi-beam complex optical setup. Moreover, the CGH technique allows a wider choice of pattern designs. In this preliminary work, we obtained promising results, as for instance the patterning of a square-wave refractive index modulation of a LCpolymeric composite, a pattern which is not achievable with standard two-beam holography.

  19. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  20. Three-dimensional grating nanowires for enhanced light trapping.

    Science.gov (United States)

    Lee, Hoo-Cheol; Na, Jin-Young; Moon, Yoon-Jong; Park, Jin-Sung; Ee, Ho-Seok; Park, Hong-Gyu; Kim, Sun-Kyung

    2016-04-01

    We propose rationally designed 3D grating nanowires for boosting light-matter interactions. Full-vectorial simulations show that grating nanowires sustain high-amplitude waveguide modes and induce a strong optical antenna effect, which leads to an enhancement in nanowire absorption at specific or broadband wavelengths. Analyses of mode profiles and scattering spectra verify that periodic shells convert a normal plane wave into trapped waveguide modes, thus giving rise to scattering dips. A 200 nm diameter crystalline Si nanowire with designed periodic shells yields an enormously large current density of ∼28  mA/cm2 together with an absorption efficiency exceeding unity at infrared wavelengths. The grating nanowires studied herein will provide an extremely efficient absorption platform for photovoltaic devices and color-sensitive photodetectors.

  1. Applications of distributed fiber Bragg grating sensors in civil engineering

    Science.gov (United States)

    Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1995-09-01

    We report on civil engineering applications of wavelength multiplexed optical-fiber Bragg grating arrays produced directly on the draw tower for testing and surveying advanced structures and material like carbon fiber reinforced concrete elements and prestressing tendons. We equipped a 6 m X 0.9 m X 0.5 m concrete cantilever beam reinforced with carbon fiber lamellas with fiber Bragg grating sensors. Static and dynamic strain levels up to 1500 micrometers /m were measured with a Michelson interferometer used as Fourier spectrometer with resolutions of about 10 micrometers /m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optic results. We used the fiber sensors in two different arrangements: some Bragg grating array elements measured the local strain while others were configured in an extensometric way to measure moderate strain over 0.1-1 m.

  2. Lamellar grating optimization for miniaturized fourier transform spectrometers.

    Science.gov (United States)

    Ferhanoglu, Onur; Seren, Hüseyin R; Lüttjohann, Stephan; Urey, Hakan

    2009-11-09

    Microfabricated Lamellar grating interferometers (LGI) require fewer components compared to Michelson interferotemeters and offer compact and broadband Fourier transform spectrometers (FTS) with good spectral resolution, high speed and high efficiency. This study presents the fundamental equations that govern the performance and limitations of LGI based FTS systems. Simulations and experiments were conducted to demonstrate and explain the periodic nature of the interferogram envelope due to Talbot image formation. Simulations reveal that the grating period should be chosen large enough to avoid Talbot phase reversal at the expense of mixing of the diffraction orders at the detector. Optimal LGI grating period selection depends on a number of system parameters and requires compromises in spectral resolution and signal-to-bias ratio (SBR) of the interferogram within the spectral range of interest. New analytical equations are derived for spectral resolution and SBR of LGI based FTS systems.

  3. A plating method for metal coating of fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Yulong Li; Hua Zhang; Yan Feng; Gang Peng

    2009-01-01

    We present a method for metal coating optical fiber and in-fiber Bragg grating. The technology process which is based on electroless plating and electroplating method is described in detail. The fiber is firstly coated with a thin copper or nickel plate with electroless plating method. Then, a thicker nickel plate is coated on the surface of the conductive layer. Under the optimum conditions, the surfaces of chemical plating and electroplating coatings are all smooth and compact. There is no visible defect found in the cross-section. Using this two-step metallization method, the in-fiber Bragg grating can be well protected and its thermal sensitivity can be enhanced. After the metallization process, the fiber sensor is successfully embedded in the 42CrMo steel by brazing method. Thus a smart metal structure is achieved. The embedding results show that the plating method for metallization protection of in-fiber Bragg grating is effective.

  4. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible......We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... with the lithographically processed grating structures are done in order to obtain the efficiency enhancement in thin, flexible devices. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  5. Efficient IR Transmission Diffraction Grating for Circularly Polarized Light

    Science.gov (United States)

    Cole, Helen; Chambers, Diana

    1999-01-01

    Numerical methods, using rigorous coupled wave theory, are used to design rectangular relief diffraction gratings for an infrared application which requires comparable first order efficiencies in the TE and TM polarization states. The depth, period, and fill factor of the grating are varied to identify optimal two level binary lamellar grating profiles which predict efficiencies for individual TM and TE polarizations above 75 percent, while keeping the difference between the two efficiencies within 10 percent. The application at hand is a rotating, transmissive diffractive scanner for space-based coherent lidar. The operating wavelength is 2.0 microns. A collimated, circularly polarized beam is incident on the diffractive scanner at the Bragg angle; 30 and 45 degree beam deflection angles being studied. Fused silica is the substrate material of choice. Selected designs are fabricated on 3 inch fused silica substrates using lithographic methods. The performance of the test pieces is measured and compared to theoretical predictions.

  6. Model based control of grate combustion; Modellbaserad roststyrning

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Kjellstroem, Bjoern; Niklasson, Fredrik; Boecher Poulsen, Kristian

    2006-12-15

    An existing dynamic model for grate combustion has been further developed. The model has been used for studies of possible advantages that can be gained from utilisation of measurements of grate temperatures and fuel bed height for control of a boiler after disturbances caused by varying fuel moisture and fuel feeding. The objective was to asses the possibilities to develop a control system that would adjust for such disturbances quicker than measurements of steam output and oxygen in the exhaust. The model is based on dividing the fuel bed into three layers, where the different layers include fuel being dried, fuel being pyrolysed and char reacting with oxygen. The grate below the fuel bed is also considered. A mass balance, an energy balance and a volume balance is considered for each layer in 22 cells along the grate. The energy balances give the temperature distribution and the volume balances the bed height. The earlier version of the model could not handle layers that are consumed. This weakness has now been eliminated. Comparisons between predicted grate temperatures and measurements in a 25 MW boiler fuelled with biofuel have been used for validation of the model. The comparisons include effects of variations in primary air temperature, fuel moisture and output power. The model shows good agreement with observations for changes in the air temperature but the ability of the model to predict effects of changed fuel moisture is difficult to judge since the steam dome pressure control caused simultaneous changes of the primary air flow, which probably had a larger influence on the grate temperature. A linearised, tuned and reduced version of the model was used for design of a linear quadratic controller. This was used for studies of advantages of using measurements of grate temperatures and bed height for control of pusher velocity, grate speed, primary air flow and air temperature after disturbances of fuel moisture and fuel flow. Measurements of the grate

  7. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing....... The project involves the processes from feasibility study of fibre grating technology to full scale test on a wind turbine blade. The project has involved the design and manufacturing of a D-shape optical fibre. The project includes the process of embedding the optical fibre directly into the wind turbine...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...

  8. Study of Lau fringes generated by a photorefractive volume grating

    Science.gov (United States)

    Forte, Gustavo; Tebaldi, Myrian; Bolognini, Nestor

    2017-08-01

    In this work the Lau fringes generated by using a combination of an amplitude grating and a photorefractive volume phase grating is theoretically and experimentally analyzed. A model based on the path integral formalism to calculate the patterns intensity is employed. We show that the Lau pattern behavior is governed by the output pupil diameter of the imaging recording system, the DC external electric field and the crystal thickness. The introduction of a phase modulation that gathers the previously mentioned parameters allows determining the condition to optimize the fringe visibility. In this case, the visibility maintains a sinusoidal dependence as it happened with planar grating experiments. The experimental results confirm the theoretical model proposed.

  9. Performance and optimization of X-ray grating interferometry.

    Science.gov (United States)

    Thuering, T; Stampanoni, M

    2014-03-01

    The monochromatic and polychromatic performance of a grating interferometer is theoretically analysed. The smallest detectable refraction angle is used as a metric for the efficiency in acquiring a differential phase-contrast image. Analytical formulae for the visibility and the smallest detectable refraction angle are derived for Talbot-type and Talbot-Lau-type interferometers, respectively, providing a framework for the optimization of the geometry. The polychromatic performance of a grating interferometer is investigated analytically by calculating the energy-dependent interference fringe visibility, the spectral acceptance and the polychromatic interference fringe visibility. The optimization of grating interferometry is a crucial step for the design of application-specific systems with maximum performance.

  10. Round Robin for Optical Fiber Bragg Grating Metrology.

    Science.gov (United States)

    Rose, A H; Wang, C M; Dyer, S D

    2000-01-01

    NIST has administered the first round robin of measurements for optical fiber Bragg gratings. We compared the measurement of center wavelength, bandwidth, isolation, minimum relative transmittance, and relative group delay among several grating types in two industry groups, telecommunications and sensors. We found that the state of fiber Bragg grating metrology needs improvement in most areas. Specifically, when tunable lasers are used a filter is needed to remove broadband emissions from the laser. The linear slope of relative group delay measurements is sensitive to drift and systematic bias in the rf-modulation technique. The center wavelength measurement had a range of about 27 pm in the sensors group and is not adequate to support long-term structural monitoring applications.

  11. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...

  12. Geometric Metasurface Fork Gratings for Vortex Beam Generation and Manipulation

    CERN Document Server

    Chen, Shumei; Li, Guixin; Zhang, Shuang; Cheah, Kok Wai

    2016-01-01

    In recent years, optical vortex beams possessing orbital angular momentum have caught much attention due to their potential for high capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provides infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate requires complicated 3D fabrication, the emerging field of metasurfaces has provided a planar and facile solution for generating vortex beams of arbitrary orbit angular momentum. Here we realize a novel type of geometric metasurface fork grating that seamlessly combine the functionality of a metasurface phase plate for vortex beam generation, and that of a linear phase gradient metasurface for controlling the wave propagation direction. The metasurface fork grating is therefore capable of simultaneously controlling both the...

  13. Effective medium theory for graphene-covered metallic gratings

    Science.gov (United States)

    Rahmani, Babak; Bagheri, Amirmasood; Khavasi, Amin; Mehrany, Khashayar

    2016-10-01

    We propose an effective medium theory for a one-dimensional periodic array of rectangular grooves covered by a graphene sheet. Parameters of the effective medium model are given by explicit analytical expressions for both major polarizations TM and TE, and for all incident angles. In extraction of this model, we assumed single mode approximation inside the grooves. The effect of non-specular diffraction orders outside the grating, as well as the plasmonic response of the graphene sheet in the far-infrared spectrum, is addressed by introducing an effective surface conductivity at the interface of the metallic grating and the ambient environment. It is shown that surface plasmons in graphene effectively capture diffracted waves in the metallic grating leading to near total absorption. Results of this work may pave the way for designing wide-band absorbers for terahertz applications.

  14. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  15. Full vector complex coupled mode theory for tilted fiber gratings.

    Science.gov (United States)

    Lu, Yu-Chun; Huang, Wei-Ping; Jian, Shui-Sheng

    2010-01-18

    A full vector complex coupled mode theory (CMT) for the analysis of tilted fiber gratings is presented. With the combination of the perfectly matched layer (PML) and the perfectly reflecting boundary (PRB), the continuous radiation modes are well represented by a set of discrete complex modes. Simulation of coupling to radiation modes is greatly simplified and may be treated in the same fashion as guided modes. Numerical results of the tilted fiber Bragg gratings (TFBGs) with outer-cladding index equal, lower and higher than that of the inner-cladding indicate that the complex coupled mode approach is highly effective in the simulation of couplings to cladding and radiation modes in tilted fiber gratings. The reflective TFBGs are investigated by the proposed approach in detail.

  16. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop a novel type of high resolving power diffraction gratings based on volume Bragg gratings technology. The...

  17. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main purpose of this NASA SBIR Phase II proposal is development of a novel type of high resolving power diffraction gratings based on volume Bragg gratings...

  18. Analytical Method for Designing Grating Compensated Dispersion-Managed Soliton Systems

    Institute of Scientific and Technical Information of China (English)

    Y.; H.; C.; Kwan; K.; Nakkeeran; P.; K.; A.; Wai

    2003-01-01

    We show a useful analytical method to design grating compensated dispersion-managed systems. Our method is in good agreement with the numerical results even in the presence of group delay ripples in the chirped fiber gratings.

  19. Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic.

    Science.gov (United States)

    Krug, Peter A; Rogojan, Rodica Matei; Albert, Jacques

    2009-06-20

    We inscribed thick volume gratings in WMS-15 glass ceramic by ultraviolet light at 193 and 248 nm. Unlike earlier work in ceramic materials, the inscription process modified the optical properties of the material without the need for any additional chemical or thermal processing. Experimental evidence from measurements of grating growth, thermal annealing, and spectral absorption indicates that two distinct physical mechanisms are responsible for the grating formation. Weak, easily thermally bleached gratings resulted from exposure fluences below 0.3 kJ/cm2. Optical absorption measurements suggest that these low fluence gratings are predominantly absorption gratings. More thermally stable gratings, found to be refractive index gratings with unsaturated refractive index modulation amplitude as large as 6 x 10(-5) were formed at cumulative fluences of 1 kJ/cm2 and above.

  20. Dynamic Gain Equalizer Based on the H-PDLC Volume Phase Grating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure and Bragg diffraction characteristics of volume phase gratings based on H-PDLC technology are presented, and the principles and simulation aided design of dynamic gain equalizers with the gratings are discussed.

  1. Genetic algorithm-based design method for multilevel anisotropic diffraction gratings

    Science.gov (United States)

    Okamoto, Hiroyuki; Noda, Kohei; Sakamoto, Moritsugu; Sasaki, Tomoyuki; Wada, Yasuhiro; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-08-01

    We developed a method for the design of multilevel anisotropic diffraction gratings based on a genetic algorithm. The method is used to design the multilevel anisotropic diffraction gratings based on input data that represent the output from the required grating. The validity of the proposed method was evaluated by designing a multilevel anisotropic diffraction grating using the outputs from an orthogonal circular polarization grating. The design results corresponded to the orthogonal circular polarization grating structures that were used to provide outputs to act as the input data for the process. Comparison with existing design methods shows that the proposed method can reduce the number of human processes that are required to design multilevel anisotropic diffraction gratings. Additionally, the method will be able to design complex structures without any requirement for subsequent examination by a human designer. The method can contribute to the development of optical elements by designing multilevel anisotropic diffraction gratings.

  2. Structure modeling for scatterometric characterization of photoinduced surface-relief gratings

    Science.gov (United States)

    Logofatu, Petre C.; Apostol, Ileana; Castex, Marie-Claude; Damian, Victor; Iordache, Iuliana; Bojan, Mihaela; Apostol, Dan

    2007-06-01

    Surface-relief photo-polymer gratings obtained through the novel technique of photoinduced single step inscription in photopolymers are characterized through various investigations means, with an emphasis on scatterometry. The characterization of the gratings is necessary not only for insight in the creation process of gratings but also for checking the reproducibility and uniformity. The diffraction efficiencies of the various orders diffracted by the grating were measured and they were fitted to theoretical predictions corresponding to various structure models of the gratings. The fitting procedure is used to provide the parameters of the gratings, such as the width, the grating height, the pitch or shape factors, such as the wall angles for a trapezoidal structure. The shape of the gratings was quite complicated and the fitting, for this reason, a challenge. Numerous models were proposed, tried and their advantages and shortcomings discussed.

  3. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.

    Science.gov (United States)

    Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A

    2016-06-28

    Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined

  4. Optimization of a grating pulse stretcher suitable for kJ class 10PW laser system

    Science.gov (United States)

    Vyhlídka, Štěpán; Kramer, Daniel; Kepler, Matt; Gaul, Erhard; Rus, Bedřich

    2017-05-01

    A comparison of various pulse stretcher designs accommodating material dispersion for a management. Here, we compare several designs using only one diffraction grating based on either a Perry-Banks or an Offner stretcher types, mostly at the Littrow angle. The target spectral phase profile is achieved through the tuning of the grating position, the angle of incidence on the grating, the radii of curvature of curved mirrors and the line density of the grating.

  5. Computer-Generated Holograms for Recording Multiple-Phase-Shifte Fiber Bragg Grating Corrugations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method of fabricating multiple-phase-shifte fiber Bragg grating by CGHs is proposed. The authors present an example of such CGH by which a section multiple-phase-shifte fiber Bragg grating with two π/2 phase shifts and grating length L=21.2 μm was produced. The authors describe the production process and finally give an example of a reconstructed fiber grating with two phase-shifts.

  6. Electromagnetically induced grating in a crystal of molecular magnets system

    Science.gov (United States)

    Liu, Jibing; Liu, Na; Shan, Chuanjia; Liu, Tangkun; Li, Hong; Zheng, Anshou; Xie, Xiao-Tao

    2016-07-01

    We investigate the response of the molecular system to the magnetic field modulation. Molecular magnets are subjected to a strong standing ac magnetic field and a weak probe magnetic field. The transmission and absorption of the weak probe magnetic field can be changed due to quantum coherence and the spatially modulating of the standing field. And a electromagnetically induced grating is formed in the crystal of molecular magnets via electromagnetically induced transparency (EIT). The diffraction efficiency of the grating can be adjusted efficiently by tuning the intensity of the standing wave field and the single photon detuning.

  7. Half-Tone Video Images Of Drifting Sinusoidal Gratings

    Science.gov (United States)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1991-01-01

    Digital technique for generation of slowly moving video image of sinusoidal grating avoids difficulty of transferring full image data from disk storage to image memory at conventional frame rates. Depends partly on trigonometric identity by which moving sinusoidal grating decomposed into two stationary patterns spatially and temporally modulated in quadrature. Makes motion appear smooth, even at speeds much less than one-tenth picture element per frame period. Applicable to digital video system in which image memory consists of at least 2 bits per picture element, and final brightness of picture element determined by contents of "lookup-table" memory programmed anew each frame period and indexed by coordinates of each picture element.

  8. Kinetic analysis of two dimensional metallic grating Cerenkov maser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.

  9. Carbon nanotube coated fiber Bragg grating for photomechanical optic modulator.

    Science.gov (United States)

    Shivananju, B N; Suri, Ashish; Asokan, Sundarrajan; Misra, Abha

    2013-09-01

    We have demonstrated novel concept of utilizing the photomechanical actuation in carbon nanotubes (CNTs) to tune and reversibly switch the Bragg wavelength. When fiber Bragg grating coated with CNTs (CNT-FBG) is exposed externally to a wide range of optical wavelengths, e.g., ultraviolet to infrared (0.2-200 μm), a strain is induced in the CNTs which alters the grating pitch and refractive index in the CNT-FBG system resulting in a shift in the Bragg wavelength. This novel approach will find applications in telecommunication, sensors and actuators, and also for real time monitoring of the photomechanical actuation in nanoscale materials.

  10. Laser-Focused Atomic Deposition for Nanascale Grating

    Institute of Scientific and Technical Information of China (English)

    MA Yan; LI Tong-Bao; WU Wen; XIAO Yi-Li; ZHANG Ping-Ping; GONG Wei-Gang

    2011-01-01

    Laser-focused atomic deposition is a technique with which nearly resonant light is used to pattern an atom beam.To solve the problem that the result of laser-cooled atoms cannot be monitored during the 30-rmin depositing time,we present a three-hole mechanically precollimated aperture apparatus.A 425 nm laser light standing wave is used to focus a beam of chromium atoms to fabricate the nanoscale grating. The period of the grating is 213(+-)0.1 nm,the height is 4nm and the full width at half miximum is 64(+-)6nm.

  11. Enhanced resolution of long-period grating bend sensor

    DEFF Research Database (Denmark)

    Glavind, Lars; Gao, S; Cook, K

    2013-01-01

    We present an optical fiber bend sensor with enhanced resolution based on the principle of a Mach-Zehnder interferometer in transmission. The sensor is based on two identical Long-Period Gratings separated by approximately 100 mm in a D-shaped single-mode optical fiber. The sensor provides a narr...... resonance bandwidth compared to a typical resonance from a Long-Period Grating. The sensor was recoated with low refractive index polyimide and embedded on a fiber-glass base plate before it was characterized as a bending sensor....

  12. Acoustic Bessel-like beam formation by an axisymmetric grating

    Science.gov (United States)

    Jiménez, N.; Romero-García, V.; Picó, R.; Cebrecos, A.; Sánchez-Morcillo, V. J.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.; Staliunas, K.

    2014-04-01

    We report Bessel-like beam formation of acoustic waves by means of an axisymmetric grating of rigid tori. The results show that the generated beam pattern is similar to that of Bessel beams, characterized by elongated non-diffracting focal spots. A multiple foci structure is observed, due to the finite size of the lens. The dependence of the focal distance on the frequency is also discussed, on the basis of an extended grating theory. Experimental validation of acoustic Bessel-like beam formation is also reported for sound waves. The results can be generalized to wave beams of different nature, as optical or matter waves.

  13. Tow-Dimensional Micro-grating Formed by Polystyrene Spheres

    Institute of Scientific and Technical Information of China (English)

    张琦; 倪培根; 孟庆波; 程丙英; 张道中

    2003-01-01

    We report a simple method to make two-dimensional plane gratings that can be used as splitters. In the selfassembly process, the colloidal spheres can form single layer square or triangular lattice on a flat surface and in our experiments the triangular lattice is a more common structure. As an incident beam passes through the triangular lattice, it can be split into seven sub-beams, among which six beams have the same density and scattering angle. This grating is not sensitive to the polarization direction of the incident light.

  14. Color multiplexing using directional holographic gratings and linear polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, L I; Rodriguez, A; Ramirez, G; Guel, S; Nunez, O F, E-mail: roca@cactus.iico.uaslp.mx [Instituto de Investigacion en Comunicacion Optica (IICO) Universidad Autonoma de San Luis Potosi, S.L.P. (UASLP) (Mexico)

    2011-01-01

    We propose a system of multiplexing and de-multiplexing, which uses a holographic diffraction grating to compel modulated light of different colors to be sent through an optical fiber. Diffraction gratings were fabricated specifically to pick the desired direction in which we wanted the light of different wavelengths to impinge the optic fiber, and also to be separated at the output. It was been found that the system preserves the polarization of light, which give us a one more freedom degree, allowing us to process twice the original information amount.

  15. Quantum reflection of helium atom beams from a microstructured grating

    OpenAIRE

    Zhao, Bum Suk; Schulz, Stephan A.; Meek, Samuel A.; Meijer, Gerard; Schöllkopf, Wieland

    2008-01-01

    We observe high-resolution diffraction patterns of a thermal-energy helium-atom beam reflected from a microstructured surface grating at grazing incidence. The grating consists of 10-$\\mu$m-wide Cr strips patterned on a quartz substrate and has a periodicity of 20 $\\mu$m. Fully-resolved diffraction peaks up to the $7^{\\rm th}$ order are observed at grazing angles up to 20 mrad. With changes in de Broglie wavelength or grazing angle the relative diffraction intensities show significant variati...

  16. Analysis of Fibonacci gratings and their diffraction patterns.

    Science.gov (United States)

    Verma, Rupesh; Sharma, Manoj Kumar; Senthilkumaran, Paramasivam; Banerjee, Varsha

    2014-07-01

    Aperiodic and fractal optical elements are proving to be promising candidates in image-forming devices. In this paper, we analyze the diffraction patterns of Fibonacci gratings (FbGs), which are prototypical examples of aperiodicity. They exhibit novel characteristics such as redundancy and robustness that keep their imaging characteristics intact even when there is significant loss of information. FbGs also contain fractal signatures and are characterized by a fractal dimension. Our study suggests that aperiodic gratings may be better than their fractal counterparts in technologies based on such architectures. We also identify the demarcating features of aperiodic and fractal diffraction, which have been rather fuzzy in the literature so far.

  17. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  18. Fiber-guided modes conversion using superposed helical gratings

    Science.gov (United States)

    Ma, Yancheng; Fang, Liang; Wu, Guoan

    2017-03-01

    Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.

  19. Dynamic Optical Grating Device and Associated Method for Modulating Light

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  20. Controlled angular redirection of light via nanoimprinted disordered gratings

    DEFF Research Database (Denmark)

    Buss, Thomas; Teisseire, Jérémie; Mazoyer, Simon

    2013-01-01

    Enhanced control of diffraction through transparent substrates is achieved via disordered gratings in a silica sol–gel film. Tailoring the degree of disorder allows tuning of the diffractive behavior from discrete orders into broad distributions over large angular range. Gratings of optical quality...... are formed by silica sol–gel nanoimprint lithography and an optical setup for the measurement of continuous diffraction patterns is presented. Sound agreement is found between measurements and simulation, validating both the approach for redirection of light and the fabrication process. The disordered...

  1. Symmetry and resonant modes in platonic grating stacks

    CERN Document Server

    Haslinger, Stewart G; Movchan, Natasha V; McPhedran, Ross C

    2013-01-01

    We study the flexural wave modes existing in finite stacks of gratings containing rigid, zero-radius pins. We group the modes into even and odd classes, and derive dispersion equations for each. We study the recently discovered EDIT (elasto-dynamically inhibited transmission) phenomenon, and relate it to the occurrence of trapped waves of even and odd symmetries being simultaneously resonant. We show how the EDIT interaction may be steered over a wide range of frequencies and angles, using a strategy in which the single-grating reflectance is kept high, so enabling the quality factors of the even and odd resonances to be kept large.

  2. Radiation from a charge rotating inside a cylindrical grating

    Science.gov (United States)

    Kotanjyan, A. S.; Mkrtchyan, A. R.; Saharian, A. A.

    2017-07-01

    We investigate the spectral-angular distribution for the radiation emitted by a point charge moving along a helical trajectory inside a cylindrical grating with conducting strips. Two types of the radiation processes are realized: undulator and Smith-Purcell radiations. Their relative contributions to the total radiation intensity are discussed in various asymptotic regions of the parameters describing the diffraction grating and for large harmonics. The region of the parameters is specified for which the interference effects between the undulator and Smith-Purcell radiations are essential.

  3. Laser-induced grating in ZnO

    DEFF Research Database (Denmark)

    Ravn, Jesper N.

    1992-01-01

    A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self-diffracti......A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self...

  4. Active temperature compensation design of sensor with fiber gratings

    Institute of Scientific and Technical Information of China (English)

    Xingfa Dong(董兴法); Yonglin Huang(黄勇林); Li Jiang(姜莉); Guiyun Kai(开桂云); Xiaoyi Dong(董孝义)

    2004-01-01

    A technique for compensation of temperature effects in fiber grating sensors is reported. For strain sensors and other sensors related to strain such as electromagnetic sensors, a novel structure is designed, which uses two fiber Bragg gratings (FBGs) as strain differential sensor and has temperature effects cancelled. Using this technique, the stress sensitivity has been amplified and gets up to 0.226 nm/N, the total variation in wavelength difference within the range of 3-45 ℃ is 0.03 nm, 1/14 of the uncompensated FBG.The structure can be used in the temperature-insensitive static strain measurement and minor-vibration measurement.

  5. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.

    2016-01-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing...

  6. New multiplexing scheme for monitoring fiber optic Bragg grating sensors in the coherence domain

    OpenAIRE

    Dakin, J.P.; Ecke, W.; Rothardt, M.; Schauer, J; Usbeck, K.; Willsch, R.

    1997-01-01

    A new multiplexing scheme for monitoring fiber optic Bragg gratings in the coherence domain has been developed. Grating pairs with different grating distances are distributed along a fiber line, and interference between their reflections is monitored with a scanning Michelson interferometer. The Bragg wavelength of the individual sensor elements is determined from the interference signal frequency

  7. Novel diffraction gratings for next generation spectrographs with high spectral dispersion

    Science.gov (United States)

    Ebizuka, N.; Okamoto, T.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2016-07-01

    As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic (VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which combines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal, achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polarization. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a window blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary (VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.

  8. Fabrication and Characterization of Tilted Fiber Optic Bragg Grating Filters over Various Wavelengths

    Science.gov (United States)

    Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.

  9. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bache, Morten;

    2011-01-01

    We report on a detailed study of the inscription and characterization of fiber Bragg gratings (FBGs) in commercial step index polymer optical fibers (POFs). Through the growth dynamics of the gratings, we identify the effect of UV-induced heating during the grating inscription. We found that FBGs...

  10. First Results of ISO-SWS Grating Observations of Saturn

    NARCIS (Netherlands)

    de Graauw, Th.; Encrenaz, Th.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, A.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davies, G. R.; Naylor, D. A.

    1996-01-01

    The spectrum of Saturn has been recorded between 2.3 and 15 mu m, on June 13, 1996, with the grating mode of the Short-Wavelength Spectrometer of ISO (Infrared Space Observatory). The resolving power is about 1500 and the sensitivity is better than 1 Jy. As compared to Jupiter, the spectrum of

  11. Holographic construction of open structure, dispersion transmission gratings

    NARCIS (Netherlands)

    Dijkstra, J.H.; Lantwaard, L.J.

    1975-01-01

    A method of fabricating free-standing transmission gratings with line densities of the order of 1000 /nm is described. The technique involves a combination of two well-known procedures: application of photoresist and electroplating for the production of fine metal grids, and holographic (interferogr

  12. ISO observations of Titan with SWS/grating

    Science.gov (United States)

    Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.

    1997-01-01

    The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.

  13. Optimization of Apodized Chirped Fiber Bragg Grating for Dispersion Compensation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Multiwavelength chirped fiber Bragg grating (MCFBG) is a more valuable approach to chromatic dispersion compensation. And adjusting the structure of FBG will optimize the performance of dispersion compensator in 8×10Gb/s DWDM network, which is proved by simulating calculation.

  14. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  15. Broad spectral range synchronized flat-top arrayed waveguide grating

    NARCIS (Netherlands)

    Akca, B. Imran; Doerr, Christopher R.; Pollnau, Markus; Ridder, de René M.

    2012-01-01

    A broad-band Mach-Zehnder-interferometer-synchronized flat-top arrayed waveguide grating is presented with a 0.5-dB bandwidth of 12 nm over 90 nm of spectral range and a central excess loss value of -0.5 dB.

  16. Polarization-Independent Wideband High-Index-Contrast Grating Mirror

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Park, Gyeong Cheol; Malureanu, Radu

    2015-01-01

    Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ∼192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show...... that the designed mirror has large tolerance to fabrication errors....

  17. Quenched Optical Transmission in Ultrathin Subwavelength Plasmonic Gratings

    Science.gov (United States)

    2011-01-01

    column as the slit aperture decreases, while on the contrary the dispersion of the SRSP undergoes a blueshift . (d) The grating with the typical dimensions...redshifts as the columns get closer and closer, while on the contrary the SRSP dispersions manifest a typical blueshift . This fact is a further proof, if

  18. Bragg grating fiber optic sensing for bridges and other structures

    Science.gov (United States)

    Measures, Raymond M.; Alavie, A. Tino; Maaskant, Robert; Huang, Shang Yuan; LeBlanc, Michel

    1994-09-01

    We have demonstrated that fiber optic intracore Bragg grating sensors are able to measure the strain relief experienced over an extended period of time by both steel and carbon composite tendons within the concrete deck support girders of a recently constructed two span highway bridge. This is the first bridge in the world to test the prospects of using carbon fiber composite tendons to replace steel tendons. This unique set of measurements was accomplished with an array of 15 Bragg grating fiber optic sensors that were embedded within the precast concrete girders during their construction. We have also demonstrated that these same sensors can measure the change in the internal strain within the girders associated with both static and dynamic loading of the bridge with a truck. We are now studying the ability of Bragg grating fiber optic sensors to measure strong strain gradients and thereby provide a warning of debonding of any Bragg grating sensor from its host structure...one of the most important failure modes for any fiber optic strain sensor.

  19. Development of generalised model for grate combustion of biomass

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Kær, Søren Knudsen; Sørensen, Henrik

    , it is recommended to return to either a walking column approach or even some other, relatively simple method of prediction, and combine this with a form of randomness, to mimic the chaotic motion evident from full scale operation of grate fired plants. It is believed that such an approach will be a significant...

  20. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  1. Diffraction from relief gratings on a biomimetic elastomer cast

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Raphael A., E-mail: rguerrero@admu.edu.ph [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines); Aranas, Erika B. [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines)

    2010-10-12

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  2. Precision phase-shifting applied to fiber Bragg gratings

    DEFF Research Database (Denmark)

    Canning, John; Deyerl, Hans-Jürgen; Kristensen, Martin

    2005-01-01

    A simple method of displacing a holographic interferogram within a waveguide based on translation along a slightly tilted fringe pattern of the optical interferogram is presented. By way of example, phase-shifted fibre gratings are produced this way. The spatial resolution in fringe shift is sepa...

  3. Analysis of higher order harmonics with holographic reflection gratings

    Science.gov (United States)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  4. Precision phase-shifting applied to fiber Bragg gratings

    DEFF Research Database (Denmark)

    Canning, John; Deyerl, Hans-Jürgen; Kristensen, Martin

    2005-01-01

    A simple method of displacing a holographic interferogram within a waveguide based on translation along a slightly tilted fringe pattern of the optical interferogram is presented. By way of example, phase-shifted fibre gratings are produced this way. The spatial resolution in fringe shift is sepa...

  5. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows ...

  6. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    , modelling and computational fluid dynamics (CFD) simulations are discussed in detail. The literature survey and discussions are primarily pertaining to grate-fired boilers burning biomass, though these issues are more or less general. Other technologies (e.g., fluidized bed combustion or suspension...

  7. IC-compatible microspectrometer using a planar imaging diffraction grating.

    NARCIS (Netherlands)

    Grabarnik, S.; Emadi, A.; Wu, H.; De Graaf, G.; Vdovin, G.; Wolffenbutter, R.F.

    2008-01-01

    The design and performance of a highly miniaturized spectrometer fabricated using MEMS technologies are reported in this paper. Operation is based on an imaging diffraction grating. Minimizing fabrication complexity and assembly of the micromachined optical and electronic parts of the microspectrome

  8. Fabrication of low straylight holographic gratings for space applications

    NARCIS (Netherlands)

    Steiner, R.; Pesch, A.; Erdmann, L.H.; Burkhardt, M.; Gatto, A.; Wipf, R.; Diehl, T.; Vink, H.J.P.; Bosch, B.G. van den

    2013-01-01

    The main challenges of fabricating diffraction gratings for use in earth monitoring spectrometers are given by the requirements for low stray light, high diffraction efficiency and a low polarization sensitivity. Furthermore the use in space also requires a high environmental stability of these grat

  9. Nonperiodic metallic gratings transparent for broadband terahertz waves

    Science.gov (United States)

    Fan, Ren-Hao; Ren, Xiao-Ping; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    Recently, we demonstrate both theoretically and experimentally that nonperiodic metallic gratings can become transparent for broadband terahertz waves. Quasiperiodic and disordered metallic gratings effectively weaken and even eliminate Wood's anomalies, which are the diffraction-related characters of periodic gratings. Consequently, both the transparence bandwidth and transmission efficiency are significantly increased due to the structural aperiodicity. Furthermore, we show that for a specific light source, for example, a line source, a corresponding nonperiodic transparent grating can be also designed. We expect that our findings can be applied for transparent conducting panels, perfect white-beam polarizers, antireflective conducting solar cells, and beyond. References: X. P. Ren, R. H. Fan, R. W. Peng, X. R. Huang, D. H. Xu, Y. Zhou, and Mu Wang, Physical Review B, 91, 045111 (2015); R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, Mu. Wang, and X. Zhang, Advanced Materials, 24, 1980 (2012); and X. R. Huang, R. W. Peng, and R. H. Fan. Physical Review Letters, 105, 243901 (2010).

  10. ISO observations of Titan with SWS/grating

    Science.gov (United States)

    Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.

    1997-01-01

    The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.

  11. Monolithic integrated optic fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  12. 75 FR 8746 - Certain Steel Grating From China

    Science.gov (United States)

    2010-02-25

    ... FR 68036 (November 8, 2002). Even where electronic filing of a document is permitted, certain... Electronic Filing Procedures, 67 FR 68168, 68173 (November 8, 2002). Additional written submissions to the... COMMISSION Certain Steel Grating From China AGENCY: United States International Trade Commission....

  13. Picosecond Photon Echoes Stimulated from an Accumulated Grating

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1979-01-01

    It is shown that in optical transitions with a bottleneck, a mode-locked cw dye laser may be used to generate and heterodyne detect picosecond photon echoes. These echoes are stimulated from an accumulated grating in the electronic ground state formed by a train of twin excitation pulses of constant

  14. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  15. Topology-optimized broadband surface relief transmission grating

    DEFF Research Database (Denmark)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.

    2014-01-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized pla......% in a broadband range going from the ultraviolet region, through the visible region and into the near-infrared region....

  16. Tuning Fano resonances of graphene-based gratings

    Science.gov (United States)

    de Ceglia, Domenico; Vincenti, Maria A.; Grande, Marco; Bianco, Giuseppe Valerio; Bruno, Giovanni; D'Orazio, Antonella; Scalora, Michael

    2016-09-01

    We present a strategy to control Fano resonances in hybrid graphene-silicon-on-insulator gratings. The presence of a mono- or few-layer graphene film allows to electrically and/or chemically tuning the Fano resonances that result from the interaction of narrow-band, quasi-normal modes and broad-band, Fabry-Perot-like modes. Transmission, reflection and absorption spectra undergo significant modulations under the application of a static voltage to the graphene film. In particular, for low values of the graphene chemical potential, the structure exhibits a symmetric Lorentzian resonance; when the chemical potential increases beyond a specific threshold, the grating resonance becomes Fano-like, hence narrower and asymmetric. This transition occurs when the graphene optical response changes from that of a lossy dielectric medium into that of a low-loss metal. Further increasing the chemical potential allows to blue-shift the Fano resonance, leaving its shape and linewidth virtually unaltered. We provide a thorough description of the underlying physics by resorting to the quasi-normal mode description of the resonant grating and retrieve perturbative expressions for the characteristic wavelength and linewidth of the resonance. The roles of number of graphene layers, waveguide-film thickness and graphene quality on the tuning abilities of the grating will be discussed. Although developed for infrared telecom wavelengths and silicon-on-insulator technology, the proposed structure can be easily designed for other wavelengths, including visible, far-infrared and terahertz, and other photonic platforms.

  17. VCSELs and silicon light sources exploiting SOI grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2012-01-01

    In this talk, novel vertical-cavity laser structure consisting of a dielectric Bragg reflector, a III-V active region, and a high-index-contrast grating made in the Si layer of a silicon-on-insulator (SOI) wafer will be presented. In the Si light source version of this laser structure, the SOI gr...

  18. Design of vibration sensor based on fiber Bragg grating

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong

    2017-06-01

    Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.

  19. Development of generalised model for grate combustion of biomass

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Kær, Søren Knudsen; Sørensen, Henrik

    and vibration mode. In this work, 3 grates have been tested as well as 4 types of fuel, drinking straw, wood beads, straw pellets and wood pellets. Although much useful information and knowledge has been obtained on transport processes in fuel layers, the model has proved to be less than perfect...

  20. The polarisation correction for space-borne grating spectrometers

    Science.gov (United States)

    Zhao, Fa-cai; Sun, Quan-she; Chen, Kun-feng; Zhu, Xing-bang; Wang, Shao-shui; Wang, Guo-quan; Zheng, Xiang-liang; Han, Zhong

    2014-02-01

    Satellite measurements of backscattered sunlight contain essential information about the global distribution of atmospheric constituents. Light reflected from the Earth's atmosphere is linearly or partially linearly polarized because of scattering of unpolarized sunlight by air molecules and aerosols. In the ultraviolet and visible part of the spectrum, measurements of space-borne grating spectrometers are in general sensitive to the state of polarization of the observed light. The interaction of polarized light with polarization-sensitive optical devices yields a different radiance that is measured by the detectors than the radiance that enters the instrument. In the OMI and the SBUV/2 instruments the problem of instrument polarization sensitivity is avoided because the polarized backscattered sunlight is depolarized before it interacts with the polarization-sensitive optical components. For GOME, SCIAMACHY, and GOME-2 it is intended to eliminate the polarization response of the instrument from the polarization-sensitive measurement. This paper discusses the basic concept of the polarisation correction of the space-borne grating spectrometers by using Mueller matrix calculus. A model was developed using the Mueller Matrices formulation to evaluate the polarization sensitivity of the space-borne grating spectrometers. The optical components are treated as general diattenuators with phase retardance. The correction for this polarization sensitivity is based on broadband polarization measurements. Accurate preflight polarisation calibration of space-borne grating spectrometers is essential for the observational objectives of the instrument, and a special facility has been developed in order to allow the instrument to be calibrated.

  1. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings

    Directory of Open Access Journals (Sweden)

    Biyan Chen

    2015-07-01

    Full Text Available We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO 2 -capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.

  2. Simulation of DLA grating structures in the frequency domain

    Science.gov (United States)

    Egenolf, T.; Boine-Frankenheim, O.; Niedermayer, U.

    2017-07-01

    Dielectric laser accelerators (DLA) driven by ultrashort laser pulses can reach orders of magnitude larger gradients than contemporary RF electron accelerators. A new implemented field solver based on the finite element method in the frequency domain allows the efficient calculation of the structure constant, i.e. the ratio of energy gain to laser peak amplitude. We present the maximization of this ratio as a parameter study looking at a single grating period only. Based on this optimized shape the entire design of a beta-matched grating is completed in an iterative process. The period length of a beta-matched grating increases due to the increasing velocity of the electron when a subrelativistic beam is accelerated. The determination of the optimal length of each grating period thus requires the knowledge of the energy gain within all so far crossed periods. Furthermore, we outline to reverse the excitation in the presented solver for beam coupling impedance calculations and an estimation of the beam loading intensity limit.

  3. A compact refractometric sensor based on grated silicon photonic wires

    NARCIS (Netherlands)

    Kauppinen, L.J.; Hoekstra, Hugo; de Ridder, R.M.

    2009-01-01

    Grated silicon photonic wires for refractometric applications have been fabricated using a 248-nm deep UV lithography. It is shown experimentally, that a device with length of only 180m has an index sensitivity of $10^{-6}$ assuming a detector power resolution of 1%. It is also demonstrated that the

  4. First Results of ISO-SWS Grating Observations of Saturn

    NARCIS (Netherlands)

    de Graauw, Th.; Encrenaz, Th.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, A.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davies, G. R.; Naylor, D. A.

    1996-01-01

    The spectrum of Saturn has been recorded between 2.3 and 15 mu m, on June 13, 1996, with the grating mode of the Short-Wavelength Spectrometer of ISO (Infrared Space Observatory). The resolving power is about 1500 and the sensitivity is better than 1 Jy. As compared to Jupiter, the spectrum of Satur

  5. Fresnel equations and transmission line analogues for diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.

    1995-08-01

    A simple and intuitive formalism is presented to describe diffraction in multi-layered periodic structures. We use the well known results from scalar analysis (wave propagation in homogeneous layered media) and show that they can be generalized rather readily to vector problems such as diffraction analysis. Specifically, we derive: (1) generalized Fresnel equations appropriate for reflection and transmission from an infinitely thick grating, (2) a generalized Airy formula for thin-film to describe reflection and transmission of light through a lamellar grating and (3) a matrix propagation method akin to that used for multi-layer thin film analysis. The results developed here complement the recent work on R-matrix and S-matrix propagation algorithms that have been used in connection with modal and differential grating theories. These algorithms have proven to be numerically stable for calculating diffraction efficiencies from deep groove gratings. The formalism developed here expands upon the earlier literature by providing important details that are hitherto unavailable.

  6. Low-cost and biocompatible long-period fiber gratings

    Science.gov (United States)

    Soto-Olmos, Jorge A.; Oropeza-Ramos, Laura; Hernández-Cordero, Juan

    2011-09-01

    In this paper, a low-cost long-period fiber grating (LPFG) induced by a polymeric microstructure is demonstrated. LPFGs are induced on a tapered optical fiber (TOF) when a periodic micro-grating comes into contact with the thin region of the fiber. The micro-grating device is made using polydimethylsiloxane (PDMS), an inexpensive, nontoxic and optically transparent polymer that is extensively used in microfluidics, organic electronics and biotechnological applications. Soft lithography, along with molds built from thermoplastic polystyrene sheets, makes the fabrication straightforward and extremely low-cost. Additionally, no precision machining is necessary and the resolution of the microstructures is limited only by the resolution of the laser printer used for patterning the polystyrene sheets. The TOF and the micro-grating were dimensionally characterized using optical microscopy and white light interferometry, respectively. Variations on the optical spectrum due to pressure and temperature were observed and their magnitudes were similar to those obtained using metallic microstructures. Thus, LPFGs can be made in an inexpensive and expeditious way using PDMS and TOFs. These polymeric devices can be integrated into microfluidic and other labon- a-chip systems where biocompatibility is a valuable characteristic.

  7. A compact refractometric sensor based on grated silicon photonic wires

    NARCIS (Netherlands)

    Kauppinen, L.J.; Hoekstra, H.J.W.M.; Ridder, de R.M.

    2009-01-01

    Grated silicon photonic wires for refractometric applications have been fabricated using a 248-nm deep UV lithography. It is shown experimentally, that a device with length of only 180m has an index sensitivity of $10^{-6}$ assuming a detector power resolution of 1%. It is also demonstrated that the

  8. Graphene-ribbon-coupled tunable enhanced transmission through metallic grating

    Science.gov (United States)

    Peng, Yu-Xiang; He, Meng-Dong; Li, Ze-Jun; Wang, Kai-Jun; Li, Shui; Li, Jian-Bo; Liu, Jian-Qiang; Long, Mengqiu; Hu, Wei-Da; Chen, Xiaoshuang

    2017-01-01

    We report the tunable enhanced transmission of light through a hybrid metal-graphene structure, in which a graphene ribbon array is situated over a metallic grating. The graphene ribbon is employed to make the graphene-insulator-metal waveguide of finite length as a Fabry-Perot (F-P) cavity. When the slit of metallic grating is opened at the position with a maximal magnetic field in F-P resonant cavity, the transmission of light through metallic grating is greatly enhanced since the strongly localized magnetic field is effectively coupled to the slit. The transmission spectrum and the enhancement factor can be adjusted by changing geometrical parameters including the width and the length of slit, the width of graphene ribbon and the period of metallic grating. The transmission peaks exhibit a broad tuning range with a small change in the Fermi energy level of graphene. Moreover, the enhancement factor of transmission peak can be manipulated by the Fermi energy level and the carrier mobility of graphene, and an enhancement factor of 154 is obtained. The findings expand our understanding of hybrid metal-graphene plasmons and have potential applications in building active plasmonic devices.

  9. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  10. Temperature or strain induced adjustable-chirp characteristics of uniform fibre grating with tapered metal coating

    Institute of Scientific and Technical Information of China (English)

    Liu Yan; Li Bin; Zheng Kai; Tan Zhong-Wei; Chen Yong; Wang Yan Hua; Ren Wen-Hua; Jian Shui-Sheng

    2007-01-01

    Temperature and strain characteristics of uniform fibre grating with tapered metal coatings have been analysed theoretically, by which adjustable chirp characteristics of such gratings are shown. Electroplating is adopted to fabricate such gratings, and the tapered metal coating is obtained by gradually drawing the fibre grating out of the solution during the process of electroplating. The gradually changing cross-sectional area of the metal coating is calculated by a newly suggested numerical method. By combining the theoretical and numerical simulation analyses, the gratings' characteristics are given at various temperatures and strains. The results obtained using such a method are also testified by experiments.

  11. Calculation of optical-waveguide grating characteristics using Green's functions and Dyson's equation

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Mortensen, Asger

    2006-01-01

    We present a method for calculating the transmission spectra, dispersion, and time delay characteristics of optical-waveguide gratings based on Green's functions and Dyson's equation. Starting from the wave equation for transverse electric modes we show that the method can solve exactly both...... profile of the grating. Numerically, the method scales as O(N) where N is the number of points used to discretize the grating along the propagation axis. We consider optical fiber gratings although the method applies to all one-dimensional (1D) optical waveguide gratings including high-index contrast...

  12. Performance characteristics of advanced volume phase holographic gratings for operation in the near infrared

    Science.gov (United States)

    Arns, James A.

    2016-07-01

    Volume phase holographic (VPH) gratings are proven dispersing elements in astronomical spectrographs over the visible spectrum. VPH gratings have also been successfully deployed for use at cryogenic temperatures. Recent advances in production technology now permit the production of gratings for use in the near infrared up to 2450 nm at cryogenic conditions. This paper describes the requirements of VPH gratings for use in the H (wavelengths from 1500 nm to 1800 nm) and K (wavelengths from 1950 nm to 2450 nm) bands, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the production gratings

  13. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  14. Distributed delay-line interferometer based on a Bragg grating in transmission mode

    CERN Document Server

    Preciado, Miguel A; Shu, Xuewen; Sugden, Kate

    2016-01-01

    A novel approach for a delay line interferometer (DLI) based purely on forward Bragg scattering is proposed. We have numerically and experimentally demonstrated that a Bragg grating can deliver the functionality of a DLI in its transmission mode along a single common interfering optical path, instead of the conventional DLI implementation with two interfering optical paths. As a proof of concept, a fiber Bragg grating has been designed and fabricated, showing the desired functionality in the transmission mode of the Bragg grating. The proposed "Bragg-DLI" approach is applicable to any kind of Bragg grating technology, such as volume Bragg gratings, dielectric mirrors, silicon photonics, and other optical waveguide based Bragg structures.

  15. Study of transmission grating diffraction efficiencies for soft X—ray

    Institute of Scientific and Technical Information of China (English)

    YANGJiamin; CUIMingqi; 等

    1999-01-01

    Tansmission grating spectrometers are extensively used to measure absolute X-ray spectra in a photon-energy range below 1000eV.the transmission grating,as its dispersive element,must be calibrated to obtain its diffraction efficiencies.Calibrations of absolute diffraction efficiencies of the transmission grating at photon energy of 844eV have been caried out on Bejing synchrotron Radiation Facility.With the aid of grating model,all of the grating structure parameters have been determined and the absolute diffraction efficeencies in a photon-energy range below 2000eV have also been calculated and discussed.

  16. Analysis of viscoelasticity of POF gratings in the stress sensing

    Science.gov (United States)

    Luo, Yanhua; Wang, Xin; Yan, Binbin; Wang, Tongxin; Wu, Wenxuan; Peng, Gang-Ding; Zhang, Qijin

    2013-11-01

    The time-dependent behavior of polymer optical fiber (POF) grating under constant tensile stresses has been studied. We show that the evident time-dependence is due to the viscoelastic nature of POF grating materials that can be described with the Kelvin Model. Based on the Kelvin Model, the time-dependent relationship between the Bragg wavelength shift and stress has been analyzed in detail. The results show that the viscoelasticity has a great impact upon the stress response of POF gratings. With the increment of stress level, the visco response part increases faster than that of elastic response part. Especially, the response and recovery with and without stress can be fitted with dual exponential decay and the time constant of fast response and relaxation is ˜102 s and that of the slow is ˜103 s, which corresponds to the fast and slow movements of polymer segments, respectively. Experiments and regressions also show that the stress sensitivity is observed to be 369 pm/MPa for the immediate response and 598 pm/MPa for response balance, showing high stress sensitivity. All the spring stiffness and dashpot viscosity of Kelvin elements are larger than 1010 Pa and 1013 Pa s. The dashpot viscosity of slow Kelvin element (1014 Pa s) is around one order larger than that of fast Kelvin element (1013 Pa s) with stress. Further analysis demonstrate the response and recovery of POF gratings with and without the stress displays an evident non-linear viscoelasticity, which will bring more complexity for POF gratings in the mechanical sensing applications.

  17. The Transplant of Technology of Capacitive Displacement Transducer to Phase Modulation Grating-the Research of the Grating with nm Measuring Resolution

    Institute of Scientific and Technical Information of China (English)

    Zhang Zengyao; Wang Wei; Jin Ning

    2003-01-01

    The method rising measuring resolution through reducing pitch of the transducer has brought forward from the basic structure, principle and the corresponding relationship among pitches of capacitive electrodes, period T and phase shift of o. But if the traditional technique of PCB made of the transducer is still used, it will meet with difficulties in lead wire. And so the technology transplant from the transducer to grating is presented, the basic principle of the phase modulation grating similar to the transducer is described and the experiments setup of transmitted and reflective grating are put out. Some practical schemes f the new grating with resolution to sub-micron, even nm is given.

  18. Fabrication of thermal-resistant gratings for high-temperature measurements using geometric phase analysis

    Science.gov (United States)

    Zhang, Q.; Liu, Z.; Xie, H.; Ma, K.; Wu, L.

    2016-12-01

    Grating fabrication techniques are crucial to the success of grating-based deformation measurement methods because the quality of the grating will directly affect the measurement results. Deformation measurements at high temperatures entail heating and, perhaps, oxidize the grating. The contrast of the grating lines may change during the heating process. Thus, the thermal-resistant capability of the grating becomes a point of great concern before taking measurements. This study proposes a method that combines a laser-engraving technique with the processes of particle spraying and sintering for fabricating thermal-resistant gratings. The grating fabrication technique is introduced and discussed in detail. A numerical simulation with a geometric phase analysis (GPA) is performed for a homogeneous deformation case. Then, the selection scheme of the grating pitch is suggested. The validity of the proposed technique is verified by fabricating a thermal-resistant grating on a ZrO2 specimen and measuring its thermal strain at high temperatures (up to 1300 °C). Images of the grating before and after deformation are used to obtain the thermal-strain field by GPA and to compare the results with well-established reference data. The experimental results indicate that this proposed technique is feasible and will offer good prospects for further applications.

  19. Fabrication of thermal-resistant gratings for high-temperature measurements using geometric phase analysis.

    Science.gov (United States)

    Zhang, Q; Liu, Z; Xie, H; Ma, K; Wu, L

    2016-12-01

    Grating fabrication techniques are crucial to the success of grating-based deformation measurement methods because the quality of the grating will directly affect the measurement results. Deformation measurements at high temperatures entail heating and, perhaps, oxidize the grating. The contrast of the grating lines may change during the heating process. Thus, the thermal-resistant capability of the grating becomes a point of great concern before taking measurements. This study proposes a method that combines a laser-engraving technique with the processes of particle spraying and sintering for fabricating thermal-resistant gratings. The grating fabrication technique is introduced and discussed in detail. A numerical simulation with a geometric phase analysis (GPA) is performed for a homogeneous deformation case. Then, the selection scheme of the grating pitch is suggested. The validity of the proposed technique is verified by fabricating a thermal-resistant grating on a ZrO2 specimen and measuring its thermal strain at high temperatures (up to 1300 °C). Images of the grating before and after deformation are used to obtain the thermal-strain field by GPA and to compare the results with well-established reference data. The experimental results indicate that this proposed technique is feasible and will offer good prospects for further applications.

  20. Note: Gratings on low absorbing substrates for x-ray phase contrast imaging

    Science.gov (United States)

    Koch, F. J.; Schröter, T. J.; Kunka, D.; Meyer, P.; Meiser, J.; Faisal, A.; Khalil, M. I.; Birnbacher, L.; Viermetz, M.; Walter, M.; Schulz, J.; Pfeiffer, F.; Mohr, J.

    2015-12-01

    Grating based X-ray phase contrast imaging is on the verge of being applied in clinical settings. To achieve this goal, compact setups with high sensitivity and dose efficiency are necessary. Both can be increased by eliminating unwanted absorption in the beam path, which is mainly due to the grating substrates. Fabrication of gratings via deep X-ray lithography can address this issue by replacing the commonly used silicon substrate with materials with lower X-ray absorption that fulfill certain boundary conditions. Gratings were produced on both graphite and polymer substrates without compromising on structure quality. These gratings were tested in a three-grating setup with a source operated at 40 kVp and lead to an increase in the detector photon count rate of almost a factor of 4 compared to a set of gratings on silicon substrates. As the visibility was hardly affected, this corresponds to a significant increase in sensitivity and therefore dose efficiency.

  1. Merged vector gratings recorded in a photocrosslinkable polymer liquid crystal film for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Tomoyuki, E-mail: sasaki-tomoy@vos.nagaokaut.ac.jp; Wada, Takumi; Noda, Kohei; Ono, Hiroshi [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Kawatsuki, Nobuhiro [Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2014-01-14

    A merged vector grating, which is holographically fabricated in an anisotropic medium by irradiation with interference light with intensity modulation and polarization modulation, was designed to detect the polarization of light. The merged vector grating is recorded by the interference of two elliptically polarized beams with equal intensities, parallel azimuths, equal ellipticities, and different directions of rotation. We clarified theoretically that the Stokes parameters of the incident light beam are described by the diffraction efficiency of the merged vector grating. Also, to apply this property to formation of a polarimeter without any moving parts or mechanisms, two merged vector gratings with different grating vectors were recorded in a photocrosslinkable polymer liquid crystal film by angle-multiplexed holography. By investigation of the diffraction properties of the gratings obtained, we demonstrated the applicability of the merged vector gratings for use in polarimetry.

  2. Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

    CERN Document Server

    Li, Ruohong; Rothe, Sebastian; Teigelhöfer, Andrea; Mostamand, Maryam

    2016-01-01

    A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

  3. Beam splitting of low-contrast binary gratings under second Bragg angle incidence.

    Science.gov (United States)

    Zheng, Jiangjun; Zhou, Changhe; Wang, Bo; Feng, Jijun

    2008-05-01

    Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (~90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices.

  4. Fabrication of micro-scale gratings for moiré method with a femtosecond laser

    Directory of Open Access Journals (Sweden)

    Gaosheng Yan

    2016-07-01

    Full Text Available Fabrication of micro gratings using a femtosecond laser exposure system is experimentally investigated for the electron moiré method. Micro holes and lines are firstly etched for parameter study. Grating profile is theoretically optimized to form high quality moiré patterns. For a demonstration, a parallel grating is fabricated on a specimen of quartz glass. The minimum line width and the distance between two adjacent lines are both set to be 1μm, and the frequency of grating is 500lines/mm. The experimental results indicate that the quality of gratings is good and the relative error of the gratings pitch is about 1.5%. Based on moiré method, scanning electron microscope (SEM moiré patterns are observed clearly, which manifests that gratings fabricated with the femtosecond laser exposure is suitable for micro scale deformation measurement.

  5. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering

    Science.gov (United States)

    Wu, Bao-Jian; Lu, Xin; Qiu, Kun

    2010-06-01

    Intelligent control of dispersion management and tunable comb filtering in optical network applications can be performed by using magneto-optic fiber Bragg gratings (MFBGs). When a nonuniform magnetic field is applied to the MFBG with a constant grating period, the resulting grating response is equivalent to that of a conventional chirped grating. Under a linearly nonuniform magnetic field along the grating, a linear dispersion is achieved in the grating bandgap and the maximal dispersion slope can come to 1260 ps/nm2 for a 10-mm-long fiber grating at 1550 nm window. Similarly, a Gaussian-apodizing sampled MFBG is also useful for magnetically tunable comb filtering, with potential application to clock recovery from return-to-zero optical signals and optical carrier tracking.

  6. Properties of diffraction gratings holographically recorded in poly(ethylene glycol)dimethacrylate-ionic liquid composites

    Science.gov (United States)

    Ellabban, Mostafa A.; Glavan, Gašper; Flauger, Peter; Klepp, Jürgen; Fally, Martin

    2017-05-01

    We investigated recording and readout of transmission gratings in composites of poly(ethylene glycol) dimethacrylate (PEGDMA) and ionic liquids (IL) in detail. Gratings were recorded using a two-wave mixing technique for different grating periods, exposures and a series of film thicknesses. The recording kinetics as well as the post-exposure behavior of the gratings were studied by diffraction experiments. We found that - depending on the parameters - different grating types (pure phase or mixed) are generated, and at elevated thicknesses strong light-induced scattering develops. Gratings with thicknesses up to 85 micrometers are of the required quality with excellent optical properties, thicker gratings exhibit strong detrimental light-induced scattering. The obtained results are particularly valuable when considering PEGDMA-ionic liquid composites for applications as e.g., holographic storage materials or as neutron optic diffractive elements.

  7. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, V.; Chuang, Zuon-Min; Coldren, L.A. (Univ. of California, Santa Barbara, CA (United States))

    1993-06-01

    The authors have recently demonstrated 57 nm of tuning in a monolithic semiconductor laser using conventional DBR technology with grating elements removed in a periodic fashion. This paper describes the theory and design of these sampled grating tunable lasers. They first calculate sampled grating reflectivity. They then present normalized design curves which quantify tradeoffs involved in a sampled grating DBR laser with two mismatched sampled grating mirrors. These results are applied to design example in the InP-InGaAsP system. The design example provides 70 nm tuning wile maintaining [gt]30 dB MSR, with fractional index change [Delta][mu]/[mu] [lt] 0.2% in the mirrors, and only 1 mm of total sampled grating length. Section 4 summarizes recent experimental results, and compares them to theory. They also analyze other device structures which make use of sampled gratings.

  8. Tunable chirped fiber Bragg grating embedded in a textile laminated beam for fiber dispersion compensation

    Science.gov (United States)

    Du, Weichong; Liu, W. P.; Du, David G.; Tam, Hwa-Yaw; Tao, Xiaoming; Yu, ChongXiu; Liu, Shong Hao

    1998-06-01

    A simple method is reported for transformation of a uniform fiber grating into a linear chirped grating and realization of independent tuning of grating's linear chirp degree and central wavelength. This method involves embedding a uniform grating into a textile laminated beam and creating an odd- symmetrical linear strain distribution along the grating versus its center with a three-point-bending and stretching setup. The grating's central wavelength and chirp degree can be tuned by adjusting the horizontal stretching range and vertical bending displacement on the beam independently. A simulated experiment for compensating the dispersion of a standard single-mode fiber over 100km for 10Gbit/s signal at 1550nm window is successfully demonstrated using such a tunable chirped grating with 10 cm in length.

  9. Evanescent Wave Coupling Using Different Subwavelength Gratings for a MEMS Accelerometer

    Science.gov (United States)

    Rogers, Al-Aakhir A.

    2011-12-01

    A novel technique of coupling near-field evanescent waves by means of variable period subwavelength gratings (1.2 mum and 1.0 mum), using a 1.55 mum infrared semiconductor laser is presented for the use of an optical MEMS accelerometer. The subwavelength gratings were fabricated on both glass and silicon substrates respectively. Optical simulation of the subwavelength gratings was carried out to obtain the maximum coupling efficiency of the two subwavelength gratings; the grating thickness, grating width, and the grating separation were optimized. This was performed for both silicon and glass substrates. The simulations were used to determine the total system noise, including the noise generated from the germanium photodiode, sensitivity, and displacement detection resolution of the coupled subwavelength grating MEMS accelerometer. The coupled gratings were utilized as optical readout accelerometers. The spring/proof mass silicon accelerometer was fabricated using a four mask process, in which the structure was completed using two deep reactive ion etching (DRIE) processes. The designed serpentine spring styles determine the sensitivity of the accelerometer; when the springs are made longer or shorter, thicker or thinner, this directly attributes to the sensitivity of the device. To test function of the example of the devices, the accelerometer is placed on a platform, which permits displacement normal to the plane of the grating. The 1.550 im infrared laser is incident on the coupled subwavelength grating accelerometer device and the output intensity is measured using a geranium photodiode. As the platform is displaced, the grating separation between the two gratings changes and causes the output intensity to change. Using the coupled subwavelength grating simulations as a reference to the output intensity change with respect to gap, the mechanical and coupling sensitivity properties of as it relates to acceleration is presented.

  10. Discrimination of real and virtual surfaces with sinusoidal and triangular gratings using the fingertip and stylus.

    Science.gov (United States)

    Kocsis, M B; Cholewiak, S A; Traylor, R M; Adelstein, B D; Hirleman, E Daniel; Tan, H Z

    2013-01-01

    Two-interval two-alternative forced-choice discrimination experiments were conducted separately for sinusoidal and triangular textured surface gratings from which amplitude (i.e., height) discrimination thresholds were estimated. Participants (group sizes: n = 4 to 7) explored one of these texture types either by fingertip on real gratings (Finger real), by stylus on real gratings (Stylus real), or by stylus on virtual gratings (Stylus virtual). The real gratings were fabricated from stainless steel by an electrical discharge machining process while the virtual gratings were rendered via a programmable force-feedback device. All gratings had a 2.5-mm spatial period. On each trial, participants compared test gratings with 55, 60, 65, or 70 μm amplitudes against a 50-μm reference. The results indicate that discrimination thresholds did not differ significantly between sinusoidal and triangular gratings. With sinusoidal and triangular data combined, the average (mean + standard error) for the Stylus-real threshold (2.5 ± 0.2 μm) was significantly smaller (p <; 0.01) than that for the Stylus-virtual condition (4.9 ± 0.2 μm). Differences between the Finger-real threshold (3.8 ± 0.2 μm) and those from the other two conditions were not statistically significant. Further studies are needed to better understand the differences in perceptual cues resulting from interactions with real and virtual gratings.

  11. On-chip near-wavelength diffraction gratings for surface electromagnetic waves

    Science.gov (United States)

    Bezus, Evgeni A.; Podlipnov, Vladimir V.; Morozov, Andrey A.; Doskolovich, Leonid L.

    2017-05-01

    In the present work, on-chip dielectric diffraction gratings for steering the propagation of surface plasmon polaritons (SPP) are theoretically, numerically and experimentally studied. The investigated plasmonic gratings consist of dielectric ridges located on the SPP propagation surface (on the metal surface). In contrast to Bragg gratings, at normal incidence the periodicity direction of the grating is perpendicular to the SPP propagation direction. The studied gratings are designed using a simple plane-wave grating model and rigorously simulated using the aperiodic Fourier modal method for numerical solution of Maxwell's equations. In particular, plasmonic grating-based beam splitter with subwavelength footprint in the propagation direction is presented. Along with the theoretical and numerical results, proof-of-concept experimental results are presented. The investigated grating-based plasmonic gratings were fabricated from resist on a silver film using electron beam lithography and characterized using the leakage radiation microscopy technique. The obtained experimental results are in good agreement with the performed numerical simulations. The proposed on-chip gratings may find application in the design of systems for optical information transmission and processing at the nanoscale.

  12. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...

  13. Development and Application of Fiber Bragg Grating Clinometer

    Science.gov (United States)

    Guo, Xin; Li, Wen; Wang, Wentao; Feng, Xiaoyu

    2017-06-01

    Using FBG (fiber bragg grating) technology in clinometers can solve the technological problem facing by wireless transmission devices like big data transfer volume and poor stability, which has been receiving more and more attention. This paper discusses a new clinometer that is designed and transformed based on upgrading current clinometers, installing fiber grating strain gauges and fiber thermometers, and carrying out studies on such aspects as equipment upgrading, on-site setting, and data acquisition and analysis. In addition, it brings up the method of calculating displacement change based on wavelength change; this method is used in safety monitoring of the right side slope of Longyong Expressway ZK56+860 ~ ZK56+940 Section. Data shows that the device is operating well with a higher accuracy, and the slope is currently in a steady state. The equipment improvement and the method together provide reference data for safety analysis of the side slope.

  14. Planar Bragg Grating Sensors—Fabrication and Applications: A Review

    Directory of Open Access Journals (Sweden)

    I. J. G. Sparrow

    2009-01-01

    Full Text Available We discuss the background and technology of planar Bragg grating sensors, reviewing their development and describing the latest developments. The physical operating principles are discussed, relating device operation to user requirements. Recent performance of such devices includes a planar Bragg grating sensor design which allows refractive index resolution of 1.9×10−6 RIU and temperature resolution of 0.03∘C. This sensor design is incorporated into industrialised applications allowing the sensor to be used for real time sensing in intrinsically safe, high-pressure pipelines, or for insertion probe applications such as fermentation. Initial data demonstrating the ability to identify solvents and monitor long term industrial processes is presented. A brief review of the technology used to fabricate the sensors is given along with examples of the flexibility afforded by the technique.

  15. High-refractive-index measurement with an elastomeric grating coupler

    Science.gov (United States)

    Kocabas, Askin; Ay, Feridun; Dâna, Aykutlu; Kiyat, Isa; Aydinli, Atilla

    2005-12-01

    An elastomeric grating coupler fabricated by the replica molding technique is used to measure the modal indices of a silicon-on-insulator (SOI) planar waveguide structure. Because of the van der Waals interaction between the grating mold and the waveguide, the elastomeric stamp makes conformal contact with the waveguide surface, inducing a periodic index perturbation at the contact region. The phase of the incident light is changed to match the guided modes of the waveguide. The modal and bulk indices are obtained by measuring the coupling angles. This technique serves to measure the high refractive index with a precision better than 10-3 and allows the elastomeric stamp to be removed without damaging the surface of the waveguide.

  16. Advances on the Brazilian toroidal grating monochromator (TGM) beamline

    Energy Technology Data Exchange (ETDEWEB)

    Cavasso Filho, R.L. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Landers, R. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Box 6165, Campinas, SP 13083-970 (Brazil); Naves de Brito, A. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil)]. E-mail: arnaldo@lnls.br

    2005-06-15

    We report on an important advance for the vacuum ultraviolet and soft X-ray TGM beamline at Laboratorio Nacional de Luz Sincrotron (LNLS). This beamline provides photons in the energy range 12-330 eV using three gratings. It is well known that TGMs deliver relatively high flux at these energies but harmonic contamination can be a serious problem. Of special interest for the users is the range between 12 and 21 eV covered by one of the gratings for studies of outer and inner valence ionization processes in gases as well as solids. Here, we report a solution to the harmonic contamination problems based on a noble gas phase filter combined with thin metal foil barriers.

  17. Optical imaging using spatial grating effects in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Dave, Vishakha; Virpura, Hiral; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in [Department of Physics, Maharaja Krishankumarsinhji Bhavnagar University, Bhavnagar. 364002. India (India)

    2015-06-24

    Under the effect of magnetic field the magnetic nanoparticles of the ferrofluid tend to align in the direction of the magnetic field. This alignment of the magnetic nanoparticles behaves as a spatial grating and diffract light, when light is propagating perpendicular to the direction of the applied magnetic field. The chains of the magnetic nanoparticles represents a linear series of fringes like those observed in a grating/wire. Under applied magnetic field the circular beam of light transforms into a prominent diffraction line in the direction perpendicular to the applied magnetic field. This diffracted light illuminates larger area on the screen. This behavior can be used as magneto controlled illumination of the object and image analysis.

  18. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  19. Time delay in double micro-ring resonator with grating

    Science.gov (United States)

    Li, Qiliang; Chen, Xin; Song, Junfeng; Bi, Meihua; Hu, Miao; Li, Shuqin

    2016-10-01

    In this paper, using the transfer matrix which is obtained by coupled mode theory, we have studied the transmission and time delay characteristics of the micro-ring resonator with the grating. We find that fast- and slow-light can occur in double ring resonator which contains the grating. We also study the effect of coupling coefficient on transmission characteristics. The results reveal that the increase of the coupling coefficient can lead to the change of the time delay at various ports at the resonant point. Thus by adjusting the frequency of the incident light and selecting the device with different coupling coefficient, we can realize the output of the fast and slow light.

  20. Gratings and Random Reflectors for Near-Infrared PIN Diodes

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David

    2007-01-01

    Crossed diffraction gratings and random reflectors have been proposed as means to increase the quantum efficiencies of InGaAs/InP positive/intrinsic/ negative (PIN) diodes designed to operate as near-infrared photodetectors. The proposal is meant especially to apply to focal-plane imaging arrays of such photodetectors to be used for near-infrared imaging. A further increase in quantum efficiency near the short-wavelength limit of the near-infrared spectrum of such a photodetector array could be effected by removing the InP substrate of the array. The use of crossed diffraction gratings and random reflectors as optical devices for increasing the quantum efficiencies of quantum-well infrared photodetectors (QWIPs) was discussed in several prior NASA Tech Briefs articles. While the optical effects of crossed gratings and random reflectors as applied to PIN photodiodes would be similar to those of crossed gratings and random reflectors as applied to QWIPs, the physical mechanisms by which these optical effects would enhance efficiency differ between the PIN-photodiode and QWIP cases: In a QWIP, the multiple-quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. A pair of crossed gratings or a random reflector scatters normally or nearly normally incident light so that a significant portion of it attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. A pair of crossed gratings or a random reflector on a PIN photodiode would also scatter light into directions away from the perpendicular to the focal plane. However, in this case, the reason for redirecting light away from the perpendicular is to increase the length of the

  1. Quantum reflection of helium atom beams from a microstructured grating

    Science.gov (United States)

    Zhao, Bum Suk; Schulz, Stephan A.; Meek, Samuel A.; Meijer, Gerard; Schöllkopf, Wieland

    2008-07-01

    We observe high-resolution diffraction patterns of a thermal-energy helium atom beam reflected from a microstructured surface grating at grazing incidence. The grating consists of 10-μm -wide Cr strips patterned on a quartz substrate and has a periodicity of 20μm . Fully resolved diffraction peaks up to the seventh order are observed at grazing angles up to 20mrad . With changes in de Broglie wavelength or grazing angle the relative diffraction intensities show significant variations which shed light on the nature of the atom-surface interaction potential. The observations are explained in terms of quantum reflection at the long-range attractive Casimir-van der Waals potential.

  2. Quantum reflection of helium atom beams from a microstructured grating

    CERN Document Server

    Zhao, Bum Suk; Meek, Samuel A; Meijer, Gerard; Schöllkopf, Wieland

    2008-01-01

    We observe high-resolution diffraction patterns of a thermal-energy helium-atom beam reflected from a microstructured surface grating at grazing incidence. The grating consists of 10-$\\mu$m-wide Cr strips patterned on a quartz substrate and has a periodicity of 20 $\\mu$m. Fully-resolved diffraction peaks up to the $7^{\\rm th}$ order are observed at grazing angles up to 20 mrad. With changes in de Broglie wavelength or grazing angle the relative diffraction intensities show significant variations which shed light on the nature of the atom-surface interaction potential. The observations are explained in terms of quantum reflection at the long-range attractive Casimir-van der Waals potential.

  3. Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides

    Directory of Open Access Journals (Sweden)

    M. P. Bulk

    2008-01-01

    Full Text Available The refractive index modulation associated with the implantation of oxygen or silicon into waveguides formed in silicon-on-insulator (SOI has been investigated to determine the feasibility of producing planar, implantation induced Bragg grating optical filters. A two-dimensional coupled mode theory-based simulation suggests that relatively short grating lengths, on the order of a thousand microns, can exhibit sufficient wavelength suppression, of >10 dB, using the implantation technique. Fabricated planar implanted slab-guided SOI waveguides demonstrated an extinction of −10 dB for TE modes and −6 dB for TM modes for the case of oxygen implantation. Extinctions of −5 dB and −2 dB have been demonstrated with silicon implantation.

  4. Laser formation of Bragg gratings in polymer nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M M; Khaydukov, K V; Sokolov, V I; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2016-01-31

    The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10{sup -2} are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices. (interaction of laser radiation with matter. laser plasma)

  5. Arcus: An X-ray Grating Spectroscopy Mission

    Science.gov (United States)

    Smith, Randall K.; Arcus Collaboration

    2016-01-01

    We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be proposed to NASA as a MIDEX in 2016. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. Key mission design parameters are R~3000 and >700 cm^2 of effective area at the crucial O VII and O VIII lines, with the full bandpass going from ~10-50Å. Arcus will use the silicon pore optics proposed for ESA's Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs.

  6. Optical Fiber Grating Sensor for Force Measurement of Anchor Cable

    Institute of Scientific and Technical Information of China (English)

    JIANG Desheng; FU Jinghua; LIU Shengchun; SUI Lingfeng; FU Rong

    2006-01-01

    The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.

  7. Multiplexing technique using amplitude-modulated chirped fiber Bragg gratings

    Science.gov (United States)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2007-07-01

    We propose a new multiplexing technique using amplitude-modulated chirped fiber Bragg gratings that have an identical center Bragg wavelength. Each grating is inscribed with a unique amplitude modulation that allows them to be multiplexed with complete overlapping within a certain bandwidth. To demodulate the multiplexed signal, the discrete wavelet transform is employed. Concurrently, a wavelet denoising technique is used to reduce the noise. This proposed multiplexing technique has been verified through strain measurements. Experimental results showed that for strains applied up to 1250 μɛ the absolute error and cross-talk are within ±20 μɛ and 16 μɛ, respectively. A strain resolution of 4 μɛ is obtained.

  8. Beta Value Coupled Wave Theory for Nonslanted Reflection Gratings

    Directory of Open Access Journals (Sweden)

    Cristian Neipp

    2014-01-01

    Full Text Available We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik’s coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik’s coupled wave theory.

  9. Analytical Modeling for the Grating Eddy Current Displacement Sensors

    Directory of Open Access Journals (Sweden)

    Lv Chunfeng

    2015-02-01

    Full Text Available As a new type of displacement sensor, grating eddy current displacement sensor (GECDS combines traditional eddy current sensors and grating structure in one. The GECDS performs a wide range displacement measurement without precision reduction. This paper proposes an analytical modeling approach for the GECDS. The solution model is established in the Cartesian coordinate system, and the solving domain is limited to finite extents by using the truncated region eigenfunction expansion method. Based on the second order vector potential, expressions for the electromagnetic field as well as coil impedance related to the displacement can be expressed in closed-form. Theoretical results are then confirmed by experiments, which prove the suitability and effectiveness of the analytical modeling approach.

  10. Development of Cassava Grating Machine: A Dual-Operational Mode

    Directory of Open Access Journals (Sweden)

    Mohammed B. NDALIMAN

    2006-07-01

    Full Text Available Design of a Cassava grating machine which has two modes of operation was made. It can be powered either electrically or manually. It takes care of power failure problems, and can be used in rural settlements where electricity supply is not in existence. Cassava is fed with the Machine through the hopper made of metal sheet to the granting drum, which rotates at a constant speed. This process grates the cassava into cassava pulp. The chute constructed of metal sheet accepts the pulp and send it out because of its inclination which operated manually, the efficiency of the machine was found to be 92.4%, which the efficiency of the electrically powered machine was found to be 91.9%.

  11. Photonic crystal distributed feedback fiber lasers with Bragg gratings

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based on s...... on standard step index fibers. This makes possible realization of fiber lasers with a low pump threshold (small mode area), and fiber lasers suitable for high-power applications (large mode area)......Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based...

  12. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    Science.gov (United States)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  13. Controlling the electromagnetically induced grating via spontaneously generated coherence

    Science.gov (United States)

    Bozorgzadeh, Forough; Sahrai, Mostafa; Khoshsima, Habib

    2016-09-01

    A new arrangement of an electromagnetically induced grating in a three-level Ladder-type atomic system with indirect incoherent pumping field is proposed. It is found that the diffraction intensity can efficiently be controlled by the spontaneously generated coherence (SGC). In addition, the diffraction intensity spectrum can dramatically be tuned by manipulating the coupling field intensity, resonance conditions, the rate of an indirect incoherent pumping field, and interaction length.

  14. Optimization design of flat-band long-period grating

    Institute of Scientific and Technical Information of China (English)

    Yumin Liu(刘玉敏); Zhongyuan Yu(俞重远); Jianzhong Zhang(张建忠); Bojun Yang(杨伯君); Xiaoguang Zhang(张晓光)

    2004-01-01

    We present a method to optimize the flat-band long-period fiber Bragg grating (FBG) in this letter. The method is based on the particle swarm optimization method and the matrix transmission method. The optimized refractive modulation profile does not introduce so many phase shifts and is easier to fabricate compared with that of layer-peeling method which introduces lots of π phase shift at each zero point of apodization profile in designing for the same problem.

  15. Novel optical filters based on curved grating structure

    Science.gov (United States)

    Wang, Jia-Xian; Zhao, Jing; Qiu, Weibin; Lin, Zhili; Huang, Yixin; Chen, Houbo; Qiu, Pingping

    2017-03-01

    A novel modified Rowland grating structure is proposed in this paper. Optical filters with the proposed structure are designed and fabricated with both high input and output angles. The passband width, coupling loss of the filters are investigated as a function of the output waveguide width. Nearly aberration free diffraction filters with an ultracompact footprint less than 0.5 mm2 were obtained with the proposed structure.

  16. Spontaneous formation of optically induced surface relief gratings

    CERN Document Server

    Leblond, H; Ahamadi-kandjani, S; Nunzi, J -M; Ortyl, E; Kucharski, S

    2009-01-01

    A model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, is developped to describe single-beam surface relief grating formation in azopolymers thin films. It allows to explain the mechanism of spontaneous patterning, and self-organization. It allows also to compute the surface relief profile and its evolution in time with good agreement with experiments.

  17. Load Coefficients on Grates used for Wind Turbine Access Platforms

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.; Frigaard, Peter

    In this report is presented the results of tests carried out at Dept. of Civil Engineering, Aalborg University (AAU) on behalf of DONG Energy A/S and Vattenfall A/S, Denmark. The objective of the tests was to investigate the load coefficient on different platform grates and a solid plate...... for designing offshore windmill access platforms against wave run-up generated forces....

  18. V-groove gratings on silicon for infrared beam splitting.

    Science.gov (United States)

    Rajkumar, N; McMullin, J N

    1995-05-10

    Infrared beam-splitting transmission gratings that utilize anisotropically etched v-grooves on silicon wafers are proposed. With scalar diffraction theory to find the amplitudes of the different diffraction orders, a numerical search is used to find optimum designs for 1:3, 1:5, and 1:7 splitters with efficiencies greater than 70% with a standard deviation in intensity of no more than 7%.

  19. Fiber Bragg Gratings Embedded in 3D-Printed Scaffolds

    CERN Document Server

    Liacouras, Peter; Choudhry, Khazar; Strouse, G F; Ahmed, Zeeshan

    2015-01-01

    In recent years there has been considerable interest in utilizing embedded fiber optic based sensors for fabricating smart materials. One of the primary motivations is to provide real-time information on the structural integrity of the material so as to enable proactive actions that prevent catastrophic failure. In this preliminary study we have examined the impact of embedding on the temperature-dependent response of fiber Bragg gratings.

  20. Screening of grated cheese authenticity by nir spectroscopy

    Directory of Open Access Journals (Sweden)

    Chiara Cevoli

    2013-09-01

    Full Text Available Parmigiano–Reggiano (PR cheese is one of the oldest traditional cheeses produced in Europe, and it is still one of the most valuable Protected Designation of Origin (PDO cheeses of Italy. The denomination of origin is extended to the grated cheese when manufactured exclusively from whole Parmigiano-Reggiano cheese wheels that respond to the production standard. The grated cheese must be matured for a period of at least 12 months and characterized by a rind content not over 18%. In this investigation the potential of near infrared spectroscopy (NIR, coupled to different statistical methods, were used to estimate the authenticity of grated Parmigiano Reggiano cheese PDO. Cheese samples were classified as: compliance PR, competitors, non-compliance PR (defected PR, and PR with rind content greater then 18%. NIR spectra were obtained using a spectrophotometer Vector 22/N (Bruker Optics, Milan, Italy in the diffuse reflectance mode. Instrument was equipped with a rotating integrating sphere. Principal Component Analysis (PCA was conducted for an explorative spectra analysis, while the Artificial Neural Networks (ANN were used to classify spectra, according to different cheese categories. Subsequently the rind percentage and month of ripening were estimated by a Partial Least Squares regression (PLS. Score plots of the PCA show a clear separation between compliance PR samples and the rest of the sample was observed. Competitors samples and the defected PR samples were grouped together. The classification performance for all sample classes, obtained by ANN analysis, was higher of 90%, in test set validation. Rind content and month of ripening were predicted by PLS a with a determination coefficient greater then 0.95 (test set. These results showed that the method can be suitable for a fast screening of grated cheese authenticity.

  1. All-optical signal processing using dynamic Brillouin gratings

    Science.gov (United States)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  2. Fiber Bragg Grating Pressure Sensor Based on Corrugated Diaphragm

    Institute of Scientific and Technical Information of China (English)

    FU Hai-wei; FU Jun-mei; QIAO Xue-guang

    2004-01-01

    A kind of fiber Bragg grating pressure sensor based on corrugated diaphragm is proposed. The relationship between the central wavelength of reflective wave of FBG and pressure is given, and the expression of the pressure sensitivity coefficient is also given. Within the range from results agree with the theoretical analysis. It is indicated that the expected pressure sensitivity of the sensor can be obtained by optimizing the size and mechanical parameters of the corrugated diaphragm.

  3. Fiber Bragg grating pressure sensor with enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Wentao Zhang; Lihui Liu; Fang Li; Yuliang Liu

    2007-01-01

    @@ A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.

  4. Technical textiles with embedded fibre Bragg grating sensors

    Science.gov (United States)

    Bilro, L.; Cunha, H.; Pinto, J. L.; Nogueira, R. N.

    2009-10-01

    The characterization of fiber Bragg grating (FBG) sensors integrated on 2D and 3D mesh structures is presented. Several materials and configurations were tested, namely cork, foams, PVC, hexagonal 3D. Sensors were embedded between two substrates using textile lamination technique. Every sample was subjected to temperature variations and mechanical deformations. Through Bragg wavelength monitoring, thermal, deformation and pressure performance were evaluated. These results provide significant information to the conception of smart textiles.

  5. Grating Lobe Characteristics of Arrays with Uniformly Illuminated Contiguous Subarrays,

    Science.gov (United States)

    1983-12-01

    TR-S3-290 Own smbsr 1963 q~mGRA TING L OBE CHA RA CTER/S T/CS OF SARRA YS WITH UNIFORMLY ILL UMINA TED SCONTIGUOUS SUBA RRA YS Robert J. Mailloux...given by Eq. (10) with u s = u 0 and Af = 0. For arrays with more than 4 subarrays, the grating lobe is so narrow that the sine in the numerator of 10 is

  6. Nano-imprint gold grating as refractive index sensor

    Science.gov (United States)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-05-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  7. Microtrap on a concave grating reflector for atom trapping

    Science.gov (United States)

    Zhang, Hui; Li, Tao; Yin, Ya-Ling; Li, Xing-Jia; Xia, Yong; Yin, Jian-Ping

    2016-08-01

    We propose a novel scheme of optical confinement for atoms by using a concave grating reflector. The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination. Especially, the light intensity at the focal point is about 100 times higher than that of the incident light. Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms. We discuss the feasibility of the structure serving as an optical dipole trap. Our results are as follows. (i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms. (ii) The maximum trapping potential is ˜ 1.14 mK in the optical trap, which is high enough to trap cold 87Rb atoms from a standard magneto-optical trap with a temperature of 120 μK, and the maximum photon scattering rate is lower than 1/s. (iii) Such a microtrap array can also manipulate and control cold molecules, or microscopic particles. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374100, 91536218, and 11274114) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 13ZR1412800).

  8. Interrogating adhesion using fiber Bragg grating sensing technology

    Science.gov (United States)

    Rasberry, Roger D.; Rohr, Garth D.; Miller, William K.; Udd, Eric; Blach, Noah T.; Davis, Ryan A.; Olson, Walter R.; Calkins, David; Roach, Allen R.; Walsh, David S.; McElhanon, James R.

    2015-05-01

    The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. SOI waveguide based planar reflective grating demultiplexer for FTTH

    Science.gov (United States)

    Bidnyk, S.; Feng, D.; Balakrishnan, A.; Pearson, M.; Gao, M.; Liang, H.; Qian, W.; Kung, C.-C.; Fong, J.; Yin, J.; Asghari, M.

    2007-02-01

    Recent deployments of fiber-to-the-home (FTTH) represent the fastest growing sector of the telecommunication industry. The emergence of the silicon-on-insulator (SOI) photonics presents an opportunity to exploit the wide availability of silicon foundries and high-quality low-cost substrates for addressing the FTTH market. We have now demonstrated that a monolithically integrated FTTH demultiplexer can be built using the SOI platform. The SOI filter comprises a monolithically integrated planar reflective grating and a multi-stage Mach-Zehnder interferometer that were fabricated using a CMOS-compatible SOI process with the core thickness of 3.0 μm and optically insulating layer of silica with a thickness of 0.375 μm. The Mach-Zehnder interferometer was used to coarsely separate the 1310 nm channel from 1490 and 1550 nm channels. Subsequently, a planar reflective grating was used to demultiplex the 1490 and 1550 nm channels. The manufactured device showed the 1-dB bandwidth of 110 nm for the 1310 nm channel. For the 1490 nm and 1550 nm channels, the 1-dB bandwidth was measured to be 30 nm. The adjacent channel isolation between the 1490 nm and 1550 nm channels was better than 32 dB. The optical isolation between the 1310 nm and 1490 and 1550 nm channels was better than 45 dB. Applications of the planar reflective gratings in the FTTH networks are discussed.

  10. A modified phase diversity wavefront sensor with a diffraction grating

    Institute of Scientific and Technical Information of China (English)

    Luo Qun; Huang Lin-Hai; Gu Nai-Ting; Rao Chang-Hui

    2012-01-01

    The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration,and it is often used as a wavefront sensor in adaptive optics systems.However,the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at the focus and defocus positions of the CCD camera.In this paper,a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency.The basic principle and the optics construction of the proposed method are also described in detail.The noise propagation property of the proposed method is also analysed by using the numerical simulation method,and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made.The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration,especially the wavefront aberration with larger amplitude and higher spatial frequency.

  11. Performance improvement for silicon-based arrayed waveguide grating router.

    Science.gov (United States)

    Zou, Jun; Le, Zichun; Hu, Jinhua; He, Jian-Jun

    2017-05-01

    We analyze the impact of aberration on spectral performance of silicon-based arrayed waveguide grating (AWG) router with the conventional design using a constant pitch along the grating circle for the array waveguides near the free propagation region (FPR), and simulation results show that due to existence of large aberration, side lobes occur in spectral responses of peripheral output channels for the center input light while more serious side lobes appear in most output channels within a free spectral range (FSR) for the edge channel input. Therefore, there is a high crosstalk in conventional N × N silicon AWG, which is very detrimental for router applications. In order to address it, a simple design with a constant projected period on a line tangent to the grating at its pole for the array waveguides near the FPR is proposed, and aberrations of all output wavelengths within a FSR are kept at a rather low level both for the center and edge input. Then we fabricate two kinds of AWG routers with the conventional and proposed design respectively on a SOI wafer, and experimental results show that spectral responses of the AWG router with the proposed design are significantly improved compared to those obtained in the conventional design, especially for the edge channel input.

  12. The nature of transmission resonances in plasmonic metallic gratings

    CERN Document Server

    D'Aguanno, G; Bloemer, M J; de Ceglia, D; Vincenti, M A; Alu', A

    2010-01-01

    Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic grating with sub-wavelength period and extremely narrow slits for wavelengths of the incoming, transverse magnetic (TM)-polarized, radiation ranging from 240nm to 1500nm and incident angles from 0 degree to 90 degree. In particular, we study the case of a silver grating placed in vacuo. Consistent with previous studies on the topic, we highlight that the main mechanism for extraordinary transmission is a TM-Fabry-Perot (FP) branch supported by waveguide modes inside each slit. The TM-FP branch may also interact with surface plasmons (SPs) at the air/Ag interface through the reciprocal lattice vectors of the grating, for periods comparable with the incoming wavelength. When the TM-FP branch crosses a SP branch, a band gap is formed along the line of the SP dispersion. The gap has a Fano-Feshbach resonance at the low frequency band edge and a ridge resonance with extremely long lifetime at the high frequenc...

  13. Unidirectional transmission in non-symmetric gratings containing metallic layers.

    Science.gov (United States)

    Serebryannikov, A E; Ozbay, Ekmel

    2009-08-03

    The mechanism of achieving unidirectional transmission in the gratings, which only contain isotropic dielectric and metallic layers, is suggested and numerically validated. It is shown that significant transmission in one direction and nearly zero transmission in the opposite direction can be obtained in the same intrinsically isotropic gratings as those studied recently in A. E. Serebryannikov and E. Ozbay, Opt. Express 17, 278 (2009), but at a non-zero angle of incidence. The tilting, non-symmetric features of the grating and the presence of a metallic layer with a small positive real part of the index of refraction are the conditions that are necessary for obtaining the unidirectionality. Single- and multibeam operational regimes are demonstrated. The frequency and angle ranges of the unidirectional transmission can be estimated by using the conventional framework based on isofrequency dispersion contours and construction lines that properly take into account the periodic features of the interfaces, but should then be corrected because of the tunneling arising within the adjacent ranges. After proper optimization, this mechanism is expected to become an alternative to that based on the use of anisotropic materials.

  14. Hole-drilling method using grating rosette and Moire interferometry

    Institute of Scientific and Technical Information of China (English)

    Jubing Chen; Yongsheng Peng; Shexu Zhao

    2009-01-01

    The hole-drilling method is one of the most well-known methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one sheafing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.

  15. Label-free biosensor based on long period grating

    Science.gov (United States)

    Baldini, Francesco; Chiavaioli, Francesco; Giannetti, Ambra; Brenci, Massimo; Trono, Cosimo

    2013-03-01

    Long period gratings have been recently proposed as label-free optical devices for biochemical sensing. A biochemical interaction along the grating region changes the biolayer refractive index and a change in the fiber transmission spectrum occurs. The fiber biofunctionalization was performed with a novel chemistry using Eudragit L100 copolymer as opposed to the commonly-used silanization procedure. An IgG/anti-IgG bioassay was carried out for studying the antigen/antibody interaction. The biosensor was fully characterized, monitoring the kinetics during the antibody immobilization and achieving the calibration curve of the assay. To compare the biosensor performance, two LPG-based biosensors with distinct grating periods were characterized following the same bioassay protocol. Experimental results demonstrated an enhancement of the biosensor performance when the fundamental core mode of a single-mode fiber couples with a higher order cladding mode. Considering an LPG manufactured on a bare optical fiber, in which the coupling occurs with the 7-th cladding mode, a dynamic signal range of 0.33 nm, a working range of 1.7 - 1450 mg L-1 and a LOD of 500 μg L-1 were achieved

  16. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  17. High-resolution x-ray analysis with multilayer gratings

    CERN Document Server

    Jonnard, Philippe; André, Jean-Michel; 10.1002/xrs.1128

    2013-01-01

    Periodic multilayers are nowadays widely used to perform x-ray analysis in the soft x-ray range (photon energy lower than 1 keV). However, they do not permit to obtain high-resolution spectra like natural or synthetic crystals. Thus, multilayers cannot resolve interferences between close x-ray lines. It has been shown and demonstrated experimentally that patterning a grating profile within a multilayer structure leads to a diffractive optics with improved resolving power. We illustrate the use of a Mo/B4C multilayer grating in the Fe L and C K spectral ranges, around 700 eV and 280 eV respectively. First, in the Fe L range, the improved spectral resolution enables us to distinguish the Fe L\\alpha and L\\beta emissions (separated by 13 eV). In addition, using a sample made of a mix of LiF and an iron ore, we show that it is possible to easily resolve the F K and Fe L emissions. These examples demonstrate that an improved x-ray analysis can be obtained with multilayer gratings when there is the need to study sam...

  18. Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity

    CERN Document Server

    Friedrich, Daniel; Brückner, Frank; Hild, Stefan; Nelson, John; Mcarthur, John; Plissi, Michael V; Edgar, Matthew P; Huttner, Sabina H; Sorazu, Borja; Kroker, Stefanie; Britzger, Michael; Kley, Ernst-Bernhard; Danzmann, Karsten; Tünnermann, Andreas; Strain, Ken A; Schnabel, Roman

    2011-01-01

    We report on the first demonstration of a fully suspended 10m Fabry-Perot cavity incorporating a waveguide grating as the coupling mirror. The cavity was kept on resonance by reading out the length fluctuations via the Pound-Drever-Hall method and employing feedback to the laser frequency. From the achieved finesse of 790 the grating reflectivity was determined to exceed 99.2% at the laser wavelength of 1064\\,nm, which is in good agreement with rigorous simulations. Our waveguide grating design was based on tantala and fused silica and included a ~20nm thin etch stop layer made of Al2O3 that allowed us to define the grating depth accurately during the fabrication process. Demonstrating stable operation of a waveguide grating featuring high reflectivity in a suspended low-noise cavity, our work paves the way for the potential application of waveguide gratings as mirrors in high-precision interferometry, for instance in future gravitational wave observatories.

  19. Pitch evaluation of gratings based on a digital image correlation technique

    Science.gov (United States)

    Lu, Yancong; Jia, Wei; Wei, Chunlong; Yu, Junjie; Li, Shubin; Li, Yanyang; Li, Minkang; Qiu, Jucheng; Wang, Shaoqing; Zhou, Changhe

    2016-04-01

    The digital image correlation (DIC) technique used for metrological grating evaluation is presented in this paper. A CCD camera is used to acquire the grating image, and the DIC technique together with the peak-position detection method is used to evaluate the grating pitches. The theoretical analysis and simulations are performed to confirm that the performance of our technique is as accurate as the Fourier transform (FT) technique, and is capable of noise resistance. As an example, the uniformity of the grating fabricated in our laboratory is measured using this method. The experimental results show that this grating has a peak-to-valley uniformity of 48 nm during a long range of 35 mm, and our technique has a higher repeatability than the FT technique in our measurement strategy. This work should be of great significance for the evaluation of metrological grating for optical encoders.

  20. Polarization dependence of the quasi-Talbot effect of the high-density grating.

    Science.gov (United States)

    Teng, Shuyun; Guo, Wenzhen; Cheng, Chuanfu

    2010-03-01

    Diffractions by the one-dimensional high-density grating in the near field with TM and TE polarization illuminations are studied, and the diffraction intensity distributions are calculated with the finite-difference time-domain technique. The calculation results show that the diffractions of the high-density grating with different polarization illuminations are different. The quasi-Talbot image of the grating depends on the polarization of the incident wave, and the existence condition of the quasi-Talbot image of the grating in the near field also changes with the polarization of the incident wave. We present explanations based on the vector distribution of the energy flow density. These studies on the polarization dependence of the quasi-Talbot imaging of the high-density grating are helpful for the application of the grating to near-field photolithography.